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Summary. Software-Defined Networking (SDN) is a novel architectural
model for cloud network infrastructure, improving resource utilization,
scalability and administration. SDN deployments increasingly rely on
virtual switches executing on commodity platforms. However, such vul-
nerable commodity operating systems with large code bases are prime
targets for adversaries attacking the infrastructure. We describe and im-
plement TruSDN, a framework for bootstrapping trust in SDN infrastruc-
ture using Intel Software Guard Extensions (SGX), allowing to securely
deploy SDN components and protect communication between network
endpoints. We introduce ephemeral flow-specific session keys and a novel
defense against cuckoo attacks on SGX enclaves. TruSDN is secure under
a powerful adversary model, with a minor performance overhead.
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1 Introduction

Renewed and widespread interest in virtualization – along with proliferation
of cloud computing – has spurred a series of innovations, allowing cloud ser-
vice providers to deliver on-demand compute, storage and network resources for
highly dynamic workloads. Consequently, more hardware and virtual compo-
nents are added to already large networks, complicating network management.
To help address this, SDN emerged as a novel network architecture model. Sep-
aration of the data and control planes is its core principle, allowing network
operators to implement high-level configuration goals by interacting with a sin-
gle network controller, rather than configuring discrete network components. The
controller applies the configuration to the network edge, i.e. its global view of the
data plane [11]. Data and control plane separation in SDN challenges network in-
frastructure security best practices evolved in the decades since packet-switched
digital network communication gained popularity [16], [22].

In the cloud infrastructure model, SDN allows tenants to configure complex
topologies with rich network functionality, managed by a network controller. The
availability of a global view of the data plane enables advanced controller capa-
bilities – from pre-calculating optimized traffic routing to managing applications
that replace hardware middleboxes. However, these capabilities also make the
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controller a valuable attack target: once compromised, it yields the adversary
complete control over the network [27]. The global view itself is security sensi-
tive: an adversary capable of impersonating network components may distort a
controller’s global view and influence network-wide routing policies [13].

Virtual switches are another category of security sensitive components in
SDN deployments. They execute on commodity operating systems (OS) and are
often assigned the same trust level and privileges as hardware switches – special-
ized network components with compact embedded software [28] or application-
specific integrated circuits. Commodity OS are likely to contain security flaws
which can be exploited to compromise virtual switches. For example, their con-
figuration can be modified to disobey the protocol, breach network isolation
and reroute traffic to a malicious destination or compromise other network edge
elements through lateral attacks. Such risks are accentuated by the extensive
control a cloud provider has over the infrastructure of its tenants.

Security and isolation of tenant infrastructure can be strengthened by con-
fining select SDN components to trusted execution environments (TEE) and
attesting their integrity before provisioning security-sensitive data. TEEs with
strong security guarantees can be built using SGX, a set of recently introduced
extensions to the x86 instruction set architecture and related hardware [1, 18].
Earlier work used SGX to protect computation in cloud environments, by exe-
cuting modified OS instances in SGX enclaves [2] or a data processing framework
in a set of SGX enclaves [32]. However, while both of the above efforts highlighted
the need to secure network communication, they did not address it.

1.1 Contribution

This paper makes the following contributions:

– We present TruSDN, a framework to bootstrap trust in SDN infrastructure.
– We introduce ephemeral flow session keys for communication protection.
– We propose a defense against cuckoo attacks [23], based on properties of the

enhanced privacy ID (EPID) scheme [4] used for remote enclave attestation.
– We describe the implementation and a performance evaluation of TruSDN.

1.2 Organization

We introduce the system model in Section 2, describe the adversary model in
Section 3 and the design of TruSDN in Section 4. In Section 5 we provide a
security analysis, describe the prototype implementation and performance eval-
uation in Section 6 and review the related work in Section 7. We discuss future
work in Section 8 and conclude in Section 9.

2 System Model

In this section we describe the SDN architectural model and the SDN deployment
layers. Furthermore, we describe the use of TEEs based on Intel SGX.



Bootstrapping Trust in Cloud Network Infrastructure 3

2.1 Software Defined Networking

In this paper we target SDN in infrastructure cloud deployments. The system
model follows the architecture presented in [5] and depicted in Figure 1.

The data plane includes hardware and software switch implementations. Soft-
ware switching is used in cloud deployments due to its scalability and configura-
tion flexibility. Figure 2 illustrates the software switching approaches for inter-
virtual machine (VM) communication. In a typical switch implementation, its
kernel-space component is optimized for forwarding performance, lacks decision
logic and only forwards packets matching rules in its forwarding information base
(FIB) [20]. The FIB comprises packet forwarding rules deployed to satisfy net-
work administrator goals. Mismatching rules are discarded or redirected to the
control plane through the southbound API. While the data plane uses comple-
mentary functionality of both virtual and physical switches, the role of the latter
is often reduced to routing IP-tunneled traffic between hypervisors [25]. We do
not address control of hardware switches and traffic routing between hosts; we
assume that the physical network provides uniform capacity across hosts, based
on e.g. equal-cost multi-path routing [14], such that if multiple equal-cost routes
to the same destination exist, they can be discovered and used to provide load
balancing among redundant paths. Overlay networks – e.g. VLANs or GRE [10]
– are used for inter-VM communication. We focus exclusively on software switch-
ing and use the term “switch” to denote a virtual, software implementation. We
refer to hardware switch implementations as “hardware switches”.

In the control plane, high-level network operator goals are translated into
discrete routing policies based on the global network view, i.e. a graph represen-
tation of the virtual network topology. The main component of a control plane
is the network controller, which we define as follows:

Definition 1. Network Controller (NC) is a logically centralized component that
manages network communication in a given deployment by updating the FIB
with specific forwarding rules. The NC compiles forwarding rules based on three
inputs: the dynamic global network view, the high-level configuration goals of the
network operator, and the output of the network management applications.

The NC is typically implemented as part of a logically centralized network OS,
which builds and maintains the global network view and may include a net-
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Fig. 1. The SDN architectural model.
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work hypervisor, to multiplex network resources among distinct virtual network
deployments.

Southbound API is a set of vendor-agnostic instructions for communication
between data and control planes. it is often limited to flow-based traffic control
of the data plane, with management done through a configuration database [25].

Network operators use network management applications (NMAs), e.g. fire-
walls, traffic shapers, etc., to configure the network using high-level commands.

2.2 Deployment layers

We next describe the deployment layers of an SDN infrastructure (Figure 3).
The hardware layer includes infrastructure for data transfer, processing and

storage and is comprised of network hardware (including hardware switches and
communication channels), hardware server platforms and data storage.

The infrastructure layer includes software components for virtualization and
resource provisioning to tenants. For network resources, this layer includes the
network hypervisor, which creates network slices by multiplexing physical net-
work infrastructure between tenants. Infrastructure providers expose a slice (i.e.
a quota) of network resources to infrastructure users, referred to as tenants.

The service layer includes components controlled by tenants. Network com-
ponents operated by tenants are grouped into network domains, comprising the
virtual network resources and topologies that logically belong to the same orga-
nizational unit and network slice, and perform related tasks or provide a com-
mon service. The network hypervisor ensures that a tenant’s control plane can
only control switches in its own slice. Within their slice, tenants have exhaus-
tive creation, destruction and configuration privileges over components, such as
instances of switches, the NC, NMAs and network domains. We define three
logical communication segments (Figure 4): between the network controller and
switches (α segments); among the switches on each host (β segments); between
host-local switches and network endpoints (γ segments).

The user layer includes endpoint consumers of network services, e.g. VM
guests, containers and applications in a network domain.
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2.3 Trusted Execution Environments

Our system model relies on the presence of TEEs. A TEE can be created using
Intel SGX enclaves during OS runtime and relies for its security on a trusted
computing base (TCB) of code and data loaded at build time, processor firmware
and processor hardware. At build time, the CPU measures the loaded code, data
and memory page layout. At initialization time, the CPU produces a final mea-
surement, after which the enclave becomes immutable and cannot be externally
modified. The CPU maintains the measurement throughout the enclave’s lifetime
to later assert the integrity of the enclave contents. Processor firmware is the
root of trust (ROT) of an enclave. It prevents access to the memory segment of
enclave by either the platform OS, other enclaves, or other external agents. En-
claves operate in a separate memory region inaccessible to non-enclave processes,
called the enclave page cache (EPC). Multiple mutually distrusting enclaves can
operate on the platform. The processor enforces separation of memory access
among enclaves based on the layout in the EPC map. Program execution within
an enclave is transparent to both the underlying OS and other enclaves.

Remote attestation allows an enclave to provide integrity guarantees of its
contents [1]. For this, the platform produces an attestation assertion with infor-
mation about the identity of the enclave and details of non-measureable state
(e.g. the mode of the software environment, associated data, and a cryptographic
binding to the platform TCB making the assertion). For intra-platform attes-
tation (i.e. between enclaves on the same platform), the reporting enclave (re-
porter) invokes the EREPORT instruction to create a REPORT structure with the
assertion and calculate a message authentication code (MAC), using a report
key, known only to the target enclave (target) and the CPU. The structure con-
tains a user data field, where the reporter can store a hash of the auxiliary
data provided. The target recomputes the MAC with its report key to verify
the authenticity of the structure, and compares the hash in the user data with
the hash of the auxiliary data, to verify its integrity. Enclaves then use the
auxiliary data to establish a secure communication channel. For inter-platform
attestation the remote verifier first sends a challenge to the enclave platform,
where the challenge is complemented with the indentity of a quoting enclave
(QE) and forwarded to the reporter, which appends the challenge response to
the REPORT and attests itself to the QE. The QE verifies the structure, signs
it with a platform-specific key using the enhanced privacy ID group signature
scheme (EPID) [4] and returns it to the verifier, to check the authenticity of the
signature and the report itself [1].

3 Adversary Model

We now describe the adopted adversary model, as well as the core security
assumptions on which we base our design. The adversary model we adopt can
be described by the capabilities of the adversary at the network and platform
levels respectively (overview in Table 1).
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3.1 Network infrastructure

For SDN infrastructure, we adopt the adversary model introduced in [7] and
extended with SDN-specific attack vectors in [22]. We assume a powerful adver-
sary (Adv), which controls the cloud deployment network infrastructure; it can
intercept, record, forge, drop and replay any message on the network, and is only
limited by the constraints of the employed cryptographic methods. Particularly,
the Adv may use forged messages with unmatched packets to induce the NC to
update the FIB. Furthermore the Adv may create own instances of switches and
launch Sybil attacks [8] and launch other types of topology poisoning attacks [13]
to distort the global network view. Finally, Adv can store arbitrary quantities
of intercepted communication and attempt its decryption with encryption keys
intercepted or leaked at a later point. It can analyze the traffic patterns in the
network through passive probing and may disrupt or degrade network connectiv-
ity to achieve its goals. We explicitly exclude Denial-of-Service attacks on SDN
infrastructure.

3.2 Platform

For platform security, we consider a powerful adversary, similar to [2, 32], that
may control the entire software stack in the cloud provider’s infrastructure.

On the hardware level, we assume the processor is correctly implemented and
remains uncompromised; furthermore, we assume a reliable and secure source of
random numbers (which can be provided by the CPU). Adv has full control
over the remaining hardware, including memory, I/O devices, periferials, etc.
Similarly, Adv fully controls the software stack, including the platform OS and
the hypervisor. This implies that Adv may pause indefinitely the execution of
the code in the TEE and return arbitrary values in response to OS system
calls. We exclude side-channel attacks. While some side-channel attacks – e.g.
timing, cache-collision, controlled channel attacks – can be mitigated through
software modification [35], preventing other side-channel attacks – such as power
analysis – requires hardware modifications. An Adv with advanced capabilities

Table 1. Summary of the Adv capabilities in relation to the adversary model.

Type Network Platform
Included Intercept, record, forge, drop,

replay messages
Analyze the traffic patterns;
Disrupt or degrade network connectivity
Launch topology poisoning attacks

Control non-processor hardware
Control software stack OS, hypervisor
Pause execution;
Deploy arbitrary software components
“Cuckoo attack”: Forward function calls
to compromised SGX enclaves

Not included,
mitigations known

Side-channels: cache-collision,
controlled channel
Attacks on shielded execution
Return arbitrary values to system calls

Excplicitly
excluded

Denial-of-Service (DoS) attacks Side-channels: power analysis; DoS
attacks
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may leverage its full control over the OS to utilize the class of known attacks
on shielded execution; while we do not address such attacks, they have known
countermeasures [6, 2].

SGX, similar to other trusted computing solutions, is vulnerable to cuckoo
attacks [23]. In one attack scenario, malware on the target platform forwards the
messages intended for the local SGX enclave (SGXE

L ) to a remote enclave under
Adv ’s physical control (malicious enclave, SGXE

M ). Having physical access to
SGXE

M , Adv can apply hardware attacks to violate its security guarantees. As
a result, Adv controls all communication between the verifier and SGXE

L , with
access to an oracle that provides all of the answers a benign SGXE would, but
without its expected security properties.

Briefly, the adversary model for platform security largely matches the remote
administrator capabilities of an infrastructure cloud provider.

4 Solution Description

In this section we present TruSDN, a framework for bootstrapping trust in SDN
deployments. Its goal is to allow tenants to securely deploy computing tasks and
create virtualized network infrastructure deployments, given the adversary model
and sample attacks defined in Section 3. To satisfy this goal, the framework must
satisfy the following set of requirements:

– Authentication: communication in the domain must the authenticated, and a
secure enrollment mechanism for data plane components must be in place.

– Topology integrity: the NC must be protected from network components that
attempt to distort the global network view.

– Component integrity: integrity of switches must be verified prior to enrollment
and the cryptographic material required for their network access must be
protected with a hardware ROT.

– Confidentiality protection of domain secrets: network domain secrets – such
as VPN session keys – should not be revealed in plaintext to the Adv .

– Protected network communication: network communication in the tenant do-
main must be confidentiality and integrity protected.

4.1 TruSDN overview

We begin by introducing the building blocks of TruSDN (Figure 5).

Trusted Execution Environments: TruSDN uses TEEs that guarantee secure ex-
ecution in the given adversary model, assuming the CPU and executed code are
correctly implemented.

Protected Compute Tasks: Security sensitive compute tasks (CT) are deployed
in TEEs. Such tasks include all operations that tenants aim to protect from the
Adv . However, CTs rely on the untrusted OS for I/O and support functionality.
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Protected Data Plane: Switches, the main components of the tenant network
data plane, are deployed in TEEs – they route traffic between CTs according to
forwarding rules communicated through secure channels and maintained in the
FIB. Switches, their FIB, and the key material necessary to establish the secure
channels are stored in TEEs.

Attested code in TEEs: An orchestrator under tenant control attests the TEEs
during network infrastructure deployment, to ensure integrity of the deployed
code and data before keys or key material are provisioned to the respective TEE.

In a typical deployment scenario, the tenant invokes an orchestrator to de-
ploy a switch bootstrap application on the hosts in the tenant’s domain. The
bootstrap application invokes a host-local SGX driver to build an SGX enclave
containing a switch, and attests it (as described in Section 2.3) prior to enrolling
the switch with the NC. The orchestrator uses the enclave’s public key from
the attestation quote to securely transfer the enclave-specific integrity and con-
fidentiality protection session keys used to establish a protected communication
channel between the NC and the TEE. Finally, the NC communicates any re-
maining security-sensitive payload to the created TEE, e.g. the initial FIB. Next,
CTs are deployed in TEEs on the host and the switch forwards packets between
the CTs, matching them against the rules in the FIB. Mismatching rules are
forwarded to the NC, which may update the FIB with new rules. For clarity,
we assume the orchestrator and NC are collocated on a platform under tenant
control and view both as a single component, further referred to as “NC”.

Secure Communication: TruSDN protects communication between CTs, as well
as between switches and the NC, in the above adversary model. Communica-
tion security is ensured using confidentiality and integrity protection keys provi-
sioned to authenticated network components and endpoints executing in TEEs.
Furthermore, TruSDN leverages SDN principles to introduce a novel mechanism
– flow-specific communication protection using ephemeral pre-shared keys.

4.2 Cryptographic Primitives

We now define the cryptographic primitives and notations used in the remainder
of this paper. We denote by {0, 1}n the set of all binary strings of length n, and
by {0, 1}∗ the set of all finite binary strings. In a set U , we refer to the ith

element as ui, and following notation for cryptographic operations:
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Fig. 5. Illustration of core building blocks of TruSDN.
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Table 2. Summary of keys used in the TruSDN framework.

Key Created by Access Usage
Kα
i NC NC, switch Enclave-specific session, segment α

Kβ
j NC NC , switch Domain-specific session, segment β

K′ NC NC, switch Ephemeral session key
K′′ NC NC, switch Ephemeral MAC key

EKpk
i switch public Public key of the switch enclave

EKsk
i switch switch Private key of the switch enclave

CKpk
i CT public Public key of the compute task

CKsk
i CT CT Private key of the compute task

QEpk vendor public Public key of the quoting enclave

QEsk vendor vendor, QE Private key of the quoting enclave
SKγ

ij NC NC, CTi, CTj Ephemeral flow-specific session key

– Given an arbitrary message m ∈ {0, 1}∗, we denote by c = Enc (K,m) a sym-
metric encryption of m using the secret key K ∈ {0, 1}∗. The corresponding
symmetric decryption operation is m = Dec(K, c) = Dec(K,Enc(K,m)).

– We denote by pk/sk a public/private key pair for a public key encryption
scheme. We denote by c = Encpk (m) the encryption of message m with the
public key pk, and the decryption by m = Decsk(c) = Decsk(Encpk(m)).

– We denote a digital signature over a message m by σ = Signsk(m) and the
corresponding verification of a digital signature by ν = Verifypk(m,σ), where
ν = 1 if the signature is valid and ν = 0 otherwise.

– We denote a Message Authentication Code (MAC) using a secret key K over
a message m by µ = MAC(K,m).

We next describe key sharing and communication protection mechanisms on
the identified logical segments. Table 2 summarizes the keys used by TruSDN.

4.3 SDN Trust Bootstrapping and Secure Communication

The first step in deploying a TruSDN infrastructure is to launch a set of trusted
switches for connectivity and topology building. The NC requests creation of
switch enclaves to deploy switches in TEEs on hosts in its domain. Switches
are deployed based on parameters provided by the NC in plaintext (application
code and configuration). Next, the NC attests the integrity of switch enclaves
and only enrolls the successfully attested ones (Figure 6). A TEE Ei is attested
following the protocol introduced in [1]. With TruSDN however, the reporter
generates an enclave-specific public-private keypair and submit its public key
EKpk

i along with the attestation data; a hash of the public key is stored in the
user data field. The switch enclave is only enrolled to the global network view
if its reported state matches the one expected by NC.

Having attested enclave Ei, NC communicates an Enrollment message with
the following key material for communication protection: certificate with a sig-
nature of EKpk

i (CertEKpk
i

); certificate with a signature of NCpk (CertNCpk);

root certificate of the deployment certificate authority (CertCA); enclave-specific

pre-shared key Kα
i and domain-specific pre-shared key Kβ

j , encrypted with an
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Fig. 6. TruSDN enclave attestation and enrollment;

ephemeral key K ′i. Switches within a domain use Kβ
j to protect communication

on β segments. The NC appends a MAC of the message calculated using an
ephemeral key K ′′i and encrypts the keys K ′i, K

′′
i with EKpk

i (Table 3).
Once switches are deployed and enrolled, tenants may configure the network

topology using the NC to update the switch FIBs. Communication on α segments
– e.g. FIB updates or unmatched packets forwarded to the NC – is protected
using the session key Kα

i (e.g. using TLS [9]), which never leaves the TEE.
Similarly, a secure channel is established among the switches within the

same domain, using the pre-shared key Kβ
j , to protect communication between

switches on different hosts (e.g. TEEs 1.2 and 2.3 in Figure 5). Kβ
j never leaves

the TEEs, has a limited validity time and is periodically redeployed by the NC.
On β segments, traffic may traverse multiple hardware switches, forwarded to
the host over tunnels deployed on top of a standard routing protocol (e.g. [14]).

Next, the tenant may deploy CTs in TEEs and attest their integrity using the
very same scheme and principles as for the switch deployment described above.
The CTs and the network controller use the Enrollment message to establish a
secure communication channel (e.g. TLS).

Table 3. Enrollment message sent by the NC upon switch enrollment.

µ = MAC(K′′
i ,m)

Cert
EK

pk
i

Cert
NCpk

CertCA Enc(K′
i, (K

α
i , K

β
j )) Enc(EKpk

i , (K′
i, K

′′
i )



Bootstrapping Trust in Cloud Network Infrastructure 11

Once the NC has deployed and attested the TEEs with switches and CTs,
intra-host communication (i.e. between two CT enclaves on the same host)
is straightforward (Figure 7). When a packet m sent from C1 (e.g. a TLS
ClientHello message) reaches the local host switch A, it attempts to match
m against a FIB entry. If no suitable flow rule f is present, the switch forwards
Enc(Kα

A,m) to NC, which processes the packet, generates and deploys on the
CTs C1, C2 an ephemeral, flow session key SKγ

12 and finally updates the switch
FIB with f , after which steps 2 and 3 are ignored. Once the FIB is updated, the
switch forwards m to C2, which continues the message exchange and uses SKγ

12

to protect the communication with C1, using e.g. PSK TLS [9].
Communication between CTs C1 and C3 deployed on distinct hosts is sim-

ilar, with the only notable difference that the NC updates the FIB of the local
switches on both hosts where C1, C3 are deployed.

In the above scenarios TruSDN leverages two aspects of the SDN model – (1)
the deployment has a central authority (the NC) and (2) the first packet of a flow
is forwarded to the central authority – to deliver on demand ephemeral PSKs to
communication endpoints. This allows to relax the need for high-quality entropy
being available to CTs (a known issue in virtualized environments [29]). Fur-
thermore, this approach ensures communication security without compromising
packet visibility – having control over the keys used to protect communication
between the CTs allows the NC to maintain fine-grained control over the traffic.

4.4 Preventing Cuckoo Attacks

To prevent cuckoo attacks [23], we propose a solution that leverages crypto-
graphic properties of the EPID group signature scheme used by the QE [4] and
the SIGn and Message Authentication (SIGMA) protocol [34]. The EPID scheme
supports two signature modes: fully anonymous mode – the verifier cannot asso-
ciate a given signature with a particular member of the group; pseudo-anonymous
mode – the verifier can determine whether it has verified the platform previously.
The unlinkability property distinguished in the two modes depends on the cho-
sen base. A signature includes a pseudonym Bf , where B is the base chosen for

C1 Switch A C2 NC

1. m

2. Enc(Kα
A,m)

4. Enc(CKpk
1 , SKγ

12)

5. Enc(CKpk
2 , SKγ

12)

3. Enc(Kα
A, f)

6. m

7. Enc(SKγ
12,m

′)

Fig. 7. Intra-host communication with TruSDN.
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a signature and revealed during the signature; f is unique per member and pri-
vate. For a random base, the pseudonym is Rf , where R is random – in this case
the signatures are unlinkable. For a name base, the pseudonym is Nf , where N
is the name of the verifier – in this case the signatures remain unlinkable for
different verifiers, while signatures with a common N can be linked. For privacy
reasons, the current implementation of the EPID scheme only accepts name base
pseudonyms from verifiers authorized by the EPID authority [30]. Authorization
is done by issuing to the qualified verifier an X.509 certificate – e.g. a leaf cer-
tificate, or an intermediate certification authority (CA) certificate – signed by
the EPID authority, which in this context acts as root CA.

We use the following algorithm to prevent cuckoo attacks. At deployment
time, the cloud provider requests the EPID authority to issue an intermediate CA
verifier certificate, for the set of platforms that are part of the cloud provider’s
data center and creates the authorized verifier VP . Next, VP follows the SIGMA
protocol to attest its platforms and publishes a list of resulting platform EPID
signatures and the name base chosen for the signature, BN

P . To guard against
cuckoo attacks, tenants first request VP to sign an X.509 certificate, to themselves
become authorized verifiers. Next, tenants choose the same pseudonym base BN

P

(and a private f), follow the SIGMA protocol, and verify that the resulting
signature can be linked to a signature in the published list. The cloud provider
has multiple tools to protect platform privacy and prevent untrusted tenants
from fingerprinting the platform infrastructure, e.g. limiting the validity of issued
certificates, changing the name base and re-creating platform signatures, etc.

5 Security Analysis

In this section we analyze the security properties of the proposed framework in
the adversary model described in Section 3.

On the network level, many of the Adv capabilities are thwarted by first
authenticating the switches deployed on the data plane, as well as the network
edge (i.e. the compute tasks that generate or receive the network traffic), in com-
bination with confidentiality and integrity protection of the traffic on the three
identified segments. Authenticating the network components prevents topology
poisoning attacks (a countermeasure mentioned in [13]), while confidentiality and
integrity protection of all of the network traffic in the deployment prevents the
Adv from either learning the contents of the exchanged packets or successfully
forging packets. The Adv may in this case still intercept and record messages.
However, collecting encrypted traffic does not yield the Adv any more informa-
tion about the contents of the exchanged packets. Similarly, the Adv does not
gain an advantage by simply dropping or replaying messages, since these ac-
tions would at most simply reduce the channel capacity (as would the ability
of the Adv to disrupt network connectivity). Finally, the proposed framework
does not prevent the Adv analyzing the traffic patterns and does not prevent
it from fingerprinting the components of the deployment, making it vulnerable
rule scanning and denial of service attacks. While the goals of TruSDN did not
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include this, such traffic analysis could be prevented using anti-fingerprinting
techniques, as proposed in [3].

On the platform level, the security of the proposed framework relies to a
large extent on the security properties of Intel SGX enclaves. This allows to
protect the execution of switches and network edge components deployed in
TEEs from the capabilities of an Adv controlling non-processor hardware, the
software stack of the OS and the hypervisor. Similarly, pausing execution of
switches executing in TEEs, while possible, would have no further effect than
degrading network connectivity, already discussed above. While the Adv may
attempt to deploy own arbitrary components on the data plane or the network
edge in order to launch Sybill attacks, the integrity of such components would
not be successfully attested, unless they are identical to legitimate components,
which are assumed to be executing correctly – rendering Sybill behavior impos-
sible. The Adv is prevented from launching cuckoo attacks by enabling tenants
to verify the platforms, as described in Section 4.4. As presented in Table 1,
several relevant classes of attacks are not addressed by TruSDN, but have known
mitigations, namely cache-collision, controlled channel and attacks on shielded
execution (addressed in [35, 32]. The capability of the Adv to return arbitrary
values to system calls, while not addressed in this work, can be mitigated by a
validation component as described in [2].

6 Implementation and Evaluation

We now describe the implementation and evaluation of TruSDN.

6.1 TruSDN Implementation

The TruSDN prototype deployments follows the design presented in Section 4
and is illustrated in Figure 8. Host 1 and Host 2 are VM instances of Ubuntu
OS 15.04. In each VM, we deployed Linux Containers1, based on Ubuntu OS
15.04. Containers create an environment with own process and network space,
implemented using namespaces, with a distinct user ID, network stack, mount
points, file systems, processes, inter-process communication, and hostname. We
chose containers to facilitate prototype implementation, using their lightweight
process isolation. Containers are part of the untrusted OS and this implementa-
tion choice is orthogonal to the security of TruSDN. Compute tasks are deployed
in TEEs created using SGX enclaves (Figure 8): enclaves E1, E2, E4, E5 are
placed respectively within containers C1, C2, C3, C4. The switches are deployed
in TEEs created using SGX enclaves (enclaves E3, E6 in Figure 8).

Considering that platforms with hardware and software support for SGX
were not publicly available at the time of writing, we used OpenSGX [15] to
emulate the TEEs. It is a software SGX emulator and a platform for SGX de-
velopment, implemented using binary translation of QEMU and emulating Intel

1 Linux Containers Project Website: https://linuxcontainers.org/

https://linuxcontainers.org/
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Fig. 8. Prototype deployment of TruSDN

SGX hardware components at instruction level. It includes emulated hardware
and OS components, enclave program loader, OpenSGX user library, debugging
and performance monitoring support. The emulator allows to implement, de-
bug, and evaluate SGX applications, but does not support binary compatibility
with Intel SGX. Furthermore, OpenSGX does not implement all instructions,
e.g. debugging instructions. While OpenSGX does not provide security guran-
tees, it allows us to obtain performance estimates for the proposed approach.
We used mbedTLS2 v1.3.11 (distributed with the emulator) for attestation of
the SGX enclaves. We used OpenSSL v1.0.2d (distributed with the emulator)
to set up protected communication channels between the CT enclaves and the
local switches, and among switches within the same domain.

An SDN network controller is deployed in a third VM (Host 3 ). We used the
Ryu3 SDN framework, due to its flexibility and versatile APIs.

6.2 TruSDN Evaluation

We now analyze the performance impact, present evaluation results and discuss
aspects that cannot be measured with the current prototype.

Sources of Performance Impact TruSDN introduces several potential sources
of performance impact (Table 4). We distinguish between transient performance
overhead, which occurs occasionally (e.g. TLS key negotiation) and continuous
performance overhead, present throughout the deployment operation. We do
not consider the one-time cost of infrastructure deployment, e.g. provisioning
the software, attesting TEEs and enrolling the components.

Measured Performance Impact To evaluate the performance impact, we
measured the footprint of establishing TLS sessions on α and γ segments. We
used iperf, openssl s time and an own Ryu application (Table 5).

2 mbed TLS project website https://tls.mbed.org/
3 Ryu SDN framework: https://osrg.github.io/ryu/

https://tls.mbed.org/
https://osrg.github.io/ryu/
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Table 4. Sources and types of performance overhead in TruSDN

Source Type Clarification
TLS negotiation all segments transient Negotiate session keys for TLS
PSK distribution transient Distribute PSK for γ segments
TLS protection all segments continuous Overhead induced by TLS
Compute task execution in TEEs continuous Overhead induced by TEE
Switch execution in TEEs continuous Overhead induced by TEE

TLS overhead on the α segment: We measured the round-trip latency of packets
sent in plaintext and with TLS, over 1000 tests, each request sending messages
of 100 bytes with the 80 bit OpenFlow header. Furthermore, we measured the
data transfer rates for plaintext and TLS communication. Use of TLS increased
total transfer time by 14.2% and reduced the transfer rate by 15.98%.

Delay on γ segment As mentioned above, the first packet of the flow is inter-
cepted by the switch and forwarded to the NC in a packet in message [24].
At this point the NC processes the flow and installs a flow rule on the switch.
TruSDN extends this procedure by generating and distributing to the communi-
cating CTs a pre-shared key (PSK), to be used for communication protection.
Since this must be done prior to both forwarding the message to the destina-
tion CT and installing the flow rule, generating and distributing the PSK would
normally delay the installation of the flow rule and increase the latency of the
first packet (all subsequent packets are forwarded according to the flow rule). To
measure the introduced delay, we have sequentially established 1000 TLS ses-
sions between compute tasks C1 and C2 (according to Figure 8). After each TLS
session, we flushed the installed flow rules (with ovs-ofctl del-flows br0),
which resulted in a packet in message upon each new session. The latency of
the first packet is shown in Figure 6.2, and compared against the latency of a
first packet without the TruSDN extension.

Table 5. Summary of performance evaluation of TruSDN

Data Minimum Maximum Mean Median Stddev
Total transfer time, ms 0.4 1.1 0.66 0.7 0.07
Total transfer time w. TruSDN, ms 0.5 7.1 0.8 0.8 0.22
TruSDN overhead, total transfer time 21.2% 14.2%

Transfer rate, bytes per second 1225 2095 1595 1583 98.07
Transfer rate w. TruSDN, bytes per second 919 1589 1338 1330 64.86
TruSDN overhead, transfer rate 16.11% 15.98%

First packet latency γ 1.53 6.50 3.48 3.38 0.42
First packet latency γ w. TruSDN 3.35 10.7 5.37 5.14 0.93
TruSDN overhead, first packet latency 54.31% 52.07%

TLS handshake, ms 36.53 77.72 67.97 67.48 7.42
TLS handshake w. TruSDN, ms 52.35 76.44 67.15 66.53 3.93
TruSDN overhead, TLS handshake -2.21% -2.41%

Key generation NC, ms 0.11 0.51 0.178 0.16 0.04
Key distribution γ, ms 0.37 1.06 0.54 0.53 0.08
Key total γ, ms 0.50 1.30 0.71 0.7 0.11
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The induced delay is primarily caused by two operations performed by the
NC: generating a 256-bit PSK and distributing it to the CTs. Figure 6.2 displays
a fine-grained picture of the induced delay. Key generation lasted on average
0.178 ms, while key distribution on average 0.54 ms (Table 5). We remind that
the test environment is fully virtualized and posit that the measured overhead
of key generation can be reduced in a production environment, either by using
pre-generated keys or with specialized hardware (e.g. crypto processors). In our
tests, the duration of establishing a TLS session with ephemeral flow-specific
session keys using the PSK-AES256-CBC-SHA cipher suite was 2.41% less com-
pared to the use of e.g. ECDH-RSA-AES128-SHA256. Thus, TruSDN improves
the performance, by enabling flexible use of pre-shared keys. This reduces the
duration of the TLS handshake, by avoiding expensive public key cryptographic
operations [17]. Moreover, it allows to reduce the CPU utilization for key deriva-
tion for the compute tasks, at the cost of a minimal flow rule installation delay.

Unmeasured Performance Overhead Implementing TEEs with OpenSGX
limits the level of detail when it comes to performance evaluation, since: (a)
the OpenSGX emulator is not binary compatible with Intel SGX [15]; (b) in
its current version4 and unlike Intel’s description of SGX [1], OpenSGX has
yet to implement support multithreaded applications5. Thus, a fully accurate
measurement on TruSDN performance cannot be done until Intel SGX hardware
and software is made available. However, our experiments yield a fair picture of
the expected performance impact.

7 Related work

In this section we present related work on adversary models for SDN deploy-
ments, SDN controller security, as well as principles and software model of SGX.

4 Commit e0713c7 on https://github.com/sslab-gatech/opensgx
5 Issue #34 on https://github.com/sslab-gatech/opensgx/issues/34

https://github.com/sslab-gatech/opensgx
https://github.com/sslab-gatech/opensgx/issues/34
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Adversary models: Kreutz et al. presented a list of attack vectors in SDN [16]
(forged traffic flows, vulnerabilities in switches and NCs, lack of trust estab-
lishment mechanisms, etc.). However, only part of the described attack vectors
are exclusively relevant to SDN networks and no specific solutions are proposed.
Work in [22] introduced an adversary model, attack vectors, and security require-
ments towards multi-tenant SDN infrastructure, highlighting the need to limit
the effect of NC vulnerabilities, protect internal SDN communication, verify in-
tegrity of SDN components prior to enrollment, and enforce policy and quota
isolation. TruSDN addresses several of the attack vectors described in [16, 22].

Secure SDN controllers: The “NOX” network OS [11] presents NMAs with a cen-
tralized programming model and a global view, allowing to operate with higher-
level abstractions and apply graph processing algorithms to compute paths. It
consists of several controller processes operating on the global view; the pro-
cesses use the global view for network management decisions and update switch
FIBs over the OpenFlow API [19]. FortNOX [26] extends NOX with role-based
authorization (RBA) and enforcement of security constraints. It translates high-
level threats into flow rules to handle suspicious traffic as well as detects rule
conflicts, resolves them depending on the authorization of the rule requestor and
enforces least privilege authorization. Neither NOX nor FortNOX address mali-
cious network components and Sybill attacks, addressed by TruSDN. “Rosemary”
NOS [33] uses NMA sandboxing to improve network resilience, by launching each
NMA in a separate process context with access to the required libraries, along
with a resource monitor to supervise NMA compliance. However, “Rosemary”
does not address data plane security. TruSDN complements it and creates a foun-
dation for trusted deployment of a secure NOS. TopoGuard [13] detects network
topology poisoning and mitigates this through port property management, net-
work edge probing and verification of topology updates. TruSDN complements
this by verifying the integrity of switches prior to enrollment into the topology.

Software Guard Extensions: SGX was introduced in [18] with a description of
the software model, extensions to the x86 ISA and hardware modifications for
isolated execution; work in [1] described CPU based attestation; finally, several
prototypes using SGX to create trustworthy applications are described in [12].

SGX-based solutions in a cloud setting are first described in [2, 32]. “Haven”[2]
is a modified version of Windows 8 OS ported to an SGX enclave, evaluated with
Apache Web Server and SQL Server using synthetic data sets. It includes a mech-
anism to protect the enclave from a malicious kernel and a semantically secure
data store protecting data and file metadata confidentiality against malicious
hosts. TruSDN protects network communication for a similar adversary model.
While we deploy compute tasks in SGX enclave-based TEEs, the work in [2] is
largely complementary, and similar “Haven”-like OSs could be used.

“VC3” [32] is a Map-Reduce deployment using SGX enclaves. Map and reduce
functions are compiled into private (encrypted) code and public code implement-
ing key exchange and job execution protocols. Code is initialized in enclaves and
attested by the users. Public code performs the key exchange, decrypts the pri-
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vate code and runs the job execution protocol. To defend against cuckoo attacks,
cloud quoting enclaves are created on each platform in the cloud provider data
centers, to “countersign” quotes produced by the QE. The approach is largely
complementary to protecting communication between CTs with TruSDN. How-
ever, the proposed defense against cuckoo attacks increases the complexity of
the attestation protocol and does not prevent Adv from exploiting a compro-
mised cloud QE outside of the physically secure datacenter perimeter. Instead,
the approach described in Section 4.4 leverages the cryptographic properties of
EPID scheme, without modifying the attestation protocol.

8 Future Work

Along with security guarantees, the use of Intel SGX imposes certain limitations
on TruSDN. Further performance evaluation may be done once software and
hardware support for Intel SGX enclaves becomes available; moreover, some
security limitations of TruSDN must be mentioned.

Controlled-channel attacks [35] are a novel type of side-channel attacks al-
lowing the OS to extract sensitive information from protected applications. They
were successfully applied to “Haven” [2] and TruSDN could also be vulnerable;
however, such attacks were explicitly excluded from the adversary model. Known
mitigations are: rewriting enclave applications to decouple memory access pat-
terns from sensitive data, prohibiting paging by the underlying OS, or using
techniques to obfuscate the memory access patterns [35].

Another limitation stems from the reliance on the platform vendor, which
could leak QEsk, to create a “deniable back-door” and allow person-in-the-
middle attacks on attestation [31]. This challenge remains unaddressed.

We aim to integrate TruSDN with previous work [21], to provide complete
cloud infrastructure deployments secure in the given adversarial model.

9 Conclusion

We have presented TruSDN, a framework for bootstrapping trust in SDN infras-
tructure. It isolates network endpoints and switches in SGX enclaves, remotely
attests the integrity of enclaves, and establishes secure communication channels.
We leveraged the functioning principles of SDN to introduce ephemeral flow-
specific session keys: by securely distributing session keys at flow creation time,
this reduces overhead of key derivation in compute tasks. Our evaluation shows
that using ephemeral flow-specific session keys reduces the total time of establish-
ing protected channels, at the cost of a minor delay in the flow rule installation.
Finally, we have presented an improved method to prevent cuckoo attacks, which
relies on the properties of the EPID group signature scheme. TruSDN contributes
towards creating a complete framework that allows to bootstrap a trusted in-
frastructure with compute, communication and storage resources that can be
practically deployed in public cloud infrastructure.
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