71,614 research outputs found

    Mechanism of saline deposition and surface flashover on high-voltage insulators near shoreline:mathematical models and experimental validations

    Get PDF
    This paper deals with sea salt transportation and deposition mechanisms and discusses the serious issue of degradation of outdoor insulators resulting from various environmental stresses and severe saline contaminant accumulation near the shoreline. The deterioration rate of outdoor insulators near the shoreline depends on the concentration of saline in the atmosphere, the influence of wind speed on the production of saline water droplets, moisture diffusion and saline penetration on the insulator surface. This paper consists of three parts: first a model of saline transportation and deposition, as well as saline penetration and moisture diffusion on outdoor insulators, is presented; second, dry-band initiation and formation modelling and characterization under various types of contamination distribution are proposed; finally, modelling of dry-band arcing validated by experimental investigation was carried out. The tests were performed on a rectangular surface of silicone rubber specimens (12 cm × 4 cm × 8 cm). The visualization of the dry-band formation and arcing was performed by an infrared camera. The experimental results show that the surface strength and arc length mainly depend upon the leakage distance and contamination distribution. Therefore, the model can be used to investigate insulator flashover near coastal areas and for mitigating saline flashover incidents.</p

    Modes of sea-water intrusion during transgression.

    Get PDF
    Analytical methods and numerical experiments are used to study salinization of groundwater in response to sea level rise. The system that is studied involves a saturated porous medium with an inclined upper surface. The upper surface is progressively inundated during sea level rise to simulate transgression, the landward migration of the shoreline. Four "modes" of seawater intrusion are distinguished: (1) horizontal intrusion for slow transgression and a relatively high-permeability (sand/silt) substrate, (2) vertical intrusion by seawater fingering for fast transgression and a sand/silt substrate, (3) vertical intrusion by diffusion for fast transgression and a low-permeability (clay) substrate, (4) vertical intrusion by combined diffusion and low-salinity fingering for fast transgression and a clay layer at the seafloor overlying an aquifer. These four modes are characterized by the development of very distinctive transition zones between the fresh and salt groundwater domains. An analytical expression is derived for the critical transgression rate which separates horizontal (mode 1) from dominantly vertical (modes 2-4) intrusion. For modes 3 and 4, salinization significantly lags behind sea level rise. The results are consistent with observations of fossil fresh/brackish groundwater beneath many continental shelves and shallow seas

    Limited migration of soluble ionic species in a Siple Dome, Antarctica, ice core

    Get PDF
    High-resolution (\u3e10 samples a−1) glaciochemical analyses covering the last 110 years from a Siplc Dome, Antarctica, ire core reveal limited migration of certain soluble ionic species (methane sulfonic acid, NO3 − and Mg2+). The observed chemical migration may be due in part to seasonal alternation between less acidic winter (from high sea-salt concentrations) and more acidic summer (from high marine biogenic acid concentrations) layers, common at coastal siles such as Siplc Dome. Exact mechanisms to expla in the migration are unclear, although simple diffusion and gravitational movement are unlikely since new peaks are formed where none previously existed in each case. Initial migration of each species is both shallower and earlier at Siple Dome than at other sites in Antarctica where similar phenomena have been observed, which may be related to the relatively low accumulation rate at Siple Dome (~13.3 cm ice a−1). Migration appears to be limited to either the preceding or following seasonal layer for each species, suggesting that paleoclimatic interpretations based on dala with lower than annual resolution are not likely to be affected

    Rising methane gas bubbles form massive hydrate layers at the seafloor

    Get PDF
    Extensive methane hydrate layers are formed in the near-surface sediments of the Cascadia margin. An undissociated section of such a layer was recovered at the base of a gravity core (i.e. at a sediment depth of 120 cm) at the southern summit of Hydrate Ridge. As a result of salt exclusion during methane hydrate formation, the associated pore waters show a highly elevated chloride concentration of 809 mM. In comparison, the average background value is 543 mM. A simple transport-reaction model was developed to reproduce the Cl- observations and quantify processes such as hydrate formation, methane demand, and fluid flow. From this first field observation of a positive Cl- anomaly, high hydrate formation rates (0.15–1.08 mol cm-2 a-1) were calculated. Our model results also suggest that the fluid flow rate at the Cascadia accretionary margin is constrained to 45–300 cm a-1. The amount of methane needed to build up enough methane hydrate to produce the observed chloride enrichment exceeds the methane solubility in pore water. Thus, most of the gas hydrate was most likely formed from ascending methane gas bubbles rather than solely from CH4 dissolved in the pore water

    Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

    Get PDF
    Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes to parameterize small-scale transport. The theory recovers the intrusive instability, the collective instability, and the gamma-instability as limiting cases. We find that the fastest-growing large-scale mode depends sensitively on the ratio of the background gradients of temperature and salinity (the density ratio). While only intrusive modes exist at high density ratios, the collective and gamma-instabilities dominate the system at the low density ratios where staircases are typically observed. We conclude by discussing our findings in the context of staircase formation theory.Comment: 23 pages, 9 figures, submitted to JF

    Identification of a 3-Alkylpyridinium Compound from the Red Sea Sponge Amphimedon chloros with In Vitro Inhibitory Activity against the West Nile Virus NS3 Protease.

    Get PDF
    Viruses are underrepresented as targets in pharmacological screening efforts, given the difficulties of devising suitable cell-based and biochemical assays. In this study we found that a pre-fractionated organic extract of the Red Sea sponge Amphimedon chloros was able to inhibit the West Nile Virus NS3 protease (WNV NS3). Using liquid chromatography⁻mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy, the identity of the bioactive compound was determined as a 3-alkylpyridinium with m/z = 190.16. Diffusion Ordered Spectroscopy (DOSY) NMR and NMR relaxation rate analysis suggest that the bioactive compound forms oligomers of up to 35 kDa. We observed that at 9.4 μg/mL there was up to 40⁻70% inhibitory activity on WNV NS3 protease in orthogonal biochemical assays for solid phase extracts (SPE) of A. chloros. However, the LC-MS purified fragment was effective at inhibiting the protease up to 95% at an approximate amount of 2 µg/mL with negligible cytotoxicity to HeLa cells based on a High-Content Screening (HCS) cytological profiling strategy. To date, 3-alkylpyridinium type natural products have not been reported to show antiviral activity since the first characterization of halitoxin, or 3-alkylpyridinium, in 1978. This study provides the first account of a 3-alkylpyridinium complex that exhibits a proposed antiviral activity by inhibiting the NS3 protease. We suggest that the here-described compound can be further modified to increase its stability and tested in a cell-based assay to explore its full potential as a potential novel antiviral capable of inhibiting WNV replication
    corecore