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Abstract

We developed an instrumented tool system comprised of wireless nodes and sensor

systems to facilitate distributed robotic assembly tasks. This robotic system was

deployed on two separate robotic assembly scenarios: one scenario used programmable

autonomous beacons to facilitate precise localization of an assembly robot within a

mock airplane wing, while the second used programmable assembly components to

simplify sensing and coordination in a distributed, multi-robot assembly task.

An instrumented tool system comprised of two types of programmable nodes (bea-

cons and assembly components) and two types of robot-mounted sensors was designed,
implemented, and tested. On-board microprocessors allow each element of the system

to perform sensing and communicate over an infrared communication protocol.

Algorithms for sensing and distributed communication were developed to perform

local sensing tasks between assembly robots and instrumented materials.
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Chapter 1

Introduction

The use of multiple coordinated robots for assembly has been well established in the

limited context of automated factory assembly. In such scenarios, a restrictive set of

conditions are required, including centralized control of the assembly robots, absolute

sensing of the position of the robots and workpieces, and precise knowledge of the

sequence of actions needed to produce an assembly. In many important cases these

conditions cannot be met; while relaxing any of these conditions creates many new

challenges, new solutions and applications are available when the control, sensing, and

communication tasks can be shared between the assembly robots and the components

they are assembling.

This work considers the use of instrumented tools and components, defined as

modules containing processing, sensing, and communication, to facilitate robotic as-

sembly in loosely constrained environments. Instrumented components provide an

alternative to high-level sensing and absolute task knowledge by allowing the com-

ponents comprising an assembly to perform local sensing, maintain their state, and

respond to queries issued by the assembly robots. The physical location of the mod-

ules within an assembly workspace allows distributed algorithms to take on physical

significance with respect to specific assembly tasks.

Instrumented tools and components offer many new possibilities for robotic assem-

bly. As an example, consider a group of robots assembling a structure from materials

located in a loosely organized supply depot. A robot, unaware of the progress made



by other robots, could query the partially completed structure directly for the next

task to be performed. The robot, in need of specific materials to perform the task,

could broadcast requests for needed parts; a correct part, in turn, echos responses,

leading the robot to its location. Returning to the structure with the correct part,

the robot performs the assembly task, aided by sensors located on the part specific

to the task.

We develop a particular robotic system to address two forms of robotic assem-

bly scenarios: cooperative multi-robot assembly using intelligent assembly fasteners,

and precise 1-D robot localization using intelligent positioning beacons. These ap-

plications demonstrate the use of embedded sensing and local communication among

assembly components to simplify an otherwise prohibitively complex robotic assembly

task.

In the first scenario, modular instrumented tools and components are used to fa-

cilitate identification, localization, and manipulation tasks. By exploiting processing,

communication, and battery power within the materials used for construction, robots

with simple and inexpensive end effectors are able to reliably identify different types

of parts and accurately grasp and place parts without being given the precise location

of the parts.

In the second scenario, a difficult assembly task inside an airplane wing is explored.

Programmable, Intelligent Beacons installed within the wingbox interact with an

optical sensor installed on a magnetically actuated robot to produce estimates of

the robot's position. We demonstrate that the inexpensive beacons provide position

information accurate enough to provide ±0.05", and with low enough latency to close

the loop on the system's highly nonlinear dynamics.

Implementing these systems produced many hardware design challenges, and re-

quired many trade-offs among competing design goals such as size, computational

power, sensing modalities, and communication capabilities. In many cases, these de-

sign goals arose from specifics of the tasks at hand, such as weight limits imposed

by the robotic manipulator arm, or by the precision needed to align an assembly.

An early design choice required all components to possess their own power source, a



processor, and to implement a common wireless communication framework. Optical

communication was selected as an acceptable compromise of small size, low power,

and useful range. Optical communication, as a line-of-sight medium, also allowed

communication to double as a sensing modality to detect alignment and proximity.

In addition to hardware challenges, implementing the instrumented component

system posed significant software challenges. Working within the hardware design

requirements, a software infrastructure for message passing was developed. In partic-

ular, embedded algorithms needed to be written to reliably pass messages while both

receiver and transmitter independently multiplexed their available communication

channels. Higher-level algorithms were written to be robust against the inevitable

dropped packet or failed node.

The remaining chapters are arranged as follows. Chapter 2 reviews related work in

the fields of programmable matter, industrial automation, and robot sensing. Chapter

3 describes the hardware modules developed and outlines the design trade-offs made.

Chapter 4 explains the embedded software layer run on the modules to perform

sensing and communication, as well as the higher-level interface and control software

needed to integrate the components into their robotic systems. Chapter 5 describes

one application of the programmable matter system to accurately perform closed

loop control of a magnetically actuated robot. A second application, reliable part

identification and grasping of modular construction materials, is explored in Chapter

6. The behavior and performance of the systems are quantified and analyzed through

a series of experiments, presented in Chapter 7. Finally, insights and lessons learned

through creating these systems are discussed in Chapter 8.
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Chapter 2

Related Work

Nearly all robotic assembly tasks involve a few operations that must be performed

repeatedly and reliably. These operations include identification and position sens-

ing of the assembly materials. Even in scenarios less structured than a traditional

factory floor, robots typically manipulate materials drawn from a small, fixed set

of specialized materials, and so it is natural to consider ways that these materials

may be enhanced to simplify and increase the reliability of part identification and

position sensing tasks. Our work builds upon previous and ongoing work to enhance

construction materials with communication, and relates to other approaches to part

identification and position sensing, such as computer vision and RFID.

Our work uses communication-enhanced materials for accurate identification, po-

sition sensing, and grasping. The concept of embedding communication capabilities

into materials has been well established by RFID tags. These tags store a static piece

of information, and communicate passively when energized by a nearby RFID sensor.

RFID has been used for reliable part identification of individual materials [9] [11].

New approaches have explored the use of RFID as a position sensor. Foveated RFID

has been explored as a means of high-acuity short-range part detection [3], while

RFID transceiver characteristics have been used to provide estimated part position

sensing [10]. However, unlike RFID, our assembly materials contain power, process-

ing, and active communication. The ability to process and store information creates

many new applications beyond the capabilities of RFID.



The ability to access and manipulate information stored in communication-enhanced

materials creates new possibilities for robotic assembly. The value of tracking fixed

information about assembly materials through an industrial manufacturing process

has been demonstrated in work flow and inventory optimizations [8]. By extending to

dynamic information, our materials can capture the up-to-date state of an assembly

in progress. For example, [12] uses building blocks with embedded computation and

communication which store environmental information used to speed up distributed

robotic construction tasks.

Our work shares several goals with vision-based solutions to manipulation. Several

approaches to vision-based object recognition are currently being pursued [4], with

barcodes and fiducial markers being perhaps the simplest. Model-based approaches

are able to take advantage of the CAD models typically produced prior to creating

assembly materials [6]. Computer vision has also provided means for closed-loop

positioning of robot manipulators [1]. These approaches do provide part identification

and position sensing, but, unlike our system, incur a high computational cost and

cannot store information in the assembly materials.

Finally, our work using communication-enhanced positioning beacons for accurate

positioning and closed-loop control of a magnetically actuated robot extends previous

work in industrial automation in magnetic actuation and optical positioning. Mag-

netic levitation with optical positioning is considered in [2] and [7]. Our work extends

this work to consider the use of multiple beacons with communication and processing

for optical positioning.



Chapter 3

Electronics for Instrumented Tools

and Objects

We developed a hardware platform composed of three electronic modules that allow

a robot to perform accurate assembly operations. The platform contains two types

of autonomous nodes, the Intelligent Positioning Beacons and the Intelligent Assem-

bly Components, which integrate sensing and communication into materials used

for assembly tasks. The platform also includes an Interface Module with infrared

transceivers that can communicate between a robot and the autonomous nodes. Ad-

ditionally, the interface module is capable of using an optical sensor for precise linear

positioning. These three electronic modules were deployed in two different robotic

assembly systems: Chapter 5 describes the use of the Intelligent Positioning Beacon

and the interface module to achieve accurate closed-loop linear motion, while Chapter

6 describes the use of the Intelligent Assembly Components and the interface module

to perform accurate part identification and manipulation.

This chapter will introduce and describe each of the electronic devices developed.

First, the core infrastructure of the electronics system is described in Section 3.1.

This infrastructure is comprised of the embedded microcontroller which enables each

element of the system to perform processing and communication, as well as the in-

frared wireless comnmunication interface that links the system together. Then, Section

3.2 describes the individual electronic modules: the Intelligent Positioning Beacon,



the Intelligent Assembly Component, and the Interface Module.

3.1 Core Electronic Infrastructure

This section defines the processing and communication systems common to each el-

ement of the electronic assembly system. Processing is provided by an 8-bit micro-

controller within each element. Communication between elements is achieved using

serial communication over modulated infrared signals.

3.1.1 AVR Processor

A microprocessor allows every component of our system to store information about

its state, control sensors, and communicate with other components. Each hardware

component contains an 8-bit Atmega8 AVR processor made by Atmel. The Atmega8

provides 8-Kbyte of flash program storage, 512 bytes of EEPROM, 1-Kbyte SRAM,

an SPI serial interface and a 10-bit A/D-converter. The Atmega8 is operated at a

system clock rate of 14.7456MHz using an external crystal oscillator to provide an

accurate clock source for error-free communication baud rates.

The hardware peripheral features utilized by our system include the Atmega's

two 8-bit timers, its 16-bit timer, the interrupt-driven USART, and the 10-bit A/D-

converter. These features are controlled in software to provide modulated infrared

UART serial communication, PWM control of the average current supplied to the

infrared LED transmitter, multiplexing of communication signals to four infrared

receiver/transmitter units, and clocking and analog sampling of a linear photodiode

sensor.

USART

The first hardware peripheral is the Universal Synchronous/Asynchronous Receiver

Transmitter (USART). The hardware USART is used to serially transmit 8-bit char-

acters, either wirelessly over infrared or via an RS-232 interface to a desktop com-

puter. It is used asynchronously (UART) at 2400 bits per second (bps). Because



a single byte requires approximately four milliseconds to transmit at this data rate,

it is important that interrupts be used to notify the processor when a transmission

is completed rather than waiting. The TX Data Register Empty interrupt indicates

that a new byte may be loaded for transfer. This allows an entire array of data to

be transmitted with minimal overhead. Similarly, the RX Complete interrupt allows

the receiver to buffer each received byte and perform error detection with minimal

overhead.

Timer 0

The next peripheral used is the 8-bit TimerO. TimerO is used to generate the 184kHz

clock source and control waveform needed to interface with the TAOS 1410r linear

photodiode sensor used for optical positioning, described in Section 3.2.3. The TimerO

Interrupt Service Routine (ISR) defines the rising and falling edges of the clock wave-

form, allowing initiation of analog-to-digital conversion to be precisely synchronized

with the analog signal clocked out of the photodiode. Further, the control signals pro-

duced by the TimerO ISR provide flexibility in defining the sensor's sampling interval,

in effect the "white balance" of the sensor, and allows subsampling of the sensor for

higher data rates.

Timer 1

Another timer, the 16-bit Timer1, is used by all modules to produce the 38kHz carrier

frequency needed for modulated IR communication. Timer1 is configured to produce

phase-correct Pulse Width Modulation (PWM) automatically on an output pin using

Timer1's hardware output compare unit. Phase-correct PWM allows the duty cycle,

which directly influences the average power usage of the infrared transmitter, to be

configured during use without introducing variation in the position of the pulses, thus

providing more consistent modulation.



Timer 2

The third timer, the 8-bit Timer2, is used by all modules to generate ims timing

events. These events are used primarily for defining the period of time allowed for

messages to be received.

Analog-to-Digital Converter

The final peripheral of the AVR is the 10-bit Analog-to-Digital converter. The At-

mega8 provides an 8-channel ADC (for TQFP and QFN packages only) that can

perform up to 15000 samples per second (15ksps) at full resolution, with higher sam-

ple rates being possible at reduced resolution. The ADC can be configured to run

constantly, known as Free-Running mode, or to perform single conversions, known as

Single-Shot mode. The ADC converts an analog input to a digital value through suc-

cessive approximation, requiring an ADC clock frequency between 50kHz and 200kHz

(for maximum resolution) to be derived from the system clock. A single ADC con-

version requires 25 ADC clocks when the ADC is first initialized to activate internal

hardware, and 13 ADC clocks for subsequent conversions.

We use the AVR ADC in Single-Shot mode to convert analog sensor readings from

an optical sensor to digital values. It was found that the full precision of the ADC

was unneccessary, but that the maximum full-resolution sample rate of 15ksps was

too slow. Consequently, the ADC clock source was set to 3.6468MHz, providing a

sample rate of 280ksps. We found that the loss of accuracy was entirely acceptable;

we discard the two least significant bits of the converted value.

3.1.2 Modulated Infrared Communication

The elements of the programmable matter systems interact with each other using wire-

less optical communication. These interactions include such niessaging operations as

querying the state of individual components, or to updating information stored in the

components. However, optical communication, as a line-of-sight medium, implicitly

conveys additional sensory information regarding proximity and unobstructed paths



between communicating components. Our system utilizes the field of view of the

optical components to determine the identity and relative position of nearby parts.

Creating a sensory system from optical communication requires specification of

the range and field of view of the optical transmitters and receivers. Short range and

narrow fields of view provide valuable sensory information by heavily constraining

the possible locations where a part within communication contact may be, but at

the expense of making establishing communication difficult in the first place. In the

context of robotic assembly, the trade-off can be made by considering that certain

interactions, such as manipulation, only take place between components within arm's

reach of each other. This defines an upper limit on necessary range. Similarly,

the needed field of view can be bounded by the degree of precision needed to align

interacting components.

In light of these trade-offs, 38kHz modulated infrared communication was selected

for the communication range, low power, and wide field of view of available receivers

and transmitters. A similar communication protocol, IRdA, was considered for its

higher data rate, but ultimately rejected on the basis of the short range and narrow

field of view of available transceivers; however, in similar applications it may be a

viable option.

Our system uses an infrared LED and a 38kHz demodulating infrared receiver

to form a transmitter/receiver pair. The Atmega8's single UART serial channel is

combined with a 38kHz modulation waveform, and multiplexed to provide 4 sepa-

rate communication channels, each routed to a transmitter/receiver pair. Only one

channel can be used at any time. While the Atmega8 provides full duplex operation

(sinultaneous transmitting and receiving) which is preserved by the multiplexer, our

communication protocol software limits to half-duplex communication (alternating

transmitting and receiving). This limitation was imposed to prevent a module from

receiving reflected light from its own transmissions, which was observed to be a sig-

nificant source of noise. Each IR channel is capable of line-of-sight communication

at 2400 bits per second (bps). While the UART hardware is capable of much higher

data rates, the demodulating receivers impose the 2400bps limit.



While unmodulated infrared or IRdA communication are possible alternatives,

modulated infrared communication is appropriate for our network communication

because of its small size, low power, long range, and wide field of view. In particular,

modulated IR allows data to be transmitted at up to 7 feet with minimal error using as

little as 20mA pulsed current. Each transmitter / receiver pair has a half-power field

of view of approximately 120 degrees; that is, half of full signal strength is provided

at up to 60 degrees from centerline. In practice, a field of view of nearly 180 degrees

can be obtained if communicating parts are within a foot of each other.

3.2 Electronic Modules

This section describes in detail the three modules which comprise the instrumented

assembly system: the Intelligent Assembly Components, the Intelligent Positioning

Beacon, and the Interface Module.

3.2.1 Intelligent Assembly Components

Robotic construction tasks require a robot to correctly identify materials and accu-

rately manipulate them. The Intelligent Assembly Components drastically simplify

part identification and accurate manipulation by using local, line-of-sight commu-

nication as a substitute for complex sensors such as cameras or laser scanners. In

conjunction with an instrumented gripper, optical communication can be used to ob-

tain and modify information stored in each assembly component, providing a robust

alternative to machine vision identification schemes. Utilizing the field of view of the

optical transceivers, communication also provides accurate position information that

can be used to manipulate the assembly components.

An Intelligent Assembly Component is an instrumented construction material

comprised of a processing and communication node PCB, a rechargeable battery, and

a modular assembly material. Together, these parts form an autonomous "snart

part".



Assembly Node PCB

At the heart of the Intelligent Assembly Component is a node PCB with an Atmega8

AVR microcontroller and four bidirectional infrared transmitter/receiver channels.

The node contains the unique identification number of the part as well as data about

the part, such as its physical characteristics, its role in an assembly, etc. The node also

provides nearly omnidirectional wireless communication via its four infrared trans-

mitters and receivers. These allow the part to communicate with robots or other

parts reliably at distances of up to 60cm. Using a 3.7v 210mA rechargeable Lithium-

Polymer and switching DC-DC converter, the node PCB can be run at 5v for between

4 and 15 hours continuously, depending on the ratio of time idle and time transmit-

ting.

Figure 3-1: Intelligent Assembly Components contain a Processing/Communication
node PCB

Modular Assembly Material

Construction of 3D structures is simplified by the use of two interlocking modular

assembly materials which contain the Assembly Node PCB and a rechargeable bat-

tery. Modular struts are linked together with modular junctions to form 3D scaffold

structures. A modular junction is depicted in Figure 3-2(a), and a strut in Figure

3-2(b). The use of these modular components is described in detail in Chapter 6.



(a) Modular Junction. (b) Modular Strut.

Figure 3-2: The junction joins six struts in the Up, Down, North, South, East, and
West directions.

3.2.2 Intelligent Positioning Beacon

Nearly all robots used for assembly and manufacturing require precise knowledge of

their position in order to function. This information may be provided by propri-

oception, such as sensing joint angles using an optical encoder, or by an external

positioning system, such as machine vision or laser positioning system. These posi-

tioning techniques impose limitations on the design of the robot and on the types of

work envelopes in which it can function.

Figure 3-3: Intelligent Positioning Beacon

The Intelligent Positioning Beacon offers a new programmable matter solution

for accurately positioning a robot within a work envelope. The intelligent position-



ing beacon serves to provide a reference signal that is precise enough to accurately

determine a robot's position. This "local landmark" functionality is extended to pro-

viding ubiquitous position information by installing a network of intelligent beacons

throughout a space. Individual beacons can be activated or deactivated, so that the

robot is always capable of detecting one beacon. Each beacon uniquely addressable

and capable of wireless infrared communication, allowing a robot to query the loca-

tion of its beacon. Used in conjunction with a precise optical sensor, this system can

reliably and accurately determine the position of a robot.

The intelligent positioning beacon is an autonomous instrumented component,

with processing, two infrared communication channels, rechargeable battery, and a

micro laser beacon module. The hardware elements of the beacon are depicted in

Figure 3-4.

Figure 3-4: The components of an Intelligent Positioning Beacon.

Beacon Node PCB

The Beacon node PCB contains an Atmega8 AVR microcontroller and two bidirec-

tional infrared transmitter/receiver channels. The node contains the unique identifi-

cation number of the beacon and its position coordinates. The node PCB is capable

of activating and deactivating one laser module. Using a 3.7v 210mA rechargeable

Lithium-Polymer and switching DC-DC converter, the node PCB can be run at 5v

for between 3 and 15 hours continuously, depending on the amount of time the laser

is active, and the amount of infrared transmission. The PCB measures 0.5" by 1.0".



Micro Laser Module

Each beacon uses an MM650 micro laser module from U.S. Lasers to signal the robot.

The laser module contains a 650nm 5mw red laser diode, an automatic power control

circuit, and an adjustable colliminating lens. It measures 6.4mm in diameter, and

17mm in length.

The micro laser module was found to be vastly superior to directly driving a laser

LED. In particular, laser LEDs are notoriously sensitive to drive current and are

easily damaged without a proper current control feedback. Additionally, laser LEDs

are not naturally colliminated; the beam of a raw laser LED typically diverges at 10

to 30 degrees. This divergence is a direct function of the semiconductor die size, and

a precise beam can only be achieved through the use of a colliminating lens.

3.2.3 Robot Interface Module

The Robot Interface Module provides the link between a robot and the network of

programmable matter beacons or fasteners. The interface module is also capable of

processing an analog optical sensor to obtain precise positioning in conjunction with

a positioning beacon.

The Robot Interface Module is comprised of a PCB with one serial port chan-

nel, three bi-directional modulated infrared serial channels, and (optionally) a TAOS

TSL 1410r photo-diode array optical sensor. The serial port is used to communicate

with the robot, while the three infrared channels allow directional communication

with intelligent beacons and assembly components. Only one of the communication

channels may be active at any moment, and so the interface module serves to route

or multiplex communication between the robot and each infrared channel.

Each of the module's three infrared comniunciation channels is located on a small

infrared receiver/transmitter board, measuring 0.5" by 0.5". These small boards allow

the interface module's comnmunication channels to be placed where they are needed,

such as within an instrumented gripper.



Figure 3-5: Robot Interface module.

Figure 3-6: Infrared Receiver/Transmitter board allows placement of communciation
channels onto the robot.

Optical Sensing

Optical position sensing is performed by the robot interface module by controlling

a TAOS TSL 1410r optical sensor. The interface module produces the clock source,

control signals and analog-to-digital conversion needed to detect the position of a

beacon's laser on the sensor.

The TAOS TSL 1410r sensor consists of 1280 photodiode pixels arranged in a

linear array with 400 Dot-Per-Inch pitch. The 1280 pixels are sectioned into two

banks of 640 pixels. The sensor contains control logic to perform integration of each

pixel output over the sensing interval, and two 640-bit shift registers that are used to

clock out the analog pixel values. The sensor requires a clock signal between 5kHz

and 8000kHz to control the sampling and shift register.



Figure 3-7: Optical Positioning Linear PhotoDiode Sensor

The robot interface module can control individual beacons to activate or deactivate

their lasers. By detecting the pixel position of the laser, a 1D position is obtained,

relative to the location of the active laser beacon. The module uses communication

with the beacon to request the position, in world coordinates, of the beacon. In this

way, the module is capable of producing positions, in world coordinates, in 0.0025"

pixel increments.



Chapter 4

Communication Software

Integrating the instrumented hardware components described in Chapter 3 into robotic

assembly systems required developing software to control the components, and spec-

ifying the communication protocol by which the components would interact with

eachother and the robotic system. The first section of this chapter will outline the el-

ments of the embedded C software run on the AVR microcontroller in eacd hardware

component. This software provides routines to interface with sensors and a packet

layer abstraction for sending and receiving messages over the infrared communication

links. Section 4.2 describes the messaging protocol implemented on top of the packet

layer, and describes the message types used.

4.1 Embedded AVR Software

In order to create robotic systems utilizing a collection of instrumented components,

a software infrastructure was needed to control the sensor systems and provide net-

worked wireless communication. In this way, applications can be built which use

message passing remote procedure calls to interact with and sense their environment.

This section will begin with a description of the embedded software used to con-

trol the optical sensor and detect the position of a beacon's laser beam. Then, the

communication infrastructure used to form, transmit, an receive packets of data is

described.



4.1.1 Optical Sensing for Laser Beam Detection

The Robot Interface Module interfaces with a TAOS TSL 1410r linear photo-diode

array sensor by utilizing the Atmega8's 8-bit Timer0 and its 10-bit analog-to-digital

converter (ADC). The control waveform for the sensor and the ADC conversion is

performed by a state machine. The state machine's transition events are defined by

TimerO interrupt service routines, and the sampling is performed by ADC interrupt

service routines. Together, these allow an entire sensor scan to be performed in the

background of other processes with minimal overhead.

The embedded software abstraction for the photo-diode sensor can be divided into

a set of routines which perform initializations of hardware resources, and a sampling

state machine that is invoked in response to regular timer overflow interrupts.

The rate of sensor readings and the "white balance" of the sensor are determined

by a set of routines which initialize the properties of the 8-bit TimerO and the ADC.

TimerO is incremented with each tick of the system clock, running at 14.74560MHz,

and is configured to overflow at a rate of 368kHz. Each overflow event defines a

rising or falling edge of the photo-diode clock signal, producing a clock signal of

184kHz. Overflow events also mark the transitions of the sampling state machine

and the beginning of analog-to-digital conversions. The ADC performs successive

approximation, and so a clock source is needed to define the sample-and-hold times.

A clock of 3.6864MHz is configured at initialization. An ADC conversion requires 13

clock cycles, so this clock rate provides 283,000 samples per second. This allows all

1280 pixels of the photodiode to be sampled over 200 times per second.

4.1.2 Communication Packet Layer

The ability of a module to receive and respond to messages requires several steps;

these steps are abstracted away by a communication packet layer. This software

layer is responsible for creating packets from message data strings, controlling the

multiplexer, modulation, and USART to transmit packets, and verifying the integrity

of received packets.



A packet is a specially formatted string of characters that contains unique start

(<), end (>), and separator ($) characters. It contains a 16-bit cyclic redundancy

(CRC) checksum, transmitted as four hexadecimal characters, that is used on the

receiver end to verify the integrity of the packet. Packets may be of variable length,

but are required to be shorter than a maximum packet length, typically 48 characters.

By convention, packets may contain only printable ASCII characters.

< message data $ C C C C >

Figure 4-1: A packet is defined by its unique start, end, and checksum separator
characters, with a four-byte hexadecimal checksum.

Transmitting a message involves verifying that the transmit buffer does not con-

tain a message currently being transmitted, computing a CRC checksum, format-

ting the message data and four-byte hexadecimal CRC checksum according to the

packet syntax (see Figure 4-1), buffering the packet for transmit, selecting the trans-

mitter channel, and enabling the transmit interrupt service routine. Once enabled,

the transmit interrupt service routine will transmit one byte at a time until the

packet end character is reached; it will then disable the transmit interrupt, and set

a transmit-complete flag. Interrupt-driven transmission and the transmit-completc

flag allow the main program to perform other tasks while a message is transmitting.

Receiving a packet is slightly more complicated than transmitting for three rea-

sons. First, the program should not listen indefinitely for a message to be received.

Second, the receiver does not know the length of the packet it is receiving. And third,

the received message may have been corrupted during transmission. A software re-

ceiver state machine, depicted in Figure 4-2, addresses these three issues.

To receive a packet, a timeout timer is initialized. This timer halts the attempted

receive in the event that no packet arrives, or if a partial packet is received. This timer

is reset when the start byte of a packet first arrives to ensure that the receiver does

not time out while receiving is in progress. The receiver state machine is activated by

enabling the receive interrupt. Each time a character arrives on the active IR chan-

nel, an interrupt is generated. The state machine begins in the WaitForStartByte



state, and then transitions into the BufferData state when a start character is

received. Each subsequent character received is used to incrementally construct a

checksum, and is placed into the receive buffer. The BufferData state ends when

the checksum separator character $ is received. This character marks the transition

into the CompareChecksums state. The next four bytes received are the hexadeci-

mal representation of the message data's CRC checksum. When all four bytes have

been received, this checksum is compared to the checksum computed during the

BufferData state. Any difference indicates that the message has been corrupted.

The checksum of the received packet is computed incrementally each time a byte

is received in order to uniformly distribute the computation across many interrupt

service routines. If, instead, the checksum were computed all at once, that interrupt

service routine would take significantly longer than the others. Other interrupts are

suppressed while servicing the receive interrupt, so long computations in one receive

service routine could cause other interrupt-driven processes to behave irregularly.

Once the packet layer is in place, the program executed by each hardware module

can be reduced to a simple listen-respond model, where the device's behavior is defined

by the way it responds to different kinds of messages.



Figure 4-2: Receiver State Machine enforces maximum packet length, receiver timeout

interval, and valid CRC checksum.
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4.2 Messaging Protocol

Once a packet layer has been implemented, the behavior of a device can be specified by

the way it creates and responds to messages. In this section, a collection of messages

are described which define the communication between the different elements of our

system.

4.2.1 Node Messages

The following messages are implemented by the Intelligent Positioning Beacon, the

Intelligent Assembly Component, or both. All messages make use of the unique ID

number stored in each autonomous node to indicate the sender or recipient of the

message. The protocol reserves the unique ID number 255 as the BroadcastID; a

message sent to this address will be responded to by every device which receives it.

Query Message

The QueryMessage is the way that the robotic system accesses information stored

within an individual node. Each node contains a nonvolatile ID number in memory,

as well as a fixed amount of allocated volatile memory. The QueryMessage requests

that this information be transmitted.

The only parameter of the QueryMessage is an integer ID number used as the

address of the message.

Q:n $ C C C C >

Figure 4-3: Query Message packet syntax

Set Message

The SetMessage provides the means for the robot system to update the data stored

in the volatile memory of one or more individual nodes. The SetMessage requires an

integer ID number of the node addressed (or the unique BroadcastID for all nodes),



and a string of data that will become the new data stored in the node. The protocol

requires that a node respond with an ACK message, introduced below, when it has

set its internal memory in response to a SetMessage.

Set:n,newData $ C C C C >l

Figure 4-4: SetMessage packet syntax

ID Message

The IDMessage is transmitted in response to a QueryMessage. The IDMessage

indicates the address ID of the transmitting part, and contains the string of data

contained in the part volatile memory.

< ID:n,data $ C C C C >

Figure 4-5: Message packet syntax

Set Transmitter Power Message

The parts of our system communicate using modulated infrared light. The specific

duty cycle of the modulation - the percent of time that the infrared LED is on - is

directly related to the power consumption of the device while transmitting, and is

indirectly related to the range of the transmitter. The Set Transmitter Power Message

allows this duty cycle to be adjusted in 10% increments between 10% and 90%. This

allows the tradeoff between range and power consumption to be updated during use.

The SctTransnitPowerMessage takes as parameters the integer address ID of

the recipient, and an integer between 1 and 9, inclusive.

< POWER:n,power $ C C C C >

Figure 4-6: Set Transmitter Power Message packet syntax



Activate Laser Message

The Activate Laser Message commands a specific beacon to turn on its laser module.

The protocol requires that an ACK message be sent in response to an Activate Laser

Message. This message is not implemented by the intelligent assembly components.

The only parameter is the integer ID address of the recipient.

< ON:n $ C C C C >

Figure 4-7: Message packet syntax

Deactivate Beacon Message

The DeactivatcLascrMcssage commands a specific beacon to turn off its laser mod-

ule. The protocol requires that an ACK message be sent in response to a DeactivateLaserMessage.

This message is not implemented by the intelligent assembly components. The only

parameter is the integer ID address of the recipient.

OFF:n $ CC C C >

Figure 4-8: Message packet syntax

Multi-hop Forwarding Message

The Multi - hopForwardingAlessage allows the range of communication to be ex-

tended beyond simple line-of-sight transmissions. The Multi-hop Forwarding Message

uses a time-to-live number to implement a limited flood routing system. In this sys-

tem, a forwarding message is created with a time-to-live number. When received, the

recipient processes the forwarded message, then decrements the time-to-live number.

If the decremented time-to-live number is greater than zero, a new Multi-hop For-

warding Message is transmitted using this number. This allows messages to propagate

through a network of nodes while avoiding indefinite propagation.



The protocol requires that a node delay for a random interval of time before

forwarding. This helps avoid network congestion. Currently, nodes delay for between

0 and 2 seconds.

The Multi-hopForwarding Message takes as parameter the time-to-live number,

and the string data of another message.

< FW:numHops,msg $ C C C C >

Figure 4-9: Multi-Hop Forwarding Message packet syntax

Acknowledge Message

The AcknowledgeMessage provides a simple way for a node to indicate that it has

successfully received a transmission.

< ACK:n,msg $ C C C C >

Figure 4-10: Acknowledge Message packet syntax

4.2.2 Interface Module Messages

The messages exchanged among the autonomous beacon and assembly component

nodes, or between the nodes and the interface module, differ in syntax from similar

messages exchanged between the robot and the interface module. This is because

messages between the robot and the interface module contain additional routing in-

formation about which of the interface module's three infrared channels the commu-

nication is routed through.

Send Query Message

The Send Query Message commands the inteface module to transmit a QueryMessage

with a specified address ID through one of the interface module's three infrared com-

munication channels. The interface module is required to attempt to receive a message



on that channel for 250ms in order to receive any response. If an IDAiessage is re-

ceived in response, the interface module constructs a ReceivedlDMessage, defined

below, and transmits this to the robot through the module's serial port.

The SendQueryillessage takes as parameter the integer address ID number used

for the Query, and a single character 'A', 'B', or 'C' indicating which of the module's

three infrared channels should be used.

Q:c,n $ C IC CC >

Figure 4-11: Query Message packet syntax

Send Set Message

The SendSetMessage commands the inteface module to transmit a Set Message

with a specified address ID and contents through one of the interface module's three

infrared communication channels. The interface module is required to attempt to

receive an ACK message on that channel for 250ms. If an AcknowledgeMessage is

received in response, the interface module sends an AcknowledgeReceivedAfessage

to the robot through the module's serial port.

The SendSetMessage takes as parameter the integer address ID number used

for the SetMessage, the data to be used as the contents of the SetAlessage, and

a single character 'A', 'B', or 'C' indicating which of the module's three infrared

channels should be used.

Set:c,n,newData $ C C C C

Figure 4-12: SetMessage packet syntax

Received ID Message

The ReceivedlDMessage is communicated from the interface module to the robot

through the module's serial port to indicate that an ID message was received on one

of the module's infrared channels. The message takes as parameter an integer ID



address of the sender of the ID message, the data string contents of the received

ID message, and a single character 'A','B', or 'C' indicating the infrared channel on

which the ID message was received.

< ID:c,n,data $ C C C C >

Figure 4-13: Received ID Message packet syntax

Send Set Transmitter Power Message

This message commands the interface module to send a SetTransmittcrPower mes-

sage through one of the interface module's three infrared communication channels.

< POWER:c,n,power $ C C C C >

Figure 4-14: Set Transmitter Power Message packet syntax

Send Acivate Laser Message

This message commands the interface module to send an ActivateLaser message

through one of the interface module's three infrared communication channels.The

message takes as parameters an integer ID address of the recipient of the ActivateLaser

message, and a single character 'A','B', or 'C' indicating the module's infrared channel

to be used for transmitting.

ON:c,n $CC CC 1>

Figure 4-15: Send Activate Laser Message packet syntax

Send Deactivate Laser Message

This message commands the interface module to send a DeactivateLaser message

through one of the interface module's three infrared communication channels. The

message takes as parameters an integer ID address of the recipient of the DeactivateLaser



message, and a single character 'A','B', or 'C' indicating the module's infrared channel

to be used for transmitting.

OFF:n T$ C C IC C >

Figure 4-16: Send Deactivate Message packet syntax

Send Multi-hop Forwarding Message

The SendMulti- hopForwardingMessage commands the interface module to send a

Multi - hopForwardingMessage through one of the interface module's three infrared

communication channels. The message takes as parameters an integer time-to-live

number, a message to forward, and a single character 'A','B', or 'C' indicating the

module's infrared channel to be used for transmitting.

< FW:c,numHops,msg $ C C C C >

Figure 4-17: Send Multi-Hop Forwarding Message packet syntax

Received Acknowledge Message

The ReceivedAcknowledge Message is communicated from the interface module to

the robot through the module's serial port to indicate that an AcknowledgeMessage

was received on one of the module's infrared channels. The message takes as parame-

ter an integer ID address of the sender of the AcknowledgeAfessage, and a single char-

acter 'A','B', or 'C' indicating the infrared channel on which the AcknowledgeMessage

was received.

< ACK:c,n,msg $ IC 7CC >

Figure 4-18: Received Acknowledge Message packet syntax



Firmware Info Request Message

The FirmwareInfoRequestAlessage is used in special cases to obtain a string of in-

formation identifying the interface module. In particular, this is used by applications

to automatically detect and connect to an appropriate serial port for the interface

module. It takes no parameters, containing only the question mark character.

<1 ?$ CC CC >

Figure 4-19: Firmware Information Request Message packet syntax

Firmware Info Message

The FirmwareInfoMessage is sent in response to a FirmwareInf oRequest Message,

and provides meta-information about the device firmware. It takes no parameters.

< FIRMWARE:t $ C C C C >

Figure 4-20: Firmware Information Message packet syntax

Take Scan Message

The TakeScanMessage commands the interface module to perform one scan of its op-

tical sensor, and to transmit either a LaserPositionMessage or LaserNotDetectedMessage,

both of which are defined below. The message takes no parameters.

< SC $ C C C C >

Figure 4-21: Take Scan Message packet syntax

Fast Scan Message

The FastScanAfessage is similar to the TakeScanMessage, but commands the in-

terface module to perform multiple scans and to transmit the results of those scans.



This allows for higher throughput that is obtaining by using communication to initiate

each scan.

The FastScanMessage takes an integer parameter for the number of scans to be

performed.

< FSC $ C C C C >

Figure 4-22: FastScan Message packet syntax

Laser Position Message

The LaserPositionMessage is sent from the interface module to

sponse to a TakeScanMessage or a FastScanMessage in the event

exceeding a preset threshold were detected.

The message takes as parameter the integer pixel number of the

the robot in re-

that pixel values

laser position.

< L:n $ C C C C >

Figure 4-23: Laser Position Message packet syntax

Laser Not Detected Message

The LascrNotDctcccdAlessagc is sent from the interface module to the robot in

response to a TakeScanMessage or a FastScanMessage in the event that no pixel

sampled exceeded the laser detection threshold.

The message takes no parameters.

< LND $ C C C C >

Figure 4-24: Laser Not Detected Message packet syntax



4.2.3 Embedded Control Program

Once the sensor routines, packet layer, and messaging have been implemented, the

main function of the beacon, assembly component, or interface module reduces to

a simple listen-respond loop. This can be viewed as a master-slave relationship be-

tween the robot and the interface module and a master-slave relationship between

the interface module and the autonomous nodes. In both cases, the slave listens for

messages from a master, and then performs a response to the message.

4.3 Application Software

Higher-level application software can be written by implementing the messaging pro-

tocol. This cleanly separates development of algorithms and control from the low-level

implementation details of theh programmable matter system components. Chapter

5 describes an application layer written in the National Instruments G graphical

programming language to provide closed-loop robot positioning, while Chapter 6

describes an application layer written in Java to perform object recognition and po-

sitioning.
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Chapter 5

Intelligent Fasteners for Accurate

Closed-Loop Linear Positioning of

an Assembly Robot

Automated assembly of complex products presents many difficult design choices when

planning for parts positioning and assembly strategies. As a motivating scenario, we

consider the challenging task of installing fasteners inside an airplane wing. This

task requires high precision within a large work envelope. Further, the work envelope

is irregularly shaped, with a formidable ratio of depth to width, posing significant

challenges for traditional articulated manufacturing robots.

In response to these challenges, a novel assembly system was developed that uses

a pair of robots, one inside the airplane wing and one outside, that cooperate to ac-

curately move within the wing. Specifically, the robot outside of the wing is equipped

with powerful electromagnets and is actuated by an external positioning system; the

inner robot is affixed to strong permanent magnets. Together, this allows the outer

robot to exert magnetic forces on the inner robot, thus moving it. In this way, the

two robots may move together, one on either side of the surface of the wing. Working

as a pair, the robot system could cooperate on such tasks as inserting a bolt from

one side and applying a nut on the other. Simple tasks such as these are currently

impractical for robots in such a constrained space.



In order to position the robots accurately, a closed-loop control scheme is needed.

This requires accurate measurements of the inner robot's position. We develop a

solution for accurate, non-contact position sensing using intelligent fasteners. These

fasteners are installed inside the wing beforehand and can be wirelessly controlled to

emit a laser beam; the inner robot then determines its position relative to the laser

beam. Then, using a wireless communication protocol, the robot can identify the

fastener emitting the laser and obtain the fastener's world coordinates. With this

information, the robot can determine its absolute position.

Figure 5-1: An intelligent fastener contains power, communication, and a laser bea-
con.

In this chapter, we describe an assembly system to evaluate magnetically-actuated

robot motion within a mock airplane wing. First, the mechanical system, composed of

the two magnetic robots, is detailed. Then, we describe a solution for sub-millimeter

robot position sensing using intelligent fasteners and optical sensing. This sensor

information allows us to control the robot with accurate closed-loop linear motion.

Finally, we discuss modifications and revisions made to the system that were found

necessary for practical experiments.

5.1 Magnetic Robot System

The robot system is comprised of two mechanical parts. The first, referred to as

the inner robot, is a sled with four powerful permanent magnet Hallbach arrays. The



inner robot is placed inside the mock airplane wingbox. The second, referred to as the

outer robot, provides the driving magnetic field via two large electromagnetic coils.

These use Lorentz forces to move the robot horizontally without generating normal

force that would clamp the two robots to the wing. The two robots are separated by

6mm of acrylic, which functions as the surface of our mock wing. The outer robot is

mounted on a lead screw gantry beneath the wingbox which allows the outer robot

to move with precise linear motion. The wingbox and the robots are shown in Figure

5-2.

Control of the carriage's position and the current through its coils is provided

by a National Instruments cRIO-9074 real-time I/O module. The cRIO contains a

400MHz real-time computer, and a 2M gate FPGA. Additionally, the cRIO serial

port is used to interface with the infrared communication system.

Inner Magnet
Robot

Optical Positioning
Electronics I

Figure 5-2: Wingbox with inner robot (above) and outer robot (below).



5.2 Positioning using Intelligent Fasteners

The Intelligent Fastener positioning system provides the accurate position measure-

ments which are needed for the magnetic robot system to achieve controlled motion.

Position measurements are obtained by using an optical sensor mounted on the inner

robot to detect a laser beam emitted by an intelligent fastener. The robot can in-

teract with the fasteners using wireless communication to identify fasteners, control

their lasers, and query or record information in a fastener. The inner robot moves

linearly over one or more beacons; at all times at least one beacon is beneath the

robot's optical sensor, ensuring that position measurements may always be obtained.

5.2.1 Position Measurement

The first requirement of stable, closed-loop position control is obtaining accurate, low-

latency sensor estimates of the inner robot's position. Position of the inner robot with

respect to the wingbox is measured by a laser beam originating from an intelligent

fastener that impinges on a linear photodiode array sensor mounted on the underside

of the inner robot. The placement of the fasteners onto the surface of the wing

beneath the robot is shown in Figure 5-3. More details about the intelligent fastener

can be found in Section 3.2.2.

Determining the position of the inner robot relative to the wingbox requires two

steps. In the first step, the inner robot uses infrared communication to issue a

QueryMessage. An intelligent positioning fastener responds to this query, providing

the robot with its identification number and its position in the wingbox coordinate

frame. The robot then issues an ActivateLaserMessage to the fastener to turn on

its laser beacon. For more details on the messaging protocol, see Section 4.2.

In the second step, the inner robot uses its optical sensor to measure the position

of the fastener's laser beam. The beam is considered detected if the optical sensor

detects any pixel values exceeding 95% saturation. The position of the beam is

determined as the center of the largest interval above the saturation threshold. This

is intended to eliminate spurious peaks in the signal; however, in practice, the laser



Sensor accurately
Detects laser position.

Robot communicates
with Beacons

Figure 5-3: The inner robot communicates with intelligent fasteners mounted to the
wing. An optical sensor mounted on the underside of the inner robot detects a
fastener's laser beacon.

beam is reliably the only signal to exceed the threshold.

Using the pixel index, it is a simple matter to use the known 63.5pm pixel center-

to-center spacing to compute the offset of the laser beam relative to the robot. This

offset, along with the active fastener's position in the wingbox, allow the inner robot

to determine its position. The length of the photodiode, at 10.2 cm., determines the

range of motion possible using one beacon.

5.2.2 Closed Loop Control

Closed loop control requires measuring the robot's position, positioning the carriage

beneath the robot, and driving current through the carriage's electromagnetic coils.

The carriage can easily be controlled by PID to gently move to the robot's position.

However, controlling the inner robot is more difficult due to its highly nonlinear



dynamics: the robot is stationary until between four and five amps of current are

applied to the coils. Then, the robot moves with nearly maximum velocity. A PID

controller is used to command a stable current through the carriage's electromagnetic

drive coils as the robot moves. A simple bang-bang control is used on top of that to

set the coil current. While a thorough characterization of the robot's dynamics would

allow a more sophisticated control scheme, with sufficient sensing simple bang-bang

control is adequate for millimeter-scale positioning.

The control loop for the robot and carriage is depicted in Figure 5-4. Once a

beacon has been identified and activated, the control loop uses bang-bang control

with hysteresis to push the robot towards the target position. The carriage's coils

can only exert force on the robot when located beneath the robot, so the control loop

will not drive the coils unless the carriage is within some tolerance, typically under

lcm., of the robot's position.

Achieving stable closed-loop control requires position measurements to be accurate

and low latency. Experimentally, 12 measurements per second was determined to be

the minimum sampling rate to achieve 0.05" positioning without oscillation if the

samples had millisecond latency. However, infrared communication introduces non-

negligible latency. Closed-loop control was achieved while using 25 and 40 samples

per second, with latency between 40mS and 20mnS, respectively.

Experimental results demonstrating closed loop motion with 0.05 in. accuracy are

presented in Section 7.2.

5.3 Systems Implementation

Implementing closed-loop control for the magnetic robot exposed several necessary

modifications and possible improvements. Several of these were implemented, while

others were not possible.

Several issues arose surrounding the linear motion of the robot. First, irregulari-

ties in the wingbox construction made the surface nonuniform where the robot moves.

Irregularities include the seanis between acrylic sheets, the sag of the acrylic between



Figure 5-4: Robot and carriage control loop diagram.

supports, and irregular friction resulting from wear between the robot and the acrylic

surface. These irregularities made the minimum amount of coil current needed to

move the robot vary from between 4.4A and 5A. Higher currents result in higher

velocity motion that is more difficult to control. These irregularities were considered

inherent in the wingbox construction, and could not be corrected. Second, the wing-

box was not well leveled, resulting in a sideways drift. This caused the robot's sensor

to drift out of contact with the narrow laser beam. Two solutions were implemented

to fix this: the lasers were focused to be ellipses wider in the sideways direction, and

an acrylic rail was placed beneath the beacons to provide a smooth guide for linear

motion.

Another significant issue arose regarding the latency of the sensor measurements.



While the initial specification of 10 position measurements per second proved ap-

proximately accurate (12 was determined to be the minimum), the system initially

provided these measurements with approximately 90mS of latency. This latency was

the result of the infrared communication rate of 2400bps. Such high latency was

determined to produce oscillations in the motion control. Consequently, two modi-

fications were implemented to reduce the position measurement latency. First, the

message syntax was shortened to reduce the number of characters transmitted to a

bare minimum. This was sufficient to obtain 40ms latency and adequate control. A

second modification used a communication cable between the inner robot and the

cRIO control module, enabling higher baud rates of up to 19200bps. This drastically

reduced measurement latency to between 10mS and 20mS, producing much more

stable of control. The impact of latency on positioning is presented in 7.2.



Chapter 6

Instrumented Objects for Grasping

and Construction

In this chapter, we describe a robotic assembly system which uses optical communica-

tion between a robotic manipulator end-effector and a set of communication-enabled

assembly materials to perform reliable part identification and grasping. As a moti-

vating scenario, we consider building a cube from interlocking assembly materials.

First, the modular assembly materials are introduced in Section 6.1, followed by

the design of the gripper end effector in Section 6.2. Then, Section 6.3 describes

an algorithm that uses the components and gripper to perform reliable identification

and gripping. A 3D construction application is presented in Section 6.4, and system

implementation issues are presented in Section 6.5.

6.1 Modular Assembly Materials

Physical assemblies of Intelligent Assembly Components are possible by placing the

Assembly Node PCB into a modular strut or connecting junction piece. Modular

building materials were designed that allow complex 3D structures to be built, while

still being practical for use with off-the-shelf robotic manipulators. Modular struts

and junctions interlock both horizontally and vertically to allow scaffold-like struc-

tures to be built. The parts require only centimeter scale accuracy for placement,



relying on the contoured design of the mating surfaces to fall into place precisely.

Every part has a specially designed grasping point that can be passively aligned to

a fully constrained position despite up to 2cm of misalignment. The parts are light

weight and 3D-printed. Additionally, the modular components were produced in

several colors, yielding a collection of heterogeneous building materials.

The modular strut, shown in Figure 6-1, can be used as a horizontal or vertical

member. The Assembly Node PCB is placed in a specially contoured protrusion that

serves as a grasp point for the strut. The strut is 18cm. long. With a rechargeable

3.7v 210mAh lithium polymer battery, the strut weighs 60 grams.

Figure 6-1: Intelligent Assembly Strut.

Struts are linked together with connecting junctions. The connecting junction,

shown in Figure 6-2, is capable of connecting 6 struts in the North, South, East,

West, Up, and Down directions. Using the connecting junction, 3D assemblies can

be formed. Like the strut, the connecting junction contains the specially contoured

grasp point containing an Assembly Node PCB and rechargeable lithium polymer



battery. The connecting junction weighs 60 grams.

Figure 6-2: Modular Connecting Junction can connect six struts.

6.2 Instrumented Gripper

The instrumented gripper solves several problems faced by assembly robots. First,

its special design allows it to reliably grasp parts despite centimeter-scale uncertainty

in the part's position. It does this by passively aligning the grasp point into a unique

orientation as the gripper closes. Second, the gripper allows the robot to identify

individual parts. It accomplishes this by using an infrared receiver/transmitter PCB

connected to an Interface Module to wirelessly communicate with nearby Intelligent

Assembly Components. In effect, the gripper can "ask" the things in front of it if

they are "graspable". Finally, the instrumented gripper solves the problem of precise

positioning needed to reliably grasp by exploiting the field-of-view of its infrared

communication: the gripper's field-of-view is exactly the region where a part can be



located and still be passively grasped. Thus, establishing communication is equivalent

to positioning the gripper for a successful grasp.

Figure 6-3: Instrumented Gripper contains an infrared communication transceiver,
and is contoured to align a grasped part as the gripper closes.

6.3 Precise sensing with Intelligent Components

Intelligent Assembly Components, used in conjunction with an Instrumented Gripper

mounted on each robot, provides a solution to two challenges faced by the assembly

robots: object recognition is provided by querying the building materials; and precise

grasping is accomplished by a grasping algorithm that exploits the field-of-view of

optical communication.

An assembly robot in relative proximity (60 cm.) to an intelligent assembly com-

ponent can obtain all the sensory information it needs to identify the shape, color, and

status of the component simply by asking. The robot may issue a QueryMessage and

use the existence of an IDAJessage response to determine if a component is present,

and if so, if it is of the type the robot desires to perform its current task.

The intelligent assembly components make precise grasping of a component at an

unknown location possible by using communication between the robot's gripper and

the component as a, sensing modality. The receiver/transmitter board placed within



the instrumented gripper is oriented such that line-of-sight communication between

the gripper and an assembly component is only possible when the gripper is held over

the component. Specifically, the gripper is held 15cm. above the location of a poten-

tial component; the gripper will successfully grasp a component if it is within a 6cm.

circle beneath the gripper. By choosing the placement of the receiver/transmitter

board to provide a 6cm. field of view at a distance of 15cm, communication deter-

mines alignment of the gripper with a component.

6.3.1 Grasping Algorithm

A grasping algorithm defines the pattern of motion and communication needed to

reliably find and grasp a component. For our experiments, it is assumed that the

components' exact locations are not known, but that they are required to be within a

linear region known as a "parts depot". This assumption was made due to the limited

reach and accuracy of the robots' manipulators; linear search was more practical for

experiments than attempting to move the manipulator in a raster pattern. We assume

that a robot's knowledge of its position is sufficient for the robot to navigate to the

parts depot. Within the parts depot, intelligent assembly struts and junctions may

be placed. The components are not indexed into fixed positions, but may be at any

point along a line.

The grasping algorithm is outlined in Algorithm 1.

The grasping algorithm begins once a robot arrives at the parts depot and orients

its gripper above one end of the linear depot. The algorithm first locates a desired

part to an approximate position estimate. Then, a fine-sensing pass is performed to

accurately position the gripper over the component.

Once the robot has positioned its gripper over one end of the linear depot, the

robot then begins moving its gripper over the depot, issuing QueryAlessages at ev-

ery 5cm of linear motion. In this way, the field-of-view of successive communications

overlap, allowing the entire area of the depot to be queried. If the robot desires a

specific component, it may only address its QucryAlessages to the desired compo-

nent's ID number. However, if the robot seeks any part with suitable properties, such



Algorithm 1 Locate-And-Grasp algorithm. position-tolerance, the field of view

width FOV and depot-length are supplied constants.

1: stepSize & FOV

2: fineStepSize <- positiontolerance

3: armPosition <- 0
4: while armPosition < depot-length do
5: send Query
6: if desired ID message received then
7: while desired ID message received do
8: send Query
9: armPosition <- armPosition - fineStepSize

10: end while
11: a <- armPosition

12: while desired component responds to query do
13: send Query
14: arnPosition - armPosition + fineStepSize

15: end while
16: b <- armPosition

17: armPosition +- "f2
18: lower gripper and grasp component
19: return TRUE
20: else

21: armPosition +- armPosition + stepSize
22: end if
23: end while
24: return FALSE

as any assembly strut, the robot may issue QueryMessages using the Broadcast-ID

number, and examine all responses for a match. When a match is found, a second

phase of the algorithm begins.

When communication is established with a desired part, it can be inferred that the

part is in some limited region beneath the gripper. The second phase of the algorithm

performs linear search while performing finer motion between issuing QueryMessages

to determine with greater precision the endpoints of the interval of successful com-

munication. Then, the gripper moves to the center of this interval. In practice,

the transmitting properties of the individual assembly components were found to be

highly symmetric and repeatable, so moving to the center of the communication in-

terval has proven a reliable means of centering the gripper over a component, with



observed success rates well above 90%.

Figure 6-4: The field of view of the gripper's infrared communication corresponds to
the region of successful grasps.

6.4 3D Construction with Modular Components

At the time of writing, an ongoing application of the modular assembly materials

and grasping algorithm is the construction of a 3D cube by a team of distributed

assembly robots. The cube is constructed from 8 junctions and 12 struts from two

colors of materials, depicted in Figure 6-5. Further, each robot is assigned a color,

and is required to manipulate only materials of the same color.The ability to select

and place materials of the correct color is representative of tasks such as selecting

a bolt of the proper size and thread pitch, which a general modular assembly robot

would certainly be faced with.

The implementation of our distributed robotic assembly system is derived from

three design choices. First, the robots use a decentralized message-passing control

scheme for task allocation and motion planning. This gives the system flexibility

and scalability. Second, we assume that every robot knows its own position, and

the position of all other robots, to a coarse scale. Here, "coarse scale" means that



Figure 6-5: Modular construction materials can form 3D structures. This cube is
constructed from 8 junctions, and 12 struts. The grasp points have been removed
from the model for clarity.

the robot may be directed to "within arm's reach" accuracy of an object, but not

with sufficient accuracy to find and grasp an object at a known location using open

loop control. Finally, we assume that the location of parts within the workspace is

constrained to within known regions, but that the specific parts therein and their

precise locations are not known. We refer to these regions as "parts depots", and

contrast them with the rigidly defined parts feeders, such as tape and reel machines,

in conventional automated assembly.

6.4.1 Create Distributed Robotic Assembly Platform

Our robotic assembly platform is a group of iRobot Create robots, each equipped

with a commercially available 5-DOF manipulator, mesh networking, and on-board

laptop computer. These robots are used to perform distributed assembly of 3D node

and truss structures using modular assembly materials. One such robot is depicted

in Figure 6-6.



Figure 6-6: iRobot Create robot platform

6.5 Systems Implementation

In the course of system implementation and running experiments, several modifica-

tions and improvements were made to the system. Briefly, these included adjusting

the field of view of the gripper's communication channel, using 1D search on a circular

arc instead of linear search for components, automatically detecting and connecting to

the serial devices of the system, and selecting more appropriate rechargeable batteries

for the assembly components.

Initial experiments with the instrumented gripper revealed that the infrared trans-

mitter was capable of transmitting through the 3D-printed plastic material of its

housing, causing a very large effective field of view. This was remedied by placing

the gripper's transmitter/receiver board within a black ABS plastic enclosure. This

housing has an aperture through which communication is possible. By sizing the

aperture, the positioning accuracy of the gripper can be controlled. In practice, we

selected a positioning accuracy of 5 centimeters at 15 centimeters; that is, commu-

nication with an assembly component 15 centimeters below the gripper implies that

the component is located in a 5 centimeter circle beneath the gripper.

Another refinement that was found necessary relates to the use of computer serial

ports for communication between the robot and the interface module. Our robotic

system uses three devices which interface via a serial port: the interface module, the

Create robot base, and the LynxMotion manipulator servo controller. However, the

laptops controlling the robots have only one serial port, but several USB ports. While



USB-to-serial adapters provide the missing link, the Ubuntu linux operating system

on the laptops does not consistently assign identification numbers to these USB serial

devices. Initially, this required specification of serial device numbers for each device

every time the control software was started.

In response to the inconsistent serial device numbers, software was written to au-

tomatically detect which hardware device is connected to each USB serial channel.

This was accomplished by creating a handshaking routine between the devices and

the laptop. In particular, the laptop connects to each serial device in turn, attempting

to establish communication using the protocol of the Create or the interface module.

When communication is established, the port number is recorded in a lock file. In this

way, the Create and interface module may be detected and automatically connected

to. The lock file is used to establish the connection to the LynxMotion servo con-

troller (which does not support a protocol conducive to handshaking) by process of

elimination: the only device not listed in the lock file is connected to the LynxMotion

board.

A final modification to the system involves a change to more appropriate, recharge-

able batteries. The initial design of the intelligent assembly components used non-

rechargeable lithium batteries, providing roughly an hour of use. While this was

adequate for small tests, it was found that the mean time between failure when us-

ing a collection of components was too low to practically perform experiments. A

rechargeable 3.7v 210mAh lithium polymer battery allows an assembly component

to remain idle for up to 15 hours on a single charge, or transmitting continuously for

over 3 hours. This has proven adequate for our experiments.



Chapter 7

Experimental Results

To evaluate the performance of the hardware and systems developed, experiments

were performed to test such attributes as communication range, sensor latency, posi-

tioning accuracy, and grasping success rates. This section describes these experiments

and presents the results.

As the core functionality, several aspects of the infrared communication system

were empirically evaluated. These tests are presented in Section 7.1. Next, the per-

formance of the optical positioning system is evaluated in Section 7.2 for accuracy and

latency. The performance of the magnetically actuated robot using the optical sensor

and intelligent beacons for closed-loop control is discussed in Section 7.3. Finally, the

reliability of the instrumented gripper to identify and grasp an intelligent assembly

component is evaluated in Section 7.4.

7.1 Communication Results

Infrared wireless communication links together the elements of the programmable

matter system, and so the success of the system relies on reliable, well-quantified

performance. Hundreds of tests were conducted to evaluate the effect of various

system parameters on the reliability of communication. These parameters include

the distance between axially-aligned transmitter and receiver; the angle between the

transmitting infrared LED's optical axis and the line of sight to the receiver; the



angle of incidence of the transmitted signal onto the receiver; and the duty cycle of

the modulation waveform. Unless otherwise specified, all tests were performed with

a modulation duty cycle of 50%.

7.1.1 Transmission Error Rates vs Distance

The effect of distance on transmission reliability was evaluated separately for the in-

terface module's transmitter/receiver circuit board, and for the positioning beacon

and assembly component node circuit boards. This was necessary because the inter-

face module, not being limited by a small battery, uses a different maximum current

through its transmitter LED. The tests were performed using a test fixture which

held the transmitter fixed, and allowed the receiver to be moved to fixed distances

between 0 and 10 feet from the transmitter. The jig ensured that the transmitter

and receiver were kept parallel and axially aligned. The test measured the number

of correctly transmitted characters by transmitting 1000 characters and counting the

nuniber of correct characters received. This process was repeated for each distance.

Figure 7-1 displays the results of these tests for the interface module's receiver/transmitter

board. The data show that communication reliability is nearly error-less for unob-

structed direct line of sight communication at ranges of up to 10ft. The experiment

recorded over 15,000 consecutive error-free characters transmitted at ranges between

6in. and 9ft.

A similar test was performed with the transmitter used in the beacon node PCB

and the assembly component node PCB. The results of this test are summarized in

Figure 7-2. The data show that nearly errorless transmission is capable at up to

60cm.

These tests show that nearly error-free communication can be obtained during

unobstructed, line-of-sight transmission at up to 10 feet in the case of the interface

module, and up to 2 feet for the beacon and assembly component. The success rate

drops off sharply after these distances.
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Figure 7-1: Interface Module transmission success rate versus distance. 1000 charac-
ters transmitted per distance.
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Figure 7-2: Beacon Node and Assembly Component Node transmission success rate
versus distance.



7.1.2 Communication Error Rates vs Transmission Angle

Like the previous tests, this test uses a test fixture to control the distance and angle

of the transmitter and receiver. Here, the receiver was maintained aligned with the

transmitter, but the transmitter's optical axis was rotated away from the transmitter

by a specific angle. This evaluates the width of the transmitted signal.

The first test in this category held the receiver at a distance of 240cm from

the interface module's receiver/transmitter board, and varied the angle of the re-

ceiver/transmitter board. The results are presented in Figure 7-3. These results

indicate that the transmitter field-of-view is reliably over 120 degrees. The test was

performed at 240cm. because at shorter distances the field of view was consistently

nearly 180 degrees.

Percent of characters received at 240cm vs. transmitter off-axis
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Figure 7-3: Interface Module transmission success rates at 240cm vs transmission
angle.



7.1.3 Communication Error Rates vs Reception Angle

Another test was performed to evaluate the field of view of the demodulating receiver.

Figure 7-4 shows a field of view of 140 degrees with nearly error free reception.
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Figure 7-4: Transmission success rates at 240cm vs receiver angle.

7.1.4 Messaging Range vs Alignment Angle

The previous field of view tests characterize the individual components of the infrared

communication system. This test measures the practical impact of the results by de-

termining the maximum range at which the interface module can communicate with

a beacon node or assembly component node, as a function of alignment angle. For

this test, the interface module's receiver/transmitter board was held fixed, while a

beacon node was rotated. 100 queries were issued, and the maximum distance for

which at least 95% of the queries received error-free responses was recorded. Our com-

munication protocol provides error detection, but does not attempt error correction.



Consequently, a character transmission success rate of at least 95% is recommended

to maintain a high packet success rate.

Figure 7-5 presents the results. 60cm. of range can be achieved within ± 30

degrees, while 40cm. range is achievable for ± 60 degrees.
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Figure 7-5: Maximum range for 95% query-response success vs. alignment angle.

7.1.5 Communication Range vs Transmit Power

All tests so far have performed infrared communication with a 38kHz modulation

waveform of 50% duty cycle. The modulation duty cycle influences the average power

applied to the transmitter LED, and so is a factor in transmission signal strength and

battery usage.

While a higher duty cycle increases the infrared strength, the demodulating re-

ceiver appears to be most sensitive to a signal with shorter on periods than off.

Consequently, 50% duty cycle was found to provide the longest range. However, it



Transceiver Board Range vs. PWM duty cycle
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Figure 7-6:

is interesting to note that lower PWM values generally performed better than corre-

sponding higher PWM values, for example 40% achieves longer range than 60%.

7.2 Optical Positioning Precision and Accuracy

This section evaluates the optical position sensing of the interface module and the

TAOS TSL 1410r photo diode array. Measurements and comparisons were made using

a linear variable differential transformer (LVDT), an accurate tool for measuring linear

displacement.

7.2.1 Stationary Precision

The stationary precision of the optical sensor was measured by recording the detected

position of the laser beam for 3500 samples. The precision of the sensor is compared

to the LVDT after calibrating both sensor readings to be zero-mean. Figure 7-8

displays the results. The ration of the variance of the optical measurements to the

variance of the LVDT measurements is 1.7:1.
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Figure 7-7: Optical Positioning Precision

7.2.2 Motion Accuracy

A separate test was conducted to measure the accuracy of the optical sensor position

across a range of motion. For this test, an LVDT sensor with a 5cm range of motion

was attached to the robot and used as ground truth. Prior to the test, 250 sample

values from both the optical sensor and the LVDT were used to determine the mean

zero position for each sensor for calibration. After calibration, the robot was moved

4.5cm (to stay within the 5cm range of the LVDT), and the mean absolute error

between the optical position and the LVDT was recorded to be 0.254mm.

7.3 Magnetic Robot Control using Laser Beacons

These experiments evaluate closed-loop control of the magnetically actuated robot

using laser beacons for optical position. Communication latency was found to be a

significant factor in the stability of the control loop, and so these tests demonstrate

results for both the standard 240bps infrared communication rate, as well as for

19200bps using a serial cable.

The first experiment was performed using the standard infrared communication at

- Optical Position
- - LVDT Position
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Figure 7-8: Optical Positioning Motion Accuracy

2400bps. The FastScan messaging functionality was used to increase the throughput

of the optical sensor data, however, the messages communicating the laser position

still required between 40ms and 50ms of transmission time. This, in addition to the

8ms of time to scan the photodiode, resulted in position measurements with up to

58ms of latency. Figure 7-9 shows that closed-loop control was accomplished, but that

the robot frequently oscillated about its target position. The robot was commanded

to several different positions, with consistent behavior. During this test, the target

position tolerance was set to 0.05".

The oscillations exhibited in Figure 7-9 can be remedied by specifying looser po-

sition tolerances or by reducing the latency of position measurements. Figure 7-10

shows that oscillations can be avoided with a position tolerance of 0.1". A first at-

tempt to reduce the latency of the position measurements removed the checksum

information from the packets. This shortened each communication by 22ms, to ob-

tain a latency of 36ms. Figure 7-11 shows that this allowed stable closed-loop control

with 0.05" position tolerance.

Another attempt to reduce position measurement latency was made by increasing

the communication baud rate from 2400bps to 19200bps. This prevented us from
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Figure 7-9: High latency in position data causes stable oscillation with 0.05" position
tolerance.

using infrared communication for this test. Using the shortened, checksum-less mes-

sage at this data rate resulted in 12ms of latency. Figure 7-12 shows that with the

decreased latency, the 0.05" position tolerance is easily achievable. Additionally, a

larger number of samples per second are obtained using the increased baud rate,

which directly results in more iterations of the control loop and a smoother motion

profile.

A final experiment was performed to characterize the effect of irregularities in

the wingbox construction on accurate motion. This experiment used identical sensor

configurations as used in Figure 7-12, but the robot was positioned over a seam in

the wingbox construction. The minimum current required to move the robot was

increased from 4.4A to 4.8A. Consequently, the robot's velocity increased, causing

overshooting and oscillation. This is demonstrated in Figure 7-13.

The experimental results indicate that communication latency is the primary lim-

iting factor in using the optical positioning system to achieve accurate closed-loop con-

trol of a magnetically actuated robot. The reference tolerance of 0.05" was achievable

with both 2400bps and 19200bps, although the higher baud rate provided smoother
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Figure 7-10: Looser tolerances eliminates oscillations. At 2400bps, full-length mes-
sages achieve 0.1" position tolerances.

and more reliable positioning.
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Figure 7-11: Closed loop control at 2400bps is stable for lower latency, checksum-less
communication, with 0.05" position tolerance.

Magnetic Robot Closed Loop Control, 19200bps, 0.05" tolerance
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Figure 7-12: A higher baud rate of 19200bps reduces latency, providing smooth stable
closed-loop control.
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Figure 7-13: Rough surface requires higher drive current, producing overshooting.



7.4 Instrumented Gripper Reliability

The reliability of the instrumented gripper was quantified through over 1400 identi-

fication trials and 165 end-to-end tests of the Locate-and-Grasp algorithm.

7.4.1 Material identification testing

To test the gripper's ability to identify materials, an assembly material was placed

within the field of view of the gripper at a distance between 15 and 30cm. A single

identification trial consists of the gripper issuing a Query message to the component,

and then listening for an ID message response. In the event that a message is received,

but the message does not match its checksum, the gripper will issue one additional

Query message. A success is recorded if an error-free ID message is received by the

gripper after the first or second transmission.

7.4.2 Locate - and - Grasp algorithm testing

The grasp testing evaluates the use of infrared communication to perform a line

search for a desired component, align the gripper above the component, lower the

manipulator and perform a successful grasp. A grasp is considered successful when

the gripper closes completely around the assembly component.

For our experiments, it is assumed that the material's exact location is not known,

but that it is required to be along an 4cm wide arc-shaped depot of fixed radius,

rather than in a linear depot. This assumption was made due to the limited reach

and accuracy of the robot's manipulator; sweeping the gripper in an arc by rotating

the base of the manipulator was more practical for experiments than attempting to

move the manipulator over a linear region. We assume that the assembly robot's

knowledge of its position is sufficient for the robot to navigate to the parts depot.

Within the parts depot, intelligent assembly struts and junctions may be placed. The

components are not indexed into fixed positions, but their center point must be within

the depot.

The reliability of the instrumented gripper was evaluated by performing a sequence



of 165 select-and-grasp operations. A select-and-grasp operation consists of a radial

search (sweeping the manipulator 180 degrees around its base axis) in search of a blue

fastener, followed by completely enclosing the fastener within the closed gripper. A

blue fastener is placed along the arc, at a position unknown to the robot. A successful

select-and-grasp determines the fastener's position and securely grasps it.

Of the 165 select-and-grasp operations performed, 164 resulted in successful grasps,

while one attempt swept over the fastener but failed to detect its presence (a "pass-

over"). This failure mode results from a transmission bit error in the message trans-

mitted from the gripper to the component: the component does not respond to cor-

rupted messages, and so the gripper does not detect the component's presence.

Table 7.1 summarizes the results of the identification and grasping algorithm

tests. In both sets of experiments, fewer than 1% of trials were failures. Failures

result when communication is not established between the gripper and an assembly

component within the gripper's field of view. Currently, the robot will make one

attempt to resend a Query message if a corrupted response is received; however, the

assembly components will not acknowledge a corrupted request. The introduction

of a Negative-Acknowledge (NACK) message or an error-correction scheme for these

cases may further improve the reliability of establishing communication.

Type Attempted Successful Success Rate Failure Modality

Identify Component 1447 1446 99.9% random bit error
Identify, Align, and Grasp 165 164 99.3% failed to identify part

Table 7.1: Summary of Experimental Identification and Grasping Results.
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Chapter 8

Conclusions

The process of designing, building, programming, testing, and integrating the ele-

ments of the programmable matter assembly system, uncovered many problems and

unexpected difficulties, and a few pleasant surprises. Solutions to some of these prob-

lems became core parts of the system. In some cases, problems that could not be

satisfactorily resolved provided insight into previously unappreciated aspects of de-

signing such systems. This chapter hopes to convey those lessons learned which may

be widely applicable for designing programmable matter robotic systems.

8.1 Software Development Conclusions

Low-level programming respects few abstraction barriers. Attempts were made to test

each sub-section of the embedded programs regularly throughout the software design

cycle. However, as the embedded programs grew to use nearly all of the Atmega8's

program space, these unit tests needed to be removed. Consequently, separate pro-

grams were run on the hardware to perform unit testing of different subsets of the

software. Additionally, the Splint static code checking tool was used to enforce coding

assumptions and provide stricter error checking than is provided by the AVR-GCC

C compiler. Despite these precautions, several software problems were encountered.

A common theme among these problems was the shared use of the AVR's hardware

peripherals among multiple, conceptually independent software sub-sections. While



C is inherently an "unsafe" programming language, these problems were addressed

by abstraction conventions that each hardware peripheral would be managed by a

distinct software module. Splint annotations were employed in the embedded code

to help enforce these conventions, but in many cases programmer discipline was the

only actual enforcement. These experiences suggest that software development for

embedded, programmable matter applications would benefit significantly from more

capable embedded processors that could offer richer hardware abstractions, or even

virtual machine functionality.

A related, but more specific lesson learned is the high importance of designing

a communication abstraction that is robust and modular enough to readily support

modifications to the communication protocol. More than once, as new functionality

was added to the system, the communication needs or available hardware resources

changed. Fortunately, the communication infrastructure, which separated packet-

level syntax, communication timing, checksum construction, and message parsing

into separate modules, was prepared for these changes.

8.2 Hardware Implementation Conclusions

A robotics professor once said wryly, "Robotics is the science of the battery and

the connector", and so these hardware conclusions offer some advice relevant to the

manufacturing of a distributed, programmable matter system.

A first observation is the importance of designing for manufacturing. In the end,

over 150 individual PCBs were assembled. Some of the first versions required exten-

sive, delicate assembly, and used fine-pitch connectors prone to gradual failure from

the fatigue of ordinary use. Learning from these observations, power-on self-tests

were incorporated into all modules. Interestingly, more than one PCB failed its first

self-test on arrival from the fabrication and assembly facility.

A second observation does, in fact, center on the battery and the connector. A

rule of thumb was discovered that states batteries should not need to be unplugged

from their systems to be recharged, and that the runtime of one battery charge should



be greater than or equal to the average interval between coffee breaks (to allow robots

and researchers to maintain charge synchronization).
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Appendix

Electronics Schematics and PCB

Layout

This appendix presents the schematics and PCB layout for each of the four electronics

modules developed. For more information on each, please see Chapter 3.

A



A.1 Intelligent Beacon Node Schematic
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Figure A-3: Intelligent Postioning Beacon PCB layout, top.
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MT

Figure A-4: Intelligent Positioning Beacon PCB layout, bottom.



A.2 Intelligent Assembly Node Schematic
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Figure A-8: Intelligent Assmbly Node PCB layout, top
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Figure A-9: Intelligent Assmbly Node layout, bottom
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A.3 Interface Module Schematic



M
i1

o
 

i 
M

IS
O

 
V

T
G

-2
T

C
K

 3
S

C
K

 
M

O
S

I 
-

R
sc

o
t 

5
 
E

S
T

 
G

N
D

IS
P

O
N

)

5
?
 

6

H
 

7
L

 
-

(L
K

 
P

D
9
_
_
 

_
 

0
 

A
D

C

H
O

L
D

 
1 

14~
 

L
 

P
D

V
S)

 
* 

A
D

C

X
T

A
t I

X
2 -A

R
B

M
8

1 
-

4N
))

I4
N

D

V
C

C
 

P
s
o

-r
.v

w
h

D
m

. 
G

N
D

IS
 C

,,
n

C
Q

n
 
S

~
h

D
o

c

P
L

 -
'T

X
W

l 
P

W
IM

U
t

SU
P 

C
C

 
W

M
 

PB
S 

)I
C

P
) 

P
C

O
 (A

D
C

O
) 

D
vC

 
~ 

W
 

3P
B

I 
(2

IA
) 

P
C

I )
A

D
C

I)
rr

 
o

M
o

s 
~-

1 PB
?
 lS

/O
C

 
I 

B
) 

P
C

? (
A

D
C

?)
 

i 
ee

l
E

S 
4 

IS
 

~ 
PB

S 
IM

O
SE

/O
C

2)
 

P
C

3 (
A

D
C

3)
1S

S 
33

0 
SU

 
PB

4 (
SO

) 
P

C
4 (

A
D

C
4/

SD
A

)
X

T
A

L
 

I 
I 

P
B

5 (S
C

K
) 

P
C

) (
A

D
C

S/
SC

L
) .

T
L

? 
PB

6 
)X

T
A

L
 

II
T

O
S

C
I)

 
A

D
C

6
-D

 4
 

P
B

?
 

)X
T

A
L

2
/T

O
S

C
2

) 
A

D
C

7
 

i 
7

L
E

D
 G

R
E

E
N

 
S

L
E

D
 R
E

D
 

R
X

 
5
5
 

(R
D

 
2
C
(
R
-
E
)
 

9
 

R
e
t 

L
I

T
X

 
S

I 
PD

 
I 

T
X

D
) 

6C
 

(R
E

E
T

 
IO

1
0
H

S
E

N
O

u
 

P
D

2
 (I
N

T
O

) 
C

 
6 

5C
S 

P0
3 

(I
N

T
I)

 
C

 
4

P0
4 

)X
C

K
IT

) 
1
8
C

C
 

P
 

P
0

5
 

(T
I)

 
A

R
E

P
C

L
 

D
 

P
06

 (A
IN

S
) 

C
S

L
8 

u
P

D
7
 (A

N
1

) 
0

0
4

0
 

C
O

 
]5

.0

G
N

D G
N

D

V
C

C TIO L
F

G
N

D

A
i 

N
u

m
b

e
r 

R
 

s

D
a
t 

8
/s

/2
0
0
9
 

E
~

~
F

ile
: 

G
;\

P
m

je
c
H

\.
,P

h
o
to

lt
c
e

.~
S

s
h

D
m

c
 

D
m

o
y
n
B

y
 

M
a
tt
h
e
' 

fa
u

k
n

e
r

-P
X



G
2N

D U
4
 

V
C

C

1
 

?
i 

V
C

C
--

S
el

et
A

 
-

fa
 

A

R
X

O
 

I' 
/9

X
0 

X
 

,R
X

R
X

3
 

1
5
 

X
2

X
3

T
X

O
 

Y
O

 
y
 

'-
T

] 
Y

0 
Y

 
T

' 
T

X
T

X
/1

 
y

T
X

3
 

Y Y
3

G
N

D
 

V
E

E

4
0
5
2
A

P
W

R
G

N
D

 
G

N
D

V
C

C

'C
3

(N
D

 
U

A
 

P
W

M
 

U
A

74
A

C
08

M
T

C
74

A
C

04
M

T
C

U
2B

 
W

 
4

U
1

T
X

 2 
3 

4 
5.

 D
 

6M
od

IR
2

74
A

C
08

M
T

C
74

A
C

04
M

T
C

U
2C

C
U

2C
 

P
W

M
 

1
0
 U

/C
 

M
dl

l
~ 

D
 8M

oi
iR

3

T
74

A
C

08
M

 
T

C
74

A
C

04
M

T
C

V
C

C

IC
12 .l

u
F

N
D

'0
.lu

G
2N

D

V
C

C
 

3

R
X

I 
3

G
N

D
 

3
M

o
d
IR

I 
4
 

4

P
ic

o
B

la
d
e 4
P

O
S

V
C

C
 

J4
T

 
1I 2

R
X

2 
3

G
2N

D
 

3
M

od
IR

2 
4

P
ic

o
B

la
d
e 4

P
O

S

V
C

C
 

J5

H
T

 I
T

 
1

2

R
X

3 
3

G
N

D
 

3
M

o
d
lR

3
 

4

P
ic

o
B

ad
e 4

P
O

S

U
 S

er
ia

l
S

er
ia

l S
ch

D
o
c

T
X

G
 

R
X

T
itl

e
P

h
o
to

 in
te

rf
ac

e C
o
m

m
u
n
ic

at
io

n

S
iz

e 
N

u
m

b
er

 
R

ev
is

io
n

A

D
al

e:
 

8
1
8
/2

0
0
9
 

S
h
ie

t 
o
f

F
il

e 
G

:\
P

ro
je

ct
s\

..
\C

o
m

m
.S

ch
D

o
c 

D
ra

w
n
 B
y
: 

M
a
lh

w
 F

au
lk

n
er

4

P
W

M
 

_
P

W
M



Figure A-12: Interface Module Schematic, Sheet 3
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Figure A-14: Interface Module PCB layout, top.
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A.4 Receiver-Transmitter Board Schematic
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Figure A-17: Receiver Transmitter PCB layout, top.
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Figure A-18: Receiver Transmitter PCB layout, bottom
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Appendix B

Embedded C Source Code

This appendix presents the programs written for each of the three electronic modules

containing a microcontroller.

B.1 Intelligent Beacon Firmware

B.1.1 beacon.c

<avr/interrupt.h>

<string.h>

<util/delay.h>

"serialCommManager.h"

"beaconState.h"

"beaconMessage.h"

"usart.h"

"laser.h"

#define BAUDRATE 2400

/*

These give more meaningful names to the serial channels than those

given in serialCommManager.

*/

113

#include

#include

#include

#include

#include

#include

#include

#include



#define BEACONAR_0 0 //side with AVR chip

#define BEACONIR-1 1 //side with battery connector

static char msg[MAXMESSAGE-LENGTH];

int main(void){

cli(;

// initializations

initSerialCommManager(BAUDRATE);

initBeaconStateO;

initLaser(;

seio;

// proof of life

transmitMessage(" Beacon. 0);

transmitMessage(" Beacon. 1);

for(int i = 0; i <3; ++i)

{
//toggle laser

setLaser(1);

_delay-ms(250);

setLaser(0);

_delay-ms(250);

}

setLaser(1);

for(;;){

//alternate listening on the two channels.

if( receiveMessage(msg, BEACONR0) 1)

{
handleReceivedMessage(msg, BEACONR _0);
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}
if( receiveMessage(msg, BEACONAIR1) == 1)

{
handleReceivedMessage(msg, BEACONIR._1);

}
}

}
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B.1.2 beaconState.c

#include

#include

#include

#include

<string.h>

<stdlib.h>

<stdio.h>

"beaconState.h"

char beaconString[BEACONSTR.INGFIELDLENGTH+1]; //extra 1 for null terminating character

Internal beacon state.

struct{

char *const stringPtr;

int identificationNumber;

} beaconState -

{
.stringPtr = &beaconString[O],

.identificationNumber = 6

void initBeaconState(void){

setBeaconString("def ault string");

//seed the random number generator uniquely for each part.

srand(beaconState.identificationNumber);

}

Accessors

void setBeaconString(/*in */const char *src)

{
strncpy(beaconState.stringPtr, src, BEACON STRING FIELDLENGTH);

void getBeaconString(char * dest)

{

116



strnepy(dest, beaconState.stringPtr, BEACON-STRING FIELD LENGTH);

}

int getBeaconldentificationNumber()

{
return beaconState.identificationNumber;

}

void setBeaconldentificationNumber(int n)

b
beaconSt ate.identificationNumber =-n
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B.1.3 beaconMessage.c

* beaconMessage.c

* Message handling routines for beacon.

*

* Q:n - return the beacon's internal state String

* SE T:n,contents - set the beacon's internal state String

* ON:n - activate laser

* OFF:n -deactivate laser

* POWER:n,m

10

* n is the address ID number. 255 is the broadcast ID

*

#include <st*i/.h>

#include <stdin.h>

#include <stdlib.h>

#include <util/delay-basic.h>

#include "beaconMessage .h"

#include "beaconState.h" 20

#include "serialCommManager.h"

#include "usart .h"

#include "utils.h"

#include "timeri.h" // for IR duty cycle control

#include "laser.h"

#define BROADCASTID 255

static char tempBeaconString[BEACON-STR.INGFIELDLENGTH + 1];

static char tenpMessageString[MAX MESSAGELENGTH+1]; 30

* -- Forward declarations --- */

static void handleQuery(const char * nsg, int channel);

static void handleSetMessage(const char * msg, int channel);
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static void handleActivate(const char * msg, int channel);

static void handleDeactivate(const char * msg, int channel);

static void handleForward(const char * msg, int channel);

void handleReceivedMessage(const char* msg, int channel)

if( stringStartsWith(msg, "Q:") )

{
handleQuery(msg, channel);

else if ( stringStartsWith(msg, "SET: ")

h
handleSet Message (msg, channel);

else if (stringStartsWith(msg, "ON:"))

handleActivate(msg, channel);

}
else if (stringStartsWith(nsg, "OFF: "))

handleDeactivate(msg, channel);

}
else if (stringStartsWith(msg, "FW"))

handleForward(msg, channel);

}
else

{
/* invalid message. Could broadcast a nack. */

Private Functions
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* msg - the received ID request message

* channel - the channel msg was received through

*

*7
static void handleQuery(const char * msg, int channel)

{
int toField;

int n = sscanf(msg, "Q:Xd", &toField);

if(n==1)

{
int id = getBeaconldentificationNumber(;

if((toField == id) (toField == BROADCASTID))

getBeaconString(tempBeaconString);

snprintf(tempMessageString, MAX-MESSAGELENGTH, "ID,Xd:Xs",

getBeaconldentificationNumber(),tempBeaconString);

transmitMessage(temNpMessageString, channel);

}
else

/* addressed to someone else. */

}
else

{
/* message does not match expected syntax */

/**

*

* Sets the internal beaconState string. The first

* BEACONSTRING-FIELD-LENGTH characters of the msg contents are

* copied, or up to the first whitespace.

*

* If the interface board is used to relay messages from laptop to
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* beacons, check that the timeout and max message length of the

* interface board are long enough for the message contents.

*

* msg The received SET message

* channel The channel on which the message was received.

*/

static void handleSetMessage(const char * msg, int channel)

{
int toField;

int n = sscanf(msg, "SET:d,%s", &toField, tempBeaconString);

/* check that both toField and string parsed from message: *7
if(n == 2)

{
int id = getBeaconIdentificationNumber(;

if((toField == id) (toField == BROADCASTID))

setBeaconString(tempBeaconString);

transmitMessage("ACK", channel);

}
else

7* addressed to someone else. *

}
}
else

{
* message does not match expected syntax *7

}
}

static void handleActivate(const char * msg, int channel)

int toField;

int n = sscanf(msg, "ON:Xd", &toField);

if(n==1)
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int id = getBeaconldentificationNumber(;

if((toField == id) (toField == BROADCASTID))

{
setLaser(1);

}
else

{
*addressed to someone else. */

}
}
else

7* message does not match expected syntax *7

I
static void handleDeactivate(const char * msg, it channel)

{
int toField;

int n
if(n=

= sscanf(msg, "OFF:Xd", &toField);

=1)

int id = getBeaconldentificationNumber();

if((toField == id) | (toField == BROADCASTID))

{
setLaser(O);

I
else

{
* addressed to someone else. *

}
else

I
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/* message does not match expected syntax */
180

}

/**

*

*7

static void handleForward(const char * msg, int channel)

int timeToLive = 0;

char msgToForward[MAXMESSAGELENGTH+1]; 190

int n = sscanf(msg, "FW,%d#Xs", &timeToLive, msgToForward);

if(n==2)

{
handleReceivedMessage(msg'1oForward, channel);

if(timeloLive > 0)

{
timeToLive--;

snprintf(tempMessageString, MAXMESSAGELENGTH,

"FW,%d#%'s', timiieToLive, msgToForward);

7* 200

Delays for a random time between 0 and 1

second. Since the delay interval is not

known at compile-time, the standard

_dealy-ms function cannot be used. Instead,

the basic _delay-loop_2 is used, which

executes 4 CPU cycles per iteration. At

14.7456MHZ, each iteration lasts for .271

millionths of a second, so at 65536

iterations, the delay loop can take 0.018s,

or about 1/56 of a second. 210

*/

uintl6_t randonDelay = rand(;

int i;

for(i = 0; i < 56; ++i)
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7/*
can't use _delay-ms if the time

interval isn't known at

compile-time.

*7
delay loop_2(randomDelay);

transmitMessage(tempMessageString, 0);

transmitMessage(tempMessageString, 1);

}
else

{
/* message dies here. Don't forward. */
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B.1.4 laser.c

"laser.h"

"util defines.h"

<avr/io.h>

#define LASER. PD3

void initLaser()

{
SETBIT(DDRD, LASER); //configure PD3 as a digital output

setLaser(O); //laser is off by default

}

void setLaser(int i)

{
if(i == 0)

{
/* turn laser off */

CLEARBIT(PORTD, LASER);

}
else

/* turn laser on */

SETBIT(PORTD, LASER);
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#include

#include

#include



B.2 Intelligent Assembly Component Firmware

B.2.1 fastener.c

#include <avr/interrupt.h>

#include <avr/io.h>

#include <string.h>

#include <stdlib.h>

include <stdio.h>

#include <util/delay.h>

#include "serialCommManager.h"

#include "fastenerState .h"

#include "fastenerMessage.h" 10

#include "usart.h"

#define BAUDRATE 2400

static char msg[MAXMESSAGELENGTH];

int main(void)

clio;

* - initializations - */ 20

init-SerialCommManager(BAUDR ATE);

initFastenerState(;

sei(;

7* proof of life *

transnmittMessage(" Fastener. 0);

transniitMessage(" Fastener. 1);

transmitMessage("Fastener. ", 2); 30

transmitMessage("Fastener. ", 3);
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if( receiveMessage(msg, 0) == 1)

/ *
listen on center receiver

handleReceivedMessage(msg, CHANNEL SERIALPORT);
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B.2.2 fastenerMessage.c

* fastenerMessage. c

* Message handling routines for fastener.

*

* Q:n - return the beacon's internal state String

* SE T:n,contents -- set the beacon's internal state String

* POWER:n,m

*

* n is the address ID number. 255 is the broadcast ID

10

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include "fastenerMessage.h"

#include "fastenerState.h"

#include "serialCommManager.h"

#include "usart.h"

#include "utils.h"

#include "timer1.h" // for IR duty cycle control 20

#define BROADCASTID 255

// Plus 1 for the null terminating character:

static char tempFastenerString[FASTENER._STRINGFIELD-LENGTH + 1];

static char tempMessageString[MAXMESSAGELENGTH+1];

* Forward declarations --- */

static void handleQuery(const char * msg, int channel);

static void handleSetMessage(const char * msg, int channel); 30

static void handlePowerMessage(const char * msg, int channel);

void handleReceivedMessage(const char* msg, int channel)

{
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if( stringStartsWith(msg, "Q:"))

{
handleQuery(msg, channel);

}
else if (stringStartsWith(msg, "SET:"))

{ 40

handleSetMessage(msg, channel);

else if (stringStartsWith(msg, "POWER"))

{
handlePowerMessage(msg, channel);

}
else

{
/* unsupported message. *7

Private Functions

/ **

* msg - the received ID request message

* channel - the channel msg was received through

static void handleQuery(const char * msg, int channel)

{
int toField;

int n = sscanf(msg, "Q:Xd", &toField);

if(n= 1)

{
int id = getFastenerldentificationNunber(;

if( (toField == id) | (toField =- BROADCASTID))

{
getFastenerString(tempFastenerString);
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snprintf(tempMessageString, MAXMESSAGELENGTH, "ID,Xd:%s",

getFastenerIdentificationNumber(,tempFastenerString);

transmitMessage(tempMessageString, 2); //transmit on top channel

}
else

{
/ * addressed to someone else. */

else

{
/* message does not match expected syntax *7

}
}

* Sets the internal beaconState string. The first

* BEACON-STRINGFIELDLENGTH characters of the msg contents are

* copied, or up to the first whitespace.

*

* If the interface board is used to relay messages from laptop to

* beacons, check that the timeout and max message length of the

* interface board are long enough for the message contents.

* msg - The received SET message

*

* channel - The channel on which the SET message was received.

*7
static void handleSetMessage(const char * msg, int channel)

{
int toField;

int n = sscanf(nsg, "SET:Xd,Xs", &toField, tempFastenerString);

/*Check that both toField and contents string parsed from message. *

if(n == 2)

{
if( (toField == getFastenerIldentificationNumbero)
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(toField == BROADCASTID))

setFastenerString(tempFastenerString);

transmitMessage("ACK", channel);

}
else

{
/*addressed to someone else.*/

}
else

{
/*message does not match expected syntax*/

}

* Set the duty cycle for JR transmission.

static void handlePowerMessage(const char * msg, int channel)

{
int dutyCycle - 50;

char dutyCycleString[10];

int toField;

int n = sscanf(msg, "POWER: %d, %s", &toField, dutyCycleString);

if(n==2)

{
if( (toField == getFastenerldentificationNumber())

(toField == BROADCAST-ID))

{
dutyCycle = atoi(dutyCycleString);

set ModulationDutyCycle(dutvCycle);

}
else

/*addr.essed to someone else. */



}
else

{
/*message does not match expected syntax*/

}
}

150
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B.2.3 fastenerState.c

#include

#include

#include

#include

<string.h>

<stdlib.h>

<stdio.h>

"fastenerState.h"

/ * extra 1 for null terminating character: */

char fastenerString[FASTENER-STR.INGFIELDLENGTH+ 1];

7*
Internal Fastener State

*/
struct{

char *const stringPtr;

int identificationNumber;

} fastenerState

{
.stringPtr = &fastenerString[O],

.identificationNumber = 7

/*

Record nonvolatile state

*/
void initFastenerState(void)

{
setFastenerString( "BLUE");

* - Accessors

void setFastenerString(/*in*/const char *src)

{
strncpy(fastenerState.stringPtr, src, FASTENERSTRINGFIELDLENGTH);
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void getFastenerString(char * dest)

{
strncpy(dest, fastenerState.stringPtr, FASTENER, STRING FIELDLENGTH);

void setFastenerldentificationNumber(int n)

{
fastenerState.identificationNumber = n;

}

int getFastenerldentificationNumber()

{
return fastenerStateidentificationNumber;
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B.3 Robotic Interface Module Firmware

Due to limitations on device memory, two separate firmwares were developed for the

robotic interface module. The first firmware is used with the instrumented gripper

for assembly tasks. The second firmware is used with the optical sensor for robotic

positioning.

B.3.1 Firmware for use with Instrumented Gripper

gripper.c

/* gripper.c

*

*/

#include <avr/interrupt.h>

#include "serialCommManager.h"

#include "usart.h"

#include "gripperMessage.h"

#include "utildefines.h"

#include "status.h"

#include <util/delay.h> 10

#define BAUDR ATE 2400

static char msg[MAX-MESSAGELENGTH];

int nain(void)

{
Cli();

* initializations * 20

init SerialComrnManager(BAUDR.ATE);

initStatusLEDs(;

sei();

135



_delay-ms(50);

(void)transmitMessage("#Gripper#", CHANNELSERIALPORT);

(void)transmitMessage("#Gripper#", CHANNELIRA);

(void)transmitMessage(" #Gripper#", CHANNELIRB); 30

(void)transmitMessage("#Gripper#", CHANNELIR-C);

_delay-ms(250);

setStatusO(1);

delay-ms(250);

setStatusO(O);

_delay-ms(250);

setStatusO(1); 40

_delay-ns(250);

setStatusO(O);

for(;;)

{
if( receiveMessage(msg, CHANNEL SERIALPORT) == 1)G

{
handleReceivedMessage(nsg, CHANNELSERIALPORT);

}
} 50

}
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gripperMessage.c

* gripperMessage.c

* Message handling routines for Gripper interface board.

*

* -Messages supported:

*

* Q:n,c - requests a QUERY to be forwarded on

* channel c, c = 'A ", "B" or "C"

*

* SET:n,c,contents - requests a SETcontents message to be forwarded 10

* on channel c, c = A ","B" or "C"

*

* request information about the firmware.

*/

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include "gripperMessage.h"

#include "serialommManager.h" 20

#include "usart .h"

#include "utils.h"

#include "timer1.h"

static char tempMessage[MAXMESSAGELENG'IH];

* - Forward declarations --- */

static void handleQuery(/*in */ const char * msg, int channel);

static void handleSetMessage(/in */ const char * msg, int channel);

static void handleFirmwarelnfo(/in */ const char * msg, int channel); 30

static void handlePowerMessage(const char * msg, int channel);

/*!d

param[in] msg Pointer to received message null terminated string.
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param[in] channel The channel on which the message was received.

void

{

handleReceivedMessage(/*in*/ const char* msg, int channel)

if (stringStartsWith(msg, "SET:"))

{
handleSetMessage(msg, channel);

else if( stringStartsWith(msg, "Q: ") )

{
handleQuery(msg, channel);

else if ( stringStartsWith(msg, "?"))

{
handleFirmwarelnfo(msg, channel);

}
else if ( stringStartsWith(msg, "POWER") )

{
handlePowerMessage(msg, channel);

}
else

{
transmitMessage("Unrecognized message: ", CHANNEL SERIAL PORT);

transmitMessage(msg, CHANNELSERIAL-PORT);

* Message Handlers

* parani[in] nsg The received ID request message.

* param[ini channel Ithe channel msg was received through.

*

*/

static void handleQuery(/*in*/ const char * msg, int channel) 70
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char forwardingChannelName;

int forwardingChannelNumber = 0;

int toField;

int n = sscanf(msg, "Q:Xd,Xc", &toField, &forwardingChannelName);

if (n=-2)

{
switch (forwardingChannelName)

{
case 'a': case 'A':

forwardingChannelNumber

break;

case 'b': case 'B':

forwardingChannelNumber

break;

case 'c': case 'C':

forwardingChannelNumber

break;

default:

transmitMessage(" invalid

break;

= CHANNELIRA;

= CHANNELIRB;

= CHANNELIR-C;

channel", channel);

}
else

{
transmitMessage("invalid query syntax", channel);

}
sprintf(tempMessage, "Q:%d", toField);

transmitMessage(tempMessage, forwardingChannelNumber);

if( receivel\Iessage(tempMessage, forwardingChannelNunber)

transmitMessage(&tempMessage [3], channel);

}else{

transmitMessage("#timed out#", channel);
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static void handleSetMessage(/in*/ const char * msg, int channel)

{ 110

char forwardingChannelName;

int forwardingChannelNumber = 0;

char contents[40];

contents[O] = '\0';

int toField;

if(strlen(msg) > 40) return;

int n = sscanf(nsg, "SET:Xd,Xc,Xs", &toField, &forwardingChannelName, contents);

if (n==3) 120

switch (forwardingChannelName)

{
case 'a': case 'A':

forwardingChannelNumber

break;

case 'b': case 'B':

forwardingChannelNumber

break;

case 'c': case 'C':

forwardingChannelNumber

break;

default:

= CHANNELIRA;

= CHANNELIRB;

= CHANNELIR._C;

transmitMessage(" invalid channel", channel);

break;

}
}
sprintf(tem p lJessage, "SET:Xd,Xs", toField, contents);

transmit Message(templ\lessage, forwardingChannelNumber);

}

static void handleFirmwarelnfo(/*in*/ const char * mlsg, int channel)
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transmitMessage("FIRMWARE: Gripper.", channel);

}

* Set

*/
the duty cycle for IR transmission.

static void handlePowerMessage(const char * msg, int channel)

{
int dutyCycle = 50;

char dutyCycleString[10];

int n = sscanf(msg, "POWER:%s", dutyCycleString);

if(n==1)

{
dutyCycle = atoi(dutyCycleString);

setModulationDutyCycle(dutyCycle);

else

{
/ *message does not match expected syntax*/
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B.3.2 Firmware for use with Optical Sensor

photo.c

/**

* photo.c

* Firmware for photo-diode interface board, used with laser beacons

* Make sure FCPU is set to 14745600

* Target device: atmega8

*/

#include <avr/interrupt.h>

#include <avr/io.h> 10

#include <stdlib.h>

#include <stdio.h>

#include <util/delay.h>

#include "serialCommManager.h"

#include "usart.h'

#include "photoMessage.h"

#include "util-defines.h"

#include "status.h"

#include "taos1410.h"

20

7*
2400 is the maximum baud rate that the IR receivers can do reliably.

Communication is the limiting factor in sensing latency, so if the photo interface PCB

will not be performing wireless communication, baud can be cranked up to 19200 or higher.

*/

#define BAUDR ATE 2400

char msg[MAXMESSAGELENGTH];

int main(void) 30

{
Clio;
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------- //// -- initializations --

initSerialCommManager(BAUDR.ATE);

initStatusLEDs(;

init-taos1410();

sei(;

transmitMessage("#Photo#", CHANNELSERIAL-PORT);

_delay-ms(500);

setStatusO(1);

_delay-ms(500);

setStatusO(0);

setStatusl(1);

_delay-ms(500);

setStatusl(O);

for(;;)

{
if( receiveMessage(msg, CHANNEL SERIALPORT) == 1)

{
handleReceivedMessage(nsg, CHANNEL SERIALPORT);
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photoMessage.c

/ **

* photoMessage.c

*

* Message handling routines for photo-diode interface board.

* Supports the following messages:

* SCAN - perform one scan of the photo diode's 1280 pixels.

*

* FASTSCANn - perform n scans in succession. n is a string of up to 4 characters.

* 10

* ACTIVATE,c send an ACTIVATE message on channel c (c = 'A', 'B', or 'C')

*

* DEACTIVATE,c - send a DEACTIVATE message on channel c (c = 'A', 'B', or 'C')

*

* QUERYc - send a QUERY message on channel c (c = 'A', 'B', or 'C')

*

* SET,c,contents - send a SE'Tcontents message on channel c (c = 'A', 'B', or 'C')

*

* FORWARD,n,c#msg - forwards nsg with n hops on channel c

* 20

* request information about the firmware.

*

*/

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include "photoMessage.h"

#include "seri alCommManager.h"

#include "usart.h" 30

#include "utils.h"

#include "util defines.h"

#include "taos1410.h"

#include "status.h"
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// --- Forward declarations - - //

static void handleScan(const char * msg, int channel);

static void handleFastScan(const char * msg, int channel);

static void handleActivate(const char * msg, int channel);

static void handleDeactivate(const char * msg, int channel);

static void handleQuery(const char * msg, int channel);

static void handleSetMessage(const char * msg, int channel);

static void handleFirmwarelnfo(const char * msg, int channel);

static void handleForward(const char * msg, int channel);

char tempMessage[MAX MESSAGE LENGTH];

Public Functions

/*!
*

* Parses the received message, and responds.

* param[in] msg The received message.

* param[ini channel The channel msg was received through.

*

*/

void handleReceivedMessage(const char* msg, int channel)

{
if( stringStartsWith(nsg, "SC") )

{
handleScan (msg, channel);
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else if( stringStartsWith(msg, "FASTSCAN") )

{
handleFastScan(msg, channel);

}
else if( stringStartsWith(msg, "ON:")

{
handleActivate(msg, channel);

}
else if( stringStartsWith(msg, "OFF:"))

{ 80

handleDeactivate(msg, channel);

else if( stringStartsWith(msg, "Q:"))

{
handleQuery(msg, channel);

else if( stringStartsWith(msg, "SET: ") )

{
handleSetMessage(msg, channel);

}
else if ( stringStartsWith(msg, "?"))

{
handleFirmwarelnfo(msg, channel);

}
else if ( stringStartsWith(msg, "FW"))

{
handleForward(msg, channel);

}
else{

transmitMessage("unrecognized message: ", CHANNEL SERIAL-PORT);

transmitMessage(msg, CHANNEL SERIAL PORT);

- Private Functions
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* param[in] msg The received ID request message.

* param[in] channel Tthe channel msg was received through.

*

static void handleQuery(/*In*/ const char * msg, int channel)

{
char forwardingChannelName;

int forwardingChannelNumber -= 0;

int toField;

int n = sscanf(msg, "Q:Xd,Xc", &toField, &forwardingChannelName);

if (n==2)

{
switch (forwardingChannelName)

{
case 'a': case 'A':

forwardingChannelNumber

break;

case 'b': case 'B':

forwardingChannelNumber

break;

case 'c': case 'C':

forwardingChannelNumber

break;

default:

transmitMessage("invalid

break;

CHANNELIRA;

CHANNELIR,_B;

= CHANNELIRC;

channel", channel);

}
else

{
transmitMessage("invalid query syntax", channel);
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sprintf(tempMessage, "Q:Xd", toField);

transmitMessage (tempMessage, forwardingChannelNumber);

if( receiveMessage(tempMessage, forwardingChannelNumber) == 1)

{
transmitMessage(&tempMessage[3], channel);

}
else

{
transmitMessage(" #timed out#", channel);

* param[in] msg The received ID request message.

* param[in] channel The channel msg was received through.

*

*/
static void handleScan(const char * msg, int channel)

{
for(;;)

{
setStatusO(1);

/*

Just using startPhotoDiodeScan instead of scanPhotoDiode

assumes that:

0.) High throughput is more important than latency.

1.) the photo diode state is valid for any calls made

by the messaging

2.) the photoDiode scan will complete during mesage transmission.

*/

scanPhotoDiode(;

int laserDetected = laserWasDetectedo;

int laserCoordinate = getl\IaxPixellndex(;
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if( laserDetected == 1 )

}else{

sprintf(tempMessage, "<Pd>", laserCoordinate);

transmitRawStringNoPacket(tempMessage, CHANNEL SERIALPORT);

transmitRawStringNoPacket("<LND>", CHANNELSERJALPORT);

setStatusO(O);

* param[in] msg The received fastscan request message.

* param[in] channel The channel msg was received through.

*

static void handleFastScan(const char * msg, int channel)

{
int numScans = 0;

char numScansString[4];

int n = sscanf(msg, "FASTSCAN,%s", numScansString);

if(n==1)

numScans = atoi(numScansString);

int i;

for(i = 0; i < numScans; ++i)

{
handleScan(nisg, channel);

}
else

transmitMessage(" Invalid FASTSCAN", channel);
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* param[in] msg The received activate request message.

* param/in] channel The channel msg was received through.

*

*/
static void handleActivate(const char * msg, int channel)

{
char forwardingChannelName;

int forwardingChannelNumber = 0;

int toField;

int n = sscanf(msg, "ON:Xd,Xc", &toField,

if (n==2)

{
switch (forwardingChannelName)

case 'a': case 'A':

forwardingChannelNumber

break;

case 'b': case 'B':

forwardingChannelNumber

break;

case 'c': case 'C':

forwardingChannelNumber

break;

default:

transmitMessage(" Invalid

break;

&forwardingChannelName);

= CHANNELIRA;

= CHANNELIR-B;

= CHANNELIR.C;

channel. ", channel);

//should only do this if case ab, or c holds.

sprintf(temp\lessage, "ON:Xd,", toField);

transmnit\Iessage(templ\Iessage, forwardingChannelNumber);

}
else 250
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transmitMessage("Specify a channel. ", channel);

}
}

/*!
*

* param[in] msg The received deactivate request message.

* param[in] channel The channel msg was received through.

260

*/
static void handleDeactivate(const char * msg, int channel)

{
char forwardingChannelName;

int forwardingChannelNumber = 0;

int toField;

int n = sscanf(msg, "OFF:Xd,Xc", &toField, &forwardingChannelName);

if (n==2)

{ 270

switch (forwardingChannelName)

{
case a': case 'A':

forwardingChannelNumber

break;

case 'b': case 'B':

forwardingChannelNumber

break;

case 'c': case 'C':

forwardingChannelNunber

break;

default:

transmitMessage("Invalid

break;

CHANNELIRA;

CHANNELIR,_B;

CHANNELARC;

channel. ", channel);

sprintf(tempMessage, "OFF:Xd", toField);
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transmitMessage(tempMessage, forwardingChannelNumber);

}
else

{
transmitMessage("Specify a channel. ", channel);

}
}

static void handleSetMessage(/*in*/ const char * nsg, int channel)

{
char forwardingChannelName;

int forwardingChannelNumber = 0;

char contents[40];

contents[O] = '\O';

int toField;

if(strlen(msg) > 40) return;

int n = sscanf(msg, "SET: Xd ,'Xc , Xs", &toField, &forwardingChannelName, contents);

if (n==3)

{
switch (forwardingChannelName)

{
case 'a': case 'A':

forwardingChannelNumber

break;

case 'b': case 'B':

forwardingChannelNumber

break;

case 'c': case 'C':

forwardingChannelNumber

break;

default:

transmitMessage("invalid

break;

= CHANNELIR _A;

= CHANNELIRB;

= CHANNELIRC;

channel", channel);
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}
sprintf(tempMessage, "SET:%d,%s", toField, contents);

transmitMessage(tempMessage, forwardingChannelNumber);

}

static void handleFirmwarelnfo(/*in */ const char * msg, int channel)

{ 330

transmitMessage("FIRMWARE: Photo. ", channel);

static void handleForward(/*In */ const char * msg, int channel)

{
int timeToLive;

char forwardingChannelName;

int forwardingChannelNumber = 0;

char messageToForward[MAXMESSAGELENGTH+1];

340

int n = sscanf(msg, "FW,Xd,X/%c#X/*s", &timeToLive, &forwardingChannelName, messageloForward);

if(n==3)

{
sprintf(tempMessage, "FW,Yd#Ys",

switch (forwardingChannelName)

{
case 'a': case 'A':

forwardingChannelNumber

break;

case 'b': case 'B':

forwardingChannelNumber

break;

case 'c': case 'C':

forward ingCh annelNumber

break;

default:

transmitNessage("invalid

break;

timeToLive, messageoForward);

= CHANNELIR-A;

= CHANNEL-R _B;

= CHANNELIR-C;

channel", channel);
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}
transmitMessage(tempMessage, forwardingChannelNumber);

}
else

{
//didn't parse correctly.

transmitMessage("FW didn't parse", channel);

154



taos141O.c

/* taos141O.c
*

* TimerO is used to produce a clock waveform to initiate sampling and

* clock out data from a TAOS 1410r linear photodiode. The 1410r has

* 1280 pixels. Rising and falling edges of the control waveforms are

* determined by timerO overflow interrupts.

*

* Sampling of the pixel values is performed by starting a

* "single-shot" ADC conversion; the analog- to-digital conversion

* complete interrupt performs the detection of the laser beam. 10

*

*/

#include "taos1410.h"

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include <stdlib.h>

#include <stdio.h>

#include "util-defines.h" 20

#define STATUS_0 PD2

#define STATUS_1 PD3

#define PHOTODIODESI PD4

#define PHOTODIODE-HOLD PD5

#define PHOTODIODECLK PD6 30

#define ADCINPUT PCO

* -- Constants ---- */
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#define TIMER ZEROSTART 215 //for full resolution pixel sampling

#define NUMINTEGRATIONCLOCKS 1

#defnne LASER-THRESHOLD 220 40

static struct{

volatile

volatile

volatile

int pdClkCount;

int sampling;

int sampleIndex;

// "is-sampling" flag

volatile

volatile

char maxSampleValue;

int maxSamplelndex;

volatile char minSampleValue;

volatile int minSamplelndex;

volatile

} taosState;

char sensingComplete;

Forward Declarations -- */

static void init-taosStateO;

static void init-timerO();

static void init-adco;

Public Functions

void init-taos1410()

{
DDRD

DDRD

DDRD

_BV(STATUS_0);

_BV(STATUS_1);

_BV(PHOTODIODESI); 70
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DDRD =BV(PHOTODIODEHOLD);

DDRD = BV(PHOTODIODE-CLK);

init-taosStateo;

init-timerO();

init-adc(;

}

* Performs one scan of all 1280 sensor pixels and

* detects the laser beam. Blocks until complete

*

*

*/
void scanPhotoDiode()

{
init-taosState(;

//timerO overflow interrupt enable:

SETBIT(TIMSK, TOIEO); 90

while(taosState.sensingComplete == 0)

{
//wait

}
}

* Initiates a scan of all 1280 sensor pixels.

* Non-blocking, user must then poll to see when complete.

*/ 100

void startPhotoDiodeScan()

{
init-taosState(;

//tiner0 overflow interrupt enable:

SETBIT(TIMSK, TOIEO);
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/ **

* Returns 1 when sensing is complete.

*

*/
int isPhotoDiodeScanComplete(

{
return taosState.sensingComplete;

int getMaxPixelValue()

{
return taosState.maxSampleValue;

}

int getMaxPixellndex()

{
return taosState.maxSamplelndex;

}

int laserWasDetected()

{
if( taosState.maxSampleValue > LASER-THRESHOLD){

return 1;

}
return 0;

Private Functions

/**

*

*

*/

static void init-taosState()

{

158



taosState.pdClkCount = 0;

taosState.sampling = 0;

taosState.samplelndex = 0;

taosState.maxSampleValue 0;

taosState.minSampleValue 255;

taosState.maxSamplelndex = 0;

taosState.minSamplelndex 0;

taosState.sensingComplete 0; 150

}

*

*7

static void init-timerD()

{
SETBIT(TCCRO, CSOO); //prescale: 1

TCNTO = TIMER ZEROSTART; //initial value 160

}

/*7

void init-adc{

/*
Analog to Digital Converter Configured for Single Conversion

Mode

select prescale between system clock and ADC clock. The ADC 170

clock must be between 50kHz and 200kHz for full accuracy. I

think lower clock frequencies are more accurate, but since it

takes 13 ADC clock cycles per sample (and 25 for the first

sample!), a high clock frequency may be needed for adequate

sample rate.

Assuming FCPU = 14.7456MHz, then 14745600/200kHz = 73.7

so ballpark prescalers:

159



FCPU/4 = 3.6864MHz PS2 = 0 PSI 1 PSO = 0

FCPU/8 = 1.843MHz PS2 = 0 PSI 1 PSO = 1 180

F-CPU16 = 921.6KHz PS2 1 PSI = 0 PSO = 0

FCPU/32 = 460.8KhZ PS2 1 PSI = 0 PSO = 1

FCPU/64 = 230.4kHz PS2 1 PSI = 1 PSO = 0

FCPU/128 = 115.2kHz PS2 = 1 PSI 1 PSO = 1

//prescale 2

7*
CLEARBIT(ADCSRA, ADPS2); 190

CLEARBIT(ADCSRA, ADPS1);

CLEARBIT(ADCSRA, ADPS0);

*7

//prescale 4

CLEARBIT(ADCSRA, ADPS2);

SETBIT(ADCSR.A, ADPS1);

CLEAR.BIT(ADCSR.A, ADPSO);

7* 200

/prescale 8

CLEARBIT(ADCSRA, ADPS2);

SETBIT(ADCSRA, ADPS1);

SETBIT(ADCSRA, ADPS0);

*/

/*

//prescale 16

SETBIT(ADCSRA, ADPS2);

CLEA RBIT(ADCSRA, ADPS1); 210

CLEARBIT(ADCSRA, ADPS0);

*/

/*

160



//prescale:32

SETBIT(ADCSRA, ADPS2);

CLEARBIT(ADCSRA, ADPS1);

SETBIT(ADCSRA, ADPSO);

*7
220

7*
7/ prescale:64

SETBIT(ADCSRA, ADPS2);

SETBIT(ADCSRA, ADPS1);

CLEARBIT(ADCSRA, ADPSO);

*/

// Vref = AVCC with external capacitor at AREF pin:

SETBIT(ADMUX, REFSO);

230

//left-adjust for 8-bit precision by reading only ADCH, ignoring the two LSBs in ADCL

SETBIT(ADMUX, ADLAR);

//select analog channel for ADCINPUT on pin ADCO

//select single- conversion mode, as opposed to Free Running mode

//CLEARBIT(ADCSR.A, ADFR);

//enable the ADC complete interrupt

SETBIT(ADCSRA, ADIE); 240

//finally, enable the ADC!

SETBIT(ADCSRA, ADEN);

SETBIT(ADCSRA, ADSC);

while( BITVAL(ADCSRA, ADSC) == 1){

//wait for first conversion to finish, since

//the first conversion perforns initialization of the ADC

}
} 250



/ **

* clocks data out of linear photodiode and initiates sampling.

* Must call initializeSamplingState prior to enabling this ISR

*

*/
ISR(TIMERO-OVF-vect)

{
TCNTO = TIMER_ ZEROSTART; 260

//falling clock edge:

if( BITVAL(PORTD, PHOTODIODECLK) == 1)

{
CLEAR.BIT(POR.TD, PHOTODIODESI);

CLEARBIT(PORTD, PHOTODIODEHOLD);

CLEARBIT(PORTD, PHOTODIODECLK);

//sampled all 1280 pixels?:

if(taosState.samplelndex == 1280){

//done. 270

taosState.sampling = 0;

//clock should be low when not in use

CLEARBIT(TIMSK, TOIEO);

}
}
else

{
//rising clock edge

taosState.pdClkCount++;

if( taosState.pdClkCount == 1) 280

{
SETBIT(PORTD, PHOTODIODESI);

}
//see datasheet for why the extra 18:

if ( taosState.pdClkCount == NUMINTEGRATION CLOCKS + 18)

{
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SETBIT(PORTD, PHOTODIODEHOLD);

}

if( taosState.pdClkCount == 1281){

SETBIT(PORTD, PHOTODIODESI);

taosState.sampling = 1;

//assume sampling index has already been reset to zero

}

//SI and Hold are clocked in on rising edge, so CLK

// must be set only after SI and HOLD have been set

SETBIT(PORTD, PHOTODIODECLK);

//start a sample?

if(taosState.sampling == 1){

taosState.samplelndex++;

//only sample even pixels.

if( (taosState.samplelndex % 2) =

SETBIT(PORTD, STATUS-0); //indicate sample beginning

SETBIT(ADCSR.A, ADSC); //start an ADC conversion

}
else

{ 310

TCNTO = 254;

}
}

}
}

*

* ADC conversion complete interrupt service handler

* Processes each new pixel value. 320

* A potential issue is that if an interval of pixels saturate to 255,
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* then the coordinate of the 'max' is the first pixel. However, the

* center of the interval makes more sense.

*/

ISR(ADC-vect){

CLEAR.BIT(PORTD, STATUS-0);

if( taosState.sampleIndex > 20)

{ 330

if(ADCH > taosState.maxSampleValue){

taosState.maxSampleValue = ADCH;

taosState.maxSamplelndex - taosState.samplefndex;

}
if(ADCH < taosState.minSampleValue){

taosState.minSampleValue = ADCH;

taosState.minSamplelndex = taosState.samplelndex;

}
}
if(taosState.samplelndex >= 1280) 340

{
taosState.sensingComplete =1;

}
}
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status.c

/*
status.c

*/

#include <avr/io.h>

#include "status.h"

#include "utildefines.h"

void setStatusO(int i)

{ 10

if(i==O)

{
SETBIT(PORTD, STATUS_0);

}
else

{
CLEARBIT(PORTD, STATUS_0);

void setStatusl(int i)

{
if(i==0)

{
SETBIT(PORTD, STATUS_1);

}
else

{
CLEARBIT(PORTD, STATUS_1);

}

void initStatusLEDsO

{
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DDRD -BV(STATUS_0);

DDRD =BV(STATUS_1);

/*status LEDS off by default:*/

setStatus0(O);

setStatusl(0);

} 40
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B.4 Shared Communication Utilities

B.4.1 checksum.c

#include "checksum.h"

#include <stdint.h>

uintl6_t crcUpdate (uintl6_t crc, uint8_t data){

int i;
cre crc ^ ((uint16-t)data << 8);

for (i-O; i<8; i++)

{
if (crc & 0x8000)

crc = (crc << 1) ^ Ox1021;

else

crc <<= 1;

}
return crc;
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B.4.2 serialCommManager.c

/ **

* serialCommManager.c

* Abstraction for usart, communication multiplexer, and IR modulation.

* This may end up being specific to each pcb, since they use different numbers of comm channels.

*7

#include "serialCommManager.h"

#include <avr/io.h> 10

#include <util/crc16.h>

#include <string.h>

#include <stdio.h>

#include <util/delay.h>

#include <stdint.h>

#include "usart.h"

#include "timer1.h"

#include "utildefines.h"

#include "checksum.h" 20

/* for setting selectA and selectB for the rx/tx multiplexer *7

#define SELECTA PC2

#define SELECT-B PC3

struct{

int packetCount;

} serialCommniState

{
.packetCount =0 30
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static void setSerialCommChannel(int c);

static void constructPacketString(/*out */char* dest, const char * msg);

- Public Functions

void init SerialCommManager(int baudrate)

{
//configure mux select pins as output:

DDRC =BV(SELECTA);

DDRC =BV(SELECTB);

//initialize comm hardware:

init-usart(baudrate);

initializeModulateR();

}

* Blocks until the message has been transmitted

* returns 1 if transmitted, 0 otherwise

*7
int transmitMessage(/*in */ const char * msgPtr, int channel)

{
setSerialCommChannel(channel);

if( isTransmitBufferEmpty() == 0 )

return 0;

}
else

{
char packet[MAXPACKETLENGTH];

constructPacketString(packet, msgPtr);

enqueueStringFor'ransmit((packet);

transniitNextString(;

return 1:
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/ **

* An abstraction violation, used for debugging (and for an optimized,

* low-latency control loop for laser positioning...)

*7
int transmitRawStringNoPacket(const char * msgPtr, int channel)

{
setSerialCommChannel(channel);

if(isTransmitBufferEmpty() == 0)

{
return 0;

}
else

{
enqueueStringFor'1?ransmit(msgPtr);

transmitNextString(;

return 1;

/**

* Blocks until a message is received or the receiver times out

*

*7
int receiveMessage(/*in*/ char * dest, int channel)

{
setSerialCommChannel(channel);

listenForMessage();

if( isReceiveBufferFull() == 1 ){

dequeueReceivedString(dest);

return 1;

}
return 0;

}

void setIRJ\odulationDutyCycle(int dlutyCycle){
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setModulationDutyCycle(dutyCycle); //timerl function

}

7* --- Private Functions */ 110

*

* Sets selectA and selectB of rx/tx mux

*7
static void setSerialCommChannel(int c)

{
switch(c)

{
case CHANNELSERIALPORT: 120

CLEARBIT(PORTC, SELECTA);

CLEARBIT(PORTC, SELECT-B);

break;

case CHANNELIRA:

SETBIT(PORTC, SELECTA);

CLEARBIT(PORTC, SELECTB);

break;

case CHANNEL JRB:

CLEARBIT(PORTC, SELECTA);

SETBIT(PORTC, SELECTB); 130

break;

case CHANNELIRC:

SETBIT(PORTC, SELECTA);

SETBIT(PORTC, SELECTB);

break;

}
}

/**

* dest must be of size MAXPACKETLENGT H to be safe. 1 40

*

*/
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static void constructPacketString(char* dest, const char * msg)

{
//compute crc checksum

uintl6-t checksumCRC = OxFFFF; //seed value

uint8_t msgLength = strlen(msg);

uint8_t i;

for(i=O; i < msgLength; i++){

checksumCRC = crcUpdate(checksumCRC, (unsigned char)msg[i] ); 150

}
(void)snprintf(dest,MAXPACKET-LENGTH, "<%s$%04X>", msg, checksumCRC);

}
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B.4.3 status.c

7/*
status.c

*/

#include <avr/io.h>

#include "status.h"

#include "utildefines.h"

void setStatusO(int i)

{
if(i ==0)

{
SETBIT(PORTD, STATUS_0);

}
else

CLEARBIT(PORTD, STATUS-0);

void setStatusl(int i)

if(i==-O)

{
SETBIT(PORTD, STATUS_1);

}
else

CLEARBIT(PORTD, STATUS-1);

}

void init-StatusLEDs()

{
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DDRD | BV(STATUS_0);

DDRD -BV(STATUS_1);

/*status LEDS off by default:*/

setStatusO(0);

setStatusl(0);

}440
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B.4.4 timer1.c

* Timeri is used for generating a 38kHz carrier frequency for IR

* communication

*

* Configuration for Atmega8 Timer1 for 38kHz PWM output on pin OC1A

* for driving an IR LED.

*

* In phase-correct PWM mode, the timer counts from 0 up to a "'TOP"

* value, and then counts back down. A THRESHOLD value is set so that

* the output is set, cleared, or toggled when crossed. 10

*

* --- --- -- "TOP"

* A
* /\

* //

* / \ /
* -- "THRESHOLD"

* I\| ,/

*| /20

* / |_______ \/ | _ PWM output
*

*

* Here, "TOP" is the 16-bit ICR1 register, THRESHOLD is the 16-bit

* OCRI register, aand the pwm is output on the OC1A pin.

*

* The PWM frequency is chosen using FPWM = F-CPU / (2*PRESCALE*TOP)

*

* Note: I initially selected Timer1 for generating modulated IR

* because it both has an output compare unit (e.g. OC1A) that can be 30

* set to toggle automatically, and because it has a threshold which

* can be used to set the duty cycle of the PWM. In contrast, 8-bit

* Timer2 has an output compare unit but no threshold, while 8-bit

* Timer0 has neither. A 16-bit timer is not needed to generate the
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* 38KHz waveform, but the ability to set the duty cycle was

* considered important, e.g. for regulating the average current

* through the transmit IR LEDs. Thus, Timer1 met my needs, but if

* duty cycle does not need to be varied, Timer2 could suffice.

*/
40

#include <avr/io.h>

#include <avr/interrupt.h>

#include "timerl.h"

#include "util defines.h"

#include <util/delay.h>

#define FPWM 38000

#define TOPPWM 192

#define THRESHOLD-PWM 80

50

/* - Public Functions - *7

* set up registers for phase-correct PWM mode 8, prescale 1, output

* on OC1A. See AVR131

*/

void initializeModulatelR.(void)

{
/*set up OC1A as an output, DDRB, PB1*7

DDRB 1= _BV(PB1); //pin PB1 (aka OC1A) set as output 60

ICR1 = TOPPWM; //16-bit register

OCRIA = THRESHOLDPWM; //16-bit register

/*

bit 7 6 5 4 3 2 1 0

TCCR1A: COM1A1 COM1AO COMIBi COM1BO FOC1A FOCiB WGMI1 WGAIiO

TCCRb: INCJ ICES1 - WGI13 WGM12 CS12 CS11 CS10

the COM1A1:0 and COM1B1:0 control the output compare pins OC1A

and OCJB respectively. If one or both of the COM1A1:0 bits 70
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are written to one, the OC1A output OVERRIDES the normal port

operation of the JO pin it is connected to.

*7
TCCR1A = _BV(COM1A1);

TCCR1B = _BV(WGM13) I _BV(CS10);

TCNT1 = 0; //reset timer count

}

* Enable PWM output on OC1A pin

*7
void enableModulatedOutput(void)

{
SETBIT(TCCR1A, COM1A1);

}

void disableModulatedOutput(void)

{
CLEAR.BIT(TCCR 1A, COM1A1);

}

/*!
*

* Control JR modulation duty cycle.

* (Power levels 10%-40% are most useful.)

* param[in] i The percent duty cycle. Must be a mutltiple of 10.

*/

void set~lodulationDutyCycle(int i)

{
disable~lodulatedOutput();

/* assuming timer counts up to TOP-PWM = 192,

10% increments are 19 counts

*7
switch(i)
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{
case 10:

OCRIA = 19;

break; 110

case 20:

OCRIA = 2*19;

break;

case 30:

OCR.A = 3*19;

break;

case 40:

OCR1A = 4*19;

break;

case 50: 120

OCRIA = 5*19;

break;

case 60:

OCR1A = 6*19;

break;

case 70:

OCRA = 7*19;

break;

case 80:

OCR.A = 8*19; 130

break;

case 90:

OCRA = 9*19;

break;

case 100:

OCR1A = 10*19;

break;

}
enable~lodulatedOutput(;

140
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B.4.5 timer2.c

/ **

* timer2.c

* Timeout timer.

* Generates timer events every Ims.

*

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include "utildefines.h"

#include "timer2.h"

static struct{

/*number of overflow events so far:*/

volatile int numEvents;

/*number of overflows for timeout to occur:*/

volatile int eventThreshold;

/*flag:*/

volatile int tinedOut;

/*value to set the timer to when reset/overflow:*/

volatile int baseCount;

}timerState;

/**

* t is timeout interval in ns.

*

*/

void timer2_initTinieoutTimer(int t)

{
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/*configure timer for Ims overflows:*/

TCCR2 = _BV(CS22) I BV(CS21) ; //prescale 256

timerState.baseCount - 200;

timer2_resetTimeoutTimerO;

timerState.eventThreshold = t;

}

void timer2_resetTimeoutTimer(void)

{
timerState.numEvents = 0;

timerState.timedOut = 0;

TCNT2 = timerState.baseCount;

/*enable timer overflow interrupt:*/

SETBIT(TIMSK, TOIE2);

int timer2_timeoutOccurred(void)

{
return timerState.timedOut;

}

* Timer 2 overflow interrupt handler. This syntax is

* dependent on avr-gcc; beware of other compilers!

*/

ISR.(TIMER,2_OVF-vect)

{
timerState.numEvents++;

if(timerState.numEvents >=

timerState.tiiedOut

CLEAR.BIT(TIMSK,

timerState.eventThreshold){

= 1;

TOIE2);
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B.4.6 usart.c

/ **
* usart.c

* Defines routines for interrupt-driven UART receiving and transmitting of packets.

*

*/

#include <avr/io.h>

#include <avr/interrupt.h> 10

#include <util/delay.h>

#include <util/crc16.h>

#include <string.h>

#include "usart.h"

#include "timeri.h"

#include "timer2.h"

#include "util defines.h"

#include "checksum.h"

#define TIMEOUT-INTERVALMS 50 20

/*

Receiver State Machine

*/

typedef enum {WAIT FORSTARTBYTE, BUFFERDATA, CHECKSUM} RxState;

*add 1 for the null terminating character*/

static volatile char receiveBuffer[MAX PACKET LENGTH + 1];

static volatile char transmitBuffer[MAXPACKETLENGTH + 1];

30

*anything touched by interrupt handlers needs to be declared volatile.*/

static struct{

volatile char *const receiveBufferPtr;

volatile char *const transmitB ufferPtr;
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volatile int receiveBufferFull;

volatile int transmitBufferEmpty;

volatile int transmitLength;

volatile int receiveLength; 40

volatile R.xState rxState;

} usartState

{
.receiveBufferPtr = &receiveBuffer[O],

.transmitBufferPtr = &transmitBuffer[O],

.receiveBufferFull = 0,

.transmitBufferEmpty = 1,

.transmitLength = 0,

.receiveLength = 0, 50

.rxState = WAIT-FORSTART-BYTE

/*

Forward declarations

*/
static void enableTransmitInterrupt(void);

static void disableTransmitlnterrupt(void);

static void disableReceivelnterrupt(void);

static void enableReceivelnterrupt(void); 6o

/* --- Public Functions *

/**

* Load lower 8-bits of baudPrescale into the low byte of the UBRR register

* Load upper 8-bits of the baudPrescale into the high byte of the UBRR register

*/

void init-usart(unsigned int baudrate)

{ 70
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unsigned long baudPrescale = (FCPU / (16L * baudrate)) - 1;

UBRRH = (unsigned char)(baudPrescale >> 8);

UBRRL = (unsigned char)baudPrescale;

8-bit, no parity, 1 stop bit, no handshaking:

This is cryptic, so here's a translation: URSEL bit = 1: "'write to

UCSRC, not UBRRH which shares the same address. (only for 80

atmega8, not atmega168) UMSEL bit = 0: asynchronous, 1

synchronous UPM1, UPMO both = 0: no parity USBS bit = 0: one

stop bit UCSZ2 = 0, UCSZ1 = 1, UCSZO = 1: eight-bit character

size

UCSRC 1= (1 << URSEL) 1 (1 << UCSZO) I (1 << UCSZ1);

/*override normal port operation with rx and tx:*/

UCSRB 1= (1 << RXEN) 1 (1 << TXEN);

} 90

static void resetReceiverStateMachine(void)

{
usartState.rxState = WAITFORSTARTBYTE;

usartState.receiveBufferFull - 0;

usartState.receiveLength = 0;

}

int isReceiveBufferFull(void)/*modifies nothing */

{ 100

return usartState.receiveBufferFull;

int isTransniitBufferEnpty(void)/*Imo(ifies nothing */

{
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return usartState.transmitBufferEmpty;

}

* Loads a string into the transmit buffer.

* Externally, transmit must be enabled to actually

* send the contents of the buffer.

*7
void enqueueStringFor'Il-ansmit(/*in */ char *const ptr)

{
int stringLength = (int)strlen(ptr);

//cast discards volatile qualifier:

strncpy((char *const)usartState.transmitBufferPtr, ptr, MAXPACKET-LENGTH);

usartState.transmitBufferEmpty = 0;

if( stringLength <= MAX-PACKET-LENGTH ) {

usartState.transmitLength = stringLength;

} else {
/*long message has been trucated!*/

usartState.transmitLength = MAXPACKETLENGTH;

}

* Once a string has been enqueued for transmit, this blocks

* until it is transmitted.

*7
void transmitNextString(void)

{
*check for zero-length transmission (otherwise TXC will never get set):*

if(usartState.transmitLength > 0)

{
enable'lransiitlnterrupt)O;

while( BITVAL(UCSR A, TXC) == 0)

{
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/*wait for transmit to complete*7

}
7*

clear TXC by WRITING A ONE to its location. See data sheet.

*7
SETBIT(UCSRA, TXC);

usartState.transmitBufferEmpty = 1;

}

* Blocks until a message is received or a timeout occurrs.

*

*7
void listenForMessage(void)

{
resetReceiverStateMachine(;

timer2-initTimeoutTimer(''IMEOUTINTERVALMS);

enableR eceivelnterrupt();

while ( (usartState.receiveBufferFull == 0) && (timer2 timeoutOccurred() = 0 ) )

/ *wait for the receive buffer to become full, or for the timeout to occur*/

while the receive interrupt ought to be disabled when a complete

message is received, explicitly disabling is necessary when a

timeout occurs:

*/

disableReceiveInterrupt();

}

void dequeueReceivedString(/in */ char * (lest)

{
if ( usartState.receiveBufferFull ==1)
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/*cast discard volatile qualifier:*/

strcpy(dest, (char *const) usartState.receiveBufferPtr);

usartState. receiveBufferFull = 0;

Private Functions

static void enableTransmitlnterrupt(void)

{
UCSR.B 1= (1 << UDRIE);

static void disableTransmitInterrupt(void)

{
UCSRB &= ~(1 << UDRIE);

static void enableReceiveInterrupt(void)

{ 200

UCSRB 1= (1 << EXCIE);

}

static void disableReceivelnterrupt(void)

{
UCSRB &= ~(1 <<R XCIE);

}

**

* n

* Transnitter. Requires transmitBufferPtr to point to data to be sent,

* and usartState.transnitLength to contain the number of bytes to send.

*

* This syntax ISR(...) is dependcnt on avr-gcc. Beware of other compilers!
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*/
ISR.(USARTUDRE-vect)

{
enum TXState {INITIALIZE, TRANSMIT};

static enum TXState state = INITIALIZE;

static volatile int bufflndex; 220

static int bytesSent;

switch(state)

{
case INITIALIZE:

buffIndex = 0;

bytesSent = 0;

state = TRANSMIT;

7*
no break. Fall-through is intended. I'm being 230

clever, so look here for a bug!

*/

case TRANSMIT:

if( bytesSent < usartState.transmitLength){

UDR. = usartState.transmitBufferPtr[bufflndex];

bufflndex++;

bytesSent++-;

} else {
/*done*7

state = INITIALIZE; 240

bytesSent = 0;

usartState.transmitBufferEmpty = 1;

disableTransmitInterruptO;

}
break;

}
}

/**

* 250
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* Receiver state machine for message syntax <.... data.... &cccc> where

* ... data... is variable-length, but cannot contain '<','>' or '

*

* This syntax ISR(...) is dependent on avr-gcc. Beware of other compilers!

*

*/
ISR(USARTRXCvect)

{
static int numChecksumBytes;

static volatile int buffIndex;

static uint16-t checksum; //crc checksum calculated from received data

switch(usartState.rxState)

{
case WAITFOR,_START BYTE:

if (UDR=

{
timer2-resetTimeoutTimero;

bufflndex = 0;

usartState.rxState = BUFFERDATA;

checksum = OxFFFF;

}
else

{
/*ignore received byte and wait for start byte*/

}
break;

case BUFFERDATA:

if( bufflndex < MAXMESSAGE-LENGTH

{
char temp = UDR;

// '$' marks the boundary between message and checksum bytes
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if( temp = '$' )

//make the buffer a valid string:

usartState.receiveBufferPtr[bufflndex] = \0'; 290

/*set length before incrementing buffIndex:*/

usartState.receiveLength = buffindex;

bufflndex++;

numChecksumBytes = 0;

usartState.rxState = CHECKSUM;

}
else /*just a regular data byte*/

{
usartState.receiveBufferPtr[bufflndex] = temp; 300

bufflndex++;

checksum = crcUpdate(checksum, temp);

}

}
else /*fail: message too long!*/

{
usartState.rxState = WAIT FOR START BYTE;

disableR.eceivelnterruptO;

usartState.receiveBufferFull = 0; 310

}
break;

case CHECKSUM:

if(numChecksumBytes < 4)

{
usartState.receiveBufferPtr[bufflndex] UDR;

buffIndex++;

numChecksumfBytes++;

} 320

else /*have received all four checksum bytes.*/

{
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/*unused */char temp = UDR,; //read to clear the RXC flag

uint_16_t receivedChecksum;

sscanf(usartState.receiveBufferPtr[bufferlndex -4], "Xu", &received Checksum);

if(checksum == receivedChecksum)

usartState.rxState = WAITFORSTARTBYTE; 33(

disableReceiveInterrupt(;

usartState.receiveBufferFull = 1;

}
else

/*checksums don't match. Could broadcast a NACK. */

}
break;
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B.4.7 utils.c

#include "utils.h"

#include <string.h>

int stringStartsWith(const char * stri, const char * str2)

{
if ( strncmp(str1, str2, strlen(str2)) == 0 )

{
return 1;

}
return 0; 10

}
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Appendix C

Instrumented Gripper Java Source

Code

This appendix presents the Java control software for performing grasping of assembly

materials using the instrumented gripper.

C.O.8 ArmControl.java

package arm;

import gripper.Gripper;

import javax.comm.*;

import java.io.DataInputStream;

import java.io.IOException;

import Icm.lcm.LC\I;

import lcm.lcm.LCMSubscriber;

import assembly robot. cm. cState t;

/**

* The arinContoller is intended to abstact away the motion of the arm to setting

* the angle of the arm, the setting of the gripper and the position of the arma.
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* The arm positions are mostly defined relative to the "dropping point", which

* is a point defined to be exacty 4 cm in front of the roombas we use, but can

* be safley redefined as long as all robots are calibrated similarly. When

* initialized the arm takes in the positions {gripper open, arm left, arm pose 20

* medium} and {gripper closed, arm rigth, arm pose medium} arguments. positions

* are defined below.

* <P>

* <ul>

* <li><b> gripper open </b> - the gripper is open(<I>true</i>) or the gripper

is not open (<i>false</i>)

*

* <li><b> arm angle </b> - the angle of the arm relative to the robot. ranges

* from (<code>

* -PI/2</code>) to (<code>PI/2</code>) 30

*

* <li><b> arm position </b> - the position of the arm, has multiple position

* <li><b> CARRY </b> - the arm is ready to move about the course without the

* arm getting in the way

* <li><b> HIGH </b> - the arm is in a high position parallel to it's dropping

* point

* <li><b> MEDUIM </b> - the arm is above the dropping point such that a truss

* would be set on the 2nd tier of a structure

* <li><b> LOW </b> - the arm is above the dropping point such that it would

* lift a truss or fastener off the floor 40

*</ul>

*< P>

* though not strictly enforced, this will not work if not treated as singleton.

* When using this system there must be one instance of main() running for each

* robot, and it must be local.

*

* 0author <a href="mailto:stein csail. mit. edu ">David Stein</a>

* 4version 1.0

* 50

public class ArmControl implements LCMSubscriber {
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private static final LCM 1cm = LCM.getSingleton(;

* servo values

*7
private final int GRIPPER. = 0, WRIST = 1, ELBOW = 2, SHOULDER 3, BASE 4;

/ ** 60

* index values

*7
private final int UP = 0, DOWN = 1, CLOSED = 0, OPEN = 1, LEFT 0, RIGHT 1;

* the current base angle. used by the search piece

*7
private double currentBaseAngle, currentShift Math.PI / 60;

* the gripper

*7
private Gripper gripper;

* the servo manager

*7
private LynxServo myArm;

/**

* the unique robotID of this robot

*/

private int robotiD;

/**

* the {low, high} combo of position calibration values for each of the

* servos ie servoPosition/servo][low=0, high=1]

*7
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private int[][] servoPositionC;

90

* the position of the arm, as defined above.

*7
private enum ArmPosition {

CARRY, HIGH, MEDIUM, LOW;

}

* the most recent relevant cState-t message

100

private cState-t mostRecentCommand;

* the value of the desired fastener type

*7
private String target;

* Creates a new <code>ArmControl</code> instance.

110

* Oparam robotID the robot ID

* @param upPositions the set of servo PWMs corresponsing to scanning height (see top)

* Oparam downPositions the set of serve PWMs corresponting to grabbing height (see top)

*7
public ArmControl(int robotID, int[] upPositions, int[] downPositions, String target) {

System.out.println(" \t\t\t\t\tREVISION 1");

servoPositionC = new int[5][2];

for (int j = 0; j < 5; j++) {

servoPositionC[j][1] = upPositions[j];

servoPositionC[j][0] = downPositionsbj]; 120

}
this.robotID = robotID;

this.target = target;

this.myArm = new LynxServoo;
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this.gripper = new Gripper(SensorPort.getlnstanceo);

}

* the main loop. checks the state and calls the appropriate sub method

*/ 130

public void startO {
System.out.println("ArmControl. start(0: started");

while(true){

try {Thread.sleep(500);}catch(Exception e){}

if (myArm.isArmReseto) {

System.out.println("ArmControl. start: recovering. . .

recovero;

System.out.println( "ArmControl .start: recovered!");

}
String messageFronGripper = gripper.getFastenerMessage(Gripper.BELOW); 140

System.out.println(" \nFastenerMe ssage: \t(" + messageFromGripper+")");

System.out.println("Do I Like It? ("+target+") \t" + target.equals(messageFromGripper));

}
}

* does a slow scan untill it hits a fastener with the target value or sends

* a falure message after four scans

*/

private boolean search() { 150

// TODO needs to be more loop like and locked

int i - 0;

positionArm(ArnPositionl.IEDIUM);

setGripper(false); /closed

System.out.println("ArmControl. search: starting");

while (i <= 4) {

// change direction at edges

currentShift = Math.abs(currentBaseAngle) >= Math.PI / 4 ? -currentShift : currentShift;

i += Math.abs(currentBaseAngle) >= Math.PI / 4 ? 1 : 0;// increment i when directection changes

currentBaseAngle += currentShift; 160
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System.out.println("CurrentShift = " +currentShift + "\nCurrentBaseAngle = PI*" + (currentBas

// move the base a bit.

boolean seenlt = smoothSetBase(getBasePWM(currentBaseAngle));

// if we hit then we scan

if (seenlt) {

currentBaseAngle -= currentShift;

seenlt = smoothSetBase(getBasePWM(currentBaseAngle));

while (!seenlt){ 170

currentBaseAngle += currentShift/3;

seenlt = smoothSetBase(getBasePWM(currentBaseAngle));

}
double oneSide = currentBaseAngle;

double otherSide - currentfBaseAngle;

// find the edges and go to the middle

while (seenlt&& Math.abs(currentBaseAngle) < Math.PI / 2) {

seenlt = smoothSetBase(getfBasePWM(currentBaseAngle));

currentBaseAngle += currentShift/3;

otherSide = currentBaseAngle; 180

}

/7 do the move

setBase(getBasePWM(otherSide / 2 + oneSide / 2));

grabAtTheGround();

positionArm(ArmPosition.MEDIUM);

return true;

}
}
System.out.println(" search failed"); 190

return false;

}

/**

* moves the arm to a pose

*/
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private void positionArm(ArmPosition pos) {

int[] armPosition = getPosition(pos);

String commandString = "";

for (int i = 0; i < 3; i++) { 200

commandString += "#" + (i + 1) + " P' + armPosition[i] + " S75

}
commandString += (char)13;

System.out. println(" sent command: "+commandString);

myArm.writeToPort(commandString);

while (checkMovingState() {

}
System.out.println("DONE POSITIONING! ");

return;

210

* sets the position of the base

*/
private void setBase(int PWM){

myArm.writeToPort(" #4 p"+PWM+" s200" + (char)13);

while (checkMovingState() {

}
}

220

* sets the position of the base

*/
private boolean smoothSetBase(int PWM4){

myArm.writeToPort(" #4 p'"+PWM+" s70"+(char)13);

boolean returnVal = target.equals(gripper.getFastenerMessage(Gripper.BELOW));

while (checkMovingState() {

I
return returnVal;

} 230

/**
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* grab at the ground. Should probably check something is there first.

private void grabAtTheGround() {

setGripper(true); // open

positionArm(ArmPosition.LOW);

try{Thread.sleep(500); }catch(Exception e){}

setGripper(false); // closed

return; 240

}

* grab at the ground. Should probably check something is there first.

*7
private void setOnTheGround() {

positionArm(ArmPosition.LOW);

setGripper(true); // open

positionArm(ArmPosition.CARIRY);

currentBaseAngle = 0; 250

setBase(getBasePWM(0));

return;

}

* moves and blocks untill done moving

*/
private boolean checkMovingState() {

// send a query

try { 260

myArm.writeToPort("q" + String.valueOf((char) 13));

// get the response, return false if still moving

Thread.sleep(50);

} catch (Exception e) {

}
return miyArm isArmMoving();

}
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* recovers from a hardware reset 270

*7

private void recover() {

System.err.println(" arm reset detected");

try {
myArm.writeToPort("#" + 0 + " p800" + String.valueOf((char)13));

Thread.sleep(2000);

System.out.println( "ArmControl .recover: next");

} catch (Exception e) {
} 280

for (nt i = 4; i >= 1; i--) {
try {

myArm.writeToPort("#" + i + " p1300" + String.valueOf((char)13));

Thread.sleep(2000);

System.out.println("ArmControl .recover: next");

} catch (Exception e) {

}
}
System.out.println("ArmControl.recover: go!,");

return; 290

}

* sends a message to the arm telling it to move. Takes PWMs

*/
private void moveArm(int{} position) {

String commandString = "';

for (int i = 0; i < 5; i++) {
commandString += "#" + i + " P' + position[i} + " S75

} 300

commandString += String.valueOf((char) 13); // a carrage return marks the end of a message

myA rm. wri teToPort (comm andStri ng);

System.out.println( "armMoved");

}
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* sets the gripper to open or closed

*

* Oparam open - true means open, false means closed.

310
private void setGripper(boolean open) {

if (open) {

myArm.writeToPort("#O p" + getGripperOpenPWM() + " s175" + ((char) 13));

} else {
myArm.writeToPort("#O p" + getGripperClosedPWM() + " s175" + ((char) 13));

}
while (checkMovingState() {

}
System.out.println( "gripper moved");

320

* returns the value of servos 1, 2, and 3 neccessary to acheive a given

* position. Does computation by hardcoded linear combinations of calibrated

* positions

*

* Oparam pos an <code> >ArmPosition< code> value

* Oreturn an <code>int[/ c/code> value

*/
private int[] getPosition(ArmPosition pos) { 330

double[] lowMultiplier new double[3J;

double[] highMultiplier new double[3];

switch (pos) {

case HIGH:

highNMIultiplier[0] = -1;

highI\ ultiplier[1] = 2;

high~lultiplier[2] = 1;

// highMultiplier = {-1, 2, 1};

lowMultiplier[O] = 1;

lowJ\ultiplier[1] = -1; 340
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lowMultiplier[2] .25;

// lowMultiplier = { 1, -1,

break;

case LOW:

highMultiplier[O] 0;

highMultiplier[1] 0;

highMultiplier[2] 0;

lowMultiplier[O] = 1;

lowMultiplier[1] 1;

lowMultiplier[2] 1;

// highMultiplier = {0,0,0};

/lowMultiplier = 1,1,1}f;

break;

case MEDIUM:

highMultiplier[O] = 1;

highMultiplier[1] 1;

highMultiplier[2] = 1;

lowMultiplier[0] = 0;

lowMultiplier[1] = 0;

lowMultiplier[2] = 0;

/7 highMultiplier = {1,1,1};

7/ lowMultiplier ={0,0,0};

break;

case CARRY:

highMultiplier[0] -1;

highMultiplier[1] = 0;

highMultiplier[2] 1.5;

lowI\ultiplier[0] = 1;

lowI\ultiplier[1] = 1;

lowMultiplier[2] = -. 125;

/7 highMultiplier {-1, 0,

/7 lowlulplier ={ 1, 1, -

break;

}

int[] returnSet =new int[3];

2};
.125};
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for (int i = 0; i < 3; i++) {
int nextVal = (int)((((double) servoPositionC[i+1][0]) * lowMultiplier[i]) + (((double) servoPositior

System.out.println("index: " + i + "\tvalue: " +nextVal + "\thighMultiplier, servoPos[il [1]

returnSet[i] = nextVal; 380

}
return returnSet;

}

private int getGripperOpenPWM() {

return servoPositionC[GRIPPER] [OPEN];

}

private int getGripperClosedPWM() {

return servoPositionC[GRIPPER.] [CLOSED]; 390

}

private int getBasePWM(double angle) {

double lowM, highM;

lowM Math.PI / 2 - angle;

high\ Math.PI / 2 + angle;

double returnVal ((double) servoPositionC[BASE][LEFT]) * lowM + ((double) servoPositionC[BASI

return (int) (returnVal / Math.PI);

}
400

* recieved an LCM message and passes it to a handler

*/

public void messageReceived(LCM 1cm, String channel, DatalnputStream dis) {

if (channel.equals(" GLOBALPOSITION")) {
// TODO: assembler will need to use this information.

} else if (channel.equals("WORLD STATE")) {
/*

* the world state relays commands from the central robot state

* machine singlton 410

*/
try {
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cState-t msg = new cState-t(dis);

System.out.println("RobotNavigator.messageRecieved:State update if " + robotlD + "

if ((msg.status == cState-t.SENT I msg.status == cState-t.REPUBLISHING)) {

if (msg.srcRobotID == robotlD && msg.module == cState-t.ARM){

parseWorldState(msg);

} else if (msg.srcRobotID == robotlD && msg.module == cStatet.NAVIGATOR){

positionArm(ArmPosition.CARRY);

currentBaseAngle = 0; 420

setBase(getBasePWM(0));

}
}

} catch (Exception e) {

}
}

}

* reads a { link cState-t} and updates the state of the Navagation FSM 430

*

* Oparam msg the new state

private void parseWorldState(cState-t nsg) throws Exception {

mostRecentCommand = msg;

msg.status = cStatet.ACK;

lcm.publish("WORLDSTATE", msg);

System.out.println("ArmControl. parseWorldState: recieved");

switch (nsg.command) {

case cState-t.PICK: 440

System.out.println( "Picking");

if (searchO) {

sendTaskComplete Message (msg);

} else {
sendTaskFailure\ lessage();

}
break;

case cState-t.RELEASE:
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setOnTheGround();

sendTaskCompleteMessage(msg); 450

break;

}
}

* informs the planner of the robot that the current task is complete

*

*/
private void sendTaskCompleteMessage(cState-t msg) {

if (mostRecentCommand == null) 460

return;

/7 make and send a success response

msg.utime = System.currentTime~lillis();

msg.status = cState-t.CMD_ SUCCEED;

lcm.publish("WORLDSTATE", msg);

System.out.println("COMPLETED TASK");

}

* informs the planner of the robot that the current task is complete, but 470

* failed

*

*7
private void sendTaskFailureMessage() {

if (mostRecentCommand == null)

return;

/ make and send a success response

cState-t msg = mostRecentCommand;

msg.utirme = System. currentTimeMillis(;

msg.status = eState-t.CMDFAIL; 480

lcm.publish( "WORLDSTATE", msg);

System. out. println( "FAILED TASK");

}
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* starts up the arm controller, expects the values of UP and DOWN, which

* are used to generate all the positions of the arm by assuming a linear

* mapping from the angle of a servo to the PWM provided to it.

*<P>

* the <B> UP</B> position corresponds to the position the servo is in 490

* immediatly after having lifted an object out of its container. (arm all

* the way left, gripper closed)

*<P>

* the <B>DOWN</b> position corresponds to the position the servo is in

* immediately before grabbing an object. (arm all the way right, gripper

* open)

*

* Oparam args "-r RobotlD -u u0 ul u2 u3 u4 -d dO dl d2 d3 d4 -t targetString"

* <br>ie:

* <code>java ArmControl -r 5 -u 1400 1300 1200 800 -d 850 1300 1238 1429 -t GREEN<code> 500

*7
public static void main(String[] args) {

// set static instace variables

System.out.println("ArmControl .main: staring");

int robotID = -1;

int[] upPosition = { -1, -1, -1, -1, -1 };

int[] downPosition { -1, -1, -1, -1, -1 };

String target = "-1";

// parse args

if (args.length > 1) {510
for (int i = 0; i < args.length - 1; i++) {

if ("-r".equals(args[i].trim() && args.length >= i + 1) {
System.out.println("robot id: " + args[i + 1]);

robotID = Integer.parselnt(args[i + 1]);

i1 1;

} else if ("-u".equals(args[i].trii() && args.length >= i + 5) {

upPosition[O] = Integer.parseInt(args[i + 1]);

upPosition[1] - Integer.parseInt(args[i + 2]);

upPosition[2] = Integer.parseInt(args[i + 3]);

upPosition[3] = Integer.parseInt(args[i + 4]); 520
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upPosition[4] = Integer.parseInt(args[i + 5]);

i += 5;

} else if ("-d".equals(args[i].trimo) && args.length >= i + 5) {

downPosition[O] = Integer.parseInt(args[i + 1]);

downPosition[1] = Integer.parselnt(args[i + 2]);

downPosition[2] = Integer.parselnt(args[i + 3]);

downPosition[3] = Integer.parseInt(args[i + 4]);

downPosition[4] = Integer.parseInt(args[i + 5]);

i += 5;

} else if ("-t".equals(args[i].trimo) && args.length >= i + 1) { 530

System.out.println("target: \'" + args[i + 1] + "\'");

target args[i + 1];

i± 1;

} else {
System.err. println(" unrecognized input. ");

}
}

}

/7 check all args were entered 540

if (robotID < 0 || upPosition[O] < 0 | downPosition[O] < 0 "-i".equals(target)) {

System.err.println(" insuf f icient args entered into ArmControl. main");

System.exit(1);

I

// startup

ArmControl ac = new ArmControl(robotlD, upPosition, downPosition,target);

// subscibe to LCM

LCM.getSingleton(.subscribe("GLOBALPOSITION", ac); 550

LCI.getSingleton().subscribe("WORLDSTATE", ac);

System.out.println("ArmControl .main: running main. . .

/ start the program

ac.start(;

}
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C.O.9 Gripper.java

package gripper;

import java.io.IOException;

import java.util.TooManyListenersException;

import message. AssemblyMessage;

import message.FirmwarelnfoMessage;

import message. FirmwarelnfoRequestMessage;

import message.IDMessage;

import message. QueryMessage; 10

import message. SetMessage;

import message. SetPowerMessage;

import serial.PortManager;

* the gripper class abstracts away the gripper and allows simple calls

* to "look" through the gripper.

* #author mfaulk

* #date Jun 27 2009 - minor edit by David Stein 20

*/
public class Gripper {

private MessageQueue messageQueue;

public static final String BELOW = "A", FRONT "B", INGRIPPER "C";

/**

* initialize gripper

*/

public Gripper(PortManager portManager){

try { 30

this. messageQueue = new MessageQueue(port Manager);

} catch (TooManyListenersException e) {
e.printStackTrace(;

}
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/ **

* Requests the contents string from fastener with ID idNumber.

* idNumber

*/ 40

public String getFastenerMessage(String channel, int idNumber) {

IDMessage msg = requestlD(channel, idNumber, 750, 1);

if (msg == null)

return null;

else{

String returnStr = msg.getContents();

//returnStr = returnStr.subString(0, returnStr. length()-6);

return returnStr;

}
} 50

public String getFastenerMessage(String channel){

return getFastenerMessage(channel, QueryMessage.BRDADCAST-AD);

}

* returns true if there is a fastener seen on the given channel

*/
public boolean isFastenerSeen(String channel, int idNumber){

boolean returnVal = false; 60

IDMessage msg = requestlD(channel, idNumber, 750, 1);

if(msg != null){

returnVal = true;

}
return returnVal;

}

public boolean isFastenerSeen(String channel){

return isFastenerSeen(channel, QueryMessage.BROADCAST ID);

} 70
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/ **
* sets the Message on the fastener the gripper currently seen

* <b> not guarenteed to succeed</b> please use in a closed loop

* with getFastenerMessage

public void sendSetMessage(String channel, int idNumber, String contents){

setID(channel, idNumber, contents); 80

}

public void sendSetMessage(String channel, String contents){

sendSetMessage(channel, SetMessage.BROADCAST-ID, contents);

}

* Retrieve information about the gripper interface board firmware. 90

* #return Firmware info, or null interface board does not respond.

public String getFirmwareInfo({

int timeOutMS = 500;

messageQueue. clear();

try {
messageQueue. put(new FirmwarelnfoRequestMessage());

} catch (IOException e) {

e.printStackTraceo;

} 100

Assembly llessage responseMsg = messageQueue. next (timeOutMS);

if( (responseMsg != null) && (responseMsg instanceof FirmwarelnfoMessage) ){

Fi rnwareInfolless age info = (Firmwarenfo A lessage) responseMsg;

System.out.println ("Firmware: "+ info.getContents();

return info.getContents();
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return null;

}

*

* Oparam power An integer between 1 and 10

public void setGripperTransmitterPower(int power){

try{

messageQueue.put(new SetPowerMessage(power* 10));

}catch(Exception e){

e.printStackTrace(;

* Free resources

public void cleanup() {

messageQueue.cleanup(;

I

/ **
*

* Oparam channel Channel to send ID request through

* Oparam timeOutMS milliseconds to wait for a response

* creturn the received ID message, or null if no response is received

private IDNIessage requestID (String channel, int address, long tinieOutMS, int numAttempts){

ID1\essage idMessage = null;

for(int i = 0; i < numAttempts; ++i){
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messageQueue. clear(;

try {
messageQueue. put (new QueryMessage(channel, address));

} catch (IOException e) {

e.printStackTrace(;

AssemblyMessage responseMsg = messageQueue. next (timeOutMS); 150

if( (responseMsg != null) && (responseMsg instanceof IDMessage) ){

System.out.println( "got an ID response: "+ responseMsg.getMessageString() );

idMessage = (IDMessage) responseMsg;

break;

}
}
return idMessage;

}

160

* Oparam channel The channel on which to send the SET message.

* Oparam contents The receiver's ID is set to these contents. May not contain whitespace.

*/
private void setID(String channel, int address, String contents){

if(contents.contains(" ")){

System.err.println(" setID contents may not contain whitespace");

}

try { 170

messageQueue.put(new SetMessage(address, channel, contents));

} catch (IOException e) {

e.printStackTrace(;

}
}

}
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Appendix D

Optical Positioning Feedback

Controller

This appendix presents the Labview control software, written in the G programming

language, to perform closed-loop control of a magnetically actuated robot.

D. 1 Graphical User Interface

D.2 Control Loop Block Diagram
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Figure D-1: Control loop graphical interface.
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