502 research outputs found

    Sea Ice SAR Imagery Classification and Regression Based On Convolutional Neural Networks

    Get PDF
    Due to the global warming, there have been signficant reductions in the ice extent and ice thickness in the Arctic and marginal seas. Monitoring these changes in sea ice is very important for human activities including weather forecasting, natural-resource extraction, and ship navigation. Of the various sea ice monitoring activities, and sea ice and open water classification, sea ice concentration estimation has attracted significant attention due to the importance of this type of information. Satellite imagery is widely used for monitoring the ice cover. In this regard, images from synthetic aperture radar (SAR) are of interest due to their high spatial resolution. However, automated SAR imagery interpretation is a complex recognition task that requires algorithms with strong ability to learn complex features. Convolutional neural networks (CNNs) are the state-of-the-art in the image recognition field and CNNs have demonstrated an excellent ability to learn complicated image features. In this thesis, we first used a CNN-based transfer learning method to address sea ice and water classification challenge, which achieves an impressive classification accuracy (92.36%). Then sea ice concentration estimation from SAR image using CNNs is developed. The CNN models are trained from scratch using image analysis charts as ground truth. Based on the designed CNN, several studies are conducted. We first demonstrate the importance of including samples of intermediate ice concentration in our training data. Then experiments are carried out to increase the number of these samples in our dataset. The results from experiments indicate that model performance can be improved by adding more intermediate ice concentration samples from new datasets, regardless of the location, time, and sea ice features of new datasets. Another benefit of balancing the dataset is that the estimation results of intermediate ice concentrations from the CNN become more accurate. In addition, the CNN model we adopted is found to outperform other algorithms on distinguishing the marginal ice zone

    Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks

    Get PDF
    We explore new and existing convolutional neural network (CNN) architectures for sea ice classification using Sentinel-1 (S1) synthetic aperture radar (SAR) data by investigating two key challenges: binary sea ice versus open-water classification, and a multi-class sea ice type classification. The analysis of sea ice in SAR images is challenging because of the thermal noise effects and ambiguities in the radar backscatter for certain conditions that include the reflection of complex information from sea ice surfaces. We use manually annotated SAR images containing various sea ice types to construct a dataset for our Deep Learning (DL) analysis. To avoid contamination between classes we use a combination of near-simultaneous SAR images from S1 and fine resolution cloud-free optical data from Sentinel-2 (S2). For the classification, we use data augmentation to adjust for the imbalance of sea ice type classes in the training data. The SAR images are divided into small patches which are processed one at a time. We demonstrate that the combination of data augmentation and training of a proposed modified Visual Geometric Group 16-layer (VGG-16) network, trained from scratch, significantly improves the classification performance, compared to the original VGG-16 model and an ad hoc CNN model. The experimental results show both qualitatively and quantitatively that our models produce accurate classification results

    Image Classification of Marine-Terminating Outlet Glaciers using Deep Learning Methods

    Get PDF
    A wealth of research has focused on elucidating the key controls on mass loss from the Greenland and Antarctic ice sheets in response to climate forcing, specifically in relation to the drivers of marine-terminating outlet glacier change. Despite the burgeoning availability of medium resolution satellite data, the manual methods traditionally used to monitor change of marine-terminating outlet glaciers from satellite imagery are time-consuming and can be subjective, especially where a mélange of icebergs and sea-ice exists at the terminus. To address this, recent advances in deep learning applied to image processing have created a new frontier in the field of automated delineation of glacier termini. However, at this stage, there remains a paucity of research on the use of deep learning for pixel-level semantic image classification of outlet glacier environments. This project develops and tests a two-phase deep learning approach based on a well-established convolutional neural network (CNN) called VGG16 for automated classification of Sentinel-2 satellite images. The novel workflow, termed CNN-Supervised Classification (CSC), was originally developed for fluvial settings but is adapted here to produce multi-class outputs for test imagery of glacial environments containing marine-terminating outlet glaciers in eastern Greenland. Results show mean F1 scores up to 95% for in-sample test imagery and 93% for out-of-sample test imagery, with significant improvements over traditional pixel-based methods such as band ratio techniques. This demonstrates the robustness of the deep learning workflow for automated classification despite the complex characteristics of the imagery. Future research could focus on the integration of deep learning classification workflows with platforms such as Google Earth Engine (GEE), to classify imagery more efficiently and produce datasets for a range of glacial applications without the need for substantial prior experience in coding or deep learning

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    Scalable computing for earth observation - Application on Sea Ice analysis

    Get PDF
    In recent years, Deep learning (DL) networks have shown considerable improvements and have become a preferred methodology in many different applications. These networks have outperformed other classical techniques, particularly in large data settings. In earth observation from the satellite field, for example, DL algorithms have demonstrated the ability to learn complicated nonlinear relationships in input data accurately. Thus, it contributed to advancement in this field. However, the training process of these networks has heavy computational overheads. The reason is two-fold: The sizable complexity of these networks and the high number of training samples needed to learn all parameters comprising these architectures. Although the quantity of training data enhances the accuracy of the trained models in general, the computational cost may restrict the amount of analysis that can be done. This issue is particularly critical in satellite remote sensing, where a myriad of satellites generate an enormous amount of data daily, and acquiring in-situ ground truth for building a large training dataset is a fundamental prerequisite. This dissertation considers various aspects of deep learning based sea ice monitoring from SAR data. In this application, labeling data is very costly and time-consuming. Also, in some cases, it is not even achievable due to challenges in establishing the required domain knowledge, specifically when it comes to monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the application domain of this thesis. Because the Arctic is remote, has long dark seasons, and has a very dynamic weather system, the collection of reliable in-situ data is very demanding. In addition to the challenges of interpreting SAR data of sea ice, this issue makes SAR-based sea ice analysis with DL networks a complicated process. We propose novel DL methods to cope with the problems of scarce training data and address the computational cost of the training process. We analyze DL network capabilities based on self-designed architectures and learn strategies, such as transfer learning for sea ice classification. We also address the scarcity of training data by proposing a novel deep semi-supervised learning method based on SAR data for incorporating unlabeled data information into the training process. Finally, a new distributed DL method that can be used in a semi-supervised manner is proposed to address the computational complexity of deep neural network training

    Sea ice detection using concurrent multispectral and synthetic aperture radar imagery

    Full text link
    Synthetic Aperture Radar (SAR) imagery is the primary data type used for sea ice mapping due to its spatio-temporal coverage and the ability to detect sea ice independent of cloud and lighting conditions. Automatic sea ice detection using SAR imagery remains problematic due to the presence of ambiguous signal and noise within the image. Conversely, ice and water are easily distinguishable using multispectral imagery (MSI), but in the polar regions the ocean's surface is often occluded by cloud or the sun may not appear above the horizon for many months. To address some of these limitations, this paper proposes a new tool trained using concurrent multispectral Visible and SAR imagery for sea Ice Detection (ViSual\_IceD). ViSual\_IceD is a convolution neural network (CNN) that builds on the classic U-Net architecture by containing two parallel encoder stages, enabling the fusion and concatenation of MSI and SAR imagery containing different spatial resolutions. The performance of ViSual\_IceD is compared with U-Net models trained using concatenated MSI and SAR imagery as well as models trained exclusively on MSI or SAR imagery. ViSual\_IceD outperforms the other networks, with a F1 score 1.60\% points higher than the next best network, and results indicate that ViSual\_IceD is selective in the image type it uses during image segmentation. Outputs from ViSual\_IceD are compared to sea ice concentration products derived from the AMSR2 Passive Microwave (PMW) sensor. Results highlight how ViSual\_IceD is a useful tool to use in conjunction with PMW data, particularly in coastal regions. As the spatial-temporal coverage of MSI and SAR imagery continues to increase, ViSual\_IceD provides a new opportunity for robust, accurate sea ice coverage detection in polar regions.Comment: 34 pages, 10 figures, 2 table

    Evaluation of Machine Learning Algorithms for Lake Ice Classification from Optical Remote Sensing Data

    Get PDF
    The topic of lake ice cover mapping from satellite remote sensing data has gained interest in recent years since it allows the extent of lake ice and the dynamics of ice phenology over large areas to be monitored. Mapping lake ice extent can record the loss of the perennial ice cover for lakes located in the High Arctic. Moreover, ice phenology dates, retrieved from lake ice maps, are useful for assessing long-term trends and variability in climate, particularly due to their sensitivity to changes in near-surface air temperature. However, existing knowledge-driven (threshold-based) retrieval algorithms for lake ice-water classification that use top-of-the-atmosphere (TOA) reflectance products do not perform well under the condition of large solar zenith angles, resulting in low TOA reflectance. Machine learning (ML) techniques have received considerable attention in the remote sensing field for the past several decades, but they have not yet been applied in lake ice classification from optical remote sensing imagery. Therefore, this research has evaluated the capability of ML classifiers to enhance lake ice mapping using multispectral optical remote sensing data (MODIS L1B (TOA) product). Chapter 3, the main manuscript of this thesis, presents an investigation of four ML classifiers (i.e. multinomial logistic regression, MLR; support vector machine, SVM; random forest, RF; gradient boosting trees, GBT) in lake ice classification. Results are reported using 17 lakes located in the Northern Hemisphere, which represent different characteristics regarding area, altitude, freezing frequency, and ice cover duration. According to the overall accuracy assessment using a random k-fold cross-validation (k = 100), all ML classifiers were able to produce classification accuracies above 94%, and RF and GBT provided above 98% classification accuracies. Moreover, the RF and GBT algorithms provided a more visually accurate depiction of lake ice cover under challenging conditions (i.e., high solar zenith angles, black ice, and thin cloud cover). The two tree-based classifiers were found to provide the most robust spatial transferability over the 17 lakes and performed consistently well across three ice seasons, better than the other classifiers. Moreover, RF was insensitive to the choice of the hyperparameters compared to the other three classifiers. The results demonstrate that RF and GBT provide a great potential to map accurately lake ice cover globally over a long time-series. Additionally, a case study applying a convolution neural network (CNN) model for ice classification in Great Slave Lake, Canada is presented in Appendix A. Eighteen images acquired during the the ice season of 2009-2010 were used in this study. The proposed CNN produced a 98.03% accuracy with the testing dataset; however, the accuracy dropped to 90.13% using an independent (out-of-sample) validation dataset. Results show the powerful learning performance of the proposed CNN with the testing data accuracy obtained. At the same time, the accuracy reduction of the validation dataset indicates the overfitting behavior of the proposed model. A follow-up investigation would be needed to improve its performance. This thesis investigated the capability of ML algorithms (both pixel-based and spatial-based) in lake ice classification from the MODIS L1B product. Overall, ML techniques showed promising performances for lake ice cover mapping from the optical remote sensing data. The tree-based classifiers (pixel-based) exhibited the potential to produce accurate lake ice classification at a large-scale over long time-series. In addition, more work would be of benefit for improving the application of CNN in lake ice cover mapping from optical remote sensing imagery

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Enhancing sea ice segmentation in Sentinel-1 images with atrous convolutions

    Full text link
    Due to the growing volume of remote sensing data and the low latency required for safe marine navigation, machine learning (ML) algorithms are being developed to accelerate sea ice chart generation, currently a manual interpretation task. However, the low signal-to-noise ratio of the freely available Sentinel-1 Synthetic Aperture Radar (SAR) imagery, the ambiguity of backscatter signals for ice types, and the scarcity of open-source high-resolution labelled data makes automating sea ice mapping challenging. We use Extreme Earth version 2, a high-resolution benchmark dataset generated for ML training and evaluation, to investigate the effectiveness of ML for automated sea ice mapping. Our customized pipeline combines ResNets and Atrous Spatial Pyramid Pooling for SAR image segmentation. We investigate the performance of our model for: i) binary classification of sea ice and open water in a segmentation framework; and ii) a multiclass segmentation of five sea ice types. For binary ice-water classification, models trained with our largest training set have weighted F1 scores all greater than 0.95 for January and July test scenes. Specifically, the median weighted F1 score was 0.98, indicating high performance for both months. By comparison, a competitive baseline U-Net has a weighted average F1 score of ranging from 0.92 to 0.94 (median 0.93) for July, and 0.97 to 0.98 (median 0.97) for January. Multiclass ice type classification is more challenging, and even though our models achieve 2% improvement in weighted F1 average compared to the baseline U-Net, test weighted F1 is generally between 0.6 and 0.80. Our approach can efficiently segment full SAR scenes in one run, is faster than the baseline U-Net, retains spatial resolution and dimension, and is more robust against noise compared to approaches that rely on patch classification
    corecore