120 research outputs found

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    06141 Abstracts Collection -- Dynamically Reconfigurable Architectures

    Get PDF
    From 02.04.06 to 07.04.06, the Dagstuhl Seminar 06141 ``Dynamically Reconfigurable Architectures\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    HTPCP: GNSS-R multi-channel correlation waveforms post-process solution for GOLD-RTR Instrument

    Get PDF
    Global navigation satellite system reflectometry (GNSS-R) remote sensing is a new remote sensing technique of satellite navigation application. Essentially, it entails a method of remote sensing that receives and processes microwave signals reflected from various surfaces to extract useful information about those surfaces. The GPS open-loop differential real-time receiver (GOLD-RTR) instrument was designed by the ICE (IEEC-CSIC)1 to gather global positioning satellite system signals after they have been reflected from suitable surfaces (e.g. sea, ice and ground). In this paper, the problem of real-time postprocessing design is addressed in order to process the multichannel cross correlations waveform. This work is to realize real time single correlation integration algorithm (SCI) on the proposed novel platform, named as Heterogeneous Transmission and Parallel Computing Platform (HTPCP). The numerical results show that system throughput can reach up to about 1.669MB/sec. Comparing with the state-of-the-art serial SW solution, the processing time of SCI algorithm can improve about 19%. The coherent integration time can improve 8.17 times comparing with the conventional Symmetric Multiprocessing (SMP). And the parallel computing speed of HTPCP outperforms SMP

    Networks on Chips: From Research to Products

    Get PDF
    Research on Networks on Chips (NoCs) has spanned over a decade and its results are now visible in some products. Thus the seminal idea of using networking technology to address the chip-level interconnect problem has been shown to be correct. Moreover, as technology scales down in geometry and chips scale up in complexity, NoCs become the essential element to achieve the desired levels of performance and quality of service while curbing power consumption levels. Design and timing closure can only be achieved by a sophisticated set of tools that address NoC synthesis, optimization and validation

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore