
SOFIA: Software and Control Flow Integrity
Architecture

Ruan de Clercq∗, Ronald De Keulenaer†, Bart Coppens†, Bohan Yang∗, Pieter Maene∗,
Koen de Bosschere†, Bart Preneel∗, Bjorn de Sutter†, Ingrid Verbauwhede∗,

∗KU Leuven, Belgium - ESAT/COSIC and iMinds
†Ghent University, Belgium - Computer Systems Lab

Abstract—Microprocessors used in safety-critical systems are
extremely sensitive to software vulnerabilities, as their failure can
lead to injury, damage to equipment, or environmental catastro-
phe. This paper proposes a hardware-based security architecture
for microprocessors used in safety-critical systems. The proposed
architecture provides protection against code injection and code
reuse attacks. It has mechanisms to protect software integrity,
perform control flow integrity, prevent execution of tampered code,
and enforce copyright protection. We are the first to propose a
mechanism to enforce control flow integrity at the finest possible
granularity. The proposed architectural features were added to the
LEON3 open source soft microprocessor, and were evaluated on
an FPGA running a software benchmark. The results show that
the hardware area is 28.2% larger and the clock is 84.6% slower,
while the software benchmark has a cycle overhead of 13.7% and
a total execution time overhead of 110% when compared to an
unmodified processor.

I. INTRODUCTION

Safety-critical systems are used in a large number of applica-
tions, including industrial control systems, automotive control
systems, and medical implants. The failure or malfunction of
these systems can lead to injury, damage to equipment, or
environmental catastrophe. These systems commonly include
software that runs on a microcontroller. Seeing as software
exploits on such systems can have a detrimental effect, it is
important to ensure that attackers cannot exploit their software.
However, in the past, the security of safety-critical systems has
seen little research interest.

This work aims to protect the software running on low-end
microprocessors used in safety-critical systems. We specifically
target software applications that do not require an operating
system. Low-end microprocessors often lack basic architectural
support for security, and are frequently deployed in the field,
where it is easy to extract and exploit their software. As we
rely on these processors for safety, they need to behave in a
predictable manner, and an adversary should not be able to alter
their software or tamper with their operation. Ideally, even if
an attacker obtains the code running on a device, he should
not be able to understand it and know, e.g., which version of
the software is being deployed. Not knowing that will make it
harder to exploit potential weaknesses in the software, such as
overflows or incomplete input validation.

Code reuse attacks rely on redirecting control flow through
existing code with a malicious result, e.g., jump-oriented pro-
gramming (JOP) [1] and return-oriented programming (ROP)
[2]. These attacks can be mitigated with Instruction Location

Randomization [3] or can be prevented by enforcing a Con-
trol Flow Integrity (CFI) [4] policy. Software-based CFI so-
lutions [4]–[11] are typically course-grained, and therefore can
not detect all control flow violations, as demonstrated by recent
attacks [12]–[15]. In addition, they rely on software to perform
control flow checks, which could be circumvented by a powerful
attacker in control of the program memory. Hardware-based
CFI solutions [16]–[20] typically use a shadow call stack to
mitigate ROP attacks, while using an additional countermeasure
to protect against JOP. Most existing hardware-based solutions
store sensitive meta-data in data memory, or rely on instructions
to form part of their root of trust. The approaches used in [21],
[22] offer both CFI and software integrity at run-time, but seem
incapable of reliably detecting all tampered instructions.

To prevent code injection attacks, recent works [23]–[27]
perform integrity verification of instructions at run-time. How-
ever, it appears that no known solution can reliably prevent all
tampered instructions from executing.

Instruction Set Randomization (ISR) [28] is a generic de-
fence mechanism against code injection attacks. A software-
based approach is followed in [3] where AES is used in ECB
mode. However, this approach seems to allow an attacker to
relocate encrypted instructions without leading to decryption
errors. ASIST [29] decrypts instructions in hardware using a
simple XOR cipher, which could make it trivial to derive its
encryption key. In [30] a stream cipher is used to encrypt
instructions with a seed value that can be updated at run-time.

This paper proposes a new hardware-based security architec-
ture called SOFIA. The architecture adds security features to an
existing microprocessor to protect software against attacks based
on code injection and code reuse. This creates a system that is
exceptionally trustworthy, as the security policy is enforced in
hardware, and software copyright and tampering is protected by
cryptography. To the best of our knowledge, SOFIA is the first
architecture to enforce CFI at the finest possible granularity, and
SOFIA prevents the execution of all tampered instructions and
instructions resulting from tampered control flow.

The contributions of this paper are as follows: (1) a pre-
sentation of the architectural modifications needed to provide
fine-grained control flow integrity, software integrity, software
copyright protection and tampered instruction protection in a
single architecture, (2) an evaluation of a hardware implemen-
tation on a LEON3 processor, (3) an evaluation of a software
benchmark running on the modified processor.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74659976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. ARCHITECTURE

This paper proposes two mechanisms to enhance the security
of a microprocessor. First, a Control Flow Integrity (CFI) mech-
anism guards against code injection and code reuse attacks. This
component encrypts each instruction with control flow depen-
dent information. Second, a Software Integrity (SI) mechanism
ensures that tampered software never executes on the processor.
Here, a Message Authentication Code (MAC) is used to verify
the integrity of groups of instructions at run-time.

Program
Memory

I-cache

CFI Instruction
Fetch

SI Processor
cinsti

inst′i

Reset

Fig. 1. Encrypted instructions cinsti are decrypted at run-time using control
flow dependent information by the CFI component. The SI component verifies
the integrity of the decrypted instructions inst′i .

The overall architecture is shown in Fig. 1. Encrypted instruc-
tions cinsti are fetched from program memory, placed in instruc-
tion cache, and decrypted by the CFI feature. The decrypted
instructions inst′i are sent to the Instruction Fetch (IF) stage of
the processor. At the same time, the SI feature performs run-time
integrity verification of the decrypted instructions. Upon detec-
tion of an integrity violation, execution is halted by resetting the
processor, thereby preventing tampered control flow as well as
preventing tampered instructions from executing. The processor
should be able to reboot reliably fast, allowing the software
to quickly reach a safe and controlled state. Each processor is
embedded with a set of unique keys that can only by accessed
by the block cipher. These keys are known only by the software
provider.

A. Control Flow Integrity (CFI)
The main idea of the CFI mechanism is to perform ISR by

decrypting instruction opcodes based on control flow dependent
information. A binary that consists of encrypted instructions is
created by performing a transformation operation at compile
time. The instructions are encrypted based on the control flow
paths present in a precise Control Flow Graph (CFG) of the
whole program. The encrypted instructions are decrypted at run-
time using a combination of the current program counter and
the previously executed program counter.

Each instruction in the binary is encrypted using a block
cipher in counter mode, as shown in Alg. 1. The counter value
is the dynamic control flow between two instructions. This is
expressed as the address of the currently executing instruction
together with the address of the previously executed instruction.
Encryption is performed with cinsti = Ek1(Ii) ⊕ insti, while
decryption is performed with inst′i = Ek1(Ii) ⊕ cinsti , with Ii
the counter value and k1 the encryption key. The counter is
Ii = {ω ‖ prevPCi ‖PCi}, with PC the program counter or ad-
dress of insti, prevPC the previously executed program counter,
and ω a nonce. The nonce ω needs to be unique across differ-
ent programs and different program versions of an encrypted
program, and is stored in a fixed address in the binary.

Algorithm 1: Control flow dependent information is used
to encrypt and decrypt the instructions of a program.

Input: Plaintext pi, j-bit key k1, number of plaintext blocks u, nonce ω
Result: Encryption produces r-bit ciphertext blocks c0 , · · · , cu.

Decryption recovers plaintext m.
Encryption:
for i← 1 to u do

Ii = {ω ‖ prevPCi ‖PCi}
Oi ← Ek1 (Ii)
ti ← the r least-significant bits of Oi

ci ← mi⊕ti
Decryption:
for i← 1 to u do

mi ← ci⊕, where Ii, Oi, and ti are computed as above.

Instructions are decrypted correctly as long as the control flow
of a running program follows the paths of the original CFG.
However, when a program is exploited, an attacker typically
has to force control to flow along a path which does not exist
in the original CFG, e.g., to execute injected code, or to perform
a code reuse attack. This causes at least one instruction to
be decrypted incorrectly, as the counter Ii contains an invalid
previously executed program counter prevPC. The incorrectly
decrypted instruction will contain random data.

1: mov r0,r1
2: jmp 5
· · ·

5: mov r1,r2

1

2

5

I2 = {ω ‖1 ‖ 2}

I5 = {ω ‖2 ‖ 5}

It5 = {ω, 1, 5}

Valid control flow
Invalid control flow

Fig. 2. A CFG of a small program shows two different control flow paths
from node 1 to node 5. If the valid control flow path is taken, all instructions
are decrypted correctly. However, when the invalid control flow path is taken
instruction 5 is decrypted incorrectly.

An example program listing with corresponding CFG is
shown in Fig. 2. Each CFG node represents a single encrypted
instruction, while the edges indicate control flow between in-
structions. The solid edges represent valid control flow, with
encryption counter Ii indicated next to each edge. The CFG
shows that control flows from node 1 to 2; therefore, instruction
2 is decrypted with counter value I2 = {ω ‖1 ‖ 2}. A branch
causes control to flow from node 2 to 5; therefore, instruction
5 is decrypted with counter value I5 = {ω ‖2 ‖ 5}. When an
attacker causes invalid control flow to occur from, e.g., node 1 to
node 5, instruction 5 is decrypted with counter It5 = {ω ‖1‖5},
which leads to a decryption error.

Function calls are supported in a similar way as direct
branches. The function’s entry point is encrypted with the caller
address, while the return point in the caller is encrypted with



the address of the return instruction in the callee. Callees with
multiple callers or the call sites of function pointers with mul-
tiple callers correspond to nodes with multiple predecessors in
the CFG, and cannot be handled with the scheme discussed so
far. Section II-D discusses the necessary extensions.

The CFI mechanism presented in this section provides pro-
tection from attacks based on code injection and code reuse.
However, a decryption error caused by tampered control flow
might lead to a decrypted instruction c′insti that has a valid
opcode. The instruction will execute on the processor, albeit
leading to a different result as that of the original program. This
is a serious problem, as the incorrectly decrypted instruction
could lead to a malicious result. This problem can be solved by
using the CFI mechanism in combination with the SI mechanism
described in the following section.

B. Software Integrity (SI)

This section presents a mechanism that ensures, with very
high probability, that only untampered instructions can execute
on the processor. A Message Authentication Code (MAC) is pre-
computed on groups of instructions, and is stored in instruction
memory, as shown in Fig. 3. At run-time, a MAC verification
is performed on each group of instructions before they are
fully executed through all of the processor’s instruction pipeline
stages. The run-time MAC is compared with the precomputed
MAC to verify the integrity of all instructions in each group. If
the verification fails, the processor is reset in order to prevent
tampered instructions from executing.

MAC

inst1

inst2

. . .

instn

Stored

6= MAC
Run-time MAC

Reset

inst2inst1 · · · instn

Run-time Instructions

Fig. 3. The integrity of the running program is verified by comparing the
precomputed MAC with the run-time calculated MAC. If verification fails, the
processor is reset to prevent tampered instructions from executing.

M1

· · ·

Mm

inst1

inst2

· · ·

instn

prevPC

Exit

Fig. 4. The execution block consists of an m-word precomputed MAC (M) and
n instructions. Control flow can only enter at M, and can only exit at instn.
Inside a block the control flows through each consecutive word.

1) Design: An execution block, shown in Fig. 4, consists of
m MAC words Mi and n instructions insti. Control can only
flow into an execution block at M1, and can only exit at instn.
Inside the execution block, control flow passes through each
MAC word and then through each instruction.

The processor’s instruction fetch (IF) pipeline stage is used to
read instructions and precomputed MAC words from memory.
The MAC words are replaced with a nop before being sent to
the decode stage. It is necessary that all words in an execution
block are fetched every time it is executed, as all the instructions
in a block are needed to compute the run-time MAC, and the
precomputed MAC is required for verification.

In our design we use the Cipher Block Chaining-Message
Authentication Code (CBC-MAC) algorithm [31] with a 64-bit
MAC length. In the remainder of the text we will refer to the
two 32-bit MAC words as M1 and M2. It is well known that
the CBC-MAC algorithm is only secure for messages of a fixed
length [32]. Care needs to be taken, as SOFIA computes a MAC
on different message lengths due to the two block types that each
consists of a different number of instructions (see Section II-E).
We propose to fix this problem by using a different key for each
type of block, thereby using one key for each message length.
We further use a different key for the MAC and for encryption.
Therefore, each device has a total of three different keys: k1
is used for encryption, k2 is used for CBC-MAC of execution
blocks, and k3 is used for CBC-MAC of multiplexor blocks.

2) Preventing tampered blocks from executing: SOFIA is de-
signed to work as an extension to any microprocessor. However,
in this paper our design is based on the seven stage instruction
pipeline of the 32-bit SPARCv8 LEON3 [33] processor.

Store instructions are used for writing to memory and com-
municating with peripherals via memory mapped and port
mapped interfaces. Safety-critical systems often interface with
cyber-physical components, which control actuators, such as
brakes of a car. In such systems, it is essential that compromised
store instructions located in tampered execution blocks are never
allowed to execute, as this could have a catastrophic effect, e.g.,
a store instruction that disables the brakes on a car.

To achieve protection from tampered blocks, we propose that
it is sufficient to prevent store instructions in tampered execu-
tion blocks from reaching the Memory Access (MA) pipeline
stage. To achieve this, the MAC verification is performed before
the partially executed instructions of the block reach the MA
pipeline stage. A simple approach, illustrated in Fig. 5, is to
make the execution blocks small enough to fit into the pipeline
stages before the MA stage. The run-time MAC can then be
computed before the instructions reach the MA stage. If verifi-
cation fails, the instructions are prevented from moving further
in the pipeline by resetting the processor, thereby preventing all
instructions in the block from reaching the MA stage.

When a single-cycle MAC hardware component is used, four
instructions in an execution block can fit before the MA stage.
However, the number of instructions in an execution block can
be increased to six if store instructions are not allowed to be
located on inst1 or inst2, as illustrated in Fig. 6.



inst4 inst3 inst2 inst1
M2

nop
M1

nop
· · ·

IF ID OF EXE MA XCP WB

Fig. 5. The instructions in a four instruction execution block fit in the pipeline
stages before the Memory Access (MA) stage. This allows the architecture to
verify the integrity of the block before a memory access has been performed.

inst6 inst5 inst4 inst3 inst2 inst1
M2

nop
M1

nop

Store instruction
not allowed here

IF ID OF EXE MA XCP WB

Fig. 6. The size of an execution block can be increased to six instructions if
store instructions are restricted from inst1 and inst2.

C. Control Flow Integrity with Software Integrity

When the CFI and SI mechanisms are used together they can
prevent the execution of instructions resulting from invalid con-
trol flow. The CFI mechanism decrypts instructions based on the
run-time control flow, but is not capable of detecting decryption
errors. The SI mechanism performs integrity verification in order
to detect tampered instructions, but cannot detect invalid control
flow when used alone. Therefore, to detect invalid control flow,
the CFI mechanism first decrypts the instructions, and then the
SI mechanism verifies the integrity of a block in order to detect
and prevent tampered control flow and tampered instructions.

At run-time the CFI mechanism first decrypts the instruc-
tions using control flow dependent information. Next, the SI
mechanism calculates the run-time MAC over the decrypted
instructions. If an invalid control flow path was taken, a de-
cryption error occurs. When the SI mechanism calculates the
run-time MAC with the incorrectly decrypted instruction an in-
correct MAC is produced, and the integrity verification fails. The
processor is then reset to prevent the execution of instructions
resulting from the tampered control flow.

The plaintext binary is transformed with the MAC-then-
Encrypt construction [34]. For each execution block, a MAC
M is first calculated on the plaintext instructions. Afterwards,
M is interleaved with the instructions to form execution blocks,
which are then encrypted with Alg. 1.

D. Blocks with Multiple Predecessors

The CFI mechanism presented in Section II-A only supports
nodes with a single predecessor, as the execution block only
has a single entry point. This section introduces the multiplexor
block which allows for two predecessors. This block uses both
the CFI (Section II-A) and SI (Section II-B) mechanisms.

Just like for the execution block, a two-word MAC M is
first calculated on the block’s plaintext instructions insti. To
support two predecessors, we propose to make two entry points
by inserting two copies of the first MAC word M1 at the
beginning of the block, as shown in Fig. 7. Each copy of
M1 is used as an entry point into the block, which we call
M1e1 and M1e2. Each of the two entry points are encrypted
using their respective caller addresses prevPC1 and prevPC2,

as illustrated by Fig. 8. The two entry points are encrypted as
follows: cM1e1 = Ek1(I1) ⊕M1, I1 = {ω ‖ prevPC1 ‖PC}, and
cM1e2 = Ek1(I2) ⊕ M1, I2 = {ω ‖ prevPC2 ‖PC}. In addition,
two distinct control flow paths exist in the block. The first
control flow path enters the multiplexor block at cM1e1 , then
skips cM1e2 , and flows to cM2 , followed by all the encrypted
instructions cinsti in the block. The second control flow path
enters the block at cM1e2 , then flows to cM2 , followed by all the
encrypted instructions cinsti in the block.

M1e1

M1e2

M2

inst1

inst2

· · ·

instn

Entry1

Entry2

Fig. 7. The plaintext multiplexor block uses two copies of the first MAC word
M1 as its two entry points, which are respectively called M1e1 and M1e2.

cM1e1

cM1e2

cM2

cinst1

cinst2

· · ·

cinstn

prevPC1

* prevPC2*

Control Flow path 1
Control Flow path 2

∗ prevPC = addr(cM1e2)ExitExit

Fig. 8. The encrypted multiplexor block supports two entry points and has two
unique control flow paths through the block.

If more than two entry points are required to a single node
in a CFG, a tree of multiplexor blocks can be used. Fig. 9
shows how a multiplexor tree allows a node to be called by four
different callers. The tree structure is used to handle entry points
from call sites, function pointers, and branch targets. Therefore,
the multiplexor tree structure needs to have an entry point for
each caller that can reach a function through a branch or a
function call. This mechanism only works when control flow
can be modeled accurately. Therefore, programming language
constructs that can lead to control flow that is difficult to analyse,
e.g. polymorphism, cannot be addressed by our methods.

Lib

T1

C1 C2

T2

C3 C4

Fig. 9. A tree of multiplexor nodes is used to increase the number of callers
(Ci) that can invoke a function.



E. Support for blocks with single and multiple predecessors

Most non-trivial programs consist of blocks with one entry
point and blocks with multiple entry points. In the text above
we outlined two different types of blocks; namely, the execution
block with a single entry point, and the multiplexor block which
has two entry points. In order to create a meaningful program
using these two blocks, we need to develop mechanisms to make
them work together inside the same system.

The software needs a mechanism to indicate to the hardware
which type of block to execute. We propose to solve this by
using the call site to inform the hardware of the block type. For
an execution block we select the block’s first word cM1 as the
call site. Therefore all calls, branches, or fall-throughs to cM1

will indicate to the hardware that an execution block should be
executed. For a multiplexor block we propose to use the second
and third words, respectively cM1e2 and cM2 , as the two call
sites. Therefore, a branch or a call to cM1e2 or cM2 will indicate
to the hardware that a multiplexor block should be executed.
A branch/call to cM1e2 will cause the first control flow path to
be followed, and similarly, a branch/call to cM2 will cause the
second control flow path to be followed.

The size of both block types is chosen to be eight 32-bit
words. Therefore, the execution block consists of 2 MAC words
and 6 instructions, while a multiplexor block consists of 3 MAC
words and 5 instructions.

III. IMPLEMENTATION

SOFIA was implemented as an extension to the LEON3 soft
microprocessor. The processor was configured with a minimal
hardware configuration, and the hardware design was evaluated
on a Xilinx Virtex-6 XC6VLX240T FPGA.

The LEON3 was modified to capture all instruction words
that pass through the IF pipeline stage. In addition, the logic
to calculate the next program counter was modified in order to
allow for the complex control flow through multiplexor blocks.
Further, a reset line was added from the SOFIA core to the
processor in order to halt the execution of instructions when
an integrity violation is detected or when a store instruction is
detected on inst1 or inst2.

To install the software the following approach is followed.
First, the source code is compiled into assembly instructions.
Next, the assembly instructions are transformed to conform to
the format required by the CFI and SI mechanisms. In particular,
this means that multiplexor trees are inserted for call sites, func-
tion pointer targets and branch targets. Additionally, instructions
are transformed into execution blocks and multiplexor blocks.
Finally, the assembly code is assembled into machine code and
then linked into a binary. For our evaluation the transformed
binary was transferred onto the target via the debug interface.
However, in production the transformed binary can be stored
and executed from the target’s non-volatile memory.

For a block cipher we use RECTANGLE-80 [35], which has
a 64-bit block size and an 80-bit key. The published version
of this cipher requires 26 cycles to perform an operation. In
order to prevent tampered instructions from executing, MAC
computation needs to occur in only a few cycles. Therefore,

TABLE I
HARDWARE COMPARISON OF SOFIA AND LEON3.

Design Slices Clock Speed

Vanilla 5,889 92.3 MHz
SOFIA 7,551 50.1 MHz

the cipher was unrolled to require only two cycles for each
operation [36]. This reduces the maximum clock frequency of
the processor, as the block cipher increases the critical path
of the processor. A single cipher instance is used to perform
both the CFI and SI operations. As the cipher has a 64-bit
block length, a single operation can process two 32-bit words.
Therefore, the cipher alternates between computing CTR-mode
and CBC-mode operations every other cycle.

IV. EVALUATION

A. Security Evaluation

1) SI: The SI property is considered equivalent to forging a
MAC. An attack is successful if an adversary alters an instruc-
tion and MAC pair so that the integrity verification succeeds.

The bit length of a MAC is directly related to the number of
trials that need to be performed before a forged message and
MAC pair is accepted. For an n-bit MAC, an adversary has to
perform an average of 2n−1 random online MAC verifications
before this strategy will succeed [32]. Consider that a 64-bit
MAC is used, and that an attacker requires at least 8 cycles to
verify a forging attempt of a single execution block on the target
platform. Therefore, a successful forgery of an instruction and
MAC pair will require 46,795 years to succeed on a 50 MHz
SOFIA core.

2) CFI: The CFI property is considered equivalent to the SI
property together with the block cipher’s confidentiality prop-
erty. An attack is successful if an adversary sucessfully deviates
control flow from the valid CFG.

An attack on the control flow requires two steps. First, the
adversary has to divert control flow (e.g., through ROP). Second,
the adversary has to forge the MAC of the first block that
is executed after tampering with the control flow. The initial
control flow diversion will require 8 cycles, while the MAC
verification will require an additional 8 cycles. Therefore, an
online brute force attack on a 64-bit MAC will require 93,590
years on a 50 MHz SOFIA core.

B. Hardware Evaluation

Table I shows that the hardware area increased by 28.2%,
while the clock speed reduced by 84.6% when compared to
an unmodified LEON3 core. The clock speed reduction is due
to the block cipher being unrolled 13 times and placed in the
critical path of the design.

To benchmark SOFIA we used the MediaBench (I) ADPCM
benchmark [37]. It executes bare-metal, and was compiled with
the Bare-C Cross-Compiler System for LEON3 from Gaisler.
This produced a binary with a text section of 6,976 bytes that
executes on an unmodified LEON3 core in 114,188,673 cy-
cles. The transformation process was applied on the compiler-
generated assembly, which produced a binary with a text section



of 16,816 bytes. The transformed binary executes on a SOFIA
core in 130,840,013 cycles, leading to a cycle overhead of
13.7% and a total execution time overhead of 110%.

V. CONCLUSION

In this work, we demonstrated that it is practical to provide
protection against code reuse and code injection attacks using a
new security architecture called SOFIA. The architecture’s se-
curity policies are enforced in hardware and it protects software
with cryptographic mechanisms. Specifically, the architecture
provides software integrity protection, ultra fine-grained control
flow integrity, tampered code protection, and software copyright
protection. To evaluate the design, we integrated SOFIA with
a LEON3 core, and made an FPGA-based hardware implemen-
tation. The SOFIA core increased the hardware area of the
LEON3 core by 28.2%%, and reduced the maximum clock
frequency by 84.6%. MediaBench’s ADPCM benchmark was
executed on the SOFIA core, which shows a cycle overhead of
13.7%, and a total execution overhead of 110% when compared
to a stock LEON3 core. Even though the performance overhead
is significant, the architecture is still practical for use in safety-
critical systems where security and safety are paramount.

An open problem with this architecture is the overhead suf-
fered due to increased code size, execution time, and clock
speed degradation. The architecture also does not support virtual
memory. In the future we plan to work on design changes to
improve the performance of the hardware and perform toolchain
optimizations to increase the software performance. We further
plan to test the architecture’s resistance to fault-based attacks.

ACKNOWLEDGMENTS

This work was supported in part by the Research Council KU
Leuven: C16/15/058, iMinds, the Flemish Government, FWO
G.00130.13N, FWO G.0876.14N, and the Hercules Foundation
AKUL/11/19.

REFERENCES

[1] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented program-
ming: a new class of code-reuse attack,” in CCS, 2011.

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in CCS, 2007.

[3] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C.
Knight, A. Nguyen-Tuong, and J. Rowanhill, “Secure and practical defense
against code-injection attacks using software dynamic translation,” in Conf.
on Virtual Execution Environments, 2006.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow In-
tegrity,” in CCS, 2005.

[5] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse attacks with
control-flow locking,” in ACSAC, 2011.

[6] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürn-
berger, and A.-R. Sadeghi, “MoCFI: A Framework to Mitigate Control-
Flow Attacks on Smartphones,” in NDSS, 2012.

[7] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation of
control flow integrity using performance counters,” in Conf. on Depend-
able Systems and Networks, 2012.

[8] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,” in
USENIX Security, 2013.

[9] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent rop
exploit mitigation using indirect branch tracing.” in USENIX Security,
2013.

[10] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical control flow integrity and randomization for binary
executables,” in IEEE Security & Privacy, 2013.

[11] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow Integrity
in GCC & LLVM,” in USENIX Security, 2014.

[12] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in IEEE Security & Privacy,
2014.

[13] N. Carlini and D. Wagner, “ROP is Still Dangerous: Breaking Modern
Defenses,” in USENIX Security, 2014.

[14] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in USENIX Security, 2014.

[15] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming,” in IEEE Security & Privacy,
2015.

[16] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, “Branch
regulation: Low-overhead protection from code reuse attacks,” in ISCA,
2012.

[17] M. Kayaalp, M. Ozsoy, N. A. Ghazaleh, and D. Ponomarev, “Efficiently
securing systems from code reuse attacks,” Computers, IEEE Transactions
on, vol. 63, no. 5, 2014.

[18] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a Practical Solu-
tion to Detect Code Reuse Attacks on ARM Mobile Devices,” in Workshop
on Hardware and Architectural Support for Security and Privacy, 2015.

[19] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation,” in DAC, 2014.

[20] L. Davi, Matthias, D. P. Hanreich, A.-R. Sadeghi, P. Koeberl, D. Sul-
livan, O. Arias, and Y. Jin, “HAFIX: Hardware-Assisted Flow Integrity
Extension,” in DAC, 2015.

[21] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure embedded pro-
cessing through hardware-assisted run-time monitoring,” in DATE, 2005.

[22] S. Mao and T. Wolf, “Hardware support for secure processing in embedded
systems,” Computers, IEEE Transactions on, vol. 59, no. 6, 2010.

[23] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measurement
and attestation: Towards defense against return-oriented programming at-
tacks,” in Scalable Trusted Computing Workshop, 2009.

[24] A. M. Fiskiran and R. B. Lee, “Runtime execution monitoring (rem) to
detect and prevent malicious code execution,” in In’l Conf. on Computer
Design, 2004.

[25] H. Lin, Y. Fei, X. Guan, and Z. J. Shi, “Architectural enhancement and sys-
tem software support for program code integrity monitoring in application-
specific instruction-set processors,” Very Large Scale Integration Systems,
IEEE Transactions on, vol. 18, no. 11, 2010.

[26] R. G. Ragel and S. Parameswaran, “Impres: integrated monitoring for
processor reliability and security,” in DAC, 2006.

[27] J.-L. Danger, S. Guilley, T. Porteboeuf, F. Praden, and M. Timbert,
“HCODE: Hardware-Enhanced Real-Time CFI,” in PPREW, 2014.

[28] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering Code-injection
Attacks with Instruction-set Randomization,” in CCS, 2003.

[29] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis,
“ASIST: Architectural Support for Instruction Set Randomization,” in
CCS, 2013.

[30] J.-L. Danger, S. Guilley, and F. Praden, “Hardware-enforced protection
against software reverse-engineering based on an instruction set encoding,”
in PPREW, 2014.

[31] International Standard Organization, “Infomation technology - Secruity
techniques - Message Authentication Codes (MACs),” ISO/IEC 9797-
1:1999(E), 1999.

[32] H. Handschuh and B. Preneel, “Minding your MAC algorithms,” Infor-
mation Security Bulletin, vol. 9, no. 6, 2004.

[33] “Cobham Gaisler AB. LEON3 synthesizable processor,” http://www.
gaisler.com, [Online; accessed 26-Nov-2015].

[34] C. Namprempre, P. Rogaway, and T. Shrimpton, “Reconsidering generic
composition,” in Advances in Cryptology–EUROCRYPT 2014. Springer,
2014.

[35] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede,
“RECTANGLE: A Bit-slice Ultra-Lightweight Block Cipher Suitable for
Multiple Platforms,” IACR Cryptology ePrint Archive, 2014.

[36] P. Maene and I. Verbauwhede, “Single-Cycle Implementations of Block
Ciphers,” in Lightweight Cryptography for Security and Privacy, 2015.

[37] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communicatons systems,”
in Int’l Symp. on Microarchitecture, 1997.


