10 research outputs found

    Dense and long-term monitoring of Earth surface processes with passive RFID -- a review

    Full text link
    Billions of Radio-Frequency Identification (RFID) passive tags are produced yearly to identify goods remotely. New research and business applications are continuously arising, including recently localization and sensing to monitor earth surface processes. Indeed, passive tags can cost 10 to 100 times less than wireless sensors networks and require little maintenance, facilitating years-long monitoring with ten's to thousands of tags. This study reviews the existing and potential applications of RFID in geosciences. The most mature application today is the study of coarse sediment transport in rivers or coastal environments, using tags placed into pebbles. More recently, tag localization was used to monitor landslide displacement, with a centimetric accuracy. Sensing tags were used to detect a displacement threshold on unstable rocks, to monitor the soil moisture or temperature, and to monitor the snowpack temperature and snow water equivalent. RFID sensors, available today, could monitor other parameters, such as the vibration of structures, the tilt of unstable boulders, the strain of a material, or the salinity of water. Key challenges for using RFID monitoring more broadly in geosciences include the use of ground and aerial vehicles to collect data or localize tags, the increase in reading range and duration, the ability to use tags placed under ground, snow, water or vegetation, and the optimization of economical and environmental cost. As a pattern, passive RFID could fill a gap between wireless sensor networks and manual measurements, to collect data efficiently over large areas, during several years, at high spatial density and moderate cost.Comment: Invited paper for Earth Science Reviews. 50 pages without references. 31 figures. 8 table

    Instrumented tools and objects : design, algorithms, and applications to assembly tasks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.We developed an instrumented tool system comprised of wireless nodes and sensor systems to facilitate distributed robotic assembly tasks. This robotic system was deployed on two separate robotic assembly scenarios: one scenario used programmable autonomous beacons to facilitate precise localization of an assembly robot within a mock airplane wing, while the second used programmable assembly components to simplify sensing and coordination in a distributed, multi-robot assembly task. An instrumented tool system comprised of two types of programmable nodes (beacons and assembly components) and two types of robot-mounted sensors was designed, implemented, and tested. On-board microprocessors allow each element of the system to perform sensing and communicate over an infrared communication protocol. Algorithms for sensing and distributed communication were developed to perform local sensing tasks between assembly robots and instrumented materials.by Matthew N. Faulkner.M.Eng

    Advanced Microwave Circuits and Systems

    Get PDF

    Non-invasive alcohol and glucose detection using microwave resonators

    Get PDF
    Road safety is one of the priorities for every government in Europe and including in the UK. One of the major concerns for road safety is the consumption of alcohol by drivers which seriously increases the risk of an accident. According to the department of transport in 2007, there were over 17,000 drink-drive casualties including 530 fatalities in England alone. For this reason, the police force needs a fast and easy way to assess the alcohol level of drivers. We propose a new method of detection, using microwaves, which would detect the alcohol-blood ratio from the finger/wrist of the driver. We also study the possibility of blood sugar detection for diabetes using microwave resonators. The system is based on microwave resonators using very low power sources (lmW). This PhD project explores the limits and feasibility of a rectangular cavity resonator and a microstrip suspended ring resonator for use with water/ethanol samples and water/glucose samples. Samples of water/ethanol are tested in three parts for each sensor, 0% (water) to 100% (ethanol) in 5% increments, 1% to 5% in 1% increments and samples less than to 1% in 0.2% increments. Samples of water/glucose are tested from Omol of glucose to 1mol per litre of water in O.lmol/1 increments. Both systems are studied, designed, simulated and tested for the full ranges of both mixtures. The data acquisition software has been written in C# in order to allow ease of data extraction and manipulation during the tests. Using variables such as the Qfactor, the resonant frequency and the reflection coefficient, the resonators can detect permittivity changes in the samples. The rectangular cavity is able to detect a lower limit of 1% of ethanol, and a tenth of a mole for water/glucose mixtures. The suspended ring resonator can detect down to 1% of ethanol using the Q-factor, the resonant frequency and the magnitude and down to 0.2% using the transmission magnitude at a fixed frequency. This method can also detect a lower limit of O.lmol/l for glucose/water mixtures

    Bit Bang 8: Digitalization

    Get PDF
    This book is the 8th in the Bit Bang series of books produced as multidisciplinary teamwork exercises by doctoral students participating in the course Bit Bang 8: Digitalization at Aalto University during the academic year 2015–2016. Digitalization has brought great opportunities for economic growth, productivity gain and job creation in our societies, and will change the way industry will operate. Bit Bang 8 addressed the topic of digitalization from the perspective of its economic, environmental and social sustainability. The course elaborated on the interconnectedness of these phenomena, and linked them to possible future scenarios, global megatrends and ethical considerations. How will digitalization shape our future? How can we prepare can prepare our societies to respond to these changes? Working in teams, the students set out to answer questions related to the digitalization and to brainstorm radical scenarios of what the future could hold. This joint publication contains articles produced as teamwork assignments for the course, in which the students were encouraged to take novel and radical views on digitalization. The Bit Bang series of courses is supported by the Multidisciplinary Institute of Digitalisation and Energy (MIDE). Previous Bit Bang publications are available from http:/mide.aalto.fi

    Feature Papers in Electronic Materials Section

    Get PDF
    This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book
    corecore