134 research outputs found

    Second order conic approximation for disassembly line design with joint probabilistic constraints

    Get PDF
    A problem of profit oriented disassembly line design and balancing with possible partial disassembly and presence of hazardous parts is studied. The objective is to design a production line providing a maximal revenue with balanced workload. Task times are assumed to be random variables with known normal probability distributions. The cycle time constraints are to be jointly satisfied with at least a predetermined probability level. An AND/OR graph is used to model the precedence relationships among tasks. Several lower and upper–bounding schemes are developed using second order cone programming and convex piecewise linear approximation. To show the relevance and applicability of the proposed approach, a set of instances from the literature are solved to optimality

    Design for manufacturing and assembly/disassembly: joint design of products and production systems

    Get PDF
    Design for Manufacturing, Assembly, and Disassembly is important in today’s production systems because if this aspect is not considered, it could lead to inefficient operations and excessive material usage, both of which have a significant impact on manufacturing cost and time. Attention to this topic is important in achieving the target standards of Industry 4.0 which is inclusive of material utilisation, manufacturing operations, machine utilisation, features selection of the products, and development of suitable interfaces with information communication technologies (ICT) and other evolving technologies. Design for manufacturing (DFM) and Design for Assembly (DFA) have been around since the 1980’s for rectifying and overcoming the difficulties and waste related to the manufacturing as well as assembly at the design stage. Furthermore, this domain includes a decision support system and knowledge base with manufacturing and design guidelines following the adoption of ICT. With this in mind, ‘Design for manufacturing and assembly/disassembly: Joint design of products and production systems’, a special issue has been conceived and its contents are elaborated in detail. In this paper, a background of the topics pertaining to DFM, DFA and related topics seen in today’s manufacturing systems are discussed. The accepted papers of this issue are categorised in multiple sections and their significant features are outlined

    Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints

    Get PDF
    Assembly line balancing problems (ALBPs) are among the most studied combinatorial optimization problems due to their relevance in many production systems. In particular, the accessibility windows ALBP (AWALBP) may arise when the workpieces are larger than the workstations, which implies that at a given instant the workstations have access to only a portion of the workpieces. Thus, the cycle is split into forward steps and stationary stages. The workpieces advance during the forward steps and the tasks are processed during the stationary stages. Several studies have dealt with the AWALBP assuming that there are no precedence relationships between tasks. However, this assumption is not always appropriate. In this work we solve the first level of AWALBP (AWALBP-L1) considering the existence of precedence relationships. Specifically, this work deals with variant 1 (AWALBP-L1-1), in which each task can be performed at only one workstation and, therefore, only the stationary stages and the starting instants in which the tasks are performed have to be decided. We design a solution procedure that includes pre-processing procedures, a matheuristic and a mixed integer linear programming model. An extensive computational experiment is carried out to evaluate its performance.Peer ReviewedPostprint (author's final draft

    Planning in constraint space for multi-body manipulation tasks

    Get PDF
    Robots are inherently limited by physical constraints on their link lengths, motor torques, battery power and structural rigidity. To thrive in circumstances that push these limits, such as in search and rescue scenarios, intelligent agents can use the available objects in their environment as tools. Reasoning about arbitrary objects and how they can be placed together to create useful structures such as ramps, bridges or simple machines is critical to push beyond one's physical limitations. Unfortunately, the solution space is combinatorial in the number of available objects and the configuration space of the chosen objects and the robot that uses the structure is high dimensional. To address these challenges, we propose using constraint satisfaction as a means to test the feasibility of candidate structures and adopt search algorithms in the classical planning literature to find sufficient designs. The key idea is that the interactions between the components of a structure can be encoded as equality and inequality constraints on the configuration spaces of the respective objects. Furthermore, constraints that are induced by a broadly defined action, such as placing an object on another, can be grouped together using logical representations such as Planning Domain Definition Language (PDDL). Then, a classical planning search algorithm can reason about which set of constraints to impose on the available objects, iteratively creating a structure that satisfies the task goals and the robot constraints. To demonstrate the effectiveness of this framework, we present both simulation and real robot results with static structures such as ramps, bridges and stairs, and quasi-static structures such as lever-fulcrum simple machines.Ph.D

    On-Orbit Manoeuvring Using Superquadric Potential Fields

    Get PDF
    On-orbit manoeuvring represents an essential process in many space missions such as orbital assembly, servicing and reconfiguration. A new methodology, based on the potential field method along with superquadric repulsive potentials, is discussed in this thesis. The methodology allows motion in a cluttered environment by combining translation and rotation in order to avoid collisions. This combination reduces the manoeuvring cost and duration, while allowing collision avoidance through combinations of rotation and translation. Different attractive potential fields are discussed: parabolic, conic, and a new hyperbolic potential. The superquadric model is used to represent the repulsive potential with several enhancements. These enhancements are: accuracy of separation distance estimation, modifying the model to be suitable for moving obstacles, and adding the effect of obstacle rotation through quaternions. Adding dynamic parameters such as object translational velocity and angular velocity to the potential field can lead to unbounded actuator control force. This problem is overcome in this thesis through combining parabolic and conic functions to form an attractive potential or through using a hyperbolic function. The global stability and convergence of the solution is guaranteed through the appropriate choice of the control laws based on Lyapunov's theorem. Several on-orbit manoeuvring problems are then conducted such as on-orbit assembly using impulsive and continuous strategies, structure disassembly and reconfiguration and free-flyer manoeuvring near a space station. Such examples demonstrate the accuracy and robustness of the method for on-orbit motion planning
    corecore