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ABSTRACT 


On-orbit manoeuvring represents an essential process in many space missions such 

as orbital assembly, servicing and reconfiguration. A new methodology, based on 

the potential field method along with superquadric repulsive potentials, is discussed 

in this thesis. The methodology allows motion in a cluttered environment by 

combining translation and rotation in order to avoid collisions.  This combination 

reduces the manoeuvring cost and duration, while allowing collision avoidance 

through combinations of rotation and translation. 

Different attractive potential fields are discussed: parabolic, conic, and a new 

hyperbolic potential. The superquadric model is used to represent the repulsive 

potential with several enhancements. These enhancements are: accuracy of 

separation distance estimation, modifying the model to be suitable for moving 

obstacles, and adding the effect of obstacle rotation through quaternions. 

Adding dynamic parameters such as object translational velocity and angular 

velocity to the potential field can lead to unbounded actuator control force. This 

problem is overcome in this thesis through combining parabolic and conic functions 

to form an attractive potential or through using a hyperbolic function. The global 

stability and convergence of the solution is guaranteed through the appropriate 

choice of the control laws based on Lyapunov's theorem. 

Several on-orbit manoeuvring problems are then conducted such as on-orbit 

assembly using impulsive and continuous strategies, structure disassembly and 

reconfiguration and free-flyer manoeuvring near a space station. Such examples 

demonstrate the accuracy and robustness of the method for on-orbit motion 

planning. 
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1. INTRODUCTION 

1.1 Background 

Mobile robots and manipulators are widely used for terrestrial, subsea, and space 

applications. Terrestrial applications are vast, ranging from industrial to domestic 

usage (Palacín et al., 2004). In industrial applications, combinations of mobile 

robots and manipulators serve for mechanical assembly (Yuan, 2002), material 

handling (Neuhaus and Kazerooni, 2001), and spot welding (Pires and Loureiro, 

2003). Medical robot applications are a further success (and challenge) assisting 

during microsurgeries and rehabilitation (Salcudean et al., 1999; Cepolina and 

Michelini, 2004). Mobile robots also play a role in subsea and ocean operations 

where they are able to reach extreme depth and perform assembly and maintenance 

tasks (Antonelli et al., 2001). Well known space applications serve for assembly, 

service, and repair (McQuade and McInnes, 1997; Roger, 2003). Other robotic 

applications are in rough terrain such as mining and rescue (Lagnemma and 

Dubowsky, 2004; Shimoda et al., 2005). Planetary exploration such as Lunar and 

Mars rovers, Fig. 1.1, are well known applications which require highly automated, 

unattended robotic motion planning (Hayati et al., 1996). Challenges for such 

applications have been discussed (Weisbin et al., 1999; Schenker et al., 2000). 

As robots are used to perform certain tasks they always require motion; motion is 

an essential action without which a robot will lose its functionality. Since robots are 

not the sole object in their workspace, robot motion planning research is a key area 

of robot technology. Intelligent motion planning (MP) algorithms attempt to 

advance from repetitive pre-programmed tasks to fully autonomous operations. 

Research development has been undertaken in theory, computational capabilities 

and sensors. Determining a collision-free path between some start and goal 

configuration, in addition to the required dynamic parameters, forces and moments, 

is the ultimate goal of motion planning analysis. 
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 (a) ESA EXOMARS Rover (b) NASA Mars Exploration Rover 

(MER) 

Fig. 1.1 Space exploration rovers 

Various aspects of MP problems have been investigated either through theoretical 

or experimental analysis. Generally, the MP problem aims to find if a region of 

space is reachable from another through a continuous path. It is therefore the process 

of selecting a path and the associated set of input forces and torques from the set of 

all possible motions and inputs, while ensuring that all constraints are satisfied. 

Three closely linked problems constitute MP: path planning, trajectory planning, 

and motion control, Fig. 1.2. The first phase aims to define the kinematic 

parameters, position and orientation, of the manoeuvring object, whereas the second 

phase aims to generate the required translational velocity and angular velocity 

profile to generate motion to the goal. Path planning is therefore a subset of 

trajectory planning. Finally, the motion control phase aims to drive the manoeuvring 

object to follow the reference trajectory as closely as possible. 

Path 

Planning 


Trajectory


Planning 

Motion 
Control 

Fig. 1.2 Motion planning phases 
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1.2 Motion Planning Classification 

MP algorithms depend on the availability of sensed data such as obstacle shapes 

and kinematics. MP methods based mainly on sensed data are normally termed local 

methods, used when there is not enough global data about the workspace. So-called 

global methods are used otherwise, when complete knowledge of the workspace is 

available. It is also possible to utilize local methods in the case of a well known 

environment with either stationary or moving obstacles, but with an optimized path. 

A combination of global and local methods can be used to generate a global optimal 

plan, with the local sensory based approach reaching to unforeseen obstacles. 

Ensuring global knowledge of the workspace is not simple due to limited sensing 

capabilities and sensor range limitations. On the other hand, local MP may lead to 

unfeasible trajectories as a complete world model is not available. Information 

exchange between different manoeuvring objects through decentralized control 

enhances the amount of world information available to each of them. 

A second classification of MP depends on the obstacle kinematic properties, either 

static or dynamic. In the static case, all obstacles are known as in case of robotic 

assembly in a production process. On the other hand, in dynamic MP problems the 

manoeuvring objects sense data whilst in motion. Consequently, new data is 

continuously generated so on-line control is required. Generally, dynamic MP is the 

norm whereas static MP is an exception as every MP problem can be solved as 

dynamic one, while the inverse is not true. 

Other issues in MP problems occur when dealing with articulated or linked bodies 

or deformable problems, where objects shapes will change during motion. These 

deformable MP problems are common as a wide range of robots are equipped with 

manipulators or links. The level of complexity of MP problems with respect to 

objects representations, object dynamic properties, the type of manoeuvring object 

under control, and constraint types is illustrated in Fig. 1.3. 

Objects in the environment can be represented as spherical shapes for simplicity, 

although the real shape is required in cases where the spherical shape occupies 

significantly more space than its actual size, or in case of the final docking phase 

where objects engage. 
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Fig. 1.3 Motion planning levels of complexity 

Manoeuvring objects range from point mass robots to deformable or articulated 

ones. The more degrees of freedom (DOF) associated with manoeuvring objects, the 

greater the complexity of the MP problem. Object dynamic properties have a large 

influence on the degree of complexity of MP problem. Static objects are much easier 

to handle as their positions are known, whereas moving objects add more variables 

to the MP problem. Finally, the types of constraints, holonomic or nonholonomic, 

affect the number of DOF required to represent the system. Holonomic constraints 

reduce the number of DOF associates with the obstacles, whereas nonholonomic 

constraints that depend on velocity and position do not affect the number of DOF 

(Latombe, 1991). Lastly, bounded forces and torques are required and affect the 

choice of MP algorithm as real actuators can saturate. 

A general review of MP algorithms is discussed in the following sections. Motion 

planning problem is solved within different spaces such as the Cartesian (physical or 

task) space or configuration space. Motion parameters in the Cartesian space are 

defined through position coordinates and orientation parameters such as Euler 
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angles, direction cosines, or quaternions. Since the rest of the thesis deals with 

Cartesian spaces, a brief discussion of the configuration space is introduced in the 

following section. 

1.3 Configuration Space 

Like real physical space, Configuration space (C-Space) is defined by a set of 

independent parameters or generalized coordinates, which describe the position of 

every point on the manoeuvring object at any time based on classical mechanics. For 

a point robot in three dimensions, the C-Space is identical to the physical space with 

the same number of DOF in ℜ3 , while for N point robots the configuration space is 

ℜ3N . A rigid rod in 2D, for example, requires three parameters to represent the 

C-Space: two coordinates for the position of a reference point, which could be any 

point on the rod, and one angle representing the rod orientation about a 

perpendicular axis. 

As an example of a three link mechanism, Figure 1.4 shows a possible set of 

generalized coordinates θ1, θ2 and θ3. Each configuration in the workspace 

corresponds to a point in the C-space. Moreover, the motion of an articulated body 

appears as a curve in the C-Space. After generation of the C-Space, all MP problems 

are essentially identical. 

Fig. 1.4 Three link mechanism 
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Representing points of both manoeuvring objects and obstacles in C-Space 

determines whether collisions will occur. If any manoeuvring object point in C-

Space lies inside any obstacle or any other manoeuvring object, then collision will 

occur. Furthermore, another case occurs when a point of any manoeuvring object 

lies on the boundary of any other object, so that smooth contact will occur. Many 

computational methods are able to search for C-Space collisions (Branicky and 

Newman, 1990; Hwang and Ahuja, 1992).  

1.4 Motion Planning Methods 

Large numbers of methods exist to solve the MP problem. However a few key 

methods are defined: skeleton, cell decomposition, potential field, mathematical 

programming, and boundary following methods. Designing a high performance 

motion planner usually requires the utilization of more than one MP approach such 

as combining the potential field method along with the cell decomposition method 

(Chiou et al., 1999). A brief discussion of key methods is provided before going on 

to discuss the potential field method. These approaches are either complete or 

incomplete. Completeness is defined as finding a path if it is exist, otherwise 

returning a failure. Incomplete approaches may terminate in a position other than the 

goal, such as a local minimum, but nevertheless the path exists. Complete 

algorithms may fail to find a solution if the resolution of the algorithm is not good 

enough to find a free path (Goldberg, 1994). 

1.4.1 Skeleton (Roadmap) 

All possible configurations are retracted into a network of one-dimensional lines, 

the roadmap, limiting the MP problem to graph-searching. Various methods are 

constructed which depend on this basic idea. For 2D problems, the visibility graph 

and the Voronoi diagram are commonly used. 

The visibility graph, which is one of the earliest roadmap methods, was suggested 

by Nilsson (Nilsson, 1969) as a collection of lines connecting all polygonal obstacles 

vertices. They can be connected by lines without crossing another obstacle. The 
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shortest path will then be chosen as the optimum one between the start and goal 

point, as shown in Fig. 1.5. 

The Voronoi diagram is used when it is required to maintain some distance 

between the manoeuvring object and obstacles. Constructing a Voronoi diagram is 

done through defining a set of points called nodes. These nodes are the intersecting 

points of equidistant contour lines surrounding the obstacles. The Voronoi diagram 

divides the space into regions with only one edge or polygon inside, as shown in 

Fig. 1.6. 

More complexity arises when dealing with 3D MP problems using the visibility 

graph or the Voronoi diagram. A general method of constructing a skeleton in higher 

dimensions is constructed through a process called Silhouette. This process is based 

on projecting an object from a higher dimensional space to a lower one, and then 

tracing the boundaries. This operation could be repeated reaching a set of one-

dimensional lines. A simpler Voronoi diagram for 3D objects has been discussed 

(Dattasharma and Keerthi, 1995). After generating enough free configurations, the 

roadmap is built by connecting them. This is a very efficient MP approach, 

especially when high number of DOF exist (Kavraki and Latombe, 1998). 

Start 

Goal 

Obstacle 

Obstacle 

Fig. 1.5 The visibility graph 
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Goal 

Start 

Obstacle 

Obstacle 

Fig. 1.6 The Voronoi diagram 

The roadmap method has also been adapted to dynamic environments of both free-

flying and articulated robots (Van den Berg and Overmars, 2005). A possible 

combination of the visibility graph and the Voronoi diagram is achieved through 

introducing the visibility graph into the Voronoi diagram (Wein et al., 2007).  

1.4.2 Cell decomposition 

In this method, the free C-Space is decomposed into simple adjacent regions, 

called cells. A free path connecting start and goal points is obtained through 

connecting the start and goal cells with continuous free cells, called a connectivity 

graph. Two ways are used to perform cell decomposition: exact and approximate 

cell decomposition. 

Exact cell decomposition, object dependent, uses obstacles boundaries to form the 

cells whose union is the free space. This produces a smaller number of cells with 

higher computation complexity (Brock, 1999). 
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In approximate cell decomposition, object independent, methods a small, simple 

cell is chosen then tested whether it is a free cell or belongs to the configuration 

obstacles. The free space representation is strictly inclusive in the union of these 

small cells, however it does not represent the whole free space since the cells do not 

tightly enclose obstacles. Some cells may contain both free space and configuration 

obstacles; hence they could not be used to find a path (Brooks and Lozano-Pérez, 

1982). 

Cells lying entirely in the free space are used to construct the connectivity graph. If 

no connectivity graph is found, higher cell decomposition resolution might be a 

solution otherwise no free path exists between the initial and goal configurations 

(Latombe, 1991). Approximate methods are used initially to solve the MP problem, 

refining until a solution is found or no path is obtained. Cell decomposition is 

guaranteed to find a free path if exists, otherwise the algorithm returns failure. 

1.4.3 Other methods 

Other methods are defined such as: mathematical programming and boundary 

following methods. In mathematical programming, the free space is defined as a set 

of inequalities, then an optimum curve connecting the start and the goal position is 

found. Nonlinear programming is used to solve the motion planning problem by 

minimizing path length subject to constraints (Henrich, 1997). 

The objective of the boundary following method is to command the manoeuvring 

object to move toward its goal in a straight line. In case of being obstructed by an 

obstacle, the manoeuvring object traces the obstacle edges. This approach is adapted 

to work with a scene filled with unknown obstacles of arbitrary shape and size. Data 

about the environment are collected on-line with sensors (Lumelsky and Stepanov, 

1987). 

1.5 Potential Field Methods 

Many physical systems relax their configuration to attain the lowest possible 

energy state. This idea has been adopted and used in the motion planning algorithms 

for manipulators and robots as the artificial potential field method (Khatib, 1986). 
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Each location in the workspace has some scalar potential associated with it. The 

potential depends on the relative position between both goal and obstacles positions, 

and the manoeuvring object. A virtual attractive potential field representing a goal 

and virtual repulsive potential field representing obstacles are merged together to 

generate a global potential field, the gradient of which in principle provides a 

collision-free path to the goal. The method is widely used for autonomous mobile 

robot path planning in fixed workspaces where both target and obstacles are 

stationary. The method is also adapted to deal with moving obstacles (Tzafestas et 

al., 2002) and moving goal points through defining a potential function that is 

velocity dependent (Ge and Cui, 2002). The method is defined over both the 

Cartesian space and the configuration space (Barraquand et al., 1991). However, 

limitations of this simple and elegant approach arise when the superposition of the 

repulsive potential and attractive potential creates local minima. In addition motion 

oscillation in the presence of obstacles and in narrow passages, and the problem of 

trapping between two close obstacles also arise (Koren and Borenstein, 1991). 

Another advantage of the potential field method appears in its unified approach to 

fulfil the MP problem, unlike other methods which divide it as seen in Fig. 1.1. The 

outputs of this method are geometrical, dynamical, and lead directly to a control law. 

A detailed description of this method is introduced in the subsequent sections as the 

rest of the thesis is implemented using the potential field method.  

As the number of DOF increases, an exact solution of MP problem is ineffective 

(Sharir, 1997). When choosing potential field methods (PFM) to perform the MP 

process, an important question should be answered. Which PFM is most suitable for 

the current MP problem? The answer to this question is not a matter of choice, it 

mainly depends on the manoeuvring object, workspace, computational capabilities, 

convergence requirements and obstacle dynamic properties.  

During the past three decades, many PFMs have been investigated. Some suggest 

how to represent obstacles; others define how to generate both attractive and 

repulsive potentials. The two main types of MP problems, global and local, both 

utilize potential field functions. The majority of the potential field methods use a 

local path planner such as: force involving artificial repulsion (FIRAS), Gaussian 

distribution, power law function, superquadric, and Newtonian potential (Chuang 
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and Ahuja, 1998), whereas harmonic potential functions and the navigation function 

are considered as global path planners. In local path planning, potential functions, 

both attractive and repulsive, are formed separately then added to form the global 

potential. This has on-line capability since no prior information about the workspace 

is required and the information is gathered whilst in motion. For global path 

planning potential functions all information about the workspace should be available 

from the start of the process, hence optimized paths can be obtained if these exist 

without local minima formation. 

Other techniques such as the vector potential field and sliding mode theory are 

used. The vector potential field produces a smooth and bounded control. It can 

provide better performance compared to scalar field (Masoud and Bayoumi, 1993; 

Masoud and Masoud, 2000). Sliding mode theory is used with the potential field 

function to perform fast manoeuvres (Jan and Chiou, 2003). 

The potential field method has also been developed for space applications in areas 

such as proximity manoeuvring (Roger and McInnes, 2000), large angle slew 

manoeuvres (McInnes, 1994; McInnes, 1995; McInnes, 1996; Radice and McInnes, 

1999; Wisniewski and Kulczycki, 2005), formation-flying (McQuade et al., 2003; 

Avanzini et al., 2005a; Avanzini et al., 2005b), and autonomous and distributed 

motion planning for satellite swarms (Izzo and Pettazzi, 2005; Izzo and Pettazi, 

2007). Other work has focused on the assembly of large, complex space structures 

using extensions of the potential field methodology (Badawy and McInnes, 2006c; 

Badawy and McInnes, 2006b; Badawy and McInnes, 2007c). Here the adjacency 

matrix of the graph of the final structure is used to form a global potential field 

(McQuade and McInnes, 1998). The structure can then be re-configured by 

modifying the adjacency matrix as required. A related approach has been used for 

the autonomous assembly of a group of homogeneous components by defining and 

summing vector fields which capture sets of behaviours. The final configuration of 

the system is defined by the equilibrium state of the dynamical system formed by the 

vector fields, in a similar manner to the global minimum of an artificial potential 

field (Izzo et al., 2005). 

11




1.5.1 Force involving artificial repulsion (FIRAS) 

A region of obstacle influence is chosen for symmetrical obstacles, dmin , beyond 

which no effect of the obstacle potential occurs. A continuous differentiable function 

for obstacle potential is defined as: 

⎧1 ⎛ 1 1 ⎞
2

Vobs = 
⎪
⎨2 

A⎜⎜
⎝ d 

− 
dmin 

⎟⎟
⎠ 

if d ≤ d (1.1)min 

⎪
⎩ 0 if d > dmin 

where d is the shortest distance between the manoeuvring object and obstacle. The 

obstacle potential gain A and the minimum distance dmin  are chosen according to the 

MP characteristics (Khatib, 1986). The FIRAS obstacle representation, Fig. 1.7.a, is 

simple as no difficult distance calculations are made. Unfortunately the local 

minimum problem occurs when superimposed with a spherical symmetric attractive 

potential, even for the case of a single flat sided object. 

Fig. 1.7.a) Global potential with FIRAS rectangular obstacle representation 
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Fig. 1.7.b) Global potential with FIRAS circular obstacle representation 

Another example of FIRAS obstacle representation, but with a circular edge 

obstacle, is shown in Fig. 1.7.b, with no local minimum formation. The spherical 

symmetry of both the attractive and the repulsive potential forms a field having no 

local minima in this case. 

1.5.2 Gaussian function 

Obstacle representation through a Gaussian potential function provides a region of 

high potential surrounding the obstacle. This region should be chosen to prevent any 

manoeuvring object from colliding with the obstacle. Due to the symmetry of the 

Gaussian function, this region will be spherical regardless of the real obstacle shape. 

This spherical symmetry property coincides with that of the attractive potential well 

and consequently no local minimum forms due to a single obstacle. The obstacle 

potential is defined as (McQuade, 1997): 
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V
obs =
Aexp ⎧⎨
⎩

−


1


σ

r −
robs 

2 ⎫
⎬
⎭


(1.2) 


where σ is the width of the Gaussian function, r is the position vector of the 

manoeuvring object, and robs is the obstacle position vector. The repulsive amplitude 

A to ensure collision avoidance is shown to be: 

D


2D exp


(
 )
λσ
 −
+
robs rGA
=
 (1.3)

D2 

σ

⎧
⎨
⎩

−


⎫
⎬
⎭


where λ is a scaling factor, rG is the goal position vector, and D is the effective 

dimension of the obstacle which should be chosen to be larger than the actual 

obstacle size. Figure 1.8 shows the total potential function using the Gaussian 

function to represent an obstacle of 3 [m] effective dimension using the function 

width can be calculated as: 

σ
= D 3 (1.4) 


Fig. 1.8 Global potential with Gaussian obstacle representation 
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1.5.3 Power law function 

This method defines another obstacle potential function similar to that of the 

Gaussian function without the exponential term. The obstacle is, again, enclosed by 

a spherical region. The obstacle potential is defined as (McQuade, 1997): 

AVobs = 2 N (1.5) 
r − robs 

The obstacle potential amplitude, A, is calculated the same manner as for the 

Gaussian function to set the saddle point on the obstacle surface. Then it can be 

shown that: 

2 N +1λ(D + −robs rGA = 
)D 

(1.6)
2N 

The obstacle effective dimension, D, depends on the exponent N. This controls the 

sharpness of the obstacle potential. The total potential function is shown in 

Fig. 1.9. 

Fig. 1.9 Global potential with power law obstacle representation, N = 10 
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1.5.4 Superquadric functions 

As explained for the FIRAS function, local minimum formation due to a single 

obstacle occurs due to the superposition of two different isopotential contour lines, 

due to the existence of straight edge objects.  These objects, along with objects of 

general shapes, exist in many MP problems such as the autonomous assembly 

problem which is under investigation in this thesis. 

Superquadric functions are able to represent almost all shapes in a relatively simple 

manner. They divide the space into three parts: inside, on-surface, and outside, and 

form a solid model of objects (Barr, 1981). These solid models can be added 

together to form more complicated objects (Krivic and Solina, 1993; Solina et al., 

1994). 

Limitations on superquadric usage in MP problems are mainly due to the 

possibility of local minimum occurrence in the presence of multiple obstacles, while 

the absence of local minimum is guaranteed in the presence of one obstacle only 

(Lee, 2004). A detailed explanation and enhancement of this method will be 

presented in the subsequent chapters as it is the main core of the thesis.  

Fig. 1.10 Global potential with superquadric obstacle representation 
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1.5.5 Harmonic potential functions 

The use of the harmonic potential functions will completely eliminate local minima 

formation even in a highly cluttered environment. Obstacle representation can be 

through a panel method, which was originally used to solve the potential fluid flow 

problem around an arbitrary object. The obstacle repulsion is represented as an 

outward normal flow, while the goal attraction appears as a uniform flow to simulate 

the potential field (Kim and Khosla, 1992). 

The manoeuvring object velocity may reach zero at a point rather than the goal 

point, a stagnation point, but this point is not stable. The stagnation, saddle point 

may lie on the obstacle itself, hence increasing the panel strength will push the 

saddle point away. Although, the harmonic function does not have local minima, 

obstacle avoidance can not be guaranteed in a cluttered environment as the outward 

normal velocity may become negative on some points on the panel (Masoud and 

Masoud, 2002). 

The Laplace artificial potential is also used to generate a local minima free field. 

The potential function has a maximum value of 1 and the desired goal configuration 

is assigned a value of 0. As the Laplace equation may not be solved in closed form, 

a discrete from is developed by a grid solver method (Connolly, 1990; Roger and 

McInnes, 2000). 

1.5.6 Navigation functions 

A navigation function is constructed in the C-Space and is considered as a global 

methodology, losing the simplicity of local MP but gaining the ability to form local 

minimum free paths. A deficiency of the navigation function is that convergence is 

not guaranteed from all initial configurations. Obstacles are usually modelled 

through disc-shape obstacle functions, but mapping from real world shapes to the 

circular disc-shape model is performed through a diffeomorphism operation (Rimon 

and Kodischek, 1992). 
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1.5.7 Fuzzy potential 

Everywhere in the workspace, a manoeuvring object is affected by a scheme of 

repulsive and attractive potentials. Some of these potentials are not required for 

collision avoidance such as those from obstacles either away from the manoeuvring 

object or which do not intersect its path. In some case, even if a large obstacle is 

located near the manoeuvring object, but the manoeuvring object velocity vector is 

parallel to the obstacle edge, the potential is not required. 

Fuzzy logic adds a variable to the potential function which is termed the 

importance variable. It is used to scale the effect of different obstacles according to 

a number of parameters: separation distance, separation angle, and robot speed 

(McFetridge and Ibrahim, 1998; Ta and Baltes, 2006).  

1.6 Thesis Objectives 

Building an MP algorithm that is able to control complex on-orbit assembly 

problems is the key goal of this thesis. Potential field methods are developed using 

superquadric repulsive potentials. The potential fields are developed for both 

impulsive and continuous motion control.  

The complexity of the assembly problem considered in this thesis is highlighted in 

Fig. 1.3. Assembly of any structure involves the use of multiple objects with 

different shapes and sizes. As all objects under assembly are simultaneously in 

motion, and each is considered as an obstacle to others, the environment is 

considered dynamic. Manipulating objects of different shapes and sizes imposes a 

new demand on their modelling; hence the superquadric model is chosen for its 

ability to represent almost all solid models parametrically. 

The key contribution of this thesis is the integration of translational and rotational 

motion through the use of quaternions to define the orientation of the superquadric 

potential fields. Analytic control laws are found which enable translation and/or 

rotation of multiple extended rigid bodies to a final goal configuration. 
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1.7 Thesis Organization 

An introduction to various methods of motion planning has been discussed in 

chapter one emphasizing potential field methods and their components: attractive 

and repulsive potentials. Different forms of attractive potential are defined in 

chapter two using parabolic, conical, and a new hyperbolic function. 

Defining the repulsive potential first requires an investigation of the mathematical 

formulation of the superquadric model which is described in chapter three. The 

original form of superquadric functions is not suitable for representing obstacles; 

hence some modification is needed through generating deformable superquadric 

surfaces from the geometric obstacle shape to a spherical shape.  

The distance between two superquadric surfaces is then calculated in a new general 

form regardless the shape and size of the obstacle. Finally, obstacle representations 

of some common shapes are discussed such as, parallelepiped and beams. 

Superquadric repulsive potentials are investigated in chapter four for 

parallelepiped and beam elements for both avoidance and approach potentials. The 

dependency of those potential on the separation distance is estimated for both types 

of objects whereas only the parallelepiped element is discussed in detail. 

In chapter five, the global potential is formed for the first time in the thesis. Two 

different control schemes are introduced in this chapter: continuous control using 

low thrust propulsion and impulsive control using on/off thrusters. The stability 

analysis conducted depends on the chosen control strategy to find an appropriate 

control law. Examples of four manoeuvring objects; two plates and two disks which 

switch their positions simultaneously are presented at the end of each control 

strategy discussion. 

The main objective of the thesis is presented in chapter six, where the on-orbit 

structural assembly idea is discussed. Impulsive and continuous control strategies 

are used with selected potential functions to assemble cube and truss structures. 

Natural orbital mechanics is added to the forced motion depending on the control 

strategy. Combinations of parabolic and conical attractive potentials are presented 

for continuous low thrust control followed by their substitution with a new 

hyperbolic attractive potential. 
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Large space structure assembly is also considered using the impulsive control 

strategy. This contains different object shapes with different sizes. 

Orbital reconfiguration is discussed in chapter seven through two applications. 

Free-flyer manoeuvring near a larger space facility, the International Space Station 

(ISS), is considered first followed by reconfiguration of a space structure. This is 

conducted through disassembly of some objects and then reassembly of them in a 

different configuration to illustrate the power and flexibility of the method.  

A final review and discussion of the work of the thesis is presented in chapter 

eight. The overall roadmap for the thesis is shown in Fig. 1.11. 

Motion Planning 
Approach 

Potential Field Attractive Repulsive 

Parabolic 
Conical 
Hyperbolic 

Superquadric Function 
Superquadric Potential 

Global Potential 

Continuous Control 

Impulsive Control 

Structure Assembly 

Free-flyer 

Orbital 
Mechanics 

Structure Reconfiguration 

Fig. 1.11 Thesis roadmap 
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2. ATTRACTIVE POTENTIAL FUNCTIONS 

2.1 Introduction 

Many physical systems relax their configuration to attain the lowest possible 

energy state. This idea has been adopted and used in motion planning algorithms for 

manipulators and mobile robots as the artificial potential field method (Khatib, 

1986). Scalar potential field theory constructs an electric field resulting from a point 

charge. It then models how charged particles move under the influence of 

electrostatic fields. Spatial derivatives of scalar potential fields form vector fields. 

These spatially continuous vector fields then define the motive force acting on 

charged particles (Chuang, 1998). 

For robot path planning, the attractive potential field is a function defined with the 

goal position at its global minimum. A manoeuvring object will then move down the 

gradient of the potential field towards this global minimum, and with a suitable 

dissipation function will come to rest. The goal configuration will be defined by 

both a goal position and orientation. The Euclidean distance between a manoeuvring 

object and the goal position is used to define the translational attractive potential 

while error quaternions are used to define a rotational attractive potential. In order to 

reach the global minimum of the attractive potential field, both a final position and 

orientation must be achieved. In the subsequent analysis it will be assumed that 

continuous torques are available for attitude control and both continuous and 

discrete impulses are available for translational control. Potential fields that are a 

function of position generate required velocities, whereas those that are a function of 

position and velocity generate required accelerations. This is similar to the 

configuration of agile robot free-flyers which use control moment gyros and pulsed 

thrusters for actuation. 

The overall attractive potential is the summation of both the translational and 

rotational attractive potentials. The translational attractive potential aims to null the 

Euclidian distance between a manoeuvring object and its goal position, while the 

rotational attractive potential aims to null the error quaternion relative to the 

required final orientation. 
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In principle attractive potential functions should be defined to ensure convergence 

to the goal. The most common means of investigating such convergence is through 

the use of Lyapunov methods which consider convergence to be equivalent to 

nonlinear stability. 

2.2 Lyapunov’s Stability Theorem 

Lyapunov's stability theorems were developed at the end of the 19th century in the 

doctoral thesis of Russian mathematician Alexander M. Lyapunov in 1892 (Csáki, 

1972; Sastry, 1999). His work discussed the general problem of nonlinear stability 

of motion and remained little known in the West, but now forms a key part of 

nonlinear control. Stability analysis of nonlinear systems was classified by 

Lyapunov into two groups: 

1.	 Methods based on finding the solution of the system (linearization). Once 

the solution is found it is possible to determine whether the system is stable 

or not (from the system eigenvalues). 

2.	 Methods which do not require a solution. The stability condition is then 

decided through the existence of a scalar function which satisfies 

Lyapunov's conditions. 

Deciding whether a system is stable or not without finding its solution is a very 

attractive idea, especially in many cases where no general method exists to find the 

solution of system of differential equations (nonlinear systems).  

The Lyapunov method hinges of defining a scalar function which is analogous to 

the effective energy of the system. If, under certain conditions, it can be shown that 

the scalar Lyapunov function is monotonically decreasing, the stability (and 

convergence) is proven. 
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2.2.1 Definitions: 

1.	 Consider a multivariable continuous function V(x) which maps ℜn →ℜ . It 

is considered positive definite if its value has positive sign over the region 

ℜn . 
nV (0) = 0 and V (x) > 0 ∀x ∈ℜ − {0} 

2.	 Consider a multivariable continuous function V(x) which maps ℜn →ℜ . It 

is considered negative definite if its value has negative sign over the region 

ℜn . 
nV (0) = 0 and V (x) < 0 ∀x ∈ℜ − {0} 

3.	 Consider a multivariable continuous function V(x) which maps ℜn →ℜ . It 

is considered positive semi-definite if its value has positive sign over the 

region ℜn and equal zero for some points other than the origin. 
nV (0) = 0 and V (x) ≥ 0 ∀x ∈ℜ − {0} 

4.	 Consider a multivariable continuous function V(x) which maps ℜn →ℜ . It 

is considered negative semi-definite if its value has negative sign over the 

region ℜn and equal zero for some points other than the origin. 
nV (0) = 0 and V (x) ≤ 0 ∀x ∈ℜ − {0} 

2.2.2 Lyapunov's second theorem 

Let x = xG be an equilibrium point for a system described by a set of differential 

equations x = f ( ). Let V(x) be a real, continuously differentiable, positive definite& x 

scalar function that maps ℜn →ℜ . Then if its time derivative W(x) is negative 

definite, then V(x) is asymptotically Lyapunov stable. 

If a suitable Lyapunov function can be found, then Lyapunov's theorem can be used 

to prove the nonlinear stability of an equilibrium point of a set of differential 

equations. This will be seen as equivalent to demonstrating convergence of a 

manoeuvring robot to a goal.   
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2.3 Translational Attractive Potential 

Steady motion toward a goal position should be guaranteed by the translational 

attractive potential. It considers the manoeuvring object as a point mass translating 

towards the goal. The translational attractive potential is constructed according to 

the available sensed data as: 

1.	 Position attractive potential, where only position information is needed to 

define the attractive potential, consequently defined as: 

λ m r − rG (2.1)Vatt ,trans = p 

m 

2.	 Position and velocity attractive potential, where both should be sensed. 

This function can also be used in tracking problems as (Ge and Cui, 2000): 

λ m	 λ n+	 v= r − rG r& − r&G (2.2)Vatt ,trans 
p 

m n 

These attractive potential functions are not differentiable with respect to r at 

r = rG for 0 < m ≤ 1, and with respect to r&  at r& = r&G for 0 < n ≤ 1 . If the exponents 

m and n are chosen as unity, a conic-well potential function is generated which gives 

constant control force throughout the workspace. However, singularity problems at 

the goal position are produced. If the exponents are chosen to be greater than unity, 

a parabolic-well is formed which generates a control force that increases with 

distance and is unbounded as r − rG →∞ . 

A combination of parabolic and conic well potentials could be constructed to have 

the advantages of both through defining the first within some range from the goal 

position. Consequently, the control force remains bounded and avoids the singularity 

problem encountered when using the conic well. Beyond this range, the conic well is 

the best choice as the control force will be constant wherever the manoeuvring 

object is located (Latombe, 1991).  

Different types of translational attractive potentials and their stability analysis will 

be discussed in the subsequent subsections before utilizing them in the global 

potential. 
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2.3.1 Parabolic-well 

The parabolic-well attractive potential is used in many applications where only 

position information is sensed. Two possible MP methods are derived using this 

function. The first solves for the control force, whereas the second solves for the 

required velocity considering an ideal controller for both of them. To be able to use 

the function proposed in Eq. (2.1) with the exponent m = 2 as a potential function, it 

should satisfy Lyapunov's conditions, Fig. 2.1. A positive definite parabolic potential 

is then defined as: 

pVatt ,trans =
λ (r − rG ) (  . r − rG ) (2.3)
2 

The time derivative of the proposed function, Watt,trans will be: 

Wtrans = λp r&.(r − rG ) (2.4) 

Let k be a positive function such that the manoeuvring object velocity is defined as 

(Casasco and Radice, 2003): 

∇V 
r& = −k att ,trans (2.5)

∇Vatt ,trans 

where 

∇ = ⎡∂ ∂x ∂ ∂y ∂ ∂z⎤T (2.6.a) 

and 

k = v (1− e−βVatt ,trans ) (2.6.b)max 

Using the previous relations, it is concluded that Wtrans is negative definite as: 

W = −λ v (1− e− βVatt ,trans )(r − r ). (r − rG ) (2.7)trans p max G r − rG 
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Fig. 2.1 Parabolic-well attractive potential 

Using Lyapunov's second theorem, the proposed function is a Lyapunov function, 

and consequently the solution of the given system is globally asymptotically stable 

with maximum controlled velocity vmax. The function k is used to shape the approach 

to the goal and to limit the velocity of the manoeuvring object. However, 

convergence to the goal is exponential. 

Another definition for the function k which is adequate for close range that satisfies 

a bounded time approach to the goal point rather than exponential time is: 

k = v r − rG (2.8)max 

This has some advantages over the function defined in Eq. (2.6.b). 
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2.3.2 Conic-well 

The conic potential well is defined as in Eq. (2.1) with the exponent m = 1, Fig. 

2.2. This definition ensures constant velocity over the entire workspace as the 

potential function is defined as: 

(r − rG ).(r − rG ) (2.9)Vatt ,trans = λp 

The time derivative of the proposed function will be: 

r&.(r − rG )Wtrans = λp (2.10)
r − rG 

The manoeuvring object velocity is defined from the gradient of the potential as: 

r − r r& = −k G (2.10)
r − rG 

Fig. 2.2 Conic-well attractive potential 
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Again, the time derivative of the conic potential is shown to be negative definite 

as: 

Wtrans = −λpk(r − rG ). 
(r − rG ) (2.11)
r − rG 

As the conic-well is singular at the goal point, global stability is not ensured. 

Unlike the case of the parabolic well attractive potential, the manoeuvring object 

velocity at the goal is non-zero. Therefore, soft contact is not guaranteed (Ge and 

Cui, 2002). 

2.3.3 Parabolic-well attractive potential with velocity term 

An attractive parabolic potential including a velocity term using Eq. (2.2) is 

introduced by choosing m = 2, and n = 2 as: 

Vatt ,trans =
λ p (r − rG ) (  . r − rG )+ 

λv r& .r& (2.12)
2 2 

In order to guarantee global stability, the time derivative should be negative definite 

so that: 

Watt ,trans = λ p r&.(r − rG )+ λv r&.&r& (2.13) 

The required manoeuvring object acceleration is then defined as: 

&r& = − 
λp (r − rG )− λr& (2.14)
λv 

Substituting in Eq. (2.13) we obtain: 

Watt ,trans = −λv λ r&.r& ≤ 0 (2.15) 

The proposed function could be used as a potential function, but the acceleration is 

unbounded as the distance from the goal increases. In order to obtain smooth contact 
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at the goal position, this function is best used within a certain range around the goal. 

This range is proportional to the force capability of the actuators. 

2.3.4 Conic-well attractive potential with velocity term 

An attractive conic potential including a velocity term using Eq. (2.2) is introduced 

by choosing m = 1, and n = 2 as: 

λ 
r − rG + v r&.r& (2.16)Vatt ,trans = λ p 2 

The time derivative of the proposed potential function is: 

Watt ,trans = λ p r&. 
r − rG + λv r&.&r& (2.17)
r − rG 

To render Watt,trans  negative definite, the required acceleration is defined as: 

&r& = − 
λp r − rG − λr& (2.18)
λ r − rGv 

Substituting in Eq. (2.17) we obtain: 

Watt ,trans = −λv λ r&.r& ≤ 0 (2.19) 

Hence the proposed function in Eq. (2.16) is a Lyapunov function providing the 

acceleration is defined by Eq. (2.18). As can be seen from Eq. (2.18) the required 

acceleration remains bounded. 

2.3.5 Hyperbolic attractive potential  

The advantages of both the parabolic and conic potentials are merged in the 

hyperbolic attractive well. Stability at the goal point is guaranteed as its surface 

becomes smooth within some range from the goal, while the hyperboloid surface 

asymptotes to a cone away from the goal. Figure 2.3 shows the hyperbolic attractive 

potential for a manoeuvring object in 2D. The hyperbolic potential is defined as: 
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Vatt ,trans = λp ( 1 + (r − rG ).(r − rG ) −1) (2.20) 

The time derivative of the proposed potential function is: 

Watt ,trans = λp r& . 
r − rG (2.21)

1+ (r − rG ) (  . r − rG ) 

To render Watt,trans  negative definite, the required velocity is defined as: 

r − rGr& = −k 
1+ (r − rG ) (  . r − rG ) 

(2.22) 

Substituting in Eq. (2.21) we obtain: 

(r − rG ).(r − rG )Watt ,trans = −λvk 
1 + (r − rG ) (  . r − rG )

≤ 0 (2.23) 

The proposed potential function therefore ensures convergence. 

Fig. 2.3 Hyperbolic-well attractive potential 
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2.3.6 Hyperbolic attractive potential with velocity term 

Adding a velocity term to Eq. (2.20) leads to a potential function suitable for 

acceleration control using: 

Vatt ,trans = λp ( 1+ (r − rG )(  . r − rG ) −1)+ 
1 λv r& .r& (2.24)
2 

To derive the required acceleration, the time derivative of the proposed potential 

function is determined as: 

Watt ,trans = λpr&. 
r − rG + λvr&.&r& (2.25)

1+ (r − rG ) (  . r − rG ) 

To ensure the time derivative function is negative definite the acceleration is then 

defined as: 

&r& = − 
λp r − rG − λr& (2.26)
λ 1+ (r − rG ) (  . r − rG )v 

which again remains bounded, but is smooth at the goal and non-singular. 

2.4 Rotational Attractive Potential 

In structural assembly, elements constituting the structure are defined as rigid 

bodies with various shapes and sizes. They must be assembled in a predefined 

configuration to form the final structure. Therefore, the translational attractive 

potentials must be augmented by rotational potentials. Before defining the rotational 

attractive potentials, methods of defining orientation are discussed in the following 

subsection. 

2.4.1 Orientation definition 

A) Euler angles 

A scheme for orienting a rigid body to a desired attitude is called a body axis 

rotation. It involves three successive rotations about the axes of the rotated 
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body-fixed reference frame. The first rotation is about any of the three axes. 

The second is about any of the two axes that are not used in the first rotation. 

The third is about any of the axes that are not used in the second rotation. 

There are 12 sets of possible schemes defining so-called "Euler angles". The 

transformation matrix of Euler angles depends on the chosen rotation sequence 

(Wie, 1998). 

B)	 Direction cosines matrix 

A unit vector attached to a manoeuvring object has three components, which 

are equal to the cosines of the angles formed between the body and the inertial 

frame of reference. These angles are termed direction cosines and provide an 

alternative method to specify a unit direction vector.  

C) Quaternions 

Quaternions are a type of higher complex number first suggested by 

William Hamilton in 1843 (Quaternion, 2002). Quaternions have many 

important applications in mechanics, control, and space (Appendix A). The 

definition of orientation transformations in terms of quaternions instead of 

Euler angles has many advantages as: 

1.	 The attitude estimation process with Euler angles is computationally more 

expensive as compared to quaternions (no trigonometric functions used in 

the transformation matrix). 

2.	 Quaternions can define the minimal path of rotation between two reference 

frames, so that attitude manoeuvres with quaternions can be time optimal 

(Mukundan and Ramakrishnan, 1995). 

3.	 Quaternions are more convenient to use for numerical computation since 

there is no singularity, which appears with Euler angles. 

D)	 Error quaternions 

Error quaternions, or unit quaternions, are the difference between the 

quaternion of an object and a reference quaternion. Hence at the reference 
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c 4 

1⎤T0 

quaternion in our case is the goal orientation. Let the goal quaternion 

q⎡

⎡ 0 0
 The referencequaternion, the error quaternion is always .


⎤T ⎤T, and the current quaternion q q q qq q q q =
=
 .
G 1 2 3 4 c1 2 3c c cg g g gq 

The error quaternion will then be expressed as: 

⎡

q4 g −
⎡
 ⎡⎤ ⎤
⎤
 q q q1q1⎡ q13 2g g g c
⎢
⎢
⎢
⎢
⎢⎣


⎢
⎢
⎢
⎢
⎢

⎥
⎥
⎥
⎥
⎥⎦

⎥
⎥
⎥
⎥
q 

⎢
⎢
⎢
⎢
⎢

⎥
⎥
⎥
⎥


−
q q q1 qq q3 4 g 22 2g g g c (2.27)
=

−
−


q q1 q qq q2 4 33 3g g g g c 

−
q −
q1 q q q⎥
 ⎥
2 3 4 44 g g g g c 

2.4.2 Rotational potential function 

The rotational potential function will be expressed in terms of error quaternions, 

since they provide a direct relation between the current attitude and the goal attitude. 

The potential function is expressed as: 

Vatt ,rot =

λq 

2
(
q.q) (2.28) 


where λq is constant, and q  is the vector of the error quaternion ⎡q1 q2 q3 ⎤T  . The 

2 −
q2 
2 −
q2 

3 , will reach its goal value,fourth quaternion parameter, q4 =
 1
−
q1 

q4 = 1, as the first three terms reach zero. The proposed function forms a Lyapunov 

function so that: 

Watt ,rot = λq q.q& (2.29) 

setting 

∇ 

∇

qVatt ,rot 
qVatt ,rot 

q& = −k (2.30)
q 

3 ⎤
Twhere ∇
q ⎡ ∂∂ ∂ ∂ ∂ ∂q (2.31)
q1 q=
 2 
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It can be seen from Eq. (2.29) and (2.30) that: 

Watt ,rot = −kq 
q.q 

≤ 0 (2.32)
q 

The positive function kq is chosen in the two possible ways discussed for the 

translational attractive potential for asymptotic or finite time approach as: 

2 
qkq = ωmax ⎜⎛1− e β q ⎞⎟  (2.33-a)

⎝ ⎠


or k = ω
 q (2.33-b)q max 

where ωmax is the maximum controlled angular velocity of the manoeuvring object. 

2.4.3 Rotational potential function with angular velocity term 

Consider a rigid body which performs pure rotation, with the body frame of 

reference aligned with the principal axes of inertia of the rigid body. The body 

rotates with angular velocity, ω = ⎡ω1 ω2 ω3 ⎤
T  , with respect to the inertial frame of 

reference. The product moments of inertia vanish and the mass moment of inertia of 

the rigid body is constant. The inertia matrix, I, is then 

⎡I1 0 0 ⎤ 
I = ⎢

⎢ 0 I2 0 ⎥
⎥ (2.34) 

⎢ 0 0 I ⎥⎣ 3 ⎦ 

The angular momentum, H, is then defined as: 

H = Iω (2.35) 

with the external torque, T, acting on the rigid body defined as: 

. 
T = H (2.36) 

T = Iω& + ω × Iω (2.37) 
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The rotational attractive potential function will be defined as: 

Vatt ,rot = λq (qT q)+ 
λω ωT Iω (2.38)
2 

where λω is constant. The proposed function satisfies the condition of a Lyapunov 

function such as: 

1. Vatt,rot = 0 at the goal position where ω and q  are both zero. 

2. Vatt,rot > 0 for every state vector except at the goal position. 

The time derivative of the proposed function needs some discussion to prove that it 

is negative definite as the function itself is positive definite. The time derivative of 

the function Vatt,rot is defined as: 

T TWatt ,rot = 2λq (q& q)+ λω ω Iω& (2.39) 

The first derivative of the quaternion is however defined as (Wie, 1998): 

1 q& = Qω (2.40)
2 

where Q is the matrix of quaternion components and is defined as: 

⎡ q4 q3 − q2 ⎤ 
Q = ⎢

⎢− q3 q4 q1 ⎥
⎥ (2.41) 

⎢ q − q q ⎥⎣ 2 1 4 ⎦ 

Substituting in Eq. (2.39) it can be seen that 

Watt ,rot = λq ω
TQTq + ωTIω& 

T TWatt ,rot = ω (λqQ q + λω Iω& ) (2.42) 

Simplifying the term QTq  it can be seen that: 
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⎡ q4 − q3 q2 ⎤⎡q1 ⎤ 
QTq = ⎢

⎢ q3 q4 − q1 
⎥
⎥
⎢
⎢q2 

⎥
⎥ = q4q (2.43) 

⎣ q ⎦⎢⎢q ⎥⎥⎢− q2 1 q4 ⎥ 3 

Then substituting for the time derivative of the proposed potential function 

Eq. (2.42), we obtain: 

Watt ,rot = ωT (λqq4q + λω Iω& ) (2.44) 

and from Eq. (2.37) we obtain: 

Watt ,rot = ωT (λqq4 q + λω T − λω ω × Iω) (2.45) 

The control torque, T, can therefore be defined as: 

λ
T = − q q4 q − λ* 

ωω (2.46)
λω 

where λ*
ω is the total angular velocity gain. Substituting in Eq. (2.45) we obtain: 

*Watt ,rot = ωT (− λωλω ω − λω ω × Iω) (2.47) 

However, ωT (ω × Iω) = 0 so that: 

Watt ,rot = −λωTω (2.48) 

where λ is constant. It is now guaranteed that, Watt ,rot < 0 , is satisfied for all states 

except at the goal, so the proposed function can be considered as a Lyapunov 

function providing the following relation is valid: 

ω& = −I −1 

⎝
⎛
⎜ 
λq 
λω 

q4 q + λ* 
ωω + ω × Iω 

⎠
⎟
⎞ (2.49) 

where the ratio λ λω is the total rotation gain.q 
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2.5 Global Attractive Potential 

The overall attractive potential is the summation of both the translational and 

rotational attractive potentials. The translational attractive potential aims to null the 

Euclidian distance between a manoeuvring object and its goal position, while the 

rotational attractive potential aims to bring the error quaternion to ⎡0 0 0 1⎤T , 

relative to the required final orientation. The attractive potential guides each 

extended manoeuvring object, considered as rigid body, toward its goal 

configuration, both in position and orientation through impulses or continuous force 

and continuous torque commands. The attractive potential is therefore defined as: 

Vatt =Vatt ,trans +Vatt ,rot (2.50) 

Adding a translational potential to a rotational potential in a single global potential 

field leads to full 6 degree-of-freedom manoeuvring control, as will be seen later. 

The controller is able to choose between translation and/or rotation to reach its goal 

(Badawy and McInnes, 2006b). Examples of global attractive potentials are 

presented in the following subsection using the two translational types of attractive 

potentials defined in Eqs. (2.1) and (2.2) along with the two types of rotational 

attractive potentials defined in Eqs. (2.28) and (2.38). The purpose of these 

examples is to demonstrate the convergence process of one manoeuvring object to 

its goal configuration. 

2.5.1 Example I 

The conventional parabolic-well attractive translational potential without a velocity 

term is introduced in this example along with the rotational attractive potential with 

the angular velocity term. Asymptotic convergence will be used to guarantee a 

bounded maximum velocity. The global attractive potential is defined as:   

λ 
r − rG 

2 + λp (qT q)+ 
λω ωT Iω (2.51)Vatt = 2 

p 

2 

Using Eqs. (2.5) and (2.6) the required object velocity is defined as: 
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2 
− β r−rG
r& = −λpvmax ⎜

⎛1− e

⎞ r

r 
−
− 

r
r 

G

G 

if W ≥ 0 (2.52)⎟

⎝ ⎠


while the required control toque is obtained from Eq. (2.46). 

The initial object configuration is defined with a state vector as 

[10 10 5, 0 0.7071 0 0.7071, 0 0 0]T , where the first three elements represent the 

Cartesian coordinates in an inertial frame of reference with respect to x, y, and  z 

directions respectively, whereas the elements from four to seven are the initial 

quaternion parameters. These parameters represent an initial rotation of 90o about 

the y-axis as discussed in Appendix A. Finally, the last three terms are the initial 

angular velocity vector which is null. 

At the goal configuration, the manoeuvring object should come again to rest with a 

final configuration defined as [1 0 − 2, 0 0 0.5 0.866, 0 0 0]T where it will have a 

final rotation of 60o with respect to the x-axis. The maximum controlled velocity is 

chosen to be 0.05 m sec-1. The resulting manoeuvre is shown in Fig. 2.4. The overall 

cost of the translational motion is 0.10179 m sec-1, while the manoeuvring object 

impulses are shown in Fig. 2.5. Moreover, Fig. 2.6 shows the rotational control 

parameters of the manoeuvring object. The total rotational gain is chosen to be 0.02, 

while the angular velocity gain is 0.5. The manoeuvring object is a cylinder of 

length 1 m, radius 0.1 m and mass 4 kg. 
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Fig. 2.4 Manoeuvring object motion in 3D 
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Fig. 2.5.a) Manoeuvring object total impulses 
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Fig. 2.5.b) Manoeuvring object impulses in the x-direction 
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Fig. 2.5.c) Manoeuvring object impulses in the y-direction 
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Fig. 2.5.d) Manoeuvring object impulses in the z-direction 
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Fig. 2.6.a) Manoeuvring object error quaternion 
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Fig. 2.6.b) Manoeuvring object angular velocities 
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Fig. 2.6.c) Manoeuvring object torques 
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Since only one object moves in the workspace, its motion is similar to that of two-

impulse motion: the first is used for motion initiation, while the second is used to 

null the manoeuvring object velocity as it reaches its goal position. As a result of 

momentum conservation, the two impulses are equal in magnitude, opposite in 

direction. 

2.5.2 Example II 

A more sophisticated potential function is introduced in this example as a 

combination of the parabolic and conical potential for translation control, and 

rotational potential with angular velocity. A different control law will be used in this 

example to show the flexibility of the potential field method. The proposed 

attractive potential function is defined as: 

⎧ λ r − rG + 0.5λvr&.r& + λq q.q + 0.5λωω.ω if r − rG > R 
(2.53)Vatt = 

⎩
⎨0.5λp (r 

p 

− rG ) (  . r − rG ) + 0.5λvr&.r& + λq q.q + 0.5λω ω.ω if r − rG ≤ R 

The time derivative of the global potential is defined as: 

r − rGWatt = 
⎧
⎨ 
r&.(λp 

r& . 
(
( 
r 
λ
− 

p ( 
r
r 

G 

−
) 
rG )+ λv &

+ 

r&)
λ
+ 

v &r 
2 
&)
λ
+ 

q q& 
2 
. 
λ 

q 
q q 
+ 

& . 
λ 

q 

ω

+ 

ω& 
λ 

.ω 
ωω& .ω if

if 
r − rG > R 

(2.54)
r − rG ≤ R⎩ 

Therefore from Eqs. (2.40) and (2.43) we obtain: 

⎧r&.(λ (r − r ) r − rG + λv &r&)+ ω.(λqq4 q + λωω& ) if r − rG > R 
(2.55)Watt = ⎨

⎩ 

p 

r&.(λp (r 
G 

− rG )+ λv &r&)+ ω.(λqq4q + λω ω& ) if r − rG ≤ R 

To set the time derivative of the potential function to be negative definite the control 

laws will be defined as in order to minimize Eq. (2.53): 

r − rG > R⎧ ⎛
⎜ λp r − rG + λ*

vr& ⎟
⎞
⎟ if⎪− ⎜ r − rG⎪ ⎝ λv&r& = ⎨ ⎠ (2.56) 

⎪− ⎜⎜
⎛ λp (r − rG ) + λ*

vr& ⎟⎟
⎞ 

≤ R⎪ if r − rG⎩ ⎝ λv ⎠ 
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where λ*
v is the velocity gain, while the rotational control law is then defined as: 

ω& = −⎜⎜
⎛ λq q4q + λ* 

ω ω⎟⎟
⎞ 

(2.57)
⎝ λω ⎠ 

Using the same initial and goal configurations defined in example I with the 

parabolic zone radius equals 1 m, the results are illustrated in Fig. 2.7. The 

manoeuvring object velocities and accelerations are shown in Fig. 2.8. Constant 

linear velocities are obtained as a result of the new combination of the parabolic and 

conical attractive potentials. Rotational parameters are shown in Fig. 2.9 as the error 

quaternions, angular velocities, angular accelerations, and finally the required 

control torques. As a result of unequal mass moment of inertia about the three axes, 

the required torque about the z-axis is much less than those about x and y-axes. 

Fig. 2.7 Manoeuvring object motion in 3D 
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Fig. 2.8.a) Manoeuvring object velocity 
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Fig. 2.8.b) Manoeuvring object acceleration 
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Fig. 2.9.a) Manoeuvring object error quaternions 
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Fig. 2.9.b) Manoeuvring object angular velocity 
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Fig. 2.9.d) Manoeuvring object control torque 
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2.6 Conclusions 

Constructing an attractive potential combining both translational and rotational 

terms provides the controller with the ability to chose which motion translation 

and/or rotation is more convenient especially in the presence of obstacles, as will  be 

seen later. The definition of the attractive potential depends on the type of control 

algorithm used.  Potential functions without a velocity term produce the required 

velocity profile; hence it is more suited to an impulsive control methodology. While 

those with a velocity term generate the required acceleration and so are suited to 

continuous control. 

Potential functions with a conical well provide a constant control force throughout 

the workspace, which is preferable from the point of view of actuator sizing and 

saturation. However it suffers from a singularity problem at the goal configuration 

and whenever the manoeuvring object velocity relative to the goal is zero. These 

problems are removed with the parabolic well potential function. Mixing both types 

of attractive potentials, gives enhanced characteristics for the control scheme in the 

impulsive control methodology. A hyperbolic potential function provides the same 

behaviour as the mixing between parabolic and conic wells as it provides a constant 

gradient away from the goal with a smooth approach to it. 
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3. SUPERQUADRIC OBSTACLE REPRESENTATION 


"It is neither round nor rectangular, but in between" 

Piet Hein 

3.1 Introduction 

The superquadric function represents a family of complex object shape 

representations that include the super-ellipsoids and the super-hyperboloids of one 

and two sheets. The shape representation used in this thesis is the superellipsoid, 

used in the context of the general term superquadric. The simplest superquadric 

shape is termed the super-ellipse which has morphology similar to a rectangle and 

ellipse. The super-ellipse is a special case of a Lame' curve, which is defined as: 

n n 
+

x
= 1y (3.1)

a b 

where n > 0, and a, b are the radii of the super-ellipse. Changing the parameter n, 

results in a change of the global shape of the super-ellipse. For example, setting 

n = 2 produces an ellipse; increasing n beyond 2 yields the hyper-ellipse, as n → ∞ 

the function resembles a rectangle; decreasing n below 2 yields a hypo-ellipse which 

develops a star shape and increasingly resembles a cross.  

In the 1960s, Hein used these curves for design purpose (Jaklic et al., 2000). He 

generalized the super-ellipse form into a three-dimensional version and termed it 

then supereggs or super-ellipsoids. Two decades later, Barr made a major advance 

in generalization of the super-ellipsoids into a new family of 3D shapes termed 

superquadrics (Barr, 1981; Barr, 1984). The importance of his work appears in 

computer graphics. He presented a compact description of three-dimensional shapes 

with rounded edges, which can be easily rendered to other shapes. 

Superquadrics are mathematical representations of solid objects. They are a set of 

parametric functions that have great utility in object modelling. Their parametric 

characteristics enable the creation of a range of object shapes by manipulating the 

roundness and shape parameters. A generic superquadric function is defined in body 

axes as: 
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η cos ψ⎡a cos ε1 ( )  ε2 ( )⎤ 
− π/ 2 ≤ η ≥≤ π/ 2( ) = ⎢

⎢bcos ε1 ( )  ε2 ( )  ψ 
⎥
⎥ − π ≤ ψ ≤ π 

(3.2)r η,ψ η sin ,

⎢ c sin ε1 ( )  ⎥
⎣ η ⎦ 

The surface vector r originates in the object centre, body frame of reference, and 

defines the surface of a superquadric. The latitude angle, ψ , is the angle between 

the xB-axis and the projection of the vector r on the xB-yB plane, while the altitude 

angle, η, is formed between the vector r and the x-y plane as shown in Fig. 3.1. 

The parameters a, b, and c determine the size of superquadric in the xB, yB, and zB 

axes respectively. The two parameters є1 and є2 are used to determine the roundness 

of the solid shape. The first determines the roundness in a plane containing the 

zB-axis whereas the second determines the roundness in a plane parallel to the xB-yB 

plane. Variation of the roundness parameters defines the superquadric as: 

є << 1: square shape 


є ~ 1: round shape 


є ~ 2: flat shape 


є > 2: pinched shape 


xB 

yB 

zB 

r 

ψ 

η 

Superquadric 
surface 

Fig. 3.1 Superquadric surface vector 
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є1 = 0.01, and є2 = 0.01 є1 = 1, and є2 = 1 

  
є1 = 2, and є2 = 2 є1 = 3, and є2 = 1 

 

Fig. 3.2 Superquadric shapes 


 


The above figure, Fig. 3.2, shows the effect of roundness parameter variation on 

superquadric surfaces while the size parameters remain unchanged. 

 

3.2 Inside-Outside Function 

 The inside-outside function, F, defines whether a point lies inside, on the surface 

or outside the superquadric shape. It is constructed by eliminating the parameters η, 

and ψ to form an implicit equation written as (Solina and Bajcsy, 1990): 

ε 2 

⎡ 2 2 ⎤ ε1
2 

 F ( ), = ⎢⎜
⎛ xB ⎟

⎞ ε 2 
+ ⎜
⎛ yB ⎟

⎞ ε 2 ⎥ + ⎜
⎛ zB ⎟

⎞ε1  (3.3)a x B ⎢⎝ a ⎠ ⎝ b ⎠ ⎥ ⎝ c ⎠
⎣ ⎦ 

The superquadric surface therefore satisfies the equation (Leonardis et al., 1997): 
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F (a,xB ) = 1 (3.4) 

where the vector a, represents superquadric radii a, b, and c and the roundness 

parameters є1, and є2. The vector xB is the position vector with respect to the body 

frame of reference. Consider any point P with coordinates (xB,yB,zB) with respect to a 

set of body axes attached to the superquadric. If F < 1, the point P lies inside the 

superquadric whereas if F = 1, the point lies on the superquadric surface, and finally 

if F > 1, the point lies outside the superquadric. 

3.3 Superquadrics and Motion Planning 

New techniques to deal with motion planning and obstacle avoidance have been 

introduced using potential field functions as discussed in chapter 1. Some of these 

methods are constructed to avoid the formation of local minima in the case of many 

adjacent obstacles. The major advantage of using superquadrics as an obstacle 

representation in calculating the obstacle potential field is the change of the obstacle 

shape from its actual geometric shape near the obstacle edges to a sphere by using 

the deformable superquadric function. The parametric properties of deformable 

superquadrics make the smooth change of obstacle shape suitable to be represented 

in a potential function. This can avoid formation of local minima that would be 

produced by the addition of a goal potential to an obstacle potential, especially for 

obstacles with straight edges (Volpe, 1990). 

The compact object representation that led to the popularity of superquadric use in 

computer graphics is used herein in the autonomous assembly problem. Assembly of 

structures requires many objects with different shapes and sizes to be considered. 

This variety needs a function that is suitable to represent all assembled objects. No 

function does that in a compact way other than the superquadric. 

McQuade presented an autonomous assembly method using potential functions by 

representing each object as a sphere. Although his work made a great contribution to 

the field of autonomous assembly of complex structures, he did not deal with objects 

with different shapes or sizes (McQuade, 1997). Imagine for example, a long, 

slender beam. It should be surrounded by an obstacle potential sphere of size equal 

to the beam length. However, less space is available for object manoeuvring. The 
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superquadric provides a compact but geometrically accurate means of representing 

obstacles. 

3.4 Separation Distance 

The main requirement to calculate the obstacle potential is to define the distance 

between any point in space and the superquadric surface, taking into consideration 

that the origin of the Cartesian coordinate system will be the centre of the obstacle. 

Hence, before defining the obstacle potential it is necessary to define the distance 

between any point and the superquadric surface. 

The minimum separation distance between two objects (manoeuvring object and 

obstacle) is crucial in the application of potential field algorithms to autonomous 

motion control. The minimum distance between a point and a superquadric surface 

is computationally very expensive to obtain (Harden, 1997; Chevalieret et al., 2003). 

Consequently, many approximate definitions were investigated as an alternative. 

Unlike previous work, position, orientation, and body dimensions will be taken into 

consideration for the distance calculation. The more accurate distance calculation 

presented here helps in decreasing an unnecessary obstacle potential strength and 

providing a larger available free workspace. Consequently, the more accurate 

distance calculation available, the less manoeuvring is required. Mathematical 

formulations of different methods are discussed in this section, whereas their 

applications will be discussed later. 

3.4.1 Approximate Euclidian distance 

An approximate estimation of the Euclidian distance is still computationally 

expensive. This estimation, based on Taubin’s approach, can be expressed as 

(Chevalier et al., 2003): 

d (a,x B ) = F (a,x B )−1 ∇F (a,x B ) (3.5) 

The gradient calculation will be expensive due to the dependency of the coordinate 

parameters on both the relative position and orientation of the obstacles (quaternion 
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parameters). This difficulty may reduce the speed of the calculation, which will 

affect the online control process. 

3.4.2 Pseudo-distance 

The pseudo-distance function has been used in object shape representations in the 

field of computer vision (Bajcsy and Solina, 1987; Solina and Bajcsy, 1990). It was 

then used in the motion planning problem to determine the separation distance, d, 

between a manoeuvring object centre and an obstacle surface represented by a 

superquadratic as (Khosla and Volpe, 1988): 

d (a,xB ) = F (a,xB )
ε 
2
1 

−1 (3.6) 

The exact Euclidian distance is found to be relatively far from the corresponding 

pseudo-distance; since it increases slowly compared with the increase in the 

Euclidian distance, as seen in iso-potential contour plots in the literature (Volpe and 

Khosla, 1990). Consequently, the high potential range around the obstacle increases 

and excess manoeuvres are required to avoid the high potential zone.  

Another disadvantage of the pseudo-distance function is its high sensitivity to any 

change in the superquadric size parameters a, b, and c (Chevalier et al., 2003). This 

can be enhanced by multiplying the pseudo distance function by the norm of the 

position vector of the manoeuvring object centre with respect to the centre of the 

superquadric, , to form the modified pseudo distance function defined as: robj / obs 

⎛ ε1 ⎞d (a,xB ) = ⎜F (a,xB ) 2 −1⎟ (3.7)robj / obs ⎝ ⎠ 

Examples of contour plots for the modified pseudo distance function will be 

presented later when considering certain obstacle shapes to define the required 

parameters used in the inside-outside function. 
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3.4.3 Radial Euclidian distance 

A new utilization of the radial Euclidian distance in the field of motion planning is 

now discussed. Calculating the radial Euclidian separation distance between a point 

and the superquadric surface is more sophisticated than the pseudo distance 

(Bardinet et al., 1995; Katsoulas and Jaklič, 2002; Zhang, 2003a; Zhang, 2003b). 

The radial Euclidian distance of a point, P, is defined as the distance between the 

point P and the point of intersection of the line OP and the superquadric, where O is 

the centre of the superquadric. The radial Euclidian distance is always greater or 

equal to the radial distance PM , Fig. 3.3. Let OP = μ OP , 0 < μ < 1, and theo 

Cartesian coordinates of points P and Po in the superquadric body frame of reference 

are (xB,yB,zB) and (xoB,yoB,zoB) respectively. 

Therefore (xoB,yoB ,zoB ) = (μ xB ,μ yB , μ zB ) and let: 

ε1 

g(a,xB ) = F (a,xB )
ε 

2
1 

= 

⎡
⎢
⎢
⎡
⎢⎛⎜ 

xB ⎞⎟
ε 
2

2 
+ ⎛⎜ 

yB ⎞⎟
ε 
2

2 
⎤
⎥

ε
ε1

2 

+ ⎛⎜ 
zB ⎞⎟

ε 
2

1 

⎤
⎥
⎥ 

2 

(3.8)
⎢⎢⎝ a ⎠ ⎝ b ⎠ ⎥ ⎝ c ⎠ ⎥ 
⎢⎣ ⎦ ⎥⎦⎣ 

then 

ε1 

g(a,xB,o ) = ⎢
⎢
⎡

⎢
⎡
⎜
⎛ μ xB ⎟

⎞ε 
2

2 
+ ⎜
⎛ μ yB ⎟

⎞ε 
2

2 ⎥
⎤
ε
ε1

2 

+ ⎜
⎛ μ zB ⎟

⎞ε 
2

1 
⎥
⎥
⎤ 2 

= μ g(a,xB ) (3.9)
⎢⎢⎝ a ⎠ ⎝ b ⎠ ⎥ ⎝ c ⎠ ⎥ 
⎢⎣ ⎦ ⎥⎣ ⎦ 

Since the point Po lies on the superquadric, g(a,xB,o ) = 1, then 

μ =
g(a 

1 
,xB ) 

(3.10) 

Hence, the radial Euclidian distance is: 

g(a,xB )−1 (3.11)PP = 1 − μ OP = OPo g(a,xB ) 
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Fig. 3.3 Radial Euclidian distance 

Therefore, it is now possible to calculate the radial Euclidian distance between a 

point and a superquadric as: 

⎛ − 
−ε1 ⎞d (a,xB ) = ⎜1 F (a,x ) 2 ⎟  (3.12)robj / obs ⎝ B ⎠ 

This method still suffers from the drawback of limiting its estimation to the 

manoeuvring object centre rather than its edge.  

3.4.4 Rigid body radial Euclidian distance 

Another new improvement of the method is now discussed. Other than spherically 

symmetric objects, all previous methods fail to predict collision possibilities in cases 

such as in Fig. 3.4. Considering the distance between a manoeuvring object centre 

and an obstacle surface only is not sufficient in the case of extended rigid body 

objects. 

The new method involves subtracting the distance inside the superquadric which 

lies on the line joining the two centres. This is the length of the segment OP , buto

inside the manoeuvring object.  
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OBSTACLE 2 m 

1 m 

OBJECT 

Fig. 3.4 Possible collision configuration 

OP = μ OP , and from Eq. (3.11), the radial Euclidian distance will now be Since o 

written as: 

1 − μPP = OP = g(a,xB ) −1 OP (3.13)o o oμ 

 will be termed r  for generality, hence from Eqs. (3.8), The distance OP so obj 

(3.12) and (3.13) the part of the radial Euclidian distance inside the manoeuvring 

object is defined as: 

1 − Fobj (a, x)
− 

2 
ε1 

(3.14)r = s robj / obsobj ε1

Fobj (a, x) 2 −1 

Hence, the separation distance can now be expressed as: 

⎛ − 2⎜1 F (a,x B )
−ε1 

⎟
⎞ − r (3.15)d (aobs ,aobj ,xobs ,B ,xobj ,B ) = robj / obs s obj⎝ ⎠ obs 

Finally, it can be seen that: 

⎡ 1,obs 1,obj ⎤d (aobs ,aobj ,xobs ,B ,xobj ,B ) = robj / obs ⎢1− F (aobs ,xobs ,B )
−ε 

2 − Fobj (aobj ,xobj ,B )
−ε 

2 ⎥ (3.16)
⎣ ⎦ 

The new proposed distance function in Eq. (3.16) takes into consideration the 

possible difference between the obstacle and manoeuvring object shapes and sizes as 
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the inside-outside function, F, is calculated for each object. The exact Euclidian 

distance is found in special cases, mainly when the object edges are parallel. 

3.5 Attitude-Distance Effect 

Although the previously discussed separation distance functions do not explicitly 

determine the effect of object orientation on the distance estimation, this effect 

implicitly exists. Figure 3.5 shows the necessity of considering orientation in the 

distance estimation, as the distance varies as a result of object orientation as shown 

in the two cases (1) and (2). 

The orientation using the real quaternion, not the error quaternion discussed earlier 

in chapter 2, implicitly affects the position vector xB as described by the 

homogeneous transformation in the absence of translation as (Appendix A): 

2 2 2 2⎡x⎤ ⎡q1 − q2 − q3 + q4 2(q
1
q 

2 
+ q 

3
q 

4 
) 2(q

1
q 

3 
− q 

2
q 

4 
) ⎤ ⎡ xobj − xobs ⎤ 

⎢ y⎥ = ⎢ 2(q q − q q ) − q1
2 + q2

2 − q3
2 + q4

2 2(q q + q q ) ⎥ ⎢ yobj − yobs 
⎥ (3.17)

⎢ ⎥ ⎢ 1 2 3 4 2 3 1 4 ⎥ ⎢ ⎥ 
⎢z⎥ 2(q q + q q ) 2(q q − q q ) − q − q + q + q z − z⎣ ⎦ B ⎣⎢ 1 3 2 4 2 3 1 4 1

2
2
2

3
2

4
2 
⎦⎥ real ⎣

⎢ 
obj obs ⎦⎥ I 

(2) 

O
BSTAC

LE 

text 

O
BJEC

T 

(1) 

Fig. 3.5 Orientation effect on separation distance 
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The quaternion parameters in the transformation matrix are for the object on which 

the body frame of reference is attached. The subscript, I, refers to the chosen inertial 

frame of reference for the motion planning analysis. The error quaternions are the 

difference between the real quaternions and goal. Since error quaternions are used 

more frequently in this thesis, no subscript is used with error quaternions. The real 

quaternions are calculated as: 

3 −
q −
⎡
 ⎡
⎤
 ⎤
⎤
q1⎡ q q q1 q14 2 
⎢
⎢
⎢
⎢


⎢
⎢
⎢
⎢


⎥
⎥
⎥
⎥


⎥
⎥
⎥
⎥


q 
q 
q 

⎢
⎢
⎢
⎢
⎢

⎥
⎥
⎥
⎥


−
 −
 qq q q1 q2 

3 

4 

3 4 2 2 (3.18)
=

q2 −
q1 q4 −
q q3 3 

q1 q q q q ⎥
⎥
 ⎦
goal ,real ⎢
⎣
 2 3 4 4real

Figure 3.7 shows the dependency of the separation distance on the quaternion 

parameters about the z-axis of the two objects illustrated in Fig. 3.6. The dependence 

of distance on object orientation can clearly be seen. 

q = 0.7071
3 

q = 0.7071 
3 

(Object 1) 

(Object 2) 

q = 0 q = 0 
3 3 

text text 

1 m 1.5 m 

Fig. 3.6 Two object configuration 
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Fig. 3.7 Separation distance vs. quaternion parameter about z-axis 

3.6 Superquadric Obstacle Representation 

Various obstacle shapes can now be represented using the superquadric 

methodology by adjusting the five parameters defined in Eq. (3.3). For example, in 

order to define a spherical shape, the shape parameters ε1, and ε2 should be unity. As 

will be seen, through the appropriate choice of shape parameters the precise 

geometric form of objects can be captured in proximity to them, but smoothed away 

from the object to allow for collision avoidance with less likelihood of local minima 

formation. 

3.6.1 Parallelepiped shape (cuboid) 

The parallelepiped shape is common in structural assembly problems. Columns 

and plates can be modelled by fixed parameters, while triangles and trapezoids can 

be modelled by a variable set of parameters. Parallelepiped obstacles were first 
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investigated by Volpe as static objects for collision avoidance during manipulator 

control (Volpe and Khosla, 1990). 

To form a parallelepiped shape the values of є1 and є2 are chosen to approach zero 

in proximity to the object to have a sharp edged parallelepiped. On the other hand, 

their values should approach unity far from the obstacle edges to form a smooth 

ellipsoid. Deformable superquadric surfaces are represented by introducing a new 

shaping parameter, n, related to each surface. This parameter replaces both є1 and є2 

with n→ ∞ near the object edges (to ensure sharp edges) while n→ 1 away from the 

object (to ensure smoothness) to form an n-ellipsoid with semi-axes a,  b, and c. 

Figure 3.8 shows a superquadric model for such a cuboid element. The most general 

form of an implicit function for a parallelepiped object is defined as: 

22 2 nn n ⎛
⎜+ 
⎝

x
⎜ f ⎟ ⎜ ⎟ ⎜

where the scaling functions f1, f2 and f3 are used to define the required geometric 

form of the parallelepiped. 

For example, the scaling functions for a column and a plate are constants. They 

can then be set to a, b, and c, the semi-major axis in xB, yB, and zB directions 

respectively such that: 

⎛
⎜ 
⎝

⎞
⎟ 
⎠
⎟

⎞
⎟ 
⎠

⎛
⎜ 
⎝

⎞
⎟ 
⎠

y zB B B 1 (3.19)+ = (
 )
 (
 )
 (
 )
f fx y z x y z x y zB B B B B B B B B1 2 3, , , , , , 

2n 2n 2n
⎛
⎜
⎝


xB 

a 
⎞
⎟
⎠


+

⎛
⎜
⎝


yB 

b 
⎞
⎟
⎠


⎛
⎜
⎝


⎞
⎟
⎠


zB 

c 
=
1 (3.20)
+


It is now possible to modify the nested level surfaces defined by Eq. (3.20) to form 

a sphere away from the object rather than an ellipsoid by adjusting the coefficients 

as: 

2n 2n 2n2 2b⎛
⎜
⎝


xB 

a 
⎞
⎟
⎠


⎛
⎜
⎝


yB 

b 
⎞
⎟
⎠


⎛
⎜
⎝


⎞
⎟
⎠


⎛
⎜
⎝


⎞
⎟
⎠


⎛
⎜
⎝


⎞
⎟
⎠


zc (3.21)
B 

c 
=
1
+
 +


a a 

The inside-outside function is then expressed as: 

2n 2n 2n2 2bF
(a,xB )
=

⎛
⎜
⎝


⎞
⎟
⎠


⎛
⎜
⎝


yB 

b 
⎞
⎟
⎠


⎛
⎜
⎝


⎞
⎟
⎠


⎛
⎜
⎝


⎞
⎟
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⎛
⎜
⎝


⎞
⎟
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x zc (3.22)
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a 
B 

c 
+
 +


a a 
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Fig. 3.8 Cuboid element representation using a superquadric function 

Following Volpe, n can be defined as (Volpe, 1990): 

1n = 
1− exp(−αd ) (3.23) 

where d is the distance function defined by Eqs. (3.7), (3.12) and (3.16). The 

parameter α has a major influence on the transition from sharp to rounded 

superquadric surfaces. Increasing the value of α increases the sharpness of the 

transition, this limits the range of influence of the object. Figure 3.9 shows the effect 

of α on the object iso-distance contours through estimating the separation distance 

using the modified pseudo-distance, radial Euclidian distance, and rigid body radial 

Euclidian distance using Eqs. (3.7), (3.12) and (3.16) respectively. Plotting the 

iso-distance contour lines indicate that points of equal distance from an obstacle will 

have equal obstacle potential, as will be discussed later. 

These figures show that the appropriate choice of α reduces the possibility of the 

formation of local minima since the potential has spherical symmetry at small 

distance from the object for large α. In addition, the improvement in distance 

estimation can be seen between the various estimation methods. 
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Fig. 3.9.a) Cuboid iso-distance contours, [m], using modified pseudo distance 

method, Eq. (3.7), (α = 1) 
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Fig. 3.9.b) Cuboid iso-distance contours, [m], using modified pseudo distance 

method (α = 100) 
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Fig. 3.9.c) Cuboid iso-distance contours, [m] using radial distance method,  


Eq. (3.12), (α = 1) 


Fig. 3.9.d) Cuboid iso-distance contours using radial distance method (α = 100) 
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Fig. 3.9.e) Cuboid iso-distance contours, [m], using rigid body radial distance 

method, Eq. (3.16), (α = 1) 

Fig. 3.9.f) Cuboid iso-distance contours using rigid body radial distance method 

(α=100) 
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3.6.2 Cylindrical obstacle (beam) 

Beam elements are again widely used in structural assembly problems, especially 

in truss-type structures. Cylinders can be represented by a superquadric function by 

setting the shape parameter є1→0, and є2 = 1. Figure 3.10 shows the superquadric 

model for a cylindrical element. 

The objective of having spherical symmetry away from the obstacle edges will be 

guaranteed by deforming the superquadric shape from a cylinder to a sphere. For a 

spherical shape both є1 and є2 should be set to unity, hence the parameter є2 will 

remain unchanged throughout the workspace, while the parameter є1 should be 

gradually changed from zero at the beam edge to unity. It is then inversely 

proportional to the contour parameter n. Hence, for a cylinder of radius r and length 

c, the superquadric model can be adapted to the following form as: 

n
⎡

⎢
⎢⎣


⎛
⎜
⎝
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r 
⎞
⎟
⎠
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yB ⎞⎟
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 ⎛
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 ⎟
⎠
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⎜
⎝
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Fig. 3.10 Cylindrical element representation using a superquadric function 
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The corresponding inside-outside function is then expressed as: 

F
 a,x B( )
=

⎡
⎛
⎜
⎝
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2 2n
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⎢
⎢⎣


⎥
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The beam element iso-distance contours using the modified pseudo-distance, the 

radial Euclidian distance, and the rigid body radial Euclidian distance methods are 

shown in Fig. 3.11 using Eqs. (3.7), (3.12), and (3.16). The iso-distance in the 

circular cross-section plane remains unchanged, whereas those in the longitudinal 

plane change their shape in the same way as those of the cuboid element to provide 

sharp edges close to the beam and spherically symmetric contours away from the 

beam. Again such spherical symmetry will avoid the formation of local minima after 

the addition of the goal potential. 

Fig. 3.11.a) Beam iso-potential contours, [m], using pseudo distance method,  


Eq. (3.7), (cross section)
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Fig. 3.11.b) Beam iso-potential contours, [m], using pseudo distance method  

(longitudinal section) 

Fig. 3.11.c) Beam iso-distance contours, [m], using radial distance method,  


Eq. (3.12), (cross section)  
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Fig. 3.11.d) Beam iso-distance contours, [m], using radial distance method 

(longitudinal section) 

Fig. 3.11.e) Beam iso-distance contours, [m], using radial distance for rigid 

body method, Eq. (3.16), (cross section) 
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Fig. 3.11.f) Beam iso-distance contours, [m], radial distance for rigid body 

method (longitudinal section) 

3.7 Conclusions 

The superquadric function has proved its ability to represent various object shapes 

in a suitable manner for motion planning problems through the potential field 

method as it converges to the object shape near its edges while it converts to a 

sphere at some distance from them. The potential contours approximate the shape of 

the obstacle at its surface hence decreasing the occupied volume in the workspace. 

Introducing the constant α, affects the rate of deformation of iso-potential contour 

lines from the actual object shape to a spherical one. Objects with different shapes 

and sizes are handled with the same algorithm by changing only a few parameters, 

without changing the model itself. 

New more accurate approximate distance estimation methods were discussed in 

this chapter. The separation distance produced from the first of them, the modified 

pseudo distance, gives better results compared to the original method suggested by 

Volpe. Adding the effect of the object attitude to the distance estimation, the new 
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rigid body radial Euclidian distance method presented, gives a new method to 

determine the distance in the case of autonomous mobile robots of different shapes. 

72




4. SUPERQUADRIC OBSTACLE POTENTIAL 

4.1 Introduction 

The superquadric functions provide an efficient and flexible means of representing 

geometric shapes. They are able to overcome the deficiencies of other 

representations such as spherically symmetric Gaussian or power law functions 

where objects are represented as spheres of diameter equal to the maximum physical 

object dimension. Rather than a simple spherical form, the superquadric potential 

can be moulded to represent the geometric shape of an object by attaching the 

potential to the object body axes. In this way the obstacle potential becomes a 

function of both the obstacle position and orientation. Transformations with 

quaternion parameters are then used to define the dependency of Cartesian 

coordinates in the body frame of reference, where the element superquadric function 

is defined, and an inertial frame of reference where the attractive potential is 

defined. Obstacles potentials are then summed together in addition to the attractive 

goal potential in the inertial frame.  

Local minima appear in some obstacle representation like FIRAS (discussed in 

section 1.5.1) due to the interaction between the iso-potential contours of both goal 

and obstacle, where one is spherical while the other has straight edges. The 

superquadric potential proposed by Volpe (Volpe, 1990) overcomes this problem of 

local minimum with a single obstacle. 

4.2 Types of Obstacle Potential 

The formulation of the repulsive potential depends on the required controlled 

object behaviour whilst approaching the obstacle. Two types of repulsive potential 

function are used herein termed avoidance and approach potentials; each is defined 

over a certain domain around the obstacle. The idea of the avoidance potential is to 

prevent collision between the controlled object and the surrounding obstacles by 

introducing infinite repulsive potential around the obstacle to force the controlled 

object to move away from the obstacle regardless of the kinetic energy of each of 
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them. The approach potential objective is to decrease the kinetic energy of the 

moving object when approaching the obstacle to within a certain range to reduce the 

contact velocity. 

4.2.1 Avoidance potential 

The avoidance potential is defined by the measurement of the minimum distance 

between the two objects, as discussed in chapter 3. It is possible to use the Born 

approximation for a Yukawa potential (Cohen et al., 1997; Chuang, 1998) in which 

the exponential term reaches zero faster than the d-1 term: 

exp(− αd )Vobs = A , d ≥ dmin	 (4.1)
d 

where dmin is a pre-defined range around each obstacle, in which the approach 

potential is defined. 

4.2.2 Approach potential 

The approach potential is used to reduce the manoeuvring object velocity to 

generate smooth contact between objects. Smooth contact is required in the goal 

position to achieve perfect assembly. The approach potential is defined as (Volpe, 

1990) : 

⎛ 1+ 1 ⎞
Vobs = A exp	⎜⎜−α d α 

⎟⎟ , d < dmin (4.2) 
⎝ ⎠ 

The use of the parameter α helps in controlling both the sharpness of the obstacle 

potential shape and the iso-potential contour shape change from the actual obstacle 

shape to a spherical one, as discussed in detail earlier in chapter 3. Increasing the 

value of α, increases the sharpness of the potential decay, limiting the distance of 

influence of the obstacle on the overall potential. Figure 4.1 shows the effect of α on 

both the avoidance and the approach obstacle potentials respectively. The potentials 
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will switch according to d ≥ dmin and d < dmin as discussed earlier. The avoidance 

potential is unbounded, while the approach potential is smooth and finite. 

The parameter A, defined in the obstacle potential definition Eqs. (4.1) and (4.2), is 

termed the repulsive amplitude. It is used to define the maximum repulsive potential 

between objects. It is crucial in the case of the structural assembly problem. It will 

be expressed as a function of the object configuration allowing the obstacle potential 

to decay to zero at the goal configuration to allow smooth contact, which is required 

for connection of the structure elements (McQuade, 1997; Ge and Cui, 2000) and to 

avoid shifting the goal position due to the presence of obstacles nearby. 

Fig. 4.1.a) Avoidance potential function (α = 1) 
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Fig. 4.1.b) Avoidance potential function (α = 10) 

Fig. 4.1.c) Approach potential function (α = 1) 
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Fig. 4.1.d) Approach potential function (α = 10) 

The obstacle potentials affect the manoeuvring object motion, which is already 

moving along the negative gradient of the attractive potential, by changing the shape 

of the overall potential field and consequently changing its gradient. The objective is 

to calculate the gradient of the obstacle potential which can be expressed from Eqs. 

(4.1) and (4.2) as : 

⎧
− A e−αd ⎛α + 

1 
⎟
⎞∇d , d ≥ d 

∇V = 
⎪
⎨
⎪ d ⎝

⎜ 

1 
d 
⎛
⎠ 

1+ 
1 ⎞ 

min 

(4.3) 
⎪A(α + 1)d α exp⎜−α d α ⎟⎟∇d , d < dmin⎪ ⎜

⎝ ⎠⎩ 

As these gradients depend on the obstacle shape, the following sections describe 

how the gradient of the separation distance for cuboid and beam elements are 

calculated. 
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4.3 Obstacle Potential of Parallelepiped Element 

The inside-outside function of a parallelepiped element, discussed in section 3.6.2, 

is expressed as: 

F (a,x B ) = 
⎛
⎜ 

x ⎞
⎟ 

2n 

+ 
⎛
⎜ 

b ⎞
⎟ 

2 
⎛
⎜ 

y ⎞
⎟ 

2n 

+ 
⎛
⎜ 

c ⎞
⎟ 

2 
⎛
⎜ 

z ⎞
⎟ 

2n 

(4.4)
⎝ a ⎠ ⎝ a ⎠ ⎝ b ⎠ ⎝ a ⎠ ⎝ c ⎠ 

4.3.1 Cuboid obstacle potential using the modified pseudo distance 

The modified pseudo distance function, discussed in section 3.4.2, is expressed for 

a parallelepiped element as: 

⎛ 1 ⎞d (a,x B ) = ⎜F (a,x B )2n −1⎟  (4.5)robj / obs ⎝ ⎠ 

Using the homogeneous transformation, the manoeuvring object coordinates with 

respect to the obstacle body frame of reference are defined as:  

⎡ 2 2 2 2 ⎤⎡xobj ⎤ q1 − q2 − q3 + q4 2(q q + q q ) 2(q q − q q ) ⎡ xobj − xobs ⎤ 
⎢ y ⎥ = ⎢ 2(q q − q q ) − q2 + 

1 

q
2
2 − q

3
2 + 

4

q2 2(q
1

q
3 

+ q
2

q
4 

) ⎥⎢ y − y ⎥ (4.6)⎢ obj ⎥ ⎢ 1 2 3 4 1 2 3 4 2 3 1 4 ⎥⎢ obj obs ⎥

2 2 2 2
⎢ z ⎥ ⎢ 2(q q + q q ) 2(q q − q q ) − q − q + q + q ⎥⎢ z − z ⎥⎣ obj ⎦B ⎣ 1 3 2 4 2 3 1 4 1 2 3 4 ⎦⎣ obj obs ⎦ I 

To have a compact formulation let; 

2 2 2 2 

Hobs,1 =
(xobj − xobs )(q1 − q2 − q3 + q4 )+ 2(yobj − yobs )(q1 

q
2 
+ q

3
q

4 
)+ 2(zobj − zobs )(q1

q
3 
− q

2
q

4 
) 

aobs 

(4.7.a) 

2 2 2 22(xobj − xobs )(q1
q

2 
− q

3
q

4 
)+ (yobj − yobs )(− q1 + q2 − q3 + q4 )+ 2(zobj − zobs )(q2

q
3 
+ q

1
q

4 4 
) 

=Hobs,2 bobs 

(4.7.b) 

2 2 2 22(xobj − xobs )(q1
q

3 
+ q

2
q

4 
)+ 2(yobj − yobs )(q2

q
3 
− q

1
q

4 
)+ (zobj − zobs )(− q1 − q2 + q3 + q4 )H obs ,3 = 

cobs 

(4.7.c) 
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−2n−1 

⎛ 2 2 ⎞ 2n 
⎜ 2n ⎛ bobs ⎞ 2n ⎛ cobs ⎞ 2n ⎟Hobs = ⎜
⎝ 

Hobs ,1 + ⎜⎜
⎝ aobs 

⎟⎟
⎠ 

Hobs ,2 + ⎜⎜
⎝ aobs 

⎟⎟
⎠ 

Hobs ,3 ⎟
⎠ 

(4.8) 

Substituting in Eq. (4.5) for the pseudo distance we obtain: 

⎡ 1 ⎤

d (a,xB ) =
 ⎢⎜

⎛ 
H 2n + ⎛ 

b ⎞
2 

H 2n + ⎛ 
c ⎞

2 

H 2n ⎟
⎞ 2n 

−1⎥ (4.9)robj / obs ⎢⎜ obs ,1 ⎜
⎝ a 

⎟
⎠ 

obs ,2 ⎜
⎝ a 

⎟
⎠ 

obs ,3 ⎟ ⎥ 
⎢⎝ ⎠ ⎥⎣ ⎦ 

To determine the effect of the proposed potential function on the path of a 

manoeuvring object, the gradient of the distance function will be defined from 

Eq. (4.5) as: 

⎛ 1 ⎞ 1
∇*d = ∇* ⎜F (a,xB )2n −1⎟ + F (a,xB )2

1 
n 
−1∇* F (a,xB ) (4.10)robj / obs robj / obs⎝ ⎠ 2n 

*where ∇ = ⎡∂ ∂x ∂ ∂y ∂ ∂z ∂ ∂q1 ∂ ∂q2 ∂ ∂q3 ⎤
T , then the gradient of the inside-

outside function is defined as: 
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b3⎡

q q

1 2
(
 −
q q

3 4 

⎤

q1(
 obs 

n 1 

)

− 

2 2 
2 q2 

3 +
q21− 
obs 1, 
2 1− 

obs 2, 
2aH −
q −
 +
2
 H
n n 

4 2a 

3c 2H
2
+
 +


obs
)


2 

∇
* Fobs =
H
obs 

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣


⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

)


obs ,3 q q
1 3

(

obs 

+ 

)
q q
22 

obs
)


4a 
b3 

q q
1 2

(
 +
 −(


)


)


)


obs 
1− 

obs 1, 
2 1− 

obs 2, 
2 2 2 

2 q2 
3aH H
2
 −
n n+
 +
qq q

3 4 
q1 q 42a 

3c 2 q q
2 3

(
 )
obs 

(
q q
2 3 

1− 
obs 3, 2
 H 

obs
)


−
n+
 q q
12 4a 

b3 

q q
1 3

(
 )

obs 

z 

1− 
obs 1, 
2 −1 

obs , 
2aH H
2
 −
 2
n n+
 +
q q

2 
q q

1224 4a 

3c
−(
 )
obs 

q3 

2 2 
2 

2 
3 

21− 
obs 3, 

obs 

2H


−


−
n+
 +
 +
q1 q q q42a 
objq1(
 (
 )
 (
 )
 (
1− 

obs 1, 
22aH −
 −
n +
 +
x x q y y zobj obs obj obs2 

b3 

q(

(
q3 

(
 )
 (
 )
 (
 )
)
1− 
obs 2, 
2H
2
 −
 −
 −
 −
n+
 +
 +
xobj xobs q1 yobj y q4 z z2 obs obj obs2a 

3c (
 )
 (
 )
 (
 )
)
−1 
obs ,3 
22
 H
 −


−


−
 −
 −
 −
n x x q4 y y q1 z zobj 

xobj 

obs 

xobs 

obj obs obj obs2a 
−(
 (
 )
 (
 )
 (
 )
)
−1 

obs ,1 
22aH −
 −
 −
n +
q2 q1 y y q z zobj obs obj obs4 

b3
2 (
q1(
 )
 (
 )
 (
 )
)
−1 
obs ,2H
2
 −
 −
 −
n+
 +
 +
xobj xobs q y y q3 z z2 obj obs obj obs2a 

3c (

q 

(

x 

)
 (
 )
 (
z 

z 

)
)
−1 
obs ,3 
2H
2
 −
 −
 −
 −
n+
 +
q 

3 

x x q y y q z4 

(
obj 

obj 

obs 3 obj obs 2 obj obs2a 
−(
 )
 (
 )
 (
 )
)
−1 

obs ,1 
22aH −
 −
 −
n +
 +
x q y y q1 zobs 4 obj obs obj obs 

b3
2 −(
 (
 )
 (
 )
 (
 )
−1 
obs , H
2
 −
 −
 −
 −
n+
 +


(


q x x q y y 

(


q 

z 

z zobj obs obj obs obj obs2 4 3 22a 

3c 2 (
q1 obs )
 (
 )
 )
)
−1 
obs ,3H
2
 −
 −
y −
n+
 +
 +
xobj x q y q z (4.11)
2 obj obs 3 obj obs2a 

Using Eq. (4.3) and (4.11), it is possible to estimate the effect of the obstacle on 

the manoeuvring object motion through the gradient of obstacle potential. The 

following examples will show how to calculate this gradient. 
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Example I: in the y-direction 

From Eq. (4.10): 

∂d ∂ robj / obs = 
⎛ 

F (a,x )2
1 
n −1

⎞ 1 F (a,xB )2
1 
n 
−1 

∂
∂ 

y
F (a,xB )obs (4.12)robj / obs⎜⎜ B obs ⎟⎟ +∂y ∂y ⎝ ⎠ 2n 

⎡ 1 ⎤∂d yobj − xobs 2n= ⎢(F (a,xB ))obs −1⎥ + 
∂y robj / obs ⎣ ⎦ 

−1 3robj / obs 2n 
−1 ⎡ 2n−1 b 2n−1 2 2 2 2(F (a,xB ))obs ⎢2aHobs ,1 (q1

q
2 
+ q

3
q

4 
)+ 2 Hobs ,2 (− q1 + q2 − q3 + q4 ) (4.13)

2n ⎣ a 

+ 2 c
3 

H 2n−1 (q q − q q )⎤⎥a2 obs ,3 2 3 1 4 
⎦ 

To calculate the original pseudo distance rather than the modified one, simply let 

= 1.robj / obs 

4.3.2 Cuboid obstacle potential using the rigid body radial Euclidian distance  

The rigid body radial Euclidian distance, Fig. 4.2, is discussed earlier in section 

3.4.4 as: 

d (aobs ,aobj ,xobs ,xobj )= (d1 − d2 ) (4.14)robj / obs 

Therefore, using the distance estimation function: 

⎡ −1 −1 ⎤ , ,x , = ⎢⎣ 
1 − F (a,x )obs 2n − Fobj (a,x )obj 2n ⎥⎦ 

(4.15)d (aobs aobj obs ,B xobj ,B ) robj / obs B B 

Let the orientations of both the manoeuvring object and obstacle be defined as qobj, 

and qobs respectively. The homogeneous transformation is used to find the position 

of the manoeuvring object centre, (x,y,z)obj,B, with respect to the body frame of 

reference attached with the obstacle under consideration as: 
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2 2 2 2⎡x⎤ ⎡q1 − q2 − q3 + q4 2(q
1
q

2 
+ q

3
q

4 
) 2(q

1
q

3 
− q

2
q

4 
) ⎤ ⎡ xobj − xobs ⎤ 

⎢ y⎥ = ⎢ 2(q q − q q ) − q2 + q2 − q2 + q2 2(q q + q q ) ⎥ ⎢ y − y ⎥ (4.16)
⎢ ⎥ ⎢ 1 2 3 4 1 2 3 4 2 3 1 4 ⎥ ⎢ obj obs ⎥

⎣ ⎦ ⎢ 

1
2 

2
2 

3
2 

4
2 ⎥ ⎢⎣ obj obs 

⎥⎦
⎢ z⎥
obj ,B ⎣ 2(q

1
q

3 
+ q

2
q

4 
) 2(q

2
q

3 
− q

1
q

4 
) − q − q + q + q ⎦obs 

z − z
I 

The same procedure is carried out to find the obstacle centre position, (x,y,z)obs,B, 

with respect to the manoeuvring object body frame of reference as: 

⎡ 2 2 2 2 ⎤ ⎡ ⎤⎡x⎤ q − q − q + q 2(q q + q q ) 2(q q − q q ) x − x 
⎢ ⎥ ⎢ 

1 2 3 4 
2 

1 2
2 

3
2

4
2 

1 3 2 4 ⎥ ⎢ 
obs obj 

⎥ 
⎢ y⎥ = ⎢ 2(q

1
q

2 
− q

3
q

4 
) − q1 + q2 − q3 + q4 2(q

2
q

3 
+ q

1
q

4 
) ⎥ ⎢ yobs − yobj ⎥ (4.17) 

2 2 2 2⎢⎢z ⎥⎥obs ,B ⎣⎢ 2(q
1
q

3 
+ q

2
q

4 
) 2(q

2
q

3 
− q

1
q

4 
) − q1 − q2 + q3 + q4 ⎦⎥ obj ⎢

⎢ zobs − zobj ⎥⎥ I 

The inside-outside functions will be: 

2 2 
2n obs 2n obs 2nF (a,x B )obs = H obs ,1 + 

⎛
⎜⎜ 

b ⎞
⎟⎟ H obs ,2 + 

⎛
⎜⎜ 

c ⎞
⎟⎟ H obs ,3 (4.18)

⎝ aobs ⎠ ⎝ aobs ⎠ 

⎛ b ⎞
2 

⎛ c ⎞
2 

2n ⎜ obj ⎟ 2n ⎜ obj ⎟ 2nF (a,xB )obj = H obj ,1 + ⎜ ⎟ Hobj ,2 + ⎜ ⎟ H obj ,3 (4.19) 
⎝ aobj ⎠ ⎝ aobj ⎠ 

O o b je c t  

O o b s ta c le  

d 1 

r s 

d 2 

x B 

Z B
 

y B 

Fig. 4.2 Radial Euclidian distance 
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By substituting F (a,xB )obs and F (a,xB )obj in Eq. (4.15), it is possible to define the 

separation distance as a function of x, y, z, q1, q2, q3, and q4 of both the manoeuvring 

object and the obstacles as: 

⎡ 2 2 2 
− 

n 
1 

⎢ ⎡ 
2n ⎛ bobs ⎞ 2n ⎛ cobs ⎞ 2n 

⎤ 
d (aobs ,aobj ,xobs ,B ,xobj ,B ) = robj / obs ⎢1 − ⎢H obs ,1 + ⎜⎜ ⎟⎟ H obs ,2 + ⎜⎜ ⎟⎟ H obs ,3 ⎥ 

⎢ ⎢⎣ ⎝ aobs ⎠ ⎝ aobs ⎠ ⎥⎦
⎣ 

(4.20) 
−1 ⎤

⎡ 
2n ⎛ bobj ⎞

2

2n ⎛ cobj ⎞
2

2n 
⎤ 2n ⎥ 

− ⎢
⎢ 
Hobj ,1 + ⎜

⎜ 
aobj 

⎟
⎟ H obj ,2 + ⎜

⎜ 
aobj 

⎟
⎟ Hobj ,3 

⎥
⎥ 

⎥ 
⎣ ⎝ ⎠ ⎝ ⎠ ⎦ ⎥ 

⎥⎦ 

The gradient of the distance function expressed in Eq. (4.15) is found to be: 

⎡ −1 −1 ⎤
∇*d = ∇*


⎢⎣ 
1 − F (a,xB )obs 2n − F (a,xB )obj 2n ⎥⎦ 

+robj / obs 

(4.21) 

∇* 
⎢⎣
⎡1 − F (a,xB )obs 2 

− 

n 
1 
− F (a,xB )obj 2 

− 

n 
1 

⎥⎦
⎤robj / obs 

The following examples will demonstrate how to calculate the distance function 

gradient that will be used in the obstacle potential gradient calculation. 

Example (II): In the x-direction 

∂d ∂ robj / obs 

∂x 
=

∂x 
⎡
⎢⎣ 
1− F (a,x B )obs 2 

− 

n 
1 
− F (a,x B )obj 2 

− 

n 
1 ⎤
⎥⎦ 

(4.22) 

+ 
∂
∂ 

x ⎢⎣
⎡1− F (a,x B )obs 2 

− 

n 
1 
− F (a,x B )obj 2 

− 

n 
1 

⎦⎥
⎤robj / obs 

⎡ −1 −1 ⎤x∂d xobj − obs = ⎢⎣ 
1− F (a,xB )obs 2n − F (a,xB )obj 2n ⎥⎦ 

+
∂x robj / obs 

(4.23) 
⎡ 1 F (a,x ) 2 

−1 
n 
−1 ∂ F (a,x ) + 

1 F (a,x ) 2 
− 

n 
1 
−1 ∂ F (a,x ) ⎤ robj / obs ⎢⎣2n B obs ∂x B obj 2n B obs ∂x B obj ⎥⎦ 
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∂d xobj − xobs = ⎡1− F (a,x ) 2 
− 

n 
1 
− F (a,x ) 2 

− 

n 
1 ⎤ xrobj / obs⎢⎣ B obs B obj ⎥⎦ 
+ 

∂x robj / obs 

⎡ 1 −1 
−1 ⎡ 2n−1 2 2 2 2 b3

2n−1
⎢ F (a,xB )obs 2n ⎢aH obs ,1 (q1 − q2 − q3 + q4 )obs + 2 2 Hobs ,2 (q1 

q
2 
− q

3
q

4 
)

⎣2n ⎣ a obs 
(4.24) 

2n−1 2n−1 2 2 2 2+ 2 c
3

2 Hobs ,3 (q1
q

3 
+ q

2
q

4 
) ⎥

⎤
+ 

1 F (a,xB )obj 2 
−1 
n 
−1 [aH obj ,1 (q1 − q2 − q3 + q4 )obja obs 2n⎦ 

2n−1 2n−1+ 2 b
3

2 H obj ,2 (q q − q q ) + 2 c
3

2 H obj ,3 (q q + q q ) ⎥
⎤
⎥
⎤ 

a 1 2 3 4 obj a 1 3 2 4 obj ⎦⎦ 

Example (III): With respect to q1 

∂d ∂ robj / obs 

∂q1 

=
∂q1 

⎢⎣
⎡1− F (a,x B )obs 2 

− 

n 
1 
− F (a,x B )obj 2 

− 

n 
1 

⎥⎦
⎤ 

(4.25) 

+ 
∂
∂ 

q ⎢⎣
⎡1− F (a,x B )obs 2 

− 

n 
1 
− F (a,x B )obj 2 

− 

n 
1 

⎥
⎤robj / obs 

1 ⎦ 

−1 −1∂d ⎡ 1 −1 ∂ 1 −1 ∂ ⎤ 
= ⎢ F (a,xB )obs 2n F (a,xB )obs + F (a,xB )obj 2n F (a,xB )obj ⎥  (4.26)

∂q1 

robj / obs 
⎣ 2n ∂q1 2n ∂q1 ⎦ 

⎡ −1
−1∂d 1 F (a,x ) 2n [2aH 2n−1 (q (x − x )+ q (y − y )+ q (z − z ))

∂q1 

= robj / obs 
⎣
⎢ 2n B obs obs ,1 1 obj obs 2 obj obs 3 obj obs obs 

b3
2n−1+ 2 2 H obs ,2 (q2 (xobj − xobs )− q1 (yobj − yobs )+ q4 (zobj − zobs ))obsa 

c3
2n−1 ⎤ 

+ 2 2 H obs ,3 (q3 (xobj − xobs )− q4 (yobj − yobs )− q1 (zobj − zobs ))obs ⎥a ⎦ 

2n−1+ 
2
1 
n

F (a,xB )obj [2aH obj ,1 (q1 (xobs − xobj )+ q2 (yobs − yobj )+ q3 (zobs − zobj ))obj 

+ 2 b
3 

H 2n−1 (q (x − x )− q (y − y )+ q (z − z ))2 obj ,2 2 obs obj 1 obs obj 4 obs obj obja 

c3
2n−1 ⎤⎤ 

+ 2 
a 2 H obj ,3 (q3 (xobs − xobj )− q4 (yobs − yobj )− q1 (zobs − zobj ))obj ⎥⎥ ⎦⎦ 

(4.27) 
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4.4 Obstacle Potential of a Cylindrical Element 

The inside-outside function for a cylindrical element was expressed as: 

⎡ 2 2 ⎤
n 2 2n 

F (a,x B ) = ⎢
⎛
⎜ 

x ⎞
⎟ +

⎛
⎜ 

y ⎞
⎟ ⎥ +

⎛
⎜ 

c ⎞
⎟ 
⎛
⎜ 

z ⎞
⎟ (4.28)

⎢⎝ r ⎠ ⎝ r ⎠ ⎥⎦ ⎝ r ⎠ ⎝ c ⎠⎣ 

using the modified pseudo-distance method to estimate the distance between a point 

and a beam represented by the superquadric method. Substituting in Eq. (4.5) with 

the previous inside-outside function, the modified pseudo-distance will be expressed 

as: 

d (a,x) = ⋅robj / obs 

⎡⎡ 2 2 2 2 2 

⎢⎢
⎛
⎜ (q1 − q2 − q3 + q4 )(x − xobs )+ 2(q

1 
q

2 
+ q

3
q

4 
)(y − yobs )+ 2(q

1
q

3 
− q

2
q

4 
)(z − zobs )⎞⎟


⎢ ⎜ ⎟

⎣⎣
⎢⎝ r ⎠obs 

(4.29) 

+ ⎜
⎛ 2(q

1
q

2 
− q

3
q

4 
)(x − xobs )− (q1

2 + q2
2 − q3

2 + q4
2 )(y − yobs )+ 2(q

2
q

3 
+ q

1
q

4 
)(z − zobs )⎟⎞

2


⎜ r ⎟

⎝ ⎠obs 

2 2 2 2 2 2n ⎤ 2n
⎛ c ⎞ ⎛⎜ 2(q q

3 
+ q

2
q

4 
)(x − xobs )+ 2(q q

3 
− q q )(y − yobs )− (q1 − q2 + q3 + q4 )(z − zobs )⎞⎟ 

1 

⎥
⎤ 

1 2 1 4+ ⎜
⎝ r 

⎟
⎠ ⎜⎝ c ⎟

⎠obs 

⎥
⎥
⎦ 

−1⎥
⎥ 
⎥⎦ 

Using the same procedure as done before in the modified-pseudo distance for the 

parallelepiped element: 

⎛ 1 ⎞ 1
∇d = ∇ ⎜F (a,x B )2n −1⎟ + F (a,x B )2

1 
n 
−1 ∇F (a,x B ) (4.30)robj / obs robj / obs⎝ ⎠ 2n 

The gradient of the corresponding inside-outside function is defined as: 
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The same procedure can be used for the radial Euclidian distance. 

4.5 Conclusions 

Superquadric repulsive potentials have shown their flexibility. They can form a 

steep decay in the obstacle potential to a smooth ramp by changing the parameter α. 

If the workspace is dense, a large value of α is required to minimize the range of 

each obstacle to allow the manoeuvring objects to pass through narrow passages 
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between them. However, the objects will suffer from sudden changes in direction as 

the repulsive potentials suddenly increase. Small values of α result in a smooth 

change in motion at the expense of increasing the range of the obstacles. The 

dependency of the superquadric repulsive potentials on both the position and 

orientation of the objects lead to their gradients being defined in terms of both 

position and quaternion parameters. 
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5. GLOBAL POTENTIAL FUNCTION 

5.1 Introduction 

Potential function elements were discussed in the previous chapters separately as 

attractive and repulsive functions. Formation of the global potential will be 

discussed in this chapter as a superposition of its elements. The global potential 

function allows a manoeuvring object to be attracted toward its goal while being 

repelled from obstacles. The selected functions should satisfy Lyapunov's stability 

criteria to guarantee the global stability and convergence. Two control strategy types 

are discussed in this chapter, termed continuous and impulsive control strategies. 

The continuous control strategy produces continuous forces which act as the main 

control force for the manoeuvring object. The impulsive control strategy produces 

discrete control action to maintain continuous approach to the required goal (Schaub 

and Alfriend, 2001). In both strategies, potential field elements are summed 

together; hence some drawbacks are produced (Koren and Borenstein, 1991): 

1.	 Local minimum due to the interference between the spherically symmetric 

attractive potential and the repulsive potentials produced from a single 

sharp edged object. 

2.	 Local minima due to the existence of multiple obstacles close to each other. 

3.	 The "goal non-reachable due to obstacle nearby" problem which exists 

when an obstacle is located near the goal position. Consequently the global 

minimum of the potential function may be shifted from the desired 

location. 

However, all these problems were in fact found to be overcome through the use of 

the superquadric obstacle representation by virtue of its spherical symmetry even for 

sharp edge objects, and through the decay of the obstacle potential amplitude when 

approaching the goal configuration. The mathematical models of the two strategies 

are discussed with examples in the rest of this chapter. 
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5.2 Continuous Control 

The continuous control concept is to apply bounded control forces to drive the 

manoeuvring object toward its goal. The original potential function, defined through 

proportionality with the distance between the manoeuvring object and its goal, 

provides simple control forces as a relation from the potential function gradient 

(Latombe, 1991). The potential functions defined in this thesis are used to derive the 

control force in a more sophisticated way explained in this section. The derived 

control laws provide the required accelerations which the manoeuvring objects 

should generate. 

A global potential function suitable for the continuous control strategy with a 

stationary goal position is defined by adding the attractive potential defined in 

Eq. (2.53) to the repulsive potential defined by Eqs. (4.1) and (4.2) as (Badawy and 

McInnes, 2007c): 

⎧ r − rG + 
1 λvr&.r& + λq q.q + 

1 λωω.ω + Vobs if⎪ λp r − rG > R2 2 
V = 

⎪⎪
⎨

⎪


r − rG ≤ R⎪1 λ (r − r ) (. r − r ) + 
1 λ r&.r& + λ q.q + 

1 λ ω.ω + V if 
⎪2 p G G v q 2 ω obs⎩ 2 

(5.1) 

The time derivative of the potential function will be: 

& & q⎧r&.(λp (r − rG ) r − rG + λv &r& +∇Vobs )+ 2λq q.q + λω ω& .ω + q.∇ Vobs if r − rG > R 
⎪W = ⎨

⎪ r&.(λ (r − r ) + λ &r& + ∇V )+ 2λ q& .q + λ ω& .ω + q& .∇qV if
 r − rG ≤ R⎩ p G v obs q ω obs 

(5.2) 

where the terms ∇  and ∇q are defined as Eqs. (2.6.a) and (2.31) respectively, 

therefore from Eqs. (2.40) and (2.43) we obtain: 

⎧r&.(λp (r − rG ) r − rG + λv &r& + ∇V )+ ω.(λqq q + λωω& + 0.5Q∇qV )if r − rG > Robs 4 obs
⎪W = ⎨

⎪ r&.(λ (r − r ) + λ &r& + ∇V )+ ω.(λ q q + λ ω& + 0.5Q∇qV ) if
 r − rG ≤ R⎩ p G v obs q 4 ω obs 

(5.3) 
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To set the time derivative of the potential function to be negative definite, the 

control laws as in Eqs. (2.56) and (2.57) are then defined as: 

⎧ ⎛ λ ⎞ r − rG > R 

&r& = 
⎪
⎨
⎪
− ⎜
⎝
⎜ λv

p r − rG + λ*
vr& + λ 

1 
∇Vobs ⎟

⎟ if 
r − rG v ⎠ (5.4) 

⎪− ⎜⎜
⎛ λp (r − rG )+ λ*

vr& + 
1 
∇Vobs ⎟⎟

⎞ 
if r − rG ≤ R⎪ ⎝ λv λv ⎠⎩ 

and 

ω& = −⎜⎜
⎛ λq q4q + λ* 

ω ω + 
1 Q∇qVobs ⎟⎟

⎞ 
(5.5)

⎝ λω 2λω ⎠ 

The following example demonstrates this method using two different object 

shapes, two parallelepipeds of dimensions 1 x 1 x 0.1 m and of 1 kg mass and two 

discs of 1 m diameter, 0.1 m thickness and 1.2 kg mass. The repulsive parameters 

are defined as α = 4, Ao = 5, σ = 0.1, and β = 1. The control law parameters, λp , λq , 

λω , λ
*
ν , and λ*ω  are selected as unity, while λv  is selected to be 3. The parabolic zone 

radius, R, is chosen to be 0.5. The objects will swap their positions while avoiding 

collision with each other. Mutual object dependency on position and orientation is 

illustrated. The initial object configurations are shown in Fig. 5.1 while subsequent 

configurations are illustrated in Fig. 5.2. Object trajectories are shown in Fig. 5.3. It 

can be seen that both translational and rotational manoeuvres are used for collision 

avoidance. The proposed potential function enables the controller to act with a 

constant velocity as seen in Fig. 5.4 until reaching a certain range from the goal 

position. At this range, the controller reduces the object velocity to perform smooth 

motion to the goal position allowing smooth contact in the case of assembly. It can 

be seen from Figs. 5.4.c and 5.4.d that an initial pulse is produced to generate 

constant translational velocities, followed by collision avoidance and braking 

manoeuvres. Finally, the object angular velocities and angular accelerations are 

shown in Fig. 5.5. 
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Fig. 5.1 Initial configuration 

Fig. 5.2.a) Object configuration at t = 70 sec 
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Fig. 5.2.b) Object configuration at t = 80 sec 

Fig. 5.2.c) Final object configuration at t = 130 sec 
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Fig. 5.4.c) Object accelerations in x-direction 
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Fig. 5.5.b) Object angular accelerations about y-axis 

5.3 Impulsive Control 

The impulsive control strategy utilizes high thrust to produce impulsive forces able 

to maintain continuous approach to the goal. This control intervention is used only 

to amend the manoeuvring object trajectory as it diverges from the goal. Since the 

impulse is defined as a step change in the object velocity, the control law should be 

constructed to define the required control velocity profile. 

A modification to Eq. (5.1) for this different control strategy is discussed. The 

stability criteria defined in section 5.2 are not adequate for impulsive control as the 

control laws should deal with objects velocities rather than accelerations. The 

proposed global potential function is then expressed as: 

V =
λ
2 

p (r − rG ) (  . r − rG )+ λq q.q +
λ
2 
ω ω.ω + Vobs (5.6) 

The time derivative of the potential function will be: 
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qW = r&.(λp (r − rG )+ ∇Vobs )+ 2λq q& .q + λωω& .ω + q& .∇ Vobs (5.7) 

The rotational motion will be defined using continuous control as discussed in the 

previous section, hence the attitude control law will be the same as in Eq. (5.5). The 

object velocity will be defined as: 

2 )) ∇V r& = −v (1− exp(− β r − rG if W ≥ c f (5.8)max 
∇*V 

where the control trigger constant, cf, is a non-positive number used to decide when 

the control action is needed. It should be set to zero to satisfy the Lyapunov stability 

criteria, however a negative constant is also applicable to anticipate advance control 

action. Rewriting Eq. (2.5) with added repulsive potential leads to: 

r& = −v (1− exp(− β r − rG 
2 )) λp (r − rG )+ ∇Vobs if W ≥ c (5.9)max f

∇*V 

Now, substituting with Eq. (5.9) into Eq. (5.7) for the translation term only we 

obtain: 

W = −v (1− exp(− β r − rG 
2 ))λp (r − rG )+ ∇Vobs .(λp (r − rG )+ ∇Vobs ) ≤ 0 (5.10)max ∇*V 

Hence, the proposed impulsive control law ensures stability. The same motion 

planning problem discussed with the continuous motion planning strategy in the 

previous section is repeated using the impulsive control strategy. The maximum 

controlled velocity is 0.01 m/sec, with the control trigger constant equal zero as it 

produces the most difficult motion planning problem with no anticipation. The 

initial object configuration is shown in Fig. 5.6, while proximity motion is illustrated 

in Fig. 5.7. Figure 5.8 shows the object trajectories whereas Fig. 5.9 shows the 

required impulses. Rotation parameters are shown in Fig. 5.10 as error quaternions, 

angular velocities, and the required control torques about the y-axis. Finally, the 

total translation cost is shown in Table 5.1. 
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Fig. 5.6 Initial object configuration 

Fig. 5.7.a) Object configuration at t = 165 sec 
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Fig. 5.7.b) Object configuration at t = 220 sec 

Fig. 5.7.c) Object configuration at t = 310 sec 
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Fig. 5.7.d) Final object configuration at t = 1000 sec 
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Fig. 5.9.a) Object impulses in x-direction  
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Fig. 5.9.b) Object impulses in z-direction 
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Fig. 5.10.a) Object error quaternion about y-axis 
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Fig. 5.10.b) Object angular velocities about y-axis 
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Fig. 5.10.c) Object torques about y-axis 

element Δv element Δv element Δv element Δv 
no. [m/sec] no. [m/sec] no. [m/sec] no. [m/sec] 
1 0.24531 2 0.31099 3 0.051858 4 0.050021 

Table 5.1 Element translation cost 

5.4 Conclusions 

The global potential functions proposed in this chapter proved their ability to solve 

a motion planning problem successfully. The continuous control motion planning 

strategy is constructed such that velocity and angular velocity states along with 

position and orientation states of all elements are used. Construction of a potential 

function containing a velocity term using the original parabolic function leads to 

unbounded control force that actuators will fail to provide. By using the method 

described in this chapter to combine parabolic and conical functions this problem is 

removed. The potential function for the impulsive control strategy limits the 
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required states to position, orientation, and angular velocity only. The key difference 

between the two strategies is based on translational motion. The rotational motion 

for both strategies is continuous. The continuous control strategy enables the control 

actuators to produce constant force all the entire workspace away from the goal 

position and the obstacles. 
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6. ORBITAL ASSEMBLY 

6.1 Introduction 

The main applications of orbital mechanics include ascent trajectories, re-entry and 

landing, rendezvous, lunar and interplanetary trajectories (Graham, 1995). The aim 

of this chapter is to perform on-orbit assembly in a circular low Earth orbit (LEO). 

Only one speed will produce a circular orbit at a given altitude, termed the local 

circular speed. The orbital angular velocity, Ω, for such a circular orbit is given as: 

Ω = GM ρ 3	 (6.1) 

where G is the gravitational constant (6.67300 × 10-11 m3 kg-1 s-2), M is the mass of 

the Earth (5.9742 × 1024 kg), and ρ is the orbit radius. Relative motion between a 

manoeuvring object and its goal point is described as a rendezvous and docking 

operation or proximity operation. Many rendezvous and docking operations have 

been undertaken through the assembly, re-supply, and crew exchange of the 

International Space Station (ISS) (Fehse, 2005). 

Reaction thrusters and gravity are considered the two forces which define 

proximity motion. Thrusters are used to either initiate relative motion between the 

manoeuvring object and its goal, to avoid collision with other objects, or to bring a 

manoeuvring object to rest at its goal.  

Typically two main types of thrusters are used in on-orbit manoeuvres: high- or 

low-thrust systems based on the magnitude of the thrust force relative to the local 

gravitational force (Prussing and Conway, 1993). Consequently, the rendezvous 

process can take different forms as:  

1.	 Continuous control such that thrusters are always on during the manoeuvre. 

2.	 Discrete control performed by using on-off thrusters with powered and 

coast arcs. 

3.	 Impulsive control with (assumed) step changes, to the spacecraft velocity. 
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6.2 Proximity Motion 

The equations of motion describing the transfer of an object from some initial point 

on a circular orbit toward a goal are described by the two-body model. In this model, 

only the gravitational force of a central body is taken into consideration, in addition 

to the representation of both bodies as point masses (Roy, 2005). 

In the two-body model, an object of mass, m, is in orbit about the Earth, the central 

body, with an orbital angular velocity vector Ω, and a position vector ro,i with 

respect to an inertial frame of reference centred at the Earth. It is required to bring 

this element to its goal which is placed at a position vector rG,i with respect to a local 

orbiting frame of reference. The origin of the local orbiting frame of reference is 

placed at a position vector ρ with respect to the inertial frame. The local frame axes 

directions are described in Fig. 6.1. The position vector of the ith manoeuvring 

object, ro,i, is given as: 

ro,i = ρ + ri (6.2) 

Describing these vectors in the inertial frame of reference is difficult, hence it is 

better to express them in the rotating frame as: 

ro,i = xi i + y j j + ( zi + ρ )k (6.3) 

where xi, yi, and zi define the ith object coordinates relative to the local orbiting 

frame. The object velocity, vi, is then given as: 

v i = vo + v i / o 

= Ω × (ρ + ri ) + r&i 

so that in component form: 

v i = (x&i + Ω(ρ + zi ))i + y& i j + (z&i − Ωxi )k (6.4) 

The ith object acceleration, ai, is then given as: 

ai = ρ&& + &r&i + 2(Ω × r&i ) + Ω& × ri + Ω × (Ω × ri ) (6.5) 
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Fig. 6.1 Inertial, local orbiting and body frames for the ith manoeuvring object 

The gravitational force is always directed toward the centre of the Earth, hence the 

local gravitational acceleration at the origin O of the local frame, ρ&& , is defined as: 

ρ&& = −gO k  (6.6) 

where go is the local gravity at the origin O. The acceleration of the object, ai , is 

also defined as: 

ai =
− gi ro,i + Γ i (6.7)
ro,i 
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where Γ i is the thruster acceleration vector acting upon the ith manoeuvring object. 

Simplifying Eq. (6.5) we obtain: 

In the x-direction − gi xi + Γ i,x = &x&i + Ω& zi-Ω
2 xi + 2Ω z&i (6.8.a)

ro,i 

In the y-direction − gi yi + Γi ,y = &y&i (6.8.b)
ro,i 

In the z-direction − gi (ρ + zi )+ Γ i,z = −gO + &z&i − Ω& zi-Ω
2 zi − 2Ω x&i (6.8.c)

ro,i 

For a circular orbit Ω  is constant. If the thrusters are off during the coast period, 

further simplification of Eq. (6.8) can be expressed as: 

In the x-direction − gi xi = &x&i-Ω
2 xi + 2Ω z&i (6.9.a)

ro,i 

In the y-direction − gi yi = &y&i (6.9.b)
ro,i 

In the z-direction − gi (ρ + zi ) = −gO + &z&i-Ω
2 zi − 2Ω x&i (6.9.c)

ro,i 

In all cases, , hence (McQuade, 1997):ρ >> ri 

− gi xi ≈ −gO 
xi (6.10.a)
ρro,i 

− gi yi ≈ −gO 
yi (6.10.b)
ρro,i 

i i− g (ρ + zi ) ≈ −gO ⎜⎜
⎛1− 

2z 
⎟⎟
⎞ (6.10.c)

⎝ ρ ⎠ro,i 
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The acceleration at the origin of the local frame is defined as: 

gO = Ω
2 ρ (6.11) 

The linearised equations of motion of the ith object are then defined as: 

&x&i = −2Ω z&i (6.12.a) 

&y&i = −Ω
2 yi (6.12.b) 

&z&i = 3Ω2 zi + 2Ω x&i (6.12.c) 

which are the so-called Clohessy-Wiltshire equations. Solving Eq. (6.12.b), which is 

uncoupled from any other differential equations and defines simple harmonic 

motion, the general solution is expressed as: 

yi = C1 cos( )+ 2 (Ωt)Ωt C sin 

where the constants C1 and C2 can be determined from the initial conditions. Then, 

the solution will then be expressed as: 

yo,i ( )+ y&o,i sin( ) (6.13)yi = cos Ωt Ωt
Ω 

Integrating Eq. (6.12.a) with respect to time, t, gives: 

x&i = −2Ω zi +C3 

Again, the constant C3 can be determined from initial conditions as: 

C3 = x&o,i + 2Ω zo,i 

Hence it can be seen that 

x&i = −2Ω zi + x&o,i + 2Ω zo,i (6.14) 

Substituting from Eq. (6.14) in Eq. (6.12.c) we obtain: 
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&z&i = −Ω
2 zi + 2Ω x&o,i + 4Ω2 zo,i (6.15) 

This equation has a general solution as forced harmonic motion as: 

zi = C4 cos( )+C5 sin(Ωt)+C6Ωt 

By determining the constants C4, C5 and C6 from the initial conditions, it is possible 

to define zi(t) as: 

zi = 
2 ( cos( )Ωt &o,i + ( − 3cos( )  zo,i 

sin(Ωt) 
o,i1- )x 4 Ωt ) + z& (6.16)

Ω Ω 

Substituting from Eq. (6.16) in Eq. (6.14), the time derivative of the x-coordinate 

will be: 

&i = 6Ω(cos( ) − )zo,i + ( cos Ωt − 3 xo,i − 2 sin(Ωt)&o,i (6.17)x Ωt 1 4 ( ) )& z 

Integrating, the x-coordinate is then obtained as: 

⎛ sin( )  ⎞ sin(Ωt) ΩtΩt cos( )xi = 6Ω⎜ − t ⎟zo,i + ( 4 − 3t)x&o,i + 2 z&o,i +C7
⎝ Ω ⎠ Ω Ω 

where from the initial conditions, the constant C7 will be: 

2C7 = xo,i − z&o,iΩ 

Hence: 

sin Ωt ⎞ Ωt ⎞ xi = xo,i + 6Ω⎛⎜ 
( ) t ⎟z ⎛4 sin( )

− 3t ⎟xo,i +
2 (cos( )− )z (6.18)− o,i + ⎜ & Ωt 1 &o,i

⎝ Ω ⎠ ⎝ Ω ⎠ Ω 

The motion of the manoeuvring object can then be represented using a state 

transition matrix Φ(t) as: 

s( )t =Φ(t)s(0) (6.19) 
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where s( )t = ⎡x y z x& y& z&⎤T , and s(0) is the initial conditions for the current coast 

period between impulses. The state transition matrix can then be defined from the 

above as: 

( ) =tΦ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎡ 

0 
0 

0 

0 

1 

( )  

( )− ΩtΩ sin 

Ωtcos 

0 

0 

0 ( ( )  ) 

( )  
( ( )  )− 

− 

− 

ΩtΩ cos 

Ωtcos 

ΩtΩtsin 

0 
16 

34 

0 

6 ( ( )  ) 

( )( ) 
( )  − 

− 

− 

Ωtcos 

Ωtcos
Ω 

ΩtΩtsin
Ω 

0 
34 

12 

0 

341 

( )  

( )Ωtcos 

Ω 

Ωtsin 

0 

0 

0 ( ( )  ) 

( )  

( )  
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎤ 

− 

− 

Ωtsin 
Ω 

Ωtsin 

Ωtcos
Ω 

0 
2 

0 

12 

⎢⎣0 0 ( )ΩtΩ sin3 ( )Ωtsin2 0 ( )  ⎥⎦Ωtcos 

(6.20) 

6.3 On-Orbit Assembly Strategies 

Many future large space structures will be unable to be launched as a single 

assembly. Carrying unassembled structural elements in several launch vehicles and 

then assembling them in-orbit will be required for both large mechanical structures, 

such as trusses, and for large science missions using multiple spacecraft for 

formation-flying as a reconfiguration problem. 

It is assumed that all the elements for the structure are initially on a circular orbit in 

some initial configuration. Natural orbital motion can bring the structure elements 

toward their goals or away from them depending on their relative positions and 

relative velocities. Therefore control actuation is required when the global potential 

field is not monotonically decreasing. A limitation on the initial element 

configuration is that they should have sufficient ∆v to accomplish the assembly 

process. Two types of control strategies are then used as discussed in detail in 

chapter 5 for on-orbit assembly termed: 

1.	 Continuous control strategy, in which continuous thrust exists over the entire 

assembly manoeuvre. 
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2.	 Impulsive control strategy, in which object trajectories are modified through 

impulses in order to ensure continuous approach to the goals. 

These two strategies will be discussed in the following sections using the potential 

functions discussed in chapter 5 and adding natural orbit motion. 

6.4 On-Orbit Continuous Control 

6.4.1 Continuous assembly using conic and parabolic potentials 

Continuous control force and moments for on-orbit assembly are demonstrated in 

this section. Rotational motion is assumed to be performed using control moment 

gyros. Translations are performed through continuous thrust control. A manoeuvring 

object is under the influence of both control and gravitational forces. Therefore its 

acceleration is expressed using Eqs. (5.4) and (6.12) as: 

⎧ r − rG > R⎪− ⎜
⎛
⎜
λp r − rG + λ*

vr& + λ 
1 
∇Vobs ⎟

⎞
⎟ − 2Ω z&i −Ω 2 yj + (3Ω 2 z + 2Ω x&)k if 

r − rG v ⎠&r& = ⎪⎨ ⎝ λv 

⎪−
⎛
⎜
λp (r − rG )+ λ*

vr& + 
1 
∇Vobs 

⎞
⎟⎟ − 2Ω z&i −Ω 2 yj + (3Ω 2 z + 2Ω x&)k if r − rG ≤ R⎪	 ⎜⎩	 ⎝ λv λv ⎠ 

(6.21) 

The following example demonstrates the on-orbit assembly process of twelve 

columns of dimensions 1x0.2x0.2 m to form a cube. The repulsive parameters are 

defined as α = 20, Ao = 5, σ = 0.1, and β = 1. The control law parameters, λp = 0.01 , 

λq = 0.1 , λv = 1, λω = 1, λ* 
ν = 0.5 , and λ*ω = 1. The parabolic zone radius, R, is 

chosen to be 0.1 m. The process takes place in a LEO with a circular altitude of 

100 km. The elements are initially placed along the x-axis of the local orbiting 

frame, Fig. 6.2. The assembly progress is shown in successive positions until 

assembly after 5300 sec, Fig. 6.3. Object linear velocities and accelerations are 

shown in Fig. 6.4 where accelerating, coasting, and braking phases are produced 

using continuous force. Error quaternions, angular velocities, and control torques, 

are shown in Fig. 6.5. 
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It can be seen that although a continuous control force is used, acceleration and 

braking pulses are generated (with coast arcs). This is a key benefit of the method 

compared to conventional potential field approaches which generate continuously 

varying control forces. Similar behaviour is seen with the required control torques, 

where a log-linear scale is used to demonstrate the resulting behaviour of the 

method. 

Fig. 6.2 Initial object configuration 
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Fig. 6.3.a) Object configuration t = 124 sec 

Fig. 6.3.b) Object configuration t= 838 sec (scale affects object shapes) 
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Fig. 6.3.c) Object configuration t = 3470 sec 

Fig. 6.3.d) Assembled structure t = 5300 sec 
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Fig. 6.4.a) Object velocities in the x-direction 
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Fig. 6.4.b) Object accelerations in the x-direction 
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Fig. 6.4.c) Object velocities in the y-direction 
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Fig. 6.4.d) Object accelerations in the y-direction 

117 



-4 x 10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
-2 

0 

2 

4 

6 

8 

10 

12 

14 

V
el

oc
ity

 in
 z

-d
ire

ct
io

n,
 [m

/s
ec

] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

time, [sec] 

Fig. 6.4.e) Object velocities in the z-direction 
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Fig. 6.4.f) Object accelerations in the z-direction 
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Fig. 6.5.a) Error quaternions of Objects 1, 3, 9, and 11 
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Fig. 6.5.b) Angular velocity about x-axis of objects 1, 3, 9, and 11 
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Fig. 6.5.c) Error quaternions of objects 5, 6, 7, and 8 
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Fig. 6.5.d) Angular velocity about z-axis of objects 5, 6, 7, and 8 
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Fig. 6.5.e) Torque about x-axis of objects 1, 3, 9, and 11 
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 Fig. 6.5.f) Torque about z-axis of objects 5, 6, 7, and 8 
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6.4.2 Continuous assembly using hyperbolic potential 

A new approach to motion planning problems is the use of hyperboloid functions 

as discussed in section 2.5.3. Unlike the parabolic potential function, where the 

control force increases with distance from the goal and is unbound, and the conic 

potential function where a singularity occurs at the goal, the hyperboloid potential 

function avoids both these drawbacks. They combine the advantages of both 

parabolic and conic potentials as the asymptotic property of the hyperbolic functions 

ensures constant control forces, while stability and smooth contact are guaranteed at 

the goal point. 

In the previous section a merging of the parabolic and the conic potential, each 

over certain range, was discussed. However the hyperbolic potential function has the 

same advantages of this merging, but with less complexity. The formulation of the 

attractive hyperbolic potential was defined in chapter 2. The global hyperbolic 

potential of the ith object in presence of m-1 obstacles is defined as: 

2 
−1⎟⎞ + 

λv 2 + λq qi .qi + 
λω ωi .ωi + ∑Vobs ,ij (6.22)Vi = λp ⎜

⎛ 1 + 
m 

ri − rG ,i r&i⎝ ⎠ 2 2 j=1, j≠i 

The time derivative is then expressed as: 

⎛ ⎞ m m 

W = r& .⎜
⎜ λp (ri − rG ,i ) 

2 
+ λv&r&i + ∑∇Vobs ,ij ⎟

⎟ 
+ 2λq q& i .qi + λωω& i .ω i + q& i . ∑∇ qVobs ,iji i 

j=1, j≠i ⎟ j=1, j≠i⎜ 1 + ri − rG ,i⎝ ⎠ 

(6.23) 

Finally, using Eqs. (2.40) and (2.43), the potential function time derivative is 

expressed as: 

⎛ ⎞ m m⎜ λp (ri − rG ,i ) ⎟ ⎛ 1 q ⎞
Wi = r&i .⎜ + λv&r&i + ∑∇Vobs ,ij ⎟ + ω i .⎜⎜ λq qi ,4 qi + λωω& i + Q ∑∇ Vobs ,ij ⎟⎟ 2 

j =1, j≠i ⎟ ⎝ 2 j=1, j≠i ⎠⎜ 1 + ri − rG ,i⎝ ⎠ 
(6.24) 

Suitable bounded, smooth and singularity-free control laws are expressed as 

(Badawy and McInnes, 2007b): 
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m 
&r&i = − 

λp (ri − rG,i ) 
2 
− λ*vr&i − 

λ	
1 ∑∇Vobs ,ij (6.25.a) 

v j=1, j≠iλ 1 +v ri − rG,i 

and 

m 

ω& i = −
⎛
⎜⎜ 
λq qi ,4 qi + λ* 

ωω i + 
1 Q ∑∇ qVobs ,ij 

⎞
⎟⎟ (6.25.b) 

⎝ λω 2λω j=1, j≠i ⎠ 

The hyperbolic potential field is then again used with continuous control to 

assemble seven beam elements to form a truss structure. In order to demonstrate the 

assembly process using the hyperbolic potential, a simple example of on-orbital 

assembly is discussed. Beam elements of diameter 0.2 m and 1 m length are initially 

placed along the x-axis, Fig. 6.6. The repulsive parameters are α = 7,Ao = 5 , and 

σ = 0.1. All control constants are chosen as unity except λv = 10 . The assembly of 

the objects is demonstrated in Fig. 6.7, where Fig. 6.8 shows the evolution of the 

object dynamics. Again, it can be seen that accelerating and braking pulses are 

generated, with coast arcs. 

x 

z 

y 

Fig. 6.6 Initial object configuration 
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Fig. 6.7.a) Object configuration (t = 37 sec) 

Fig. 6.7.b) Object configuration (t = 120 sec) 

124




Fig. 6.7.c) Object configuration (t = 180 sec) 

Fig. 6.7.d) Final object configuration (t = 300 sec) 

125




time, [sec] 

Fig. 6.8.a) Object velocities in x-direction 
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Fig. 6.8.b) Object velocities in z-direction 
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Fig. 6.8.c) Object angular velocities about y-axis 

6.5 On-Orbit Impulsive Control 

In this section impulsive control will be used for motion initiation, collision 

avoidance, and braking. The simplest form of impulsive motion is a two impulse 

rendezvous where the first impulse is used to initiate chaser vehicle motion which 

intersects the target. The second impulse brings the relative chaser-target velocity to 

zero to allow smooth contact. In the presence of other objects or obstacles, the 

solution is more complicated. 

The potential functions, both attractive and repulsive, will again be described with 

respect to the local orbiting frame of reference, Fig. 6.1. Natural orbital motion can 

bring the elements toward the goal or drift them away depending on the initial 

position and velocity. Control interventions are then used to ensure that the potential 

is monotonically decreasing. The thrusters are active if the rate of change of the 

global potential field is more than some non-positive value. Control actuation is 

therefore required when: 
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Wi ≥ c f (6.22) 

The control trigger constant, cf, can be set to zero for Lyapunov-like stability, 

however a negative value can be used in order to anticipate collision avoidance 

manoeuvres. The correct choice of the constant results in minimizing the required 

thruster activity and so minimizing propellant mass used for the assembly process. 

As long as the rate of change of potential is not positive, continuous approach to the 

goal point is guaranteed. The overall potential function was expressed before in 

Eq. (5.6) with the superquadric repulsive function expressed in Eqs. (4.1) and (4.2) 

as: 

m 

Vi =
λp (ri − rG ,i )(  . ri − rG ,i )+ λq qi .qi + 

λω ω i .ω i + ∑Vobs , j (6.23)
2 2 j=1, j≠i 

Therefore, the required velocity for the ith object in the presence of m-1 obstacles 

through impulsive approach to the goal is provided as in Eq. (5.8). The required 

translational velocity is found to be: 

2 )) ∇Vir& = −v (1− exp(− β if Wi > c f (6.24)i max ri − rG ,i 
∇*Vi 

As the rate of change of potential becomes more than the specified constant, the 

thrusters are activated and consequently the object velocity is defined through 

Eq. (6.24), otherwise natural orbit motion describes the object manoeuvre. 

Rotational motion is always controlled by continuous control using control moment 

gyros as defined in Eq. (5.5). 

6.5.1 Example I 

An example of LEO assembly at an altitude of 1000 km is illustrated in the 

following demonstration of truss assembly. Seven beam elements of diameter 0.2 m 

and 1 m length are initially placed along the  x-axis with 10 m separation distance 

between them. The maximum controlled change in velocity, vmax, is chosen to be 
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0.03 m sec-1. The control trigger, cf, is set to -0.01, hence advance control 

intervention is obtained, while other control constants are unity. The repulsive 

parameters are α = 8, Ao = 5 , and σ = 0.1. Figure 6.9 shows the proximity motion of 

the components from their initial configuration to the assembled structure. Object 

translational and rotational parameters are shown in Fig. 6.10.  The superquadric 

obstacle potential effect appears in Figs. 6.9.c and 6.9.e as translation, and in Figs. 

6.10.b and 6.10.c as rotation. Impulses, measured as the required change in object 

velocity, and the overall potential function and its rate of change are shown in 

Fig. 6.11. The assembly process is completed in 9800 sec. Total object translation 

costs are listed in Table 6.1. 

element Δv element Δv element Δv element Δv 
no. [m/sec] no. [m/sec] no. [m/sec] no. [m/sec] 
1 0.54103 2 0.63026 3 0.82694 4 0.81521 
5 0.90176 6 1.0178 7 1.1958 

Table 6.1 Element translation cost 

Fig. 6.9.a) Initial object configuration  
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Fig. 6.9.b) Object configuration at t = 5800 sec 

Fig. 6.9.c) Object configuration at t = 6370 sec 
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Fig. 6.9.d) Object configuration at t = 8300 sec 

Fig. 6.9.e) Object configuration at t = 8900 sec 
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Fig. 6.9.f) Assembled structure at t = 9800 sec 
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Fig. 6.11.c) Overall potential (object 7) 

-5 

-4 

-3 

-2 

-1 

0 

1 

R
at

e 
of

 c
ha

ng
e 

of
 th

e 
ov

er
al

l p
ot

en
tia

l 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000


time, [sec]


Fig. 6.11.d) Rate of change of the overall potential (object 7) 
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6.5.2 Example II 

The above example of impulsive controlled assembly is re-produced with a 

maximum controlled velocity of 0.1 m sec-1, rather than 0.03 m sec-1 in the previous 

example. This effect appears in Fig. 6.12 through reducing the number of impulses 

required. The assembly time is also decreased. The total translation cost is increased 

for some objects, however it is decreased for others, hence a trade-off can be done 

between assembly time and cost. Table 6.2 shows the new cost where the shaded 

cells show increased cost from to the example in section 6.5.1. 

element Δv element Δv element Δv element Δv 
no. 

0.72828 
[m/sec] no. [m/sec] no. 

0.8291 
[m/sec] no. [m/sec] 

1 2 0.59398 3 4 0.67579 
5 0.68594 6 0.77322 7 1.1031 
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Fig. 6.12.a) Object trajectories 
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Fig. 6.12.d) Overall potential (object 7) 
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Fig. 6.12.e) Rate of change of the overall potential (object 7) 
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6.5.3 Complex structure assembly 

A sixteen element structure is assembled at an altitude of 100 km using the 

impulsive control strategy. The structure is composed of 14 beam elements each of 

length 1 m, 0.1 m diameter, mass of 0.75 kg, and 2 plate elements of dimensions 

1x1x0.2 m, mass of 2.5 kg and 2x12x0.4 m, mass of 10 kg. All control constants are 

unity except λq = 0.1. The repulsive parameters are α = 10,Ao = 5 , and σ = 0.1. 

Elements are initially placed parallel on two lines along the x-direction, Fig. 6.13.a. 

The control trigger is set to -0.01, hence advance control intervention is obtained. 

Figure 6.13 shows the proximity motion of the components from their initial 

configuration to the assembled structure. Object translational parameters including 

control impulses are shown in Fig. 6.14.  Object rotational parameters including the 

control torque are shown in Fig. 6.15. The superquadric obstacle potential effect 

appears in Figs. 6.13.b, 6.13.c, 6.13.d, and 6.14.a as translation, and in Figs. 6.15.a, 

6.15.b, and 6.15.c as rotation. The assembly process is completed in 4000 sec. Total 

object translation costs are listed in Table 6.3. 

Fig. 6.13.a) Initial object configuration 
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Fig. 6.13.b) Object configuration at t = 760 sec 

Fig. 6.13.c) Object configuration at t = 1630 sec 
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Fig. 6.13.d) Object configuration at t = 2670 sec 

Fig. 6.13.e) Object configuration at t = 3725 sec 
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Fig. 6.13.f) Assembled structure at t = 4000 sec 
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Fig. 6.14.e) Impulse in z-direction (object 1) 
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Fig. 6.15.a) Error quaternions about the x-axis 

-2 -1 0 1 2 3
10 10 10 10 10 10


time, [sec] 

Fig. 6.15.b) Error quaternions about the y-axis 
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Fig. 6.15.c) Error quaternions about the z-axis 
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Fig. 6.15.d) Continuous control torque about the y-axis 
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element Δv element Δv element Δv element Δv 
no. [m/sec] no. [m/sec] no. [m/sec] no. [m/sec] 
1 0.73687 2 0.61377 3 0.48533 4 0.12892 
5 0.4125 6 0.44357 7 0.68621 8 0.75072 
9 0.56154 10 0.47197 11 0.13523 12 0.36982 

13 0.4364 14 0.69376 15 1.0035 16 0.98077 

Table 6.3 Element translation cost 

6.6 Conclusions 

Applying the potential field method with superquadric obstacle potentials succeeds 

in bringing structural components to their goal while avoiding collisions. 

Continuous control is presented through a new approach of using a combination of 

parabolic and conical functions, without which unbound control forces may arise. 

Excellent controller performance is obtained as the object velocities are near 

constant, hence little controller intervention is required. An assembly of twelve 

parallelepiped elements was performed using the continuous control scheme. 

Adding a velocity term to a hyperbolic potential function provides successful 

continuous control with bounded control action. The resulting controlled velocities 

are nearly constant over the entire workspace, except in the neighbourhood of 

obstacles. Global stability and convergence of the system is proven and tested for a 

dense workspace. Proximity motion of the manoeuvring objects shows coupling 

between translational and rotational motion in the presence of obstacles. 

Impulsive control also succeeds in on-orbit assembly of a truss structure composed 

of seven beams. Early controller intervention is required, especially, in a dense 

environment. Increasing the maximum impulse decreases the assembly time and 

affects the total translation cost. The maximum impulse should be chosen to 

optimize the trade-off between assembly duration and total manoeuvre cost. 
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7. ORBITAL RECONFIGURATION 

7.1 Introduction 

Changing the configuration of a space structure leads to changes in its position 

and/or orientation, which will be termed object reconfiguration. The reconfiguration 

process is required to achieve distinct configurations through kinematic constrains in 

order to produce a new or modified system configuration (Barfoot and Clark, 2004). 

This enables a system of limited functionality to accomplish various tasks (Shen et 

al., 2006). The term reconfiguration is defined as the set of necessary orbital 

manoeuvres to form a new formation, either to accomplish a new mission or after 

failure by replacing the faulty object with a replacement. The reconfiguration 

process allows new needs to be serviced that may arise over time. 

Three general categories of object reconfiguration problem have been investigated: 

pure mathematical pattern development in cell-space, manually combined unit-

structured system with fixed configuration, and unit-structured systems with 

dynamic reconfiguration ability (Murata et al., 1998).  

Reconfiguration problems have been considered in case of satellite constellations 

using potential functions (McInnes, 1993; McQuade et al., 2003; Izzo and Pettazi, 

2005; Izzo and Pettazi, 2007). Modular self-reconfigurable robots are another 

application of object reconfiguration in which the robot changes its shape to adapt to 

its surroundings (Ünsal and Khosla, 2000). 

The reconfiguration strategy presented in this chapter is divided into two phases: 

disassembly and reassembly processes. Objects decouple from their initial 

configuration by virtue of the repulsive potential, and then reassemble in a new 

formation. Two cases are discussed in this chapter: free flyer manoeuvring and 

structure reconfiguration. The first problem discusses manoeuvring of one small 

body near another larger one, the International Space Station in this case. The 

second problem discusses the manoeuvring of multiple objects of the same size to 

form some formation from a starting position, and then decouple and reform another 

formation. A reconfigurable spacecraft can be envisaged which can change its 

morphology to be optimised to a particular mission phase. 
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7.2 Free Flyer Manoeuvring Near a Space Station 

Free-flying robots enable flexible assembly and service facilities to work inside 

space facilities or operate in the free space. They serve in conjunction with 

redundant manipulators and astronauts with the advantage of flexibility over the first 

and safety over the second type. 

A potential field incorporating both translational and rotational motion is used to 

control the dynamics of a free-flyer manoeuvring at the International Space Station, 

Fig. 7.1. The station modules use the same superquadric model, nevertheless shape 

and size differences are defined using the free parameters of the superquadric 

functions as discussed in chapter 3. The potential functions are formed in local body 

frames of reference, hence error quaternions are used to find relations between local 

and inertial parameters. The repulsive potentials depend on the relative distance 

between the free-flyer and the modules. As they have different sizes and 

orientations, a rigid body formulation is required, instead of considering only their 

centres to calculate the separation distances (Badawy and McInnes, 2006a). 

Fig. 7.1 International space station using superquadric model 
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The proposed global potential function is formulated to minimize on-board sensor 

requirements through the use of only kinematic data as the measured quantities. The 

required impulses are calculated on-board, then actuated by small thrusters, whereas 

a continuous control torque is assumed to be produced from control moment gyros 

(Badawy and McInnes, 2007a). The minimum formulation of the global potential 

function capable of performing the required control of both translation and rotation 

is produced by combining Eqs. (2.3) and (2.28) as the attractive potential along with 

the station module repulsive potentials defined by Eqs. (4.1) and (4.2). The proposed 

global function is expressed as: 

V =
λ p (r − rG ) (  . r − rG )+ 

λq q .q + Vobs (7.1)
2 2 

The potential function time derivative is then defined as: 

qW = λ pr&.(r − rG )+ λq q& .q +∇Vobs .r& +∇ Vobs .q& (7.2) 

To set the time derivative of the potential function to be negative definite, the 

control laws will be defined as: 

r& = −vmax (1 − e−βVatt ) ∇V (7.3)
∇∗V 

and 

q& = −ωmax (1 − e−βVatt ) ∇
∇∗ 

q

V
V (7.4) 

where 

T
⎡ ∂ ∂ ∂ ⎤

∇ = ⎢
⎢∂x ∂y ∂z ⎥⎥ 

(7.5-a) 

⎡ ∂ ∂ ∂ ⎤
T 

∇q = ⎢ ⎥ (7.5-b)
⎢∂q1 ∂q2 ∂q3 ⎥ 
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T 
* ⎡ ∂ ∂ ∂ ∂ ∂ ∂ ⎤

∇ = ⎢ ⎥  (7.5-c)
⎢∂x ∂y ∂z ∂q1 ∂q2 ∂q3 ⎥ 

Using Eqs. (7.3) and (7.4) this leads to the time rate of change of the potential 

function as: 

2 ⎤2⎡ q +∇qVobsr − rG +∇Vobs−βVatt ⎢ ⎥ ≤ 0 (7.6)W = −(1− e ) vmax λ p +ω λmax q⎢ ⎥∇∗V ∇∗V
⎣ ⎦ 

The angular velocity is calculated as (Wie, 1998): 

ω = 2Q−1q& (7.7) 

A free-flyer parked on the station surface will manoeuvre to another point to 

perform certain operations such as inspection, installation, or repair. The free-flyer is 

equipped with thrusters to enable it to perform the required manoeuvre. The 

thrusters are on when the time derivative of the global potential function is larger 

than some non-positive value, cf. Control actuation is then required when: 

Wi ≥ c f (7.8) 

Between impulses the free-flyer will move according to the natural orbital 

mechanics equations using the Clohessy-Wiltshire approximation, since the relative 

distance between start and goal positions are much smaller than that distance to the 

Earth’s centre, as discussed in chapter 6. Trajectory manoeuvres are shown at each 

impulse as shown in Fig. 7.2. Coupling between translation and rotation produces 

the quaternion change in Fig. 7.3 although initial and goal orientations are identical. 

The impulses required to perform the transfer described in Fig. 7.2 are shown in 

Fig.7.4. Finally, the required control torque about the y-axis is shown in Fig. 7.5, 

whereas the control torques about other axes are zeros. 
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Fig. 7.4.a) Free-flyer thrust impulses in x-direction  
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Fig. 7.4.b) Free-flyer thrust impulses in z-direction 
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Fig. 7.5 Required control torque about y-axis 

7.3 Structure Reconfiguration 

Manoeuvring beam type objects of 0.1 m diameter and 1 m length are initially in a 

parking position with 1 m separation distance. They were then tasked to perform a 

manoeuvre to form a closed hexagonal formation. Later, the objects are 

disassembled and then form a line configuration. All control constants are unity 

except λq = 0.1,λw = 0.8 . The repulsive parameters are defined as α = 6, Ao = 50, 

σ = 0.1, and β = 1. 

During the 400 sec of the first task, coupled in/out of plane manoeuvres along with 

rotation manoeuvres are performed, except for the first object where its goal 

configuration is chosen to be the same as the initial one. Complex manoeuvres from 

the initial to goal configurations are shown in Fig. 7.6 using an impulsive control 

strategy with a maximum controlled velocity of 0.02 m sec-1 as shown in Fig. 7.7. 

Although the control constant, cf, is chosen to be zero, it is noted for object (3) that 

there exists a similarity to continuous control due to the very close spacing of the 
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objects. Hence even after the impulsive intervention the rate of change of the 

potential function remains positive as other objects manoeuvre nearby. The objects 

also perform some rotational manoeuvres in three-dimensions to avoid collisions, as 

shown in Fig. 7.8, and in Fig. 7.9 as the required continuous control torques. The 

total translation costs are shown in Table 7.1. 

element Δv element Δv element Δv 
no. [m/sec] no. [m/sec] no. [m/sec] 
1 0 2 0.035289 3 0.1118 
4 0.20255 5 0.42914 6 0.1025 

Table 7.1 First phase translation cost 

Fig. 7.6.a) Initial object configuration 
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Fig. 7.6.b) Object configuration (t = 20 sec) 

Fig. 7.6.c) Object configuration (t = 40 sec) 
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Fig. 7.6.d) Object configuration (t = 145 sec) 

Fig. 7.6.e) Object configuration (t = 230 sec) 
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Fig. 7.6.f) Object configuration (t = 260 sec) 

Fig. 7.6.g) Final configuration (t = 400 sec) 
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Fig. 7.7.a) Impulse in the x-direction 
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Fig. 7.7.b) Impulse in the y-direction 
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Fig. 7.7.c) Impulse in the z-direction 
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Fig. 7.8.a) Error quaternions about the x-axis 
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Fig. 7.8.b) Error quaternions about the y-axis 
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Fig. 7.8.c) Error quaternions about the z-axis 
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Fig. 7.8.d) Angular velocity about the x-axis 

10- 1  100 101 102


time, [sec] 

-0 .06 

-0 .04 

-0 .02 

0 

0 .02 

0.04 

0.06 

0.08 

0.1 

0 .12 

A
ng

ul
ar

 v
el

oc
ity

 a
bo

ut
 y

-a
xi

s,
 [r

ad
/s

ec
] 

1 
2 
3 
4 
5 
6 

Fig. 7.8.e) Angular velocity about the y-axis 
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Fig. 7.8.f) Angular velocity about the z-axis 
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Fig. 7.9.a) Control torque about the x-axis 
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Fig. 7.9.b) Control torque about the y-axis 
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Fig. 7.9.c) Control torque about the z-axis 
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As the objects are disengaged, they are repelled away due to their mutual repulsive 

potentials, while later each object starts to move toward its new configuration. Using 

exactly the same parameters as in the first phase, the objects are able to reach their 

new goals and are assembled together in a line without collisions in 200 sec, 

Fig. 7.10. The middle objects such as (1) and (4) require larger impulses and 

consequently cost since they experience a more complicated potential field topology 

compared with those on the two ends as shown in Fig. 7.11 and in Table 7.2. 

Frequent rotational manoeuvres are also required either for object reorientations or 

for collision avoidance as shown in Fig. 7.12 as rotational parameters, error 

quaternions and angular velocities, and in Fig. 7.13 as the required continuous 

control torques. 

element Δv element Δv element Δv 
no. [m/sec] no. [m/sec] no. [m/sec] 
1 0.26279 2 0.070863 3 0.060064 
4 0.2029 5 0.062735 6 0.060405 

Table 7.2 Second phase translation cost 

Fig. 7.10.a) Object configuration (t = 15 sec) 
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Fig. 7.10.b) Object configuration (t = 42 sec) 

Fig. 7.10.c) Object configuration (t = 77 sec) 
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Fig. 7.10.d) Object configuration (t = 200 sec) 
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Fig. 7.11.a) Impulse in the x-direction 
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Fig. 7.11.b) Impulse in the y-direction 
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Fig. 7.11.c) Impulse in the z-direction 
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Fig. 7.12.a) Error quaternion about the x-axis 
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Fig. 7.12.b) Error quaternion about the y-axis 
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Fig. 7.12.c) Error quaternion about the z-axis 
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Fig. 7.12.d) Angular velocity about the x-axis 
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Fig. 7.12.e) Angular velocity about the y-axis 
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Fig. 7.12.f) Angular velocity about the z-axis 
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Fig. 7.13.a) Control torque about the x-axis 
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Fig. 7.13.b) Control torque about the y-axis 
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Fig. 7.13.c) Control torque about the z-axis 

7.4 Conclusions 

The potential field method proved its ability to perform successful motion planning 

for a free-flying robot used at the ISS. Merging impulsive motion and natural orbital 

motion of the free-flyer was carried out considering a pure impulse by limiting the 

maximum change in the object velocity. Coupling between translational and 

rotational motion facilitates free-flyer motion in the case of nearby obstacles through 

decreasing its global potential using both rotation and translation to avoid collision 

whilst maintaining a continuous approach to the goal. 

Reconfiguration of a hexagonal structure through performing in/out of plane 

translation and rotation to avoid collision was performed. Complicated manoeuvres 

were required as a result of the close separation of the manoeuvring objects. As a 

result of these close manoeuvres, the constrained control impulse may not be enough 

to render the rate of change of the potential field to be negative, since other objects 

with a repulsive potential are nearby. Consequently, more impulses are required and 

a quasi-continuous control force is produced for some period of time during the 

manoeuvre.   
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8. CONCLUSIONS 

8.1 Review 

Many challenges are faced when conducting orbital manoeuvres which lead to 

successful on-orbit assembly of large structures. Different structural element shapes 

and sizes are in simultaneous translation and rotation to reach their goals whilst 

mutual collisions must be avoided, chapter 1. An attractive potentials is formed as 

two separate functions, the first for translation whereas the second for rotation. 

Consequently, no coupling exists between the two types of motion. The new 

attractive potential function proposed in this thesis merges translation and rotation in 

one function, consequently manoeuvring objects have some degree of freedom to 

enable them to choose which motion is more effective to decrease the overall 

potential field. 

The translational part of the attractive potential function is defined in several forms 

to be used with different control strategies. These forms vary from the original 

parabolic function used in this thesis for the impulsive control strategy to a new 

combination of the parabolic and the conic functions used with the continuous 

control strategy, and a new usage of the hyperbolic function in the attractive 

potential. 

The parabolic function is characterized by its provable stability defined through 

Lyapunov's theorem. The required control impulses are therefore defined as the 

gradient of the parabolic function when the time derivative of the potential becomes 

non-negative. A better controller performance is achieved through anticipating the 

divergence of the motion by allowing the controller to be active when the time 

derivative of the potential becomes higher than some negative value rather than 

zero, as required for Lyapunov's theorem. Parabolic functions are also applicable in 

the case of a continuous control strategy through defining the control force as a 

function of the attractive potential. This limits the attractive potential to being 

defined by position and orientation parameters only as defining it with velocity and 

angular velocity parameters leads to unbounded control forces. 

A combination of parabolic and conical functions is used in the thesis in the case of 

the continuous control strategy. The new definition of the attractive potential 
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overcomes the drawbacks of the parabolic attractive potential when velocity and 

angular velocity parameters are introduced. A major advantage of this combination 

is to have a constant velocity over the workspace when no obstacles are nearby, 

hence no control force is needed. Stability is also guaranteed at the goal point where 

the parabolic function is used in some neighbourhood of the goal. 

Another new definition of the attractive potential is discussed in this thesis through 

the hyperbolic function. It has the key advantages of both the parabolic and conic 

functions. The required control forces generated are similar to that of two impulse 

motion with an acceleration phase, coast phase, and braking phase. 

The rotational part of the attractive potential is defined as a parabolic function 

based on the error quaternion parameters along with the object angular velocities. 

Continuous control torques are produced to ensure global convergence of the 

rotational motion. The use of error quaternions assists the required manoeuvre to 

reach the goal orientation since they can determine the shortest path to the goal, 

chapter 2. 

Since several manoeuvring objects are in simultaneous motion to assemble the 

structure, repulsive potentials are introduced to prevent collisions between objects. 

The repulsive potential surrounds each object with a high potential zone to deflect 

any colliding object. A second role of the repulsive potential is to allow smooth 

contact with other objects to assemble the final structure. 

Several repulsive potentials are used with potential field method; however 

superquadric functions have many advantages for structural assembly. The 

superquadric model is constructed with respect to the body frame of reference, and 

hence using quaternions it is possible to transform the superquadric shape to a global 

frame of reference. Since real structural element shapes and sizes are different, 

superquadrics are good choice due to their ability to represent several solid 

geometries in parametric form. A second advantage of the superquadric function is 

their close corresponding to the obstacle shape, consequently more free space is 

available for manoeuvring object motion. 

The accuracy of the repulsive potential field calculation depends on the correct 

estimation of the separation distance between the superquadric shapes. More 

accurate methods are discussed through modifying the original pseudo-distance 
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method by adding the centre-to-centre distance to the calculation which enhances 

the distance estimation. A second new method is defined to calculate the centre-to

edge distance for motion planning problem using the radial Euclidian distance 

taking into consideration obstacle orientation through quaternion parameters. A third 

new method is defined by considering both obstacle and manoeuvring object sizes 

and shapes. This method calculates the edge-to-edge separation distance between 

two superquadric surfaces, and leads to the exact separation distance for some 

configurations. Superquadric repulsive potentials can be modified to be more 

representative of the workspace. Steep gradients in the potential provide more free 

space for the manoeuvring objects to move and allow motion in narrow passages, 

chapter 3. 

The repulsive potential amplitude is also adjusted to avoid the 'goal non-reachable 

obstacle nearby problem' in which the goal point shifts due to the obstacle potential 

field. A suitable Gaussian function is used to diminish the repulsive potential 

amplitude as the manoeuvring object approaches its goal configuration, chapter 4. 

The overall potential function is a superposition of the attractive and the repulsive 

potentials. The control laws generated, translation and rotation, are proven to 

guarantee global stability and convergence of the overall system. The mutual 

dependency of translation, rotation, and repulsive motion enhances the controller 

performance. The manoeuvring objects have the ability of mixing translation and 

rotation to avoid collisions whilst approaching their goal configuration, chapter 5. 

Orbital mechanics effects manoeuvring object motion either by bringing it toward 

the goal point, or drifting away depending on the initial configuration. In the 

impulsive control strategy, the manoeuvring object velocity is determined from the 

linearised Clohessy-Wiltshire equations when the thrusters are off. In the continuous 

control strategy, the manoeuvring object acceleration is a linear superposition of the 

thruster acceleration and the natural orbital acceleration. 

The criterion selected for controlling the switching on\off of the thrusters depends 

on the rate of change of the overall potential function. To guarantee stability, the 

controller should be switched on once the rate of change of the overall potential 

becomes non-negative. However, anticipation of this divergence gives better results 

as the total control cost and assembly time can be decreased. Early controller 
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intervention is required, especially, in a dense workspace. However early controller 

intervention results in increasing the total manoeuvre cost as it reduces the use of the 

natural orbital motion in bring manoeuvring objects to their goals.  Increasing the 

maximum impulse decreases the assembly time and effects the total translation cost. 

The maximum impulse should then be chosen to optimize the trade-off between 

assembly duration and total manoeuvre cost, chapter 6. 

Orbital reconfiguration is another successful challenge solved by the potential field 

method using superquadric repulsive potentials. A free-flyer was able to perform 

successful manoeuvres near a large space facility such as the ISS. Representing the 

ISS structure with a superquadric model gives the free-flyer space to move very 

close to the ISS surface while avoiding collision with it. 

Structural elements (or small spacecrafts) were able to reconfigure to overcome 

failure or accomplish a new mission phases. Disengaging, reconfiguration, and 

reassembly are conducted without drifting from the initial positions by virtue of 

defining one potential function which represents all phases, chapter 7. 

Finally, the proposed potential field method proves its ability to handle a range of 

orbital motion planning problems used in structural assembly, reconfiguration, and 

satellite constellations. 

8.2 Future Work 

• Generalising superquadric model for complex shapes 

Real objects are not composed of one part, so it is required to study how 

superquadric functions could be used to model these parts together rather than 

decomposing to multiple primitive objects. It is required to define a set of 

superquadric functions that starts with the solid object model, and then converts 

smoothly to a spherical symmetric object. 

• Time dependent superquadric potential parameters 

Develop superquadric potentials with time dependent parameters resulting in 

configurable shapes of the repulsive potential that depends on the workspace 
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configuration to guarantee local minimum free fields and generate smooth 

trajectories. 

• Terrestrial and marine applications 

Since the hyperbolic model defines the required dynamic control parameters, 

velocity and acceleration, it is possible to be generalised for terrestrial and marine 

applications by defining sliding friction and drag forces. The mutual dependency of 

the dissipative forces and the object control accelerations should be defined through 

the control laws. 

• Object elasticity 

Large object deflections effect connection joint coordinates, consequently 

controllers should compensate these deflections to ensure perfect docking process 

especially in LEO. 
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APPENDIX A: QUATERNION ALGEBRA 

A.1 Introduction 

Quaternion parameters are widely used for orientation determination especially in 

space sciences. They have advantages over other methods that make quaternions 

more suitable for orbital motion planning problems. The quaternion vector is defined 

in this thesis by q and is composed of 4 parameters as (Quaternion, 2002): 

q = q1i + q2 j + q3k + q4  (A.1) 

where the quaternion parameters q1, q2, q3, q4 are real numbers and i, j, k are defined 

as: 

ii = −1, ij = − ji = k (A.2.a) 

jj = −1, j k = −kj = i (A.2.b) 

kk = −1, ki = −ik = j (A.2.c) 

These parameters are called hyper-complex numbers that should not be confused 

with the unit vectors of the Cartesian coordinate system. The conjugate of the 

quaternion vector is defined as: 

q* = −q1i − q2 j − q3k + q4 (A.3) 

A quaternion vector of unit length can be used to define a coordinate 

transformation matrix. Assume a hyper-complex quantity Q as: 

Q = Xi + Yj + Zk (A.4) 

Then the operation 

Q′ = q *Qq (A.5) 

Q′ = (− q1i − q2 j − q3 k + q4 )(Xi + Yj + Zk )(q1i + q2 j + q3k + q4 ) (A.6) 
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so that: 

2 2 2 2⎡X ′⎤ ⎡q1 − q2 − q3 + q4 2(q1q2 + q3q4 ) 2(q1q3 − q2 q4 ) ⎤⎡X ⎤ 
⎢ ⎥ ⎢ 2 2 2 2 ⎥⎢ ⎥ 
⎢Y ′ ⎥ = [i j k]⎢ 2(q1q2 − q3q4 ) − q1 + q2 − q3 + q4 2(q2 q3 + q1q4 ) ⎥⎢Y ⎥ 

2 2 2 2⎢ Z ′⎥ ⎢ 2(q q + q q ) 2(q q − q q ) − q − q + q + q ⎥⎢ Z ⎥⎣ ⎦ ⎣ 1 3 2 4 2 3 1 4 1 2 3 4 ⎦⎣ ⎦ 

(A.7) 

By replacing all parameters in Eq. (A.7) with the corresponding quaternion 

parameters, it is possible to develop the general transformation matrix which can be 

written as (Paul, 1981): 

2 2 2 2⎡ q1 − q2 − q3 + q4 2(q1q2 + q3q4 ) 2(q1q3 − q2 q4 ) xs ⎤ 

T = 
⎢
⎢ 2(q1q2 − q3q4 ) − q1

2 + q2
2 − q3

2 + q4
2 2(q2 q3 + q1q4 ) ys 

⎥
⎥ 

⎢ 2(q1q3 + q2 q4 ) 2(q2 q3 − q1q4 ) − q1
2 − q2

2 + q3
2 + q4

2 zs 
⎥ 

⎢ ⎥ 
⎢ 0 0 0 1 ⎥⎣ ⎦ 

(A.8) 

The previous transformation is used to determine the relative orientation between 

two objects. The transformation calculation is considered as a crucial parameter in 

obstacle potential field estimation in the case of superquadric obstacle 

representation. 

A.2 Quaternion Parameter Determination 

A rotation matrix R is used to describe the orientation of a body frame with 

respect to an inertial frame of reference. The matrix R is a 3x3 orthonormal matrix 

which consists of three orthogonal unit vectors which are the basis of the body frame 

of reference with respect to the inertial frame, meaning that 

RT R = I (A.9.a) 

and RT = R-1 (A.9.b) 

The elementary rotation matrixes are defined as (Wie, 1998): 
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⎡1 0 0 ⎤


1 ( )θ = ⎢
⎢0 cos( )θ1 

⎥
⎥
R 1 sin( )θ1 (A.10.a) 

⎢0 − sin(θ ) cos(θ )⎥⎣ 1 1 ⎦ 

⎡cos(θ2 ) 0 − sin(θ2 )⎤ 
R ( ) ⎢ ⎥ (A.10.b)2 θ2 = ⎢ 0 1 0 ⎥


⎢sin(θ ) 0 cos(θ ) ⎥
⎣ 2 2 ⎦ 

⎡ cos(θ3 ) sin(θ3 ) 0⎤ 
( )  ⎢ sin(θ ( ) 0⎥ (A.10.c)R 3 θ3 = ⎢− 3 ) cos θ3 ⎥


⎢ 0 0 1⎥
⎣	 ⎦ 

The rotation between multiple frames can be written as 

R1→3 = R1→2R 2→3	 (A.11) 

where Ri→ j means the rotation matrix of frame j with respect to frame i. The rotation 

matrix has three interpretations: 

1.	 It determines the relative orientation between two frames. 

2.	 It represents the coordinate transformation between the coordinates of a 

body expressed in two frames having the same origin. 

3.	 It represents a vector rotation in the same frame. 

Quaternion parameters are then determined for orientation determination through 

the following steps: 

1. Choose a certain rotation sequence, R = R θ → R ( )  → R θ(	 ) θ ( ) , for3	 3 2 2 1 1 

Euler angles as: 

⎡cos(θ 2 ) sin(θ1 )sin(θ 2 ) cos(θ1 )sin(θ 2 ) ⎤ 
= 

1 ⎢ 0 cos( )  ( )  θ cos θ − sin( )  ( )  cos θ ⎥ (A.12)R	
cos( ) ⎢ 1 2 θ1 2 ⎥θ 2 

⎣ 0 sin( )  cos( )  ⎦⎢	 θ1 θ1 ⎥ 
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2. Calculate the eigenaxis, e, as: 

⎡e ⎤ ⎡R − R ⎤

⎢ 

1 
⎥ 1 ⎢ 

23 32 
⎥
e = e2 ⎥ = 

2 sin( ) R31 − R13 ⎥ (A.13)⎢ θ ⎢

⎢e ⎥ ⎢R − R ⎥
⎣ 3 ⎦ ⎣ 12 21 ⎦ 

where θ is the angle of the eigenaxis. 

3. Determine the angle θ from the relation: 

e1
2 + e2

2 + e3
2 = 1 (A.14) 

4. Quaternion parameters are then determined as: 

⎡q1 ⎤ ⎡e1 sin 2 ⎤ 

q = ⎢
⎢q2 ⎥

⎥ 
= ⎢
⎢e2 sin 2 ⎥

⎥ 
(A.15)

⎢q3 ⎥ ⎢e3 sin 2 ⎥ 
⎢ ⎥ ⎢ 
⎣q4 ⎦ ⎣ cos θ ⎦ 

Finally, the kinematic differential equation relating the quaternion parameters and 

object angular velocity is defined as: 

⎡q&1 ⎤ ⎡ q4 − q3 q2 q1 ⎤⎡ω1 ⎤ 
⎢q& ⎥ 1 ⎢ q q − q q ⎥⎢ω ⎥ 
⎢ 2 ⎥ = ⎢ 3 4 1 2 ⎥⎢ 2 ⎥ (A.16)
⎢q&3 ⎥ 2 ⎢− q2 q1 q4 q3 ⎥⎢ω3 ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣q&4 ⎦ ⎣− q1 − q2 − q3 q4 ⎦⎣ 0 ⎦ 

( ) 
(  )  
(  )  
(  ) ⎥2 
θ 

θ 

θ 
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