
Networks on Chips:
from Research to Products

G. De Micheli�, C. Seiculescu�, S. Murali§ �, L. Benini‡, F. Angiolini§ , A. Pullini§

� LSI, EPFL, Lausanne, Switzerland,{ciprian.seiculescu, giovanni.demicheli}@epfl.ch
§ iNoCs, Lausanne, Switzerland, {murali, angiolini, pullini}@inocs.com

‡ DEIS, University of Bologna, Bologna, Italy, luca.benini@unibo.it

ABSTRACT
Research on Networks on Chips (NoCs) has spanned over a decade
and its results are now visible in some products. Thus the seminal
idea of using networking technology to address the chip-level inter-
connect problem has been shown to be correct. Moreover, as tech-
nology scales down in geometry and chips scale up in complexity,
NoCs become the essential element to achieve the desired levels of
performance and quality of service while curbing power consump-
tion levels. Design and timing closure can only be achieved by a
sophisticated set of tools that address NoC synthesis, optimization
and validation.

Categories and Subject Descriptors
B.4.3 [INPUT/OUTPUT AND DATA COMMUNICATIONS]:
Interconnections (Subsystems)—topology

General Terms
Design

Keywords
Network on Chip, NoC, System on Chip, SoC

1. INTRODUCTION
A key challenge in the design of multi-core chips is the choice

of a scalable system-level interconnect. This issue surfaces in both
general-purpose multi-cores, i.e., Chip Multi-Processors (CMPs),
as well as in heterogeneous, application-specific Multi-Processor
Systems on Chips (MPSoCs). A similar challenge affects the de-
sign of the next generation of Field-Programmable Gate Arrays
(FPGAs).

The importance of interconnects for system performance is grow-
ing with technology scaling. An increasingly large number of on-
chip cores with continuously improving performance can be found
in designs such as TI’s OMAP [30], Infineon XMM/X-Gold [31]
or ST’s Nomadik [29]: a mobile phone SoC nowadays comprises
several tens to hundreds of components that need to be connected
together. Thus, application bandwidth requirements have also been
increasing steadily. Furthermore, at the physical level, with tech-
nology scaling, gate delays decrease while global wire delays do

not. Thus, in current advanced technologies the delay on the wires
has an increasingly significant impact on system performance.

For a long while, bus-based solutions have been widely used to
connect components inside chips. As the number of components
and their complexity scales up, the complexity of the bus system
also increases. Bus architectures have evolved significantly, with
designers migrating from a single shared-bus topology to bridged
buses and to multilayer buses. Today a complex SoC can have sev-
eral levels of bus hierarchy. The protocol complexity has also in-
creased, with support for burst, outstanding, out-of order transac-
tions, just to give some examples.

One of the most critical design issues with bus-based systems is
that it is getting increasingly hard to achieve design closure. The
use of several levels of bus hierarchies, interconnected by means of
bridges and crossbars in an ad hoc manner is difficult to design and
even more challenging to verify. Moreover, it is hard to predict the
length and the delay of the wires of the bus within the architectural
design phase. Accurate wire delay estimates are possible only at
the end of the physical design (placement and routing) phase, and
any delay violations lead to costly design iterations.

The use of networking principles to connect components allevi-
ates some of the major issues with bus-based systems. There are
several advantages in adopting a Network on Chip (NoC) paradigm
for chip-level interconnects. First and foremost, the modularity
of NoCs is a key asset in supporting scalability from the ground
up, in particular in terms of performance. Physical-design-aware
NoC components enable large-scale System on Chip (SoC) design
with more predictable (and possibly guaranteed) performance. Sec-
ond, NoCs can be tuned to support specific applications on SoCs.
Whereas macroscopic networks (e.g., LANs, WANs) emphasize
general-purpose communication schemes and modularity, in NoCs
these constraints are less restrictive because, in most cases, on-
chip communication is known at design time. Thus NoC imple-
mentations may be optimized, e.g., by merging or separating data
and control traffic, or using ad-hoc bus widths and flow control
schemes. This flexibility enables CAD tools to explore the power/
performance design space and provide designers with effective so-
lutions. Finally, the distributed nature of NoC infrastructures can
be effectively leveraged to enhance system-level reliability. For
example, NoCs can locally handle at run-time the correction of
timing failures induced by variability and/or other signal integrity
issues. Moreover, reconfigurable NoCs can support component re-
dundancy in a transparent fashion, thus being an essential technol-
ogy for designing highly-dependable systems. The key challenge in
bringing networking means to silicon is to suitably adapt the princi-
ples to the chip medium, and to achieve a low-latency interconnect
with low power consumption and area overhead.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06...$10.00

300

20.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147960372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Many SoCs have been realized with NoC-based interconnects in
the recent years. Examples range from a multitude of designs based
on the ARM AMBA Network Interconnect [32], which closely re-
sembles a NoC due to their multi-layered nature, to Intel’s Teraflop
Research Chip (also called it Polaris), a multi-core processor [37],
and the new Single-chip Cloud Computer [38]. Tilera markets the
TILE-Gx [27], a 100 core processor, which is the commercial spin-
off of research done on the RAW architecture [39] at MIT. Other
research SoCs include LETI’s FAUST [25] and KAIST’s BONE
series [41]. Whereas some of these chips will be reviewed in Sec-
tion 5, it is important to stress that NoCs are present in commercial
products and that top semiconductor manufacturers have invested
in NoC design methods and tools.

Electronic Design Automation (EDA) tools for NoC design and
optimization have been the object of intensive research in the last
decade. A few providers of NoCs have shown to support a flow
and to yield cost-effective designs. As NoCs become mainstream,
the related tools will be an important value-added part to standard
design flows. Indeed, one of the biggest advantages of NoCs is the
ease of design, optimization and verification, and thus faster design
times that NoC design automation can bring. With the use of ap-
propriate tool flows, the NoC operating frequency can be predicted
accurately already during architectural design, accounting for the
impact of floorplan on wire lengths. Thus, fewer (or no) iterations
are needed across the architectural and physical design phase for
convergence. The NoC can be finely tuned and optimized, and its
power consumption can be evaluated and reduced. Other advan-
tages include scalability to newer SoC platforms, ability to support
varied application Quality-of-Service (QoS) constraints, better sup-
port for voltage and frequency islands, etc..

2. HISTORY OF NOCS
Design issues in macro-networks (LAN, WAN, Internet) have

received broad attention in the last twenty five years. In the last
decade, the design of chip-to-chip interconnection networks for
parallel processing has also received considerable focus. However,
the challenges encountered in the design of on-chip networks for
SoCs is quite different from the design of such macroscopic net-
works. Some major differences are the following three. (1)The
communication between the various cores can be statically ana-
lyzed for many SoCs, so that the NoC can be tailored for the partic-
ular application behavior. In the case of macroscopic networks, it is
impossible to obtain an upfront knowledge of the traffic patterns of
all the users. (2) The design objectives and constraints are different.
As many SoCs are used in mobile and hand-held devices, having a
network with minimum power consumption becomes an important
design objective. Many SoCs also need to respond in real-time for
certain inputs, for which the NoC has to support different criticality
levels for the different traffic streams. Area and latency constraints
are also much more stringent for NoCs. (3) The design process
should also consider VLSI issues, such as the structure (floorplan
requirements) and wiring complexity of the resulting interconnect.

The use of packet-switched networks to connect components in-
side a computing system was advocated first by Seitz and co-workers
[1]. Nevertheless, the concept of Networks on Chip was pioneered
by Greiner within the Scalable Programmable Integrated Network
(SPIN) project [3] and elaborated in its various facets by Benini et
al. [2], and Dally et al. [5], [7] in the early part of this decade.
Thereafter, there has been a flurry of contributions addressing the
different design issues of NoCs. We present a non-exhaustive sum-
mary of some important contributions, while referring the author to
[4] for a detailed description of the literature.

Early examples of chip realizations involving NoCs or precursors

include the following. The Maia heterogeneous signal processing
architecture [6] is fully instance-specific and uses circuit switching
to route data. The RAW architecture [39] uses a mesh topology
to support general-purpose parallel multiprocessing and introduces
the notion of exposing the wiring architecture to the compiler. The
SPIN project described in [3] is an early example of a NoC archi-
tecture, with the use of a regular, fat-tree-based network.

Many NoC architectures have been proposed. A large fraction of
these are natively synchronous, such as ×pipes [44], NOSTRUM
[10], Spidergon [22]; others are conceived to support asynchronous
operation, such as Mango [26], FAUST [25] and ANOC [23]. Some
architectures were presented to achieve predictable QoS behavior,
using special hardware mechanisms, such as Æthereal [21], QNoC
[20]. We show some examples of NoC architectures in Section 3.

Several research groups have focused on design automation for
NoCs. The issues include routing strategy development, topology
synthesis, QoS achievement, buffer sizing. Initial works on topol-
ogy design focused on mapping cores onto regular topologies [8],
[9]. The research and development of ×pipesCompiler [45] and
followup tools [11] addressed both the support of heterogeneous
NoC topologies, tailored to the application traffic requirements,
and the corresponding design tool flow. It strongly differentiated
from earlier approaches that were targeting only standard topolo-
gies, such as meshes, as these do not map well to SoCs that are
usually heterogeneous in nature. In this work, both a parametrized
library ×pipes and a NoC hardware compiler were presented to ad-
dress the problem of synthesis and optimization for heterogeneous
NoCs by means of highly-configurable network building blocks,
customizable at instantiation time for a specific application domain.
This work showed the advantages of customizing NoC resources,
such as switches, and the need to consider the floorplan of the chip
when designing the NoC.

While the need for custom topologies became evident at this
point, synthesizing them automatically to meet application speci-
fications considering physical design issues still remained a chal-
lenge. Topology synthesis needs to account for several, often con-
flicting, objectives such as reducing latency and power consump-
tion. It should also consider a variety of network operational issues.
For example, the synthesized topologies should be free of rout-
ing and message-dependent deadlocks. Moreover, the wire lengths
should also be considered when calculating the power and delay
values of topologies. This motivated the work of SunFloor [11],
where a synthesis tool was presented to design application specific
custom topologies. The tool has several key features, including a
method to gradually drive the synthesis process to meet conflict-
ing objectives and constraints and the ability to explore a large de-
sign space, producing several design points with different power-
performance values. Another highlight of this work and subsequent
developments [12] is the use of incremental floorplanning. The tool
takes an early floorplan of the SoC (without the interconnect) as an
input, which is used to guide the synthesis process. Once a topol-
ogy is designed, the tool inserts the NoC components in the best
positions in the floorplan, while marginally perturbing the initial
floorplan input. This incremental floorplan is then fed as an input
to standard placement and routing tools. This approach captures ac-
curately wire delays and power values of the NoC during topology
synthesis.

Around the same time, several other works also tackled different
aspects of the application specific custom topology synthesis [13]-
[19]. Some groups have established complete tool flow for NoCs,
that include CAD tools to design the NoCs, covering from archi-
tecture to physical design issues. Æthereal [21] and Netchip [42]
are examples of such complete tool flows.

301

20.1

3. NOC ARCHITECTURES
Many NoC architectures have been proposed in literature. In

on-chip networks, the wiring limitations are less strict than in mul-
tiprocessor chip-to-chip networks. For this reason, simple switches
with little buffering and reduced complexity are the most suitable.
Complex switches that aim at maximizing link utilization are not
needed for most NoCs and some of the initial NoC architectures
overlooked this trend, which is dominant in recent implementa-
tions. The subject of NoC architecture is extensive and we refer
the reader to [4] for a detailed coverage. We report here on modu-
lar NoC architectures that can be built out of a simple (parametriz-
able) library, and that can be thus be considered in connection with
design automation.

A modular NoC architecture usually consists of at least three
basic elements:

• Network Interfaces (NIs)

• Switches

• Links

The main role of the Network Interfaces is to convert the bus pro-
tocol that is used by the Processing Elements (PEs) to the net-
work protocol used by the switches. An NI is needed to connect
each IP core to the NoC. NIs convert transaction requests/responses
into packets and vice versa. Packets are then serialized into a se-
quence of FLow control unITS (flits) before transmission, to de-
crease the physical wire parallelism requirements. While there
are no standards NoC protocols for intra-network communication,
many NoCs support standard protocols (e.g., OCP, AHB, AXI, Wish-
bone, OPB, PLB) at the outer edge, to connect the PEs to NIs. This
enables existing IPs to be connected easily to the network and pro-
vides greater flexibility in connecting IPs using different protocols
to the same system interconnect.

Switches are the backbone of the network. Their main function
is to route packets from source to destination. They provide ar-
bitrary connectivity between several inputs and several outputs and
allow for implementation of different topologies in order to provide
connectivity for many PE. Switches provide buffering resources
to lower congestion and improve performance. The buffers could
be placed at the input ports (input-queued router), output ports
(output-queued router) or at both places. In many NoCs with regu-
lar topologies where one or few cores are connected to a switch, the
functionality of the NI is integrated in the switch itself. Links ab-
stract the connectivity between NIs and switches and between the
switches themselves. Links can represent more than just physical
wires as they can provide pipelining in order to achieve the required
timing.

As an example, a brief description of the basic NoC library com-
ponents, based on ×pipes [44], is presented in Figure 1. This li-
brary incorporates features that have been successful in many NoC
designs. In ×pipes, two separate NIs are defined, an initiator and a
target one, respectively associated with system masters and system
slaves. A master/slave device will require an NI of each type to be
attached to it. The interface among IP cores and NIs is point-to-
point as defined by the Open Core Protocol OCP 2.0 [46] speci-
fication, guaranteeing maximum re-usability. NI Look-Up Tables
(LUTs) specify the path that packets will follow in the network
to reach their destination (source routing). ×pipes switches use
wormhole switching, as most common in NoCs, but support two
variations of flow control. If ACK/NACK flow control is used then
output buffers are required, as flits have to be retransmitted until the
downstream router has sufficient capacity to store and accept them.

Figure 1: ×pipes building blocks: (a) switch, (b) NI, (c) link

If ON/OFF flow control is used, backpressure from the downstream
switch stalls the transmission until the there is sufficient buffering
capacity. In this case, output buffers can be omitted. In any case,
the arbiter is required to resolve conflicts between packets when
they require access to the same physical link.

Other arbitration and routing schemes have been developed in or-
der to offer support for predictable communication behavior. The
Æthereal NoC design framework presented in [21] aims at provid-
ing a complete infrastructure for developing heterogeneous NoC
with end-to-end quality of service guarantees. The network sup-
ports guaranteed throughput (GT) for real time applications and
best effort (BE) traffic for timing unconstrained applications. The
architecture offers so-called GT connections which provide band-
width and latency guarantees on that connection. In order to pro-
vide bandwidth and latency guarantees, it uses a Time Division
Multiple Access (TDMA) mechanism to divide time in multiple
time slots, and then assigns each GT connection a number of slots.
The result is a slot-table in each NI, stating which GT connection is
allowed to enter the network at which time-slot. For traffic that has
no real-time requirements, Æthereal implements Best-Effort con-
nections.

4. PHYSICAL IMPLEMENTATION
One of the main strengths of NoCs is their promise to simplify

back-end design closure. For this reason, it is essential to assess
and optimize the interplay of NoC technology with physical design
processes.

4.1 Structured Wiring
NoCs have been improving on-chip wiring in two distinct ways.

First, the packetization paradigm enables easily the implementa-
tion of communication serialization. A typical on-chip bus requires
around 100 to 200 wires: 32 or 64 bits of write data, 32 or 64 bits
of read data, 32 bits of address, plus control signals. On the other
hand, a NoC sends packets, and can do so by splitting them over
multiple cycles in flits. Therefore, it does not, in principle, have
constraints over how many wires need to be deployed in paral-
lel. By deploying highly serialized links, routing can be simplified,
while area and crosstalk can be minimized. In practice, a lower
bound is set by performance needs. Published NoC research shows
that some implementations [21] have gone for a fixed flit width and
packet structure, whereby the number of wires is much more man-
ageable than in buses, e.g. 32; some others [44] even allow for

302

20.1

Figure 2: Study on 65nm, 32-bit switch scalability. Routers up
to 10x10: 85% row utilization or more; 14x14 to 22x22: 70%
to 50% row utilization; 26x26 and above: DRC violations to
tackle manually even at 50% row utilization

complete flexibility, letting designers choose their favorite perfor-
mance/wiring tradeoff.

A second contribution of NoCs to a tidier wiring implementation
is through wire segmentation. As NoC wires are laid point-to-point,
as opposed to being multipoint nets in buses, it is possible to op-
timize NoC topologies to constrain maximum wire lengths. This
is done either by choosing highly regular topologies, e.g. meshes,
or by suitable NoC topology synthesis. Furthermore, as shown in
Section 3, links can be explicitly segmented to further break critical
paths. This is simpler on a NoC than on a bus, where most spec-
ifications, including AMBA AHB [33], implicitly assume single-
cycle communication among masters and slaves.

4.2 Routability
Bus-based architectures have been extended with components

such as crossbars, as e.g. in Multilayer AHB [33], whereby fully-
connected data lanes allow for parallel communication among a
plurality of masters and slaves. Crossbars are successful at pro-
viding non-blocking access and minimizing arbitration delays. Un-
fortunately, if the inputs and outputs of the crossbars are 100- to
200-wires wide as in buses, crossbars may exhibit serious physical
wire routability issues. Due to this, commercial tools [34] often
constrain the maximum crossbar size to 8x8 or less. NoCs per-
mit wire serialization, largely obviating the issue. Figure 2, based
on [43], shows that NoC switches of radix 10x10 can be efficiently
designed, and even much larger switches are still feasible, though
at an area and frequency cost. Alternatively, smaller NoC routers
can be chosen, completely solving routability concerns.

4.3 Synchronization Schemes
To tackle the increasing challenges of global clock distribution

in large chips, including the power cost and variability concerns,
a variety of Globally Asynchronous Locally Synchronous (GALS)
chip design paradigms have been proposed. NoCs offer a natu-
ral backbone for the implementation of such approaches. This is
because packet-switching networks (i) are distributed, (ii) natively
provide ways to tackle heterogeneity, including in timing, and (iii)
natively decouple transaction injection and transaction transport
times. Among others, fully asynchronous communication [35] and
pausible clocking [24] have been proposed and demonstrated. By
incorporating all necessary timing adaptation features natively in
the on-chip communication framework, designs can converge more
quickly and easily, strengthening the “plug&play” view of system
composability.

Figure 3: 3D IC with NoC for communication

4.4 3D Integration Extensions
3D chip stacking is increasingly touted [47] as a way to pursue

Moore’s Law and “More than Moore” visions of heterogeneous,
multi-functional products including MEMS and bio-interfaces. Nev-
ertheless, to be successful, 3D integration still has to solve some
shortcomings, such as the yield of vertical connections, the area
overhead, and the complexity of system design and verification.

NoCs are an ideal fit to 3D design paradigms because they rep-
resent a flexible, scalable, distributed backbone. Figure 3 shows a
chip where iNoCs [36] technology has successfully met the con-
straints of 3D design. For example, area and yield have been opti-
mized by suitably serializing vertical links, to minimize the number
of required vertical vias. Verification has been automated by lever-
aging built-in link testing facilities. 3D system integration has also
been made easier by the flexibility of NoC routing tables, easily
enabling either 2D-only operation (in testing mode) or 3D-capable
communication. The NoC also hides the 3D clocking challenges
by natively handling synchronization among layers.

5. NOC CHIP EXAMPLES
Many SoCs for multimedia and wireless connectivity applica-

tions fabricated in 45nm technology have either a proprietary NoC
or NoC IP from a third party IP provider. In this section, we show
some chip-level implementations of NoCs. We provide small case-
studies on the use of NoCs and their implementations.

ARM is commercializing the AMBA Network Interconnect [32].
The IP library provides crossbars and bridges that can be assembled
to construct a hierarchical bus interconnect that closely resembles
an NoC, because the topology of the interconnect can be designed
to match the floorplan and buffering can be added to provide stalls.

NoCs are being actively used in CMPs, both in academia and in
real products. The Tilera TILE-Gx processor [27] has 100 cores
integrated onto a chip, with the cores connected by a 2D mesh net-
work. A NoC-based interconnect from Arteris [28] has been im-
plemented to connect the components on the TI OMAP platform.
Several research prototypes for CMPs, such as the TRIPS proces-
sor [48], Smart Memories [49], use a NoC to connect the cores
together. The Intel Teraflops [37], a prototype 80-core processor,
also uses a mesh network to connect the cores. A block diagram de-
picting a core and the 5-port router is shown in Figure 4. Each core
consists of two programmable floating point units and a five-port
router. The routers are connected in a 2D mesh topology. In order

303

20.1

Figure 4: A single core and a 5-port router of the Intel 80 core
processor

Figure 5: A multicore NoC using the BONE architecture

to avoid the communication overhead in maintaining coherency,
the system does not use cache coherency and instead, data is trans-
ferred using message passing. The aggregate bandwidth supported
by the chip at 3.16 GHz operating speed is around 1.62 Terabits/s.

The GALS based ANoC and the multi-synchronous DSPIN NoC
have been implemented in two demonstrator chips as system inter-
connect for the FAUST application [25]. The FAUST (Flexible Ar-
chitecture of Unified Systems for Telecom) demonstrator is a SoC
platform with advanced telecommunication capabilities. The im-
plemented topology is a quasi-mesh as on some routers connect
more than one core. In the receiver matrix - which consists of only
of 10 cores - the aggregate required bandwidth is 10.6 Gbits/s to
maintain real time communication.

Several chips have been fabricated by the BONE NoC group,
including the design of a NoC based parallel processor for visual
attention engine [40] and an object recognition processor [41]. The
chip layout of a memory centric NoC for a homogeneous MPSoC
designed by the team is shown in Figure 5. The design consists of
8 dual port memories, crossbar switches and ten RISC processors.
They are connected in a hierarchical star topology. The dual-port
SRAMs are assigned dynamically to the RISC processors that are
exchanging data. The crossbars act as a non-blocking medium to
connect the RISC processors and the SRAMs. The architecture
supports flexible mapping of tasks to processors, thereby providing
better performance than a conventional 2D mesh-based CMP.

Figure 6: A NoC design flow from iNoCs

6. NOC DESIGN TOOL FLOW
Designing an efficient NoC architecture, while satisfying the ap-

plication performance constraints, is a complex process. The de-
sign issues include topology synthesis, finding routes for traffic
flows, setting architectural parameters (such as frequency of oper-
ation, link width), verifying performance, building simulation and
emulation models [42]. In order to handle the design complex-
ity and meet the tight time-to-market constraints, it is important to
automate most of these NoC design phases. To achieve design clo-
sure, the different phases should also be integrated in a seamless
manner.

Some companies like: Arteris [28], iNoCs [36], Silistix [35] are
providing design automation tools for NoCs . As an example, we
describe here the tool flow from iNoCs, also shown in Figure 6 [36].
The tool flow takes the application architecture and application
constraints as inputs. The architecture specifications include the
type of core (master or slave), the kind of protocol supported. The
application communication constraints include the average band-
width of communication between the different cores, average la-
tency constraints, hard QoS constraints on bandwidth and latency,
type of transaction, traffic shape. This information is obtained by
application profiling or from the designer’s estimates. The tool flow
also optionally takes the floorplan of the SoC without the inter-
connect as an input. The floorplan is an estimate of the position
of each core, depending on the I/O constraints and the communi-
cation among cores. Instead of a floorplan, a simpler metric can
be used, such as the relative distance between the blocks. Finally,
the NoC components are characterized with the target technology
library to compute the area, power and maximum operating fre-
quency of the routers, NIs and links. All this information is fed
into the design toolchain. Based on the specifications, the topology
synthesis tool builds several topologies with different switch counts
and architectural parameters. The topologies are designed to meet
the application and architecture constraints, with each design point
having different power, area and performance values. From the set
of all Pareto optimal points, the designer can then choose a NoC
instance. Then, the RTL of the topology is automatically gener-
ated. The tools also generate simulation models (high level as well
as RTL) with traffic generators that can be used to validate the run-
time behavior of the system.

If an input floorplan is provided, the synthesis tool can use the
knowledge of the positions of the cores to design topologies with
shorter wire lengths. Moreover, accurate delay and power con-
sumption of the wires can be obtained and used during the syn-
thesis process itself. The tool also produces an output floorplan for
the topology point, with the NoC components placed at the ideal lo-

304

20.1

cations, in order to minimize power consumption and delay. Then,
the RTL and simulation models of the topology are generated. The
tool flow supports several features, such as providing hard real-time
guarantees if needed, without additional hardware support. It also
supports the concept of voltage islands, where cores in an island
operate at the same frequency and voltage, while cores in different
islands can operate at different frequencies and voltages.

7. CONCLUSIONS
Network on Chip technology has been established as the pre-

ferred way of realizing system-level interconnect for most (if not
all) high-end SoC products for nomadic and multimedia applica-
tions fabricated with the 45nm node. These SoCs embody either a
proprietary NoC or a NoC from a third-party IP provider. While
looking at current and future designs of complex SoCs in 45nm
technology and beyond, NoCs are essential components to achieve
performance and design closure. At the same time, there is a grow-
ing interest of using NoCs in complex FPGA designs as well.

The EDA infrastructure for NoC design is provided by either in-
house design groups or by a few commercial companies. This in-
frastructure comprises both IP blocks and tools for optimizing and
integrating the IP with the rest of the design. Needless to say, the
EDA infrastructure has shown to be essential for realizing existing
large-scale SoCs with NoC-based interconnects.

Future directions of NoC research and applications lead along
two avenues. The former is related to 3-Dimensional chip stack-
ing, with 3D NoCs providing a modular and flexible interconnect
means that can also obviate for vertical connection failures and en-
gineering changes. The second avenue deals with other structured
interconnect means, including optical NoCs as well as networks in-
tegrating chips and the environment with RF means. In all these
cases, key features are the separation of computation and commu-
nication via a NoC as well as the NoC modularity and support for
scalability.

8. ACKNOWLEDGMENT
We would like to acknowledge the financial contribution of CTI

under project 10046.2 PFNM-NM, the ARTIST-DESIGN Network
of Excellence and the EU FP7 project NaNoC (248972).

9. REFERENCES
[1] C. Seitz, “Let’s Route Packets Instead of Wires.” Advanced Research in VLSI:

Proceedings of the Sixth MIT Conference, 1990, pp. 133-138.
[2] L.Benini and G.De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE

Computers, pp. 70-78, Jan. 2002.
[3] P.Guerrier, A.Greiner,”A generic architecture for on-chip packet switched

interconnections”, Proc. DATE, pp. 250-256, March 2000.
[4] G. De Micheli, L. Benini, “Networks on Chips: Technology and Tools”, Morgan

Kaufmann, First Edition, July, 2006.
[5] W. Dally, B. Towles, “Route Packets, not Wires: On-Chip Interconnection

Networks”, Proc. DAC, pp. 684-689, June 2001.
[6] H.Zhang et. al., "A 1V Heterogeneous Reconfigurable DSP IC for Wireless

Baseband Digital Signal Processing", IEEE Journal of Solid State Circuits,
Vol.35, No.11, pp. 1697-1704, Nov 2000.

[7] W.J.Dally, S.Lacy, "VLSI Architecture: Past, Present and Future", Conf. Adv.
Research in VLSI, pp. 232-241, 1999.

[8] R. Marculescu, “Networks-on-chip: the quest for on-chip fault-tolerant
communication”, Proc. IEEE ISVLSI, pp. 8-12, Feb 2003.

[9] S. Murali, G. De Micheli, “SUNMAP: A Tool for Automatic Topology
Selection and Generation for NoCs”, Proc. DAC 2004.

[10] Shashi Kumar, Axel Jantsch, Mikael Millberg, Johny Oberg, Juha-Pekka
Soininen, Martti Forsell, Kari Tiensyrja, Ahmed Hemani, "A network on chip
architecture and design methodology”, ISVLSI 2002, pp.105-112, 2002.

[11] S. Murali et al., “Designing Application-Specific Networks on Chips with
Floorplan Information”, pp. 355-362, ICCAD 2006.

[12] C. Seiculescu, S. Murali, L. Benini, and G. De Micheli. SunFloor 3D: A Tool
for Networks on Chip Topology Synthesis for 3D Systems on Chip. In DATE
2009, pages 9-14, 2009

[13] J. Xu et al., “A design methodology for application-specific networks-on-chip”,
ACM TECS, 2006.

[14] A.Pinto, L. Carloni, A. Sangiovanni-Vincentelli, “Efficient Synthesis of
Networks on Chip”, Proc. ICCD, pp. 146-150, Oct 2003.

[15] T. Ahonen, D. Signza-Tortosa, H. Bin, J. Nurmi, “Topology Optimization for
Application Specific Networks on Chip”, Proc. SLIP, pp. 53-60, Feb 2004.

[16] K. Srinivasan, K. Chatha, G. Konjevod, “An Automated Technique for
Topology and Route Generation of Application Specific On-Chip
Interconnection Networks”, Proc. ICCAD, pp. 231-237, Nov 2005.

[17] W.H.Ho, T.M.Pinkston, “A Methodology for Designing Efficient On-Chip
Interconnects on Well-Behaved Communication Patterns”, Proc. HPCA, pp.
377-388, Feb 2003.

[18] X.Zhu, S.Malik, "A Hierarchical Modeling Framework for On-Chip
Communication Architectures", ICCD 2002, pp. 663-671, Nov 2002.

[19] I.Saastamoinen, D.Siguenza-Tortosa, J. Nurmi, “Interconnect IP node for future
system-on-chip designs", Proc. of The First IEEE International Workshop on
Electronic Design, Test and Applications, pp. 116-120, Jan. 2002.

[20] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, “QNoC: QoS architecture and
design process for Network on Chip”, The Journal of Systems Architecture, pp.
105-128, Vol. 50, Issue: 2-3, Feb 2004.

[21] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen, P.
Wielage, E. Waterlander, "Trade-offs in the design of a router with both
guaranteed and best-effort services for networks on chip", Proc. DATE, pp.
350-355, Mar 2003.

[22] M. Coppola et al., “Spidergon: a novel on-chip communication network”, Proc.
IEEE International Symposium on System-on-Chip 2004. 16–18, p. 15, Nov.
2004.

[23] E. Beigne et al., “An Asynchronous NoC Architecture Providing Low Latency
Service and its Multi-Level Design framework”, ASYNC’2005, pp. 54-63,
March 2005.

[24] E. Beigne et al., “Dynamic voltage and frequency scaling architecture for units
integration with a GALS NoC”, NOCS, pp. 129ï£¡138, 2008.

[25] Miro-Panades, I. et al., “Physical Implementation of the DSPIN
Network-on-Chip in the FAUST Architecture", NoC Symposium , 2008.

[26] Bjerregaard, T. et al. “An OCP Compliant Network Adapter for GALS-based
SoC Design Using the MANGO Network-on-Chip", Proc. SoC 2005

[27] http://www.tilera.com/products/processors.php
[28] http://www.arteris.com/flex_noc.php
[29] A. Artieri, V. D Alto, R. Chesson, M. Hopkins, M. C. Rossi, “Nomadik Open

Multimedia Platform for Next-generation Mobile Devices”, STMicroelectronics
Technical Article TA305, 2003, available at http://www.st.com

[30] J. Helmig, “Developing core software technologies for TI’s OMAPTM
platform”, Texas Instruments, 2002. Available at http://www.ti.com.

[31] http://www.infineon.com/cms/en/corporate/
press/news/releases/2006/170186.html

[32] http://www.arm.com/products/system-ip/interconnect/axi/index.php
[33] http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
[34] http://www.synopsys.com/dw/ipdir.php?ds=core_consultant
[35] http://www.silistix.com/
[36] http://www.inocs.com/
[37] S. R. Vangal, et al. “An 80-Tile sub-100-w teraflops processor in 65-nm cmos”,

Solid-State Circuits, IEEE Journal of, 43(1):29–41, 2008.
[38] J. Howard et al, "A 48-Core IA-32 Message-Passing Processor with DVFS in

45nm CMOS", ISSCC 2010.
[39] M. Taylor et al., “The Raw Microprocessor: A Computational Fabric for

Software Circuits and General Purpose Programs”, IEEE Micro, April 2002.
[40] K. Kim et al., “A 125GOPS 583mW network-on-chip based parallel processor

with bio-inspired visual attention engine”, IEEE ISSCC 2008.
[41] K. Kim et al., “A 201.4GOPS 496mW Real-Time Multi-Object Recognition

Processor with Bio-Inspired Neural Perception Engine”, IEEE ISSCC 2009.
[42] D. Bertozzi et al., “NoC Synthesis Flow for Customized Domain Specific

Multiprocessor Systems-on-Chip”, IEEE Transactions On Parallel And
Distributed Systems, pp. 113-129, Vol. 16, No. 2, Feb 2005.

[43] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli and L. Benini,
Bringing nocs to 65 nm, IEEE Micro 27 (5) (2007), pp. 75ï£¡85.

[44] S. Stergiou et al., “×pipesLite: a Synthesis Oriented Design Library for
Networks on Chips”, pp. 1188-1193, Proc. DATE 2005.

[45] A.Jalabert et. al, “×pipesCompiler: A Tool For Instantiating Application
Specific Networks on Chips”, Proc. DATE 2004.

[46] www.ocpip.org
[47] K. Banerjee et al., “3-D ICs: A Novel Chip Design for Deep-Submicrometer

Interconnect Performance and Systems-on-Chip Integration”, Proc. of the IEEE,
vol. 89(5), pp. 602, 2001.

[48] K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with the Polymorphous
TRIPS Architecture”, IEEE Micro, Nov/Dec 2003.

[49] R. Ho, K. Mai, M. Horowitz, “Efficient On-Chip Global Interconnects”, IEEE
Symposium on VLSI Circuits, June 2003.

305

20.1

