
Solving the accessibility windows assembly line
problem level 1 and variant 1 (AWALBP-L1-1) with

precedence constraints
Alberto GARCÍA-VILLORIAa,*, Albert COROMINASa, Adrià NADALb and Rafael PASTORa

a Institute of Industrial and Control Engineering (IOC), Universitat Politècnica de Catalunya (UPC), Spain
b Volkswagen-Audi España S.A., Spain

{alberto.garcia-villoria / albert.corominas / rafael.pastor}@upc.edu, adria.nadal.sola@gmail.com

Abstract. Assembly line balancing problems (ALBPs) are among the most studied

combinatorial optimization problems due to their relevance in many production systems. In

particular, the accessibility windows ALBP (AWALBP) may arise when the workpieces are

larger than the workstations, which implies that at a given instant the workstations have

access to only a portion of the workpieces. Thus, the cycle is split into forward steps and

stationary stages. The workpieces advance during the forward steps and the tasks are

processed during the stationary stages. Several studies have dealt with the AWALBP

assuming that there are no precedence relationships between tasks. However, this assumption

is not always appropriate. In this work we solve the first level of AWALBP (AWALBP-L1)

considering the existence of precedence relationships. Specifically, this work deals with

variant 1 (AWALBP-L1-1), in which each task can be performed at only one workstation and,

therefore, only the stationary stages and the starting instants in which the tasks are performed

have to be decided. We design a solution procedure that includes pre-processing procedures, a

matheuristic and a mixed integer linear programming model. An extensive computational

experiment is carried out to evaluate its performance.

Keywords: manufacturing; assembly line balancing; accessibility windows; matheuristic

procedure

1. Introduction

Assembly lines are very common in many mass production systems and they give rise to a

variety of problems. In particular, the family of problems known as assembly line balancing

problems (ALBPs) emerges. The core of ALBPs consists in assigning tasks to an ordered

sequence of workstations so that some constraints are satisfied and one or more efficiency

objectives are optimised. Over the past six decades, different types of ALBPs have been studied

in the literature; see, for instance, the last surveys: Becker and Scholl (2006), Scholl and Becker

(2006), Boysen et al. (2007, 2008) and Battaïa and Dolgui (2013).

* Corresponding author: Alberto García-Villoria, Institute of Industrial and Control Engineering (IOC), Av. Diagonal 647 (Edif.
ETSEIB), 11th floor, 08028 Barcelona, Spain; tel.: +34 93 4010724; e-mail: alberto.garcia-villoria@upc.edu

 1

Even the easiest ALBP, called simple ALBP (SALBP) is NP-hard (e.g., Baybars, 1986).

SALBP is defined with the following assumptions (Baybars, 1986): 1) a task cannot be split

among workstations; 2) there are precedence relationships between tasks; 3) all tasks must be

processed; 4) the processing times of the tasks are additive, workstation-independent, sequence-

independent and known with certainty; 5) all workstations have the same associated costs; 6)

any task can be performed at any workstation; 7) the line is serial and without feeder or parallel

subassembly lines; 8) the line is designed for a unique model of a single product. A branch and

bound based method has recently been designed (Sewell and Jacobson, 2012) and improved

(Morrison et al., 2014), which is able to solve optimally and very quickly large instances of

SALBP (although heuristic techniques may be needed to solve bigger instances).

On the other hand, SALBP is more an academic abstraction than a real-world problem. Thus, in

the last years researchers have intensified their efforts, studying ALBPs with additional

characteristics of real systems. For instance, among many others: task times depending on the

sequence (e.g., Capacho et al., 2009), setup times between tasks (e.g., Akpinar et al., 2017),

space constraints (e.g., Bautista and Pereira, 2011), constrained resources (e.g., Quyen et al.,

2017), ergonomics considerations (e.g., Otto and Battaïa, 2017), mixed-models (e.g., Zelter et

al., 2017), U-shaped lines (e.g., Fathi et al., 2017), disassembly lines (Bentaha et al., 2015),

two-sided assembly lines (e.g., Abdullah Make et al., 2017), robotic assembly lines (e.g., Borba

et al., 2018), uncertainty on task times (e.g., Krishnan et al., 2016), task times dependent on the

workers (e.g., Moreira et al., 2015) and task times under a learning effect (Koltai and Kalló,

2017).

In all the aforementioned works, it is assumed (explicitly or implicitly) that, at any moment,

each workstation has full access to one workpiece and tasks are performed on each workpiece at

only one workstation. However, in some production systems as, for instance, printed circuit

boards (PCBs) manufacturing, this assumption may be inappropriate since the size of the

workpiece is large relative to the dimensions of the workstations and the accessibility windows

of the workstations are smaller than the workpiece (Müller-Hannemann and Weihe, 2006).

Therefore, at a given moment, each workpiece on the line may be accessible from several

workstations and each workstation may perform tasks on one or two consecutive workpieces

(e.g., Figure 1). This characteristic gives rise to the family of problems called accessibility

windows ALBP (AWALBP) (Calleja et al., 2013).

 2

Figure 1. Example of an assembly line with three workstations with accessibility windows (grey areas).
Reprinted from Calleja et al. (2016) with permission

In the AWALBP, production cycles are split into stationary stages and forward steps. The line

becomes motionless during each stationary stage so the workstations can perform the tasks

assigned to them when these are placed within the corresponding accessibility window.

Between two stationary stages there is one forward step, in which the line moves forward. This

movement means that the workstations can access new tasks. Figure 2 illustrates a line with four

workstations and a cycle consisting of three stationary stages (and, therefore, three forward

steps). The movement length of forward step σ (1,...,3σ =) is indicated as σδ , and x indicates

the position of the workpieces at the start of the cycle, which is the distance between the right

border of the first workpiece on the line and the left border of the accessibility windows of the

first workstation.

Figure 2. Example of a cycle separated in three stationary stages. Reprinted from Calleja et al. (2016)
with permission

Calleja et al. (2013) classify the tactical and operational decisions in the AWALBP into the

following four levels (L1 to L4): L1) assignment of tasks to workstations and stationary stages;

L2) movement scheme, which is defined by the initial shift x , the number of stationary stages

and the lengths of the forward steps; L3) configuration of the workstations (types of

components, feeders, toolbits, etc.); and L4) configuration of the line (number of workstations,

technology of the line, etc.). According to these four levels, four types of the AWALBP are

 3

defined: AWALBP-L1 to AWALBP-L4. Each variant consists of the solution of its level and

the precedent ones and assumes that the other levels have been solved. For instance, AWALBP-

L2 consists of the assignment of tasks to workstations and stationary stages and the definition of

the movement scheme, given the configurations of the workstations and the line. Fleszar (2017)

extends the classification and discerns two variants: variant 1, in which each task can be

performed only at one workstation (e.g., AWALBP-L2-1), and variant M, in which tasks can be

performed at more than one workstation (e.g., AWALBP-L2-M). Variant 1 occurs, for instance,

in some assembly lines of PCBs (see Müller-Hannemann and Weihe, 2006).

In comparison with other ALBPs, there are few studies on the AWALBP. Some PhD and

diploma theses (Martin, 2002; Gaudlitz, 2004; Tazari, 2006; Stille, 2008) were developed in

collaboration with Philips/Assembléon to study specific cases of PCB automated assembly

lines. More general studies on the AWALBP focus on levels L1 and L2. AWALBP-L1-1 is

solved heuristically in Müller-Hannemann and Weihe (2006) and optimally with mixed integer

linear programming (MILP) in Calleja et al. (2014). García-Villoria et al. (2015) propose

heuristics and simulated annealing procedures for AWALBP-L1-M considering that the

processing times of the tasks depend on the workstations. Two MILP models are proposed in

Calleja et al. (2013) and metaheuristics and matheuristics procedures in Calleja et al. (2014,

2016) to solve AWALBP-L2-1. Fleszar (2017) proposes two MILP models for solving

AWALBP-L2-1 and AWALBP-L2-M, respectively, and points out that AWALBP-L2-M is

much more difficult to solve than AWALBP-L2-1.

All the aforementioned general studies assume that there are no precedence relationships

between tasks. However, there are cases in which precedence relationships appear. For instance,

in the manufacturing of PCBs, sockets must be mounted before placing other components. In

order to start to fill this gap in the literature, in this work we deal with AWALBP-L1-1

including precedence relationships.

In the classical ALBP literature, the precedence relationship between predecessor task j and

successor task k can be ensured when task k is not assigned at a workstation previous to the

workstation to which task j is assigned. In the AWALBP this is not necessarily true and

precedence relationships may or may not be satisfied regardless of the workstation at which the

tasks are performed. Moreover, if tasks j and k are performed at different workstations, then

an idle time may appear at the workstation in which task k is performed, because task k cannot

start until task j is completed (recall that different workstations can perform tasks on the same

workpiece during the same cycle). Thus, the order in which the tasks are processed at each

 4

workstation and stationary stage influences the productivity of the line. These characteristics

complicate substantially the formulation and solution of the AWALBP.

In this paper, we design two pre-processing procedures, heuristic, metaheuristic and

matheuristic procedures, and a MILP model for the AWALBP-L1-1 with precedence

relationships. The scheme of the procedure that we propose to solve the problem is as follows.

First, we apply pre-processing and, afterwards, a matheuristic procedure which combines MILP,

heuristic and metaheuristic techniques. Additionally, when a feasible solution is found but its

optimality is not proven, we try to solve a MILP model during limited computing time.

The remainder of the paper is organised as follows: First, Section 2 describes the problem.

Section 3 proposes two pre-processing procedures for the problem. The MILP model and the

matheuristic procedure are explained in Sections 4 and 5, respectively (although in the proposed

solution procedure the matheuristic precedes the MILP model, this latter is explained first for

the sake of clarity). The results of the computational experiment that was carried out are shown

and analysed in Section 6. Finally, Section 7 provides the conclusions and some suggestions for

future research.

2. Problem statement

The problem dealt with in this study is defined as follows.

The line processes a (potentially infinite) number of identical workpieces. Let 0b be the length

of the workpieces and b (0b b≥) the sum of 0b and the gap (if any) between two consecutive

workpieces.

There is a unique serial assembly line with nw workstations; let { }1, ,I nw= … be the set of

workstations. The accessibility window of workstation i I∈ is determined by the range [],i il r

where i ir l> (the accessibility windows concerns only one dimension, the one in which the line

moves, see Figures 1 and 2); without loss of generality, it is assumed that 1 0l = . The

accessibility windows do not overlap; that is, 1i il r+ > . The workpieces are larger than the

accessibility window of at least one workstation; that is, 0| i ii I
b r l

∈
∃ > − .

There are nt tasks that have to be performed on each workpiece fulfilling the precedence

relationships; let { }1, ,J nt= … be the set of tasks. For each task j J∈ , the unique workstation

 5

jw in which task j can be performed, its processing time jp , and the distance ja to the right

border of the workpiece on which task j must be performed, are known.

The cyclical movement of the workpieces is described by a given movement scheme. Recall

that a movement scheme is defined by the initial shift of the line (x), the number of forward

steps (ns) and the lengths σδ of the forward steps ({ }1, ,nss ∈ ).

The data nomenclature is given in Table 1 and some of them are illustrated in Figure 3.

0b Length of the workpiece

b Length of the workpiece plus the gap between two consecutive workpieces

nt , J Number and set of tasks, respectively, where { }1, ,J nt= 

jp Processing time of task j J∈ ; w.l.o.g. assumed to be integer

jw Unique workstation able to process task j J∈

ja
Distance to the right border of the workpiece from the position at which task
j J∈ is to be performed: 00 ja b≤ ≤

PR
Set of precedence relationships between tasks. Task j is an immediate
predecessor of task k if and only if (),j k PR∈

nw , I Number and set of workstations, respectively, where { }1, ,I nw= …

[],i il r
Accessibility window of workstation i I∈ , where 1 0l = , 1 1l r< and 1i i ir l r− < < ,

{ }\ 1i I∈

x
Initial shift of the line at the start of the cycle, which corresponds to the distance
from the right border of the first workpiece on the line with respect to the left
limit of workstation 1 (1 0l =)

ns , S
Number and set of forward steps (or, accordingly, number and set of stationary
stages) of the movement scheme, where { }1, ,S ns= 

σδ Length of forward step Sσ ∈

Table 1. Data of the problem

 6

Figure 3. Illustration of some data of the problem with 3 workstations (3nw =) and cycles split into 2

stationary stages and 2 forward steps (2ns =).

And the derived data are given in Table 2.

iJ Set of tasks to be processed at workstation i I∈ : { }:i jJ j J w i= ∈ =

I
jPT Set of immediate predecessors of task j J∈ : (){ }: ,I

jPT k J k j PR= ∈ ∈

T
jPT Set of all predecessors of task j J∈ :

I
j

T I T
j j k

k PT
PT PT PT

∈
= ∪ 

I
jST Set of immediate successors of task j J∈ : (){ }: ,I

jST k J j k PR= ∈ ∈

T
jST Set of all successors of task j J∈ :

I
j

T I T
j j k

k ST
ST ST ST

∈
= ∪ 

Table 2. Derived data

A solution of the problem consists of the following two interrelated decisions:

- The assignment of the tasks to the stationary stages in which the tasks are performed. Note

that, since there is only one workstation that can perform each task, the assignment of the tasks

to workstations is given.

- The scheduling of the tasks; i.e., the instants in which the tasks start to be processed. Note that,

in each workstation, there can be idle times between the processing of tasks due to precedence

relationships.

The objective is to minimise the cycle time, which in the level L1 (in which the number of

stationary steps is fixed) is equivalent to minimising the sum, for all the stationary stages, of the

maximum completion times of the tasks performed in each stationary stage. Thus, according to

Baybars’ nomenclature (Baybars, 1986), AWALBP-L1-1 is a type 2 ALBP.

 7

3. Pre-processing procedures

We have designed two pre-processing procedures for the problem. The first one defines a task

accessibility window more accurately than the accessibility window of its workstation. The

second one identifies the precedence relationships that will be satisfied without imposing them

explicitly. These procedures will be helpful for the MILP model (Section 4) and the

matheuristic (Section 5).

3.1. Pre-processing rule 1 - Accessibility windows of tasks

The existence of accessibility windows implies that a given task j J∈ must be performed

within the range ,
j jw wl r 

  . Additionally, the existence of precedence relationships between

tasks may imply that a given task has to be performed within a narrower range to allow the tasks

preceding or succeeding it to be performed within the accessibility windows of their

workstations. Additionally, as will be explained later, this range can be set even more accurately

if the movement scheme is taken into account.

This idea is illustrated with the following example. Let the pairs of tasks () (){ }1,2 , 2,3 PR⊆ ,

1 1w = , 2 3 2w w= = , 1 1 2 2 10r l r l− = − = , 1 2 2 1 4a a l l− = − + and 2 3 4a a− = , and suppose that

the first position in which task 1 is accessible to its workstation is equal to 1l (see Figure 4).

Thus, we can see that task 2 cannot start to be performed until it is at least in position 2 4l + (so

task 1 can be processed before task 2) and no further than position 2 6l + (so task 3 can be

processed later than task 2).

Figure 4. Example illustrating the task accessibility windows

 8

Generalizing the above example, the concept of accessibility window of a task emerges, which

is defined taking its preceding and succeeding tasks into account, as well as the workstation at

which the task must be processed. Equations (1) and (2) formulate the accessibility windows for

each task j J∈ , ,PR PR
j jlt rt   .

()()
if

max ,max otherwise

j

Ij
j

I
w j

PR
j PR

w k k j
k PT

l PT
lt

l lt a a
∈

 =∅
 

=   + −  
  

 j J∈ (1)

()()
if

min , min otherwise

j

Ij
j

I
w j

PR
j PR

w k j k
k ST

r ST
rt

r rt a a
∈

 =∅
 

=   − −  
  

 j J∈ (2)

The accessibility window of task j ,PR PR
j jlt rt   is defined taking into account only the

precedence relationships and the accessibility windows of the workstations. Additionally, the

movement scheme can be taken into account for better accuracy. Note that the first and last

positions in which task j can be processed throughout a cycle (for a given movement scheme)

may be greater than PR
jlt and/or smaller than PR

jrt , respectively. Thus, a narrower accessibility

window ,j jlt rt   for each task j J∈ is defined by Eqs. (3) and (4):

()
()()

, if

,max ,max otherwise

j

j
j

m I
w j

j m
w k k jk PT

j l PT
lt

j l lt a a

θ

θ
∈

 =∅
  =    + −       

 j J∈ (3)

()
()()

, if

,min ,min otherwise

j

j
j

M I
w j

j M
w k j kk ST

j r ST
rt

j r rt a a

θ

θ
∈

 =∅
 

=    − −      

 j J∈ (4)

(),m jθ γ ((),M jθ γ) is the smallest (greatest) position in which task j will be situated during

the cycle, according to the movement scheme, which is greater (smaller) than or equal to

position γ . They are defined by Eqs. (5) and (6), respectively, where n   (n  ) is the smallest

(greatest) integer value that is greater (smaller) than or equal to n , and jd σ is the position of

 9

task j during stationary stage σ , corresponding to the first workpiece that is totally or partially

visible in the first workstation at the start of each cycle (Eq. 7).

() ()(), minm
j jS

j d b d bσ σσ
θ γ γ

∈
 = + ⋅ −  j J∈ (5)

() ()(), maxM
j jS

j d b d bσ σσ
θ γ γ

∈
 = + ⋅ −  j J∈ (6)

1

1
j jd x a

σ

σ τ
τ

d
−

=

= + −∑ j J∈ ; Sσ ∈ (7)

Values of jlt and jrt (also values of PR
jlt and PR

jrt) are defined recursively. The code to

calculate them starts with those tasks without precedence tasks (base case), then with the tasks

that have 1 level of precedence tasks, followed by the tasks that have 2 levels of precedence

tasks, and so on.

3.2. Pre-processing rule 2 - Some precedence relationships do not need to be explicitly

imposed

For each (),j k PR∈ , let the following cases be discerned according to the relations between

the positions of the tasks on the workpiece and the workstations at which the tasks are

performed.

C1. () ()k j k ja a w w≥ ∧ > : The precedence relationship is fulfilled without the need of

imposing it explicitly.

C2. () ()k j k ja a w w≥ ∧ ≤ . Three subcases:

 C2.1. k j j ka a lt rt− < − : The precedence relationship cannot be satisfied.

 C2.2. j k k j j klt rt a a rt lt− ≤ − ≤ − : The precedence relationship has to be imposed.

 C2.3. k j j ka a rt lt− > − : The precedence relationship is fulfilled without the need of

imposing it explicitly.

C3. () ()k j k ja a w w< ∧ ≥ . Three subcases:

 C3.1. j k k ja a lt rt− < − : The precedence relationship is fulfilled without the need of

imposing it explicitly.

 10

 C3.2. k j j k k jlt rt a a rt lt− ≤ − ≤ − : The precedence relationship has to be imposed.

 C3.3. j k k ja a rt lt− > − : The precedence relationship cannot be satisfied.

C4. () ()k j k ja a w w< ∧ < : The precedence relationship cannot be satisfied.

Thus we can split set PR into the following disjoint sets 1PR , 2PR and 3PR :

· (){ }1 , : j k k j j kPR j k PR lt rt a a rt lt= ∈ − ≤ − ≤ − . The set of precedence relationships that have

to be imposed (cases C2.2 and C3.2).

· (){ }2 , : k j j kPR j k PR a a rt lt= ∈ − > − . The set of precedence relationships that are ensured

without the need of imposing them explicitly (cases C1, C2.3 and C3.1).

· (){ }3 , : k j j kPR j k PR a a lt rt= ∈ − < − . The set of precedence relationships that cannot be

satisfied (cases C2.1, C3.3 and C4).

Note that an instance is feasible if and only if 3PR =∅ . Thus, the feasibility of an instance is

checked during this pre-processing procedure.

4. Mathematical model

The indices, additional data and variables used in the model are presented in Tables 3, 4 and 5,

respectively.

i Index for the workstations
j , k Indices for the tasks
σ Index for the stationary stages
o Index for the order in which the tasks are performed

Table 3. Indices

 11

jΠ
Set of stationary stages in which task j J∈ is within the accessibility window of

its workstation, ,j jlt rt   : (){ }:j j j j jS d b lt d b rtσ σσ  Π = ∈ + ⋅ − ≤ 

jh σ

Value needed to ensure the precedence relationships, which is calculated as
follows: ()j j jh lt d bσ σ

 = −  . Thus, if j kh hσ σ= (j J∈ , { }\k J j∈ ,

j kσ ∈Π ∩Π) then tasks j and k are accessible to their respective workstations
on the same workpiece at stage σ ; otherwise, tasks j and k are accessible but
on different workpieces

Zlb

Lower bound of the objective function. It is the maximum value of the following
two: 1) optimal value of the problem relaxing the precedence relationships
constraints, which is obtained with the MILP model proposed in Calleja et al.
(2014) (this model is solved very quickly); 2) the lower bound obtained when
solving the MILP model described in Section 5.1 (which is a part of the proposed
matheuristic procedure, with its solution time limited to 5 seconds)

Zub
Upper bound on the objective function, which is a big enough value for Eqs. 14
and 15. In this work we use the value of the solution obtained with the proposed
matheuristic (see Section 5)

Table 4. Additional data

0Cσ ≥ Time needed for all workstations to complete the tasks assigned to them in
stationary stage Sσ ∈

{ }0,1jy σ ∈ 1 if task j J∈ is processed during stationary stage jσ ∈Π ; otherwise 0

0jt σ ≥
In the case that task j J∈ is processed during stationary stage jσ ∈Π , jt σ is the
instant in which task j commences to be processed (considering instant 0 as the
start of stationary stage σ); otherwise, jt σ is meaningless

{ }0,1j oq σ ∈
1 if task j J∈ is the -o th task (1,...,

jwo J= , where iJ is the cardinal of set iJ)

to be performed during stationary stage jσ ∈Π ; otherwise 0

Table 5. Variables

We propose the following MILP model for the problem stated in Section 2:

[]MIN Z
S
Cσ

σ∈

= ∑ (8)

Z

S
lb Cσ

σ∈

≤ ∑ (9)

1Z

S
C ubσ

σ∈

≤ −∑ (10)

1
j

jy σ
σ∈Π

=∑ j J∈ (11)

j j jC t p yσ σ σ≥ + ⋅ j J∈ ; jσ ∈Π (12)

 12

j j k k

j j j k k kns h y y ns h y yssssss
ssss

ss
∈Π ∈Π ∈Π ∈Π

   
⋅ ⋅ + ⋅ ≤ ⋅ ⋅ + ⋅        
∑ ∑ ∑ ∑ () 1,j k PR∈ (13)

()2Z
k j j j kt t p ub y yσ σ σ σ≥ + − ⋅ − − () 1,j k PR∈ ; :j k j kh hσ σσ ∈Π ∩Π = (14)

(), , 12Z
k j j j o k ot t p ub q qσ σ σ σ−≥ + − ⋅ − −

 i I∈ ; j J∈ ; { }\ik J j∈ ; j kσ ∈Π ∩Π ; 2,..., io J= (15)

1

w jJ

j o j
o

q yσ σ
=

=∑ j J∈ ; jσ ∈Π (16)

:
1

i j

j o
j J

q σ
σ∈ ∈Π

≤∑ i I∈ ; Sσ ∈ ; 1,..., io J= (17)

, , 1
: :i j i j

j o j o
j J j J

q qσ σ
σ σ

−
∈ ∈Π ∈ ∈Π

≤∑ ∑ i I∈ ; Sσ ∈ ; 2,..., io J= (18)

The objective function to minimise (8) is the sum, for all stationary stages, of the maximum

completion times of the tasks performed in each stage. Constraint (9) means that the solution

value is equal to or greater than the lower bound value. Constraint (10) leads to the returned

solution value being strictly better than the value of the solution found with the matheuristic;

therefore, the matheuristic solution is optimal if the model has no feasible solutions. Constraints

(11) ensure that each task is performed in exactly one stationary stage. Constraints (12)

guarantee that the time of any stationary stage is not less than the completion time of any task

performed during that stationary stage. Constraints (13) enforce the fulfilment of the precedence

relationships of the pairs of tasks in 1PR as follows. Note that
j

jy nss
s

s
∈Π

⋅ ≤∑ by definition.

Thus, at each cycle, predecessor task j is performed on a workpiece placed on the left of the

workpiece at which successor task k is performed (i.e,
j k

j j k kh y h yσ σ σ σ
σ σ∈Π ∈Π

⋅ < ⋅∑ ∑) or, if they

are performed on the same workpiece (i.e., if
j k

j j k kh y h yσ σ σ σ
σ σ∈Π ∈Π

⋅ = ⋅∑ ∑), then task j is

performed during a stationary stage no later than the stationary stage in which task k is

performed (i.e.,
j k

j ky yσ σ
σ σ

σ σ
∈Π ∈Π

⋅ ≤ ⋅∑ ∑). Thus, given 1(,)j k PR∈ , at each cycle either task j

is executed on a workpiece placed on the left of the workpiece on which k is performed (i.e,

j k

j j k kh y h yσ σ σ σ
σ σ∈Π ∈Π

⋅ < ⋅∑ ∑) or they are performed on the same workpiece (i.e., if

j k

j j k kh y h yσ σ σ σ
σ σ∈Π ∈Π

⋅ = ⋅∑ ∑) with j being performed at a stationary stage no later than the

stationary stage at which k is performed (i.e.,
j k

j ky yσ σ
σ σ

σ σ
∈Π ∈Π

⋅ ≤ ⋅∑ ∑). Constraints (14)

 13

ensure that each task k commences to be processed later than each precedent task j has been

processed if both tasks are performed during the same stationary stage σ (i.e., if 1k jy yσ σ= =);

otherwise, note that Zub is a big enough value to satisfy the constraints. Constraints (15) ensure

that the start time of the tasks of the same workstation and stationary stage is consequent to the

tasks order defined with variables j oq σ . Thus, if task k is performed immediately after task j

at the same workstation and stationary stage (i.e., , , 1 , , 1j o k oq qσ σ− = =), then (15) guarantee that

the start time of task k (i.e., kt σ) is not less than the finish time of task j (i.e., j jt pσ +).

Constraints (16-18) ensure an order (sequence) of tasks to be performed at each workstation and

stationary stage. Specifically, (16) enforce that each task is assigned to one and only one ordinal

position in the sequence of its workstation tasks and the stationary stage in which it is

processed. (17) guarantee that no more than one task is assigned to an ordinal position. Finally,

(18) impose that the sequence of tasks is filled without empty positions between the first and the

last occupied position. It is worth pointing out that constraints (12)-(18) are new in the

literature, since this is the first time that precedence relationships are taken into account in the

AWALBP.

We designed other alternatives for modelling the precedence constraints (Eq, 13), which are

based on two ways of modelling the precedence relationships for SALBP. One alternative is

based on Bowman (1960) as follows:

:j k j

j j k k k jh y y h y yτ τ σ τ τ τ
τ τ τ τ σ∈Π ∈Π ∈Π ≤

    
⋅ + ≤ ⋅ +           

∑ ∑ ∑ () 1,j k PR∈ , kσ ∈Π

Another alternative is based on Ritt and Costa (2015) as follows:

: :j k k j

j j k k k jh y y h y yτ τ τ τ τ τ
τ τ τ σ τ τ τ σ∈Π ∈Π ≤ ∈Π ∈Π ≤

      
⋅ + ≤ ⋅ +               

∑ ∑ ∑ ∑ () 1,j k PR∈ , kσ ∈Π

Slightly worse results were obtained with the alternative constraints in an initial computational

experiment (specifically, on average, 0.61% and 0.58% worse cycle times). Thus, the

computational experiment reports the results obtained using Eq. 13.

Since the processing times are integer, the objective function value is also integer. This allows

the absolute gap to be set at 1-ε (where 610ε −=) in CPLEX when solving the model and thus

the computational time may be reduced.

 14

5. Matheuristic procedure

As we explained, the matheuristic procedure is applied before the MILP model proposed in

Section 4. The flowchart of the overall solution scheme is illustrated in Figures 5 (pre-process),

6 (matheuristic) and 7 (MILP model).

Figure 5. Flowchart of the pre-process procedure

The pre-processing procedures not only reduce the size of the instance but also detect whether

the instance is infeasible. In this case, the solution process stops; otherwise, the matheuristic is

applied and a solution is obtained.

Start

Pre-process 1. Calculate [ltj, rtj] of
each task (Section 3.1)

Pre-process 2. Calculate sets PR1,
PR2, PR3 (Section 3.2)

PR3= Ø?

Instance is
infeasible

Stop

Instance is
feasible

Matheuristic
(Figure 6)

True False

 15

Figure 6. Flowchart of the matheuristic procedure

The matheuristic (which will be explained in detail later) starts calculating, in two steps, an

initial solution (initial solution phase). In the first step, the assignment of tasks to stationary

stages is decided with a MILP model. In the second step, the scheduling of the tasks to be

performed at each pair (workstation, stationary stage) is decided with a greedy heuristic and a

local search procedure. Then, iteratively, a neighbour solution is calculated (improvement

solution phase). Specifically, a neighbour assignment of tasks is obtained and the new

scheduling of tasks is calculated again with the greedy heuristic and the local search procedure.

If the value of the best solution obtained with the matheuristic is equal to the lower bound, then

its optimality is demonstrated and the solution procedure stops. Otherwise, a MILP model is

solved to calculate a better solution. There are four possible outcomes when trying to solve the

model (Figure 7): 1) the infeasibility of the model is demonstrated and therefore the

matheuristic solution is optimal, 2) the infeasibility of the model is not demonstrated but a better

Start

Use MILP to assign tasks to
stationary stages (Section 5.1)

For each stationary stage, use a greedy
heuristic and local search to schedule the
tasks at each workstation (Section 5.2)

End condition?

Return the solution,
which is optimal

Stop MILP
(Figure 7)

True

False
Obtain a neighbour

assignment of tasks to
stationary stages (Section 5.3)

Best solution value
> lower bound?

False

True

Initial solution phase

Improvement solution phase

 16

solution is not found, 3) a better solution is found but its optimality is not demonstrated, and 4)

a (demonstrated) optimal solution is found.

Figure 7. Flowchart of the possible outcomes of the MILP model

In designing the matheuristic procedure, the quality of the obtained solutions and the computing

time have been taken into account. The efficiency of this procedure is important because it may

be used in future research into AWALBP-L1-M and upper levels of AWALBP.

The main framework of the proposed matheuristic is based on the simulated annealing

metaheuristic (SA). SA has been applied successfully to solve different combinatorial

optimisation problems (Nikolaev and Jacobson, 2010). For instance, in García-Villoria et al.

(2012), 13 procedures are compared to solve the response time variability problem; the best one

is based on SA. This metaheuristic is also used with successful results to solve assembly line

Start

Solve the model proposed in
Section 4.

A better solution
is found?

Stop

False

False

True

Model is
feasible?

Return the matheuristic
solution, which is optimal

Return the matheuristic
solution, which is feasible

False

Found solution
is optimal?

Return the model solution,
which is feasible

Return the model solution,
which is optimal

True

True

 17

balancing problems (Battaïa and Dolgui, 2013). In particular, SA has been used to solve

AWALBP (Calleja et al., 2016; García-Villoria et al., 2015).

As shown in Figure 6, SA starts from an initial solution. Then, iteratively, a neighbour solution

selected at random from the neighbourhood of the current solution is considered. Moves to non-

worse neighbours are always accepted. On the other hand, in order to escape from local optima,

moves to worse neighbours are accepted with a certain probability that depends on the quality of

the neighbour and on a parameter called temperature (t), whose value is dynamically decreased.

In our procedure, the neighbourhood of a solution is not defined in the space of complete

solutions but in the space of the assignment of tasks to stationary stages (Section 5.3). To obtain

an initial assignment of tasks to stationary stages, TtoST, a MILP model is used (Section 5.1).

And for a given TtoST a heuristic is applied to set the scheduling of the tasks, SchT (Section

5.2). Thus, the pair (TtoST, SchT) defines a complete solution. The pseudocode of the

matheuristic procedure is detailed in Figure 8, where (),Z TtoST SchT returns the Z value (Eq.

8) of the solution (TtoST, SchT).

The matheuristic has 4 parameters (0t , ft , itt and α , see Figure 8). To set the values of these

parameters, we have used CALIBRA (Adenso-Díaz and Laguna, 2006). CALIBRA is an

automatic tool based on Taguchi’s fractional factorial experimental design and local search for

fine-tuning parameters of algorithms. The training set for the fine-tuning has 60 representative

instances. The way in which they are generated is explained in Section 6.1. The values obtained

with CALIBRA are the following: 0 260t = , 0.01ft = , 130itt = and 0.99α = . The obtained

parameter values seem suitable for the convergence of the matheuristic. For example, Figures 9

and 10 show the values of the best solution found every 1,000 iterations of the matheuristic

when solving a test instance that requires little computing time (15.04 s, Figure 9) and an

instance that requires much more computing time (798.16 s, Figure 10).

 18

1. *TtoST = Calculate an assignment of tasks to stationary stages (Sect. 5.1)
2. *SchT = Given *TtoST , calculate the scheduling of tasks (Sect. 5.2)
3. Set the values of parameters:
 0t (initial temperature)
 ft (final temperature)
 itt (number of iterations in which the temperature remains equal)
 α (cooling factor): 0 1α< <
4. () ()* *, ,cTtoST cSchT TtoST SchT=

5. For (0t t= ; () ()()* *, Z
ft t Z TtoST SchT lb≥ ∧ > ; t tα= ⋅) do:

6. For (1i = ; () ()()* *, Zi itt Z TtoST SchT lb≤ ∧ > ; 1i i= +) do:

7. nTtoST = Select a neighbour of cTtoST (Sect. 5.3)
8. nSchT = Given nTtoST , calculate the scheduling of tasks (Sect 5.2)
9. () (), ,Z nTtoST nSchT Z cTtoST cSchT∆ = −
10. If (0∆ ≤) then () (), ,cTtoST cSchT nTtoST nSchT=
11. otherwise () (), ,cTtoST cSchT nTtoST nSchT= with probability

()exp t−∆
12. End if
13. If () ()* *, ,Z cTtoST cSchT Z TtoST SchT< then

() ()* *, ,TtoST SchT cTtoST cSchT= End if

14. End for
15. End for
16. Return ()* *,TtoST SchT

Figure 8. Framework of the proposed matheuristic

Figure 9. Convergence of a quick to solve instance

 19

Figure 10. Convergence of a slow to solve instance

In any case, although the training set contains instances of different characteristics, it would be

advisable to tune the parameters when dealing with other scenarios for a potentially better

performance.

Section 5.1. Initial assignment of tasks to stationary stages

To calculate the initial assignment of tasks to stationary stages we apply a MILP model with

variables Cσ and jy σ (recall Section 4), the objective function formulated by Eq. (8), the

constraints corresponding to Eqs. (9), (11), (13), and the following Eq. (12’):

:i j

j j
j J

C p yσ σ
σ∈ ∈Π

≥ ⋅∑ i I∈ ; Sσ ∈ (12’)

This model (contrary to what happens in the case of the model proposed in Section 4) does not

take into account the potential idle times (due to precedence relationships) between the

processing of the tasks. Note that variables jt σ and j oq σ do not figure in this model, which,

therefore, does not include Eqs. (14) to (18). We use this simplified model instead of the

original one because no (feasible) solutions can be obtained with the latter for instances with

more than 200 tasks.

Although the model proposed in this subsection is simpler than the model shown in Section 4, it

is still very hard to solve optimally for instances with a non-small number of precedence

relationships (see Section 6.2). On the other hand, in order to have an efficient overall

matheuristic procedure, the initial assignment should be calculated quickly. Thus, the solution

of the model is limited by 5 computing seconds (with an absolute gap equal to 1-ε), which is

 20

enough time to obtain a feasible solution even for the biggest instances. This is justified by the

following two reasons:

- This initial assignment of tasks to stationary stages is a heuristic step of the matheuristic, so

obtaining the optimal solution of the model does not seem to be critical.

- Moreover, a previous computational experiment shows that the quality of the best solution

found by the matheuristic is quite robust with respect to the initial assignment.

Section 5.2. Scheduling of tasks

For a given assignment of tasks to stationary stages, we have to schedule the tasks for each

stationary stage. Note that the completion time of each stationary stage is independent of the

completion times of the other stationary stages. Thus, the problem of deciding the scheduling of

tasks in each stationary stage can be solved independently.

The scheduling problem to solve for each stationary stage is equivalent to minimise the duration

of a project with limited resources, where tasks represent activities, workstations represent

resources and the time to process all tasks (in that stationary stage) is the project horizon. To

solve it, the well-known heuristic based on the disjunctive graph model representation (see Roy

and Sussmann, 1964) is used and then a local search (LS) procedure is applied to the obtained

solution.

The heuristic schedules the tasks as follows. Iteratively, for each pair a and b of activities

(tasks) that share the same resource (workstation), the values abς and baς are calculated, where

jk j j kt p T Tς = + + − , jt and jT are the minimum and maximum time instant, respectively, in

which the activity can start to be performed, and T is the minimum project horizon so that all

activities can be performed. At each iteration, let *a and *b be the pair of activities with the

biggest jkς value so the addition of the arc ()* *,b a would not create a cycle in the precedence

graph; then arc ()* *,b a is added. The heuristic stops when, for each resource i , the precedence

relationships between activities that share resource i define a sequence (that is, an order of the

activities).

The proposed LS procedure uses a non-exhaustive exploration strategy (i.e., at each iteration the

first neighbour that improves the current solution is selected) and uses a neighbourhood

structure based on the critical end transpose (CET) neighbourhood (Nowicki and Smutnicki,

 21

1996). The CET neighbourhood was originally proposed as part of a tabu search procedure for

solving the job shop problem. Here we adapt the CET neighbourhood as follows. The tasks of a

critical (longest) path can be decomposed into blocks. A block is defined as a sequence of

activities that share a resource connected by the longest chain. Let SA be the set of arcs that

connect two blocks of a critical path. For each arc (),a b SA∈ , a neighbour is generated by

exchanging the positions in the sequence of activity a and of any immediately previous activity

that shares its resource (obviously, only if the original precedence relationships are fulfilled).

For instance, let (), SAβ κ ∈ and (), SAα β ∉ , w w wα β κ= ≠ (i.e., activities α and β share the

same resource, but activity κ does not), and (), PRα β ∉ and (), PRβ α ∉ (i.e., there are no

precedence relationships between tasks α and β). Then suppose that activity α is immediately

scheduled before activity β . Thus, a neighbour is obtained by exchanging the positions of

activities α and β .

Another way of scheduling the tasks is by solving a MILP model. Specifically, the model

proposed in Section 4 could be used, in which the values of variables jy σ are set according to

the given assignment of tasks to stationary stages. However, preliminary experiments showed

that this model is hard to solve and too much computing time is required even for finding

feasible solutions.

Section 5.3. Neighbourhood of an assignment of tasks to stationary stages

Given a current assignment of tasks to stationary stages (TtoST), let jTtoST be the stationary

stage at which task j is assigned. A neighbour of TtoST is obtained with the following

movement: the assignment of one task : 2jj J∈ Π ≥ is changed to one stationary stage

{ }\j jTsoSTs ∈Π so that the precedence relationships are fulfilled. Thus, an upper bound of

the size of the neighbourhood is nt ns⋅ . Note that because task j will be accessible to its

workstation and the precedence relationships can be fulfilled, all obtained neighbours are

feasible.

6. Computational experiment

All MILP models were solved with IBM ILOG CPLEX 12.6. The matheuristic was

implemented in Java SE 1.6.21. The experiments were run on a PC 3.33 GHz Pentium Intel

Core i5 with 4 GB RAM.

 22

Section 6.1 describes the training and test instances solved in the computational experiment.

Section 6.2 analyses the obtained results.

6.1. Test and training instances

Since the AWALBP with precedence relationships between tasks has not been dealt with in the

literature, there is no benchmark set of instances. Calleja et al. (2013, 2014, 2016) used 1,200

test instances, available at https://www.ioc.upc.edu/EOLI/research/, to test their procedures for

AWALBP-L2-1 without precedences between tasks. In this work, test and training instances are

generated for AWALBP-L1-1 with precedence relationships based on those 1,200 AWALBP-

L2-1 instances, in which the following data are added: precedence relationships and a

movement scheme.

A part of the data that define the 1,200 AWALBP-L2-1 instances is generated as follows,

(where []U ⋅ refers to the discrete uniform distribution): []0 11,40b U= , { }0 0, 1b b b∈ + ,

[]5,40nw U= , ()11 1il i= ⋅ − and 10i ir l= + (i I∈), []50,1000nt U= , []1,jw U nw= ,

[]00,ja U b= and []100,150jp U= (j J∈). For more details, see Calleja et al. (2013).

From each of the existing 1,200 instances, a new set of instances is generated with precedence

characteristics that may appear in the assembly of PCBs. The values of 0b , b , nw , il , ir , nt ,

jw , ja and jp in each new instance are equal to those of its original instance. The precedence

relationships are added with the following characteristics. For each task j J∈ , the total number

of immediate successors of task j is not greater than 4 (i.e., 4I
jST ≤), there is at most one

level of successors (i.e., if I
jST ≠ ∅ then :I I

j kk ST ST∀ ∈ =∅) and each task j has at most one

(immediate) predecessor (i.e., 1I
jPT ≤). Moreover, there can be precedence relationships only

between very close tasks; specifically, if (),j k PR∈ then 1j ka a− ≤ . The total number of

precedence relationships is 0.02 nt⋅ ; therefore, the order strength value is ()0.04 1nt − . Order

strength (OS) is a well-known metric of the density of the precedence graph that is defined as

()2 1T
j

j J
OS PT nt nt

∈

= ⋅ ⋅ −∑ . Finally, the movement scheme is selected from 10 movement

schemes generated at random. The selection criterion is the lowest number of forward steps; in

case of a tie, it is resolved in favour of the less irregular solution (the irregularity is quantified

as
2

S

b
nss

s

δ
∈

 − 
 

∑). A low number of stationary stages tends to favour evenly balanced

 23

workloads in each stationary stage (moreover, it reduces the acceleration and deceleration times

corresponding to the forward steps of the line). Each random movement scheme is generated as

follows. The initial shift x is selected at random (with equal probability) between 0 and 1b − .

The number of forward steps, ns , and their lengths, σδ , are set as follows. Iteratively, until

S
bσ

σ

δ
∈

=∑ , the length of the current forward step σ is selected at random (with equal

probability) between 1 and the minimum of these values:
1

1
l

l
b

σ

δ
−

=

−∑ and the maximum length of

σδ so each task j can be accessible in its workstation. Let this new set of 1,200 instances be

called PCB test set.

Additionally, another set of test instances with bigger OS is generated. From each of the

original AWALBP-L2-1 instances, 3 new test instances are generated with different OS values:

0.1OS ≈ , 0.4OS ≈ and 0.8OS ≈ . The movement scheme is generated in the same way as for

the PCB test set instances. The algorithm for adding precedence relationships is shown in Figure

11, where ()OS PR is the OS value corresponding to precedences PR . The algorithm is based

on randomly adding an immediate precedence relationship so that it does not generate cycles in

the precedence graph and it allows at least one feasible movement scheme (i.e., 3PR =∅). Let

this set of 3,600 instances be called general test set.

1. Let OS be the desired OS ( { }0.1,0.4,0.8OS∈)
2. PR =∅
3. { }()\C J J j= × : Set of potential pairs of precedence relationships

4. While () () ()OS PR OS C< ∧ ≠ ∅ do:

5. ()ˆˆ,j k = Select at random an element from C ; (){ }ˆˆ\ ,C C j k=

6. (){ }ˆˆ,PR PR j k= ∪ ; Calculate PR
jlt and PR

jrt for all j J∈

7. If (3PR ≠ ∅) ˅ (precedence graph defined by PR is cyclic)

 then: (){ }ˆˆ\ ,PR PR j k=

 else: Remove redundant pairs of precedence relationships from PR
 End if
8. End while
9. Return PR

Figure 11. Algorithm for generating precedence relationships

Finally, a training set of 60 instances is used to fine-tune the matheuristic procedure. This set is

generated in the same way as the instances of the general test set.

 24

All sets of instances are available at https://www.ioc.upc.edu/EOLI/research/.

6.2. Computational results

To solve each test instance, the maximum overall computing time was limited to 1 hour. The

following solution scheme is applied. First, the instance is pre-processed (Section 3) and then a

solution is calculated with the proposed matheuristic (Section 5). If the Z value of the

matheuristic solution is equal to Zlb , then its optimality is demonstrated. Otherwise, the

proposed MILP model (Section 4) is solved within the remaining computing time. Section 6.2.1

discusses the solutions obtained without the MILP model. Section 6.2.2 discusses the final

solutions provided by the overall solution scheme (i.e., after solving the MILP model).

6.2.1. Results of the matheuristic procedure

Table 6 shows the average Z value of the obtained solutions (Z), the average gap of the

solutions with respect to Zlb (Gap), the percentage of times that the gap is equal to 0 (Gap=0)

(i.e., percentage of proven optimal solutions) and the average computing time (T), in seconds.

 Z Gap Gap=0 T (s)

PCB test set 5436.03 0.03% 99.50% 0.84
General test set 7614.08 19.53% 3.64% 88.81

Table 6. Results obtained by the proposed matheuristic

Our matheuristic procedure performs very well when solving the PCB instances. Except for 6

instances, proven optimal solutions are, on average, found in less than 1 computing second. On

the other hand, general instances are harder to solve. The average gap for the general test

instances is 19.53%, and 3.64% proven optimal solutions are obtained. One reason for this

difference between average gaps could be that the Zlb values of the general instances are less

accurate. Note that Zlb is calculated assuming that there are no idle times between tasks.

Therefore, as PCB instances have fewer precedence relationships than the general instances

(and, therefore, less total idle time in the optimal solutions), the Zlb values of the PCB instances

may be expected to be more accurate.

To ascertain if the number of precedence relationships influences the gap, Table 7 shows the

results of the general instances split by their order strength (OS). Additionally, the standard

deviations of the Z values, gaps and computing times are shown in parenthesis. Effectively, the

greater the OS , the greater the gap and fewer proven optimal solutions are obtained. Moreover,

Table 7 shows, as could be expected, that the average Z is lower when the instance is less

 25

constrained (i.e., it has fewer precedence relationships). The computing time is quite similar

regardless of the OS .

 Z Gap Gap=0 T (s)

.0 1OS ≈ 6070.73
(4427.47)

10.21%
(11.07) 8.58% 88.63

(158.25)

.0 4OS ≈ 6902.17
(4350.01)

19.89%
(13.83) 2.33% 81.51

(124.41)

.OS 0 8≈ 9868.62
(5640.74)

28.50%
(11.01) 0.00% 96.28

(265.91)

Table 7. Results of the general instances according to their order strength

Next, the performance of the matheuristic according to the other characteristics of the instances

is analysed. The focus is on the general instances, since the matheuristic performs very well for

all types of PCB instances. Tables 8, 9 and 10 show, respectively, the results of the test

instances split by the length of the workpieces (0b), the number of workstations (nw) and the

number of tasks (nt). For each characteristic, the number of instances in each division is the

same.

0b Z Gap Gap=0 T (s)

011 15b≤ ≤ 6315.30
(4826.08)

11.15%
(12.12) 10.50% 210.65

(422.41)

016 20b≤ ≤ 6980.34
(4984.10)

14.99%
(13.04) 5.33% 105.24

(121.44)

021 25b≤ ≤ 7428.31
(4779.08)

18.05%
(13.14) 2.83% 75.48

(70.02)

026 30b≤ ≤ 7888.56
(5137.84)

21.58%
(13.61) 2.00% 56.90

(49.43)

031 35b≤ ≤ 8280.34
(5026.37)

24.46%
(13.49) 1.00% 45.45

(30.07)

036 40b≤ ≤ 8791.66
(5486.31)

26.96%
(13.13) 0.17% 39.11

(27.21)

Table 8. Results of the general test instances according to the length of the workpieces

Instances with larger workpiece lengths have greater average gaps and fewer proven optimal

solutions. On the other hand, the narrower the workpiece, the greater the computing time spent

by the matheuristic, as well as the increase in its deviation.

 26

nw Z Gap Gap=0 T (s)

5 10nw≤ ≤ 12139.54
(6579.84)

10.74%
(11.34) 10.00% 154.97

(358.87)

11 20nw≤ ≤ 7653.37
(3876.50)

17.90%
(13.46) 2.33% 76.49

(76.49)

21 30nw≤ ≤ 5798.28
(2924.63)

23.35%
(13.64) 1.67% 64.04

(64.04)

31 40nw≤ ≤ 4865.15
(2491.88)

26.13%
(13.02) 0.56% 59.73

(59.73)

Table 9. Results of the general test instances according to the number of workstations

Instances with larger number of workstations have greater average gaps and fewer proven

optimal solutions. With a small number of workstations, the computing time and its deviation

are clearly greater than those of instances with a higher number of workstations.

nt Z Gap Gap=0 T (s)

50 200nt≤ ≤ 3093.24
(1465.99)

29.06%
(13.39) 0.97% 17.04

(8.85)

201 400nt≤ ≤ 5613.88
(2719.42)

22.59%
(13.34) 2.22% 36.71

(20.37)

401 600nt≤ ≤ 7687.11
(3605.11)

18.49%
(12.95) 2.50% 66.44

(40.73)

601 800nt≤ ≤ 9895.35
(5102.43)

15.36%
(12.85) 4.31% 120.09

(142.49)

801 1000nt≤ ≤ 11780.94
(5912.11)

12.15%
(11.91) 8.19% 203.76

(375.00)

Table 10. Results of the general test instances according to their number of tasks

Regarding the number of tasks, it may seem surprising that the gap (together with its deviation

and the number of proven optimal solutions) improves when the number of tasks increases.

Several solutions were analysed to explain the phenomenon, leading to the following

observations. Instances with few tasks have greater idle times in the workstations (due to the

precedence relationships). In contrast, in instances with a great number of tasks the idle times

are smaller because there are more possible tasks to fill potential idle times. Thus, the Zlb

values may be more accurate with a larger number of tasks (recall that the calculation of Zlb

assumes that there are no idle times). On the other hand, the computing time and its deviation

increase with the number of tasks.

6.2.2. Results of the MILP model

The MILP model is applied to the instances in which the solutions found with the matheuristic

have not been proven to be optimal (see Table 6): 0.50% (6) of the PCB (6) and 96.36% (3469),

 27

of the general instances, respectively. CPLEX can return one of the following four responses

(see Figure 7): 1) the model is proven to be infeasible and, thus, the optimality of the

matheuristic solution is demonstrated; 2) a better solution with demonstrated optimality is

found; 3) a better solution whose optimality is not demonstrated is found; and 4) no better

solution is found. However, when the aforementioned 6 PCB instances (which have more than

800 tasks) or general instances with more than 200 tasks are solved, in most cases CPLEX does

not demonstrate that the model is infeasible, does not find any better solution, or aborts due to

memory problems. Thus, we will focus on the general instances with no more than 200 tasks.

According to Table 10, the model was solved for 99.03% (713) of general instances with no

more than 200 tasks. Table 11 shows the number of times that CPLEX demonstrates that the

model is infeasible (#Inf), CPLEX finds a demonstrated optimal solution (#Opt), CPLEX finds a

feasible (non-demonstrated optimal) solution (#Feas) and CPLEX does not find a better

solution (#NBS). The average gap with respect to the lower bound calculated by CPLEX (which

is equal to or better than Zlb) is given in parenthesis.

#Inf #Opt #Feas #NBS

0 450 66 (4.87%) 197 (18.75%)

Table 11. Results obtained with the MILP model for 713 general instances with no more than 200 tasks

After the solution of the model, 450 new optimal solutions of the general instances are found.

However, even for the instances with the lowest number of tasks whose optimal solution was

not found with the matheuristic, there are 263 (36.89%) instances that cannot be solved

optimally with MILP.

Finally, since several better lower bounds are calculated, the best lower bounds are compared

with the objective function values obtained with the matheuristic for the 720 general instances

with no more than 200 tasks. Recall that the average gap with respect to Zlb is 29.06% (see

Table 10). On the other hand, the average gap with respect to the improved lower bounds is

5.58% and, thus, the matheuristic procedure performs well for this type of instances. Therefore,

this seems to yield more evidence that Zlb in general may not be very accurate and the

matheuristic may perform well for all types of instances.

7. Conclusions

This paper deals with the case of the AWALBP-L1-1 with a single-model line in which there

are precedence relationships between tasks. Consequently, idle times between tasks may appear

 28

due to the precedences. Thus, the scheduling of tasks in each workstation influences the

production rate of the assembly line together with the assignment of tasks to stationary stages.

Calleja et al. (2014) proposed a MILP to solve an AWALBP-L1-1 case without precedence

relationships and optimal solutions were found very quickly. On the other hand, the presence of

precedence relationships complicates the formulation and solution of the problem and new

procedures have been designed for solving this case. Specifically, two pre-processing

procedures, a MILP model and a matheuristic procedure based on simulated-annealing (which

includes another MILP model, a heuristic and a local search) have been designed and tested by

means of a large computational experiment.

The AWALBP-L1-1 instances with few precedence relationships (1,200 PCB instances) are

solved very efficiently, regardless of other characteristics such as workpiece length, number of

workstations and number of tasks; specifically, 99.5% proven optimal solutions are obtained

with our solution scheme.

The difficulty of the problem increases with the number of precedence relationships. However,

our procedure still performs well for the 3,600 general instances. The average gap between the

solutions found and the best calculated lower bound of the general instances with less than 200

tasks is 5.58%. The average gap of the other general instances is greater but the computational

experiments show that this may be because the lower bound is less accurate.

In the design of the procedure for solving the problem not only the quality of the solutions but

also the limitations concerning computing time have been taken into account, because the

prospects are to use or adapt pre-processing and matheuristic procedures as components of

algorithms for solving AWALBP-L1-M and upper levels of the AWALBP.

Concerning the AWALBP-L1 with precedence constraints, we envisage several research lines.

Other metaheuristics different to SA (such as tabu search, genetic algorithms or particle swarm

optimization) are worth exploring. On the other hand, the present work can be extended to

AWALBP-L1-M; for instance, another step can be introduced in the proposed matheuristic in

which tasks are assigned to workstations. Another line of research is the solution of AWALBP-

L1 with a mixed-model line together with the model sequencing problem that may emerge.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the anonymous reviewers for their valuable

comments, which have helped to improve the quality of this paper.

 29

REFERENCES

Abdullah Make, M.R., Ab. Rashid, M.F.F., Razali, M.M., 2017. A review of two-sided

assembly line balancing problem. International Journal of Advanced Manufacturing

Technology , 89, 1743-1763.

Adenso-Díaz, B., Laguna, M., 2006. Fine-tuning of algorithms using fractional experimental

designs and local search. Operations Research, 54, 99-114.

Akpinar, S., Elmi, A., Bektaş, T., 2017. Combinatorial Benders cuts for assembly line balancing

problems with setups. European Journal of Operational Research, 259, 527-537.

Battaïa, O., Dolgui, A., 2013. A taxonomy of line balancing problems and their solution

approaches. International Journal of Production Economics, 142, 259-277.

Bautista, J., Pereira, J., 2011. Procedures for the time and space constrained assembly line

balancing problem. European Journal of Operational Research, 212, 473-481.

Baybars, I., 1986. A survey of exact algorithms for the simple assembly line balancing problem.

Management Science, 32, 909-932.

Becker, C., Scholl, A., 2006. A survey on problems and methods in generalized assembly line

balancing. European Journal of Operational Research, 168, 694-715.

Bentaha, M.L., Battaïa, O., Dolgui, A., Hu, S.J., 2015. Second order conic approximation for

disassembly line design with joint probabilistic constraints. European Journal of

Operational Research, 247, 957-967.

Borba, L., Ritt, M., Miralles, C., 2018. Exact and heuristic methods for solving the robotic

assembly line balancing problem. European Journal of Operational Research, doi:

10.1016/j.ejor.2018.03.011.
Bowman, E.H., 1960. Assembly-line balancing by linear programming. Operations Research, 8,

385-389.

Boysen, N., Fliedner, M., Scholl, A., 2007. A classification of assembly line balancing

problems. European Journal of Operational Research, 183, 674-693.

Boysen, N., Fliedner, M., Scholl, A., 2008. Assembly line balancing: Which model to use

when? International Journal of Production Economics, 111, 509-528.

Calleja, G., Corominas, A., García-Villoria, A., Pastor, R., 2013. A MILP model for the

accessibility windows assembly line balancing problem (AWALBP). International Journal

of Production Research, 51, 3549-3560.

Calleja, G., Corominas, A., García-Villoria, A., Pastor, R., 2014. Combining matheuristics and

MILP to solve the accessibility windows assembly line balancing problem level 2

(AWALBP-L2). Computers & Operations Research, 48, 113-123.

 30

Calleja, G., Corominas, A., García-Villoria, A., Pastor, R., 2016. Hybrid metaheuristics for the

accessibility windows assembly line balancing problem level 2 (AWALBP-L2). European

Journal of Operational Research, 250, 760-772.

Capacho, L., Pastor, R., Dolgui, A., Gunshinskaya, O., 2009. An evaluation of constructive

heuristic methods for solving the alternative subgraphs assembly line balancing problem.

Journal of Heuristics, 15, 109-132.

Fathi, M., Álvarez, M.J., Rodríguez, V., 2017. A new heuristic-based bi-objective simulated

annealing method for U-shaped assembly line balancing. European Journal of Industrial

Engineering, 10, 145-169.

Fleszar, K., 2017. A new MILP model for the accessibility windows assembly line balancing

problem level 2 (AWALBP-L2). European Journal of Operational Research, 259, 169-174.

García-Villoria, A., Corominas, A. Pastor, R., 2012. Pure and hybrid metaheuristics for the

response time variability problem. Chapter 10 in Meta-Heuristics Optimization Algorithms

in Engineering, Business, Economics, and Finance, ed. P. Vasant, IGI Global.

García-Villoria, A., Corominas, A., Pastor, R., 2015. Heuristics and simulated annealing

procedures for the accessibility windows assembly line balancing problem level 1

(AWALBP-L1). Computers & Operations Research, 62, 1-11.

Gaudlitz, R., 2004. Optimization algorithms for complex mounting machines in PC board

manufacturing. Diploma thesis, Technical University of Darmstadt, Germany.

Koltai,T., Kalló, N., 2017. Analysis of the effect of learning on the throughput-time in simple

assembly lines. Computers and Industrial Engineering, 111, 507-515.

Krishnan, K.K., Almaktoom, A.T., Udayakumar, P., 2016. Optimisation of stochastic assembly

line for balancing under high variability. International Journal of Industrial and Systems

Engineering, 22, 440-465.

Martin, R., 2002. Modeling an optimization problem from the automated manufacting of PC

boards. Diploma thesis, Universität Konstanz, Germany.

Moreira, M.C.O., Cordeau, J-F., Costa, A.M., Laporte, G., 2015. Robust assembly line

balancing with heterogeneous workers. Computers & Industrial Engineering, 88, 254-263.

Morrison, D.R., Sewell, E.C., Jacobson, S.H., 2014. An application of the branch, bound, and

remember algorithm to a new simple assembly line balancing dataset. European Journal of

Operational Research, 236, 403-409.

Müller-Hannemann, M., Weihe, K., 2006. Moving policies in cyclic assembly-line scheduling.

Theoretical Computer Science, 351, 425-436.

Nikolaev, A.G., Jacobson, S.H., 2010. Simulated Annealing. Chapter 1 in Handbook of

Metaheuristics, Eds. Gendreau and Potvin, Springer, 2nd edition.

Nowicki, E., Smutnicki, C., 1996. A fast taboo search algorithm for the job shop problem.

Management of Science, 42, 797-813.

 31

Otto, A., Battaïa, O., 2017. Reducing physical ergonomic risks at assembly lines by line

balancing and job rotation: A survey. Computers and Industrial Engineering, 111, 467-480.

Quyen, N.T.P., Chen, J.C., Yang, C.-L., 2017. Hybrid genetic algorithm to solve resource

constrained assembly line balancing problem in footwear manufacturing. Soft Computing,

21, 6279-6295.

Ritt, M., Costa, A.M., 2015. Improved integer programming models for simple assembly line

balancing and related problems. International Transactions in Operational Research, 25,

1345-1359.

Roy, B., Saussmann, B., 1964. Les problèmes d'ordonnancement avec contraintes disjonctives.

Note DS No. 9 bis, SEMA, Paris.

Scholl, A., Becker, C., 2006. State-of-the-art exact and heuristic solution procedures for simple

assembly line balancing. European Journal of Operational Research, 168, 666-693.

Sewell, E.C., Jacobson, S.H., 2012. A branch, bound, and remember algorithm for the simple

assembly line balancing problem. INFORMS Journal on Computing, 24, 433-442.

Stille, W., 2008. Solution techniques for specific bin packing problems with applications to

assembly line optimization. PhD thesis, Technical University of Darmstadt, Germany.

Tazari, S., 2006. Algorithmic approaches for two fundamental optimization problems:

workload-balancing and planar steiner trees. Diploma thesis, Technical University of

Darmstadt, Germany.

Zelter, L., Aghezzaf, E.-H., Limère, V., 2017. Workload balancing and manufacturing

complexity levelling in mixed-model assembly lines. International Journal of Production

Research, 55, 2829-2844.

 32

