83 research outputs found

    Parallel O(log n) algorithms for open- and closed-chain rigid multibody systems based on a new mass matrix factorization technique

    Get PDF
    In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements

    Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    Get PDF
    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    Hybridizable compatible finite element discretizations for numerical weather prediction: implementation and analysis

    Get PDF
    There is a current explosion of interest in new numerical methods for atmospheric modeling. A driving force behind this is the need to be able to simulate, with high efficiency, large-scale geophysical flows on increasingly more parallel computer systems. Many current operational models, including that of the UK Met Office, depend on orthogonal meshes, such as the latitude-longitude grid. This facilitates the development of finite difference discretizations with favorable numerical properties. However, such methods suffer from the ``pole problem," which prohibits the model to make efficient use of a large number of computing processors due to excessive concentration of grid-points at the poles. Recently developed finite element discretizations, known as ``compatible" finite elements, avoid this issue while maintaining the key numerical properties essential for accurate geophysical simulations. Moreover, these properties can be obtained on arbitrary, non-orthogonal meshes. However, the efficient solution of the resulting discrete systems depend on transforming the mixed velocity-pressure (or velocity-pressure-buoyancy) system into an elliptic problem for the pressure. This is not so straightforward within the compatible finite element framework due to inter-element coupling. This thesis supports the proposition that systems arising from compatible finite element discretizations can be solved efficiently using a technique known as ``hybridization." Hybridization removes inter-element coupling while maintaining the desired numerical properties. This permits the construction of sparse, elliptic problems, for which fast solver algorithms are known, using localized algebra. We first introduce the technique for compatible finite element discretizations of simplified atmospheric models. We then develop a general software abstraction for the rapid implementation and composition of hybridization methods, with an emphasis on preconditioning. Finally, we extend the technique for a new compatible method for the full, compressible atmospheric equations used in operational models.Open Acces

    Fluid-Structure Interaction Problems in Hemodynamics:Parallel Solvers, Preconditioners, and Applications

    Get PDF
    In this work we aim at the description, study and numerical investigation of the fluid-structure interaction (FSI) problem applied to hemodynamics. The FSI model considered consists of the Navier-Stokes equations on moving domains modeling blood as a viscous incompressible fluid and the elasticity equation modeling the arterial wall. The fluid equations are derived in an arbitrary Lagrangian-Eulerian (ALE) frame of reference. Several existing formulations and discretizations are discussed, providing a state of the art on the subject. The main new contributions and advancements consist of: A description of the Newton method for FSI-ALE, with details on the implementation of the shape derivatives block assembling, considerations about parallel performance, the analytic derivation of the derivative terms for different formulations (conservative or not) and for different types of boundary conditions. The implementation and analysis of a new category of preconditioners for FSI (applicable also to more general coupled problems). The framework set up is general and extensible. The proposed preconditioners allow, in particular, a separate treatment of each field, using a different preconditioning strategy in each case. An estimate for the condition number of the preconditioned system is proposed, showing how preconditioners of this type depend on the coupling, and explaining the good performance they exhibit when increasing the number of processors. The improvement of the free (distributed under LGPL licence) parallel finite elements library LifeV. Most of the methods described have been implemented within this library during the period of this PhD and all the numerical tests reported were run using this framework. The simulation of clinical cases with patient-specific data and geometry, the comparison on simulations of physiological interest between different models (rigid, FSI, 1D), discretizations and methods to solve the nonlinear system. A methodology to obtain patient-specific FSI simulations starting from the raw medical data and using a set of free software tools is described. This pipeline from imaging to simulation can help medical doctors in diagnosis and decision making, and in understanding the implication of indicators such as the wall shear stress in the pathogenesis

    Matrix Concentration & Computational Linear Algebra

    Get PDF
    These lecture notes were written to support the short course Matrix Concentration & Computational Linear Algebra delivered by the author at École Normale Supérieure in Paris from 1–5 July 2019 as part of the summer school “High-dimensional probability and algorithms.” The aim of this course is to present some practical computational applications of matrix concentration

    Multiphysics simulations: challenges and opportunities.

    Full text link

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Fast numerical methods for mixed--integer nonlinear model--predictive control

    Get PDF
    This thesis aims at the investigation and development of fast numerical methods for nonlinear mixed--integer optimal control and model- predictive control problems. A new algorithm is developed based on the direct multiple shooting method for optimal control and on the idea of real--time iterations, and using a convex reformulation and relaxation of dynamics and constraints of the original predictive control problem. This algorithm relies on theoretical results and is based on a nonconvex SQP method and a new active set method for nonconvex parametric quadratic programming. It achieves real--time capable control feedback though block structured linear algebra for which we develop new matrix updates techniques. The applicability of the developed methods is demonstrated on several applications. This thesis presents novel results and advances over previously established techniques in a number of areas as follows: We develop a new algorithm for mixed--integer nonlinear model- predictive control by combining Bock's direct multiple shooting method, a reformulation based on outer convexification and relaxation of the integer controls, on rounding schemes, and on a real--time iteration scheme. For this new algorithm we establish an interpretation in the framework of inexact Newton-type methods and give a proof of local contractivity assuming an upper bound on the sampling time, implying nominal stability of this new algorithm. We propose a convexification of path constraints directly depending on integer controls that guarantees feasibility after rounding, and investigate the properties of the obtained nonlinear programs. We show that these programs can be treated favorably as MPVCs, a young and challenging class of nonconvex problems. We describe a SQP method and develop a new parametric active set method for the arising nonconvex quadratic subproblems. This method is based on strong stationarity conditions for MPVCs under certain regularity assumptions. We further present a heuristic for improving stationary points of the nonconvex quadratic subproblems to global optimality. The mixed--integer control feedback delay is determined by the computational demand of our active set method. We describe a block structured factorization that is tailored to Bock's direct multiple shooting method. It has favorable run time complexity for problems with long horizons or many controls unknowns, as is the case for mixed- integer optimal control problems after outer convexification. We develop new matrix update techniques for this factorization that reduce the run time complexity of all but the first active set iteration by one order. All developed algorithms are implemented in a software package that allows for the generic, efficient solution of nonlinear mixed-integer optimal control and model-predictive control problems using the developed methods
    • …
    corecore