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Abstract 

The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops 
sponsored by NASA, NSF and the DOD. The purpose of these workshops is to address computa- 
tional issues in the analysis, design and testing of flexible multibody control systems for aerospace 
applications. The effort began with the 1987 Workshop on Multibody Simulation in Arcadia, Cali- 
fornia, and was followed by the 1988 Workshop on Computational Aspects in the Control of Flexible 
Systems in Williamsburg, Virginia. The 3rd Annual Conference on Aerospace Computational Con- 
trol was held in Oxnard, California,and the 4th NASA Workshop on Computational Control of 
Flexible Aerospace Systems in Williamsburg, Virginia. The intention in holding these workshops 
is to bring together users, researchers and developers of computational tools in aerospace systems 
(spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging 
ideas on the state of the art in computational tools and techniques. 

The Fifth Workshop, held in Santa Barbara, California, provided the attendees a window into 
current research, development and applications in computational issues related to  the development 
of flexible multibody systems. The objectives of the workshop were to provide 

0 NASA, NSF and DOD a window into current research 
0 tool users and tool developers an opportunity to exchange ideas and experience on 

0 researchers and users an opportunity to see what areas are ripe for application and 

0 academia and industry an opportunity to strengthen cooperation in order to  aid 

the correctness, efficiency, and usability of current computational tools 

what areas require more effort 

the transfer of new technologies to applications 

Attendees presented their current work and discussed their views on what directions should be 
taken. The focus of the workshop was in the following areas: 

Modeling: component model representation, multi-flexible body modeling, robotics 
modeling, model reduction, model verification, modal synthesis, damping, algo- 
rithms 8z software 

Flexible Multibody Simulation: recursive and non-recursive algorithms, real-time 

CAE Issues: application-specific tools, tool integration, database systems, user inter- 

Control System Design: analysis and design tools and techniques, large-scale prob- 

Testing and Verification: techniques, software systems, hardware systems, ground 

Applications: real-time hardware-in-the-loop test implementations, graphics and an- 

simulation, symbolic algorithms, software 

faces, visualization, algorithms & software 

lems, numerical algorithms, numerical analysis, software 

test systems, flight experiments 

imation, experience with design tools, testbeds 

iii 



The Fifth Annual Workshop on Aerospace Computational Control was sponsored in part by NASA’s 
Computational Control Program, which is currently implemented at five NASA centers (the God- 
dard Space Flight Center, the Jet Propulsion Laboratory, the Johnson Space Center, the Marshall 
Space Flight Center, and the Langley Research Center). The program was started in 1957 after 
observers found that the limitations of current tools could possibly jeopardize future NASA flight 
projects. The objectives of this program are to develop a new generation of algorithms and pro- 
totype software tools for the design and testing of spacecraft axid robots. The emphasis of this 
program is to provide technology which will provide the capability to  handle the more demand- 
ing requirements of future missions while enhancing productivity and reducing risk. Within this 
program several existing codes (e.g., TREETOPS, DISCOS) have been validated and enhanced 
and several new tools have been developed (e.g., DARTS, Caesy, COMPARE, Space Station Work- 
station). These tools are finding acceptance in wide-ranging projects both inside and outside of 
NASA. 

Discussion 

The Workshop was concluded with a lively panel discussion. The purpose of this panel discussion 
was to  allow participants to  access the current state-of-the-art and new directions for future work. 

It was pointed out that much progress has been made in the modeling area. Researchers are now 
aware that many valid techniques exist to derive the equations of motion. Work on the Component 
Model Representation technique is continuing; the technique becomes very important in situations 
when spacecraft is being designed, built and verified in terms of subsystems. 

There was quite a bit of discussion on the need for new emphasis in modeling. First, it was 
pointed out that damping should be considered more in design. Hence, the modeling of damping 
should be stressed in the design process as well as in the design tools. Second, more attention 
should be paid to the relationship between model fidelity, validation and simulation. Higher fidelity 
models may be more prone to modeling errors due to  the complexity involved in the modeling 
process. Also, higher fidelity models, with numerous high-frequency modes, may cause problems 
with algorithms for integrating the systems of differential equations. In effect, one should only 
model what is necessary - for example, wha>t lies within the sensor bandwidth. In general, the 
modeling process should be more “in tune” with the end application whether it be simulation 
(where numerical “stiffness” is a comern), control system design (where knowledge of the model 
uncertainties is important) or whatever. Finally, a comment was made that with parallel computing, 
the computational bottleneck is no longer a problem and hence model reduction should no longer 
be a concern. There was some disagreement with this argument. 

There has been remarkable progress in real-time simulation. The emphasis on derivation of 
equations has given way to  the age of parallel processing. Many of the papers presented showed 
that parallel processing is being used quite successfully in practice to provide multibody simulation 
in real time. It was mentioned that the development of algorithms should be integrated with the 
development of the algorithms for numerical integration. In essence, an algorithm must be found 
which matches the problem and the available computing resources. Also, with the advances niade 
in real-time simulation, the need for better algorithms must still be established. 

There has been some progress in computer-aided engineering. However, the remark was made 
that the processes of setting up, debugging and interpreting results from an analysis are still 
significant bottlenecks in the overall design and analysis process. Also, there exists a need for tools 
to transfer data between programs. Many users write custom programs for doing these chores. 
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Work should be done to  develop highly functional and reliable tools for this task: this is a solvable 
problem. 

In the control-system design area, it was mentioned that access to model uncertainty is an 
important factor in design. Another remark was made that the community should work on the 
establishment and development of benchmark problems for flexible multibody control problems. 
This would give students and engineers access to “real world” problems and would provide test 
cases for commercial tools. 

It became clear from the discussion that the process of verification is not always a well-defined 
process. There is more work needed to  aid in providing verification techniques for dynamic models, 
reduced-order models, model code, etc. Another interesting point was brought up concerning 
model validation. It is a fact that many models being used for dynamical systems (e.g., liquid fuel 
dynamics) can’t be verified on the ground. A suggestion was made that future space missions should 
be designed to  provide flight data for model identification and verification. Although validation 
of real-time simulation code against an analytical model is more tractable and more often used, it 
does not provide the same confidence that would be provided by validation against flight data. 

Later discussions with attendees brought about the idea that with emphasis now on smaller, 
cheaper spacecraft, the challenge is to provide a design and test environment which supports rapid 
turnaround. This will involve tools for integrated prototype designs, allowing an engineer to analyze 
critical design trade-offs early in the design process. 

Current Challenges 

The talks and discussions at this workshop provided good inputs on requirements for continuing 
and future research and development. The current challenges for work in computational control 
include 

Speed: The faster we can get simulations to run, the better off we are. Parallel and vector 
processing have paid of f  well, and work in this area should be continued. 

Damping: We need to  start incorporating damping into the modeling process. This implies 
that the associated modeling and design tools must be extended to handle damping. 

Benchmark Problems: Benchmark problems (with associated data) should be developed and/or 
collected to  provide problems to students as well as tool developers. 

Computer-Aided Engineering: The “bridging tools” to  provide the ca.pability to process and 
interpret data efficiently are still lacking. We need some good tools here. 

Concurrent Engineering: The process of designing, building and verifying systems needs to 
be speeded up. This is a new focus area that should receive new effort. 

Much progress has been made over the past few years, but many challenges still remain. We 
hope the enthusiasm with which the community has approached these problems continues. 
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Abstract 

In this paper we discuss the issue of geometric stiffening as it  arises in the context of 
multibody dynamics. This topic has been treated in a number of previous publications 
in this journal and appears to be a debated subject. The controversy revolves primarily 
around the “correct” methodology for incorporating the stiffening effect into dynamics 
formulations. The main goal of this work is to present the different approaches that have 
been developed for this problem through an in-depth review of several publications dealing 
with this subject. This is done with the goal of contributing to a precise understanding of 
the existing methodologies for modelling the stiffening effects in multibody systems. Thus, 
in presenting the material we attempt to  illuminate the key characteristics of the various 
methods as well as as show how they relate to each other. In addition, we offer a number 
of novel insights and clarifying interpretations of these schemes. The paper is completed 
with a general classification and comparison of the different approaches. 

1 Introduction 

The issue of geometric stiffening, also referred to as dynamic stiffening, centrifugal stiffening 
and foreshortening has been a topic of many recent publications dealing with the dynamics of 
flexible bodies for applications to multibody systems. Kane el al.’ first observed that the 
majority of existing multibody dynamics formulations and accordingly the dynamics simulation 
packages do not incorporate the geometric stiffening effect. They have attributed this flaw to 
the “convenional approach” for describing the deformation of elastic bodies, which yields a set 
of dynamics equations that inherently lack the geometric stiffening terms. Kane et al. proposed 
an alternative approach, correcting this flaw, and applied it to develop a set of equations 
for the deformation of a beam attached to  a moving base. 

Eke and Laskin2 took up the issue raised in Ref. 1 and investigated regimes of validity of 
existing formulations with the simulation package DISCOS on a spin-up beam example. They 
qualified the error in conventional approach as a “premature linearization” of the displacement 
field. This was later supported by Padilla and von Flotow3 and Banerjee and Dickens4. 

Shortly after Kane et aZ.’s publication, two commentaries appeared on the material 
presented in Ref. 1. In particular, London5 pointed out that geometric stiffening has been 

*Assistant Professor _/ 
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previously considered by many researchers in a number of 
observed that several approaches have been employed to incl 
equations and compiled a table characterizing the various met 
Hanagud and Sarkar state that, contrary to the claim made in Ref. 1, the conventional method 
for modelling the kinematics of elastic deformation can be used. 

The existing controversy over the nature of geometric stiffening, the debate on “ the 
correct” approach to  model it and the seeming incongruity of the methods used to include the 
effect in the motion equations-all of these have motivated us to review several of the works 
on this subject. In doing so, we have attempted to understand precisely how geometric stiff- 
ening is incorporated into the dynamics equations in different approaches, what assumptions 
and approximations are made in the derivation, what motivated these and whether they are 
justified. This paper contains the main results of our review. 

Our starting point will be the landmark paper by Kane et al.’ and the subsequent 
cornmentarie~.~*~ Following that, we give a thorough treatment of the works by Likins et aZ.,” 
Vigneron8 and Kaza and Kvaternikg and a summary of the relevant material from the pub- 
lications by Lips and Modi” and Hughes and Fung.” Section 4 contains the main results 
from Laskin et a1.,12 Meir~vitch’’*’~ and Banerjee et aZ..4*15 In reviewing the works of these 
researchers, we do not simply repeat their derivations, nor do we include the dynamics equa- 
tions developed in these publications. Instead, we concentrate on the fundamental assumptions 
made in formulating the basic elements necessary for deriving these equations, where the “for- 
mulation” ends when the development becomes a purely mechanical process. For instance, in 
the cases where dynamics equations are derived via Hamilton’s principle, we limit ourselves 
to stating kinetic and potential energy functions, and do not go through the procedure of 
applying the variational principle. This allows us to  compare the various approaches based on 
the fundamental physical assumptions. 

In addition to  presenting the key features of different procedures, making comparisons 
and establishing relationships between them, we also provide clarifications and give some new 
insights. We conclude the paper with a discussion in which we disclose some of the exist- 
ing misconceptions, classify the approaches and comment on their suitability for multibody 
dynamics simulation. 

2 Kane et  al. and Commentaries 

2.1 Main Results of Kane, Ryan and Banerjee 

In Ref. 1, Kane, Ryan and Banerjee develop the dynamics equations of a general flexible beam 
built into a rigid base. The base body can undergo arbitrary, but prescribed translational 
and rotational motion. The generality of the beam refers to  the fact that its geometric and 
material properties are not assumed to be constant, but can vary along the length of the beam. 
In addition, Kane et al. do not make the common assumption that the elastic and centroidal 
axes coincide. As a result, their motion equations contain terms dependent on the components 
of the eccentricity vector, e2 and e3. 

The formulation of equations in Ref. 1 differs from many existing procedures in several re- 
spects. First, i t  incorporates the effect of the transverse displacement on the axial displacement 
in the kinematic description of the deformation. This is achieved indirectly by expressing the 
distance along the deformed elastic axis as a nonlinear function of the transverse displacements 
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with: 

x + s(x,t) = [ 1 c ( ~ ) 2 +  (2) 
The above equation is the same as Eq. (19) of RRf. 1, where the variable s denotes “the stretch 
in the beam along the elastic axis.” 

The second major difference relates to the choice of elastic deformations that are em- 
ployed to describe kinematics of the deformed beam. The standard procedure is to use three 
orthogonal elastic displacements u1, u2 and 213 to represent the displacement field in a de- 
formable body. Kane et al. employ the stretch s with the transverse translations ‘112 and u3 
as a set of generalized coordinates. Thus, when discretizing the continuous displacement field, 
they discretize the stretch variable instead of the axial displacement u1. This is expressed by 
Eqs. (25) and (26) of Ref. 1, which we rewrite here for convenience as: 

Accordingly, the dynamics equations based on the above premise reprsent a model for the time- 
evolution of (s, 212, u3}, or rather, the corresponding discrete elastic coordinates. The “conven- 
tional approach’’ involves discretizing the orthogonal set of elastic displacements ( ~ 1 , 2 1 2 ,  UQ} 
with: 

U 

U; = C4ijqj’ i = 1,2,3 
j=1 

or in matrix form: [::I = u = * q  
113 

(3) 

(4) 

Kane et al. argue that in the standard procedure (3), the three elastic deformations cannot 
account for the fact that every transverse displacement gives rise to an axial displacement, 
because the form (3) inherently precludes such an interdependence. 

The general methodology employed in Ref. 1 to derive an explicit (literal) set of motion 
equations for the elastic coordinates is that presented in Kane and Levinson.“ The procedure 
requires one to construct the generalized inertia and generalized active forces. The former are 
developed in Ref. 1 according to the algorithm outlined by Kane and Levinson. The generalized 
active forces, which for the particular system considered result from internal forces, are derived 
from the strain energy function. The expression for this function U is given in terms of the 
components of the force and torque vectors which act on a cross-section of the beam (see Eq. 
(51) in Ref. 1). Thus, it takes the form of a sum of six integrals, three for each of the force and 
torque, where the integrand of each integral term is a quadratic function of the appropriate 
load. In order to determine the generalized internal force by using Eq. (50) of Ref. 1, which 
in fact is a statement of Castigliano’s theorem, one needs to formulate the strain energy as a 
function of the generalized coordinates. To this end, Kane et al. express each of the six loads 
as a linear function of elastic deformations or their spatial derivatives. 
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For reasons that will become apparent in 52.4, we draw attention to one particular term 
in the strain energy function. This term represents the contribution of the axial load and will 
be denoted here by Up. It corresponds to the first term in f. 1, which we rewrite, 
omitting the subscripts as: 

U p = J L E d z  0 2EA ( 5 )  

In linear analysis, one approximates the axial load as a linear function of the axial displacement 
gradient with P = EA%. The expression for P given in Ref. 1 by the left Eq. (58) takes the 
same form, but with the axial translation zc1 replaced with the stretch variable s. With that, 
the axial load contribution to the strain energy function becomes: 

The above are what we view as the key features of the dynamics formulation for a flexible 
beam attached to  a moving base that has been put forward by Kane, Ryan and Banerjee.’ In 
the following two subsections, we summarize the main points of a technical comment and an 
engineering note, both of which are related to Ref. 1. These appeared in two issues of the 1988 
volume of the Journal of Guidance and Control, shortly after the publication of Kane et al. 
Section 2 is concluded with a discussion of the two commentaries. 

2.2 London’s Comments 

In summarizing London’s comments, we have grouped them into two categories. The first one 
includes comments which deal with the “qualitative” aspects of Kane, Ryan and Banerjee’s 
work, such as literature review. In the second category, we include comments related to the 
quantitave or technical aspects of the analytical development presented in Ref. 1. 

Category I. London observes that Kane et al. “create the impression that a new theory has 
been discovered,” refering to  the theory to model foreshortening. London bases this 
statement on the fact that Kane et al. do not give any references as to  the origin of their 
results for the nonlinear description of the kinematics of the deformed beam (primarily, 
Eq. (19) in Ref. 1). 
Regarding the literature review on the subject of modelling flexible beams attached to 
a moving base, London’s criticisms are twofold. First, he suggests that the references 
in Kane et d ’ s  manuscript are incomplete. To be specific, they neglect to mention the 
work by Lips and Modi’O on the dynamics of beams undergoing a three-axis spin, as 
well as the work by Hughes and Fung,l’ which treats the problem of stability of spinning 
satellites with flexible appendages. Second, London implies that many of the references 
that are included have not been given a proper and/or appropriate credit. In this regard, 
he particularly notes the work of Kaza and Kvaternikg which is classified by Kane et 
al. into a group of papers “in connection with aircraft dynamics’’ addressing “questions 
concerning tapered, twisted and rotating beams.” Similar treatment is given to  the works 
of Likins et aL7 and Vigneron? which are grouped under those in the field of “spacecraft 
dynamics” with a “particular interest” in “the effect of vehicle elasticity on attitude 
motions .” 

Category 11. With regards to the technical merits of Kane et QL’S formulation, London draws 
attention to the following four points: 
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1. London questions why the authors of 1 “choose to represent the three elastic 
degrees of freedom by five variables ( 2 1 1 ,  u2, u3, s ,  C).” 

2. It is pointed out that the use of x + u1 as an upper limit of the integral in Eq. (1) 
(Eq. (19) in Ref. 1) creates problems in evaluating the modal integrals P;j and 7;j 
(Eq. (41) in Ref. 1). 

3. London questions why the foreshortening is not considered during evaluation of the 
strain energy. 

4. It is stated that the final equations derived by Kane “axe linear in terms of vibration 
coordinates (but still retain higher-order spin effects) as is already the case with most 
other works .,’ 

2.3 Hanagud and Sarkar’s Note 

Contrary to  what is claimed in Ref. 1, Hanagud and Sarkar believe that the axial and transverse 
motions can be treated independently with the standard discretization procedure and the 
stiffening effect can be accounted for if “the nonlinear effects are properly included in the 
f~rmulation.”~ 

Hanagud and Sarkar present a formulation where, as in the conventional approach, they 
discretize the axial displacement ul,  not the stretch variable s. Hanagud and Sarkar derive 
the differential equations for the corresponding discrete elastic coordinates by using the same 
general methodology as employed in Ref. 1, which as they point out is sometimes referred to as 
Kane’s method. Similar to the development of Kane et al., they also determine the generalized 
active forces which are the elastic (internal) forces, from the strain energy function. However, 
Hanagud and Sarkar formulate the strain energy as a quartic function of the spatial derivatives 
of u l ,  u2 and 213. This is accomplished by employing the nonlinear strain-displacement rela- 
tions, through which the aforementioned nonlinear effects are introduced into the formulation. 
Lastly, Hanagud and Sarkar do not linearize the final equations of motion, but retain terms of 
second and third order. 

An important contribution of Hanagud and Sarkar’s work is an observation that the 
expression for the stretch variable presented by Kane et al. (Eq. (19) in Ref. 1) is inconsistent 
with the rest of their development. The inconsistency results from the fact that this relation 
for s is applicable if one expresses the transverse displacements 112 and u3 as a function of the 
deformed coordinate X which corresponds to the axial projection of a generic point in the de- 
formed configuration of the beam. (We have chosen to follow the traditional notation employed 
in the theory of elasticity, where one distinguishes the deformed and undeformed coordinates 
by different-case letters.) Since in their formulation, Kane et al. express the translations 212 
and 213 in terms of the undeformed coordinate x (see Eq. (2)), the consistent expression for the 
stretch variable is: 

The above equation, although looks different, is equivalent to Eq. (2) in Ref. 6. We also 
observe that it embodies the nonlinear formulation of the strain. In (7), we have used the 
notation 21 to emphasize that elastic translations must be expressed as a function of the 
undeformed &dinate x, while u in this case is a dummy integration variable. We also point 
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out a change in the upper limit of the integral from z + a1 in q. ( 7 )  which, of 
course, is a consequence of the transformation from deformed to undeformed axial coordinate. 

2.4 Discussion of the Commentaries 

In the following, we offer our opinions on the various points made in the commentaries. We 
hope that these will serve to elucidate the more subtle features of the formulation proposed by 
Kane et al. A couple of the issues raised in the commentaries will be further addressed in the 
final section of the paper. 

We agree with London in saying that when one reads the manuscript,’ one gets an impres- 
sion that its authors propose a new theory to model the deformation of a beam. Fundamentally, 
the theory is not new and a number of formulations which incorporate the foreshortening effect 
and the resultant stiffening of the beam -during its rotation, have been previously published. 
(The material presented in $3 and $4 will support this fact.) Indeed, Kane et al. refer to 
some of these works, but only in a superficial and in some cases misleading manner. This 
notwithstanding, we feel that the formulation developed in Ref. 1 does have a couple of novel 
features. These are: (i) generality of the system modelled and (ii) use of the stretch variable as 
a generalized coordinate in deriving the dynamics equations. Although we do not share Kane’s 
conviction that the dynamics equations must be formulated in terms of the stretch variable in 
order to  predict stiffening of the beam, this particular feature of their procedure provides, at 
the least, an interesting alternative to the conventional approach. 

Continuing with London’s comments in the second category, we offer the following ob- 
servations: 

1. In our interpretation of the formulation,’ the stretch s is introduced to replace the axial 
displacement u1. This is made abundantly clear in section IV of Ref. 1 where s takes 
place of what usually appears as a1. The variable C is employed as a short-hand for the 
combination z + 111. In this light, we do not agree with London’s statement that Kane 
et al. propose to  use five variables to represent a three-degree-of-freedom displacement 
field. 

2. According to the development presented in Ref. 1, the modal integrals p;j, y;j are by 
definition time-dependent. through u1 = q ( z ,  t )  in their upper limit of integration. This 
implies that they must be evaluated at each time step in the numerical integration of 
the motion equations. (Although that would certainly add to the computational cost 
of the simulation, it should not pose a problem otherwise.) The situation changes, 
however, if one corrects formulation in Ref. 1 in accordance with observations made 
by Hanagud and Sarkar. That can be achieved by replacing the inconsistent expression 
for the stretch, given by Eq. (l), with a consistent form of Eq. (7). With this correction, 
the aforementioned modal integrals become independent of time and, therefore, can be 
evaluated prior to the numerical integration of the motion equations. 

3. This particular comment by London has motivated us to consider closely the expression 
for the strain energy function employed in Ref. 1. In the process, we have singled out 
the “axial” strain energy, previously denoted by Up, as the only contribution which may 
possibly comprise the foreshortening effect. The following brief development shows that 
indeed it does. 
The function Up, as can be seen from (6), is quadratic in the spatial derivative of the 
stretch, g. Thus, in order to  illuminate the nature of this strain energy, we need to  obtain 
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an explicit expression for the stretch gradient. As noted previously, Eq. (7) provides the 
proper form for s that should be employed in f. 1. Abbreviating the notation, we 
rewrite (7) for s with: 

s ( x , t )  = [ [ (1 + 2)2 + + ($,’]””.. - x 

Differentiating the above with respect to x we get: 

- 1  ax 
and upon expansion of the first term, the required gradient takes the form: 

112 - d S  = [1+ 2% + (3)’ + (!%)2 + ( ~ ) 2 ]  - 1 
O X  

Let us now introduce the axial strain  EO,^^, where the 0 subscript signifies that it refers 
to the elastic axis. (Note that ‘111,212 and ‘113 are defined in Ref. 1 as translations of points 
along the elastic axis only.) The strain ~ 0 , ~ ~  can be expressed in terms of the elastic 
displacements with a well-established strain-displacement relation. It has the following 
exact and nonlinear form: 

EO,GI  = 2 + ; [ (%)2 + (z)2 + (2)2] 
With the above, the stretch gradient of Eq. (10) can be succinctly written as: 

Before we continue, it is worthwhile to  point out that in all formulations dealing with the 
subject of geometric stiffening in the context of multibody dynamics, it is always assumed, 
although not always stated, that the strains are small, and specifically, ~ 0 , ~ ~  << 1. 
Therefore, we can make use of the Binomial Theorem to simplify Eq. (12). Retaining 
the first two terms in the binomial expansion we get: 

Finally, substituting for 
employed by Kane et al. takes the form: 

from (13), the axial contribution to the strain energy function 

with the axial strain given by the nonlinear Eq. (11). 
At this point, it is appropriate to comment on the form of 
by Hanagud and Sarkar in their formulation (Eq. (8) in Ref. 

the strain energy employed 
6) .  Their expression can be 
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derived by using Eq. (14) in conjunction with the following simplified expression for the 
axial strain: 

EO,xz = B U l  + ij * [ (z)2 + (2)2] 
2 

The above form is obtained from the exact relation (11) by omitting the (g) term- 
an approximation often made in the context of moderate-deformation theories.” The 
third- and fourth-order terms in the strain energy of Hanagud and Sarkar result from the 
nonlinear terms and (%) in the strain-displacement relation (15). It is these 
terms that lead to  the geometric stiffening and foreshortening of the beam. 
The development presented here demonstrates that, contrary to  London’s comment, the 
geometric nonlinearity is included in the strain energy expression given in Ref. 1. This is 
not apparent because Kane et al. employ the stretch s instead of the axial translation u1 
as a generalized coordinate in their formulation. As a consequence, they do not need to 
expand e when evaluating U so that their strain energy function remains quadratic in 
the discrete generalized coordinates and does not explicitly contain higher-order terms. 

4. We have found this comment by London somewhat bewildering. As stated in it, and as 
clearly stated in Ref. 1, the equations of motion developed by Kane et al. are linear in the 
elastic coordinates and incorporate the geometric stiffening. In fact, one of the crucial 
points made in Ref. 1 is that the linear motion equations in other works do not contain 
all of the linear terms, in particular the stiffening term. As implied by Kane et al.,’ 
and later stated by Eke and Laskin2 and Padilla and von Flotow? this occurs because 
of premature linearization implicit in the “conventional approach.” Contrary to this, we 
support Hanagud and Sarkar’s view that one can obtain the stiffening effect with the 
conventional approach. This is achieved by employing the nonlinear strain-displacement 
relations in constructing the strain energy function. The stiffening term obtained with 
this approach is a nonlinear function of elastic coordinates. 
The reason why the final equations of Kane et al. are linear in elastic coordinates, but yet 
include the stiffening terms lies in their choice of the stretch s as a generalized coordinate 
and the fact that it includes the nonlinear contribution from transverse displacements. 
As we had shown in the previous comment, it is through the use of stretch instead of axial 
displacement, that Kane et al. incorporate foreshortening in their formulation, without 
introducing nonlinearity explicitly into the motion equations. 

2 

3 References Contended by London 

London’s comments on the literature review and Kane et aZ.’s reply to themI8, motivated us to 
investigate the material presented in several of the references in question. The main objective 
of this section is to summarize these findings. 

3.1 Likins et al., Vigneron, and Kaza and Kvaternik 

Our choice to discuss the contributions of Likins et Q Z . , ~  Vigneron? and Kaza and Kvaternikg in 
the same section is based on several reasons. First, these articles appeared within a time-span 
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of four years and therefore belong to the same uera.” Second, d t ree publications contain 
formulations of the dynamics equations for a flexible beam spinning in a plane at a constant 
speed. Finally, there is a logical re~ationship between these works, since that by Vigneron is 
a comment on Likins et al., while Kaza and Kvaternik extend Vigneron’s approach to  obtain 
the nonlinear equations of motion of the aforementioned system. 

Our presentation is not a plain copy of Refs. 7, 8 and 9, as it is structured to make 
apparent the key features of the approaches taken in the three works, establish a relationship 
between them, as well as identify the particular contributions of each one. Towards this 
end, we present the results of these works in a common notation, which will also be employed 
throughout the rest of the paper. This notation is similar to  that used in Ref. 1 with one major 
difference. We choose to denote the three orthogonal elastic displacements with symbols u, v 
and ‘ut. Thus, u now represents the axial elastic displacement measured along the x-axis of the 
reference frame, while v and w are the transverse elastic displacements. Furthermore, these 
symbols are not restricted to the elastic axis, but represent elastic displacements of any point 
in the beam. This convention follows that used by Kaza and K ~ a t e r n i k . ~  

As already mentioned, the system considered in all three publications’ is a uniform elastic 
beam, with a symmetric cross-section, spinning at a constant angular speed R about the z-axis 
of the reference frame. This system represents a special case of that treated by Kane et al., 
defined with: w3 = R, w1 = 0 2  = v1 = vp = v3 = 0, e2 = e3 = 0 as well as constant geometric 
and material properties. The common features of the form~la t ions’*~~~ are listed below. 

(i) The dynamics equations are constructed via Hamilton’s principle. 

(ii) The position of a generic point located at [x,y,zIT in the undeformed beam is given 
by [z + u,y + v , z  + wIT, where v and w are functions of x and time only, that is 
u(z, y, z, t )  = u(x, t )  and similarly for v and w. As well, the transverse displacements are 
assumed constant in a cross-section, thus precluding torsional deformation. 

(iii) The kinetic energy is calculated with: 

+ 2R(x + 21); - 2R(y + v)G] A dz dydz (16) 

where, like in Ref. 1, the symbol p denotes the mass per unit length of the beam and A 
is the cross-sectional area. The above equation is identical to equation (6) of Likins et 
al. and applies t o  any elastic body spinning as specified before. It can be expanded and 
simplified for a beam with a symmetric cross-section to yield: 

T = ;p ( G ~  + ,ir2 + w2) dX+:R2p J (2’ + u2 + v2 + ~ X U )  dx 

1 
+Rp (x+ + U+ - vi) dx+-pQ2LIz J 2 A  

where we have used the standard definition I, = JJ y2 dy dz. 

(iv) The potential energy is calculated with 

U = E JJ J dx dy dz 
2 

‘Likins et 01. also consider “Axial Beams.” 
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where eXx denotes the axid strain at any point in the be 
expression: 

veri by a nonlinear 

Exx = ax 4 [ ($y + + ( 
(v) The dynamics equations are formulated for the continuous displacement variables, and 

accordingly take the form of partial differential equations. 

There are two major differences between formulations presented in Refs. 7 ,8  and 9. The 
first one relates to the form of the assumed axial displacement field. Likins et al. “expand” 
the axial displacement u with: av aw 

ax ax u = 210 - y- - I- 
Vigneron, followed by Kaza and Kvaternik adopt a different form. Their axial displacement is 
given by Eqs. (2) and ( la )  in Refs. 8 and 9 respectively, which we write as: 

av aw 
u = us - y- - t- - Uj ax ax 

In the above, uj is the “displacement associated with the foreshortening effect”.8 In both 
references, this component of the axial displacement is specified as an explicit function of the 
transverse displacements: 

u j  = uj(x,t) = 4 ix [(E)? + (2)2] dx 

We note that expression (22) is a second-order approximation for the foreshortening of the 
beam. Clearly, uj corresponds to the axial displacement which results from the transverse 
deformation. Comparing Eqs. (20) and (21), we observe that uo must equal us - uj and hence 
uo and us represent different physical quantities. We have employed the subscript s in us to 
signify that it corresponds to axial displacement resulting strictly from extension or stretch of 
the elastic axis. By comparison, uo represents the total axial displacement on the elastic axis 
which may be due to both stretch and bending. 

The second difference between the derivations of Likins et al., Vigneron, and Kaza and 
Kvaternik lies in the approximations made in deriving the final equations of motion for the 
elastic coordinates uo or us, v and w. To be specific, these are approximations made in 
formulating kinetic and strain energies that are subsequently used to  construct the Lagrangian 
of the system. 

Likins et d. substitute their expansion for u from Eq. (20) into the kinetic and strain 
energy expressions (17) and (18), the latter combined with (19), thereby reformulating T and 
U in terms of UO, v and w. They simplify the results by making the following assumptions. 

I. The in-plane deformation is ignored based on the argument that it is present only because 
of the Poisson effect. 

(a) This amounts to dropping all terms in kinetic energy T which involve v or its 
derivatives. 
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2 
) The strain energy U is derived by omitting (&) in the definition (19) for the 

11. Likins et al. neglect all terms that involve uo and UO in T, thus effectively eliminating 
the axial equation of motion from the model. 

111. They retain only one term in the strain energy U among the additional third- and fourth- 
order terms which arise from the nonlinearities in the strain-displacement relation. 

st rain. 

With the above assumptions, the kinetic and potential energy functions take the form: 

where in accordance with the assumption I1 above, we have dropped the term in the strain 
energy which involves uo only. These correspond to Eqs. (39) and (45) in Ref. 7. Note, that 
the second term in (23) includes the rotary inertia contribution. Being constant, it does not 
contribute to the motion equation for w. Also, the second term in (24) is the additional term 
mentioned in I11 and is of third order. It represents the coupling between axial and transverse 
displacements which leads to the stiffening of the beam in bending. This term is identical to 
the third-order term in the strain energy function of Hanagud and Sarkar. 

At this point in their development, Likins et al. establish a connection between their 
approach, as we have just outlined, and “the textbook derivation for the transverse vibrations 
of beams subject to an external axial force P.” As noted by them, the axial load to  first 
approximation is given by: - suo P = EA- 

dX 
so that Eq. (24) can be rewritten as: 

To proceed with the application of Hamilton’s variational principle, Likins et al. assume that 
P is time-independent and can be approximated by its steady-state value. In fact, for the 
particular problem of a beam rotating a t  a constant speed, the axial load P is the centrifugal 
load on the beam. Furthermore, since the latter is a known function of the prescribed 0, P 
can be calculated with: 

With equations (23), (26) and (27), Likins et ai. derive the motion equation for the elastic 
displacement tu. Due to the assumptions made in evaluating the strain energy and the axial 
load P (Eqs. (24), (25) and (27)), geometric stiffening appears as a linear term in this equation. 

As a final comment on Ref. 7, we note that in section titled “Finite-Element Model” 
Likins et al. explicitly include a term that represents “modifications of structural stiffness due 
to spin-induced loads on the structure in its steady state (the so-called “geometric stiffness”).” 

P ( x )  = $p922(L2 - x 2 )  (27) 
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Let us now proceed with the developments presented by ~ ~ g n e r o n ,  and Kaza and Kvater- 
nik. As we had already mentioned, both derivations are premised on expansion (21) for the 
axial displacement. As well, the kinetic energy is constructed by ignoring the effects of rotary 
inertia. This can be achieved by neglecting the “off-elastic-axis” contribution, (-9% - z g ) ,  
in the expression for u and dropping the last (Iz-) term in Eq. (17). Then, kinetic energy can 
be written as a function of us, v, ‘w and uf with: 

L 
T = i p  J (tit + 62 t 2 1 1 ~  - 2tiStif + ti;) dx - -  0 - 

L 
+$p J (x2 + ut + v2 t uf t ZXU, - [2xuj] - 2usuj) dx - 0 - 

Recall that according to (22), the foreshortening uf is a quadratic function of the transverse 
displacement gradients and, therefore, the above expression for T includes terms of third and 
fourth order. These terms are underlined in (28) with single and double lines, respectively. 
We have also singled out by enclosing in square brackets the term which is linear in uj. This 
term gives rise to the stiffening effect in the motion equation. We also emphasize that Eq. (28) 
originates from the same expression for the kinetic energy (Eq. (17)) as used by Likins et al. 
The higher order terms in it are a consequence of dividing the axial displacement uo into two 
components, u, and uf ,  and explicitly assuming a second-order form for the latter. 

Vigneron approximates T by keeping only second-order terms in (28) (including the 
term in the square brackets) as well as, setting the axial displacement us and its derivatives 
to  zero. The latter approximation corresponds to  inextensibility assumption, which implies 
that the beam is modelled as axially rigid.g Note, that dropping the us-terms in Vigneron’s 
formulation is not equivalent to dropping the UO- terms in Likins et d ’ s  formulation, although 
in both cases this achieves elimination of the independent axial equation of motion. Vigneron’s 
approximation yields: 

R2 L 
T = f p L L  (6’ t w2) dx + T p  (x’ + v2 - [~xu!]) dx + pR 1 (x6) dx (29) 

0 

which, without the last term, corresponds to  equation (9) of his paper. Unlike Vigneron, 
Kaza and Kvaternik do not make the inextensibility assumption and therefore keep the axial 
equation of motion in their final model. They also retain third-order terms in (28). The result 
is given by Eq. (7) in Ref. 9 which is identical to  our Eq. (28) without the double-underlined 
terms. 

To determine the strain energy according to  (18), Vigneron and Kaza and Kvaternik 
first evaluate the strain of (19) by substituting for the axial displacement u from (21) in 
conjunction with (22). Upon dropping the third- and fourth-order terms, this produces the 
following second-order expression for the axial strain: 

where we have intentionally separated the contribution of u!. However, according to  (22), we 
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have 

so that (30) is simplified to: 

or 

y- - z- (33) a x 2  a2v a2w12 a x 2  
aZv - z-+ azW 4 [z - 

E,, = - - ax yi&? a x 2  

The above is equivalent to Eq. ( 5 )  in Ref. 8 and Eq. (4) in Ref. 9, although neither publication 
includes a description of the intermediate step (30). It is interesting to note that E,, evaluated 
with (32) without the second-order term, can be derived from the axial strain of (19) without 
the (E) term, but with the “transverse” nonlinear terms. As is demonstrated by Eq. (30), 
the latter is cancelled when foreshortening uj is explicitly defined in the axial displacement u, 
which results in a linear expression for the strain. Vigneron’s strain energy can be constructed 
by using this linearized form of (32), since he retains only quadratic terms in the strain energy. 
In fact, the strain energy function given in Ref. 8 has a standard form used in the linear theory 
of elasticity. Kaza and Kvaternik formulate their strain energy with the axial strain as given 
by (32), but drop the resultant fourth-order terms. 

Because of the differences in the approximations made, Vigneron and Kaza and Kvaternik 
derive different sets of motion equations. Vigneron obtains two linear equations of motion for 
the elastic variables v and w (Eqs. (10) and (11) in Ref. 8), the latter being identical to the 
equation derived by Likins et al. Kaza and Kvaternik present a set of nonlinear dynamics 
equations for the three elastic deformations, uS,v and w (Eqs. 8(a,b,c) in Ref. 9). They are 
nonlinear, in particular second-order, because Kaza and Kvaternik retain third-order terms in 
their kinetic and strain energies. It is important to emphasize, that the term responsible for 
the stiffening of the beam derived in Refs. 8 and 9 is a first-order term ahd appears via kinetic 
energy. This occurs because of the particular form assumed for the axial displacement (Eq. 
(21)) as well as, the expression adopted for the foreshortening (Eq. (22).) If, as is done by 
Likins et aZ.,7 one does not explicitly identify uj in the axial displacement, then the stiffening 
appears in the motion equations through the strain energy and is fundamentally a nonlinear 
term. 

2 

To conclude this section, we draw attention to some of the observations made by Kaza and 
Kvaternik. They identify four different approaches for deriving linear or nonlinear equations of 
motion. They are: (1) “the effective applied load artifice;” (2) the use of Newton’s second law 
applied to the deformed configuration; (3) an approach in which nonlinear strain-displacement 
relations and a first-degree displacement field are used; (4) Vigneron’s approach which uses 
nonlinear strain-displacement relations and a second-degree displacement field. Kaza and 
Kvaternik show that all four appraches “make use of geometric nonlinear theory of elasticity‘ 
either implicitly or explicitly.” They state that “for developing the equations of motion for a 
rotating beam, “the geometric nonlinear theory is necessary to obtain even the correct linear 
equations.” In their paper, Kaza and Kvaternik also discuss whether foreshortening must 
be explicitly included in the axial displacement field. They conclude that although it is not 
necessary, the approaches where the foreshortening effect is accounted for otherwise, require 
special considerations. _/  
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Lips and Modi investigate the dynamics of satellite systems compose of a central rigid body 
with flexible appendages. The base body is allowed to undergo general rotational motion and 
therefore, the dynamics model includes the rotational rigid-body equations. To illustrate the 
procedure for modelling deformation of appendages, Lips and Modi present an explicit form 
of the elastic equations for a rotating beam. In their treatment of this system, they take into 
account: (i) the offset between the, attachment point of the appendage and the center of mass 
of the rigid body; (ii) variable flexural rigidity which subsumes variable modulus of elasticity 
and cross-sectional area; (iii) variable density. The basic assumptions made in deriving the 
equations for elastic displacements are similar to those made by Kaza and K ~ a t e r n i k . ~  In 
particular, Lips and Modi explicitly separate the foreshortening component from what they 
refer to as the oscillation component in the assumed form of the axial displacement. As well, 
the kinetic and potential energy functions employed to  construct the Lagrangian contain terms 
up to  third order. 

The main subject of the work by Hughes and Fung" is the stability of spinning satellites 
with long flexible appendages. Therefore, they formulate the dynamics equations with a view 
to addressing this issue. The system is modelled as a spinning rigid body with appended 
beams. The rigid-body equations are formulated for small perturbations from the nominal 
spin configuration. The development of the elastic motion equations presented in Ref. 11 
is different from the previously considered works in two respects. First, Hughes and Fung 
employ deformed coordinates to  describe the kinematics of the deformed beam, a fact which 
they do not state explicitly. Thus, the position of a point on the elastic axis is defined by 
[X, v, wIT where X = X ( t ) ,  v = v(X, t) and w = w(X,t). (Note, the corresponding undeformed 
description is [z + u,v,w]* where u = u(z, t ) ,  etc.) Another distinct feature of Hughes and 
Fung's formulation is that they evaluate the kinetic and potential energies by integrating the 
respective appropriate integrands over the volume, which in the case of a slender beam reduces 
to  the arc length 3,  of the deformed configuration. Thus, the energy functions are defined by 
means of the line integral J(.)dB. In general, the integration necessary to  determine kinetic 
and potential energies of an elastic body can be performed over the deformed or undeformed 
configurations. However, the former is the standard choice when the kinematic description is 
given in terms of the deformed coordinates. (This representation corresponds to  the Eulerian 
or spatial description of the problem.) 

Hughes and Fung incorporate the geometric nonlinearity into their formulation by ex- 
pressing the differential arc length d3 with 

dL = J1+ VI2 + wt2 dX (34) 

The prime in the above denotes differentiation with respect to the deformed coordinate X. We 
note that Eq. (34) is equivalent to  Eq. (4) of Hanagud and Sarkar.' It defines the distance along 
the beam as a function of the transverse displacement gradients, when these are expressed in 
terms of the deformed coordinates. Hence, Eq. (34) is also equivalent to Eq. (1) of this paper, 
with 3 = z + s. To simplify the derivation, Hughes and Fung use a second-order approximation 
of dL so that 

(35) 
L L* L* J ,  ( . ) ( i s = /  0 ( . ) d X + $ J  0 (-)(d2+2OR) dX 

where L* denotes the projection of the tip on the axial coordinate axis. We also note that by 
using L in the upper limit of the integral J(.)dL, Hughes and Fung implicitly assume that the 
beam is inextensible. 



kinetic and potential energies derived in 
bined with the inextensibility assumption 

11 contain second- 
the formulation of 
e beam rotatjng at similar to Vigneron's. In fact, the kinetic ene 

deduced from Eq. (9) of their paper, is equivalent to  Vigneron's kinetic energy given by our 
Eq. (29). The form of the strain energy function is also the same. 

This completes our overview of the publications disputed in London's and Kane et al.'s 
commentarie~.~~" It is clear that these works incorporate geometric stiffening into the dynamics 
equations of a rotating beam, although through different approaches. A discussion of these 
will be given in $6 of the paper. At this point, we only note that they all account for the 
coupling between the transverse and axial deformations. Indeed, it is exactly this phenomenon 
that causes stiffening of an elastic body under certain conditions. The differences between 
the approaches lie in what we view as the mechanism for introducing the coupling effect into 
the formulation and accordingly, the stage in the derivation at which it is introduced. In 
the following two sections of the paper we discuss some of the other approaches that have 
been employed to account for the geometric stiffening in the dynamics equations of multibody 
systems. 

4 Laskin e t  al., Meirovitch, Banerjee e t  al. 

4.1 Laskin e t  al. 

Similar to  Vigneron, Laskin et ~ 1 . ' ~  assume a form for the axial displacement u in which the 
displacement of points along the elastic axis, UO, is divided into two parts. We rewrite their 
Eq. (6) as: 

(36) 
av ow 

u = u9s + ut - y- - k- a x  a x  

- . ,  

where they refer to ug3 (vo in Ref. 12) as a quasi-steady component and ut (their v*) as a 
transient component that accounts for longitudinal vibrations. They justify this arrangement 
by arguing that it allows one to consider ut as a small, more precisely, infinitesimally small 
displacement which is of the order of the transverse displacements v and w. The quasi-steady 
component ug3 may be comparatively large. 

To discretize the elastic deformation field, Laskin et al. use modal expansion similar in 
form to (3) but written for the transient axial displacement ut rather then uo (u1 in (3)). By 
doing so, they implicitly choose ut as a generalized coordinate in their formulation. Laskin et 
al. explain this choice by saying that because ut is small, its modal coordinates can also be 
regarded as small. By constrast, if one discretizes uo = uqS + ut, its modal expansion cannot 
adequately account for both large (u95) and small (ut )  components without having to include 
a large number of terms in the expansion. 

Laskin et al. employ Kane's method to derive the motion equation of the beam. Thus, 
the next step in the formulation is to develop the generalized inertia and active forces. Starting 
with the latter, they consider two contributions-the elastic forces and the controller forces. 
In keeping with the subject of this paper, discussion is limited to Laskin et d ' s  derivation of 
the generalized elastic forces. 

Let us recall that Kane et al., and Hanagud and Sarkar derive the elastic force from the 
strain energy function. Laskin et d. take a different approach and express the elastic force 
F as a function of the stresses in the beam. This is actually a traditional way of writing the 
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elastic force contribution to the equilibrium equations of the theory of elasticity. As pointed 
out,12 one can express in h e a r  elasticity with: 

(37) 

where u is the stress tensor. We note that this form is also valid in nonlinear theory, provided 
the divergence operator is defined with respect to the deformed coordinates and the strains 
are small. If V is defined with respect to the undeformed coordinates, then Eq. (37) must be 
modified to  take into accout the nonlinear nature of the deformation gradient. The resultant 
expresssion for F is given by Eq. (21) in Ref. 12 which we do not repeat here. In agreement 
with Kaza and Kvaternik’s comments on the Newton’s second law approach, we point out that 
this form allows for arbitrary rotations and implicitly assumes nonlinear strain-displacement 
relations. 

Since the generalized elastic forces given by (22)-(25)” are expressed in terms of the 
generalized coordinates, Laskin et al. must take an intermediate step of substituting for the 
stresses in their (21) from stress-strain and then strain-displacement relations, in order to 
reformulate F in terms of ups, ut, ‘v and 20. What is most notable about their approach is 
that, by using the “nonlinear” relation for F in terms of the stresses, they are able to derive the 
geometric stiffening component of elastic forces with a linear form of the strain-displacement 
relations. Laskin et al. emphasize that if one were to  use strain energy to derive the elastic 
forces F, one would have to retain nonlinear terms in the strain-displacement relations. To add 
to their interpretation of this “paradoxical situation”, we offer this observation. The nonlinear 
terms in the strain-displacement relations give rise to third- and fourth-order terms in the 
strain energy. As was shown in $3.1, it is the third-order terms that are responsible for what is 
usually referred to as geometric stiffening. (In fact, the fourth-order terms also contribute to 
stiffening of the beam in bending.) Since the “nonlinear” formulation of F in terms of stresses 
is one-order higher then the “linear” one, it essentially provides a mechanism for incorporating 
only third-order terms in the strain energy. 

We note that geometric stiffening is represented by Gij- and aio- terms in Eqs. (23)- 
(25) of Ref. 12. Although these are linear in the discrete generalized coordinates, they are 
also dependent on the spatial derivative of the quasi-steady axial displacement ups (see the 
definitions of G;j and ai0 on p. 515 of Ref. 12, with vo = ups). 

Derivation of the generalized inertia forces12 is similar to the procedure in Ref. 1 with 
the main difference being the addition of six rigid generalized inertia forces. These appear 
because the rigid-body motion of the beam is not prescribed, but is unknown. Accordingly, 
the final equation of motion include six equations for the position and orientation of the floating 
reference frame and the differential equations for the discrete elastic coordinates. They are 
explicitly dependent on ups, and therefore require this axial displacement as an input. 

Laskin et al. apply their dynamics equations to a number of special cases. They specify 
ups as the stretch that would occur if the beam were executing its nominal or intended motion. 
This stretch is defined as a solution of a linear second-order differential equation which we 
deduce from examples discussed in Ref. 12 to be: 

Here, P is nominal axial load on the beam and we have introduced the bymbol p to denote 
the axial load density. To generalize this scheme for the case of general rotational motions, 
Laskin et al. propose to approximate p by the axial component of th-e centripetal acceleration 
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(multiplied by an appropriate inertia) of a point on the elastic axis of the beam. This yields, 
in accordance with Eq. (78) in 

It is suggested that the above should provide a good approximation for the steady-state axial 
load in the case of rotational motions at low angular acceleration rates. Moreover, it allows 
for a closed-form solution of (38) for ugs which can then be used as an input to their dynamics 
model. 

To complete this section, we observe that Eq. (36) is analogous to  (21) employed by 
Vigneron and Kaza and Kvaternik in their formulations, with the correspondence uj = -ugs 
and us = ut. The term “quasi-steady” used by Laskin et al. to qualify foreshortening can be 
interpreted to reflect the fact that this axial displacement is present even when there is no 
axial vibration, and furthermore, it exists even under static loading. Unlike what is done in 
Refs. 8 and 9, Laskin et al. do not substitute for ups in terms of ZI and 20 as in (22), nor any 
other expression. As a consequence, uga appears in both generalized inertia and elastic forces. 

4.2 Meirovitch 

In his 1967 book, Meir~vitch’~ includes a section on the effect of axial forces in the bending 
vibration of a bar, which as he states, cannot be ignored in some cases. In this section, 
Meirovitch derives an equation of motion for the transverse displacement of the beam by 
means of extended Hamilton’s principle. Thus, expressions for kinetic energy T and work 
function W are developed. The former takes the simple form used in planar bending vibration 
problems without the axial force. Rewritten in our notation, T specified in Ref. 13 is: 

In evaluating the work function, he proposes to include the effect of the bending ,moment, the 
transverse (external) load and axial force. The first two are formulated in the same way as for 
the case without the axial force. To determine the “axial” work, the change in the horizontal 
projection of an element d i  is calculated. This differential of the foreshortening is expressed 
with: 

(41) 
d S - d x = \ I I + ( g )  2 d x - d x r ; : l ( k )  2 d x  

2 ax 
where the approximation results from retaining two terms in the binomial expansion of 
Then, the work done by the axial force is: 

2 

WP = -1 J,” P ( x , t )  (E) d x  

It is worth to point out that in adopting the above formulation, Meirovitch makes a tacit 
assumption that the axial force is given as a known function of x and t. 

In the more recent p~blication,’~ Meirovitch derives a set of motion equations for a 
general flexible body in general motion. These equations are written in terms of the rigid- 
body quasi-coordinates and the continuous elastic coordinates u, ZI and w. Their application 
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to a system made up of a rigid hub and a beam-like flexible appen 
by assuming that the axial displacement can be ignored and therefore sets v = 0 apriori. The 
kinetic energy is derived in the standard manner and contains terms that are of second degree 
in the elastic variables. The strain energy includes the standard second-order contributions due 
to bending in two directions as well as the contribution due to “shortening of the projection.” 
The latter is expressed as 

where p ( z ,  t) is the axial component of the internal force density. We note that (43) can be 
directly compared to (42). 

Meirovitch proposes to determine the force density p from the motion equation for the 
axial displacement u, which as we had mentioned is excluded from the dynamics model. Thus, 
he defines p as a sum of the terms in the v-equation, omitting terms that involve elastic 
displacements, as well as the control force density. The resultant expression for p is given by 
Eq. (29) in Ref. 14, which we rewrite here as: 

p = p [-+I - w2v3 t m3v2 + 2 (ai t w:)] (44) 

At this point, let us compare the above expression for the internal axial force density which is 
employed by Meirovitch to evaluate the strain energy due to the shortening of the beam with 
the corresponding expression of Laskin et af., which they use to determine the quasi-steady 
component of the axial displacement. We recall that the expression for p proposed in Ref. 12, 
as given by Eq. (39) of this paper, originates from inertial acceleration of a mass element on 
the beam’s elastic axis. In fact, it is defined as the centripetal component of the acceleration 
evaluated with u = ups. It can be shown that Meirovitch’s expression for p can also be derived 
from the inertial acceleration distribution, but neglecting the elastic contributions. Indeed, 
this is not surprising since a motion equation in the absence of external forces is essentially a 
linear homogeneous relation for the inertial acceleration. Thus, the “centripetal component” 
of p, given by px (wi + w:) in Eq. (44), is identical to p of Eq. (39) if one drops ugs. Finally, 
by comparing (44) to (39), we observe that Laskin et al.’s approximation for the axial force 
density should apply when the translational velocity and acceleration are small relative to the 
angular velocity, in addition to the conditions stated in Ref. 12. 

4.3 Banerjee et al. 

Banerjee and Dickens4 present a formulation for the dynamics of an arbitrary flexible body 
in large rigid-body motion. The formulation is based on the standard description of the 
deformation field where the elastic translations u, and w are discretized by means of a modal 
expansion. The equations of motion are derived by employing the same general methodology 
as in Refs. 1 and 6. Therefore, as was done in reviewing other works, the following analysis 
focuses on the procedure to derive the stiffening terms only. 

Banerjee and Dickens introduce the notion of “motion stiffness” as a special case of the 
geometric stiffness caused by the inertia loading on the body due to its large rigid motion. As 
is noted by Banerjee and Lemak,15 this motion-induced stiffness has its origin in the strain 
energy term, 
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where a and E N L  are 6x1 columns. ’ part of U, since it 
arises from the nonlinear terms in t e are represented in 
(45) by e N L ,  while 

The key to the method proposed Ref. 4 is the observation that the stress state of the 
deformable body undergoing large translations and rotations results from the inertia loading 
on it. With that, they determine the distributions of the inertia force and torque in the body 
from the inertial linear and angular accelerations, respectively, in accordance with Newton’s 
Second Law and Euler equations. In applying this procedure, they neglect elastic terms in 
the velocity and acceleration distributions. Thus, the resultant inertia loads are expressed as 
functions of rigid velocities and accelerations. 

In the next step of their development, Banerjee and Dickens rewrite the inertia load as a 
product of a particular matrix and a column vector. For the inertia force, the matrix is 3x12 and 
is dependent on the spatial coordinates, x, y and t .  The column vector contains 12 parameters 
A;, i = 1 , .  . . ,12, which are dependent strictly on the velocities and accelerations of the body. 
The inertia torque is factorized into a constant 3x9 matrix and a time-dependent 9x1 column 
vector of Ai, i = 13,. ., 21, which are also functions of rigid velocities and accelerations. 
Although not stated in Ref. 4, the motivation for this “factorization” is to  separate the time- 
dependent component of the inertia forces from the space-dependent or constant part. By 
doing so, Banerjee and Dickens are able to  construct the geometric stiffness term in the motion 
equations in two stages. The first stage produces 21 geometric stiffness matrices denoted by 
S(’).4 These can be assembled with the standard finite-element procedure from the constant or 
space-dependent matrix factors of the inertia loads, prior to  evaluation of the motion equations. 
The second stage involves calculating the geometric stiffness term from S(i ) ,  A; and the discrete 
elas tic coordinates. 

Let us now comment on the relationship between the .approach of Banerjee and Dickens 
and the other methods. First, we observe that the “nonlinear” strain energy of Eq. (45) is 
“exact” in the context of small strain deformation. Moreover, it can be rewritten in terms 
of displacement variables if one expresses stresses in terms of strains and then substitutes for 
strains in terms of displacements. Following this procedure, one will obtain UNL in the form 
of third- and fourth-order terms in the displacement gradients. These were mentioned in our 
discussion of Hanagud and Sarkar’s work. 

It can be shown that Banerjee and Dickens’ expression for the axial inertia force is 
equivalent to Meirovitch’s axial component of the internal force density. The latter is given by 
our Eq. (44) and the former can be obtained from Eqs. (28) and (29) of Ref. 4. Substituting 
for x1 = x, 2 2  = y = 0, 23 = t = 0 and u; = v;, ui+3 = o; for i = 1,. . .,3, the axial inertia 
force ft of Banerjee and Dickens takes the form: 

ne can view UNL as the “nonli 

represents the st 

f;’ = -[Ai + zAq]dm 

Since Meirovitch’s internal force density must be interpreted as the internal force per unit 
length, the equivalence between (46) and (44) follows if one substitutes for dm with p dx. 
Then, we have 

where p is as defined by Meirovitch (Eq. (44)). Furthermore, the axial stress in the beam is 
f T = p d z  (47) 
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and if the nonlinear part of the axial strain (19) is simplified to 

Eq. (45) applied to the beam reduces to: 

L L  

= 4L I ,  PdC [ + (9’1 iix 

The above, which we derived from UNL of Ref. 4 is identical to Meirovitch’s strain energy due 
to  shortening of the projection. In this light we propose to  interpret Meirovitch’s formulation 
of the strain energy due to shortening of an elastic beam as a particular application of Banerjee 
and Dickens’ formulation. 

To conclude this section, we would like to  draw attention to a fundamental approximation 
made in the development of Banerjee and Dickens. It is that the stresses which contribute to  
stiffening of the body are only those that are caused by the inertia loading. We believe that the 
stress in (45) must represent the complete stress state in the body which arises from the total 
loads-inertia and external. Indeed, only then can Eq. (45) be consistent with the general 
formulation of the strain energy. The approximation for 0 suggested in Ref. 4 is certainly 
valid in the absence of external forces on the body. However, it may not be appropriate for 
multibody systems in which each body is acted upon by the “external’’ (to it) interbody forces, 
even in the absence of external forces on the whole system. 

5 Discussion 

Based on our review, we propose classification of the different approaches to model geometric 
stiffening according to these two criteria: (i) kinematic description of the deformation field 
(criterion DF); (ii) the formulation of the strain energy function (criterion SE). We feel that 
these represent two most general criteria that can fully characterize a particular approach. The 
first one is related to the assumed displacement field, which in turn determines the generalized 
coordinates employed in deriving the motion equations. The second criterion defines the form 
of the elastic force term in the motion equations. 

According to each criterion, we have identified the following possible cases. 

Criterion DF. It is suggested that the deformation field can be described by any of the 

DF-1: Three independent elastic translations {u, v, w}. This description is employed by 
Likins et a[., Hanagud and Sarkar, Meirovitch, and Banerjee et al. 

DF-2: Three independent elastic translations {us, v, w}, where recall us is the axial dis- 
placement which results strictly from the stretching of the deformable body. This 
description is used by Vigneron, Kaza and Kvaternik, Lips and Modi, and Laskin 
et al. 

following sets of variables: 
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DF-3: Three independent but non-orthogonal elastic d 
notes the stretch. These coordinates are employe 

s (s ,v ,w) where s de- 
et al. 

distinguish two basic formulations of the strain energy: 

SE-1: The total strain energy is formulated as a function of strains (or displacements) 
only, where strains are defined with the nonlinear strain-displacement relations. 
This formulation is employed by Likins et al., Vigneron, Kaza and Kvaternik, Lips 
and Modi and Hanagud and Sarkar as well as, Hughes and Fung, and Kane et al. 
It can be viewed as a displacement formulation. 

SE-2: The strain energy is subdivided into a “standard linear” contribution and a “nonlin- 
ear” part, where the latter is constructed from the stresses or forces in the body and 
the nonlinear part of strain. This formulation is used by Meirovitch, and Banerjee 
et al. and can be considered as a force formulation. 

Note that Laskin et al. do not compute the strain energy, but derive the elastic forces 
directly from the stress state. However, since they eventually reformulate these in terms 
of strains, their method is fundamentally a displacement formulation. 

Let us comment on the three options for the kinematic description of the deformation 
field. 

DF-1. The set {u ,  v, w} is the standard set of elastic displacements used in both linear and 
nonlinear theories of elasticity as well as, structural analysis. It requires no apriori 
decisions on the foreshortening part of u and in that sense is general. 
Since u,v and w represent deformations along three orthogonal axes, they clearly rep- 
resent independent degrees of freedom. However, contrary to what has been previously 
stated, that does not preclude the fact that part of u, in particular, the foreshortening 
component, is dependent on v and w. The total axial displacement will remain an in- 
dependent variable as long as it includes the axial displacement us. Furthermore, it is 
not necessary to either separate u into these two components, or to  explicitly account 
for the coupling between the axial and transverse displacements. In addition, we believe 
that discretizing u with a standard expansion does not imply “premature linearization.” 
To support this point, let us consider the foreshortening part of u, which for the present 
purpose we simplify to: 

If the transverse deformation v is expanded as in (3), then upon substitution, uf becomes: 

The above clearly represents a summation of terms qjj,i(z) qj , i ( t )  where qj, i( t)  = qj((t) q k ( t )  
and the space-dependent basis functions are defined accordingly. This summation is of 
the same form as the standard expansion for u. 
As exemplified by the formulations of Likins et al. and Hanagud and Sarkar, geometric 
stiffening can be modelled with this option, provided one incorporates the nonlinear 
strain-displacement relations in the evaluation of strain energy and, hence, the elastic 
forces. 
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n this case, the foreshortening component of u is explicitly separated from us in the 
axial displacement field. It may be specified in terms of v and 20 or left as a parameter 
to be defined by the user. Either case, however, involves making an approximation for 
uf, although in the first option it is “known” and quantified prior to  deriving the motion 
equations. Recall that Laskin et al. have argued in favor of this option based on their 
claim that displacements us, v and w are of the same order, while uf is comparatively 
large. In response to this statement, we would like to draw attention to the results 
presented in Ref. 6, where Hanagud and Sarkar display the time-histories of axial and 
transverse displacements from a simulation of a beam spin-up problem. As can be seen 
from Figures 2a and 2b in Ref. 6 ,  the axial deformation w, = u, - uj is almost two orders 
of magnitude smaller than the transverse displacement v. Therefore, us cannot be of the 
same order as v, nor can uf be significantly larger than v. 

DF-3. Employment of the stretch variable is unconventional, and certainly is not a common 
choice, if made at all. The main advantage of using this variable instead of u is that 
the strain energy retains its (“linear”) quadratic form. However, the resulting expression 
for kinetic energy (or generalized inertia forces) is more complicated than that based on 
DF-1 and DF-2 descriptions. 

As was demonstrated in the previous sections (at least we hope it was), it is a particular 
combination of the coordinates and the strain energy formulation that determines how the 
geometric stiffening is incorporated into the motion equations as well as, what form it appears 
in. Thus, we will now comment on the two strain energy formulations taken in combination 
with the different DF options and point out some of the advantages and/or disadvantages of 
the resulting approaches. 

The main advantage of the SE-1 formulation of the strain energy for any description 
of the deformation field is that one is not required t o  make any additional assumptions or 
approximations. 

SE-l/DF-l. In this approach, taken by Hanagud and Sarkar, the stiffening term appears in the motion 
equations through the strain energy and is a nonlinear function of elastic coordinates. In 
particular, it can be factored into an (e1astic)coordinate-dependent second-order stiffness 
matrix and a column vector of elastic coordinates. 
As pointed out by Banerjee and Lemak, evaluation of this stiffness term requires that 
the stiffness matrix be updated a t  each time step in the simulation, which may be com- 
putationally costly. However, the update does not involve iterations, but is a simple 
functional evaluation. It should also be pointed out that this approach requires that the 
axial elastic equation be included in the dynamics model. This is likely to have an ad- 
verse effect on the computational efficiency of the simulation, since the axial deformation 
is usually a high-frequency component. 
Finally, we note that the present method corresponds to the third approach identified 
by Kaza and Kvaternik and as they comment is “the one usually employed for a general 
three-dimensional rotating body.” However, contrary to Kaza and Kvaternik’s conclu- 
sion, we believe that it does not require special consideration, but is the most general. 
Moreover, this approach can be employed to extend the existing “small” deflection dy- 
namics formulations to incorporate “large” deflection theories. 

SE-l/DF-2. With this approach, the foreshortening term is always present in the kinetic energy 
expression and may or may not appear in the strain energy, depending on the additional 
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approximations made. In the simplest case, as in Vigner ’s formulation, the resultant 
stiffening term takes a linear form. 
This method of determining the stiffening term allows one the option of dropping the 
axial deformation from the model-not a trivial advantage from the computational point 
of view. However, it may be less accurate than the previous method, because of the 
approximation made in assuming a form for the foreshortening displacement. 

SE-l/DF-3. This approach produces a linear geometric stiffening term via kinetic energy (or gen- 
eralized inertia force). Compared to the SE-l /DF-l  option, it can be just as accurate, 
but not as general since the stretch variable can be defined only for a particular type of 
elastic bodies. 

As was shown in 54.3, the SE-2 formulation of the strain energy requires an approximation 
for the stress field in the body, and hence, in contrast to  SE-1, is inherently approximate. 
Among the works presented in this paper, this formulation has only been used with the DF-1 
description of the deformation field. In this case, the geometric stiffening term results from the 
“nonlinear” strain energy, as in Refs. 4, 15 and 14. With appropriate assumptions, it is linear 
in elastic variables, but involves rigid-body accelerations and velocities. As for its efficiency, 
the algorithm presented in Ref. 14 also requires an update of the geometric stiffness matrix (see 
Eq. (37) in Ref. 4), because of the time-dependent quantities Ai. Moreover, the final motion 
equations no longer have a symmetric coefficient matrix (because of acceleration dependency of 
the stiffening term), thereby making evaluation of accelerations computationally more costly. 

To summarize, we believe that a description of the deformation field in terms of u, v, w 
combined with the displacement formulation of the strain energy is the most accurate and 
general approach. It does not require an approximation of foreshortening, nor the stress 
state of the body-two critical advantages for applications to  multibody systems. A definitive 
statement on the efficiency of this approach and how it compares to, for instance, Banerjee and 
Dickens’ procedure can only be made through implementation of both methods. Moreover, we 
would expect the relative efficiency of the two formulations to  vary depending on the complexity 
of the system and the number of elastic degrees of freedom in the model. 

6 Concluding Remarks 

In this paper, we presented an exposition of several approaches to model the geometric stiff- 
ening effect for dynamics simulation of flexible-body systems. Our review included 11 papers 
published in the period from 1973 to  1991. Although it does not represent a complete litera- 
ture review of the works that have addressed this issue, it covers a wide range of formulations 
developed for the problem. 

In reviewing these works, we have idenitified two key characteristics of the different meth- 
ods which allowed us to put forward a general classification for them. We have also established 
the interrelationships between the various approaches, provided a number of clarifications and 
new interpretations and offered our opinions on their benefits. It is hoped that this work will 
contribute to a better understanding of the origin of geometric stiffening and how this effect 
can be incorporated into the dynamics model of a flexible body undergoing large rigid-body 
motion. 
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Abstract 

A useful model for open chains of flexible bodies undergoing large rigid body 
motions, but small elastic deformations, is one in which the equations of motion are 
linearized in the small elastic deformations and deformation rates. For slow rigid body 
motions, the correctly linearized, or consistent, set of equations can be compared to 
prematurely linearized, or inconsistent, equations and to “oversimplified,” or ruthless, 
equations through the use of open loop dynamic simulations. It has been shown that the 
inconsistent model should never be used, while the ruthless model should be used whenever 
possible. The consistent and inconsistent models differ by stress stiffening terms. These are 
due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. 
In this paper we examine ii.1 detail the nature of these stress stiffening terms and conclude that 
they are significant only when the associated zeroth-order stresses approach “buckling” 
stresses. Finally it is emphasized that when the stress stiffening terns are negligible the 
ruthlessly linearized equations should be used. 

I. Introduction 

In a previous paper1 it was suggested that a useful model for open chains of flexible 
bodies undergoing large rigid body motions, but small elastic deformations, would be one in 
which the equations of motion are linearized in the small elastic deformations and 
deformation rates. In that paper, it was pointed out that in order to obtain a consistently 
linearized set of equations of motion it is necessary to make use of nonlinear strain- 
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displacement xdations?3 nonlinear kinematic constraints$~S or several nonlinear geometric 
or motion stiffness terms appended to the incorrectly linearized equations of m0tion.6~7 It is 
easy to verify that equations of this type, linearized in only some of the states, do not 
conserve energy. 

A presumed goal of simplified equations of motion is to obtain accurate simulation of 
actual system behavior with a minimum of effort. At present, there is no standardized 
yardstick with which to determine how various simplified equations measure up. It has 
been suggested14 that those simplified equations which come closest to conserving energy 
should be considered most appropriate. In that paper, it is shown how equations that contain 
second order terms in the flexible states can be obtained from prematurely linearized velocity 
expressions.495 But these equations, while perfectly conserving energy, still lack the first 
order terms (stress stiffening terms) that correctly model the physical nature of the system! 
In light of this example it becomes clear that conservation of energy, while desirable for 
numerical reasons, is not a good measure of the adequacy of a simplified set of equations of 
motion. 

Equations in which all nonlinear terms involving the flexible generalized coordinates 
and their time rates of change are ignored have been termed "ruthlessly linearized".' The 
correctly linearized, or consistent, set of equations was compared to prematurely linearized, 
or inconsistent, equations and to the ruthless equations by means of open loop dynamics 
simulations for the case of slow rigid body motions. It was concluded that the inconsistent 
model should never be used, while the ruthless model should be used whenever possible. 
We point out that the ruthless model conserves energy. This stems from the fact that the 
ruthless model can be derived from a set of velocity expressions without any further 
simplifications, Le., no terms are dropped after forming the velocity expressions. This 
ensures that the mass matrix remains positive definite for all possible trajectories. 

The inconsistent model results from neglecting certain kinematic relationships 
between the elastic deformation variables, or what is equivalent, .to using linear strain- 
displacement relations. This results in the absence of certain terms linear in the elastic 
coordinates and rates. The missing terms have been identified as the so-called geometric 
stiffness terms of certain rotational dynamics problems. These terms are also known as 
stress or motion stiffness terms and are not limited to rotational forces. They result from a 
combination of zeroth-order stresses and nonlinear strain-displacement relations in the virtual 
energy expressions that result in terms linear in the strain (displacement) variables.10~7~9 

In the rest of the paper we consider the nature of the stress stiffening terms and their 
role in the determination of simplified equations of motion. In section I1 we present the 
general form of equations of motion for open kinematic chains of flexible bodies. The 
ruthless model is then defined and it is shown how this model can be derived directly. In 
section 111 we consider stress stiffness terms: their derivation; the forces that give rise to 
them; and their general form. An analytical example is provided using a two link flexible 
manipulator. Finally, in section IV we consider the importance of these stress stiffening 
terms for the formulation of equations of motion. 
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e ies 

The equations of motion of an open chain of elastic bodies can be expressed quite 
generally as:* 

where x is a vector of rigid body generalized coordinates; q is a vector of the elastic 
generalized coordinates; M R R ,  MRE, MER, MEE form the configuration-dependent mass 
matrix; Text is a vector of generalized external forces; KEE is a constant stiffness matrix and F 
is a vector of nonlinear inertial (Coriolis and centripetal) forces. Subscripts R and E denote 
rigid and elastic, respectively. 

We are often interested in the important class of systems for which the elastic 
deformations remain small so we can ignore terms of second and higher order in q and u. In 
this case, Eq. (1) can be expanded to show more explicitly the form of the nonlinear terms: 

Notice in the above equation that we have lumped the terms in M u  that depend on 4 together 
with the FEJ term and have denoted the new term by FEI*. 

In Eq. (2), the superscript * terms are the only terms that could contain 
foreshortening terms, i.e., terms arising from the enforcement of kinematic constraints 
among the flexible degrees of freedom of the elastic bodies. These terms, which can be 
obtained equivalently by the use of nonlinear strain-displacement relations in the formation of 
the inertial velocities of the bodies, are missing when linear strain-displacement relations are 
used instead, i.e., when the equations are linearized prematurely.5~6 In the case of a single 
flexible body, the incorrectly linearized equations can then be fixed through the use of 
"motion stiffness" matrices.7 
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In a "ruthlessly linearized" mode1,l we simplify the equations of motion for a chain of 
flexible bodies by ignoring all nonlinear terms that involve the elastic generalized coordinates 
and rates (4 and u), including those terms in the mass matrix which depend on elastic 
coordinates. In this case Eq. (2) becomes: 

As explained in Ref. 1, the ruthless model is a simplification of the consistently linearized 
equations of motion motivated in part by the so-called rate-linear assumption. This 
assumption consists in neglecting (coriolis and centripetal) terms nonlinear in the generalized 
rates, dx/dt and u, for slow motion of the system. In the case of n-link rigid manipulators it 
has been pointed out12 that the velocity and acceleration terms of the dynamic equations have 
the same relative significance at any speed of movement. This indicates that the rate-linear 
assumption might not be a good one. On the other hand, terms that are nonlinear in the rigid 
generalized rates and linear in 4 and u might be negligible for small q and u when compared 
to similar terms that are constant in 4 and u. 

Whereas the consistently linearized equations of motion are theoretically valid for 
chains of flexible bodies undergoing fast rigid body motions, but small elastic deformations, 
the ruthless equations can be said to be valid for chains of flexible bodies undergoing slow 
rigid body motions and small elastic deformations. How slow these rigid body motions 
must be is the subject of section IV. Notice that both models can accommodate large 
configuration changes (kinematic nonlinearities), and that the distinction being made 
concerns only the magnitudes of the time rates of change of the rigid body generalized 
coordinates. In the next section, we examine how the ruthless equations of motion can be 
obtained without having to start with the consistent equations. Before proceeding, however, 
let us make some clarifications. 

Up to this point, we have made little distinction between "rigid body motions" and 
rigid generalized coordinates and speeds. In fact, what is meant by rigid generalized speeds 
is the collection of generalized speeds that for each body characterize the motion of a frame of 
reference from which the small elastic deformations are defined. The requirement of small 
elastic deformations implicitly defines the frame.2 More explicit frame definitions can be 
made and the reader is referred to Ref. 13 for some examples. The point being made here is 
that for chains of flexible bodies, the so-called rigid generalized speeds do not necessarily 
correspond to rigid body motions, in the sense of a rigid body mode; and further whether 
there is a correspondence or not will depend on the choice of reference frame from which the 
small elastic deformations are described. This will be investigated further in section V when 
we look at further simplifications of the ruthless model. 
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We are interested in finding a way to obtain ruthless equations without having to start 
with consistent equations. From the form of Eq. (3), we see that what is needed is some 
way of obtaining the mass matrix and the vector of Coriolis and centripeta3 terms such that 
there is no q-dependence or dq/dt dependence. Clearly, this could be done formally by first 
obtaining the consistent equations and then dropping all terms containing q and dq/dt. Due to 
the simplicity of the resulting equations, however, it seems that there sho 
of obtaining Eq. (3). There is such a way, and this is in fact one of the a 
ruthlessly linearized equations of motion. In the following we illustrate how to attain 
ruthless equations for a collection of rigid and flexible bodies in a tree topology with no 
closed loops. 

The method is very straightforward and enables the dynamicist or control designer to 
obtain the ruthless equations of motion for modest chains (as in, say, manipulator 
applications) analytically. First, form the inertial velocities of the mass centers of the rigid 
bodies, of points of application of external loads, and of characteristic material particles of 
flexible bodies. These velocities should be constant in flexible generalized coordinates, 
though they must be linear in generalized speeds if there are to be any flexible equations of 
motion. Next, form the partial velocities with respect to the generalized speeds." Note that 
the term partial velocities, coined by Kane, is a convenient way to describe partial 
differentiation of the velocities with respect to generalized speeds, but its use here in no way 
indicates that these results are exclusive to Kane's method." 

The partial velocities should now be constant in both q and dq/dt, and we are ready to 
form the mass matrix: 

where the subscripts ij range over all degrees of freedom, rigid and elastic; N is the number 
of bodies in the chain; Vk is the volume of the k-th body; and v;k(x) represents the i-th partial 
velocity of a material particle in body k. 

In order to easily obtain the nonlinear velocity terms, we first define a pseudo- 
acceleration. Form the acceleration for each of the inertial velocities previously defined. 
Note that for purposes of forming the acceleration, the inertial velocities can also be made 
constant in dq/dt. Once these accelerations are formed, further simplify them by dropping all 
terns that contain the second time derivative of any generalized coordinate or the first time 
derivative of the generalized speeds (since these terms have already been included in the mass 
matrix above). The Coriolis and centripetal terms are now obtained by dot multiplying the 
partial velocities with the corresponding pseudo-accelerations, A 4  
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where the subscript r ranges over all degrees of freedom, and F is the vector of nonlinear 
forces in Eq. (3). 

The stiffness matrix can be obtained in a variety of standard ways?l10 Determination 
of the load distribution matrix is achieved as in Kane's method by dot multiplying external 
loads by the partial velocities (constant in q and dq/dt) of their points of application. 

111. Nonlinear Strain-Displacement and Stress Stiffness 

Enforcing geometric constraints on the generalized coordinates5 is equivalent to 
retaining nonlinear strain-displacement terms in a continuum mechanics formulation of the 
equations of equilibrium.9 It is for this reason that appending geometric stiffness matrices637 
to the incorrectly linearized equations of motion yields identical results, if done consistently, 
to proper linearization through consideration of nonlinear geometric constraints on flexible 
degrees of freedom. 

As defined by Ref. 10, geometric stiffness terms are used to account for second order 
terms in the energy expressions that result in first order effects in the motion equations but 
which are ignored in a premature linearization formulation. In the context of the finite 
element method, stresses resulting from all applied external forces are found and the virtual 
work they effect through the nonlinear terms of the strain expression is found to contribute 
linear stiffness terms that are critical in stability analysis. This has been recognized by users 
of finite element codes for some time, in particular as it relates to the inertial forces impressed 
on rotor blades by "constant" spin rates. The fact that all external, intemal, and inertial 
forces should be taken into account when obtaining the stress resultants has perhaps not been 
made clear in all engineering applications. While some or all of these forces might be 
unimportant for particular applications, it remains true that for general, particularly dynamics, 
applications all forces should be considered. 

In their paper, for the case of the free motion of a single flexible body, Banerjee and 
Dickens (Ref. 7) consider only forces due to impressed motions, or inertial forces. They 
extend the concept of geometric or stress stiffness matrices by considering time-varying 
inertial forces. This is achieved (see also Ref. 9) by obtaining the geometric stiffness 
matrices assuming unit values of a set of 21 inertia loads taken one at a time and using a 
standard finite element code. Invoking linearity, they then proceed to multiply each morion 
stiffness matrix by the instantaneous value of the associated inertia load and to add the 
resulting matrices together at each instant in time. 

The above procedure results in an additional stiffness term being added to the flexible 
partition of the inconsistently linearized equations (Eq. (2) with the superscript * terms 
lacking foreshortening terms): 
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K, above is the generalized motion stiffness for a single flexible body and S(k) is the 
geometric stiffness mamx corresponding to unit values of the k-th inertia loading, Ak, with 
the other inertia loadings set to zero. The Ak in Eq. (6) are defined as f01lows:~ 

A,= - (ug+  u i )  A7=-U '  u A10 = ue5+ u6u4 A1 = u',+ u5u3 - u6u2 6 4 5  

A =u' + U U  - U U  A s =  u',+ u4u5 A s = - ( ~ i +  ui) 
2 2 6 1  4 3  

3 3 4 2  5 1  A = U * + U U  - U U  A,= -us5+ u6u4 A 9 =  u' 4 + u f 6  

where for simplicity we have ignored rotary inertia effects in the flexible body, thus setting 
A k  for k=13 to 21 equal to zero (see Ref.7). The U i  (i=l, ..., 6)  are the generalized speeds 
characterizing the motion of a h e  of reference attached to the body and are defined as:" 

u = v o  - b i .  i = 1,2,3 

u =aB - b i ,  i =1,2,3 

i 

i +3 

where 0 is the origin of the frame B (blrb2,b3) attached to the flexible body; @ is the inertial 
velocity of 0; and d is the inertial angular velocity of B. 

The above methods rely on a finite element analysis in which the displacement 
interpolation functions are nonlinear.19 This is equivalent to considering nonlinear strain- 
displacement relations in a continuum formulation. Notice that a proper finite element code is 
capable of generating the correct results @e., a formulation of the equations of motion that 
contains all the motion stiffness terms) without any tampering, but at a high computational 
cost (see, e.g., Ref. 15). The method of Banejee and Dickens can be likened to a 
preprocessing of the equations so that motion stiffness matrices are computed only once. 
This yields large savings in computational cost. 

It is clear that a similar process is viable for all loadings that generate zeroth-order 
stresses, including joint interconnection forces for chains of flexible bodies. Wallrap and 
Schwertassek15 show how this can be done for each body in a chain. Their method requires 
knowledge of interconnection forces at each instant in time, however, and these depend in 
general on acceleration terms. The motion equations thus can become implicit in the 
accelerations. Kim16 proposes an iterative solution approach for the interconnection forces 
which they claim converges in very few iteration steps at each integration time step. The 
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iteration is started with some a priori guesses for the accelerations. Their method does not 
require updating the mass matrix at each iteration step. 

II1.A Possible Stress Stiffness Matrices 

As mentioned earlier, all zeroth-order forces (which will result in zeroth-order 
stresses) can potentially generate stress stiffness mamces. Consequently, the following 
forces must be considered: 

1) applied loads, 

2) gravity loads, 

3) motion-induced forces: both body inertial forces and interconnection forces. 

The general form of the resulting stress stiffness matrices is given by: 

where (.)ij represents the partial derivative in thej-th direction of (.) in the i-th direction. 

1II.B Two-Flexible-Link Arm Example 

In Ref. 3 the consistently linearized equations of motion for a planar, revolute, two- 
flexible-link manipulator arm are derived. Nonlinear strain-displacement relations for a bar 
are used in the modelling of each link as a Bernoulli-Euler beam. The resulting equations 
contain all terms linear in the flexible coordinates and their time rates of change. In 
particular, the stress stiffness terms are included in an implicit way. In this section we 
rewrite these terms due to the nonlinear strain-displacement relations (also dubbed 
foreshortening terns) and show explicitly that they indeed possess the general form shown 
in the previous section. 

The transverse link displacements ul and u2 of the shoulder and elbow links, 
respectively, are discretized using an assumed modes expansion: 

n 

m 
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The absolute shoulder angular position is given by 0, and the relative angular position of the 
elbow is given by p. 

For the shoulder link, two zeroth-order forces yield stress stiffness matrices. The 
fmt one is due to the body distributed centripetal load 

The second stress stiffness matrix is due to the axial component (along the neutral axis of the 
undeformed shoulder link) of the interconnection force at the elbow joint: 

In the above equations PI and p2 are the mass per unit length of the shoulder and elbow 
links, respectively, and ml=pIZI, m2=p212 are the respective link masses. 

The stress stiffness matrices for the elbow link can be considered to be due either to 
the inertial body forces, or to the axial component (along the neutral axis of the undeformed 
elbow link) of the interconnection force at the elbow joint: 

IV. Relative Significance of Stress Stiffening Terms 

Returning to the question of simplified equations of motion, it is natural to ask when, 
and if, these stress stiffening terms are important. In fact, whenever these terms are 
important, a consistent formulation of the equations of motion is mandatory in order to model 
the physical system. In this case, no further simplifications are possible, beyond the 
linearization in the flexible states. It was shown in a previous paper17 that ruthlessly 
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linearized equations are valid (i.e., accurately model the system), precisely when these stress 
stiffness terms are negligible. Furthermore, it can be surmised from the detail term by term 
comparisons made in that paper that stress stiffness terms are significant only when the 
appropriate zeroth-order stress is comparable to the buckling stress, i.e., when the 
corresponding load approaches the buckling load for the structure. This can be surmised 
further by considering a static stability analysis and comparing work due to loading stresses 
with elastic energy (see for example Refs. 10 and 18). 

VII. Conclusions 

The form of ruthlessly linearized equations of motion for open chains of flexible 
bodies was presented. A method was outlined that allows for the easy determination of the 
ruthless equations of motion for a given system. We discussed the derivation of stress 
stiffness terms which result from nonlinear strain-displacement relations and zeroth-order 
stresses. These terms are needed to obtain a consistently linearized set of equations. The 
form of these terms was provided and it was shown that all zeroth-order loadings, not just 
body inertial loadings, need to be considered when determining the stress stiffening terms. It 
was pointed out that these terms are significant only when the associated stresses reach the 
level of buckling stresses. This coincides with the previously investigated limits on the 
validity of the ruthless equations of motion. It is concluded that ruthlessly linearized 
equations of motion should be used whenever stress stiffening terms are negligible. 
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Roy R. Craig, .Jr.*, Tzu-Jeng Sut, and Hyoung M. Kim * 

This paper illustrates the use of Krylov vectors and Lancms vectors 
for reduced-order modeling in structural dynamics and for control of flex- 
ible structures. Krylov vectors and Lanczos vectors are defined and illus- 
trated, and several applications that have been under study at The Univer- 
sity of Texas at Austin are reviewed: model reduction for undamped struc- 
tural dynamics systems, component mode synthesis using Krylov vectors, 
model reduction of damped structural dynamics systems, and one-sided 
and two-sided unsymmetric block- Lanczos model-reduction algorithms. 

1. Introduction 

In recent years extensive research has been carried out on Lanczos eigensolution 
algorithms (see, for example, Refs. [l, 21). Nour-Omid and Clough [3] demonstrated the 
usefulness of Lanczos vectors in the analysis of the dynamic response of structures, and 
Frisch [4] included Lanczos vectors among the sets of Ritz vectors that are available 
in the DISCOS multibody code. Research has involved singlevector and block-vector 
methods, algorithms based on first-order equations of motion and algorithms based 
on second-order equations, and algorithms for unsymmetric matrices as well as for 
symmetric matrices. 

Following a brief introduction to the physical meaning of 'Krylov vectors and 
Lanczos vectors, this paper summarizes several applications that have been under 
study recently at The University of Texas at Austin. 

Structural dynamicists are all familiar with the fact that the modes of free 
vibration of an undamped structure (modeled, for example, as an n-degree-of-freedom 
finite element model) satisfy the algebraic eigenproblem 

Kq5, = X,Mq5, r = 1 ,2 , .  . . , n (1) 
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, A,, and +p are, respectively, the stiffness matrix, mass matrix, r-th 

eigenvalue, and r- th eigenvector. However, vectors and Lanczos vectors are 
not as well known as are eigenvectors. Note q. (1) is basically an equilibrium 
equation relating elastic restoring forces, K&, to inertia forces w2Mqir, and recall 
that a modification of Eq. (l), namely 

is the basis for the inverse iteration method for computing eigenvalues and eigenvec- 
tors 151. The vector in Eq. (2) converges to the fundamental mode (eigenvector) or, 
with suitable orthogonalization with respect to lower-frequency modes, to a higher- 
frequency mode. Equation (2) states that, given a vector &),  a new vector &+') 
may be generated by solving for the static deflection produced b y  the inertia forces 
associated with &I,  that is, 

& + I )  = ~ - 1  [M&)] (3) 

(assuming that K is nonsingular). Equation (3) provides a basis for defining a Krylov 
subspace. 

Given a starting vector d:), the vectors q@ are said to form a Krylov subspace 
of order p ,  1 5 p 5 n, given by 

Lanczos vectors differ from the Krylov vectors defined in Eq. (4) in that each Lanczos 
vector is made orthogonal to the previous two Lanczos vectors, and it can be shown 
that this makes the present Lanczos vector (theoretically) orthogonal to all prior 
vectors. 

The following algorithm may be used to compute Lancms vectors for an un- 
damped system. Let q5p) = 0, and select a starting vector c$p). The algorithm to 
compute the Lanczos vector may be expressed by the following equations: 

where 



and 

Note that the only step in the algorithm, Eq. (5), that distinguishes Lanczos 
vectors from Krylov vectors is the'orthogonalization step, and note that the mass 
matrix M is used in the orthonormalization step above. 

2 

Figure 1. A 4-DOF Cantilever Beam Finite Element Model. 

Figure 1 shows a four degree-of-freedom (4-DOF) finite element model for a 
cantilever beam that is used to illustrate Krylov vectors and Lanczos vectors. Figure 2 
shows the four Krylov vectors generated from a starting vector that is the static 
deflection due to a unit force at the tip. Figure 3 shows the four Lanczos vectors for 
the cantilever beam of Fig. 1. The starting vector, is the same static deflection 
due to a unit tip force which was used as the starting Krylov vector in Fig. 2. Because 
the starting vector produces a shape that resembles closely the fundamental mode of 
the cantilever beam, the subsequent Lanczos vectors in Fig. 3 resemble the second 
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Figure 2. The Four Krylov Vectors for the 4 D O F  Cantilever Beam. 
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Figure 3. The Four Lanczos Vectors for the 4-DOF Cantilever Beam. 

through fourth normal modes (eigenvectors). 

columns of the matrix 
A Krylov subspace of order p is a pdimensional vector space spanned by the 

= [d, Ad,  A24,  ..., (6)  

where A is an n x n-dimensional matrix and 4 is any n-dimensional starting vector. 
Depending on the choice of A and 9, the basis vectors in Eq. (6) are either linearly 
dependent for some p < n, or they span the entire n-dimensional space when p = n. 
If the vector is replaced by a matrix with q linearly-independent columns rather 
than a single column, the subspace @ is called a block-Krylov mbspace. 

2. Lanczos Model Reduction for Undamped Structural Dynamics 
Systems (Refs. [6,7]) 

Some studies have shown that I<rylov/Lanczos- based reduced-order models pro- 
vide an alternative to normal-mode (eigenvector) reduced-order models in application 
to structural control problems. For such applications, an undamped structural dy- 
namics system can be described by the input-output equations 

&!a: + IITX = Pu 
y = V x + b V X  (7)  

where x E Rn is the displacement vector; u E R' is the input vector; y E R" is the 
output measurement vector; 121 and I\: are the system mass and stiffness matrices; 
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P is the force distribution matrix; and V and are the displacement and velocity 
sensor distribution matrices. In most practical cases, we can assume that 1 and m are 
much smaller than n. 

Ritz method of selecting an n x T transformation matrix L such that 
Model reduction of structural dynamics systems is usually based on the Rayleigh- 

x = L2 (8) 

where 2 E R' (T < n) is the reduced-order vector of (physical or generalized) coordi- 
nates. Then, the reduced system equation is 

where i@ = LTML,  K = LTKL,  P = LTP, 7 = V L ,  and w = W L .  The projection 
matrix L can be chosen arbitrarily. Here, however, we choose L to be formed by a 
particular set of Krylov vectors. It is shown in Ref. [7] that the resulting reduced-order 
model matches a set of parameters called low-frequency moments. 

For a general linear system 

i = A z + B u  z E R " ,  u E R '  
y = c z  y E R "  

the low-frequency moments are defined by CA"B, i = 1,2, .  . ., which are the coef- 
ficient matrices in the Taylor series expansion of the system transfer function [8,9]. 
Applying the Fourier transform to Eq. ("a) yields the frequency response solution 
X ( w )  = (K - w2M)-' PU(w) ,  with X ( w )  and U ( w )  the Fourier transforms of z and 
u. If the system is assumed to have no rigid-body motion, then a Taylor expansion 
of the frequency response around w = 0 is possible. Thus, 

00 

X ( w )  = ( I  - w2K"M)-' I<-'PU(w) = C w2;(K-l M) 'K- 'PU(w)  ( 1  1 )  

Combining Eq. (7b) and Eq. ( l l) ,  the system output frequency response can be 
expressed as 

i=O 

Y ( 0 )  = C [ V ( K - *  M)'K- 'P + j w W (  K-'M)'K-'P]wZ'U(w) (12) 
i=O 

In these expressions, V ( K - ' M ) ' K - ' P  and W( K-'M)'K-'P play roles similar to 
that of Iow-frequency moments in the first-order state-space formulation. To obtain 
the reduced-order model of Eq. (9) let 

span ( L )  = span ( L p  LV L w }  (13) 
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where 

L p  = [ K - l P  (IC-1 )K-'P - - - (K-'M)*K-'P ] 
Lv = [ K - V  (K- 'M)K- 'VT - - * (K-'M)*K-'VT ] 
Lw = [ K-'WT (K-'M)K-'WT * * * (K-'M)"-'WT ] 

(14) 

for p, q, s 2 0. Then the reduced system matches the low frequency moments 
V(K- 'M) 'K- 'P  for i = 0, 1, . . . , p+q+1 and W(K-'M)'K-'P, fori = 0, 1, 2, . . . , 
p + s + l .  

The L p  matrix above is the generalized controllability matrix, and the LV and 
LW matrices are the generalized obseruability matrices of the dynamic system de- 
scribed by Eq. (7). The vectors contained in L p  are K y l o v  vectors that are generated 
in block form by 

The first vector block, K-'P,  is the system's static deflection due to the force distri- 
bution P. The vector block &;+I can be interpreted as the static deflection produced 
by the inertia force associated with the Q;. If only the dynamic response simulation 
is concerned, we would choose L = Lp. In this case, the reduced model matches p +  1 
low-frequency moments. As to the vectors in Lv and Lw, a physical interpretation 
such as the "static deflection due to sensor distribution" may be inadequate. How- 
ever, from an input-output point of view, Lv, Lw,  and L p  are equally important as 
far as parameter-matching of the reduced-order model is concerned. 

Based on Eq. (13), the following algorithm may be used to generate a Krylov 
basis that produces a reduced-order model with the stated parameter-matching prop- 
erty. 

K ry lov / Lanczos Algorithm 

(1) Starting block of vectors: 
(a) Qo = 0 
(b) & = K - ' p ,  
(c) G K h &  = UoCoUT 
(d) Q1 = &UO$ (normalization) 

(2) F o r j  = 1, 2, . . ., k - 1, repeat: 
(e) 75, = K - l M Q ,  
(f) Rj = 75) - &,A, - Qj-lB, 

= linearly-independent portion of [ P  VT WT]  
(singular-value decomposition) 

(orthogonalization) 

= QTI{R), B, = uJ-l~!-l 
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(singular-value decomposition) 

(normalization) 

( 3 )  Form the k-block projection matrix L = [ Q1 Q2 
(h) Q,+l = l 3 . B ~ ~  I J + 1  = R$JJZyi 

- .  Q k  1. 

- -4 I x x  x '  
x x x  0 

x x -  0 
. . .  x + z = 4  * + u .  

. .  . 
X . .  

x x  , o ;  
L - 

This algorithm is a Krylov algorithm, because the L matrix is generated by a Krylov 
recurrence formula (Step e). It is a Lanczos algorithm because the orthogonaliza- 
tion scheme is a three-term recursion scheme (Step f). Although the three-term 
recursion scheme is a special feature of the Lanczos algorithm, in practice, complete 
reorthogonalization or selective reorthogonalization is necessary to prevent the loss 
of orthogonality [lo-121. 

If the projection matrix L generated by the above algorithm is employed to 
perform model reduction, then the reduced-order model matches the low-frequency 
moments V(K-'M)'K"'P and W(K-'M)'K- 'P ,  for i = 0, 1, 2, ..., 2k - 1. 
It can also be shown that the reduced-order model approximates the lower natural 
frequencies of the full-order model. 

One interesting feature of the transformed system equation in Krylov/Lanczos 
coordinates is that it has a special form. Because of the special choice of start- 
ing vectors, K-orthogonalization, and t hree-term recurrence, the transformed system 
equation has a mass matrix in block-tridiagonal form, a stiffness matrix equal to the 
identity matrix, and force distribution and measurement distribution matrices with 
nonzero elements only in the first block. The transformed system equation has the 
form 

y = f x  0 0 - * *  o ] z + j x  0 0 ... O ] i  
where x denotes the location of nonzero elements. This special form reflects the 
structure of a tandem system (Fig. 4), in which only subsystem SI is directly con- 
trolled and measured while the remaining subsystems, Si, i = 2,  3, . . ., are excited 
through chained dynamic coupling. In control applications, as depicted in Ref. 1131, 
this tandem structure of the dynamic equation eliminates the control spillover and 
the observation spillover, but there is still dynamic spillover. For dynamic response 
calculations, the block-tridiagonal form can lead to an efficient time-step solution and 
can save storage. 
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U 

. . .  
Figure 4. The Structure of a Tandem System. 

3. Lanczos Model Reduction for Damped Structural Dynamics Systems 
(Refs. [6,13]) 

The previous model-reduction strategy can be extended to damped structural 
dynamics systems, which are described by the linear input-output equations 

MX + Di + K X  = pu 
y = v x  + wx 

To arrive a t  an algorithm for constructing a reduced-order model that matches 
low-frequency moments, it is easier to start from the first-order formulation. The 
first-order differential equation equivalent to Eq. (16) can be expressed as 

or 

with 

h3.i + K z  = P u  

y = v z  

D M  o ] ,  I t = [ ;  -M 0 1 ,  P = { ; } ,  v = [ v  w ]  (19) 

It is possible to reduce Eq. (18) to the standard first-order state-space form and to 
derive a projection subspace based on this standard state space form. However, as 
shown in Ref. [13], there are significant advantages in using the generalized first-order 
form of Eq. (18). This leads to the following recurrence formula for the Krylov blocks: 

-K-'D - K - ' M ]  [ZJ 
I 0 
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Superscripts d and v denote displacement and velocity portions of the vector, respec- 
tively. The matrix containing the generated vector sequence is called a 
It has the form [ Q? Qi Qd - * e ]  

QY Q? Qi * * .  

Krylov subspaces that are generated by Eq. (20) and that have the above form produce 
a projection subspace L that has the desired moment-matching property [13]. Let 
Let 

be the sequence of vectors generated by Eq. (20) with k-'F the starting block of 
vectors, i.e., Q? = K-'P, QY = 0, and let 

be the subspace of vectors generated by Eq. (20) with k-'c the starting block of 
vectors, i.e., Pp = K-'VT,  P? = -M-'WT. If the projection matrix L is chosen 
such that 

span { L )  =span { Q: ... Q: P: P; P; } (22) 
then the reduced-order model of the damped structural dynamics system matches 
the system parameters p(k-l&)i&-'P, for i = 0, 1, . . . , p + q - 1 .  Reference [13] 
provides a Lanczos algorithm, similar to the above algorithm for undamped systems, 
that produces the desired projection matrix L. The vectors are K-normalized. 

Reference [ 131 contains a model-reduction impulse response example and an 
example that illustrates the use of the Krylov/Lanczos reduced model for flexible 
structure control. Figure 5 shows the 48-DOF plane truss structure used in the 
model-reduction example, and Fig. 6 shows the impulse response based on eight 
Kryiov vectors versus the impulse response based on the original fuil-order (48-DOF) 
model. 

4. A Block-Krylov Component Synthesis Method for Structural Model 
Reduction (Ref. [14]) 

The previous discussions of Kry IovlLancms model reduction have been applied 
to complete structures. Reference [ 141 describes a block-Krylov model reduction algo- 
rithm for structural components, providing "component modes" comparable to those 
that are utilized in Refs. [15-191. The Krylov model-reduction methods described in 
Ref. [ 141 should also be applicable to flexible multibody dynamics formulations. 
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Figure 5. Details of a Plane Truss Structure for Model Reduction Example. 
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Figure 6 .  Impulse Response: Eight Damped Krylov Modes and Exact Solution. 
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a. Structural Component and the Complete System. 

b. Interior ( i )  and Boundary (b )  Coordinates of a Component. 

Figure 7. A Typical Component and Coupled System. 

Figure 7 shows a typical component and a corresponding system of coupled 
components. The equation of motion for a single undamped component can be written 
in the partitioned form 

Reference [14] describes both free-interface Krylov modes (related to the Rubin method 
of Refs. [17,18]) and fixed-interface Krylov modes (related to the method of Hurty 
[19] and Craig and Bampton [15]). Only the latter will be reviewed here. 

A constraint mode is defined as the static deflection of a. structure when a 
unit displacement is applied to one coordinate of a specified set of coordinates, while 
the remaining coordinates of that set are restrained and the remaining degrees of 
freedom of the structure are force-free. The starting block of vectors for the fized- 
interface Krylov component synthesis method consists of constraint modes relative to 
the boundary coordinates, b. That is, 

Then, the fixed-interface recurrence formula 
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generates the successive blocks of fixed-interface Krylov modes. 
The reduced, transformed equations of motion for a component are 

-.. 
M z  + Kz = f (26) 

where the reduced coordinates 5 are related to the original coordinates 5 by Eq. (5) 
with 

Z b  xb (27) 

I< = 

and 
L = span [Q1 Q 2  - e -  J 

- IC11 0 0 * - -  0 -  - 
0 1(22 K 2 3  

(29) 0 1(32 K 3 3  

- 0  

a. Coupled Truss Structure. b. Components. 

Figure 8. A Truss Used to Evaluate Block-Krylov Component Synthesis. 

Table 1, from Ref. [14] compares a fixed-interface block-Krylov component- 
mode solution and a Craig-Bampton component-mode solution for natural frequen- 
cies of the 72 DOF plane truss shown in Fig. 8. The Craig-Bampton method 
produces a slightly more accurate reduced model, but at the expense of the addi- 
tional computation required to produce the fixed-interface normal modes required by 
the Craig-Bampton method. 
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0.000000E+O 0.000000E+0 0.000000E+O 
1.9536253-2 1.9536883-2 1.9536243-2 
2.2050653-2 2.2052253 -2 2.2050633-2 
4.9238453-2 4.9269303-2 4.9235373-2 
7.2737793-2 7.23 1061 E -2 7.2293193-2 
7.6264923 -2 7.5708813-2 7.5677593-2 
1.5500323-1 1.5283603-1 1.528 184 E- 1 
1.61 74723 -1 1.5867853-1 1.586193E-1 

Table 1. A Comparison of Block-Krylov and Craig-Bampton Component 
Synthesis - Natural Frequencies. 

5. Unsymmetric Lanczos Algorithm for Damped Structural Dynamics 
Systems (Refs. [12,20,21]) 

Although most passive damping mechanisms yield a symmetric damping ma- 
trix, there are cases when the damping matrix is unsymmetric. For structures, un- 
symmetric damping may arise from active feedback control or from Coriolis forces. To 
deal with general unsymmetric damping, the usual approach is to write the system’s 
dynamic equation in first-order statespace form. Then, an unsymmetric Lanczos 
algorithm is used to create a basis for model reduction of the first-order differential 
equations. References [12,20] describe a two-sided unsymmetric block Eanczos algo- 
rithm that generates a set of left Lanczos vectors and a set of right Lanczos vectors 
(analogous to sets of left eigenvectors and right eigenvectors). These two sets of 
Lanczos vectors form a basis that transforms the system equation to an unsymmetric 
block- tridiagonal form. The major disadvantage of a two-sided Lanczos algorithm is 
that the reduced-order model that is obtained may exhibit some high-frequency spuri- 
ous modes or even unstable modes, although the full-order system is stable. However, 
the computational enhancements described in Ref. [12] produce a very robust two- 
sided algorithm. 

A one-sided Lanczos algorithm for structures with unsymmetric damping ma- 
trix and/or stiffness matrix was recently described in Ref. [21]. Consider a linear, 
time-invariant system described by Eq. (10). Assume that the system is stable 
and completely controllable. Then, the following Lyapunov equation has a unique 
posit ivedefinite solution. 

AW, + WcAT + BBT = 0 (30) 

W, is called the controllability gmmmian of the system. If the system’s state vector is 
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transformed to another set of coordinates through a nonsingular projection matrix L 

then the system equation becomes 

ZL = A E  + B u  
y = c z  

where the system matrices in the new coordinates are 

A = L - ~ A L  , B = L - ' B  , & C L  (33) 

In Ref. [21] the transformation matrix 

L E [ Q i  Q 2  * - *  Q k ]  

is formed by a three-term Lanczos iteration formula 

AQi = Qi- lGi - I+  Qi3; - Qi+lG? 

where 

(34) 

(35) 

The Qi's are orthonormalized with respect to the inverse of the controllability gram- 
mian of the system. That is 

I i f i = j  
0 i f i J j  

QTWJ'Qj = { 
Then, A has the almost-skew-symmetric, block-tridiagonal form 

Gl 
G2 
3 3  

(37) 

Reference [21] lists a complete one-sided, unsymmetric block-Lanczos algorithm 
and also discusses special modifications to handle model reduction for unstable sys- 
tems, to optimize the choice of starting vectors, to use A-' as the iteration matrix, 
and to use the observability grammian instead of the controllability grammian. An 
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Figure 9. A Plane Truss Structure. 
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Figure 10. Comparison of Frequency Response Functions. 

example is provided that utilizes both controllability- and observability-grammian- 
based reductions. Figure 9 shows a plane truss structure (16 DOF's; 32 states), and 
Figs. 10a,b show frequency response plots of 12-state models based, respectively, on 
(complex) eigenvectors and based on (real) Lanczos vectors. 

The advantages of the above-described one-sided method over the other exist- 
ing unsymmetric Lanczos algorithms are: (1) the numerical breakdown problem that 
usually occurs in applying the two-sided unsymmetric Lanczos method is not present, 
(2) the Lanczos vectors that are produced lie in the controllable and observable sub- 
space, (3) the reduced-order model is guaranteed to be stable, (4) a shifting scheme 
can be used for unstable systems, ( 5 )  the flexibility of the choice of starting vector can 
yield more accurate reduced-order models, and (6) the method is derived for general 
mu1 ti- inpu t /mult i-ou tpu t sys tems. 
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Space limitations prevent further discussion in this paper of the application of 
Krylov/Lanczos vectors to the control of flexible structures. Several such applications 
may be found in Refs. [6,13,22-241. 
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Abstract 

A two-st age model reduction methodology, combining the classical Component Mode 
Synthesis (CMS) method and the newly developed Enhanced Projection and Assembly 
(EP&A) method, is proposed in this research. The first stage of $his methodology, called 
the CUmponent Modes Projection and Assembly model REduction (COMPARE) method, 
involves the generation of CMS mode sets, such as the MacNeal-Rubin mode sets. These 
mode sets are then used to reduce the order of each component model in the Rayleigh-Ritz 
sense. The resultant component models are then combined to generate reduced-order system 
models at various system configurations. A composite mode set which retains important 
system modes at all system configurations is then selected from these reduced-order system 
models. In the second stage, the EP&A model reduction method is employed to reduce 
further the order of the system model generated in the first stage. The effectiveness of the 
COMPARE methodology has been successfully demonstrated on a high-order, finite-element 
model of the cruise-configured Galileo spacecraft. 

1. Background and Motivation 

Multibody dynamics simulation packages are gaining in popularity among dynamists 
for the simulation and analysis of systems of interconnected bodies (some or all of which are 

flexible). One such program, DISCOS,' was used in the development of control systems on 
board the Galileo spacecraft. The dual-spin Galileo spacecraft was modeled as a three-body 
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system, consisting of a flexible spinning rotor, a flexible stator, and a rigid scan platform. 

For complex systems such as the Galileo spacecraft, practical considerations (e.g., sim- 
ulation time) impose limits on the number of modes that each flexible body can retain in a 

given simulation. Modal truncation procedures must be used to select and retain a limited 
number of “important” modes which capture the salient features of the component dynam- 
ics. The Enhanced Projection and Assembly (EP&A)‘l7 technique is one way of performing 
this task. 

The EP&A m e t h ~ d , ~ > ~  is a model reduction methodology for articulated, multi-flexible 
body systems. In this method, a composite mode set, consisting of “important” system 
modes from all system configurations of interest, and not just from one particular system 
configuration, is first selected. It is then augmented with static correction modes before be- 
ing “projected” onto the component models to generate reduced-order component models. 
To generate the composite mode set, eigenvalue problems concerning the full-order system 
models, at all configurations of interest, must be solved repetitively. This is a drawback of 

the EP&A method because solving large eigenvalue problems can be costly. To overcome 
this difficulty, a two-stage model reduction methodology, combining the classical Compo- 
nent Mode Synthesis (CMS) method and the Enhanced Projection and Assembly method 
(EP&A), is proposed in this research. 

The stages involved in the proposed technique, to be called the Component Modes 
Projection and Assembly model REduction (COMPARE) method, are illustrated in Fig. 
1. First, CMS mode sets, such as the MacNeal-Rubin mode sets, are generated and used 

to reduce the order of each component model in the Rayleigh-Ritz sense. These compo- 
nent mode sets are then assembled using the interface compatibility conditions to generate 
reduced-order system models at various system configurations. The order of these reduced- 
order system models is typically smaller than that of the full-order system model. 

In the second stage, the newly developed EP&A model reduction method is employed to 
reduce further the order of the system model generated in the first stage. As described above, 
the composite mode set is augmented with static correction modes before being projected 
on the CMS-generated component models to generate the final reduced-order system model. 
In this way, COMPARE retains the merits of both the CMS and EP&A methods, without 
their demerits. The effectiveness of COMPARE will be verified using a cruise-configured 
Galileo spacecraft model. 
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The Component Mode Synthesis (CMS) method is a Rayleigh-Ritz based approximation 
method that is commonly used to analyze linear, high-order structural dynamics problems. 
To use this method, the structure is first subdivided into a number of components (or 

substructures), and a Ritz transformation is employed to reduce the model orders of these 
substructures. Many component mode sets may be used to perform this reduction but 

the MacNeal-Rubin (M-R) and Craig-Bampton (C-B) mode sets were shown to have good 
convergence properties in the sense of CMS. Once reduced, the reduced-order component 
models are then coupled using the interface compatibility conditions to form the reduced- 
order system model. 

Since the Craig-Bampton and MacNeal-Rubin mode sets will be used in the present 
research to reduce the orders of the component models, their constructions are first briefly 
reviewed. 2. 
The undamped motion of each component of the structure can be described by a matrix 
differential equation 

MnnXn + ICnnXn = F n ,  

To this end, consider a multi-flexible body structure as depicted in Fig. 

(1) 

where x n  is an n x 1 displacement vector, and Mnn and ICnn are n x n mass and stiffness 
matrices of the component, respectively. Note that the matrix dimensions are indicated by 
the matrix subscripts. The n x 1 force vector acting on the component is denoted by Fn. A 
similar equation can also be written for component B. 

To generate the C-B or M-R mode set, the last equation is partitioned as follows : 

where x i  and x j  represent the interface and interior coordinates, respectively. 

2.1 Craig-Banipton Mode Set 

The Craig-Bampton mode set is generated by augmenting a low-frequency subset of the 
fixed interface (I/F) normal modes with a set of static-shape functions termed constraint 
modes. The first k fixed I/F normal modes @ j k ,  and the ordered eigenvalue matrix h k k  are 
related by the following relation : 
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There are ways to decide on the number of modes to be kept in @ j k .  One way is to 
keep all modes whose frequencies are less than twice a characteristic frequency of the system 
(e.g., control bandwidth).2 The above determined normal modes are then augmented with i 
constraint modes, where constraint modes are static-shape functions that result by imposing 
unit displacement on one coordinate of the i-set while holding the remaining coordinate in 
that set fixed. It can be shown that the interior displacement for these constraint modes is 
given by8 

(4) 9 .. - -K:.l K . .  
32 - 33 38 * 

The C-B mode set is [ Oik 2;i] 
@ j k  

which is then used to reduce the full-order component model. 

2.2 MacNeal-Rubin Mode Set 

In a manner similar to generating the Craig-Bampton mode set, the MacNeal-Rubin 
mode set is generated by augmenting a low-frequency subset of the free I/F normal modes 
with a set of static force response functions termed residual modes. The first k free I/F 
normal modes @ n k ,  and the ordered eigenvalue matrix A k k ,  are related by the following 
relation : 

-Mnn@nkAkk f Icnn@nk = 0 - ( 5 )  

The kept eigenvector matrix @ n k ,  which has been normalized with respect to the mass 
matrix, may be partitioned into its rigid-body and flexible parts: [ @ n r  @ n f ] .  Let A f f  be the 
eigenvalue matrix associated with the kept flexible modes. Then, the residual modes may 
be determined by 

Qna = ( P T n  S n n  Pnn - @ n f  @zf Fna 7 (6) 

where Pnn = Inn - M n n  @nr @Tr, S n n  is the “pseudo” flexibility matrix of the component,8 
defined as follows. Let the set of all physical coordinates be divided into three subsets : T ,  a ,  

and w. The T set may be any statically determinate constraint set which provides restraint 
against rigid-body motion. The a set consists of coordinates where unit forces are to be 
applied to define attachment modes (;.e., at the interface coordinates, and at  coordinates 
where external forces are applied). Finally, the w set consists of the remaining coordinates 
in z .  Using these definitions, the component stiffness matrix K n n  is partitioned as follows : 
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kwr kwa k w w  
The pseudo-flexibility matrix Sn, is now given by a matrix of the form' 

0 0  

kwa k w w  

Finally, the matrix Fna is given by [Oar, l a a ,  O a w I T ,  where the identity matrix I,, is asso- 
ciated with the a interface coordinates. The M-R mode set is [Qnk  e,,], which is then used 
to generate a reduced-order model for the component. 

3. A Component Modes Projection and Assembly Model Reduction (COM- 
PARE) Methodology 

Once CMS-based reduced-order component models are generated, they are assembled 
using the interface compatibility conditions to produce reduced-order system models at vari- 
ous system configurations of interest. Since the orders of these reduced-order system models 
are typically smaller than those of the full-order system models, we have accomplished the 
first of the two model reduction steps of the COMPARE methodology. However, note that 
these CMS-generated reduced-order system models were obtained without using knowledge 
of any system-level input-output information. This drawback is remedied in the second 
stage, in which the EP&A r n e t h ~ d o l o g y ~ ~ ~  is used to further reduce the order of the models 
generated in the first stage. Since the EP&A methodology has been described 
it will only be briefly reviewed here. 

Consider a system with two flexible components. The undamped motion of component 
A, as described by either its M-R or C-B mode set, is given by 

Here, qf and A t p  are the generalized coordinates and the diagonal stiffness matrix of com- 
ponent A, respectively. The dimension of 77; is p .  The matrix Gfa is an control distribution 
matrix, and u t  is an a x 1 control vector. Similarly, the matrix H& is an output distri- 
bution matrix, and yt is an b x 1 output vector. Similar equations can also be written for 
component B. 
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The system equations of motion at a particular articulation angle a! may be constructed 
using these component equations, and enforcing displacement compatibility conditions at 
the component interface. To this end, let P(a!) =[PpAeT(a), PgT(a)]' be any full-rank matrix 
mapping a minimal system state q e  into 

where q e  is an e x 1 reduced-order system coordinate, and e = p + q - i (i is the number of 
I/F constraint relations). For ease of notation, the dependencies of the matrices P:, P z ,  
q t ,  q f ,  and 7j)e on a! are dropped in the sequel. Substituting T$ = P$ qe and 7: = P g  qe  

into (7 )  and the corresponding equations for component B, pre-multiplying the resultant 
equations by Pi' and P:', respectively, and summing the resultant equations gives 

where Me,, K e e ,  Gea ,  and Hse ,  all functions of a!, are given by 

where ys = [ y t T  y F T I T ,  and s = b + E .  To arrive at the equation for Ge,, we have as- 
sumed that u t  = u," = u a .  Otherwise, the term GeaUa in (sa> should be replaced by 

IPpe ATGA p a  , PBTGqBa] qe [u,"' , u,"']'. Since Mee is symmetric and positive-definite while Kee is 
symmetric and positive semi-definite, a transformation @ e ,  that diagonalizes Me, and I{ee 
simultaneously can always be found. Let 4 e  be the corresponding generalized coordinate, 
Le., q e  = @ee $ e .  Substituting this relation into (sa), and pre-multiplying the resultant 
equation by @re gives 

_c 

where +:Me,@,, = Ice, Hse = Hse@ee, Gea = @TeGea, and where Aee = @:Icee@ee 
contains the undamped, reduced-order system eigenvalues along its diagonal. Equation (9) 
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represents the reduced-order system model obtained from the first stage of the COMPARE 
methodology. 

The EP&A method is used in the second stage of COMPARE. With the EP&A method, 
only k of the system’s e modes are kept while the remaining t (= e - IC) modes are removed. 
The kept mode set is a composite mode set, consisting of “important” system modes from 
all system configurations of interest, and not just from one particular configuration. With 
this understanding, we have 

v e  = @cede = [ @ e k  @ e t ]  [ ~~] A G e k d k  7 (10) 

where $ k  and q5t are generalized coordinates associated with the “kept” and “truncated” 
modes, respectively, and @ e k  and Get the corresponding eigenvector matrices. 

The composite mode set @ e k  may now be projected onto the CMS-generated compo- 
nent models: 7; = P: @ e k  q5f = IP$q5i. Here, q5f denotes reduced sets of generalized 
coordinates of component A. The substitution of the last relation into (7) produces the 
“constrained” equations of motion for component A: 

A second reduced-order system model can now be constructed using (ll), a similar 
equation for component B, and the displacement compatibility conditions at the component 
I/F. The order of this new reduced-order model is smaller than that obtained from the first 
step (cf. (9)) due to the truncation of “t” modes in (10). In addition, it has been proven 
that the modes retained in the composite mode set G e k  are captured exactly by the resultant 
reduced-order system model (with a number of extraneous modes 3 * 4 * 5 1 6 * 7 ) .  However, the 
static gain of the resultant reduced-order system model is not the same as that given by 

( 9 ) n 7  

Two different approaches were introduced in Lee and Tsuha7 to preserve the static 
gain of the system described by (9) in the second reduced-order system model. The first 
approach involves augmenting the k “kept” modes of the system with an additional a modes 
so as to create a statically complete mode set. The enlarged mode set is then “projectedn 
onto the components, and the reduced components are assembled as usual.7 In the second 
approach, the k “kept” modes of the system are first projected onto the components. After 
the projections, the reduced-component mode sets are each augmented with static correction 
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modes. The augmented mode sets are then used to reduce the components, and the resultant 
component models are assembled to generate the reduced-order system model. The details 
of these approaches are given below. 

3.1 Comp onent-level Augment ation Techniques‘ 97 

In the component-level augmentation approach, the k “kept” modes are first projected 
onto the components. We first write 

where E$k is the eigenvector matrix associated with an eigenvalue problem of (ll), and u t  

is the corresponding generalized coordinate. The transformation matrices r f k  and Y f k  are 
defined in (12). Matrix partitions Y$ and Tff denote eigenvectors associated with the 
rigid-body and flexible modes of the projected component A model. Similar partitions are 
made for the eigenvectors associated with the projected component B model. 

Let Yfr, Y t f ,  etc. be normalized such that 

where A;.’f is an eigenvalue matrix associated with the projected flexible modes of component 
A. Similar expressions can also be written for component B. Using the matrices defined in 
(12-13), residual modes,* described in Section 2.2, may once again be used to augment the 
projected mode sets of the components. From ( 6 ) ,  the residual modes are given by 

where 

and S$ is the “pseudo” flexibility matrix of component A. If we assume that the diagonal 
stiffness matrix of component A (see Afp in (7)) is ordered so that all the rigid-body modes 
(with zero frequency) are given first, then SA is given by 

62 



Here p = p - T is the total number of flexible modes in the GMS mode set of component A. 
In (14), the matrix F' is given by [Oar ,  I a a ,  Oap-r-a]T. Similar expressions can also be 
written for component B. 

The projected mode sets Y$ and Y'$ can now be supplemented with the residual 

modes 

where and v: are generalized coordinates associated with the residual modes. Using the 
Ritz transformations suggested in (l?), the new component-projected equations of motion 
are 

Using (18-19), the reduced-order system equations of motion at a particular system 
configuration a can now be formed by enforcing displacement compatibility at the interface 

CiPp(4TlpA + C { ( 4 #  = 0 7 (20) 

where Cg and C t  are matrices that establish the constraint relations between the gener- 
alized coordinates of CMS generated component models, and i is the number of constraint 
relations. Using (l?), (20) becomes 

where [Dit] is defined in (21), and c = 2v. To construct the reduced-order system model, we 

partition the "compatibility" matrix [Dit] using the Singular Value Decomposition (SVD) 
technique 

63 



where [ P e d ]  = [V&] (cf. (22)) is a full column rank mapping matrix, and V d  denotes a 

minimum set of generalized coordinates of a statically complete reduced-order system. Sub- 
stituting u t  = [PA] Ud and U: = [PZ] V d  into (18)  and (lg),  pre-multiplying the resultant 
equations by P,"d' and PZT,  respectively, and summing the resultant equations give 

where h ! f d d ,  I C d d ,  G d a ,  and H s d ,  all functions of cy, are given by 

A T y A T y A p A  BT BT B B 
M d d  = Pvd p v  p v  vd  + Pvd yqv yqvPvd  7 

A T A  P~ + p,.,'yfVTA~ y~ P~ 
= Pvd Y p v  A p p  p v  vd  PQ PV v d ,  

A ~ ~ A ~ G A  + P B ~ T B ~ G B  
G d a  Pvd p v  p a  vd  qv  qa 7 

Since M d d  is symmetric and positive-definite while ICdd is symmetric and positive semi- 
simultaneously can always 

Let a d d  be normalized with respect to the mass matrix, and let X d  be the 
definite, a transformation a d d  that diagonalizes M d d  and 
be found. 
corresponding generalized coordinate, i.e., ' 

v d  = a d d  X d  + (30) 

Substituting (30) into (24-25) and pre-multiplying the resultant equation by +& give 

I d d g d  f A d d X d  = @ d a U a  , (31) 

!Is = H s d V d  7 (32) 

where 

Here A d d  is a diagonal matrix with the undamped, reduced-order system squared frequencies 

along its diagonal. It was proven in Lee and Tsuha7 that are captured exactly in a d d  
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despite the augmentations of the projected component models with residual modes. The 

matrix A d d  also contains a number of extraneous modes.6 

3.2 System Level Augmentation 

The equation (9) may be decomposed into its kept and truncated parts: 

The mode set @ e t ,  which is truncated, will now be replaced by a smaller but statically 
equivalent mode set Q e a .  To find Q e a ,  consider the following Ritz transformation6 

Here dU is the generalized coordinate associated with the augmented mode set @ e a .  It 
can be shown that the static gain due to the mode set [ @ e k  @ e a ]  = [ @ e k  @ e t R t a ]  is identical 
to that of the original system (cf. (9)).6 Hence, [ @ e ,  @ e t R t a ]  is a statically complete mode 
set. 

Several observations regarding the augmented mode set [ @ e k  @ e t  R t , ]  are in order. First, 
note that the augmented mode set contains two parts. The first part contains a selected 
number of eigenvectors which satisfy the eigenvalue problem defined by and K e e .  The 
second part is formed using the residual flexibility matrix and the distribution matrix of the 
external load. Hence, @ e t  R t a ,  unlike @ e k ,  is a function of the external load distribution. 

Next, we observe that @ e t  R t a  is identical to the residual mode defined in Section 2.2. 
Also, note that this mode set is mass and stiffness orthogonal to the retained mode set @ e k .  

Hence, the two parts of the augmented mode set are linearly independent. This statically 
complete mode set is now ready for projections onto the various flexible component models 
to generate reduced-order component models. The reduced-order component models may 
then be assembled to generate the reduced-order system model using the procedures outlined 
in Section 3.1. 

4. Applying COMPARE on A High-order Finite-element Galileo Model 

The effectiveness of the proposed COMPARE methodology will now be demonstrated 
using a high-order finite-element model of the cruise-configured Galileo spacecraft. The 

65 



three-body topology of the dual-spin Galileo spacecraft is illustrated in Fig. 3.7 The rotor 
is the largest and most flexible component represented, with 243 dof. The smaller and 
more rigid stator is represented with 57 dof. Lastly, the scan platform is the smallest body 
idealized as rigid, with 6 dof. 

For the purpose of controller design, a low-order system model, accurate at all config- 
urations of interest and over a frequency range of interest (0-10 Hz) is needed. To this end, 
we apply the MacNeal-Rubin version of the COMPARE methodology on the Galileo model. 
The first stage of COMPARE requires the generation of M-R mode sets for all the flexible 
components. Following standard procedures, free interface normal modes of both the rotor 
and stator are first determined, and then truncated at twice the frequency of interest (20 
Hz). Next, these truncated normal mode sets are each augmented with residual modes to 
generate the needed M-R mode sets for both the stator and rotor. 

Next, the MacNeal-Rubin mode sets and the interface compatibility conditions are used 
to construct system models at all system configurations of interest, and determine from them 
important system-level modes at all clock angles of interest. The selected composite mode 
set has 8 rigid-body and 21 flexible modes. 

The next step is to augment the composite mode set with one or more static-correction 
modes. For the Galileo example, we augment the composite mode set with two residual 

modes, one for an input torque about the Z-axis on the rotor side of the rotor/stator interface, 
and a second equal and opposite torque on the stator side of the interface. The enlarged 
mode set is then projected onto the flexible components. The resultant reduced-order models 
of the rotor and stator have 29 (with 6 rigid-body) and 21 (with 8 rigid-body) modes, 
respectively. The assembled reduced-order model has 44 (with 8 rigid-body) modes. The 
natural frequencies of these reduced-order component models and of the system model at a 

clock angle of 300 degrees are tabulated in Table 1. All system flexible modes retained in 
the composite mode set have been captured exactly in the reduced-order system model. 

Comparisons of Bode plots of full-order and reduced order models, at clock angles of 

60, 180, and 300 degrees, are given in Figs. 4, 5 ,  and 6 respectively. Actuation was done 
at the Spin Bearing Assembly (SBA) located at the rotor-stator interface (along the Z-axis, 
cf. Fig. 3), and sensing was done by a gyroscope located on the scan platform. From 
these comparisons, we observe that the frequency responses of the full-order models, at all 
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configurations of interest, have been closely captured by their reduced-order counterparts, 
over the frequency range of interest (0-10 Hz). Results obtained at other clock angles are 
similar to those depicted in Figs. 4-6. 

5. Concluding Remarks 

A two-stage model reduction methodology, called COMPARE, is proposed in this re- 
search. The first stage of this methodology involves the generation of CMS mode sets for 
the flexible components. The resultant component models are then combined to generate 
reduced-order system models at various system configurations. A composite mode set which 
retains important system modes at all system configurations is then determined from these 
reduced order system models. In the second stage, the EP&A model reduction method is 
employed to reduce further the order of the system model generated in the first stage. 

The merit of the COMPARE methodology is that system models (at various system 
configurations) assembled using CMS-generated component models are smaller in size than 
the full-order system models. Hence, COMPARE alleviates the need to solve large-order 
eigenvalue problems repetitively. The need to generate the components’ M-R or C-B mode 
sets is not a disadvantage because efficient software exists for their construction (see, e.g., 
Tsuhag). The effectiveness of COMPARE, using the M-R version of COMPARE, has been 
successfully demonstrated on a high-order, finite-element model of the cruise-configured 
Galileo spacecraft. 
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Table 1 Frequencies of Reduced-order Stator, Rotor, 
and System (at a Clock Angle of 300 degrees) Flexible Modes 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

16.800t 
20.591 
21.280t 
28.462 
34.316 
41.214 
48.011 
58.318 
71.770 
82.129t 

t Exactly captured system flexible modes. 
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n the analysis of vibrations of continuous elastic systems, one often encounters 
complicated transcendental equations with roots directly related to the system’s natural 
frequencies. Typically, these equations contain system parameters whose values must be 
specified before a numerical solution can be obtained. The present paper presents a 
method whereby the fundamental frequency can be obtained in analytical form to any 
desired degree of accuracy. The method is based upon truncation of rapidly converging 
series involving inverse powers of the system natural frequencies. A straightforward 
method to developing these series and summing them in closed form is presented. It is 
demonstrated how Computer Algebra can be exploited to perform the intricate analytical 
procedures which otherwise would render the technique difficult to apply in practice. We 
illustrate the method by developing two analytical approximations to the fundamental 
frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to 
the numerical solution of the exact (transcendental) frequency equation over a range of 
sy s tern parameters. 
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general availability of computer algebra systems has resulted in analy 
blems which heretofore have been re 

tools practically eliminate the tedious error prone manipulations required by hand- 
derivations and allow the analyst to explore various analytical treatments which would be 
too costly otherwise. In the same way that digital simulation has revolutionized the 
numerical treatment of engineering problems, symbolic computation promises to be a 
powerful tool in analytical investigations. 

In the area of multibody dynamics, computer algebra has been used to derive the full 
nonlinear equations of motion in symbolic form [I]. These equations are typically so 
complex that they daunt inspection. However, built in translators convert these equations 
into a higher programming language e.g FORTRAN which results in extremely efficient 
digital simulations. For sufficiently simple systems, symbolic representations can be of 
direct use in studying such issues as elastic stability and buckling [2]. Perturbation methods 
are ideally suited to treatment by symbolic computation [3]. 

The classical method of determining the natural frequencies of a continuous elastic 
system results in an eigenvalue problem and associated characteristic equation. In general, 
this equation is transcendental and is embedded with various system parameters. Thus 
recourse must be made to numerical methods to solve these equations and the dependencies 
of the frequencies upon the various parameters can only be revealed through exhaustive 
computation. It therefore appears desirable to be able to approximate the roots of these 
equations by analytical expressions which are relatively simple yet accurate. The principal 
idea behind the method presented in this paper is to find closed form expressions for 
infinite series, the terms of which involve inverse powers of the natural frequencies. 
Truncating the series after the first term gives an approximation to the fundamental 
frequency. By summing sufficiently high powers, this approximation can be made 
arbitrarily accurate; but the resulting formula increases in complexity. The methods 
whereby others have addressed this problem are quite varied, ranging all the way from 
Fourier Series to complicated contour integration and difficult 'procedures involving integral 
equations. Hughes [4] obtains numerous modal identities by expanding the Green's 
function in a series of eigenfunctions. The technique we present is extremely simple and 
appears to have been applied in a restricted form by Lord Rayleigh [5].  Our result is very 
general and can be applied to any vibrational system one the characteristic equation is 
established. The only difficulty in applying the method is the need to develop complicated 
transcendental functions into Taylor series and manipulating the resulting coefficients. 
However, with the use of a computer algebra system, this task becomes almost trivial. The 
method is illustrated by deriving two analytical approximations to the fundamental 
frequency of a vibrating cantilever carrying a rigid tip body. The accuracy of these results is 
verified by comparisons with numerical solution of the frequency equation over a range of 
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Before presenting the technique predicated on infinite series, let us consider a 
"symbolic" solution to a prototype vibration problem employing the celebrated Rayleigh 
Principle. The elastic system consists of an Euler-Bernoulli beam cantilevered at one end, 
and carrying a rigid tip body at the other (see Fig. 1.Aj. The beam has a constant mass 
density (per unit length) p, uniform bending stiffness El,and nominal length e. A rigid tip 
body of mass rn and inertia J (about P) is attached to the beam tip at x&. We denote by c 
the distance from P to the tip body mass center.The derivation of the partial differential 
equation of motion and associated eigenvalue problem is given in Appendix A. The system 
eigenvalues are the solutions P k  to eq.(A.9) and are seen to depend upon the three 
dimensionless tip body parameters 

The relationship between the eigenvalues and the system natural frequencies is given by 
eq.(A. 10). 

Let us approximate the beam deflection u(x,t) with a cubic polynomial in x. 

where 5=x/e and the geometric boundary conditions at x=Q have been observed. Here 
ql(t),q2(t) are undetermined generalized coordinates. The system kinetic energy T and 
potential energy V are then discretized into the respective quadratic forms (see eqs.(A. 12) 
& (A.11)) 

1 +2c*) + 2( e2 J -mc2)l q; + [e+ 14 2 1 +3c*)2 + 4_( 2e2 J -m$)l q3 + 

[$+m( 1+2c*)( 1+3c')+-h(J-mc2) qlq2 
e2 1 

If we write T=lL?qTIM]q and V=112qT[K]q, then the system's first two natural 
frequencies are approximated by the roots 0; of the characteristic polynomial 
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xpanding this de inant and solving the resultant qu atic is relatively painless if a 
computer algebra system is invoked.The resulting expression for the fundamental 
frequency can be written in the form 

w l = d q z  P: 
with 

1260 1 14 

k630 c* +210)m* +630J* + t3+51 I P1= 

where t3 =2n( 33075 J* + 1260 J* + t2 +tl e 208)' 
and t2=[(66150c*+l1025)J* +42OOc*+ 1680]m* 

tl=(44 IOOc* 2+ 22050c*+ 3675)m*2 

This result of course provides an upper bound to the true fundamental frequency. 
It should be noted that this method meets with practical difficulties when one attempts 

to improve the accuracy by retaining additional terms in the expansion of the elastic 
displacement. The higher degree of the concomitant characteristic polynomial renders an 
analytical solution impossible. The method to be described in the next section does not have 
this limitation. 

&proximations Based UDon Infinite Series 
The current method is based upon truncation of infinite series in the frequencies a,., 

such aszr-, 1/&. 1/0,4 etc. where the sum can be expressed as a relatively simple 
algebraic function of the system parameters. If the series convergence is sufficiently rapid, 
then truncating the series after the first term yields a formula which approximates the 
fundamental frequency 01. Clearly, by summing sufficiently high powers of we can 
approximate the first frequency to any desired degree of accuracy and will always have a 
lower bound. As will be seen, the corresponding formulas become increasingly complex. 
However, it should be pointed out that the generation of these higher order results can 
always be carried out in practice unlike the procedure of the last section. Hughes 141 
generates series like the above and expresses the sum as a volume integral containing 
products of the Green's function with the mass density. He notes the difficulty of 
performing these integrations when the powers of 6&,' increase. Our method only requires a 
Taylor series expansion once the transcendental frequency equation is established. 

Before considering the case of a transcendental equation, we present an elementary 
result from the theory of polynomial equations. 

Given the polynomial equation 
1 +a1 z+a2z2+. - .+anzn=O 
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,. = n) (over the field of complex num 

n 
(b) +=a:-2a2 

i=l Zi 

- Proof 
First note that if 0 is a root, it can be removed leaving a deflated polynomial with no 

zero roots. Hence there is no loss in generality if we assume all zi#O. The general 
polynomial with roots z1 ,z2,. - .,z, can be written as 

Expanding and dividing through by the product (-l)nzlzp. .z, we obtain 

which is of the desired form. It follows that 

-a 1 = sum of reciprocals of roots 
a 2  =sum of products of the reciprocals of the roots taken 2 at a time 

Sums involving higher powers of the inverse roots can also be generated. Thus 

In an effort to adopt these results to the case of a transcendental equation f(z)=O with an 
infinite number of roots, it is natural to expand f(z) in a power series andformally apply 
the above formulas to this "infinite degree" polynomial. It turns out that this procedure can 
be proven mathematically valid when f is an entire function of the complex variable z. We 
will not present the proof here but refer the reader to [6] for the necessary theory of entire 
(integral) functions. 
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eans of illustration, we apply this technique to approximate the fundamen 
y system considered above. 

gonometric and hyperbolic functions, the freque 

1 - 4 1 2 J * +  12m*c*+4m*+ 1)P4 + 
12 

~~~(420m*+168)J*-420m*~c*2+56m*c*+8m*+1]~ 8 -- - .=O 
5040 

.. .. 
2 Since the coefficients of P and p are zero, we conclude that c l = O  and l = O .  These 

two results become immediately obvious, since, if P k > O  is a root of eq.(A.9) then so are: 
-Pk,  &,-&. In order to obtain series converging to a nonzero result, write eq.(2) as 

n-1 pn n=l p2 

and form the auxiliary "polynomial" 

4 
If Pk is a root of eq.(2), then Z&k is a root of eq.(3). This artifice coalesces the quadruple 
of roots (Pk,-Pk, $k,-$k) of eq.(2) into a single root of eq.(3). Applying our method to 
the auxiliary equation(3), we obtain 

1 12J*+12m*c*+4m*+1 
n=l c Q= Pn 12 (4) 

and 
0 

%= (( 5880~*2+3360~*+560)m*2+[( 10080c*+2520)J*+728c*+264]m* + 
n=l Pn (5) 

5040J*2 + 504J*+ 33 )/5040 

Truncating the above series after the first term leads to the respective approximations 

12 
12J*+ 12m*c*+4m*+ 1 

and 
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wh 
s 1 = ~ 5 8 8 0 ~ * 2 + 3 3 6 0 ~ * ~ 5 6 ~ ) m ~ 2  

s~=[(10080~*+2520)~* +728c*+2~]rn* 

sg =504J*( 1+10 J*)+ 33 

Numerical Results 

eigenvalues were generated by numerically solving the transcendental equation (A.9); 
the sequences of partial sums appear in the last two columns. The numbers in the last row 
(n=-) were obtained from the theoretical values appearing on the right hand sides of 
equations (4) and (5). All values were generated with m*=2.0, J*=0.028, and c*=O. 1 . 

Verification of the modal identities (4) & (5 )  is provided in Table 1 b 

Table 1 - Partial Sums of Series: 
Eigenvalues of Beadtipbody 

1 
2 

3 

4 

5 - -  
00 

P n  

1.0077 
3.4599 

5.9100 

8.5047 

1 1.3806 - - -  

.9699 

.9769 

.9777 

.9779 

-9780 

.9780 
- - -  
(eq. 4) 

The two approximations to the "dimensionless frequency" based upon series 
truncation (eqs. (6)&(7) ) are tabulated in Table 2 below for the case of a pure tip mass - 
J*=e*=O. The values in the second column ('PI') were obtained by numerical solution of 
eq.(A.9). As the value of the tip mass increases (relative to the mass of the beam),both 
approximations improve. As expected,the approximation based upon eq.(7) is superior to 
that supplied by eq.(6). 
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able with ass 

0.0 

5.0 

10.0 

15.0 

20.0 

3.5 160 

0.7569 

0.5414 

0.4437 

0.3850 0.3850 (9.7E-06) 

Table 3 below is similar in format to Table 2 but was generated with J*=l and c*=O, 
which represents a relatively large concentrated inertia at the tip of the beam. In this case we 
see that the approximations degrade with increasing m'. 

Table 3 - Fundamental Frequency Approximations for Beam with Tip Body 
c*O, J*=1 

I t 
2.0 

.7995 .7708 (3.6) .7984 (. 14) 

7845 .7559 (3.6) .7833 (.14) 

85 



sently analyze the free vibration of a uniform cantilev 
rigid tip body. Expressions for the potential and kinetic energies as well as the 
transcendental frequency equation are established. 

Fig. l.A below depicts the system in a deformed state. A uniform beam of mass 
density p (per unit length), bending stiffness E1 and length e lies along the x axis when in 
equilibrium. A rigid body of mass rn and moment of inema J (about P) is attached to the 
beam tip at P. The distance between P and the rigid body mass center is c,  and this 
directed line segment lies along the beam tip tangent direction (to prevent the tip body from 
exerting axial loads onto the beam). The small transverse displacement of the beam is 
denoted by u(x,t). 

Fig. l.A - clamped beam with tip body’ 

We shall assume that the displacement of the beam and its slope are small quantities and 
therefore make the approximation that the angle 8 p  between the x axis and the beam tip 
tangent line at P can be approximated by u,(&t). Denoting the inertial velocities of P and 
the tip body mass center by v p  and vo respectively, we can write 

where op=uxt(e,t)k 

v@)=vp+ o p x c  

is the angular velocity of the tip body and c is the vector from P to the 
tip body mass center. Recalling that led is small and neglecting the term epcfp, we find 

The expressions for the absolute translational and rotational accelerations of the tip body 
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above by direct different 
conditions for u(x,t) at the 
y. As indicated in Fig. 2.A, 

directed along the y axis and a moment M directed along the z axis upon the tip body at 
the point P. 

~ X 

M 

Fig. 2.A free body diagram of tip body 

The equation of motion for the tip body along the y axis is 

s =m --<t,t>+c.-(&t) [$ axat* a3u I 
From eiementary beam theory the shearing force in the beam at x& is given by 

S=EI a3d&&e . In conjunction with the above, this supplies one of the required 
boundary conditions. 

ax3 

The second boundary condition at x& is obtained by considering the rotational motion of 
the tip body. If we denote by h the angular momentum of the tip body about its mass 
center, then we have the relation 

dh=M-cxS 
dt 

Taking the z component of this equation,neglecting the second order term in op and using 
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, we arrive at the result 

ax2 at2 axat2 
at x& 

Since the beam is clamped at x=O, we have the two additional boundary conditions 
aU 
ax u(O,t)=O and +O,t)=O (A.4) 

The partial differential equation for free vibration is the well known relation 

a2u 
ax4 at2 

E1 - + p-=O 

We now proceed to solve the above homogeneous equation subject to the geometric 
boundary conditions (A.4) and natural boundary conditions (A.2) & (A.3). Seeking 
solutions of the form e"cp(x) we are led to the eigenvalue problem 

--hcp=O d4cp 
dx4 

(p( 0) = $(O) = 0 

where (') indicates differentiation with respect to x. 

It can be shown that all the eigenvalues are positive. The general solution of eq4A.5) is 

q(x) =c1 sin a x  + C ~ C O S  a x  + c3 sinh a x  + c4 coshax 

( ark1 l4 >o) 

In order to have a nontrivial solution satisfying the boundary conditions 
(A.8), the eigenvalues must satisfy the transcendental characteristic equation 

(A.6),(A.7) & 
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*-m*c*2)p4 (1 -cos Pcosh p) + m*p(cos 

*c*p2sin p sinhP--J* p3(sin p coshP+si 
+1 +cos P coshp=O 

where we have introduced the "dimensionless frequency I' p = d  and the dimensionless tip 
body parameters are defined by 

The n d  frequencies are then given by 

(A. 10) 

For purposes of reference,the systems potential energy V is in the form of strain energy 
stored in the beam and is given by the formula 

(A. 11) 

while the kinetic energy T is the sum of the translational kinetic energy of the beam and tip 
body with the rotational kinetic energy of the tip body. Employing eq.(A. 1) we can write 
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ABSTRACT 

This paper addresses the problem of inverse dynamics for articulated 
flexible structurcs with both lumped and distributed actuators. This problem 
arises, for example, in the combined vibration minimization and trajectory con- 
trol of space robots and structures. A new inverse dynamics scheme for com- 
puting the nominal lumped and distributed inputs for tracking a prescribed tra- 
jectory is given. 

1. Introduction 
Inverse dynamics is an important problem in the control of articulated flexible structures 

such as space stations and manipulators. A solution for the nonredundant lumped actuator case 
has been provided by Bay0 et. al., [l] and Book, [2]. This method produces bounded inputs 
which move a reference point on the structure along a desired trajectory. The inputs are neces- 
sarily non-causal when the structure dynamics are nonminimum phase. Elastic deformation 
which may cause vibration of the structure is also determined by the trajectory; our goal is to 
minimize such vibrations. The viability of distributed actuators for the control of structural 
vibrations, [3] , [4] and [SI , has motivated their use here for trajectory tracking. 

Trajectory tracking of the structure can be accomplished by the use of the joint actuators 
alone [6] and in this sense the distributed actuators are redundant. We introduce the concept of 
using the extra actuation available through the distributed actuators in the structure to not only 
satisfy thc trajectory tracking constraint but also minimize the accompanying elastic displace- 
ments during the motion. To obtain these new feedforward inputs, the inverse dynamics 
method suggested in [l] is extended to cover cases of redundantly-actuated structures. This use 
of distributed actuators in feedfoward for end effector trajectory control is contrasted with the 
use of only the joint actuators in feedforward in an example of a flexible two link truss struc- 
ture with distributed piezo-electric actuators to verify the efficacy of the proposed method. 

The remainder of the paper is organized in the following format. The modeling of flexi- 
ble structures with joint and distributed actuators, the formulation of the problem and its solu- 
tion are presented in Section 2. Section 3 deals with an application of the proposed method to 
the example of a two link flexible truss. The discussions and conclusions are presented in sec- 
tion 4. 
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ula tion 
The solution to the general multi-link inverse dynamics problem involves studying an 

individual link in the chain, coupling the equations of the individual links, and then recursively 
converging to the desired actuator inputs and corresponding displacements. This approach is 
presented below, beginning with a single link. 

2.1 Equation of motion of a single link 
To simplify the cquations, we present the equations for a link with a revolute joint. The 

flexible link depicted in figure 1 forms part of a multi-link system. The link is shown with a 
revolute joint, however the formulation remains identical for a link with translational joint. The 
elastic dcflections in the structure are defined with respect to a nominal position characterized 
by a moving frame whose origin coincides with the location of the hub of the link. The nomi- 
nal motion of this frame is prespecified by its angular velocity oh, angular acceleration ah and 
the translational motion of its origin. The above definition of the elastic displacements with 
respect to this nominal frame permits the linearization of the problem from the outset. Incor- 
porating the kinematic model followed by Naganathan and Soni [7] in a finite element model 
(FEM), the equations of motion for a single link at any time t can be written as [l] 

+Kc(ah.wh)] z = BTT + B p V p  + F. (2.1) 

where z is an R" vector of the finite element degrees of freedom. M and K belong to RnX" 
and are the conventional finite element mass and stiffness matrices respectively; C, and 
K, E RnX" and are the time varying Coriolis and centrifugal stiffness matrices, respectively. 
The RnX" matrix C represents the internal viscous damping of the material. T is the unknown 
joint actuation. F E R" contains the reactions at the end of the link, and the known forces 
produced by the rotating frame effect. The distributed actuator inputs at time t are The 
equivalent nodal forces at the FEM degrees of freedom due to the distributed actuators are 
representcd by Vp , a R" vector, where np is the number of distributed actuator inputs. BT and 
Bp are constant matrices of dimensions R" and R n m P ,  respectively. ,The set of finite element 
equations (2.1) may be partitioned as follows 

[ ~ l  + 
=I., BP, + ~] 

where Oh is the elastic rotation of the hub, z, is the elastic deflection at the tip in thc y direc- 
tion, and the other n-2 finite elcment degrees of freedom are included in the vector z i .  The 
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force vector, F ,  and the B, and BT matrices are also partitioned similarly. 

i n ~ ~ ~ z a t ~ o n  Objective 
The requirement is to accurately track the end effector of the link along the given nomi- 

nal trajectory without overshoot and residual vibrations. Additionally we also seek to minimize 
the ensuing structural vibrations during this motion by minimizing J (T ,V, ), a measure of elas- 
tic deflections in the structure delined as follows 

00 

J(T,V, )  = j z( t )Tz( t )dt .  
--m 

Mathematically the objective can be stated as 

Where ? is the set of all pairs of stable joint torque and distributed actuator inputs that when 
used to actuate the system defined by equation (2.2) yields z, (t) = 0 for all t .  

2.3 Solution Methodology 
An iterative scheme is described below for each link. Equation (2.2) can be rewritten as 

M Z + c Z  +KZ=&T+BpVp + F - C , ( O h ) Z  - K , ( a h . O h ) Z  (2.5) 

where the time dependent Coriolis and centrifugal terms are kept on the RHS of the equation. 
The iteration procedure starts with the absence of the last two terms involving C, and K ,  in 
the right hand side. Then, the system of equations can be transformed into independent sets of 
simultaneous complex equations by means of the Fourier transform. For each of the evaluation 
frequency a, equation (2.5) becomes 

= [:i o +  ~ + 
J 

where the bar stands for the Fourier transform, and F represents the known forcing terms. 
After the first iteration it will also include the updated contributions from the Coriolis and cen- 
trikgal terms appearing in the RHS of equation (2.5). For any # 0, the matrix 

I .\ 

(2.7) 

is a complcx, symmetric and invertible matrix. For S = 0 the system undergoes a rigid body 
motion and H = M which is the positive definite invertible mass matrix. Let G = H-'. Then 
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the above equation can be re-written as 

The condition that the tip should follow the nominal motion is equivalent to c= 0 for all 75. 
This induces a relationship between the joint actuation and the distributed actuator inputs and is 
obtained from the last row of the previous equation. 

( F + B p V , ) .  (2.9) 

Substituting - this expression for the input hub torque in equation (2.8) and using the property 
d 'z that - = -75% yields 
d12 

Where 

and 

(2.10) 

(2.1 1) 

(2.12) 

Next we determine c. Using Parseval's theorem, minimizing J ( T , V p )  in equation (2.4) is 
equivalent to minimizing 11q1; at each a. This is a standard least squares approximation prob- 
lem [8] and rcsults in the following solution for the distributed actuator inputs, 

r 

(2.13) 

where C, U and V define the standard singular value decomposition of A as follows 

V*AU = [f 001. (2.14) 

Where the conjugate transpose matrix operator is denoted by * . In addition if A has rank np, 
which is the number of distributed actuator inputs, then the least squares approximation yields 

V,=-(A*A)-'A'B . (2.15) 
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A sufficient and necessary condition for A to have rank np is given next. 
emma 

I rank [ A ]  = np if and only if rank [BT I B p ]  = np+l 

Proof 

(2.16) 

Rank [&I = 1 => rank GBT(Gfh Gjj G,)] = 1 
=>rank A = [ - G ~ ~ - I  G B , ( G ~ ~  G , ~  G , )  + G I ]  2 n-1. 

Since BT = [ 1 0 O]* , it is easy to see that the null space of d is the span of [ 1 0 0]* . Hence 
rank d is n-1. Noting that A = d Bp , the lemma follows easily. 17 

t 
The above lemma requires that all the columns of the input matrices BT and Bp be indepen- 
dent. This is computationally more efficient than checking the rank of A for each a. Next, the 
corresponding joint torque component, T is then evaluated from equation (2.9). The inverse 
Fourier transforms for the feedforward inputs completes the first iteration and results in 
torques, T' and distributed inputs V i .  Then the forward dynamic analysis is camed out to 
compute K, and C,. F in the RHS of equation (2.5) is updated and the process is repeated to 
find the new input torques and voltages. The process is stopped at the nrh iteration if 
1 1 ~ "  - ~ " - l 1 1 ~  + yPn -vpn-* 112 < E, where E is some small positive constant. It may be noted that 
for slow motions the terms involving K, and C, are small relative to the other terms in equa- 
tion (2.1) and the iterations converge in a few steps [I]. 

2.4 The Algorithms for the Multi-Link Cases 
In the previous sub-section the procedure to evaluate the joint actuations of a single link 

was presented. This can be recursively extended for multi-link flexible manipulators. Algo- 
rithms are presented below for both open and closed chain multi-link mechanisms. These are 
similar to those proposed by Bay0 et. al. [ 1 I. 
Multi-Link Open Chain Case 
1. Define the nominal motion (Inverse Kinematics of rigid manipulator). 
2. For each link j, starting from me last one in the chain: 

a) Compute. torque (or force) T' and distributed actuator inputs P i  
imposing z/ = 0 (Section 2). 
b) Compute the link rcaction forces R J  from equilibrium. 

3. Use equation (2.1) to compute the elastic displacement and joint angles. 
4. Compute the inputs for the next link, j-1. 
Multi-Link Closed Chain Case 

1 .  Define the nominal motion (Inverse Kinematics of rigid robot). 
2. Dcfine an independcnt set of joint forces and reactions equal in number to the degrccs of 
freedom of the robot. 
3. For each link j ,  starting from the last one in the chain: 

a) Compute torque (or force) TJ and distributed actuator 
inputs P,' imposing z /  = 0 (Section 2). 

95 



b) Compute the link reaction forces R J  from equilibrium. 
4. Use equation (2.1) to compute the elastic displacements and joint angles 
5. Use elastic deflections to correct the nominal motion of each link. 
6. Repeat steps 3 to 5 until convergence in the forces/torques is obtained. 

link flexible manipulator. 
This concludes the methodology. In the next section we present an application to a two- 

3. Example 
A twolink truss experiment under development at UCSB is shown in figure 2. The trusses 

are made of lexan and have lumped masses (net 2 Kg for each link) distributed along their 
lengths. The first and the second links are tip loaded with 3.5 and 1 Kg respectively. 
Equivalent beam properties of the trusses used in the FEM model for simulations are Youngs 
modulus = 7 e9 GPa , Link length = 1.2 m , density = 1500 Kg/ma,  2ross sectional area = 
4.378 e-5 m2 and cross sectional area moment of inertia = 4.7244 e m . Of the 10 spans in 
each link, two are piezo-electrically actuated. They are located at the second and ninth spans as 
shown in the figure 2. The piezo-electric stack actuators in those spans have the following pro- 
perties. Cross sectional area, A, = 7.3 e m , piezo strain to voltage constant, dsv = .731 
e4 V-',  Youngs modulus, Ep = 73 e9 Gpa and distance of the actuator from the neutral axis 
of the truss, dt = 1.27 e-2 m . Following the standard Bemoulli-Euler modeling for an applied 
voltage Vinpul, the piezo-electric actuation can be considered as two concentrated moments M 
acting at the two ends of the actuator [9] and [lo]. Where M is given by 

(3.1) 

and N p  = 4  is the number of piezos in each span. For the truss considered above 
M = = 0.0198Vinp,. The desired trajectory is a rest to rest motion of the structure with,initial 
conditions given by = 11.25O and 02 = -22.5O. 0 s are 
the absolute angles of the links with respect to a frame fixed on the ground and are shown 
in figure 2. The nominal motion of the tip for each link are the trajectories followed by the tips 
of the links if the structure were rigid and followed the nominal angular motions shown in 
figure 3. Using the procedure in section 2.4 for open-chain mechanisms, open loop simulations 
were performed (1) using only the joint actuation for feedforward and (2) using the distributed 
piezo-electric actuators along with joint actuators in feedforward and the results are presentcd 
below. 
Plots of the input piezo voltages and joint torques are presented in figures 4 and 5 respectively. 
To illustrate the viability of the proposed method figures 6 and 7 show the transverse structural 
midpoint deflections of the two links during the motion with and without the distributed actua- 
tors. Similar plots for the elastic hub rotations are shown in figures 8 and 9. 
Thus the piezo-electric actuators show a significant reduction in the structural vibrations and 
demonstrate the viability of the proposed method. The consequent reduction in the induced 
strains in the structure allows the use of lighter elements and smaller actuators, especially in 
space structures where the loads are mainly inertial. 

- 6 2  

M = (dsv N p  E p  Am 4 Ivinput 

= €12 = 0 and final conditions 
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Typically distributed actuators like the piezo-electric ones cannot garner enough amation 
to cause large motions in the structure. However they could be very effective in controlling the 
small structural deformations in the structure. Their use in the feedforward to aid the joint 
actuators for trajectory tracking is a novel idea developed in this paper. The method proposed 
was shown to be extremely efficient in removing structural vibrations from structures as seen 
in the example. Thus these feedforward actuations, obtained through the proposed inverse 
dynamics, augmented with joint angle feedback based closed loop controllers seem promising 
in the slewing control of flexible manipulators. This encouraging result motivates further work 
on distributed actuators in the control of flexible structures. 
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Figure 1. A Single flexible Link 
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Figure 2. The Two link Truss Structure 

99 



o . 2 ~  0.1 

-0.0 
-0 1 2 

Time (s) 
3 

Fig.3: nominal angular positions 

100 



1/1 

cd 
-4 

0 
3- 

1 
R 
d 

0 
N 
a, 

& 500 

4 

0 
4 

-500 c( 

- 1000 
iz 

n 

G 
I z 

W 

~~ 

Span Z 

-0 

2 

1 

0 

-1 

1 2 
Time ( s )  

Fig.4: input piezo voltages 

3 

- with piezo 

-2 A 
-0 1 2 

Time ( s )  
3 

Fig.5: inverse dynamics torques 

101 



2 W 

.-.I 

t , I 

I 
x 
3 1: without Piezo 

E= 

- 

.,-I 

.,-I 0 -  
4 
0 
Q) 
.-..I 
I4-l 

a, -1r 
n 

-5 -2 

- 

4 c I I I 

n 

E 

N 
I 

1 .o 

0.5 

0.0 

-0.5 

t '  

i 
t. I /  

without Piezo 

3 
c 
PI 

..-I 
0 -1.0 

-0 1 2 3 
Time ( s )  

; 
Fig.": transverse deflection at midpoint of link 2 

102 



P 
I 

-10 

n 4  
VI a 
d 
LI 

rn 2 -  - 

0 
4 
v 

G O  
0 

d 
-)-.I 

3 

3 &? -2 - - 
without piezo 

n 
I 

-4- ' I I I I , I I 

-0 1 2 
Time (s) 

3 

Fig.8: elastic hub rotation of link 1 

Fig.9: elastic hub rotation of link 2 

103 





Modelling Robotic Systems with DADS 

L. W. Cliurcliillt I. Sharp 

Abstract 

LVith the appearance of general off-the-shelf software packages for the sim- 

ulation of mechanical systems, modelling and simulation of mechanisms has 

become a.n easier task. The  authors have recently learned one such package, 

DADS, to model the dynamics of rigid and flexible-link robotic manipulators. 

In this paper. we present this overview of our learning esperiences with DADS, 

in the hope that it will shorten the learning process for others interested in this 

software. 

1 Introduction 

The practice of robotic-systems simulation is presently undergoing a transition from 

user-customized to off-the-shelf software. Of course, the development of new methods 

will always require the development of new computer programs to test them. But 

with the appearance of general, (relatively) easy to use, simulation packages it is no 

longer necessary to write your own program every time you need to simulate a new 

mechanical system. 

One such package is DADS', the Dynamic Analysis and Design System. The 

University of Victoria's department of mechanical engineering has recently acquired 

'Department of Mechaiiical Engineering, University of Victoria, Victoria, British Columbia, V8W 

'DADS is a product of Computer Aided Design Software, Incorporated, P.O. Box 203, Oakdale, 
2Y2 Canada. 

Iowa 52319. 
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DADS for research use. As the authors’ work 011 recursive algorithms for dynamics 

simulation came to fruition, we decided to use DXDS as a standard in accuracy and 

performance tests of our own software. Thus, our prirnary objective was  t o  check the 

results of our simulation of flexible-body open chains. in particular robot arms, against 

those of a completely different approach. As a secondary objective, we wished to  use 

the package’s plotting and animating capabilities, with both o ~ i r  own and DADS’ 

data, to generate graphical and animated out.put. 

We have developed a simulation implenicnting recursive solutions to both the 

inverse and forzunid dynamics problems for rigid-link open chains. I liese simulations 

have been estensively tcstetl and provide highly accurate results. Our inverse c1yna.m- 

ics code uses, as input, the angular displacements, joint rates and accelerations and 

generates, as output, the control forces to  be applied to  the actuators of the chain 

in order t o  obtain those trajectories. The forward dynamics code uses, as input, the 

control forces to be applied to the actuators and generates, as output,  the angular 

r ,  

displacements and rates of the joints and the resultant trajectories of the end-points 

of the links. The control forces can be supplied either as a prescribed set of data 

points or by the inverse dynamics routine. The inverse and forward algorithms differ 

sufficiently that a good indication of the accuracy of the simulation can be obtained 

from the rms error of the integrated solution vector, the set of angular displacements 

and joint rates for the whole chain. 

We planned to use our inverse and forward dynamics programs to establish a 

confidence level for DADS’ rigid-link dynamics, after which we would assume a “lesser 

than or equal” corresponding confidence level for DADS’ flexi ble-link dynamics. 

Thus, we wished to employ DADS to: 

0 Solve the inverse dynamics problem for a rigid-link model and compare the 

resultant control forces with ours. 

0 Solve the forward (simulation) dynamics for a. rigid-link model and compare the 

resultant solution vector, its rms error and the trajectories of the end-points of 

the links to ours. 
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Include l ink flexibility in the DADS model and simulate the  motion of the 

system. 

0 Plot and animate DADS’ output. 

2 Getting Started 

DADS comes conipletc with three accoinpanying tests: the theoretical, user’s and ex- 

amples manuals. The  theoretical manual [l] is actually a hardcover book describing 

the  theory underlying the program’s algorithms. The user’s manual [2] is really a ref- 

erence manual. It includes a brief introduction to the program and some instructions 

in the  use of the postproccssor (plotting) and the geometry and animation routines, 

bu t  consists primarily of detailed outlines of the elements with which mechanical sys- 

tems are modelled. The esamples manual [3] consists of a large number of DADS 

models of varying complexity. but for the most part, the descriptions are limited to 

hard copies of intermediate da ta  files, output files and plots. This set of manuals 

becomes quite useful once one achieves sufficient familiarity with the  software. 

In our version of DADS, Revision 6.1, the most commonly used portions of 

t he  program have been implemented via a graphic user interface with the remaining 

portions running in ordinary text windows. DADS must be run from Openwindows 

( a  Sun interpretation of X-Windows) and a resource/defaults file named daDS must 

be present in the home directory at startup. 

It is worth making a few remarks on DADS’ implementation. DADS can be 

heavy on system resources and doesn’t always work smoothly with other applications. 

It can shut itself down if it finds another program running at startup and can inter- 

fere with other programs’ operations, particulary those using color graphics. The 

older portions of the  package work well within their text windows; though DGE, the 

animation routine, won’t permit line editting after file input is completed. A minor 

problem with both the new and old command windows is tha t  they automatically 

close upon job completion. This is convenient if the job ends successfully, but if the 

107 



termination was abnormal, any error messages presented flash offscreen too quickly to 

be read. Error messages from the routine performing the analysis may be recovered 

from an information file, but error messages from other portions of the program (ie. 

model definition, plotting, graphics and animation) are lost. 

The new coininand shell windows also have another fault. DADS generally uses 

Xterm window conventions but l ias  preset many of the usual options. In general. these 

are matters of little consequence but, in combination with other factors, one of these 

option settings has proven a consistent source of error: DADS sets the input field to 

follow the mouse-pointer location. When using the data entry windows, the mouse is 

useful in moving quickly from one input cell to another (though it would work just as 

well with mouse-sclectecl input and, for general data entry, the tab key is often more 

convenient anyway). However, in  the new command shells, data entry is recognized 

only from the command line at the bottom of the window. Unfortunately, input is 

also allowed, prompted aid echoed in  the dialogue section of the window. Of course, 

the programs’ text messages are displayed in this dialogue pane and, after a menu 

selection, the mouse-pointer ends up there as well. These attributes combine with the 

dialogue pane’s larger size and central location to make it a natura1 site for keyboard 

input, even though it is completely nonfunctional. The problem is compounded by 

the choice of white text on dark blue and black backgrounds for the dialogue pane and 

command line, respectively2. On a black and white display, the boundary between 

the two fields is indistinguishable and input is very easily misdirected, resulting in 

corrupted data and incomplete models. 

DADS is organized in program segments corresponding to the different tasks 

involved in building a mathema.tica1 model of a mechanical system. A model is de- 

fined and initially configured in the preprocessor. The simulation is then performed 

by the analysis package. If desired, plotting and data manipulation can be done in the 

postprocessor. Graphic representations of the model elements are developed with the 

geometry routines. .4nd, finally, the simulation results and graphic representations 

2These default settings can be changed by modifying the daDS file. Try changing *DADSMes- 
sage*background from navy to grey55 or slate blue. 
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are visually integrated via the animation program. In addition, DADS is equipped 

with a number of supplementary conversion routines which translate data and output 

files froni one program segment for use in another. The heart of the package. how- 

ever, consists of the preprocessor and analysis routines with which DADS perfornis 

simulations. 

3 Simulation 

Before one begins to model wi th  DADS, it is t1<4pful to develop an overview of the  

way the program works. In  particular, we mention some assumptions which seem to 

be implicit in the program’s operation and provide an outline of the different types 

and functions of DADS’ elements. 
Many of the difficulties we encountered in modelling our systems were rooted 

in the choice of reference frames we made for the links. DADS seems to have been 
originally designed to use a global reference frame in combination with local body 

center-of-mass frames. The system is assumed to operate with a given orientation to 

the ground and under the influence of gravity and possibly dissipative forces as well. 

These properties are undoubtedly those most appropriate for arbitrary mechanical 

systems but, in the analysis of robot arms, other situations are also common. The 

recursive algorithms we use make joint-based reference frames a natural choice for the 

links. And, since our main application of interest is the Canadarm, we deal with all 

external forces as special cases and default to a weightless, frictionless environment. 

DADS seemed capable of adapting to our point of view so we elected to define the 

DADS models in the same way we defined our recursive models. But, in places, 

DADS still implicitly relies on body center-of-mass reference frames, which led to 

several problems. 

A DADS model is defined in terms of a variety of program “elements.” The 

shear size of the program’s element library can be overwhelming, leaving a new user 

bewildered as to which elements would be appropriate to build and drive a model. 

At the highest level is the system element which defines the type of analysis to 

be performed-static, dynamic, inverse or kinematic-and sets global parameters such 
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as units, the run time and printing intervals. The gravitational field vector must be set 

here (it helps to define the units), though a scaling factor is also provided to adjust 

the magnitude. Tolerances for DADS assembly analysis and LU factorization are 

specified. hfatrix operations should be set to SPARSE as the alternative, since FULL 

matrix operations, doesn’t seem to work correctly. DADS is capable of performing 

a (useful) check that the model will assemble correctly to within the given assembly 

tolerance. Since we deal with relatively straightforward assemblies, we tend to set 

this tolerance value quite small (lo-‘.) The type of reference frame to be used in 

the analysis is also selected here. Possible choices are global, local (body center of 

mass) or NCBF (noli-centroidal body frames.) Contrary to our espectations, this 

option mainly affects the interpretation of reference points in the input data, except 

for reaction forces, whose coordinate frames are specified elsewhere. Output data is 

given in terms of the global and, sometimes, the local (body center-of-mass) fxames. 

Finally, a debug flag may be set here. We found this useful mainly because it turns 

on the time echoing in the analysis window. 

Each of the analysis types have their own element. We discuss only the el- 

ements relevant to the present application-inverse and dynamic. In the inverse 

element, one specifies the coordinates used to output the reaction forces. The analy- 

sis step size and solution tolerance is also determined here. We generally found the 

default values adequate for a first run. Only after the system was in working order 

did we try for greater precision. In the dynamic element one specifies the maximum 

integration step and the solution and integration tolerances. The defaults are ad- 

equate to get the system working but the tolerances had to be lowered to get the 

accuracies we desired. 
Data elements describe the physical components of the system. In a body 

element one describes the physical properties of an individual component, defined 

in local (not NCBF) coordinates. One can apply external forces directly to the 

center of mass of a body but, for our system, we found another mechanism more 

convenient. If NCBF is the type of reference frame selected in the system element, 
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then all bodies must be associated with a corresponding reference frame element 

defining their coordinate system. Similarly, if a body is specified to be flexible it 

must be associated with a corresponding jlezible body element which permits the 

definition of damping and/or external forces and points to a data file containing 

vibrational mode information from a finite elements program. Other data elements 

include an initial condition element (if absent, the associated value defaults to zero) 

and a curve element which defines a function in terms of a prescribed set of data 

points. We usually specified ohr control forces via curve elements. Curve elements 

can read data from a text file but, afterwards, such data cannot be edited. For 

this reason we suggest saving a model’s configuration and curve elements separately. 

This greatly simplifies switching between sets of control forces, for example. We also 

suggest frequent saving when loading large files into curve element sets, as DADS can 

shut down unexpectedly during these operations. 

The joint-constraint elements make up a large library of the various means 

for joining the bodies in the model. The name is indicative of their function-these 

elements are connectors with specified degrees of freedom but are passive, not active. 

Note that, despite the description in the user’s manual, the order in which the bodies 

connected by the joint are specified can be significant. The robot arms that we have 

modelled with DADS use only bracket joint elements (connectors with no degrees of 

freedom) and revolute joint elements. 

Most of the other-constraint elements enable one to model the physical conse- 

quences of the bodies’ dimensions and the system’s overall geometry. As our models 

assume an idealized geometry, we found most of these unneccesary. In the inverse 

dynamics analysis, joints are made to move with the driver element. A driver element 

may be specified as one of several types, driving: any of the coordinates, any compo- 

nent of the velocity, a distance, a relative angle or a relative translation. The driving 

function may be specified in a variety of ways: a curve element, a simple polynomial, 

a simple harmonic function, as the control output of a large set of control elements or 

in terms of a user-supplied subroutine. We used relative angle drivers in our inverse 
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dynamics models. The polynomial and harmonic functions were adequate for test 

cases though we will likely need to develop our own subroutines, eventually. 

There are seven force elements which provide a wide variety of options for 

applying forces in the forward dynamics analysis. We applied control forces to our 

revolute joints by means of rotational spring-damper-actvator elements. RSDA’s are, 

effectively, damped motors with torsion. The three types of torque contribution may 

have both constant and time-varying components. However, contrary to expectation, 

the actuator torque is applied backwards so as to be dissipative. This may be corrected 

in several ways. One is to change both the direction of the rotation axis or the order 

of the connecting bodies in the associated revolute joint element definition. Simpler, 

however, is adjusting the curve element to scale the applied torques by a value of -1. 

To summarize, the set of elements we used in our inverse analysis consisted of 

a system and inverse element with a set of body and reference frame pairs connected 

by revolute joint-driver pairs. For dynamic analysis we used a system and dynamic 

element with a set of body and reference frame pairs connected by revolute joint- 

RSDA pairs. Initial condition elements were used and control forces were specified 

to the RSDA’s via curve elements. For flexible-link dynamics we moved to body, 

reference frame, flexible body element triples. 

4 Visual Presentation 

As well as performing dynamical analyses, DADS is capable of plotting and/or ani- 

mating the results. Plotting is accomplished with the postprocessor. Essentially any 

value associated with a component of the model may be plotted. DADS is also capa- 

ble of combining data from different runs and data may also be read from (or saved 

to) text files. Plots may be displayed on screen or directed to files in a wide variety 

of formats. 
Before animating a model, it is necessary to describe the geometries of the 

components. This is done with Geomake, one of the older portions of DADS. A 

disadvantage of this routine is that once one has created the pieces that make up an 
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animation, they cannot be edited. As a result, we soon learned not to build large 

parts files. Instead we defined command files to create the parts and saved them in 

separate files to be combined later as desired. DADS geometry definition is general 

and seems capable of generating virtually any desired object. As we were building a 

simple robot arm without the end effector we dealt with ordinary cylinders. In order 

to smooth the  appearance of the arm’s joints we added spheres to the proximal end 

of each cylinder. Also, since the geometric body description needn’t correspond to its 

modelled dimensions, our payload was modelled as a cylinder much shorter than its 

actual length, enabling a clearer view of the motion of the small links at the end of the 

arm. These simple additions transformed the original collection of stubby cylinders 

into a continuous articulated arm. Geomake can create body-geometries in one or 

more colors but the animation routine requires one color per part. To “begin with, we 

suggest whit e. 

The output of Geomake must be converted to a format suitable for the ani- 

mation routine. This is accomplished with a program called CONV, but this routine 

will not work if called from DADS’ window menu (it builds an empty data file.) One 

shoul execute CONV from a system command line in order to get it to work properly. 

The other conversion routine, DADS2MOD works well. 

DADS animation is impressive and easy to learn. Previously created and 

converted geometries are stored in .def files and may be modified and saved easily 

from within DADS Graphic Environment (DGE.) In fact, after one becomes familiar 

with DGE, the .def files become quite readable and may be simply modified with 

a text editor. The DGE is command driven, but a graphic interface may also be 

started and is to be highly recommended, though it should be called after the model 

has been “assembled” by viewing the first frame. DGE has several viewing modes and 

both the viewpoint and lighting may be changed at will. Color and shading are good 

and, while the animation was noticably jerky on our architecture (a SPARCstation 

IPC networked to a Sun 4), the speed was within acceptable limits. DGE’s graphic 

window is small and the program will not resize it while running. However this flaw 
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may be overcome by executing DGE from a sy m command line (rather than DADS’ 

window menu) where one may specify the starting size for the graphics window as a 

command option. We found DADS animations were often helpful in understanding 

the motions resulting from the application of arbitrary forces. 

_ _  - -  

5 Results and Conclusions 

Our first results with DADS were obtained for rigid-link models. We tested two 

systems, a single link rotating about a fixed base and a six-link system modelled after 

the Canadarm, with solution and integration tolerances of and respectively. 

With the first model, we compared the joint reaction forces from DADS’ inverse 

dynamics to the  control forces generated with our software. We then used the joint 

reaction forces as input to DADS7 forward dynamics and compared the integrated 

solution vector to the prescribed input trajectories. The agreement between these 

was good, the difference appearing only in the last decimal of DADS’ single precision 

output. Curiously, the joint reaction forces agreed with our control forces only to an 

average of about four decimal digits. When DADS’ forward dynamics was run with 

our control forces the integrated solution vector and resultant trajectories agreed with 

the originals to three or four digits. For the second more complicated system, even 

using DADS’ joint reaction forces as input to the forward dynamics results in only 

four digits agreement between the output trajectories and the prescribed inputs. We 

concluded that, for a general robotic system, DADS’ confidence level was about four 

digits. 

Our results with flexible-link models began very poorly. The problem lay with 

an undocumented aspect of DADS’ handling of flexible bodies. DADS is capable of 

using finite element data generated by a number of different programs. We used AN- 

SYS and chose a body-fixed coordinate system coinciding with the NCBF coordinate 

system assigned to the body in DADS. However, for flexible bodies, DADS reinter- 

prets the postion specified for the body center of mass as the origin of the flexible 

element coordinate system, with other complicated consequences as well. This prob- 

114 



lem was fixed by reassigning the finite element coordinate origin. A second difficulty 

was encountered when we modelled the flexible links as single-element cantilevered- 

beams. With this model, we could not obtain a solution in a reasonable amount of 

time. This problem was fixed by using a five-element cantilevered-beam model. 

The data we were interested in comparing included the trajectories of the end- 

points of the links. DADS’ output actually gives the trajectories of the centers of 

mass of the links. With flexible links, these values cannot be immediately converted 

.to end-point trajectories, so we attempted to use a point-of-interest data element. 

This element is designed to provide information about nodes of interest in flexible 

bodies. Unfortunately, the output data for this element was  quite incorrect, possibly 

a casualty of the use of two different coordinate systems, in DADS and the finite 

element package, for the link. 

We have been able to obtain flexible-link output for a single-link system of 

a well-known spin-up problem. (Please refer to Kane et al. [4] for details.) The 

transverse tip deflection is shown in Figure 1 and displays the divergent behaviour 

previously obtained with other multibody simulation packages [4]. At  present, we are 

involved in incorporating link flexibility into the more sophisticated six-link model of 

the Canadarm, for the purpose of doing detailed comparisons between DADS’ results 

and those of our simulation. 
To conclude, we have employed DADS to model a particular class of mechanical 

systems-robotic manipulators with rigid and/or flexible links. We have discussed the 

various elements available in the package for constructing the model of such a system. 

Also, some of the difficulties encountered in the process of using DADS were noted. 

A short description of DADS plotting and animation capabilities was given together 

with out experiences of using them. Comparison of DADS results for a rigid-link 

manipulator demonstrates good agreement with the results of our own inverse and 

forward dynamics software. Finally, results of the simulation of a flexible beam with 

DADS support the previous claim regarding the lack of geometric stiffening terms in 

the existing multibody computer programs. 
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ABSTRACT 

The Computational controls Workstation provides an integrated environment for 
the modeling, simulation and analysis of Space Station dynamics and control. 
Using highly efficient computational algorithms combined with a fast parallel 
processing architecture, the workstation makes real-time simulation of flexible 
body models of the Space Station possible. A consistent, user-friendly interface and 
state-of-the-art post-processing options are combined with powerful analysis tools 
and model databases to provide users with a complete environment for Space 
Station dynamics and control analysis. The software tools available include a solid 
modeler, graphical data entry tool, O(n) algorithm-based multi flexible body 
simulation and 2D/3D post-processors. This paper describes the architecture of the 
workstation while a companion paper describes performance and user perspec- 
tives. 
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The Computational Controls Workstation provides an integrated environment for the modeling, 
simulation and analysis of Space Station dynamics and control. Using highly efficient computa- 
tional algorithms combined with a fast parallel processing , the workstation makes 
real-time simulation of flexible body models of the Space Station possible. A consistent, user- 
friendly interface and state-of-the-art post-processing options are combined with powerful 
analysis tools and model databases to provide users with a complete environment for Space 
Station dynamics and control analysis. This paper describes the architecture of the workstation 
while a companion paper [ 11 describes performance and user perspectives. 

Hardware Arc~itecture 

The system hardware is designed around a special-purpose parallel processing architecture based 
on four Intel is60 processors. The parallel processor communicates with the host system through 
a standard VME bus interface. All user interaction is handled by the host, a Silicon Graphics 
Personal Iris workstation. A dedicated graphics engine on the host is used for the animator and 
solid modeler. Network access (Ethernet) and disk I/O is also handled by the host. The parallel 
processor is capable of sustaining over 40 double precision MFLOPS when used with the simula- 
tion software. Inter-processor communication is accomplished through message passing. This 
architecture is shown in Figure 1. 

Figure 1 : Workstation Hardware Architecture 
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Figure 2: Workstation Software Architecture 

oftware Tools 

The workstation prototype includes a set of integrated software tools that interact with the user 
through a consistent graphical user interface. They are: 
0 A window and mouse based interface for configuration data entry and modification 
e A 3D solid modeling tool for geometry definition 
e A full featured multi flexible body dynamics simulation package 

e A 2D post-processing package for x-y plots 
0 An interface to NASTRAN for flexible body model data 

A database of typical Space Station configuration models 
The software architecture is shown in Figure 2. 

A 3D graphics animation package for the visualization of simulation results 

Data entry 

The window and mouse based interface is built around an interactive screen editor for the cre- 
ation and modification of configuration data. Up to three different data files may be edited at 
once, with facilities for copying and moving data elements between them. Data entry and editing 
is based on the concept offorms for each logical component (bodies, joints, sensors etc.) with full 
screen editing capabilities using the mouse and keyboard. Data is stored in files compatible with 
other tools that may require it. 
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Solid modeler 

The 3D solid modeler is a simple, intuitive tool for creating, editing and storing graphical models 
for use in the animation facility. Using simple graphical primitives such,as lines, curves, cubes, 
cylinders etc., the geometry of each sub-structure may be built and stored. Simple transformations 
(rotation, scaling) as well as complex ones (spling, extrusion, revolution, patching) help the 
user create highly realistic geometric representations. Wire-frame as well as solid models may be 
displayed, with special lighting and material effects. Several graphical objects may then be 
combined to form one simulation object (or body). The user interface to the modeliig tool is 
shown in Figure 3. 

Simulation 

The multi flexible body simulation package represents a quantum leap in simulation technology. 
It uses an O(n) algorithm for the solution of the dynamical equations. The equations of motion for 
the structure are processed by an artificial intelligence based symbolic manipulator that exploits 
the specific simplifications applicable to each configuration. The equations are then layered, 
scalarized and further simplified, producing highly optimized source code which is then compiled 
and linked to produce the simulation module. The simulation includes a set of built-in sensors and 
actuators as well as an interface for user-defined controller software. Typical RCS and CMG 
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Figure 4: Animator Interface 

controllers are included as part of the Space Station configuration database. Disturbances such as 
gravity gradient and aerodynamic drag are also modeled. The simulation software generated by 
the symbolic processor also includes automatic padlelization directives that split the simulation 
core into separate modules for concurrent execution on the four processors contained in the 
parallel processing hardware. Parallelization and parallel execution proceeds in a manner that is 
transparent to the user. 

Animation 

The animation tool combines the geometric data from the modeler with the simulation results to 
produce a 3D graphics animation of the movement of the multi-body structure. Four different 
viewing options (top, front right and perspective) are provided, with a choice of wire-frame or 
shaded drawings. The animation can be played in forward or reverse sequence, or paused at any 
instant for closer examination using a zoom function. The user interface to the animator is shown 
in Figure 4. 

2D Post-processing 

Standard x-y plots of simulation results can be produced using the 2D post-processor. Sophisti- 
cated features such as scaling, multiple input plots, multiple frames and phase plane plots can be 
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invoked. The package can be gured for hardcopies on Postscript and hpgl devices. 

te 

The NASTRAN interface program reads data from MSC or COSMIC NASTRAN runs and 
computes the integrals required in the simulation program. Using efficient computational algo- 
rithms and direct access files, the program can handle large finite element models without pro- 
hibitive memory and computational requirements. 

Configuration database 

A database of Space Station configurations, starting from the first element launch to assembly 
complete will be made available. The database will also include the applicable controllers and 
will be updated as the configurations evolve. 

Extensions 

A number of extensions and additions to the basic concept are planned. These enhancements will 
be made on an ongoing basis, and made available to users periodically. The solid modeler and 
animation facility will be extended for more complex operations. Facilities to import previously 
defined graphical models in industry-standard formats (IGES, etc.) will be provided. This will 
allow users to import solid models from several finite element pre-processors, The parallel 
processor will be enhanced to provide standard language constructs that can then be used to 
execute user-defined software concurrently. 

A host of additional software tools are currently being examined for porting to the workstation. 
These include finite-element programs, linear analysis tools, linearization tools, model reduction 
tools and modem control design tools. The new tools will be implemented maintaining the 
smooth, transparent flow of data between them, an idea that will remain central to the workstation 
concept. 

The Space Station configuration database will also be updated as new designs of the structure and 
control systems evolve. In addition, other Space Station subsystems such as the Mobile Servicing 
Center (MSC) may be added, along with their associated control elements. A database of sensors 
and actuators is also planned, that will allow the user to efficiently compare responses. Finally, 
the database could include an expert system interface that will provide assistance in areas such as 
component selection and placement, modeling, model reduction and control design. Additional 
modeling features are also planned, including models of the orbiter, the shuttle RMS and berthing 
operations. This will provide the first integrated simulation of the Space Station dynamics, 
attitude control, berthing and de-berthing and MSC operations. 

The workstation concept is not limited to Space Station configurations, and can be used for 
general multi flexible body modeling, simulation and control design. All the interfaces are 
designed for maximum flexibility, thus minimizing migration time. 
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Abstract 
A new software tool, Caesy, is described. This tool 

provides a strongly typed programming environment 
for research in the development of algorithms and soft- 
ware for computer-aided control system design. A de- 
scription of the user language and its implementation 
as they currently stand are presented along with a de- 
scription of work in progress and areas of future work. 

Introduction 
Over the past few decades, control system design 

and analysis has become more and more dependent 
on computers. With the availability of more powerful 
hardware has come the demand for more performance. 
Computer-aided control system design tools such as 
Matlab have been used with some success in control 
system design since the early 1980’s. However, many 
workers in the development of software and algorithms 
for control system design have recognized that these 
tools have limits in both flexibility and efficiency. The 
forces driving the development of new tools include the 
desire to make complex system modeling, design and 
analysis easier; the need for quicker turnaround time in 
analysis and design; the desire to make use of advanced 
computer architectures to help in control system de- 
sign; the desire to adopt new methodologies in con- 
trol; and the desire to integrate design processes (e.g., 
structure, control, optics). We have developed Caesy 
(Computer-Aided Engineering System) as a means to- 
ward discovering how these desires can best be satisfied. 
The first Matlab-type environment for matrix manipu- 
lation, called MATLAB, was developed by Cleve Moler 
in the late 1970’s, mostly at the University of New Mex- 
ico, with support from the National Science Founda- 
tion. Several other Matlab-based environments have 
been produced for control system design since then. 
Included in this group of control system design tools 
is Ctrl-C from Systems Control Technology, Matrixx 
from Integrated Systems, Inc. (ISI), Pro-Matlab from 
the Mathworks, Inc., Mat/C developed at Lawrence 
Livermore National Laboratory, and SFPACK devel- 
oped at the University of Waterloo. In this document 
we will collectively refer to these MATLAB-based envi- 

ronments as Matlab. A new-generation Matlab pack- 
age has been released from ISI. This package, called 
Xmath, seems to  provide some features for easier use 
but does not offer all the features we feel are desirable. 
The success of Matlab as an environment for t.he design 
and application of algorithms for control system design 
implies that  a new tool geared toward large order, com- 
plex problems should include capabilities provided by 
Matlab and attempt to maintain in some sense the “flit- 
vof’ of Matlab. 

In the development of Caesy, our goal has been to 
provide a more advanced environment which can pro- 
vide the capabilities provided by these packages, but 
can also provide alternatives to better handle the prob- 
lems encountered when problems become complex or 
the system order creates computational bottlenecks. 
More discussion on the requirements driving the de- 
velopment of Caesy can be found in [l]. Our approach 
to solving the complexity problem will be to  develop 
an “object-oriented” user interface (e.g., typed vari- 
ables and overloaded functions and operators). Our 
approach to  the computational problems will be to take 
advantage of this interface to develop specialized soft- 
ware which can take advantage of any special structure 
in the models (e.g., symmetry, bandedness, sparseness). 

In this paper we will provide an overview of the cur- 
rent capabilities and implementation of Caesy, the work 
currently in progress, and work planned for the future. 

Current Implementation of Caesy 
In this section, we give an overview of Caesy and 

some of its features. Caesy is, in a concise description, 
a mix between Matlab and Ada. Caesy contains many 
of the constructs of Ada but adds features from Matlab 
and whatever other modifications we felt were needed 
to provide the required functionality. Ada was chosen 
as a primary influence because it provides many of the 
features required and has a procedural syntax familiar 
to many Matlab users. In addition, the syntax used in 
the Caesy language is close to  that. being encouraged 
as an IFAC and IEEE-standard (see [2]). 

Tidbits 
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Caesy is an interactive shell and thus processes user 
input on a command by command basis. The prompt 
‘caesy>’ shown below implies that  the input is at the 
top level of the shell. Caesy is not case sensitive, so 
‘abc’, ‘ABC’, ‘AbC’ and ‘abC’ are all equivalent. Inter- 
nally, Caesy treats all symbols as lowercase. Imaginary 
constants, used heavily in control system analysis, are 
input using a real constant with a trailing ‘i’, ‘I,, ‘j’ 
or ‘J’ (e.g., i .Oi ,  1.OJ). 

Types in Caesy 
Probably the most striking difference between Caesy 

and other Matlab environments is the fact that  Caesy 
is a typed language. That  is, in Caesy all variables have 
type (e.g., integer, real, string) whereas in Matlab all 
variables typically have no type (i.e., all variables are 
the same type, Matrix). The addition of types to a 
language adds possibilities for making more powerful 
tools, but may place a burden on the user for declaring 
types. 

In Caesy, we use types but put minimal requirements 
on users to declare variable types. The only place one is 
strictly required to declare variable types is when they 
appear as formal arguments in function and procedure 
declarations. Otherwise, the type of a new variable 
(implied by an assignment statement) can be synthe- 
sized from the type of the right hand side expression in 
the assignment. For example, in the statement 

caesy> abc := 3 + 4; 

the right hand side has type integer so if abc was not 
previously declared, Caesy automatically declares the 
variable abc and gives it type integer. 

Explicit type conversion in Caesy is performed, by 
convention, by declaring a function with the type name. 
For example, a function to explicitly convert integers 
to real is declared as 

function r e a l ( i :  integer) return x:  real ;  

and then used, for example, as 

x := sqrt (real (2) ) ;  

Statements 
Caesy supports many of the statements and control 

structures found in Ada with the multiple assignment 
form taken from Matlab. 

Assignment Statements 
Assignment statements take the normal form as well 

as the multiple assignment form familiar to Matlab 
users. Here are examples of the two forms: 

caesy> abc := 3 + 4; 
caesy> { x,  y ,  z 3 := fctn(abc, 3 . 0 ) ;  

One of the statement terminators ‘;’ or ‘?’ is required 
in Caesy. Just hitting the return key will not do. The 
‘?’ implies that  the result of the assignment should be 
displayed to the user: 

caesy> abc := 3 + 4? 
abc := 7; 

If an expression expr appears alone on the command 
line, an implied assignment of the form 

‘-ans&pe-name := expr?’ 

is interpreted. For example: 

c a e s p  3 + 4; 
,ans,integer := 7;  

Flow Control Statements 
Control constructs allow the programmer to do 

branching and looping. In Caesy, the if-then branching 
is similar to many languages. An example is 

if i < 0 then 

e l s i f  i = 0 then 

e l s e  

end i f ;  

j := I; 

j := 0; 

j := I; 

Looping in Caesy is reasonably flexible. There are for- 
loops, while-loops, etc. Some examples are 

for  i in  1 . . 3  loop j := 3*j; end loop; 
while j < 30 loop j := 3*j; end loop; 
loop j := 3*j; ex i t  when j >= 30; end loop; 

User- Defined Subprograms 
Subprograms in Caesy take the form of functions and 

procedures. (Matlab has no procedures). The following 
is an example of a user-defined function definition. 

function myabs(i: integer) return j: integer is 
begin 
if i < 0 then j:= -i; else j:= i; end i f ;  
return; 

end myabs; 

An example of a procedure definition is the following: 

procedure swap(x, y: i n  out real )  is  

begin 
temp: rea l ;  -- declaration optional! 

temp := x; x := y; y := temp; 
return; 

end swap; 

Overloading Functions 
One important feature needed in design interfaces 

for handling complexity is overloading functions and 
operators. Overloading allows a user to write functions 
of the same name and purpose to operate on different 
object types. For example, we could define a function 
myabs similar to the one above, but which operates on 
reals. 
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function myabs(x: real) return y: real is 
begin 

second argument. In Matlab, unspecified inputs are 
handled within the function body. In Caesy, the user 

ult input variable, and hence the if x < 0 then y := -x; else y := x; end i f ;  
return; tion, at any time. 

end myabs ; 

Function overloading is very handy in control system 
analysis. For example, one could use the expression 
f req(G) to produce a frequency response plot whether 
G represents a transfer function in state-space form, 
rational form, or anything else. In each case, a different 
function would be called depending on the argument 
type. 

Caesy does not overload the return argument(s) of 
a function as Ada does. This is difficult to imple- 
ment, would prohibit the ability to synthesize expres- 
sion types and hence would require users to type- 
declare all variables (see above). 

Overloading Operators 
Caesy also provides the capability to  overload most 

operators. Operator overloading allows users to  over- 
load operations such as 'A+B' where A and B have user- 
defined types. For example, given two transfer func- 
tions G l  and G 2  in state-space form or rational form, 
we could overload the operator '+' to compute a trans- 
fer function in state space form for the parallel con- 
nection of two transfer functions. The declarations of 
these functions in Caesy would look like 

function * ' + ' ' ( G l :  st-sp; G 2 :  st-sp) 

function " + " ( G l :  rat;  62: rat) 

function " + " ( G l :  st-sp; 62: rat) 

function " + " ( G l :  rat ;  G 2 :  st-sp) 

return G :  st-sp; 

return G :  st-sp; 

return G :  st-sp; 

return G :  st-sp; 

If G I  and G 2  were two transfer functions in either state 
space (st-sp) form or rational (rat) form, the expres- 
sion G l + G 2  would produce a state space representation 
of the transfer function. An alternative to the expres- 
sion G l + G 2  is the explicit function call " + " ( G l  , G 2 ) .  

Default Input Arguments 
Users of Matlab are accustomed to a variable number 

of input arguments. In the case where input arguments 
are not given, default arguments must be supplied in 
the subprogram declaration. In Caesy, a user need not 
specify all input arguments if default arguments are 
given in the subprogram declaration. For example, the 
following function declaration fragment contains a de- 
fault input argument: 

function abc(x: real ;  y: rea l  := ydef) 

The function could be referenced, for example, as 
abc(x1, y l )  or as abc(x1). In the latter case, the 
value of the global variable ydef would be used for the 

Variable Number of Output Arguments 
Caesy supports definition of functions with more 

than one output argument. In this case, if the function 
is used in a simple expression, only the first argument 
is referenced. In the case of a multiple-return assign- 
ment (see above), one or more return 
be referenced. In the func 
arguments can be determined via the 'argused' opera- 
tor. For example, consider the following function which 
echoes its input arguments: 

function echo(i1: integer; i 2 :  integer) 

begin 
return < j i :  integer; j2: integer 3 i s  

j l  := i l;  
i f  argused j2 then j 2  : = i 2 ;  end i f ;  
return; 

end echo; 

Procedures 
In Caesy, users may define functions and procedures. 

Caesy was provided with the ability to define proce- 
dures for reasons of efficiency. Procedures allow one 
to modify variables without creating a duplicate tem- 
porary variable. For example, suppose one wanted to 
write a function to perform a rank-one change on a 
matrix. This could be done with a function call of the 
form 

A = rankfctn(8, x ) ;  

or with the procedure 

rankproc(A, x ) ;  

The difference here is that  the function rankf ctn will 
create a copy of the matrix A to modify and return, 
and then A will be replaced with this matrix. The pro- 
cedure will never create the copy of the matrix A.  If 
the matrix happened to be large, the execution speed 
between the functional form and procedural form could 
be quite noticeable. 

Packages 
Several Matlab-type packages use the convention of 

collecting related script files together to form "tool- 
boxes." Caesy formalizes this convention by using the 
Ada "package" construct. In Caesy, type definitions, 
functions, procedures and global variables can be col- 
lected together in packages. In Matlab, there is no 
clean way to  distinguish between two different func- 
tions of the same name in two different toolboxes. This 
can lead to severe problems and requires that users and 
toolbox developers take care to avoid the "name-clash" 
problem. In Caesy, this problem can be avoided easily. 
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If a user wishes to explicitly refer to an object in one 
package when there may be a conflict, the user affixes 
the object name to  the specific package name (a  con- 
cept borrowed from Ada). For example, to explicitly 
reference the function xyz from the package mypckg, 
one would use the construct mypckg . xyz( args) . 

procedure destructor(vb1e: in out ObjType) 

exists for some variable of type ObjType, then that pro- 
cedure will be called automatically when the variable 
comes into scope. 

Matrix Expressions 
The ability to  create and manipulate matrices is of 

fundamental importance in control system engineering. 
In Caesy, matrix expressions, those expressions used for 
constructing matrices from their parts, are supported 
in a unique way. An example of a matrix expression is 
the following: 

A := [ 1.1, 1.2; 2.1, 2.21; 

This is a two-by-two real matrix. In Caesy, the type 
for this matrix is 'ReGeMat', for Real General Matrix.  
Complex matrices have type 'CoGeMat'. 

c := [ 1.0 + o.ii, 1.2; 2.ii, 2.21; 

In the future, we plan to  have special support for sym- 
metric and Hermitian matrices, sparse matrices, etc. In 
Caesy, matrices are constructed using overloaded oper- 
ators. The above expression for defining 'A' gets inter- 
nally translated, in essence, to  the following sequence 
of calls: 

TOvl := "["(1.1); 
TOv2 := ","(TOvI, 1.2); 
TOv3 := ";"(TOv2, 2.1); 
TOv4 := ","(TOv3, 2.2); 
A := "I"(TOv4, 2.2); 

The variables starting with T are temporary variables 
created by Caesy. When Caesy sees the first 'i.1' 
it looks for the function "r which takes a real ar- 
gument. (There are also "r functions defined which 
take an integer or a complex value as the first argu- 
ment.) In the Caesy MATMATH package, this function 
is defined, and returns a special type, regematlist, 
for matrix expressions. When the token '1.2' is seen, 
Caesy looks for a function "," which takes arguments 
of type regematlist and real. The process continues 
until the function "1" taking a regematlist and re- 
turning a regemat is called. By implementing matrix 
expressions with overloaded operators, we have made 
the matrix expression construct potentially usable in 
very creative ways. 

Support of Constructors and Destructors 
In Caesy, if a procedure of the form 

procedure constructor(vb1e: in out Type) 

exists for some variable of type ObjType, then that pro- 
cedure will be called automatically when the variable 
comes into scope. Additionally, if a procedure of the 
form 

Implementation 
Caesy is written primarily in C. The internal struc- 

ture is shown in Figure 1 .  It includes a supervisor t o  
prompt for input, a parser, written in YACC, a byte- 
code compiler, a byte-code interpreter, a C code com- 
piler, a context (variable, types, etc.) handling module 
(made of CX/Sys-Ctxt blocks in the figure), an input 
output interface, and more. The parser outputs LTU 
(language transfer utility) codes which can be compiled 
into byte-codes or C code. 

Work in Progress 
In this section we discuss features which are par- 

tially implemented or are in the process of being im- 
plemented. 

User Defined Structured Data Types 
Caesy will have the capability for the user to define 

structured (;.e., record) data  types. This is an essential 
feature needed in the reduction of complexity. 

Exception Handling 
Currently, Caesy has some support of exception han- 

dling. Internally, every Caesy function ret,urns an ex- 
ception code to its- caller. If the function executes 
normally, it returns the exception code NO-ERROR. On 
the other hand if some anomaly occurs, a different ex- 
ception will be raised. For example, if one tries to  
take the square root of a negative (real) number, a 
NUMERIC-ERROR exception will be raised. Caesy will 
trap machine exceptions. If a divide-by-zero occurs, a 
NUMERIC-ERROR will be raised. The exception will be 
passed until it gets to the supervisor level. For exam- 
ple, 

caesy> a := sqrt(-g.o); 
Supervisor caught NUMERIC-ERROR exception. 
caesy> 

This capability will be extended to allow exceptions to 
be handled in user-defined functions. 

Data Files 
Users often have the desire to store and retrieve data. 

In Caesy, data files will have special binary formats and 
store data in a machine-independent form. The data 
files will support userrdefined types and hence, must 
be quite flexible. The  stored data files will make use of 
the Sun XDR (external data  representation) [3]. 
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Figure 1: Implementation of Caesy 

Code Generation 
Caesy allows users to generate C code from their sub- 

program scripts. For example, for the following code 
segment, Caesy will produce the C code shown in Fig- 
ure 2. 

use matmath; 
function tes t (A:  regemat; B: regemat) 

begin 
return C: regemat is  

for i i n  1 . . 10  loop 

end loop; 
C : = [ C ;  [ A , B ] ] ;  
re t  urn ; 

end t e s t ;  

C := A*B - B*A; 

The C coding capability also makes the prospect of 
developing stand-alone programs attractive. An often- 
used application could be converted to C-code and com- 
piled to run as a specialized program, making it more 
efficient. This feature also has the potential of allow- 
ing users to  change a routine t o  make it as efficient as 
possible. In all, this is a very desirable feature. 

Remote Computing 
There is currently work in progress by another team 

at JPL; the team is implementing a remote computing 
capability in Caesy. This is being developed using Sun 
RPC calls [3]. 

Matrix Computations 
Many of the matrix computations in Caesy are per- 

formed using BLAS and LAPACK [4]. These are state- 
of-the-art FORTRAN libraries in computing solutions to 
linear equations and computing eigenvalue decomposi- 
tions. In fact, Caesy could be viewed as a user-friendly 
interface to LAPACK and, with Caesy’s C code com- 
piler, Caesy may be an attractive way to develop code 
based on both these routines. 

Future Work 
In this section we discuss features wliicli are under 

consideration for fut,ure implementations. One object 
of the Caesy project is to determine what features in an 
interactive shell are needed for handling large, complex 
problems. 

Function and Operator “Tagging” 
The semantics of creating matrices using t.he ’I,, ’,’, 

’;’ and ’3 ’  operators have a drawback. I t m a y  be nice 
to be able to  use the construct to input, for example, 
sparse matrices. A sparse matrix could be input as 

Asp := [ 1 . 1 , l . l ;  2 , 1 , 2 . 1  1; 

where 1,  I, I .  i indicates the element in row 1, col- 
umn 1, is 1. I and so on. This type of flexibility cannot 
be supported by the current semantics of the language. 
There is no way that Caesy knows that a sparse ma- 
trix definition is intended. One work-around could be 
to “tag” the first value with an explicit type cast: 

Asp := [ s p m a t e l t ( l , l , l . l ) ;  2 , 1 , 2 . 1  1; 

Here we have a special “sparse matrix element” type 
that tags the first element to allow Caesy to  find the 
function ” r, which takes a sparse matrix element type. 

Another work-around, which would provide more 
flexibility to the Caesy language overall, would be to 
add tagged functions and operators to Caesy. In this 
option, function and operators could have tags to in- 
dicate that special operators should be used. The tag 
would take the special form function: dag in both its 
declaration and use. The tagging approach would al- 
low the user to use the following to generate a sparse 
matrix (of type ReSpMat): 

Asp := [:sp 1 I, 1 .1 ;  2 ,  I ,  2 . 1  1; 

The declaration for the operator 1 may have been 
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#include “kc. h” 

function “[“:sp(i: integer) 
return list: respmatlist; 

kcXcode 
-U 1 - 1 test ( 

MATMATH-regemat* a, 
MATMATH-regemat* b, 
MATMATH-regemat* c) 

€ 
MATMATH-regemat TIvO; 
MATMATH-regemlis t* T lv 1 ; 
MATMATH-regemlist TIv2; 
MATMATH-regemat TIv3; 
HATMATH-regemlist* Tlv4; 
MATMATH-regemlist TIv5; 
c 
int i; 
MATMATH-regemat T2v0; 
MATMATH-regemat T2vl; 
MATMATH-regemat T2v2; 
€ 

i = 1; 
for ( ; ; I  

€ 
if (i>lO) break; 
€ 
MATMATH-lMUL(a, b, bT2vl) ; 
MATMATH-lMUL(b, a, &T2v2) ; 
MATMATH-lSUB(OT2v1, &T2v2, &T2v0) ; 
MATMATH-IASSN(c, &T2v0); 

3 
i = i + i ;  

3 
1 
MATMATH- ldestruct or (&T2v2) ; 
MATMATH- ldestructor (8T2vl) ; 
MATMATH-ldestructor (&T2v0) ; 

3 
MATMATH_2MST(c, &Tlv2) ; 
MATMATH_2MST(a, LTlv5); 
MATMATH_2MEL(&Tlv5, b, kTlv4) ; 
MATMATH-lMND(TIv4, 8Tlv3); 
MATMATH_2MRO(&TlvZ, &Tlv3, &Tlvl); 
MATMATH-~MND(TIvI, &TIvO); 
MATMATH_IASSN(c, &TlvO) ; 

MATMATH-3destructor(&Tlv5); 
MATMATH- ldestructor (&TIv3) ; 
MATMATH-3destructor(&Tlv2); 
MATMATH-ldestructor(&TlvO); 

Parallel Corn pu t a t ion 
Since Caesy has been developed primarily to explore 

ways in which to increase computational throughput 
for control design tools, it is only natural to pursue the 
possibilities of parallel computation. Several worksta- 
tions and hardware co-processor boards with multiple 
processors are currently available on the market. IIow 
to best support these multiprocessor environments will 
most likely depend on which machine and operating 
system we run under. Current.ly, Mach derivatives and 
Solaris have support for mulft-fhrended programming 
at the C language level. 

Conclusion 
In this report we have provided a glimpse of a new 

software environment,, Caesy, which will he rtsed for the 
development of algorithms and software for the design 
of large, complex control systems. The tool provides a 
“next-generation” approach to control system design 
by taking advantage of some concepts from object- 
oriented programming languages. The tool should 
prove to  provide a means for easily handling large, com- 
plex design problems. I t  is also being used as a “com- 
putational engine” in a tool for int.egrated (conceptual) 
design of advanced optical systems. 
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Abstract 

The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under 
development at the Goddard Space FIight Center (GSFC). The design goal is to provide a wide 
selection of controls analysis tools at the personal computer level, as well as the capability to 
upload compute-intensive jobs to a mainframe or super computer. In the last three years the 
ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under 
development. ASTEC is meant to be an integrated collection of controls analysis tools for use at 
the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that 
converts programs written in the MODEL language to FORTRAN. An upgraded version of the 
MODEL program will be mcrged into ASTEC. MODEL has not been modified since 1981 and 
has not kept pace with changes in computers or user interface techniques. This paper describes the 
changes made to MODEL in order to make it usefbl in the ~ O ' S ,  and how it relates to ASTEC. 

Introduction 

Several programs have been developed at NASA's Goddard Space Flight Center (GSFC) in 
recent years. These include the Interactive Controls Analysis (INCA) program [l] starting in 
1981, and the Windowcd Observation of Relative Motion (WORM) program [2] starting in 1986. 
An important earlier effort is MODEL (Multi-Optimal Differential Equation Language) [3] 
developed in the 1960's and 1970's. In the last three years the ASTEC (Analysis and Simulation 
Tools for Engincering Controls) [4]software has been under development. ASTEC is planned to be 
an integrated collection of controls analysis tools for use at the desktop level. Planned conversions 
of INCA and WORM to PUMacintosh programs will be part of the ASTEC system. MODEL is 
a translator that converts programs written in the MODEL language to FORTRAN. An upgraded 
vcrsion of the MODEL program will be merged into ASTEC. MODEL has not been modified 
since 1981 and has not kept pace with changes in computers or user interface techniques. This 
paper describes the changes made to MODEL in order to make it usefi.11 in the 903, and how it 
relates to ASTEC. 

ASTEC 

ASTEC is being writtcn to satisfy the requirements of the GSFC Guidance and Control 
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Branch. As such, it must run on the computer equipment used in the branch. Currently 
desktop units consist of PC's, Macintoshes, and an occasional Tektronix or X-Windows terminal. 
Mainframc capabilitics consist of VAX 8830 and IBM RS6000 computers. 

ASTEC is designed to meet the continuing needs of GSFC engineers, where high order and 
complex systems are the rule and not the exception, and where tried and true classical methods 
predominate. Because spacecraft repair is very expensive if not impossible, it is important that 
analysis methods be exhaustive rather than quick, and that algorithms contain no shortcuts which 
may compromisc analysis results. There is also a high demand for a modem, friendly user 
interface, since many of the engineers use the Macintosh or Microsoft Windows environment. 

It has long bcen planned to port NCA and WORM from the VAXNMS to a desktop 
computer. Since PC's and Macintoshes predominate in our branch, they were chosen despite 
rclativcly poor pcrformance in floating point operations. It is hoped that there will be performance 
improvements in the future and that some computations can be done on the VAX and the results 
downloaded later. 

ASTEC Architecture 

ASTEC will consist of several modules. Many of the currently implemented or planned 
modules are describcd below. The capabilities of ASTEC include classical control methods, 
simulation both linear and non-linear, multi-variable controls and matrix methods, and new 
experimental capabilities -- including dynamic locus and three dimensional frequency response. 
The following modules arc undcr some state of development, and more may be added. It is hoped 
that by the timc of this conference MODEL will be available from COSMIC in VAX, PC, and 
Macintosh versions, and that WORM will be available in a PC version. Note that the old VAX 
versions of WORM and MODEL have been available for some time. 

ASTEC 
(PUEBLO?) 
MODEL 
INCA 
WORM Plot results. 

Manage files and launch other jobs. 
Block diagram editing (Prototyping Utilities Emphasis is Block Layout). 
Build systciiis and launch analyses. 
Transfer fiinction and state space analysis. 

Input to some of thc ASTEC modules can come from either the user or, more importantly, 
from other niodulcs. Thus, for esaniple, as user could build a block diagram model of his system 
using the PUEBLO program. ASTEC could use this data to generated a simulation in the 
MODEL language, which could be translated, compiled, linked, and executed. The results could 
be plotted by the WORM package. 
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.b Command flow - Data flow 

Figure 1. General ASTEG Architecture 

While pcrsonal computers are quite good in the fields of graphics and user interface, they 
often fall short in the field of numbcr crunching, especially if hardware floating point is not 
installed. For this reason a capability to transfer compute intensive jobs to a mainframe computer 
was deemed essential. Compute-intensive routines (such as MODEL) will be capable of dealing 
with text files only, allowing input and output data to be transferred between computers. 

MODEL 

The Multi-Optimal Differential Equation Language provides a means for generating 
numerical solutions to systcnis of differential equations using a digital computer. The notation of 
this language is similar to that used to describe physical systems by differential equations. Thus 
the learning proccss is siniplificd, progamming becomes easier, and debugging is more readily 
accomplished. Programs written in the MODEL language are machine translated into FORTRAN- 
77 programs. 

133 



I project.EXE 

Programs 0 

I data file I 
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I 
ORM control file u 

Figure 2. MODEL data flow diagram 
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DEL is currently implemented on the computer using S ,  on Pc's under 
Microsof? Windows, and on the Macintosh. The VAX version is capable of automatically 
generating source files for the WORM plotting program. This feature will allow users to plot their 
data using the names assigned in MODEL. 

Since the MODEL program is a translator, an additional translate step is added to the normal 
compileAink/run scquence. A data flow diagram is shown in Figure 2. 

Language Features 

A MODEL program is composed of Model statements. The basic MODEL statement is a 
differential equation. Equations can be entered in any order. The quotation mark (') is used to 
indicate a derivative, allowing thc equations to be entered in a reasonably familiar way. Variables 
with quotation marks are derivatives of state variables. State variables can also be derivatives of 
othcr state variables. In this case multiple quotations marks are used. 

Othcr MODEL shtements include DEFINE statements to control the simulation, 
OPERATOR and FUNCTION statements to create an interface to user written subroutines, and 
comments to allow user documentation. MODEL uses a free-form line format. Multiple 
statements on one line are separated by semicolons (;). A statement may be continued to the next 
line by using ellipses (...). Two minus signs together indicate a comment--The rest of that line is 
ignored. 

An simplc MODEL prograni is the damped harmonic oscillator: 

x"=z*s'+(k*x) 
x(O)= 10 
x'(O)=O 
z=-o. 1 
k =-0.2 
WRITE (T, X",X', X) 
DT=O.01; TFIN = 40.0 --Time Stcp, Finish time 
DEFINE FILE WRITE 0.1 ASCII TEST.OUT F14.6 

Variables and Operators 

MODEL variables must be one of scven types. 

SCALARS : a single floating point numbcr. 
VECTORS : position, velocity, force, torque, magnetic fields, etc. 
TENSORS : either a rotation matrix or Inertia tensors. 
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QUATERNIONS : arc used to represent rotations. 
CHARACTER STRINGS : are used to access external filenames. 
MATRICES : an array of scalars, arranged in rows and columns. 
SUBSCRIPT RANGES : used to create slices of matrices. 

There is a simple relationship betwcen the original program variables and the corresponding 
FORTRAN variables. MODEL variables are first truncated to 28 significant characters. If the 
variablc is a state variable or derivative, an underline is appended, and then one or more 'P's to 
rcpresent the order of the derivative. 

x x  
S I  "4 
xl' x g p  

xtI* s g p p  
s'(1C) xg ic  

t(0) t-ic 

Variables may bc manipulated by using operators. Operators may be unary or binary, and 
unary operators may be prcfis or postfix. Each operator is given a priority. In complicated 
expressions the rules of precedence clarify the order in which operations are performed. 
Operations with equal precedence are performed from left to right. Expressions within parentheses 
are evaluated first and independently of preceding or succeeding operators. The operators in model 
are grouped in order of preced'cnce, and are listed below. Note that certain operand types may be 
incompatible with certain operators. 

DEGREES or RADIANS 
ARCMINS or ARCSECS 
.(period) 
A or * *  or A- or **- 
* 
/ o r \  
DOT or * 
CROSS or >< 
+ 

-- -- 
<> or != or -= or I= 
< 
> 
<= 
>= 
NOT or - 

Convert scalar to angle. 
Convert scalar to angle. 
Vector element access. 
Esponentiation. 
Multiplication. 
Division and left division. 
Vector dot product. 
Vector cross product. 
Addition 
Subtraction or negation. 
Matrix column concatenation. 
Matrix row concatenation operator. 
Equ ivalcnce. 
Non-equivalence 
Less than. 
Grcater than. 
Less than or equal. 
Greater than or equal. 
Logical negation or inverse. 
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O r  

r l  
:(colon) 
I1 

Logical and. 
Logical or. 
Matrix subscript ranging operator. 
Matrix indexing operator. 

MODEL is equipped with built-in functions to support many knction and non-linearities 
required for ease in simulation. Many of these will be familiar to users of FORTRAN, Pascal, or 
other programming languagcs. The basic trigonometric knctions SIN, COS, and TAN are also 
available. These take an argument which MUST be of angle type, and return a scalar. Inverse 
trigonomctric functions ASIN, ACOS and ATAN take a scalar argument and return an angle. 

Othcr functions are uscd to represent various operations that are used in simulations. The 
RANDOM and RANDOM12 generate random numbers. The IF function allows conditional 
assignment, like the C language '? operator. The QUANT function is used to implement 
quantization functions. The LIMIT fiinction is used to implement limiters or limit functions. 
Additional functions such as DEADZONE, BANGBANG, HYSTERESIS, BACKLASH and 
TRACKSTORE are also available. 

Other Features 

The MODEL prcprocessor is similar to the one in the C language. The #FOR statement is 
followed by a list of character strings. Each line after a #FOR statement is scanned for the at-sign 
(@), and if one is found, all at-signs in that line are replaced in turn by each character string. 
Lines without any at-signs are left alone. This process continues until a #ENDFOR statement is 
encountered. Tlic INCLUDE statcnicnt is used to merge text from another file. Using the 
SYNTAX commands, thc user can use his own routines in FORTRAN or other languages. 

Run-time Command Language 

The run-time command file is read by the generated simulation program to control the 
simulation. Tlicre arc four types of statements in the run-time command language. The details of 
using a command filc arc implcmcntation dependent. A simple command file is given below: 

RESET 
tfin = 60 
RUN 
PAUSE AT 30.0 
k = 0.3 
CONTINUE 
STOP 

The RESET statcmcnt rcturns all variablcs to their original values. The second line is a 
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~ a ~ j a b l e  c ~ a n g e  command. The format consists of a variable name and one or more values. The 
command is a either the 

keyword STOP or a PAUSE AT command. If it is a PAUSE AT [time] command, it is followed 
a list of variable change commands to be given at that time. This allows the user to change 
parameters in the middlc of the simulation. 

command starts thc simulation. The first line after the 

Changes from first version of MODEL 

For those familiar with the initial version of MODEL developed by Benjamin Zimmerman, the 
following describes changcs made in the new version. These include: 

User dcfincd fiinctions and subroutines are now available. 
Ccrtain obscure rclational operator definitions have been dropped. These are .EQ., .LT., 

The IF statcnicnt has bccn changed to a function. 
Elimination of conditional output. 
The double comma (,,) may no longer be used to separate statements. Use the semicolon (;) 

Ncw data typcs vector, tcnsor, quaternion character strings, matrices and subscript ranges. 

New niathcmatical opcrators have bcen added. These are ", **-, "-, \, MOD, DOT, CROSS, 

.GT., .LE., .GE., .NE., */, /*, =/, =<, /=, =>, *=, and ><. 

instead. 

The old typc is now called a scalar, and is now the default. 

11, //, -=, !=, I=, -, I, :, [1 and others. Note that the colon has changed 
exponcntiation to riiatris ranging. 

Multiple PLOT statcmcnts. 
Automatic gcncration of WORM source files. 
Scvcral comniands and tlint uscd to be abbreviated are now spelled out in fill. 
The END statcnicnt is no longcr rcquired. 
Thc TAB statement and snniplcd variables not supported in the initial release. 

meaning from 

Example: Pilot Ejection Study 

This study has bccn uscd as a standard of comparison for continuous simulation languages. 
This example is takcn almost vcrbatini from the manual for the original Model program. 

The purpose of this rnvcstigation is to determine the trajectory of a pilot ejected from a fighter 
aircraft and tliirs to ascertain \dicthcr he will strike the vertical stabilizer of the aircraft. Several 
combinations of aircraft spccd and altitude are investigated since the drag on the pilot, which 
causes his rclativc horizontal motion with respect to the aircraft, is a hnction of both air density 
and vclocity. The cjcction systcni is so devised the pilot and his seat to travel along rails at a 
specified velocity V,, at angle Q1, backward from vertical. The seat becomes disengaged from the 
rails at Y = Y,. 
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Once the pilot and seat combination leaves the rails, it follows a ballistic ectory which can 
be determined; however, since it is the relative motion of the pilot with respect to the aircraft 
(which is assumed to fly level with constant speed) that is important, we can formulate the 
equations so as to obtain this motion directly. 

,/" 

. . . . . . . . . . . . . . . . .  /' 

.......................... 

, 

x 

The governing equations are: 

X' = v cos 0 - v, 

V=O 0 Y Y, 
V' = -D / iii - g sin 0 
Q' = 0 0 Y Y, 
Q' = -(g sin 0) / V 

Y' = V sin 0 

Y > Y ,  

Y >Y,  
D ' = % r C D S V  

Constants (for all cases) 

ni = 7 slugs 
g = 32.2 fwscc2 
CD=l 
s =  loft?  
Y 1 = 4 f t  
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VE = 40 Nsec 
QE= 15 

The initial values of V and Q (pilot's initial velocity vector at moment of leaving cockpit rails) 
are given by 

V, = [(V, - V, sin 
Q, = tan-' [(V, cos 0,) / (V, - V, sin O,)] 

+ (V, cos 

and further 
x, = Yo = 0 

The following quantitics are to be printed every 0.002 seconds: 
t, v, v', 0, x, Y 

..................................................... 
----- EQUATIONS 
s' = v*cos(th)-va 
y' = v*sin(th) 
clcar = y>y I Iy'<O 
v' = IF(clcar,-d/nt-g*sin(th),0) 
ANGLE th' = IF(clear,(-g*cos(th)/v),O) RADIANS 
d = .5*rho*cd*s*vA2 
v(1C) = sqrt((va-~e*sin(thd))"2 + (ve*cos(thd))"2) 
ANGLE th(1C) = atan(ve*cos(thd)/(va-ve*sin(thd))) 

----- CONSTANTS 
ni = 7 -- slugs 
g = 32.2 -- ft/secA2 
cd= 1 
s = 10 -- ft"2 

\'e = 40 -- ft/scc 
ANGLE tlid = 15 DEGREES 
----- DATA 
va = 900 -- ft/scc 
rho = 2.3769e-3 -- slugs/ftA3 
----- OUTPUT 
DEFmE FILE WRITE ASCII 0.02 EJECTION.OUT 6F12.5 
WRITE (t,v,v',th,s,y) 
----- MODEL PARAMETERS 
DT = 0.002: TFIN = 2.0 

rC(IC) = 0; y(1C) = 0 

y l = 4  --ft 
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Conclusion 

The ncw MODEL programs is an attempt to take a sixties-vintage program and updata it for 
the ninetics. When integrated into the other modules it of ASTEC, it should prove to be an 
extremely usefiil design tool. As a standalone program, it contains some features available in no 
other package currently available. It will soon be submitted to COSMIC for publication. 
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Introduction 

Animation can greatly assist the structural dynamicist and control system analyst with better 
understanding of how multi-flexible body systems behave. For multi-flexible body systems, the 
structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes 
dramatically with large angles of rotation between bodies. With computer animation, the analyst 
can visualize these changes and how the system responds to active control forces and torques. 
Figure 1 characterizes the type of system we wish to animate. 

Figure 1 .  Multi-Flexible Body System To Be Animated 

The lack of clear understanding of the above effects was a key element leading to the development 
of a multi-flexible body animation software package. The resulting animation software is 
described in some detail here, followed by its application to the control system analyst. Other 
applications of this software can be determined on an individual need basis. 

A number of software products are currently available that make the high-speed rendering of rigid 
body mechanical system simulations possible. However, such options are not available for use in 
rendering flexible body mechanical system simulations. The desire for a high-speed flexible body 
visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) 
software. This software was developed at the Center for Simulation and Design Optimization of 
Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering 
of flexible and/or rigid body mechanical system simulations, and combines geometry and motion 
information to produce animated output. FORMS is designed to be both portable and flexible, and 
supports a number of different user interfaces and graphical display devices. Additional features 

143 



spcial visualization results related to the nature of the 

History 

The FORMS software is a direct descendent of the Visualization of Dynamic Systems2 (VDS) 
software also developed at the University of Iowa. This software was designed to perform high- 
speed animation of rigid body simulations. VDS afforded the user a high degree of interactive 
control of simulation parameters, such as color, visibility, and viewing orientation. This software 
utilized euler vectors to specify body position and orientation, which combined rotational and 
translational information into one data component. The rigid nature of the bodies being rendered 
allowed VDS to support additional features, such as interference checking and casting of shadows. 
The input formats supported by VDS were somewhat limited, using an internally developed 
propriepy format. Translators were, however, provided between this format and a number of 
standards such as the Initial Graphics Exchange Specification3 (IGES) and Movie.BYU4. The 
structure of VDS allowed for an open architecture, which enabled the software to support a large 
number of different user interfaces and display devices. Any combination of user interfaces and 
display devices could then be supported on a particular platform. 

The development of FORMS incorporated many of the features utilized in the development of 
VDS, and also allowed for the addition of a significant number of new capabilities. FORMS is 
compatible with the VDS software, with the exception of some features directly related to the rigid 
nature of VDS objects, and can be used to produce animations from VDS input files without 
modification. The limitation of the proprietary input format imposed by VDS was also lifted, as 
FORMS supports three different input formats: the VDS proprietary format; a close modification 
of the VDS proprietary format intended to support flexible body information; and an ASCII input 
format designed to be easily edited and modified. The flexible nature of the bodies being rendered 
also required that the techniques for storing both geometry information and motion data be 
updated. Additionally, FORMS was intended to support a number of different modes of 
interaction, including structure editing and harmonic motion display. 

Organization 

The FORMS software uses a hierarchy to store information required to produce an animation 
sequence. Three different types of information are stored in this hierarchy. The first is what is 
considered essentially universal data. Data of this type influences the animation as a whole and 
includes such standard rendering options as view specifications, lighting, and environmental 
parameters. The second type of information stored in the hierarchy involves the "objects" or 
"parts" of the mechanical system being rendered. The nature of the motions specified in FORMS 
allows a linked list to be used in storing such objects. The use of a linked list rather than a m-like 
structure is made possible by the fact that motions for the flexible bodies are represented as 
displacements on individual nodes and not motions that can be applied to a group of objects. Each 
object in this list contains an associated geometric representation for the object and object-specific 
attributes such as color and representation (Le., solid, wireframe, point). The final type of 
information stored in the hierarchy is animation data. This data is stored on a per-frame basis and 
can be of one of two types: euler vectors, which are converted into displacement information for 
each node in the geometry, and straight nodal displacement data. In the context of each individual 
frame, the animation data is then organized according to the order specified by the object list in the 
hierarchy. 
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The functional organ 
portability. There are 
display device drive 
communications manager. It handles requests from the various user interfaces and then instructs 
the display devices to update their representations accordingly. This organizational model is 
illustrated in figure 2. 

Figure 2. FORMS Communication Channels 

The actual FORMS executable is isolated from any individual user interface or device driver, a 
design that greatly improves the portability of the FORMS software. 

Data Requirements 

Three types of data are required as input to the FORMS software: geometric data, motion data, 
and initial configuration data. Geometric data can be in the form of either rigid or flexible body 
representations. For rigid bodies, the data is in the form of a polygonal mesh. Flexible bodies 
require that geometric information be presented in the form of a finite element mesh. At the cumnt 
release, seven different types of finite elements are supported by the FORMS software: point, 
beam, linear triangle, linear quadrilateral, linear tetrahedron, linear solid wedge, and linear solid. 
The representations of these elements are as presented in the IGES specification. 

Motion information is specified as either euler vectors or nodal displacements. The type of motion 
information allowed depends on the associated geometric representation' for the object. If the 
object is a rigid body, then only euler vector data can be used in positioning the object. For 
flexible objects, motion information can be specified as either nodal displacements or as a 
combination of euler vectors and nodal displacements. If a combination of euler vectors and nodal 
displacements is supplied, then the euler vectors are first converted to nodal displacements. After 
this conversion, the individual nodal displacements specified as input are applied. This "two-step" 
motion is critical in analyzing certain classes of problems. 

Initial configuration information is supplied in the form of a definition or ".der file. This file 
contains initial viewing, lighting, and environmental parameters, as well as initial object attributes 
and motion data ordering. Each object represented in the animation has a corresponding entry in 
the definition file. This entry contains the object's initial color. representation, shading model, and 
geometric representation. Geometric representations are denoted by name, which must correspond 
to the name of a representation supplied as input in one of the geometry files. Motion data 
ordering is specified in the form of an ordered list of objects. Additional objects may appear in the 
definition file for which no motion is specified. These objects are considered stationary. 

The formats for the required data are of one of three types: VDS module format, FORMS flexible 
module format, or ASCII "easy" file format. The module format and flexible module formats are 

u* 
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pmprietary file formats, which can be in either a space-reduc , machine-depcndent binary format 
or a platform-independent ASCII representation. Both of these formats can be used to encode both 
motion and geometric data, but are not readily editable because they contain additional information 
to speed file access. In order to facilitate conversion to these formats, a number of translators fmm 
various standards are provided, including IGES. Movie.BYU, and DADS-3D5. The "easy" file 
format is an ASCII format designed to be edited using any standard text editor. The format of 
these files is relatively simple. No strict layout is required with regard to column location, line 
spacing, etc. In this way, the output from nearly any package can be manipulated into the "easy" 
ftle format with a minimum of effort. 

Rendering 

The major concern in rendering flexible objects is that as nodal displacements occur, faces of finite 
elements that were initially essentially planar lose this property. Therefore, in order to render 
flexible bodies with sufficient accuracy and still maintain the required throughput for animation, 
some pre-processing is required. In FORMS, this pre-processing takes the form of triangulation 
of all polygons and/or finite element faces with more than three vertices. This division of such 
surfaces into triangles allows each face to be decomposed into a number of planar facets. Since 
each three nodes will uniquely determine a plane, each triangular facet can then be rendered as 
planar and still give the appearance of the required flexible motion. This process is illustrated in 
figure 3. 

4 

1 4 

1 
Figure 3. Triangulation into Planar Facets for Flex 

Since the facets are assumed to remain contiguous, the representation will remain accurate. For 
simple finite element representations, the triangulation is straightforward. For more advanced 
polygonal representations, a modified version of the triangulation algorithm presented by Feng and 
Pavlidis6 is used; the only restriction is that the polygons be simple. The resulting triangulation is 
used further in graphically editing the objects, since a strictly triangular representation of the scene 
allows for a general purpose routine to test for intersection between objects and a selected point. 
By computing the triangulations of these objects prior to animation and independent of the 
displacements involved, rendering requires only the updated positions of the individual nodes to be 
computed prior to drawing. The mesh generated in triangulating an object can be displayed 
optionally on a per-object basis. 

The viewing and lighting attributes specified for each animation are generic in nature and are not of 
particular interest to th?s paper. The only aspect of viewing that will be mentioned is the fact that 
FORMS supports multiple views of individual animation. Currently, up to four synchronized, 
independent views of any animation are permitted. 
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ental p a r ~ e t e r s  are of more interest, because some values are ctly related to the 
flexible nature of the bodies being rendered. Values that relate to the animation in generaldnclude 
background color and interval control. Interval control allows for strict frame-rate control, as 
opposed to allowing the platform to render as fast as possible. The parameters related to the 
flexible nature of the objects include: the color used in rendering the triangle mesh generated 
during preprocessing; the colors used in representing active vs. inactive and active vs. special 
elements during editing; and the period used in displaying harmonic motion. Each of these 
parameters will be discussed in more detail as they relate to individual options. 

By far the greatest number of attributes are possessed by the individual objects. These parameters 
relate either to the general appearance of the object or to specific flexible body options. The 
parameters that affect general appearance include color (including diffuse, ambient, and specular 
color, if supported), shading model (flat or Gouraud), label status, position, and physical 
representation. Current representation options include solid, wireframe, point (only vertices or 
nodes are rendered), stick (a combination of wireframe and point representations), and disabled. 
Additional parameters allow for specific flexible body options. These parameters include: 

superimposition 

labels 

pointsize 

beamwidth 

active vs. inactive elements 

trace nodes 

inferior representations 

mesh representation 

Controls display of the undeformed geometry 
superimposed over the current representation. 
Additionally, the color and representation 
attributes for the superimposed geometry can be 
independently specified. 

Allows the rendering of node and/or element 
labels. 

Controls the size of nodes rendered in point or 
stick representation. 

Controls the size of &he lines rendered in 
wireframe or stick representation. 

Allows any element or range of elements to be 
made inactive, and causes them to not be 
displayed. 

Causes any element or range of elements to leave 
a "smoke trail" as it moves from frame to frame. 

Allows elements that do not have d.r: 
representation specified for the object to be 
viewed. In some representations, such as solid, 
certain element types have no corresponding 
representation (i.e., beam or point elements). 
This option causes such elements to be rendered 
in their native representations. 

Enables display of the triangle mesh generated 
during preprocessing of this object. 
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Any or all of these parameters can be manipulated interactively for any or all objects. 

Animation Control 

A number of controls are available with respect to the display of an animation sequence. These 
include the display rate, direction, sequence, and increment. Frames are normally displayed at a 
rate determined by the limitations o 
appear at a pre-determined rate, as 
order in which frames are displayed is totally under user control 
group of individual frames being valid for display. In the event that different timestep increments 
are desired for display other than those available from the input data, an increment value is 
available for use in displaying frame sequences. If required, linear interpolation is performed to 
generate intermediate frames. 

It is also desirable at times to magnify the motions or displacements for a certain object. In this 
case, an individual motion magnification factor is maintained for each object. Separate 
magnification factors are kept for nodal displacement values and euler vector values. Nodal 
displacement values may be magnified by individual factors in any of three dimensions (x, y, 2). 
Euler vectors can be magnified for any of seven values (tx, ty, tx, er, ex, ey, ez). 

A final animation option is provided in harmonic motion display. In this mode, a deformed state 
of the simulation is chosen as the base frame. FORMS then uses this frame as an ending position 
and the undeformed geometry as an initial position. It then interpolates between the two frames, 
based on the number of frames specified for the period of harmonic motion. The number of 
frames is specified as an environment parameter. In this mode, the total number of frames 
available for display is updated to reflect the limitations of the harmonic motion. 

Editing 

In order to make the information displayed during an animation more useful, it is often desirable to 
change the appearance of certain elements or disable them altogether. In FORMS, these types of 
operations are acsmmplished through the use of a special rendering mode. In this mode, individual 
elements of a flexible body can be selected with the aid of a mouse or other pointing device. 
Depending upon the values set when initiating edit mode, selected elements will either be toggled 
between active and inactive status or active and special status. In active vs. inactive status, inactive 
elements are no longer displayed when returning to normal display mode. However, in edit mode, 
inactive elements are displayed in a distinct color to signify their modified status. In active vs. 
special status, individual elements may be assigned distinct color, representation, pointsize, and 
beamwidth values. These new values will then be used in rendering the special elements after 
returning to normal display mode. As with active vs. inactive status, special elements are 
displayed in a distinct color from other active elements while editing. 

Other Information 

Aside from the qualitative information provided through the animation of mechanical system 
motion, more quantitative information is often desired from any analysis tool. To provide such 
data, FORMS has two additional output options: X-Y plotting and parameter display. The X-Y 
plotting option is performed in a separate window from the animation. Plotting occurs in 
synchronization with the animation and simultaneously provides both a quantitative and qualitative 
view of the system under study. The range of expressions available for plotting includes any 
system variables, such as nodal displacements, euler vectors, and frame count. Other available 
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ude incremental counters, Stan ry functions y numeric constants. 
cale of both axes can be user- f the resulting plot. as can the 

results can be superimposed to compare various data analyses. 

The "easy" file format also provides for user-specified parameter data, other than the standard 
nodal displacements and euler vectors. The parameter data can be entered in the motion data file 
and then displayed during the playback of an animation in a separate window. In this way, 
FORMS can inform the user of significant events or non-numeric results. 

User Interfaces/Device Drivers 

As was mentioned earlier, FORMS was designed with portability and flexibility in mind. To that 
end, two different user interfaces are currently available. The first is a standard command line 
keyboard interface. The second is a graphical user interface built on top of OSF Motif7. The 
graphical user interface uses a number of specialized widgets to facilitate FORMS operations. 

FORMS also cumntly supports two different graphical display devices. Drivers currently exist to 
support either X118 or Silicon Graphics GLg. 

Multi-Flexible Body Simulations 

The FORMS softwm requires animation data containing the rigid rotation and translation of each 
body and/or the displacements of the nodes for flexible bodies, as described above. This data can 
be generated by runnin multi-flexible body dynamics simulations such as TREETOPS1* , 

flexible node displacements. We are cumntly using the Spacecraft Appendage Dynamics And 
Control Simulation (SADACS) as the driver for FORMS. SADACS was derived by Boeing 
Defense & Space Group for faster simulation of large-angle, flexible body vehicles. SADACS 
utilizes SD/EXAC7'I4 rigid body dynamics code run in parallel with the FB2 code (linearized 
flexible dynamics updated at user-defined increments). The dynamics are driven by a control 
system and detailed actuator and sensor hardware models, including friction and other nonlinear 
effects. A simplified SADACS block diagram is shown in figure 4. 

DISCOS l1 , SADACSl E l3 , or any other simulation that can compute rigid body motion and/or 

Figure 4. Simplified SADACS Block Dkzgram 

The animation data is written to an ASCII file in the FORMS "easy" format. As SADACS is a 
high-speed computer simulation, many analyses and subsequent animations can be done in a short 
period of time. 
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For multi-flexible body structures where the bodies may move through large angles with respect to 
each other, the structural characteristics can change dramatically. Analysis of a four-body 
spacecraft shows significant change in the structural modes of concern when the solar array is 
rotated through 90 degms. Open-loop transfer functions in figure 5 show this result. 

I 

Frequer 

Solar array at 
0 degrees 

1 

00 
, radlsec 

m 
72 Solar array at =- - I00 
.- 90 degrees $ 

I50 
0 

Frequency, radlsec 

Figure 5. Open-Loop Transfer Functions for Q Spacecraft 
with Direrent Solar Array Positions 

The system mode frequencies and damping have been seen to change up to 50 percent. In addition 
to the frequency change, modes may swap with other modes or move to a different degree of 
freedom. The location of deformations in the structure may also change depending on the 
orientation of the bodies. To further complicate the picture, control forces and torques also affect 
how the structure behaves. The contml system designer relies on knowledge of how the structural 
modes change in order to "tune" the control system for maximum performance. Animation of the 
multi-flexible body system is an extremely useful tool for visualizing all of these effects. 

Animation and Control System Design 

The FORMS animation software allows the control system analyst to employ visualization during 
the design process. Control system parameters can be changed and then animated to show 
whether flexibilities are suppressed or excited. This increased knowledge of the structural 
characteristics gives the designer more accuracy in determining, for example, optimum size and 
placement of sensors and actuators. Valuable insights are being realized now from current usage 
of animation software for control system design. Control system design is only one of many 
applications for multi-flexible body animation software. 
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The Use of Linked Lists in the Simulation of 
Controller - Structure Interaction 

Ralph Quanl 
Frank J. Seiler Laboratory, 

U. S. Air Force Academy, Colorado Springs, CO 80840 

Abstract. An algorithm for the computer simulation of large space structures 
under active control is considered. Linked lists are used in a matrix data structure 
to implement the trapezoidal rule on the system differential equations. The use of the 
trapezoidal rule ensures that the numerical stability is equivalent to the system stability, 
which is essential for this type of simulation. The sparsity of the system matrices is 
exploited by the linked lists, and the algorithm efficiently steps through the lists in an 
orderly fashion. Results of simulations on a NASA large space structure experiment are 
reported. 

rule, LU factorization, L D L ~  factorization, sparsity 
Key words. large space structures, control, linked lists, simulation, trapezoidal 

1. Introduction. Future large space structures such as the space crane and the 
aerobrake will possess high flexibility and low damping. The suppression of vibrations is 
an important problem for this type of structure, since slewing maneuvers or disturbances 
can cause large amplitude vibrations over long time intervals. 

Vibration suppression can be accomplished via active feedback control. However, 
it is possible that an unstable controller design would damage the structure. Com- 
puter simulations are therefore desirable for evaluating controller performance and for 
detecting instability. 

Various approaches have been taken to simulate controller - structure interaction 
(CSI), such as those described in [1,2,3,4] and [5,p.3]. These approaches have accuracy 
and / or numerical stability limitations inherent in them. The method to be described 
in this paper overcomes these limitations. For instance, accuracy is maximized through 
the use of the finite element model of the large space structure, instead of a reduced 
order model. In addition, the numerical stability of the simulation is made equiva- 
lent to the stability of the physical system. This has been difficult to implement in 
the past, because of the differences between large space structure models and control 
system models. Finite element models of large space structures contain large, sparse, 
and symmetric matrices; compensator models tend to be small, dense, and uarsymmet- 
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ric. An implicit integration scheme such as the trapezoidal rule has the property that 
the numerical stability of the simulation is equivalent to the stability of the physical 
system, but it also combines the matrices of the structure and the compensator; this 
destroys sparsity and symmetry. Computer memory requirements can thereby become 
impractically large, if finite element data structures are used (banded matrix, skyline 
matrix, etc.). Therefore, a linked list data structure is developed below which recovers 
the sparsity of the computer simulation. Linked list algebra and factorization are also 
developed, so that an implicit integration scheme can be implemented. 

2. Closed Loop System Equations. Consider the following linear finite element 
model of a multi - input, multi - output structure: 

(1) Mq + Cq + Kq = Bu 

.=cy(;) 

where the displacement q E Rnxl, the velocity q E PX1, the acceleration q E an'', the 
input force u E Rmxl, the output vector y E Pnx1, and M, C, K,  B ,  Cy are the mass, 
damping, stiffness, input, and output matrices, respectively. 

The mass matrix is assumed to be positive definite; the damping and stiffness ma- 
trices are assumed to be positive semidefinite. An additional n differential equations 
are associated with equation (1); because the velocities are the derivatives of the dis- 
placements . 

A linear compensator is assumed, with dynamics as follows: 

where the compensator state vector x E FX1, and the matrix L E IR(r+m)x(r+3n). 

The differential equations above can be appended together to form one set of differential 
equations : 

z = v z  (4) 

If we have the state z at the Nth time step (time t), then we can obtain the state 

154 



at the N + 1  time step (time t+h) by using the trapezoidal rule: 

A linear system is stable if and only if its eigenvalues are in the left half complex 
plane. It is desirable that this system stability region coincide with the numerical stabil- 
ity region. Unexpected damage would result if the computer simulation of a controlled 
large space structure were to show stability, when in fact the controller were to destabi- 
lize the structure. The numerical stability region of the trapezoidal rule does coincide 
with the left half complex plane [6,7]; therefore this algorithm is a logical choice for the 
simulation of controller - structure interaction. 

3. Sparse Matrix Storage. Consider the following simplified control problem, 
which illustrates the computer storage difficulties associated with the simulation of 
controller - structure interaction: 

If the structure is in a steady state condition, equation (1) simplifies to: 

Kq = Bu 

As an example, consider the case where the structure has a tridiagonal stiffness matrix 
(the 'x' entries represent nonzero elements): 

o o x x x  
o o o x c z  

The nonzero elements of this matrix exhibit a certain pattern, which makes it possible 
to store the three diagonals of the matrix as three arrays. Let us place a force actuator 
at the first degree of freedom: 

B =  [ ~) 
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Now place a displacement sensor at the last degree of freedom: 

Y = Cqq 

C , = ( O  0 0 0 1) 

and establish output feedback from the displacement sensor to  the actuator: 

u = -gy 

Then the closed loop system equation becomes: 

K C p O  

The control has affected the sparsity pattern, and it is not clear if renumbering the 
degrees of freedom would help considerably. When implementing the trapezoidal rule on 
equations ( 1-3), the same situation is encountered. If all elements of such matrices were 
stored, then computer memory would be wasted on the storage of zero-valued matrix 
elements. This would be a serious problem for large space structure type problems. 
Therefore, a linked list data structure is developed below which stores only the nonzero 
elements. 

4. Linked List Matrices. Figure 1 displays the data structure for a linked list 
matrix. The leftmost array in the figure contains the number of nonzero columns in each 
row. Adjacent t o  this array is another array which points into linked lists for each row. 
Each record in the linked list contains a field for a floating point matrix data element, 
and a field for the column number. 

As it will be shown later, addition and multiplication of matrices can be done if 
the linked lists are traversed in one direction. However, factorization of matrices will 
require the deletion of matrix elements. A matrix element deletion requires that the 
two surrounding elements be connected together; knowledge of the locations of the two 
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Figure 1: Linked List Matrix 
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surrounding elements is needed. This information can be quickly obtained if the linked 
list can be traversed in both directions. To establish this “double linking”, there are 
two pointers in each linked list record which point to the two surrounding elements. If 
there is only one element in a linked list, then the two pointers point at that element. 

Although it is possible to store and recall elements in any order (random access), it 
is more efficient t o  store and recall matrices by rows. The next section demonstrates 
that such row access can be used to implement the algebra needed for a controller - 
structure interaction simulation. 

5 .  Sparse Matrix Algebra 

5.1 Sparse Matrix Addition and Multiplication 

The addition of matrices is necessary for the assembly of the finite element model 
from the element mass and stiffness matrices. Matrix addition, multiplication, and 
factorization is also required for the implementation of the trapezoidal rule (see [5] 
for details). The addition of two linked list matrices can be accomplished by stepping 
through the linked lists of the first matrix by rows. At the same time, the corresponding 
element in the second matrix is recalled. The two elements from the two matrices are 
added together and stored in the second matrix. Thus the final result appears in the 
second matrix. 

The multiplication of two matrices is often computed by using inner products: 

Given A e P x n ,  Be!Rnxp 
n 

C = A * B ,  (14) 
k=l 

In order to perform the multiplication efficiently by stepping through the linked lists 
in order, it is necessary to rearrange formula (14) into a form which resembles an outer 
product: 

m n  
C = A$U 

where pj is the zero matrix of dimension (m  x p )  with the ith row replaced by the 
jth row of the B matrix. Note that the A matrix is stepped through once, and that the 
B  matrix is stepped through at most m times. This multiplication procedure can be 
illustrated for two dimensional matrices: 
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(::: s::> = b22 b12 1 
allblz + a12b22) 

a21b12 + a22b2z 

5.2 LU factorization of a Sparse Matrix 

It is known that a matrix A can be factorized into a product of a lower triangular 
matrix L and an upper triangular matrix U. If the matrix equation Ax = b must be 
solved repeatedly for different b vectors, then the LU factorization leads to computa- 
tional efficiency [8]. This situation exists during the simulation of controller - structure 
interaction (see [ 5 ] ) .  A linked list matrix is to be LU factorized, and therefore the usual 
procedure for LU factorization needs to be modified. The new procedure is given as 
follows: 

a) Form the transpose of the matrix A (AT). 

b) For all of the rows which have not been selected as a pivot row: ' 

1. Select the sparsest row as the pivot row. 

This idea was used in 191. However, the procedure described in [9] assumed that 
the nonzero elements of the sparse matrix to be factorized are packed into arrays. 
Deletions of matrix elements are necessary in the factorization, which is cumber- 
some if the data is stored in arrays. With linked lists, deletions are simple in that 
pointers in the matrix elements surrounding the deleted element are redirected 
at each other. The insertion of matrix elements is also relatively simple. This is 
important for the assembly of the finite element model via the addition of element 
mass and stiffness matrices into the global mass and stiffness matrices [lo]. Thus 
a single data structure (the linked list matrix) can be used for the assembly of 
the finite element model and for the implementation of the trapezoidal rule; this 
avoids the need for conversions between data structures. 
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2. Find the element with the maximum magnitude within the pivot row. This ele- 
ment will be referred to as the pivot element, and the column of this element will 
be referred to as the pivot column. Later below, division by the pivot element 
will be performed, which is why the maximum magnitude element is chosen as 
the pivot element. If the matrix is nonsingular, a nonzero element will be found 
in the pivot row. 

3. Delete the pivot row from AT. 

4. Save a copy of the pivot element, and delete it from A. 

5. The nonzero elements in the pivot column are referred to as “target elements”. 
These target elements appear in a row in AT, allowing for quick access. For each 
target element, 

i) multiplier = - target element / pivot element 
ii) Store the multiplier in the matrix L, and delete the target element from A 

and AT. 
iii) Multiply the pivot row by the multiplier and add it to the target row of A 

and AT. Since we chose the sparsest row as the pivot row, we retain as much 
sparsity as possible. 

(End of factorization: The matrix U now appears in place of matrix A) 

The matrix A is stored by rows. Since access by columns is needed above, AT is 
stored. It might appear that this would double the storage requirements. However, 
A is sparse. The LU factorization process creates “fill in” (some of the zero elements 
become nonzero) within the U matrix. After each step of the factorization process, 
another column of AT is no longer needed. The storage for this column goes towards 
the storage of the “fill in” elements. 

After the factorization has been completed, the linked list matrix A is left with the 
upper triangular part of the factorization, and linked list matrix L is the lower triangular 
part. 

5.3 LDLT Factorization of a Sparse Matrix 

A symmetric linked list matrix equation needs to be solved at every time step in 
the simulation of controller - structure interaction (see [SI). Another problem where 
a symmetric linked list matrix equation has to be repeatedly solved occurs during the 
computation of the lowest frequency modes of a structure (see [5]). The LDLT factoriza- 
tion can be employed to efficiently solve these matrix equations. E is a lower triangular 
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matrix with ones on the diagonal, and D is a diagonal matrix. The LDLT factorization 
is described and analyzed in Golub and Van Loan [8]. The algorithm is listed below in 
the style which Golub and Van Loan use in their text. The notation l:j signifies all of 
the integers from 1 to j. 

LDLT Algorithm: If A E !R@"") is symmetric then the following algorithm computes a 
unit lower triangular matrix L and a diagonal matrix D so that A = LDLT. It is 
assumed that only the lower half of the matrix A is stored, because of the symmetry. 
The matrix A is overwritten with the matrices L and D by this algorithm. 

f o r j = l : n  
for i = 1 : ( j  - 1) 

end 
~ ( i )  = A( j ,  i )A( i ,  i) 

~ ( j )  = A ( j ,  j) - A ( j ,  (1 : j - 1)) ~ ( 1  : ( j  - I)) 
A ( j , j )  = .(j) 
A ( ( j  + 1) : n, j )  = 

( A ( ( j  + 1) : n , j )  - A ( ( j  + 1) : n,l : ( j  - 1))v(l : ( j  - l ) ) ) / v ( j )  
end 

The LDLT algorithm can be modified to handle sparse symmetric matrices of the linked 
list storage type: 

The formation of the v vector on lines (2 - 5) is done by stepping through linked 
lists, instead of looping over the entire range from 1 to (j - 1). Because of the sparsity 
of the matrix, the v vector is also sparse. 

The algorithm yields one column of the L matrix at a time, as shown in lines (7 - 
8) of the algorithm. In line (8), a vector is formed by multiplying a submatrix by the 
v vector (A((j + 1) : n, 1 : (j - l ) )v( l  : (j - 1))). A small example will be useful for 
illustrating the sparsity: 
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x x o o o  
0 x 0 0 0  

0 = o o x x o  
0 0 0 x 0  il i x o o o x  

X 

0 ..i 0 

The symbol “x” in the above equation signifies a nonzero element which is in a 
linked list. There is no need to perform the computations for rows 3 and 4 of the result 
vector vr, because all of the terms for those rows are zero. Since the linked list storage 
scheme is being used, the zero part of vi does not actually exist: 

The matrix M is stored by rows. If the transpose of M is stored, then it is efficient 
to traverse the columns of M corresponding to the nonzero rows in v;. The union of 
the nonzero rows in those columns forms the set of nonzero rows in the result vr. We 
will refer t o  this set of rows which need to be handled as the set U. 

It might appear that the storage of AT would double the storage requirements. 
However, A is sparse. The LDLT factorization process creates “fill in” within the 
matrix. However, after each step of the factorization process, another column of AT is 
no longer needed. The storage for this column goes towards the storage of the “fill in” 
elements . 
The new algorithm is given as follows: 

a) Form the transpose of the matrix A. 

b) For each row p of A: 

1. Delete the row from the AT. 

2. Determine the set U of rows which need to handled. 
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3. Recall the diagonal element A,, for that row, and delete'it from A. 

4. Compute the v vector described above. 

5 .  For all the rows q in the set U which need to be handled: 

i) Recall the section of the row q of A up to column p .  

ii) Compute the dot product of that section with the v vector. 

iii) Subtract this dot product from A,, and divide by vp. Store this result in 

A,, and in A:,. 

(End of Procedure) 

6. The Mini-Mast Truss. Mini-Mast is an active control experiment being 
maintained at the NASA Langley Research Center [ll]. A linear finite element model 
having 714 degrees of freedom was developed for this truss. Two of the accelerometers 
were used as sensors, and all three of the torque wheels were used for control. 

The Rayleigh damping coefficients were tuned to  provide 2 percent damping in the 
first two modes and 1 percent damping in the next three modes. These first five modes 
and the dynamics of the torque wheels were combined to form a reduced order model 
of the structure, and linear quadratic regulator theory was used to  design a controller. 
The total number of states in the compensator state vector is 16. Figures 2 and 3 show 
the open loop response and the closed loop response, respectively. In both cases, a one 
second triangular pulse was applied at one of the torque wheels. The simulations were 
done on a Sun-4 workstation; total memory req&ements were less than 4 megabytes. 
About 6 minutes of computer time was used to produce the 280 time steps shown in 
the simulation. 

7. Conclusion. An alternative approach towards the simulation of controller - 
structure interaction (CSI) has been described in this paper. Linked lists were used 
to  implement the trapezoidal rule, which enforces an equivalence between numerical 
stability and system stability. This characteristic is essential for CSI analysis, and has 
not been demonstrated by previous CSI simulation methods. 

Matrix storage has been implemented with linked lists, which required the develop- 
ment of linked list matrix algebra for the implementation of the trapezoidal rule. Thus 
methods for linked list matrix addition, multiplication, LU factorization, and LDLT 
factorization were developed. The linked lists are stepped through in order in these 
methods, which minimizes the number of computations required. Memory requirements 
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are also minimized because storage is dedicated only to nonzero matrix elements. 

The feasability of this approach was demonstrated on a computer workstation for 
a large space structure experiment (the Mini-Mast truss). These linked list matrix 
methods show that it is possible t o  simulate the control of some large space structures 
without the use of a supercomputer. In the case of a supercomputer, it is not certain how 
effective linked list methods would be. A linked list is not in the form of a vector, which 
suggests that methods based on it would not take advantage of the special capabilities of 
vector processing machines. In the case of parallel processing supercomputers, research 
needs to  be done to  determine the effectiveness of these methods on such machines. 
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Abstract 
This paper presents an approach to modeling the dynamics of flexible multibody systems such 
as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom 
and complex dynamic interactions are typical in these systems. This paper uses spatial operators 
to develop efficient recursive algorithms for the dynamics of these systems. This approach very 
efficiently manages complexity by means of a hierarchy of mathematical operations. 

1. Introduction 
A wide range of complex mechanical systems can be modeled as a set of hinge-connected flexible 
and rigid bodies. This paper presents an approach to modeling the dynamics of such systems that 
uses spatial operators. This approach very efficiently manages complexity by means of a hierarchy 
of mathematical operations. The highest level in this hierarchy consists of spatial operators which 
relate velocities, accelerations, and forces between distinct points in the system. At lower levels, each 
spatial operator is decomposed easily into detailed spatially recursive algorithms to do computation. 
The recursive algorithms are cast within the highly developed framework of filtering and smoothing 
theory. Algorithms which are quite popular in state estimation theory for discrete-time systems 
can now be applied to conduct spatially recursive operations essential in multibody dynamics. The 
main focus is on serial chains, but extensions to general topologies are also described. Comparison 
of computational costs illustrates the efficiency of the recursive algorithms. 

This paper uses spatial operators [1,2] to develop efficient recursive algorithms for flexible multibody 
systems for such applications as flexible spacecraft and limber space robotic systems. A large 
number of degrees of freedom and complex dynamic interactions are typical in these systems. The 
main contributions of the paper are: (1) high-level architectural understanding of the mass matrix 
and its inverse, (2) high-level expressions which can be easily implemented with spatial Kalman 

. filtering and smoothing, (3) efficient inverse and forward dynamics recursive algorithms, and (4) 
analysis of computational cost of the new algorithms. This adds to the rapidly developing body of 
research in the recursive dynamics of flexible multibody systems [3-51. 

2. Equations of Motion 
Equations of motion are developed for a serial system formed by N articulated flexible bodies. 
Recursive relationships between the modal velocities, accelerations and forces are developed. Spatial 
operators express these relationships compactly to obtain what is referred to here as the Newton- 
Euler mass matrix factorization. 

Each flexible body has a lumped muss model formed by a set of nodal rigid bodies. Such models 
are typically developed using standard finite element analysis. The kth body has n,(k) nodes. The 
j t h  node on the ICth  body is called the jLh node. There is a body reference frame 3, for the kth body. 
Deformation of the nodes on the body is described with respect to this body reference frame, while 
the rigid-body motion of the kth body is characterized by the motion of frame Fk. 
The 6-dimensional spatial deformation (slope plus translational) of node jk (with respect to frame 
Fk) is @(jk) E @. The overall deformation field for the kth body is the vector u(k) = col{ u&)} E 
%tiG”s(k). The vector from frame Fk to the reference frame on node j ,  is Z(k,jk) E @. 
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The spatial inertia of the j th  node is 

where , 7 ( j k ) ,  p ( j k )  and m ( j k )  are the inertia tensor about the node reference frame, the vector 
from the node reference frame to its center of mass, and the mass, respectively, for the j t6  node on 
the kth body. The structural muss matrix for the kth body M,(b) is the block diagnal matrix 

M,(L)= diag{M,(jk)} E ~ 6 n * ( k ) x & s ( ' )  (2) 

The structuml sti$ness matriz is denoted K,(k) E @ns(k)X6ns(k). For a 3-vector 2, there is a 
corresponding cross product matrix 5 .  Both M,(k) and K,(k) are typically generated using finite 
element analysis. 

As in Figure 1, the bodies in the serial chain are numbered in increasing order from tip to  base. The 

reference 
frame 3 k  

Towards base - - Towardstip 

Figure 1: Illustration of links and hinges in a flexible serial multi- 
body system 

terms inboard (outboad) denote the direction along the serial chain towards (away from) the base 
body. The kth body is attached on the inboard side to the ( b  + l)th body by the kth hinge, and on 
the outboard side to the (k - l)th body by the (k - l)th hinge. OD the kth body, the node to which 
the outboard hinge (the (L - l)th hinge) is attached is node t k ,  while the node to which the inboard 
hinge (the kth hinge) is attached is node dk. The kth hinge couples nodes d k  and Attached 
to  each of these nodes are the kth hinge reference fraEes (3k and 0; respectively. The number of 
degrees of freedom (dofs) for the kth hinge is ny(k) .  The vector of configuration variables for the 
kth hinge is O(k) E ?J12"r(k), while the hinge's vector of generalized speeds is p ( k )  E In general, 
when there are nonholonomic hinge constraints, the dimensionality of p ( b )  may be less than that of 
8(k). For convenience, and without any loss in generality, it is assumed here that the dimensions of 
the vectors O(b) and p ( k )  are equal. In most situations, p ( k )  is simply i. However there are many 
cases where the use of quasi-coordinates simplifies the dynamicd equations of motion, and there 
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may be a better choice for P(k). The relative spatial velocity Av(k) across the hinge is H*(k)P(k) ,  
where IT*(b) is the joint map matrix for the bth hinge. 

A set of n,(k) assumed modes is chosen for the kth body. Let @(k) E @ be the modal sputiul 
displacement vector at the j i f i  node for the rth mode. The modal spatial displacement influence 
vector II j (k)  E 9?6xnm(k) for the j ih node and the modal matrix II(k)  E 326"s(k)Xnm(k) for the 
kth body are 

The rth column of H(k)  is &(k), which defines the mode shape for the rth assumed mode for the 
kth body. Let q(k) E 32nm(k) be the vector of modal deformation variables-for the kth body. The 
spatial deformation of node j k  and the spatial deformation field u(k) for the kth body are 

u ( j k )  = IIi (k)q(k)  and u(k) = II (k>q(k)  (3) 

Note that for cantilever modes 

The vector of genemlized configuration variables d(k) and the vector of genemlized speeds x(k) for 
the bth body are 

where N(b) e nm(k)  + nr(k). The overall vectors of generalized configuration variables .9 and 
generalized speeds x for the serial multibody system are 

t9 e col{t9(k)} E e and x = " { ) > e  col ~ ( k  E 

where N e C r = l N ( k ) .  The number of overall degrees of freedom for the multibody system is 
N .  The state of the multibody system is defined by the pair of vectors { T?, x}. For a given system 
state { $ , X I ,  the equations of motion relate the genemlized accelerations and genemlized forces 

' T E !I@. The inverse dynamics problem is to compute the generalized forces T for a prescribed 
set of generalized accelerations i. Conversely, the forward dynumics problem is to compute the 
generalized accelerations ;i: from the generalized forces T. 

2.1 Recursive Propagation of Velocities 

Let V ( k )  be the spatial velocity of the kth body reference frame Fk, i.e., 

where u ( k )  and v (k )  are the angular and linear velocities respectively of Fk. The spatial velocity 
Vs(tk+l) E ?R6 of node t k + l  (on the inboard side of the kth hinge) is related to the spatial velocity 
V ( k  + 1) of the ( k  + l)th body reference frame 3k+1, and the modal deformation variable rates 
$(k + 1): 

&(tk+l) = fl(k + l , tk+l)V(k + 1) + n t ( k  -k l ) $ ( C  -k 1) ( 7 )  
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The spatial transformation operator 4(x,  y )  E 9?6x6 is 

where Z(z, y) E is the vector between the points x and y. Note the group property 

4b7 Y ) 4 ( Y ,  4 = 4(% 2) 

for arbitrary points x ,  y and z. As in Eq. (7), and all through this paper, the index L will be used 
to refer to both the kth body as well its to the kth body reference frame j”r, with the specific usage 
coming from the context. For instance, V ( k )  and 4(k,tk) are the same as v(Fk) and 4 ( F k , t k )  
respectively. 
The spatial velocity V(0:) of frame 0; (on the inboard side o€ the kth hinge) is related to x( tk+l)  
by 

v( 0:) = f ( tk+l? Ok)K(tk+l) 

v (Ok)  = v ( O t )  + H*(k)P(k)  

(9) 

The relative spatial velocity Av(k) across the ICth hinge is H*(k)P(k ) ,  and so the spatial velocity 
V(Ok) of frame Ok on the outboard side of the kth hinge is 

(10) 

(11) 

The spatial velocity V ( k )  of the kth body reference frame is 

v(k) = Y(Ok7 k)v(Ok)  - G(dk) = Y ( O k ,  k) [v(ok) - nd(k)6(k)]  

Eq. (7), Eq. (9), Eq. (10) and Eq. (11)  together imply 

v(k) = 4*(k + 1,k)v(k + 1) + 4*(tk+l,k)nt(k + l)G(k + 1) 

+4*(Ok, k) [H*(k)P(k) - r rd (46W]  (12) 

Thus, with x(k) e nm(k) + 6 and Eq. (12), the modal spatial velocity Vm(k) E 
kth body is 

for the 

where the interbody transformation operator @(., .) and the modal joint map matrix X ( k )  are 
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Also, the modal joint map matrix K(k) can be partitioned as 

where 

7 i f ( k )  [I, -[n$(k)]*] E 8nm(k)xx(k) and 'H,(k) 2 [o, f f { k ) + { # k , k ) ]  E 8 n r ( ~ ) x m k )  (19) 

With = ~ ~ = l ~ ( k ) ,  the spatial operator E@ is defined as 

0 E$XR (20) 

I ~) € @ e  ~ 0 @(3,2) .... 0 

0 0 0 0 
@(2,1) 0 .*. 0 

0 0 ... @ ( N , N - 1 )  0 

Note that €e is nilpotent (i.e. &$ = 0) and define the spatial operator Qi as 

0 
A Qi = [I- &]-1 = I+€@ + . - e +  g - 1  = 

@(N,l)  @ ( N , 2 )  ... 
(21) 

where 
A @(i , j )  = @(i, i - 1) e -  - @ { j  + 1 , j )  for i > j 

Also define the spatial operator 3c diag{H(k)} E I t  follows that 

vm = @*Z*x 

where Vm 2 cd{ Vm(k)} E fl. 

2.2 Modal Mass Matrix for a Single Body 
An expression for the modal mass matrix of the kth body is derived. Denote by V g ( j k )  E 82' the 
spatial velocity of node jk. V J k )  e col{V,(jk)} E 86ns(k) is the vector of all nodal spatial velocities 
for the kth body. It follows (as in Eq. (7)) that 

V,(k) = B*(k)V(k) + 4(k) = [II(k) ,  B*(k)]Vm(k) (23) 
where 

B(k) 2 [qqk, 1~),~(~,2k),.*.,~(k,~~(~))] E %6X6ns(k) 

-v ,*(~)-K(k)K(k)  2 = zv;(';)Mm(k)vm(k) 

(24) 
Since M,(k) is the structural mass matriz: of the kth body, the kinetic energy of the kth body is 

1 1 

where 
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Corresponding to the generalized speed vector ~ ( k ) ,  (k) is the modal mass matrix of the 
the block partitioning in Eq. (25), the superscripts f and r denote the fIezibZe and 

rigid blocks respectively. Thus M A f ( k )  represents the flex/flex coupling block, while M;f:(k) the 
flex/rigid coupling block, of M,(k). Note that M g ( k )  is precisely the rigid body spatial inertia of 
the kth body. Indeed, Mm(k) reduces to the rigid body spatial inertia when the body flexibility is 
ignored, i.e., no modes are used, since in this case n,(k) = 0 (and II(k) is null). 

Since the vector I ( k , j k )  from F,, to node 'jk depends on the deformation of the node, the operator 
B ( k )  is also deformation dependent. From Eq. (25) it follows that while the block MLf(k)  is 
deformation independent, both the blocks M;f:(k)  and M z ( k )  are deformation dependent. The 
detailed expression for the modal mass matrix can be defined using modal integrals which are 
computed as a part of the finite-element structural analysis of the flexible bodies. These expressions 
for the modal integrals and the modal mass matrix of the kth body can be found in [6]. Often the 
deformation dependent parts of the modal mass matrix are ignored, and free-free eigen-modes are 
used for the assumed modes II(k). When this is the case, M$(k)  is zero and M k f ( k )  is block 
diagonal. 

2.3 Recursive Propagation of Accelerations 

Differentiation of the velocity recursion equation, Eq. (13), results in the following recursive ex- 
pression for the modd sputial acceleration a , (k )  E *(,) for the kth body: 

a,@) e +,(IC) = ( $; ) = @*(k + l , k ) a , ( k  + 1) + 7-I*(k)k(k)  + a,(k) (26)  

where ~ ( k )  = e ( k ) ,  and the Coriolis and centrifugal acceleration term am(k)  E fl(k) is 

The detailed expressions for am(k)  can be found in [6]. Defining a m  = col{am(k)} E fl and 

a m  = col{~,(k)} E fl, Eq. (26) can be reexpressed using spatial operators in the form 

Q, = @ * ( H * i  + a,) (28)  

The vector of spatial accelerations of all the nodes for the kth body, cr,(k) = col a,(j,) 
E 9?6ns(k), is obtained by differentiating Eq. (23): 

" {  } 

Q@) = +(k) = [W), B*(k)]alm(k> + (29) 

where 

2.4 Recursive Propagation of Forces 

The equations of motion for the kth body are now developed. Let f(k - 1) E @ denote the effective 
spatial force of interaction, referred to frame 3k-1, between the kth and (k - l)th bodies across the 
(k - l)th hinge. Recall that the (k - l)th hinge is between node tk on the kth body and node dk-1 
on the (k - l)th body. With fs(jk) E @ denoting the spatial force at a node j,, the force balance 
equation for node t k  is 

fs(tlc) = cb(tk, k - l ) f ( k  - 1) + M S ( t k ) Q S ( t k )  + q t k )  + fK(tk) (31) 
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For all nodes other than node tk on the kth body, the force balance equation is 

fa(jk) = M s ( j k ) a s ( j k )  + b(jk) + 
In the above, f ~ ( k )  = KS(k)u(k) E pnSlk) is the vector of spatial elastic strain forces for the nodes 
on the kth body, while b ( j k )  E %I6 is the spatial gyroscopic force for node j k  and is given by 

where w ( j k )  E @ denotes the angular velocity of node j k .  Define 

Eq. (31) and Eq. (32) imply 

fS(k) = C(k,k  - l ) f (k  - 1) + &(k)as (k )  + b(k)  + K S ( C ) U ( k )  (35) 

f(W = B ( k ) f s ( k )  (36) 

A where f s ( k )  = col{fS(&)} E g26"s(k). Noting that 

and using the principle of virtual work, it follows from Eq. (23) that the modal spatial forces 
fm(k) E f l (k )  for the kth body are 

Premultiplying Eq. (35) by ( ) and using Eq. (25), Eq. (29), and Eq. (37) leads to the 

. following recursive relationship for the modal spatial forces: 

fm(k) = @(k,k - l)fm(k - 1) + Mm(k)am(k)  + b m ( k )  + l im(k) .9(k)  (38) 
where 

and the modal stiflness matrix 

The expression for K m ( k )  in Eq. (40) uses the fact that the columns of B*(k) are the deformation 
dependent rigid body modes for the kth body, and hence they do not contribute to its elastic strain 
energy. When a deformation dependent structural stiffness matrix lis( k) is used, 

Ks(k)B*(k) = 0 (41) 
However, common practice (followed in this paper) uses a constant, deformation-independent s truc- 
t u r d  stiffness matrix. This leads to the apparently anomalous situation wherein Eq. (41) does not 
hold exactly. All these fictitious extra terms on the left-hand side of Eq. (41) are commonly ignored. 
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The velocity-dependent bias term bm(k) is formed using modal integrals generated by standard 
finite-element programs, and a detailed expression for it is given in [6]. From q. (38), the operator 
expression for the modal spatial forces f m  e col{ f m ( k ) }  E fl for all the bodies in the chain is 

fm = @(Mmam + bm + Km9) (42) 

where 
A A M m  = diag{Mm(k)} E fix, K m  = diag{Km(k)} E SXx, and bm e col{bm(k)} E fl 

From the principle of virtual work, the generalized forces vector T E @ for the multibody system 
is 

T= 'Hfm (43) 

2.5 

Collection of the operator expressions in Eq. (22), Eq. (28), Eq. (42) and Eq. (43) leads to: 

Operator Expression for the System Mass Matrix 

Vm = @*X*X 
am = @*(X*i+am)  (44) 
fm = @(Mmam f bm + Km.9) = @Mm@*X*i + @(M~@*u, + b, + Km8) 
T = 'H fm = 'H@Mm@*Z*i + 'H@(Mm@*am + bm) 

= M i + C  
wher.e 

(45) 
A M e 'N@Mm@*'H* E 9PxN and C = 7i@(Mm@*am + bm + K m 9 )  E 

Here M is the system mass matrix. The expression 'H@Mm@*'H* is referred to as the Newton-Eder 
Opemtor Factorization of the mass matrix. The term C is the vector of Coriolis, centrifugal, and 
elastic forces for the system. 

The operator expressions for M and C are identical in form to those for rigid multibody systems 
(see [1,7]). This similarity is extremely useful in the extension of recursive algorithms from rigid 
multibody systems to  flexible multibody systems. 

3. Composite Body Forward Dynamics Algorithm 
The forward dynamics problem for a multibody system requires computing the generalized accel- 
erations 2 for a given vector of generalized forces T and state of the system (r9,x). The composite 
body forward dynamics algorithm described below consists of (a) computing the system mass matrix 
M ,  (b) computing the bias vector G, and (c) solving the linear matrix equation for 2: 

M i = T - C  (46) 

Section 4 describes the recursive articulated body forward dynamics algorithm that does not require 
the explicit computation of either M or C. 

Lemma 3.1: 
bodies in the serial chain as follows: 

Define the composite body inertias R(k)  E $(k )xW(k)  recursively for all the 

R(0) = 0 
fork = l - . . N  

end loop 
R(k)  = @(k7k - I)R(k - I )@*(k ,k  - 1) + Mm(k) (47) 
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forj = ( k + l ) . . - N  
X ( j )  = +( j , j  - l ) X ( j  - 1 )  = A(j)d(t j , j  - I ) X r ( j  - 1 )  

M ( j , k )  = M * ( W  = ? f ( j ) X ( j )  
end loop 

, end loop 

4. Factorization and Inversion of the Mass Matrix 
An operator factorization of the system mass matrix M, referred to as the Innovations Operator 
Factorization, is derived. This factorization is an alternative to the Newton-Euler factorization in 
Eq. (45). In contrast with the latter, the factors in the Innovations factorization are square and 
invertible. Operator expressions for the inverse of these factors lead to an operator expression for 
the inverse of the mass matrix. Use of further operator identities results in the recursive articulated 
body forward dynamics algorithm in Section 5. The operator factorization and inversion results 
here closely resemble those for rigid multibody systems (see [ l ] ) .  

The following recursive algorithm defines some required articulated body quantities. This algorithm 
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has the structure of the ccati equation of Kalman filtering theory [g]: 
I 

P ( k )  = 
D(k)  = 'H(k)P(L)X*(k) E @ ( k ) x N ( k )  

@(k,k - l )P+(k  - l)@*(lc,lc - 1) + Mm(k)  E $ ( k ) x Z ( k )  

G(k) = P(k)R*(k)D-l(k)  E 3i?(k)xN(k) 

5(k) 

K ( k  + 1, k) = @(k + l,k)G(k) E fl(k)xN(k) 
= I - G(k)'H(b) E fl(k)xT(k) 

_ _  ~- P+(k)  = ?(k)P(k)  E $(k)x-) 

@ ( k  + 1, k) = @(k + 1, k)7(k) E 8i?(k)xr(k) 
. end loop 

The operator P E flxT is defined as the block diagonal matrix with the ICth  diagonal element 
being P(k) .  The quantities defined in Eq. (51) form the component elements of the following spatial 
operators: 

D A = RPX* = diag{D(k)} E exN 
A G = PR*D-l = diag{G(k)} E SxN 

The only nonzero block elements of K and &q are the elements K(k + 1, I C )  and @ ( k  + 1, k) respec- 
tively along the first sub-diagonal. The spatial operator G is formed by a set of spatial Kaiman 
gains [9] for a spatially recursive Kalman filter. 
As in the case for &a, E* is nilpotent, so the operator !& can be defined as 

0 ... 0 1 

where 
A !P(i,j) = @(i,i - 1) - e -  @ ( j  + 1,j) for i > j 

The structure of the operators &p and @ is identical to that of the operators &a and @ respectively 
except that the component eIements are now lF(i,j) rather than @(i,j). Also, the elements of 
T! have the same semigroup properties as the elements of the operator 9, and as a consequence, 
high-level operator expressions involving them can be directly mapped into recursive algorithms, 
and the explicit computation of the elements of the operator @ is not required. 
The Innovations Operator Factorization of the mass matrix is defined in the following lemmas 
established in El]. 

Lemma 4.1: 

A4 = [I + 7?91i-]D[I + X@Ii]* (54) 
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Note that the factor [ I  + 31 I<] E CxN is square, block lower triangular and nonsingular, while 
block diagonal matrix. This factorization may be regarded as a block LDL* decomposition 
The following lemma gives the closed form operator expression for the inverse of the factor 

[ I  + 7-Iwq. 

Lemma 4.2: 

[ I  + 3-1@1i]-' = [ I  - H ~ I < ]  ( 5 5 )  

Lemma 4.3: 

M-' = [ I  - X\vI<]*D-'[I - 31\kKi] (56) 
Once again, note that the factor [ I  - 'Hqh'] is square, block lower triangular and nonsingular 
and so Lemma 4.3 may be regarded as providing a block LDL* decomposition of M - l .  This 
decomposition however is model-based, in the sense that the physical model of the system is used 
to conduct computations. This means that every step in the decomposition has a correspoiiding 
physical interpretation which adds a substantial amount of insight into the decomposition. 

5.  Articulated Body Forward Dynamics Algorithm 
The operator-based mass matrix inverse leads to a recursive forward dynamics algorithm. The 
structure of this algorithm is completely identical in form to the articulated body algorithm for serial 
rigid multibody systems. Its structure is that of a Kalman filter arid a. Bryson-Frazier smoother 191. 

The following lemma, established in [l], describes the operator expression for the generalized ac- 
celerations i in terms of the generalized forces 2'. 

Lemma 5.1: 

/i. = [ I  - 'HQIi]*D-'[T - 'FI!&{I<T + Pa,  + b, + - I<*Q*a, (57 )  

As in the case of rigid multibody systems [1,10], the direct recursive implementation of Eq. (57) 
leads to the following recursive forward dynamics algorithm: 

2+(0) = 0 
fork = l - - - n  

r ( k )  
c ( k )  = T ( k )  - W ( k ) Z ( k )  
v(k) = D-' (b )c (k )  

.+(k)  = z ( k )  + G ( P ) c ( k )  

= cp(b,b - l ) Z + ( k  - 1) + P(k)a , (k )  + b n t ( k )  + I<,(k)I9(k) 

end loop 

( 5 8 )  
a,(n 4- 1) = 0 

for k -= n . - . l  
ak(k )  = @ * ( k  + l ,k)cr , (k  t 1) 

u m ( k )  = + X * ( k l i ( k )  + a,,(k> 
i ( k )  = v(b) - G*(k)aZ(k)  

, end loop 

All the degrees of freedom for each body are characterized by its joiitt. map matrix 31*(.) and are 
processed together at each recursion step in this algorithm. However, by taking advantage of the 
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sparsity and special structure of the joint map matrix, additional reduction in computational cost 
is obtained by processing the flexible dofs and the hinge degrees of freedom separately. Tliese 
simplifications are described in the following sections. 
Instead of giving detail, the conceptual approach to  separating modal and hinge degrees of freedom 
is described. First, recall the velocity recursion equation in Eq. (13) 

Vm(k) = @*(k + l,k)Vm(k C 1) + %*(k.)x(k.) (59) 

and the partitioned form of X(k) in Eq. (15) 

Introducing a dummy variable k’, rewrite Eq. (59)  as 

Vm(k’) = @*(k + l,k’)Vm(k + 1) + XHj(k)lj(k) 
l f m ( k )  = @*(k’,k)Vm(k’) + %;(k)p(k) 

where 
A @(k+ 1,k’) @(k t 1,k) and @ ( k ‘ , C )  = I 

Conceptually, each flexible body is now associated with two bodies. The first one has the same 
kinematical and mass/inertia properties as the real body and is associated with the flexible degrees 
of freedom. The second body is a fictitious body, and it is massless and has zero extent. It is 
associated with the hinge degrees of freedom. The serial chain now contains twice the number of 
bodies as the original one, with half the new bodies being fictitious. The new 3-1* operator has 
the same number of columns but twice the number of rows as the original X* operator. The new 
@ operator has twice the number of rows as well as twice the number of columns as the original. 
An analysis similar to those of the previous sections leads to an operator expression similar to 
Eq. (57). This implies a recursive forward dynamics algorithm like Eq. (58). However each sweep 
in the algorithm now contains twice as many steps as the original algorithm. But since each step 
now processes a smaller number of degrees of freedom, the overall computational cost is reduced. 

5.1 Simplified Articulated Body Forward Dynamics Algorithm 

The complete recursive articulated body forward dynamics algorithna for a serial flexible multibody 
system follows from recursive implementation of Eq. (57). The algori t k ~  has the following steps: 
(a) compute the articulated body quantities, (b) do a base-to-tip recursion for the modal spatial 
velocities Vm(k) and the bias ternis a , (k ) ,  b , (k) ,  and (c) do a tip-to-base recursion followed by a 
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base-to-tip recursion for the joint accelerations ;i.. 

end loop 

The recursion in Eg. (63) is obtained by carrying out simplificatiotls of the recursions in E(]. (58)  
in the same manner as described i i i  the previous section far the artktclated body quantities. 
In coiitrast with t ltc composite body forward dynamics algoritlm of Section 3, this algorit11111 
does iiot explicitly compute either M or C. This algorithm is siniilar to those for rigid multibocly 
sys teins [ 1,111. 
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The computational costs of the composite body and the articulated body forward dynamics algo- 
rithms are compared. For low-spin multibody systems, it has been suggested in [12] that using 
ruthlessly lineurized models for each flexible body can lead to significant computational reduction 
without sacrificing fidelity. These linearized models are considerably less complex than the full 
nonlinear models and do not require much of the data on modal integrals for the individual flexible 
bodies. AI1 computational costs given below are based on the use of ruthlessly linearized models 
and the computationally simplified steps described in [SI.  

6.1 Computational Cost of the Coiiiposite Body Forward Dynamics Algorithm 

The composite body forward dynamics algorithm described in Section 3 is based on solving the 
linear matrix equation 

M > : = T - C  
The computational cost of this forward dynamics algorithm is as follows: 

1. The cost of computing R ( k )  for the kth  body by using the algorithm in Eq. ( 5 0 )  is 
[48n,,(k) + 90jM + [n.zL(k) + 9 n 8 , ( k )  + llG]A. 

2. Tlie contributioii of the k'" body to the cost of coiuputing Jtz (esclridiiig cost of R(/c) 's)  iisiiig 
the algorithm in Eq. (50) is 
{ k [ 1 2 n k ( k )  + 34n,(k) + 131) M + { k[llnk(k) + 24n,(k) + 131) A. 

dynamics algorithm for computing the generalized forces T .  The contribution of the kth body - 
to the computational cost forC(k) is {2n$(k)  + 54n,(k) + 20G) M + { 2 n $ ( k )  + 50n,(k) + 143) A.  

3. Setting the generalized accelerations = 0, the vector C can bc obtained by using an inverse 

4. The cost of computing T - C is { N }  A. 

5. The cost of solving the linear equation in Eq. (46) for the accelerations 2 is 
{ ~ N 3 + ~ N 2 - $ N } M + { $ V 3 + N 2 - ~ N } A .  

The overall complexity of the composite body forward dyna,mics algorithm is 0(N3) .  

6.2 Computational Cost of the Articulated Body Forward Dynamics Algorithm 

The articulated body forward dynamics algorithm is based on the recursions described in Eq. (62 )  
and Eq. (63). Since the computations in Eq. (47) can be done prior lo the dynamics simulation, 
the cost of this recursion is not included in the cost of the overall forward dynamics algorithm 
described below: 

1. The algorithm for the computation of the articulated body quantities is given in Eq. (62) .  The 
step involving the computation of D - ' ( k )  can be carried out either by an explicit inversion of 
D ( k )  with O ( u & ( k ) )  cobt, o r  by tlic indirect procedure described iii Ey. ( 6 2 )  with O(U:~(L-))  
cost. The first method is inore efficient than the second one for nr ,Z(k)  5 7. 

0 Cost of Eq. ( 6 2 )  for the kth body, based on the explicit. inversion of D ( k )  (used when 
n,,(k) 5 7 ) ,  is 
{ g n L ( k )  + F n L ( 6 )  i- y n , , ( k )  t lSO} M t {in%(lz) + +IIL(L!) t y n , ( k )  -+ lf i . l}A. 

0 Cost of 33q. (62) for the kth body bascd on the indirect computation of D-'(k)  (usc!d 
when ~ z , ~ [ ( k )  2 8)  is { 12?&(k) + 255n,(k) + 572)  M + { 1:1nk(k) + 182n,(k) + 445} A .  

-, 
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2. The cost for the tip-to-base recursion sweep in Eq. (63) for the kth body is 

3. The cost for the base-to-tip recursion sweep in Eq. (63) for the kth body is {18n,(k) + 52)  M+ 

{ n $ ( k )  + 25n,(k) + 49) M + { n $ ( k )  + 24n,(k) + 50) A. 

(19n,(i%) 4- 42) A. 

The overall complexity of this algorithm is O ( N n $ ) ,  where n, is ail upper bound on the number 
of modes per body in the system. 

The articulated body algorithm is more efficient than the composite body algorithm as the number 
of modes and bodies in the multibody system increases. Figure 2 contains a plot of the cornputa- 
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Figure 2: A comparison of computational costs for the  forward dy- 
namics algorithms for a flexible multibody serial chain 
system with 10 flexible bodies. 

tional cost (in floating point operations) versus the number of modes per body for a serial c.lia?in 
with ten flexible bodies. The articulated body algorithm is faster by o v a  a factor of 3 for 5 modes 
per body, and by over a factor of 7 for 10 modes per body. The divergence between the costs for 
the two algorithms becomes eveii more rapid as the iiuniber of bodies is increased. 

7. Extensions to General Topology Flexible Multibody Systems 
Extension to genera1 tree and closed-chain systems is similar to metl~ods given in prior results for 
rigid body configurations [7]. The key is that the operator description does not change as the 
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topology changes. Extending the serial chain results of this papcr to tree topologies takes the 
following steps: 

1. For any outward base to tip(s) recursion, at each body, the outward recursion must bc con- 

2. For an inward tip(s) to base recursion, at each body, the recursion must be continued inward 

tinued along each outgoing branch emanating from the current body. 

only after summing up contributions from each of the incoming branches of the body. 

A closed-chain flexible multibody system can be regarded as a tree topology system with addit iond 
closure constraints [7]. 

8. Conclusions 
This paper uses spatial operator methods to develop a new dynaniics formulation and spatially 
recursive algorithms for flexible multibody systems. The operator description of the flexible systcm 
dynamics is identical in form to the corresponding operator description of the dynamics of rigid 
multibody systems. A significant advantage of this unified approach is that it allows ideas and 
techniques for rigid multibody systems to be easily applied to flexible multibody systems. A11 
of the computations are mechanized within a spatially recursive Kalman filtering and smoothing 
architecture. An extension of this algorithm to handle prescribed niotion is described in reference 

The computational efficiency of the dynamics algorithms described i n  this paper makes it possiblc to 
implement real-time, high-fidelity, hard ware-in-the-loop simulation of complex multibody systciiis 
such as spacecraft, robot manipulators, vehicles etc. Such simulations are essential during the 
design and testing of control and fault recovery algorithms. The articulated body forward dynamics 
algorithm is currently being used to  simulate the dynamics of planetary spacecraft. One application 
is a spacecraft currently being assembled for a comet and asteroid rendezvous mission [14]. The 
multibody model for the spacecraft is of tree topology, and consists of a flexible central bus with 9 
articulated appendages and 22 hinges’ degrees of freedom. The siriiulation software provides a new 
capability for high speed simulation of the spacecraft. A real-time version has also been developed. 
Validation of this software was carried out by running independent simulations of the spacecraft 
using a standard flexible multibody simulation package [15]. Results from the two independent 
simulations show complete agreement. 

~ 3 1 .  
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ABSTRACT 

Since the late 1980's, research in recursive formulations of multibody dynamics has flourished. 
Historically, much of this research can be traced to applications of low dimensionality in mecha- 
nism and vehicle dynamics. Indeed, there is littk doubt that recursive order N methods are the 
method of choice for this class of systems. This approach has the advantage that a minimal num- 
ber of coordinates are utilized, parallelism can be induced for certain system topologies, and the 
method is of order N computational cost for systems of N rigid bodies. 

Despite the fact that many authors have dismissed redundant coordinate formulations as being of 
order N3, and hence less attractive than recursive formulations, we present recent research that 
demonstrates that at least three distinct classes of redundant, nonrecursive multibody formulations 
consistently achieve order N computational cost for systems of rigid and/or flexible bodies. These 
formulations are the 

(i) preconditioned range space formulation, 
(ii) penalty methods, and 
(iii) augmented Lagrangian methods 

for nonlinear multibody dynamics. The first method can be traced to its foundation in equality 
constrained quadratic optimization, while the last two methods have been studied extensively in 
the context of coercive variational boundary value problems in computational mechanics. Until 
recently, however, they have not be investigated in the contrext of multibody simulation, and 
present theoretical questions unique to nonlinear dynamics. All of these nonrecursive methods 
have additional advantages with respect to recursive order N methods: (1) The formalisms retain 
the highly desirable order N computational cost, (2) the techniques are amenable to concurrent 
simulation strategies, (3) the approaches do not depend upon system topology to induce concur- 
rency, (4) and the methods can be derived to balance the computational load automatically on con- 
current multiprocessors. In addition to the presentation of the fundamental formulations, this 
paper presents new theoretical results regarding the rate of convergence of order N constraint sta- 
bilization schemes associated with the newly introduced class of methods. 
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solution [Gear, Petzold]. The mathematical study of differential-algebraic equationsis justifiably a 
field of research unto itself. However, in multibody applications, it appears that most researchers 
prefer to eliminate the troublesome multipliers, and deal exclusively with the problems associated 
with the solution of sets of ordinary differential equations. int in the analysis at whish the 
multipliers are eliminated has become one criteria for disti ng among the various formula- 
tions. During the last 1970’s and early 1980’s, numerous publications appeared in which the con- 
straint multipliers are eliminated at computation time by numerically constructing a basis for the 
instantaneous nullspace of the constraint Jacobian. Some representative work from this class 
includes [Singh, Wampler, Wehage, Amirouche, ...I, and are referred to as the nullspace methods. 
These algorithms have been so named due to their similarity to the nullspace methods in qua- 
dratic, equality constrained optimizations [Gill]. Despite their elegance, numerical calculation of 
the nullspace basis and its use to eliminate the multipliers leads to a dense system coefficient 
matrix. This matrix is of order (N-M) X (N-M) where N is the number of redundant coordinates 
and M is the number of constraints. Consequently, the nullspace methods are of O(N-Mg at each 
time step. 

As opposed to techniques that eliminate the multipliers numerically at computation time, a number 
of authors have derived elegant techniques for eliminating the constraints a priori; that is during the 
derivation of the equations. The works [Rodriguez, June 1987; Rodriguez, 19871 are 
representative of this class. These methods have a number of distinct and well-known advantages 
over the cubic order nullspace methods: 

(i) They employ a minimal coordinate set. 
(ii) They attain an O(N) computational cost for systems of,rigid bodies. 
(iii) They can be employed in concurrent architectures for classes of problems. 

These methods have come to be known as the order N or recursive methods of formulating multi- 
body dynamics. 

Despite their numerous advantages, there are several aspects of the recursive order N methods that 
can cause difficulties for classes of problems. Foremost among these problems is that concurrency 
in the recursive methods is induced, at present, by assigning topologically independent branches 
of the structure to computationally independent processors. One need only consider the problem 
of modelling a tethered satellite system to realize that not all structures exhibit such structural par- 
allelism. Furthermore, most systems exhibit low levels of inherent structural parallelism appropri- 
ate for the concurrent implementation of recursive order N methods as in [Bae]. Typical space 
structures such as the space station or the CSI Evolutionary model at NASA Langley have only on 
the order of 6-1 2 “independent branches.” Gross underutilization of moderately parallel architee- 
tures, with 16 to 128 processors, can result when mapping the recursive algorithm onto such a 
computer. Finally, computational load balancing of the problem among processors in most imple- 
mentation is carried out by hand, which can be a tedious and time consuming task. 
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methods as nonrecursive formulations of multibody dynamics. In point of fact, the nonrecursive 
formulations described in this paper represent a synthesis of a family of formulations and con- 
straint stabilization procedures that are closely related. These methods can be employed simulta- 
neously, independently, or in combination selected by an analyst to meet accuracy and 
computational speed requirements in a highly predictable manner. This class includes 

(i) a: As with the nullspace method, this 
approach can be traced historically to equality constrained quadratic optimization 
[Gill]. Analysis of the application of the approach to multibody simulation has been 
carried out recently in [Kurdila] and [Menon] using an iterative technique, and earlier 
noniterative versions appear in [Placek ] and [Wittenburg]. The primary advantage of 
the range space method is that is is the most numerically efficient of the three methods 
presented in this paper. 

(ii) : Of course, the penalty method has been studied in detail 
in application to optimization [Luenberger] and coercive variational boundary value 
problems [Oden]. Still, it has only recently been studied in detail in the context of 
nonlinear multibody simulation [Bayo, Park, Kurdila]. An advantage of this approach 
is that explicit bounds on the constraint violation can be achieved in terms of the 
penalty parameter, even in the nonlinear case. [Kurdila] One disadvantage of the 
method that has been noted in the literature [Kurdila] , [Bayo] is that prohibitively 
large values of the penalty parameter are required to achieve the analytical guarantees 
of accuracy, but result in numerical ill-conditioning. 

(iii) : As in the case of the penalty method, 
the augmented Lagrangian formulations have been studied extensively for use in 
the solution of variational boundary value problems [Glowinski]. Again, as in the 
case of the penalty method, this approach has only recently been studied within 
the field of nonlinear multibody dynamics [Bayo]. Empirical evidence in [Bayol,2] 
suggests that the method is superior to the penalty method from a computational 
viewpoint in that required accuracy can be achieved without large penalty parameters. 
The analytical study of Augmented Lagrangian formulations of nonlinear multibody 
dynamics remains an open and interesting field of research. 

To derive the equations employed in this paper, one must first consider the exact governing system 
of differential-algebraic equations 
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and tiate e co ts 

In these equations, q are the generalized coordinates selected for the problem at hand, and @(q) 
are the functional relations defining the holonomic constraints acting on the system.While the 
interested reader is referred to [Menon] for the details of their derivation, the equations govern- 
ing the simulation of multibody systems considered in this paper can be written 

h, = 0 

or 
( C K  1 T  c ) h, = - C K 1 f - ~ q - & ,  

M (4) q, = f (q, Q, t )  -CTi (&, + 2504 + 020) - f X n  

1 hn+ = h, + - (&n + 2 5 0  + w 2 0 )  
E 

(4) 

( 5 )  

The terms h are unknown Lagrange multipliers, hn + are iterative corrections the the multipli- 
ers, and 6n are iterative vaIues of the constraint equations. The relationship of the above system 
to the aforementioned range space, penalty and Augmented Lagrangian formulations can be sum- 
marized as follows: 

(i) By employing equation (5 )  to initiate the integration procedure and letting 

1 - = o  
E 
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y employing only equation (6), an 

An = An+ 0 
(9) 

the equations above reduce to the inertial penalty method introduced in [Bayo] and studied in fur- 
ther detail in [Kurdila]. This form of the governing equations provides some guarantees on 
accuracy, but is more expensive computationally. 

(iii) By using equation (4) for the initialization procedure, and choosing equations (4) 
and (7) iteratively, these equations reduce to the augmented Lagrangian approach introduce in 
[Bayo] and studied further in [Kurdila] and [Menon]. While this version of the governing equa- 
tions are the most computationally expensive, they also provide the most control over the accu- 
racy attained in the simulation. 

At this point it should be noted that both the penalty and augmented Lagrangian methods can be 
viewed as stabilizaton procedures for the range space method. In the following discussion, the 
range space formulation will be referred to as the “baseline method”. In fact, it will be demon- 
strated later that this is a useful interpretation and leads to hybrid simulation methods that com- 
bine the computational efficiency of the range space method and the accuracty of the penalty or 
augmented Lagrangian methods. 

In the following sections it will be emphasized that the simulation of transient response of multi- 
body systems using various versions of the nonrecursive formulation above has many advantages: 

(i) The method achieves an order N computational cost while employing a 
redundant formulation. 

(ii) Consequently, the often complicated relative reference frame kinematics 
of the recursive methods can be avoided. 

(iii) The method is amenable to concurrent implementation on a wide variety of 
forthcoming parallel architectures. 

(iv) The technique is essentially automatically, computationally load balancing 

(v) The approach does not depend upon system topology to induce parallelism, and 
does not result in gross underutilization of available processors. 
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, otherwise denoted as the preconditioned range space formulation in [Kurdila] and [Menon], is 
well documented. While the details of the convergence properties of the algorithm exceed' the 
s c o p f  this paper the reader is referred to [Menon] for a complete discussion. In summary, the 
computational performance of the algorithm can be attributed to 

(i) the derivation of a rapidly convergent block Jacobi preconditioner based on 
the directed connectivity graph of the multibody system, 

(ii) the exploitation of the block-diagonal structure of the system coefficient 
matrices in the formulation, and 

(iii) the parallel implementation of the algorithm based upon subdomain 
decomposition techniques that are only weakly coupled to the system topology. 

Results extracted from [Kurdila] and [Menon] in figures (1) through (4) illustrate results typical of 
the preconditioned conjugate gradient / range space formulation. 

Accuracy and Order N Performance with Constraint Stabilization 

The motivation for deriving additional variants of the preconditioned conjugate gradient / range 
space formulation arises from the well-known need for stabilization in redundant formulations as 
well as the documented conditioning problems that can occur in the range space method of opti- 
mization [Gill]. Essentially, the accuracy of the simulation relies on the condition number of the 
constraint metric 

appearing in equation (5) and (€0). As noted in [Gila this condition number is bounded above by 

and may become large when the constraints become nearly redundant-However, inasmuch as 
great efforts have been made to ensure the order N computational cost of the baseline formulation, 
it has been a central goal in this work to derive stabilization methods that retain the order N com- 
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achieved and is depi d in figures (5) and (6). n figure (5),  the timing 
as a ~ n c t i o n  of the number of degrees of free- 

dom is depicted. Two critical observations should be made upon inspection of this graph 

(i) All variants of the class of nonrecursive algorithms under investigation exhibit an 
order N compuational cost. 

(ii) The baseline preconditioned conjugate gradient / range space algorithm is the most 
efficient simulation. 

(iii) The computational cost of the nonrecursive methods with stabilization increases 
with the number of iterative corrections per time step. Hence, the penalty stabilization 
is more expensive thant the preconditioned conjugate gradient / ranges space method. 
But, the augmented Lagrangian formulation is more cornputationally expensive than 
the penalty method. In fact, the slope of the performance curve simply rotates 
counterclockwise as the number of fixed iterations per time step increases. 

In view of the measures of accuracy depicted in figures (7) and (8), it is not surprising that the iter- 
ative corrections of the augmented Lagrangian are more costly. It is precisely the addition of the 
stabilization methods that yields the desired improvement in accuracy. As shown in [Kurdila], for 
certain classes of multibody systems the constraint violation can be bounded by 

As noted earlier, a major criticism of achieving stringent tolerances using this bound is that large 
penalty factors must be used in the simulation which can lead to poor conditioning in practice. 
This result has been extended rigorously to the augmented Lagrangian stabilization methods in 
[Bustimante] and [Menon] in the form of the equation 

and is depicted graphically in figure (7). Furthermore, empirical results suggest the stronger result 
that 
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arallel Comparison for mss model 
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ut, the “energy of c o n s ~ ~ n t  violation s y a factor of e for each iteration” 
employed in the augmente formulation. 

Thus, figures (5) een execution time and accuracy. 
Another natural consequence of this tradeoff is the design of hybrid methods such as depicted in 
figure (8). In these methods, the preconditioned conjugate gradient / range space method is 
empolyed until a specific pre-seIected tolerance is met, at which point the augmented Lagrangian 
method is employed until another more stringent tolerance is reached. In this fashion, the compu- 
tational efficiency of the range space method is retained as long as possible, at which point the 
iterative augmented Lagrangian method is used to guarantee the desired accuracy. 

(7), illustrate the 

Conclusw ns 

This paper has presented a class of nonrecursive formulations of multibody dynamics, all of 
which exhibit an order N computational cost. The methods are complementary to the existing 
class of recursive order N methods in that they seem most appropriate for large dimensional mod- 
els without inherent structural parallelism. Figures (9) and (10) graphically summarize the contri- 
bution of this paper. Figure (9) shows that as of 1988 only one order N method had been derived. 
Figure (10) depicts the state of affairs currently, and shows that at least three distinct approaches 
can achieve order N computational cost, as well as numerous combinations of these algorithms. 
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ABSTRACT 

A technique is presented for solving the inverse dynamics of flexible 
planar multibody systems. This technique yields the non-causal joint efforts 
(inverse dynamics) as well as the internal states (inverse kinematics) that pro- 
duce a prescribed nominal trajectory of the end effector. A non-recursive glo- 
bal Lagrangian approach is used in formulating the equations of motion as well 
as in solving the inverse dynamics equations. Contrary to the recursive method 
previously presented, the proposed method solves the inverse problem in a sys- 
tematic and direct manner for both open-chain as well as closed-chain 
configurations. Numerical simulation shows that the proposed procedure pro- 
vides an excellent tracking of the desired end effector trajectory. 

1. Introduction 
Accurate positioning and vibration minimization of flexible multibody systems have gen- 

erated considerable interest from the computational dynamics and controls communities. The 
advent of the new generation of very fast, lightweight robots and flexible articulated space 
structures has made the control of structural vibrations an important practical problem in the 
manufacturing and space industries. 

There is a large body of literature dealing with the forward dynamic analysis of flexible 
multibody systems, Le., determining the resulting motion when the joint forces and external 
forces are given. Numerous approaches have been proposed that are either based on the mov- 
ing frame method or the inertial frame counterpart (see reference [l] and references therein.) 
Similarly, numerous control approaches have also been proposed for position and vibration 
control of flexible articulated structures (see reference [2] and references therein.) 

Solutions to the non-collocated control of flexible articulated structures have been 
presented in [3-61. The so-called inverse dynamics joint actuation are non-causal or time- 
delayed joint torques (applied in negative time and future time) that are capable of positioning 
the end effector according to a desired trajectory. The importance of using the inverse dynam- 
ics approach to vibration control has been demonstrated recently in reference (71 where passive 
feedback and feedforward of the inverse dynamics torque were used to achieve an exponen- 
tially stable tracking control law that yields excellent end-point tracking of flexible articulated 
structures. In this paper, present a global Lagrangian approach to the solution of vibration 
minimization and end-point trajectory tracking. 
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u I a t i o n 
In order to describe the dynamic modeling let us consider a generic flexible body (Fig. 1) 

representing a component of a flexible articulated structure. The configuration of the multi- 
body system can be described by two sets of coordinates: the first set corresponds to the rigid 
body coordinates representing the location and orientation of the body axes, with respect to the 
inertial frame; and the second set corresponds to the so-called deformation coordinates or nodal 
deformations representing the deformation of the body with respect to the body axes. Using 
the aforementioned choice of coordinates, the location of an arbitrary point P in a planar 
deformable body i is given by 

(1) 
where R' is the kcation of the origin of the body axes with respect to the inertial frame, ui is 
the location of point P with respect to the body axes, and A' is the rotation transformation 
matrix from the body axes to the inertial frame. In the three-dimensional case, the rotation 
transformation matrix is given by 

ci = Ri + Ai ui 

where the orientation coordinates are represented by four Euler parameters e;, Of. e;, and 0;' 
which satisfy the following identity: 

3 

k - 0  
(e;)2 = 1 

The vector u' can be decomposed into 
u' = u; + u; (3) 

where u: is the position vector of point P in the undeformed state with respect to the body 
axes, and uj is the deformation vector of point P with respect to the body axes. Differentiating 
Eq. (1) with respect to time yields the velocity vector of point P 

(4) 
. . .  .. = ~1 + A' ui + A i  ,$ 

where ( * )  represents differentiation with respect to time. To separate the generalized coordi- 
nates, the second term on the right hand side of Eq. (4) may be written as 

where E' is a matrix that depends linearly on the Euler parameters and is givcn by 

.. .. 
A' u' = -2 A' 6' E' 0' (5) 

and ii' is a 3 x 3 skew-symmctric matrix given by 
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where u, %, and u, are the coordinates of the generic p i n t  P with respect to the 
in the deformed configuration. 

The deformation vector 
a finite element discretization scheme 

can be expressed in terms of the nodal deformations by using 

U; = Ni qi (8) 

&j = N' qj (9) 

where Ni is the shape function matrix and qj  is the nodal deformation vector. Since the shape 
function matrix is time-invariant. the time derivative of the deformation vector becomes 

where qi is the time derivative of the vector of nodal deformations. Substituting Eqs. (5) and 
(9) into Eq. (4). we obtain the following expression for the velocity vector in terms of the rigid 
body coordinates and nodal deformation coordinates: 

. .. .. 
(10) i' = RL - 2 Ai ai Ei et +Ai Ni 4; 

Using Eq. (10) to describe the velocity vector of an arbitrary point P , the kinetic energy 
of body i can be expressed in the following quadratic form in velocities 

i m i  

mRR m R ~  mRf 
(1 1) 

mfe mff 
where the constant submatrices m, and mff represent the total mass of the body and the con- 
sistent finite element mass matrix, respectwely. The submatrix mee represents the moment of 
inertia of the deformable body about the origin of the body axes, and the submatrix meR 
represents the first moment of mass of the deformable body about the body axes. The subma- 
trices mfR and mfe represent the kinematic coupling between the rigid body coordinates and 
the nodal deformation coordinates. 

The potential energy due to linear elastic strains in the material can be expressed in the 
following quadratic form in rigid body coordinates and nodal deformation coordinates 

K-E.' = y  1 [R ' T ' T - T  e qf 1 ' [~~ mee mef] 61 

where kff is the conventional finite element stiffness matrix. The singularity of the stiffness 
matrix can be eliminated by imposing appropriate boundary conditions or by choosing vibra- 
tion modes that are consistent with the boundary conditions. 

2.1. Equations of Motion 
In order to unify the equations formulated in rigid body dynamics and structural dynam- 

ics, we make use of generalized coordinates which include rigid body coordinates and deforma- 
tion coordinates, hence 

q i =  [ ~ ] =  ~] 
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i s  the vector of generalized coordinates for body i 
s and nodal deformation coordinates of body i ,  res 

dY 
of 

the body can therefore be expressed by 

where Mi is the overall mass matrix of body i. Similarly, the potential energy of the body due 
to linear elastic deformation can be expressed by 

where Ki is the overall stiffness matrix of body i .  
When reference coordinates such as those described in this paper are employed in multi- 

body systems, the generalized coordinates are not independent because the motion of specific 
points in different bodies are related according to the type of mechanical joint that connects the 
contiguous bodies. Moreover, in flexible mechanical systems, the deformation of a component 
affects the configuration of adjacent components. The interdependence of the generalized coor- 
dinates are exptcssed by a vector of kinematic constraint equations, such as 

Wq, t )  = 0 (16) 
where q is the total vcctor of system generalized coordinates, t is time, and 0 is the vector of 
linearly independent holonomic constraint equations. For example, if a revolute joint connects 
two flexible planar bodies i and j at points P and Q shown in Fig. 2, two constraint equations 
corresponding to the constraint condition that requires points P and Q to be coincident can be 
written as 

In gencral, holonomic constraints can also be explicit functions of time as well as generalized 
coordinates, as in the case of imposing the coordinates of the end-effector to follow a desired 
trajectory. 

Using Lagrange’s equations for a system with constrained coordinates, the system equa- 
tions of motion will take the form 

(18) 

where M, C and K are the system mass, system damping and system stiffness matrices, 
respectively, h is the vector of Lagrange multipliers associated with the constraints, Qr, is the 
constraint Jacobian matrix, Q, is the vector of applied external forces, and Q, is the quadratic 
velocity vector. The quadratic velocity vector contains the centrifugal forces and Coriolis 
forces that result from the differentiation of the kinetic energy expression with respect to the 
generalized coordinates. 

In a forward dynamic analysis, i.e., finding the resulting motion given the applied joint 
forces and external forces, Eqs. (16) and (18) form a mixed system of differential-algebraic 
equations (DAE’s) that have to be solved simultaneously. The solution to the inverse dynam- 
ics problem rcquires a forward dynamic analysis within an iteration process. We solve the for- 
ward dynamics problem by using the augmented Lagrangian penalty formulation [8]. The aug- 
mented Lagrangian penalty formulation obviates the need to solve a mixed set of differential- 

M(q) q + C 6 + K q + @: X = Q, + Q,(q,i) 
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algebraic equations and does not increase the number of equations to account for the con- 
s. (16) and (18) will 

k* (19) 

where a is a diagonal matrix of penalty factors whose elements are large real numbers that will 
assure the satisfaction of constraints, o and p are diagonal matrices representing the natural 
frequencies and damping characteristics of the dynamic penalty system associated with the con- 
straints. The augmented Lagrangian method requires an iteration for the correct value of the 
Lagrange multipliers. The recursive equation for the Lagrange multipliers is given by 

(20) 

Lagrangian penalty formulation to 

(q) q + C q + K q + g)sT a [& + 2 p o i + o2 @] = Q, + Q,(q,q) - 

= &*+ a [& + 2 p o i + 

2.2. Inverse Kinematics and Inverse Dynamics 
In the context of end-point motion and vibration control, the inverse dynamics refers to 

the problem of finding the actuating forces or torques that will cause the end-point of a flexible 
articulated structure to follow a desired trajectory. The study done in reference [9] showed that 
because of the non-minimum phase character of the inverse problem, the stable solution has to 
be non-causal, i.e., actuation is required before the end-point has started to move as well as 
after the the end-point has stopped. In this paper, we use a global Lagrangian approach to 
solve the planar inverse dynamics problem. The equations of motion are partitioned to yield 
explicit expressions for the joint actuations and linearized elastic equations of motion that are 
readily suitable for non-causal inversion. 

The second set of equations in Eq. (21) can be rearranged to express the externally applied 
joint forces as 

Qee=meR f i + m w 6 + m e f  qf + @ l k - Q v e  (22) 
Eq. (22) is the inverse dynamics equation that yields the joint forces (torques) necessary for the 
end-point to follow a prescribed trajectory. In order to obtain Qee, the nodal acceleration vector 
qf is needed. This vector can be obtained from the third set of equations in Eq. (21), which 
can be written as 

(23) 

The linearized form of Eq. (23) makes the nonlinear inversion problem amenable to successive 
linear inversion techniques. The vector of applied nodal forces Qef can be expressed in terms 
of the externally applied torques through the following mapping: 

.. .. 
mff 6f + cff qf + kjf qf = Qq + Qvf -@: h-mfR R - m f e e  

Qef = Gf Qee (24) 
where in the planar case, the matrix Gf is a constant matrix which maps the externally applied 
torques to the vector of externally applied nodal forces. Substituting Eqs. (22) and (24) into 
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Eq. (23) results in 

+ - ) (25) 
where F1 is a force vector that includes the inertial terms, reaction terms between contiguous 
bodies, and quadratic velocity terms. 

The inertial coupling submatrix mef can be decomposed into a sum of a time-invariant 
matrix and a time-varying matrix 

- f + 

mef = mif + mAf (26) 
where m& and mif are the time-invariant part and time-varying part of mef, respectively. 
This decomposition is essential for the iteration process needed to obtain the solution as 
explained below. Substituting Eq. (26) into Eq. (25). we obtain the inverse kinematics equa- 
tion of motion for the nodal displacements qf : 

(27) 
where 

(28) 

The problem statement for the inverse kinematics is that of finding the internal states qf 
so that the end-point coordinates characterized by a subset of the rigid body coordinates ~r fol- 
low a prescribed trajectory. The mass matrix m;; is nonsymmetric and it is precisely the non- 
symmetry of the mass matrix that produces internal states which are non-causal with respect to 
the end-point motion. Eq. (27) is a nonlinear differential equation in the variable qf. As 
explained below, Eq. (27) is solved iteratively in the frequency domain to yield the nodal 
deformation vector qf that is non-causal with respect to the end-point motion. 

In the frequency domain, Eq. (27) can be written as a set of complex equations for a par- 
ticular frequency a 

.. 
m;f qf + cff if + kff 

m;f = mff - Gf mif 

= FAqr i r  i r  pqf iqf) 

r 

where G(m) is the Fourier transform of qf (t)  and @(a) is the Fourier transform of F(t). Eq. 
(29) is based on the assumption that qf (t) and F(t) are Fourier transformable. This assuwtion 
is valid for slewing motions which are from rest to rest. The nodal acceleration vector &(o) 
can be obtained directly from Eq. (29) for each frequency a. The leading matrix of Eq. (29) is 
a complex regular matrix that is invertible for all frequencies except for = 0. However, for 
Z5 = 0, the system undergoes a rigid body motion determined only by the invertible mass 
matrix m;f. The nodal accelerations in the time domain may be obtained through the applica- 
tion of the inverse Fourier transform, ix., 

m _ _  
1 *  

qf(t) = - 2n %(TI) e i m  di'ir 
4 

Once the non-causal nodal accelerations are known, Eq. (22) can be used to explicitly 
compute the non-causal inverse dynamics joint efforts that will move the end effector accord- 
ing to a desired trajectory. We note, however, that the inverse dynamics torque and internal 
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states given by Eqs. (22) and (27). re on the Lagrange m~tipliers and rigid 
body coordinates, which in turn de ates and the applied torque. Moreover, 
the rigid body coordinates and Lagrange multipliers are different from their nominal values 
when the components of the multibody system are flexible. Therefore, a forward dynamic 
analysis is required to obtain an improved estimate of the generalized coordinates and Lagrange 
multipliers given the torques computed previously using nominal values of rigid body coordi- 
nates and Lagrange multipliers. In order to ensure that the iteration process 
the joint efforts that will cause the end-effector to follow the desired traj 
dynamics analysis is carried out with the additional constraint that the coordinates of the end- 
point follow the desired trajectory. These additional constraints have corresponding Lagrange 
multipliers which act as correcting terms to the joint efforts that have been previously calcu- 
lated. 

To summarize, the procedure for obtaining the inverse dynamics solution for flexible mul- 
tibody systems involve the following steps: 

Algorithm: 
1. Perform a rigid body inverse dynamic analysis to obtain the nominal 

values of the rigid body coordinates q,and Lagrange multipliers h. 
2. Solve the inverse kinematics equation represented by Eq. (27) 

to obtain the time-delayed nodal accelerations qf . 
3. Compute the inverse dynamics joint efforts Qee using Eq. (22). 
4. Perform a forward dynamic analysis using Eq. (19) to obtain new 

values for the generalized coordinates and Lagrange multipliers. 
5. Repeat steps 2 through 4 until convergence in the inverse dynamics 

torques is achieved. 

3. Simulation Results 
We present in this section the results of numerical simulations that verify the procedure 

discussed above. First, we apply the global Lagrangian approach to an open-chain flexible mul- 
tibody system and compare the results with those obtained by the recursive Newton-Euler 
method [SI to test the validity of the proposed procedure. Next, we present the results of the 
application of the global Lagrangian approach to a closed-chain flexible multibody system to 
determine the inverse dynamics torque that will produce the desired motion at the end effector. 

3.1. Open-Chain Multibody System 
Fig. 3 shows a two-link flexible multibody system in the horizontal plane. The end-point 

of the second link is specified to move along the x-axis according to the acceleration profile 
described by Fig. 5 ,  which corresponds to an end-point displacement of 0.483 meters along the 
x-axis. The geometric and material properties of the links are: 
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First Link: 
Length: 0.66 m 
Cross-section area: 1.2 x lo4 m2 
Cross-section moment of inertia: 2.3 x lo-'' m4 

Length: 0.66m 
5 2  Cross-section area: 4.0 x 10- m 

Cross-section moment of inertia: 8.5 x 

The two links share the following properties: 
Young's modulus: 14 GPa 
Mass density: 2715 kg/m3 

Second Link: 

m4 

In Fig. 6, the inverse dynamics torque profile for the base motor using the global Lagran- 
gian method is superimposed on the inverse dynamics torque profile determined by the recur- 
sive Newton-Euler method. The inverse dynamics torque profiles for the elbow motor com- 
puted by the two aforementioned methods are superimposed in Fig. 7. Both the recursive and 
global formulations yield the same result and superimpose to each other, thus validating the 
proposed method. The comsponding rigid body torques are also shown in Figs. 6 and 7 to 
illustrate the pre-actuation and post-actuation present in the inverse dynamics torque profiles. 

3.2. Closed-Chain Multibody System 
Fig. 4 shows a closed-chain flexible multibody system made up of four flexible links with 

two joints which are fixed against translation relative to the ground. As in the open-chain case, 
the multibody system is assumed to lie on a horizontal plane so that gravity effects are 
neglected. The desired trajectory of joint 5 is a straight line 45 degrees with respect to the x 
and y axes. The x and y-components of the acceleration of joint 5 are specified to follow the 
acceleration profile shown in Fig. 8. The four links share the following geometric and material 
properties: 

Length: 0.60 m 
Cross-section area: 4.0 x m2 
Cross-section moment of inertia: 8.5 x lo-'' m4 
Young's modulus: 14 GPa 
Mass density: 27 15 kg /m 

Fig. 9 shows the inverse dynamics torque profile at joint 1 obtained by the global Lagran- 
gian method. The rigid body inverse dynamics torque profile is superimposed for comparison. 
The figure shows the noncausal character of the solution for the inverse problem. Fig. 10 
shows the inverse dynamic torque profile at joint 3 superimposed with the corresponding rigid 
body inverse dynamics torque profile. Again, the time delay due to the noncausality of the 
solution is seen in this figure. 

Fig. 11 shows the elastic angular rotation at the base of the first link obtained by a feed- 
forward of the inverse dynamics torque. Superimposed in the same figure is the corresponding 
elastic angular rotation obtained by a feedforward of the rigid body torque. Whereas the rigid 
body torque produces residual angular rotations, the inverse dynamic torque does not show 
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residual angular rotations. As a matter o it has been obse the simulations 
rigid body torques produced residual vib ations while the 
dynamics torques eliminated the residual oscillation. Furthermore, the inverse dynamics torques 
produced nodal deformations which exhibit non-causal characteristics with respect to the end- 
point motion. Fig. 12 shows a comparison of the vertical tip error at joint 5 obtained by a 
feedforward of the inverse dynamics torque with the tip error resulting from a feedforward of 
the rigid body torque. This figure shows that the inverse dynamics torque provides an excel- 
lent tracking of the desired end effector trajectory whereas the rigid body torque again induces 
substantial vibration on the end-point motion. 

in all the nodal 

4. Conclusion 
A global Lagrangian approach for the inverse dynamics of flexible multibody systems has 

been presented. The procedure is capable of solving for the inverse dynamics torque profiles of 
both open-chain and closed-chain flexible multibody systems in a unified and systematic 
manner. The method is found to produce an excellent tracking of the desired trajectory of the 
end effector. In a future paper, we will address the inverse dynamics problem for flexible mul- 
tibody systems undergoing motion in three dimensions. New problems arise in the three- 
dimensional case, since the actuating torque vectors have directions which are time-varying and 
nonlinear functions of the rigid body coordinates, as contrasted with the planar case where the 
applied torque vectors have directions fixed perpendicular to the plane of the multibody system. 
In addition, to be able to perform the inverse kinematics and inverse dynamics analyses, addi- 
tional actuation at the joints may be necessary. 

Acknowledgements 

no. F49620-91-C-0095 and by TRW is gratefully acknowledged. 
The support of this work by the Air Force Office of Scientific Research under contract 

References 

1. 
2. 

3. 

4. 

5. 

6. 

A. A. Shabana, Dynamics of Multibody Systems, John Wiley 8z Sons, Inc., 1989. 
M. C. Oakley and R. H. Cannon, “Anatomy of an experimental two-link flexible mani- 
pulator under end-point control,” Proceedings, 29th IEEE Conference on Decision and 
Control, Honolulu, Hawaii, December 1990. 
E. Bayo, “A finite-element approach to control the end-point motion of a single-link 
flexible robot,” Journal of Robotic Systems, vol. 4, no. 1, pp. 63-75, 1987. 
E. Bay0 and H. Moulin, “An efficient computation of the inverse dynamics of flexible 
manipulators in the time domain,” Proceedings, IEEE Conference on Robotics and Auto- 
mation, pp. 710-7.15, 1989. 
E. Bayo, P. Papadopoulos, J. Stubbe and M. Serna, “Inverse kinematics and dynamics of 
a multi-link elastic robot: an iterative frequency domain,” International Journal of Robot- 
ics Research, vol. 8, no. 6, pp. 49-62, 1989. 
D. S. Kwon and W. J. Book, “An inverse dynamic method yielding flexible manipulator 
state trajectories,” Proceedings, American Control Conference , San Diego, California, 
1990. 

213 



7. . Ledesma and E. Bayo, “Exponentially stable tra 
multi-joint flexible-link manipulators,” A S M ~  Journal of Dynamic Systems, Me~urement 
and Control. Accepted for publication. 
E. Bayo, J. Garcia de Jalon and M. Sema, “A modified lagrangian formulation for the 
dynamic analysis of constrained mechanical systems,” Computer Methods in Applied 
Mechanics and Engineering, vol. 71, pp. 183-195, Nov. 1988. 
H. Moulin, “Problems in the inverse dynamics solution for flexible manipulators,” P h D .  
Thesis, University of California, Santa Barbara, 1989. 

8. 

9. 

214 



Fig. 1 : Reference coordinates for planar body i 
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Fig. 2: A pair of flexible planar bodies 
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Abstract 

An artificial neural-network paradigm for the control of robotic systems is 
presented. The approach is based on the Cerebellar Model Articulation Con- 
troller created by James Albus and incorporates several extensions. First, rec- 
ognizing the essential structure of multibody equations of motion, two parallel 
modules are used that directly reflect the dynamical characteristics of multibody 
systems. Second, the architecture of the proposed network is imbued with, a 
self-organizational capability whlch improves efficiency and accuracy. Also, the 
networks can be arranged in hierarchlcal fashion with each subsequent network 
providing finer and finer resolution. 

1. Introduction 

The brain possesses a remarkable ability to learn and perform motor control functions 
without the apparent need to write out elaborate differential equations. Researchers have long 
been intrigued by this cerebral calculus and have made various attempts at replicating it. In an 
age of robotics, not only has this goal been pursued with more vigor than ever before, but the 
issue has also become of decidedly greater practical import. 

After having had initially lost popularity, the concept of artificial neural networks has 
experienced a renaissance and the field is now flourishing. Although many of the proposed archi- 
tectures bear little resemblance to the biological structures that motivated them, they have been 
successfully implemented in myriad applications from pattern recognition to real-time control. 

In the field of robotics, one must deal with highly nonlinear systems which are in general not 
easily amenable to analysis. While the basic dynamics of a system can be had with a modicum of 
effort, accurate modeling of motor dynamics, joint friction, link damping and structural flexibility 
is, at the very least, an arduous task. Yet model-based control relies on a model and when that 
model is suspect one must rely on the robustness of the controller. 

Artificial neural networks offer another approach to control, a rwnmodel-based approach. 
Neural nets in particular have been demonstrated to be quite a viable strategy for robotic control. 
One of the main attractive features of neural nets is that they can 'learn.' In the present context, 
this means the ability to infer, through training, the dynamics of a robotic system including 
nonlinear characteristics that may be difficult to model by even modern techniques. Neural nets 
are furthermore inherently parallel, robust, fault tolerant and less susceptible to noise. Surveys of 
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neural-network architectures for robotic applications have been presented by Kung and 
(1989)’ Freeman and Kosko (1990) and Lee and Bekey (1991). 

In debating model-based control vs. nonmodel-based control, it is important to observe that 
the choice is far from binary. Rather, these two broadly described approaches can be considered 
opposite ends of the same spectrum, a ‘control’ spectrum which is virtually continuous. Even 
many control approaches traditionally considered model-based depend on system identification, 
for example, which itself introduces an element of learning. Indeed, in many ways a neural- 
network approach may be regarded ultimately as an extensive form of system identification. But 
here too, there is much to gain by making a few simple and yet general observations about the 
‘model. ’ 

This paper presents a new artificial neural-network (ANN) paradigm for robotic control. 
The architecture of the proposed network is founded on the work of Albus (1975, 1981) and it 
attempts to encode very basic knowledge about the dynamics of robotic manipulators. Several 
extensions to Albus’s work are made including the development of a modular architecture of 
cooperative networks specifically tailored for mechanical systems. Our network is moreover 
given a selGorganizing structure using the technique of Kohonen (1989). Finally, a hierarchy 
of these networks can be established to provide progressively more accurate representations of 
the system at hand. The theoretical development is complemented by simulation results showing 
improvements in the control of robotic systems over existing comparable methods. 

2. Foundations 

Our aim in the present work is to develop an ANN schema for the modeling of the inverse 
dynamics of a (rigid) multibody system that can be used in a computed-torque control procedure. 
In essence, we seek an ANN representation of motion equations of the form 

where q represents the system degrees of freedom and f ,  is the column of (joint) control forces 
and/or torques. The mass matrix M ( q )  is configuration-dependent and q(q, q)  accounts for 
nonlinear inertial forces such as Coriolis and centrifugal forces. Gravity effects and friction are 
also assumed to be contained in q. 

Let us, however, begin by considering the more generic mapping f : x H y where 
z = col{ x l ,  . . . , x~}. A relatively crude representation of f can be had by creating a ‘look-up 
table,’ directly reminiscent of ‘trig’ and ‘log’ tables. Michie and Chambers (1968) used essentially 
such a technique in their scheme, called BOXES, to control a broom-carriage system (an inverted 
pendulum on a cart). The value in each ‘box,’ Le., table element, was learned from the response 
of the system to various force stimuli. The direct table look-up method, however, possesses 
several problems. First, the number of table elements grows exponentially as the number of 
input states increases. Second, information is not shared; that is, similar inputs should produce 
similar responses, but with BOXES and other table look-up strategies the response for each set 
of inputs must be learned separately. 
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James Albus sought to remedy these shortcomings by developing his CMAC-Cerebellar 
Model Articulation Controller. This architecture was motivated by the biological motor control 
functions of the human cerebellum (Albus 1975, 1981). The basic concept can be best represented 
diagrammatically for a two-dimensional problem (with inputs x1 and ~ 2 ) ,  as in Figure 1. Instead 
of using one layer of finely divided cells, essentially the structure of BOXES, the CM 
several overlapping layers of coarser cells with each layer progressively shifted relative to the 
previous one. The example shown in Figure 1 displays four layers of coarse cells. To evaluate 
the function f(xI,  q) in this case requires ‘activating’ four cells and summing their ‘encoded 
values.’ This quantization process is an example of what are generally called coarse-coding 
techniques (Rumelhart and McClelland 1988). 

I ... _..._I ..: . . 

Figure 1 : Two-dimensional example of CMAC discretization. Shaded areas 
represent the activated coarse cells for a point in the small black square. 

As can be seen from Figure 1, the resolution attainable in this procedure is substantially 
better (depending on the number of coarse-cell layers used) than the actual size of the coarse 
cells. Indeed, with four layers, the CMAC can achieve the same resolution as BOXES but with 
only about one-third of the total number of cells. For larger problems, the savings factor could 
be orders of magnitude with, of course, a comparable saving in required memory space. 

Albus moreover recognized that the entire input space is typically not necessary for ap- 
plications to robotics. Hence, the coarse cells can be ‘hashed’ (randomly assigned) to a smaller 
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number of units, called ‘granule’ cells. The sparseness of the active input space will ensure (in 
probabilistic terms) that the number of collisions in hashing will be negligible. This hashing 
procedure makes more efficient use of the input space and further reduces memory requirements. 

In addition, the overlapping layers in the CMAC permit the sharing of information. Re- 
turning briefly to the example of Figure 1, the value of f at any point must be reconstructed by 
the information (encoded value) contained in four coarse cells. However, evaluating f at a new 
point in a neighboring fine cell will activate three of the previous four coarse cells. Thus, some 
knowledge at the new point is already known from the learning done at the previous point. This 
process is called ‘generalization’ and enables one to acquire knowledge over large regions of the 
input domain by learning at only a relatively few points. 

Although not done by Albus, the CMAC can be cast in the familiar ANN-like architecture 
as shown in Figure 2. Each coordinate is finely discretized into ‘input units’ and then coarsely 
discretized, according to the shifted layers or grids of coarse cells, into ‘receptive units.’ The 
receptive units activate a single coarse cell (‘coarse cell unit’) in each grid, which in turn can 
be hashed to a reduced set of ‘granule cell units.’ Outputs from these units are weighted and 
summed by the ‘output unit’ to yield the final output value. A complete description of this 
architecture can be found in Graham and D’Eleuterio (1991a). 

- Fully Connected, Fixed Weights 
>, <- Randomly Connected, Fixed Weights - - - - Fully Connected, Variable Weights 

Output Value 

t Output Unit o * 
I 
I 

Granule Cell Units 0 0 0 0 ... 0 

.ex 
*x *. 

-=Ix ., -. I % ,  

x. 
, “.a ’ 

,,a 

Coarse Cell Units o o ... o 0 0 0 ... 0 0 .e* 0 
Grid 1 Grid 2 Grid k 

//\ 
Receptive Units 0 0 .  ..o oo...o e.. oo...o 0.. oo...o oo...o ... oo...o 

Grid 1 Grid 2 Grid k Grid 1 Grid 2 Grid k 

Input \\/ Units o o ... o 0 \ I /  0 e.- 0 a* .  \ 0 0 I /  ..* 0 

t 4 
State 1 Value State 2 Value 

t 
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Figure 2: Architecture of the CMAC cast in the form of an ANN. 
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It is important to note that it is only the last layer which contains variable weights (i.e., 
the encoded values) that must be learned. The rest of the network can be said to be ‘hard-wired’ 
or more precisely ‘hard-coded.’ Learning is therefore quite fast, typically orders of magnitude 
faster than comparable backpropagation networks. 

Mat hematical Formulation 

The CMAC concept can in general be represented mathematically as follows: 

where w, are variable weights (encoded values) and $,(z) may be viewed as basis functions 
or ‘receptive fields.’ Also, the notation f recognizes that the expansion (2) is in general only 
an approximation to f .  In a CMAC, $,(o) may be described as ‘hyperbox’ functions, i.e., they 
would delineate the coarse cells: 

where X, < z < Znea(,) is to be read as XI,, < X I  < Zl,next(a) - * TN,, < XN < x,v,next(a). 
Note that we must write Znext(a) instead of zaS1. say, since we cannot index cellular divisions 
consecutively in N-space; however, a functional relation, ‘next(a),’ can be defined. Another 
example of possible basis functions are the Gaussian fields used by Moody and Darken (1989). 

The learning rule, the well known Delta Rule, for w, can be expressed, for general $,(o). 
as 

(4) 

where 
A f ( z )  2 f ( o )  - 

is the error in the mapping. For the basis functions defined by (3), the denominator 

is the number of ‘activated’ cells and is furthermore constanc in fact, k is the number of coarse- 
cell layers. Thus, we can define the ‘learning rate’ or ‘learning coefficient’ as 

Note that in the CMAC archtecture, the error is distributed uniformly among layers. 
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The CMAC was designed with manipulator control specifically in mind. An implementation 
of the CMAC scheme in the control of a two-link planar manipulator has been performed by Miller 
et al. (1987). The input variables in this application were the joint angles, rates and accelerations 
(8 = co1{O1, &}, b ,  8). Two CMAC networks are used, each requiring all six inputs. The 
outputs from networks are the two joint control torques. 

The CMAC controller measures the state of the system (8 and b )  and a trajectory planner 
determines the required acceleration (8) to drive the actual trajectory towards the desired trajectory 
in a prescribed number of time steps. A position-error controller is superimposed onto the CMAC 
controller to deal with any residual error as may arise from the CMAC discretization. The 
position-error controller also provides nominal control during the initial learning phase. The 
control system is displayed in Figure 3. 

Neural Network Module 

Learning 

I 

Trajectory 1 .I Position-Error ~~ - 1 ~~1 
Simulation Planner 0-4 Controller 

Figure 3: Robotic control system that includes a single CMAC module. 
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The CMAC is taught by presenting data on input torques and the corresponding measured 
state (plus joint accelerations) of the system. e CMAC is thus able to learn the inverse dynamics 
of the manipulator without direct supervised learning. Miller er al. show that the CMAC can 
learn to follow a path when presented with it only a few times. It was also found that the 
CMAC architecture was able to handle multiple paths, noise, different cell sizes and learning 
rates and it was able to adapt readily to changes in the manipulator’s mass properties. Miller et 
al. (1990) have also successfully implemented the CMAC controller on a five degree-of-freedom 
manipulator. 

3. Modular Architecture 

The CMAC approach as developed by Albus and as implemented by Miller et al. does 
not assume anything about a robotic system apart from the selection of the input variables. A 
significant enhancement, however, can be achieved by making the merest note of the motion 
equations. Rewriting (1) slightly, we have 

(The purpose of doing this is to emphasize the fact that the structure of the first term is unimportant 
in the following.) It should be underscored that (7) still represents the most general form of motion 
equations for multibody systems. 

Written as (7), it is clear that the equation of motion can be parsed into two distinct parts: 
One being a function of only position and acceleration, and another of only position and rate. This 
structure suggests a modular architecture consisting of two CMAC subnetworks, each defined on 
a different subset of the augmented state ( g ,  q, g) and, hence, each smaller than a single CMAC. 
Unlike other modular networks (e.g., Jacobs et al. 1991). each subnetwork here operates coop- 
eratively and on a different set of inputs. In addition to reducing the total memory requirements 
when compared to a single-CMAC implementation, this ‘divide and conquer’ approach possesses 
the very attractive feature that it captures the dynamical structure of a multibody system without 
explicitly encoding the motion equations. In fact, setting 77 = 0 would yield the linearized 
equations of motion. 

Learning Procedure 

The problem in this architecture arises in learning. In application to a real robotic system, 
we cannot assume the separate parts of the motion equation are available to us to enable the 
modules to learn separately. Rather we would only have the total error produced by the network 
(Graham and D’Eleuterio 1991b). Thus, a technique to distribute the error between the two 
modules is needed. 

In general, we can represent a modular architecture OC cooperating CMACs as 

n a  
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where K is the modular index and 2, E span 2. For the problem at hand, there are only two 
modules which can be identified by K = 1.1 for the first (rate-linear) module and K = q for the 
second (rate-nonlinear) one. The proposed learning rule may be expressed as 

where Af(x)  is the error given by the mapping (8) relative to the desired value and the ‘gating 
coefficients’ ,on > 0 satisfy 

K 

which assures that all the error is distributed although v can be adjusted to set the learning rate 
separately. 

For robotic systems, we propose the following heuristic for determining the gating coeffi- 
cients: 

where ri and ri are fixed weighting constant. The ratio of these parameters is set here as the ratio 
of the expected input limits of the joint rates and accelerations. An algorithm to determine the 
gating coefficients using reinforcement learning is under development (McGuire and D’Eleuterio 
1992). 

4. Self-Organized Hierarchical Architecture 

Thus far, we have implied that the size and spacing of the coarse cells as well as the number 
of coarse-cell layers are fixed and moreover regular. However, there is ample reason to investigate 
the choice of these parameters and indeed the manner in which they may be changed. A trade-off 
exists, for example in the selection of the size of cells: Smaller cells may increase resolution at a 
cost of generalization; larger cells may overgeneralize and reduce resolution. A delicate balance 
must be struck. Miller et al. (1990) suggest that a broad range for these parameters exists that 
permits successful learning. In the spirit of artificial neural networks, it would make for an 
effective approach if, for example, the cell size and position could be automatically organized 
according to the input training data. 

Several self-organizing neural networks have attempted to capture and exploit the spatial 
distribution of input data. The ‘locally tuned network’ by Moody and Darken (1989) and the 
‘self-organizing network’ by Kohonen (1989) are two such approaches. Both are statistically 
based and organizes the neurons only; learning is a separAe step. 

One technique that uses differently sized cells is offer by Moody (1989). In this approach, 
levels of progressively finer CMACs are employed. The first CMAC uses coarse grids and is 
allowed to learn over the entire input space. Once this learning has achieved a precision within 
a prescribed tolerance level, the weights of this CMAC are fixed. A second CMAC with a finer 
grid is then added and learning continues, adjusting only the weights of the second CMAC. This 
procedure is repeated as required until the resulting hierarchy provides the desired resolution. 
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A disadvantage of the technique, however, is that subsequent grids must span the entire input 
space. As a consequence, the number of coarse cell units needed grows exponentially which in 
turn increases the number of granule cell units to prevent interference that may occur because of 
hashing. Also, the cell sizes of subsequent layers must be specified a priori. 

Cell Organization Based on Kohonen’s Network 

Motivated by these efforts, we now present a concept for a self-organized hierarchical 
architecture compatible with the modular architecture described earlier and based on the CMAC 
network and Kohonen’s self-organizing network (Graham and D’Eleuterio 1991~). Kohonen’s 
network is well-suited to this application because of its simplicity and its nonoverlapping cell 
structure. 

For explanatory purposes, let us consider a one-dimensional case. The Kohonen cells are 
precisely the fine cells which result from the overlapping coarse cells. Each cell, designated a,, 
has associated with it a real-valued weight V n  which is the position of the cell as measured from 
some reference point to the center of the cell. Without loss in generality, the weights can be 
ordered such that v, < v,+1. Our objective is to change gradually the position of the cells to 
reflect the probabilistic distribution of the input variable and thereby render the structure of the 
CMAC more efficient, providing greater accuracy in regions of the input space which is likely to 
display more activity. 

Now consider a sample input value z. The cell that is ‘activated’ 0, is, in general, the 
one whose weight most closely matches to the input value. In this case, it is the cell which is 
closest in distance to I. This ‘winner take all’ activation can be represented by 

]x - = min n ]x - vn] (11) 

(12) 

where v p  is the weight of the activated cell. A neighborhood of cells Npr centered on a,, that 
is, 

where the index r is a ‘radius of activation,’ is selected for weight adjustment. This adjustment 
is accomplished as follows: 

N, = { Op--rr * * * > up, 7 q + r }  

where the learning rate X is chosen between 0 and 1. Both the learning rate and the radius of 
activation are gradually decreased to zero which allows the Kohonen network to converge to a 
stable, ordered distribution of cells. 

As desired, the effect of (13) is to redistribute the cells incrementally with each input datum. 
Each new input value essentially acts as a magnet drawing the cells in a given neighborhood 
slightly towards itself. Repeated over a set of input data, the resulting distribution will bear the 
statistical signature of the input space. 
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An example of the result of ohonen self-organization is given in Figure 4. This is a 
cross-section of the fine (joint angle) discretization used for a two-link robotic arm. The training 
data was distributed normally. 

Multiresolution 

Following Moody (1 989), a further enhancement that can be made to the present technique 
is to stack subsequent CMAC modules with progressively finer grids. With each additional CMAC, 
the weights of the previous one would after sufficient learning be fixed. But instead of having 
to span the entire input space with these subsequent CMACs, the self-organizing results afforded 
by Kohonen’s network permit us to identify those regions of greatest activity in the input space 
and thereby restrict subsequent CMACs to selected areas. Of course, Kohonen self-organization 
can be implemented with each CMAC. 
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Figure 4: Cross-section of redistributed (fine) cells for a two-link manipulator 
after training on 1,000 normally distributed random samples 

(Mean: 0, Standard Deviation: of input range). 
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We refer to the architecture resulting from these enhancements to the CMAC architecture 
as MOVE-Manipulator Operation using Value Encoding. We now present computer simulation 
results demonstrating the performance of MOVE and comparing it to the CMAC. The strawman 
system investigated here is the two-link manipulator used by Miller et al. (1987). 

Modular Architecture. We begin by comparing MOVE, consisting only of the modular- 
architecture enhancement, with a single CMAC. Each variable is evenly discretized into 100 units 
and, to promote a reasonable amount of generalization, 30 layers (grids) of coarse cells are used. 
The single CMAC possesses 18,000 granule cells for each joint while each module in MOVE 
has 9,000 granule cells. Thus, the total memory requirements for each system are the same. A 
learning factor of y = 0.6 was used. 

For the first test, 100,OOO uniformly distributed random sets of input data (8 ,  e ,  8 and 
corresponding f,). served as training data. For every set of 100 input samples, the networks 
were permitted to learn at only that sample which produced the worst error in the joint torques. 
Thus, actual learning was done on only 1,000 input samples. The average RMS error in the 
torques, however, was computed on each set of 100 samples, The results are plotted in Figure 
5. As can be seen, not only does ‘modular’ MOVE learn significantly faster but it yields a lower 
final error. 
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Figure 5: Comparison of learning trends of the CMAC and 
the modular version of MOVE. 

The second test compares the CMAC and modular MOVE in a simulated control environ- 
ment. For MOVE, the neural-network module in the control system of Figure 3 is replaced by the 
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modular architecture of MOVE represented diagrammatically in Figure 6. Repres 
results, based on the random-sample learning explained above, are shown in Figure 7. The RMS 
error, as computed over the length of the trajectory, were 0.32 rad for the CMAC and 0.10 rad 
for modular MOVE. 

Neural Network Controller 
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Figure 6: Neural-network module using modular MOVE 
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Figure 7: Comparison of control for CMAC and 
the modular version of MOVE 
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ica @ct~re. The hierarchical architec- 
ture of MOVE for self-organization and multiresolution was demonstrated and evaluated inde- 
pendently of the modularity enhancement. The neural-network module in the control system of 
Figure 3 in now replaced by the module in Figure 8. Two levels of CMACs are used in this 
example. The first level is trained on 1,OOO normally distributed input samples (with zero mean 
and standard deviation of one-sixth of the input range). The weights of this level are then fixed 
and the second level is trained on a further set of 1,OOO input samples. 

Figure 9 shows the control results for a representative trajectory. The single CMAC, whose 
results are shown for comparison, was trained on all 2,000 input samples. The plots show the 
absolute errors in tracking for the two joints separately. The RMS error over the entire trajectory 
for both joints was 0.016 rad for the single CMAC and 0.01 1 rad for ‘mulhresolution’ MOVE. 

Neural Network Module 

U 

Processing 

Figure 8: Neural-network module using self-organized, multiresolution 
hierarchical architecture of MOVE 

6. Concluding Remarks 

The basic concepts introduced by Albus in his CMAC provide a sound foundation for an 
artificial neural-network approach to the control of robotic systems. The enhancements incor- 
porated in MOVE significantly improve on the performance of a CMAC robotic controller. The 
modular architecture of MOVE anticipates the form of the dynamical equations. By recognizing 
that all mechanical systems share this simple yet basic form, an appropriate structure can be 
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imposed on MOVE without compromising its applicability to robotics. This ‘divide and conquer’ 
technique results in faster learning and more efficient use of memory space. 

The generalization property intrinsic to the CMAC has been enhanced by implementing a ** 
self-organization scheme based on the Kohonen network. This self-organization enables the cells 
in a CMAC to arrange themselves according to the statistical distribution of the training data. 
Furthermore, by creating a hierarchy of self-organized, multiresolution CMACs, one can also 
improve accuracy. This hierarchical architecture has been successfully employed in the modeling 
of chaotic systems as well. 
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Figure 9: Comparison of a single CMAC and the self-organized, multiresolution 
hierarchical version of MOVE for a given trajectory. 
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It is evident that the concept of artificial neural networks holds considerable promise 
in the field of robotics. Neural networks allow us to dispense, at to least some extent, with 
carefully constructed system models. They moreover possess a characteristic highly desirable 
in the industrial workplace, that of beirig able to adapt to gradually deteriorating systems. For 
example, the dynamics of a new robotic manipulator will not be the same as the dynamics of 
that same manipulator when it is older. But neural networks continually learn, continually adapt. 

The re-emergence of artificial neural networks also resonates with another current trend- 
that of parallel processing in computer technology. Like the brain, neural networks are inherently 
parallel which is of course a very desirable feature, particularly when considering real-time 
implementation. A hardware version of the the CMAC architecture is already commercially 
available and DiNardo and Graham (1992) have investigated the performance of MOVE on a 
parallel transputer platform. 

The MOVE artificial neural-network architecture also exhibits considerable potential in 
other robotic application areas such vision, pattern recognition and analysis, sensor fusion, and 
flexible manipulators as well as a multitude of nonrobotic applications. 
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ABSTRACT 

This research focuses on the computational dy- 
namics of flexible constrained multibody systems. At 
first a recursive mapping formulation of the kinemat- 
ical expressions in a minimum dimension as well as 
the matrix representation of the equations of mo- 
tion are presented. The method employs Kane's 
equation, FEM and concepts of continuum mechan- 
ics. The generalized active forces are extended to 
include the effects of high temperature conditions, 
such as creep, thermal stress and elastic-plastic de- 
formation. The time variant constraint relations for 
rolling/contact conditions between two flexible bod- 
ies are also studied. The constraints for validation 
of MBS simulation of gear meshing contact using 
a modified Timoshenko beam theory are also pre- 
sented. The last part dtals with minimization of 
vibration/deformation of the elastic .beam in multi- 
body systems making use of time variant boundary 
conditions. The above methodologies and computa- 
tional procedures developed are being implemented 
in a program called DYAMUS. 

KINEMATICS OF FLEXIBLE TREE-LIKE 
SYSTEMS 

An explicit matrix representation of the partial 
velocities and partial angular velocities for tree-like 
structures is given below. Consider a flexible body in 
a MBS discretized into P elements. Let the position 
vector to an arbitrary element i of body j w.r.t. a 
fixed reference frame R be given by 

where S denotes the shift matrix, q, 6 and T represent 
the body vector, the translation vector between ad- 
jacent bodies, and the position vector from the local 

reference frame of body j to element i, respectively. 
N is the shape function matrix, p denote the nodal 
coordinates, and 5 a set of unit vector fixed in R ( 
see reference [I]-[2] for more detail). 

The velocity of element i of body j found by M e r -  
entiation of the above equation can be expressed as 

Four arrays are identified in the velocity expres- 
sion and found to take a special form. Note that 
z represent the rigid body rotation between adjacent 
bodies. The partial derivative of the element velocity 
yield the following 

L 0 1 
where W is a transformation matrix used to isolate 
the generalized coordinate derivatives from the gen- 
eralized speeds. s,, s ~ ,  s, and s,, are skew matri- 
ces corresponding to 4, C, T and p, respectively. The 
partial velocity array associated with element defor- 
mation is given by 

[V;I'] = 

0 

0 

~nrl'[~JO1 

0 

(4) 
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The partial velocity array associated with q is ex- 
pressed as 

(5) 

The bodies of the above block matrices could be 
achieved through a budgeting procedure where a 
mastcr block is first developed then the rest of the 
arrays are formed through a partition and mapping 
technique see Table 1. 

EQUATIONS OF MOTION 

The governing equations of motion for flexible 
multibody systems can be expressed as 

It is important to note at this stage how the kine- 
matical expression form the bulk of all computations. 
In the above equations m,, denotes the mass of ele- 
ment i in body j ,  I,* the tensor dyadic, f,, the force 
vector array acting on element i of body j, N,, the 
corresponding moment array and bJZ the surface trac- 
tion contribution vector. 

CONSIDERATION OF HIGH TEMPERA- 
TURE, CREEP AND ELASTIC-PLASTIC 
DEFORMATIONS 

where [MI denotes the generalized mass matrix com- 
posed of 9 submatrices of the form 

[M,,]  = f (m,,[vJa][vJ’]’+[w’][r,illw”)d. term of the generalized force (see reference [2]) 

The modeling of time-dependent forces resulting 
from deformable bodies when subjected high tem- 
perature conditions can be of interest in many en- 
gineering applications, which include creep, thermal 
stress, thermal shock, etc.. Many researchers studied 
material nonlinearities, in which some problems are 
solved, other still remain to be issues of concern. 

The effects of temperature, creep and thermal 
stress and thermal shock can be included in the third 

.I Y J i  
J ’  

The generalized mass is symmetric and the compo- 
nents of M,, come directly from the kinematic bank 
of partial velocities and angular velocities of ele- 
ments. The other mass components have similar ex- 
pressions. Similarly, we can write the dynamic damp 
ing matrix, generalized stiffness matrix and force vec- 
tor in a partition form with its components expressed 
as where the last part {FT} brings in the contribution 

from the effects of temperatures and material nonlin- 
earities 

and 
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The nonlinearities including geometric nonlinearity 
and material noiilinearity can be considered in the 
stiffness matrix. So does the elastic-plastic deforma- 
tion. The material property matrix is given by 

[Dl = [Del + [DPl 
where [De] denotes the elastic part. The second part 
[D,] is the contribution fiom the plastic deformation 

While the time variant contact conditions can be 
considered as a set of constraints which can be holo- 
nomic or nonholonomic. Some constraint equations 
which do not contain prescribed motion terms can be 
factorized to minimize the dimension of the equations 
of the system. For the case of two flexible bodies with 
one rolling without slipping on the other as shown in 
Figure 1, we can write in B the following position 
vectorf'l 

_ _  _ -  

- -  - 
qn = ~ n - 1 , c  + un-1,c - (Fnc +En=)  (18) TIME VARIANT BOUNDARY 

CONSTRAINT CONDITIONS 
Differentiation of equation (17) yields the constraint 
equations at the velocity level For the time variant boundary conditions, finite 

difference method can be used to account for the rate 
of change of mode shape. Consider the modal trans- 
formation [fl{la = {SI 

Differentiation of the above equation yields 

When substituting the nodal displacement with the 
nodal coordinates and taking into consideration the 
effects of [&I, then at  t = tt the new terms coming 
from the previous and newly computed mode shapes 
at t = tl are seen in [C] and [q asL2]*[31 [ J ]  is a Jacobi matrix and a function of generalized 

coordinates and velocities. 
In the dynamics of MBS for the case when one 

flexible body is rolling on another, equations (19) and 
(6) extended with XJT are solved together. The time 
history of the system allows us to systematically up- 
date the contact position and the reevaluation of the 
Jacobi matrix J. 

DYNAMICS OF GEAR MESHING TEETH 
1 - 2[@l-11 + [@l-2j) -k ~[cA,l(['~l - [*t-ll) (16) For &idation ofthe by mdtibodp 

dynamics code which utilize FEM, a modified Timo- 
shenko beam theory is presented to analyze the dy- 
namics of gear meshing teeth in rotorcraft systems. 
The acting position, direction and magnitude of the 

The method developed above has a wide range of 
applications for which one can easily see and analyw 
its dynamics. 
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externd forces are assumed to time variant. The 
meshing tooth isconsidered as a cantilever beam, as 
shown in Figure 2, where the inertia force due to 
the large rotation of the tooth base, as well as the 
external equivalent axial force and moment are all 
included in the equation of motion.[’I 

For the assumed model, the boundary conditions are 
given by: 
At the fixed end 1: = 0 ,  

+(O, t )  = w(0, t )  = 0 

At the free end z = 1,  

aw(r t )  
V(L, t )  = k A ( l ) G [ A  - $(i , t)]  = 0 ax 

M(I, t )  = [EI(I)- t ,  + m(2, t ) ]  = 0 az 

A solution to the above proposed model will result 
in prediction of contact forces or dynamic loading on 
gear teeth. 

MINIMIZATION OF VIBRATION IN 
ELASTIC BEAMS 

The minimization of vibration (deformation) of 
flexible bodies in mechanical systems is a major con- 
cern in dynamics and control. What follows are pro- 
cedures used to minimize vibration in elastic beams. 
The elastic beam is modeled in two ways: one has a 
movahk support not to exceed the lower tip, whereas 
the  other treats the body as a hollow beam with a 
moving mass. 

Equation of motion for the model used to minimize 
vibration of the flexible beam, as shown in Figure 3, 
is given by[2] 

Laplace transform gives 

(27) 

The functional used to minimize vibration of the 
beam is 

Euler-Lagrange equation 

is used to solve for the problem a t  hand. 
The solution for optimum positioning conditions 

is time variant and yields minimum deflection at the 
proposed location of the beam. 

* 
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Figure 1: Model for time variant contact condi- 
tions 
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Figure 2: Model for gear meshing teeth 
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Figure 3 :  Models for vibration minimization 
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Abstract 

In this paper, parallel O(log n) algorithms for computation of rigid 

multibody dynamics are developed. These parallel algorithms are derived by 

parallelization of new O(n) algorithms for the problem. The underlying feature 

of these O(n) algorithms is a drastically different strategy for decomposition 

of interbody force which leads to a new factorization of the mass matrix (MI. 

Specifically, it is shown that a factorization of the inverse of the mass 

matrix in the form of the Schur Complement is derived as M-' = & - 13*~4-~13, 

wherein matrices &, 8, and 13 are block tridiagonal matrices. The new O h )  

algorithm is then derived as a recursive implementation of this factorization 

of M-'. For the closed-chain systems, similar factorizations and O(n) 

algorithms for computation of Operational Space Mass Matrix A and its inverse 

A-' are also derived. It is shown that these O(n) algorithms are strictly 

parallel, that is, they are less efficient than other algorithms for serial 

computation of the problem. But, to our knowledge, they are the onl'y known 

algorithms that can be parallelized and that lead to both time- and processor- 

optimal parallel algorithms for the problem, i.e., parallel O(1og n) 

algorithms with OIn) processors. The developed parallel algorithms, in 

addition to their theoretical significance, are also practical from an 

implementation point of view due to their simple architectural requirements. 
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MERnXn 

0 4 col{Oi)cRnX1 
Q 4 colIQi>cRnX1 

3 h = collri)EIRnX1 

w w  
i '  i 

i *  i 
v v  

fi*  "i 

F i = [ 
H. cIR6xni 

Total number of Degrees-Of-Freedom (DOF) of the system 

Position vector from point 0 to point Oi,  Pi+l , i  = Pi J 
Mass of body i 

First and Second Moment of mass of body i about point 0 

Spatial Inertia of body i about point Oi,  
i 

Symmetric Positive Definite (SPD) mass matrix 
Vector of joint positions 

Vector of joint velocities 

Vector of joint accelerations 

Vector of applied (control) joint forces/torques 

Angular and linear acceleration of body i (frame i+l) 

Linear velocity and acceleration of body i (point 0 1 

Force and moment of interaction between body i-1 and body i 

i 

Spatial acceleration of body i 

Spatial force of interaction between body i-1 and body i 

Spatial axis (map matrix) of joint i 

Table 1. Notation 

of Body i 

Figure 1. Body, Frames, and Position Vectors 

244 



The multibody dynamics problem concerns the determination of the motion of 
the mechanical system, resulting from the application of a set of control 
forces. In the context of robotics, the dynamic simulation problem is better 

known as the forward dynamics problem. 
From a computational point of view, the multibody dynamics problem can be 

stated as the solution of a linear system as 
MQ = Y - b(0,Q) = YT, or 

Q = M-'YT (2 1 

(1) 

where the vector b(f3,Q) represents the contribution of nonlinear terms and can 
be computed by using the recursive Newton-Euler (N-E) algorithm 131 by setting 
the joint accelerations to zero. Hence, in Eqs.  (l)-(Z), 9T 4 
represents the acceleration-dependent component of the control force. 

The developed serial algorithms for the problem can be classified as the 

Oh3) algorithm 141, the O(n2) algorithm [51, and the O(n) algorithms [6-131. 
See also 1141 for more complete references as well as an extensive analysis 
and comparison of these algorithms. In addition to these algorithms, which are 
based on rather direct methods, there is also another class of indirect (or, 

iterative) algorithms for solution of Eq. 

conjugate gradient algorithms [4,15,161. 

(1) which include the O(n2) 

It seems that the development of serial algorithms for the problem has 
reached a certain level of maturity. Asymptotically, the O(n) algorithms 
represent the fastest possible serial method for the problem, since, given the 
n-component input (vector of control force), the evaluation of the n-component 
output (joint accelerations) requires at least O(n) distinct steps in the 

computation. Hence, any further improvement in computational efficiency of the 

O(n) algorithms can only be achieved by reducing the coefficients (see for 

example [10,141 wherein this reduction has been achieved by avoiding explicit 
computation of the term b(0,Q)). 

The relationship among the different direct algorithms is also well 

understood, and two fundamental results have been established [141. The first 

is that, at a conceptual level, the O(n) algorithms can be essentially 
considered as a procedure for recursive factorization and inversion of mass 
matrix, i. e., recursive computation of M - ' 9  [9,10,11,14]. The second result 

is that, at a computational level, the O(n) algorithms lead to the computation 

of the articulated-body inertia [ ? I .  The reader is referred to [141 for an 

T 
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extensive analysis of commonalities in the computation of the O(n) algorithms. 

It should be emphasized that our analysis of the parallel computation 
efficiency of different algorithms relies on these two results. 

Despite the significant improvement in the efficiency of serial algorithms, 
even the fastest algorithm is still far from providing real-time or faster- 
than-real-time simulation capability. With the maturity of serial algorithms, 

any further significant improvement in computational efficiency can be 

achieved only through exploitation of parallelism. This is further motivated 
by advances in VLSI technology that have made parallel computation a practical 
and low-cost alternative for achieving significant computational efficiency. 

However, unlike serial computation, there are few reports on the development 
of parallel algorithms for the problem. 

The development of efficient parallel algorithms for multibody dynamics is 

a rather challenging problem. It represents an interesting example for which 
the analysis of the efficiency of a given algorithm for parallel computation 
is far different and more complex than that for serial computation. In fact, 

our previous analysis I1,2,171 and the results of this paper clearly show that 
those algorithms that are less efficient (in terms of either asymptotic 
complexity or number of operations) for serial computation provide a higher 
degree of parallelism and hence are more efficient for parallel computation. 

A preliminary investigation of parallelism in the computation of forward 
dynamics, analyzing the efficiency of existing algorithms for parallel 
computation, is reported in 121. The main result of this investigation was 

that the Oh3) algorithms provide the highest degree of parallelism and are 
the most efficient for parallel computation. Specifically, it was shown that 

1. Theoretically, the time lower bound of O(log2n) can be achieved by 

parallelization of the Oh3) algorithms by using Oh3) processors. 

2. Practically, the best parallel algorithm for the problem is of O(n) which 
results from parallelization of the O(n 1 algorithms on a two-dimensional 
array of O(n ) processors. This parallel algorithm, although of O(n), achieves 
a significant speedup over the best serial O(n) algorithms by reducing the 

coefficient of the n-dependent term on polynomial complexity by more than two 

orders-of-magnitude. Different approaches for parallelization of the O(n ) 

algorithms have also been proposed in [18,191. 

3 

2 

3 

The analysis in [ l l  also led to two additional important conclusions. The 
first was that, if indeed there can be a parallel algorithm achieving the time 
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lower bound of O(1og n) with an optimal number of O(n) processors, then this 

parallel algorithm can only be derived by parallelization of an O(n) serial 
algorithm. However, the analysis in i l l  showed that the parallelism in the 
existing O(n) algorithms was bounded, that is, at best only a constant speedup 
in the computation can be achieved, leading to the parallel U(n) algorithms. 
More specifically, it was shown that the recurrence for computation of the 
articulated-body inertia is strictly serial and cannot be parallelized (see 
Sec. 1I.D). Hence, the second conclusion in [ l l  was that if the forward 
dynamics problem is to have the time lower bound of O(log n) for its 
computation, it can only result from a totally different serial O(n) 
algorithm. Such an algorithm can only be derived by a global reformulation of 
the problem and not an algebraic transformation in the computation of existing 

O(n) algorithms. 

Physically, a given algorithm for multibody dynamics can be classified 
based on its force decomposition strategy. Mathematically, the algorithm can 
be classified based on the resulting factorization of the mass matrix which 
corresponds to the specific force decomposition (see Sec. 1I.B and C). A new 
algorithm based on a global reformulation of the problem is, then, the one 
that starts with a different and new force decomposition strategy and results 

in a new factorization of mass matrix. 

Interestingly, a recently developed O(n) algorithm in [21-241 for a single 

serial chain represents such a global reformulation of the problem. It differs 
from the existing O(n) algorithms in the sense that it is based on a different 
strategy for force decomposition (see Sec. 111). We will show that this 
strategy leads to a new and completely different factorization of M - l .  This 

factorization, in turn, results in a new O(n) algorithm for the problem which 

is strictly efficient for parallel computation, that is, it is less efficient 
than other Oh) algorithms for serial computation but, as will be shown, it 

can be parallelized to achieve the time lower bound of O(1og n) with O(n) 

processors. We show that this factorization of M-' also directly leads to new 
factorizations and O(n) algorithms for closed-chain systems. Again, these new 
O(n) algorithms for closed-chain systems can be parallelized to derive both 
time- and processor-optimal parallel algorithms for the problem, i.e., 

O(1og n) parallel algorithms with O(n) processors. Furthermore, the new 

factorizations for both open- and closed-chain systems can be uniformly 

described in terms of the Schur Complement and provide different and deeper 

physical insights into the problem. 
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This paper is or anized as follows. In Sec. 11, the O(n) algorithms, i.es* 
the Articulated-Body Inertia algorithm and recursive factorization and 
inversion of mass matrix, are briefly reviewed. In Sec. 111, the Constraint 
Force algorithm and the new factorization of mass matrix are derived. In 

Sec. IV, new factorizations and O(n) algorithms for closed-chain systems are 
presented. In Sec. V, parallel O(log n) algorithms for both open- and closed- 
chain systems are briefly presented. Finally, some concluding remarks are made 
in Sec. VI. 

11. The O(n) Algorithms: Recursive Factorization and Inversion of Mass Matrix 

A. Notation and Preliminaries 

In our discussion of the O(n) algorithms, a set of spatial notations is 

used which, though slightly different from those in I8-11, 21-24]. allows a 
clear understanding and comparison of the algorithms (see also Table I and 
Fig. 1). For the sake of clarity, the spatial quantities are shown with 
upper-case italic letters. Here, only joints with one revolute DOF are 
considered. However, all the results can be extended to the systems with 

joints having different and more DOF's. 

With any vector V, a tensor i j  can be associated whose representation in 
any frame is a skew symmetric matrix as 

i j =  

where V 

The tensor i j  has the properties that a* = -V and i j  V = V xV2. A matrix 
associated to the vector V is defined as 

V and V(z) are the components of V in the considered frame. 
(X) ' (yl ' 

1 2  1 

where here (as well as through the rest of the paper) U and 0 stand for unit 
and zero matrices of appropriate size. The spatial forces acting on two 

rigidly connected points A and B are related as 
F B = P  F 

where P denotes the position vector from B to A. If the linear and angular 
A, B 

velocities of point A are zero then 

A 

A,B A 
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, . A  

Thk matrix has the properties P P = i, and Ci )-I = i, A, B A,B B,C A,C A,B B, A' 

In derivation of equations of motion, it is assumed that the nonlinear term 

b(8,Q) is explicitly computed by using the recursive N-E algorithm. For both 
the articulated-body algorithm (as shown in [141) and the new algorithm, this 

explicit computation can be avoided. However, this does not affect the 

efficiency of the algorithms for parallel computation. In fact, as for the 

Oh3) and O(n2) algorithms [16,l71, the explicit computation of b(8. Q) 
provides additional parallelism which can be exploited to further increase the 

speedup in the computation. 

By computing the term b(0,Q) and subtracting it from 7 (Eq. 11, i.e., by 

explicitly computing 3 the multibody system can be assumed to be a system at 

rest which upon the application of the control force 3 accelerates in space. 

The equation of motion for body i, as a single rigid body, is given as 

F i =  I i  
and as an interconnected member of the serial chain is given as (Fig. 1) 

T' 

T 

i i  

i = h* i 
Fi = I i i i  + PiFi+l  

+ HiQi i i-1 i-1 
( 3 )  

Eqs. (3)-(4)  represent the simplified N-E algorithm (with nonlinear terms 
excluded) f o r  the serial chain. 

Equation (4)  represents the interbody force-decomposition strategy of the 

N-E formulation. As shown in 19-11], this force-decompositiw strategy leads 

to a specific factorization of M. To see this, let us rewrite Eqs. (3 ) - (4 )  as 

i - ;* i = HiQ, 1 1-1 1-1 
(5) 

F i - P F  i i+ l  = I t  i i 

and define 

34 4 diag{Hi)&R 
4 = diag{Ii)&R 

(6 1 

6nxn 

A 6nx6n 

249 



P =  

U 

-P U 
n, n-1 

0 - A 

n-1, n-2 
-P 

0 0 

0 0 

n-1 , n-2 
p-1 = i, 

n, n-2 

n-1, 1 
P P 

n, 1 

U 
gR6nx6n 

U gR6nx6n 

Eqs. (5)-(6) can now be rewritten in a global form as 

3% = 34Q (7) 

3 9  = sir (8 1 
A factorization of mass matrix, associated with the force decomposition in 
Eq. (41, can now be derived as 

3;T = R*y = H*p-lyi/. = 34*p-1y(F*)-1& (9) 

which, in comparison with Eq. (11, represents a factorization of M as 

M = 34 3' 3(P*)-'34 (10) * -1 

* -1 Although the matrices P-', 9 ,  and (7' 1 
the matrices 34* and 34 are not square. This prevents the computation of M-' 
from the above factorization. 

are square and have trivial inverses, 

B. The Articulated-Body Inertia (A-BI) Algorithm 

The Articulated-Body Inertia (A-BI) algorithm is based on a decomposition 
of Fi as IS] 

Fi = + TA 
i 

(11) 

where IA is the articulated-body inertia of body i. The force T: is a function 

of IA and F 
computed, then the projection of Eq. (6) along the joint axis i leads to a new 

equation with Q. as the only unknown 

i 

for j = n to i+l. If I A  (and hence TA),  for j = n to i, is 
J TJ f J 

* A '  

i i i  
= H > ~  = H I v + H:T: 
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Starting from i = 1, the joint accelerations can then be recursively computed 

from Eq. (12). This clearly explains the motivation behind the specific force 
decomposition in Eq. (111, which, unlike the one in Eq. (41, leads to the 

solution for joint accelerations. 

The computational steps of the A-BI algorithm are given as I81 

For i = n to 1 

-1 * a* 

IA  i = I i  + Pi'[I:+l - IA  i+l H i+1 (HI i+ l  I A  i + l  H i + l  ) H i+l I A  i+l]Pi 

TA = ii[ T:+l - I A  H (H* IA H )-l(F - H* ? )] 
i i+ l  1+1 i+l i + l  i+l Ti+l i + l  i+l 

For i = 1 to n 

* I A  H )-' - A ^ *  * A  
- HITi)(Hi+l i+1 i + l  

Qi - (FTi - H . I  P 
1 i i-1 i-1 

I A  n = I n 

TA = 0 
n 

I; = o  
0 

^*  
I; = P I; + HiQi  

i i-1 i-1 

C. Recursive Factorization and Inversion of Mass Matrix 

In [9-111, starting with the factorization in Eq. (101, an alternate 
factorization of the mass matrix in terms of square factors is derived as 

* -1 * 
At = (U + H*P-'X)D(U + H 3' X )  

k u - 3' eR6nx6n 
P 
A A  6nx6n 9 = diag{lAkR 

D A = diag{Di) = diag{H:Ipi}cIRnXn 

3AHD-1 EW6nxn 9 4 diag{Gi) = 

A 6nxn x = &p9 E W  

* -1 * 
The nxn matrices ( U  + H*P-'X), 59, and (U + 34 3' X )  
triangular, diagonal, and upper triangular. The factorization in Eq. (17) 

represents the LDL factorization of the SPD mass matrix (which is unique) in 
an analytical form. Furthermore, due to the positive definiteness of A, the 
matrix D is nonsingular, that is, Di f 0 (this is also proved in [81). 

are, respectively, lower 

* 

* -1 ' In 19-11] it is shown that the inverse of the factor ( U  + H 3' XI can be 
derived in an analytical form as 

(U + 34*3'-1X)-1 = (U - H * # X )  (21 1 

where tP = {# ) E I R ~ ~ ~ ~  is a lower triangular matrix with 
i ,  I 
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@ = U and @ = (V - G H I )  E I R ~ ' ~ ,  i 

From Eqs.  (17) and (211, a factorization 

i ,  i i , J  i , J  i t  

4-l = (U - 3Q*9x)ffI)-1(u - 3eff9X) 

The significant contribution of the work 

= n to 1 and j = i-1 to 1 

of &-' is derived as 

in I9-111 is to exploit further 

(22 1 

(23 1 

structure of the mass matrix (in addition to the symmetry and positive- 

definiteness) and explicitly obtain the above factorization of &-'. 

demonstrates that the force decomposition in Eq. (11) corresponds to this 

factorization of 4-'. If the articulated-body inertia is computed from 
Eq. (13) and the terms K and 9 are computed according to E q s .  (18)-(20) and 

(221, then from Eqs.  

Q = (U - R*9x)*D-1(u - X*9XIST (24) 

In 19-11,141 it is shown that the recursive implementation of Eq. (24) results 

in an O(n) algorithm whose computational steps (with some minor modifications) 

correspond to those in Eqs .  (13)-(16). 

It also 

( 2 )  and ( 2 3 )  the solution for Q is obtained as 

I). Parallelism in the O h )  Algorithms 

The main bottleneck in parallel computation of the A-BI algorithm is the 
A 

i 
computation of I from Eq. (131, which can be represented, at an abstract 

level, as the solution of a set of first-order nonlinear recurrences 

X i  = Ci + Cp2(xi+,)/Cp1(xi+,) = c i + $(xi+,)  
where C is a constant, Cp and Cp are polynomials of first and second degree, 

and deg Cp = Max (deg Cp,, deg Cp2) = 2. It is well known that the parallelism in 
computation of nonlinear recurrences of the above form and with deg Cp>l is 

bounded 125,261, that is, regardless of the number of processors used, their 

computation can be speeded up only by a constant factor. This is due to the 

fact that the data dependency in nonlinear recurrences and particularly those 

containing division is stronger than in linear recurrences [261. Hence, the 

parallelism in the O(n) articulated-body based algorithms is bounded and their 

parallelization leads to parallel O(n) algorithms which are faster than the 

serial algorithms only by a constant factor. Note that a rather simple model 

was used to describe the nonlinear recurrences for computation of the 

articulated-body inertia, while they are far more complex than those usually 

studied in the literature, e.g., in [25,261. 

i 1 2 

However, the computations in Eqs.  (14)-(16) can be fully parallelized since 

they can be transformed into a set of first-order linear recurrences (here, 



due to the lack of space, we do not discuss these transformations). This 

clearly indicates that the main obstacle in parallelization of the O(n) 

articulated-body based algorithms is the computation of the articulated-body 

inertia. It should also be mentioned that the O(n) algorithm in [7l, which was 
originally developed for serial chains with 3-DOF spherical joints, involves 
nonlinear recurrences which are even more complex than those for computation 
of articulated-body inertia. 

111. The Constraint Force Algorithm 

A. Basic Force Decomposition and Algorithm 

The algorithm in [21-241 is based on a decomposition of interbody force as 

Fi = HiFTi  + W,Fsi 

where F is the constraint force and W is the orthogonal complement of H 

which is defined [27,281 by 

(25 1 

Si i i 

The matrix H is a projection matrix and hence 

HiHi = U (27)  

It then follows that the matrix W i  is also a projection matrix and that [271 

HiWi = WiHi = 0 and W i s J i  = U 

For a joint i with ni DOF’s (ni<6), it follows that HicU?6xni and W clR 

For a more detailed discussion on these projection matrices see 127,281. 

i 
* 

* * 0: 

(28) 

6x (6-ni ) 

The decomposition in Eq. ( 2 5 )  seems to be more natural (and perhaps more 

physically intuitive) than those in Eqs. (4) and (11) since it expresses the 
interbody force in terms of two physically more basic components: the control 
(or, working) force and the constraint (or, nonworking) force. In fact, as 
stated in 1211, the basic idea of the algorithm was first presented in [291 

for a system of particles, and later in 1301 it was extended to rigid body 
systems. However, both works were concerned with the constraint stabilization 

problem and the algorithm had not been used as an alternative procedure for 

the dynamic simulation problem. Also, the independent derivation of the 
algorithm in [21-241 was mainly motivated by its suitability for parallel 
iterative solution of the dynamic simulation problem. 

It is not surprising that the algorithm has not been considered as a viable 
alternative for direct serial and parallel solution of the multibody dynamics 
problem. The decomposition in Eq. (25) naturally leads to the explicit 
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computation of the constraint (and interbody) forces, which has also motivaked 
the designation of the algorithm as the Constraint Force (CF) algorithm. In 
fact, researchers have always argued that since the constraint forces are 
nonworking forces, their computation is not needed and leads to computational 
inefficiency. Consequently, the elimination of the constraint forces from the 

equations of motion has always been considered as a necessary first step in 
the derivation of efficient algorithms. 

Here, for the sake of clarity and self-completeness, we first redrive the 
algorithm as presented in [21-241. We then show that the force decomposition 

in Eq. ( 2 5 )  leads to a new factorization of M-'. This allows a better under- 
standing of the algorithm as well as its comparison with other algorithms, 
particularly the recursive factorization and inversion of mass matrix. 

Equation ( 2 5 )  can be written in global form as 

s = 34sT + wss ( 2 9 )  

and Y s  col{Fsi) &lRSnxl. For global matrices 34 and h 6nx5n with W = diag{Wi)cW 

W ,  Eqs. (26)-(28) are written as 

34H* + WW* = U, 34*W = W*34 = 0, and H*3f = W*W = U 

From Eqs. ( 7 ) - ( 8 )  and (301, it follows that 
(30) 

.ir = 4-'fPs (31 1 

and substituting Eq. ( 2 9 )  into Eq. (33) yields 

w P Y P ( R Y ~  + ~ 3 ~ )  = o + W*P*Y-'PWY~ = -W P Y P R S ~ ,  or 
* II -1 * -1 

(34) 

58Ss = -8sT (35 1 

and 8 4 W*P*Y-1P34 &IRSnxn. The global constraint h * *  5nx5n where .Q = W P Y-IPW cIR 

force, Ys, is computed as the solution of the linear system in Eq. 
.Q is a symmetric, positive-definite, block tridiagonal matrix. The global 

interbody force (3;) and acceleration (.ir) are then computed from Eqs. ( 2 9 )  and 

(31). Finally, the joint accelerations are computed from Eqs. ( 7 )  and (30) as 

;)4*RQ = jf*p*i/ j Q = H*P*.ir 

(351, where 

(36) 
The solution of the linear system in Eq. (35) represents the most 

computationally intensive part of the algorithm. In 121-241, exploiting the 

structure of matrix 58 (i.e., symmetry, positive-definiteness, and block 
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tridiagonal form), a set of iterative algorithms for solution of Eq. (35) is 

developed. It is shown that these iterative algorithms can be efficiently 
parallelized and implemented on a simple architecture with n processors while 

the rest of the computation is performed serially. Although the computational 
complexity of the developed parallel iterative algorithms is still of O(n), 
the extensive simulation in 121-241 has shown that the algorithms achieve 
speedup over the serial A-BI algorithm. 

B. A New Factorization of M-' 

Here, we extend the work in [21-241 by first deriving an operator form of 
the algorithm and then showing that the force decomposition in Eq: (25) indeed 

leads to a new and interesting factorization of M-'. From E q s .  (29) and (34) 
the global interbody force can be computed as 

3; = (3.t - W(W*P~Y-lPW)-lW*P*Y-'PH FT 1 
if = Y-'+ - w(w*P*Y-1Pw)-1w*P+9-'PH YT 1 
From E q s .  (8) and (371, i' is computed as 

and finally from E q s .  ( 3 6 )  and (38). Q can -e computeL as 

(37) 

(38) 

(39) 

which represents a compact operator form of the algorithm. In comparison with 

Eq. (21, an operator form of M-', in terms of its decomposition into a set of 

simpler operators, is given as 

M-' = H*P*Y-'PH - H*P*Y-'PW (W*P*Y-'PW )-'W*P*Y-'PH (40) 

C. Alternate Approach for Factorization of M-' based on the Schur Complement 

The operator form of M-' given by Eq. (40) represents an interesting 

mathematical construct. To see -this, let 
A * *  E = 34 7 9-lPH &Rnxn 

Consider a matrix !t' defined as 
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33 is the Schur Complement of [311 and is designated as 

( U S o ) .  The structure of matrix 2 motivates a different and simpler approach 
for derivation of the algorithm. Assume that the spatial acceleration of body 
i is written in terms of two components: one generated by acceleration of 

DOF's (Q 1, and the other generated by acceleration of Degrees-Of-Constraint 

(DOC'S), denoted as [of course, by definition & = 0 ) .  Then rewrite 

Eqs. (5) and (7) as 

i 

i 

i - ;* ir = HiQi + W i i i  i i-1 i-1 (43) 

P** = 3fd + wi (44) 

A 5nxl with = col{&)eR . From Eqs. ( $ 3 1 ,  (291, and (441, it then follows that 

(45) 

(45) first by W* and 

P*Y-1Pw3s + P * 3 -1 PH3T = HQ + wi 

f: and Q can be obtained by multiplying both sides of Eq. 
then by H* as 

w*P*3-1Pw3s + w*5D*3-1P3mT = f: (46) 

(47) 

(48) 

(49) 

* * -1 * * -1 
H P Y P W ~ ~  + H 7 Y P H Y ~  = 6, or 

2?*3s + &3 = 4 
sSYs 4- BYT = 2 

T 

Eq. 
for solving for 3 

(SGl are defined as 

(39) is then obtained by setting f: = 0 and using the Guassian elimination 

If the vectors of total acceleration (a  1 and total force 
T' G 

then Eqs. (48)-(49) can be written as 

2SG = a ( 5 0 )  

The matrix 2 can be interpreted as the inverse of the augmented mass matrix; 
it relates the total force and acceleration. A-' is then the Schur Complement 

of So in 2, that is, 

M-' = ( 5 ! / S o )  (51 1 

G 

It should be mentioned that an even simpler physical interpretation of the 
algorithm along with an alternate.direct approach for derivation of Eqs. (48)- 
(49) can be given by noting the physical interpretation of the operators H, P,  
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4-I,  W, etc. and the matrices , 13, and ie [321 

(52 1 

It should also be pointed out that by using the matrix identity 

(C - XDY)-' = C-l + C-lX(D-' - YC-lX)YC-l 
in Eqs. 

M = e-' + E-'B*(ds - BE 8 )-'BE-' 

(40)-(41) an operator expression of M can be obtained as 
-1 * 

(53) 
( 

* * -1 
= (r)4*P*Y-1P3f)-1 + (X*P*f-'P3e)-'(H P 4 PWI (W*P*Y-'Pw) - (W*P*f-'PQ) 

(H*P*Y-l?JR)-l (H*P*f -'PW) -l (W*P*Y-'PH) (H*P*Y-'PH)-' I 
2 An O(n ) algorithm for computation of the mass matrix can be derived based on 

the above expression of M (which is asymptotically as fast as the best serial 
algorithms). However, this operator expression of M is significantly more 
complex and its associated algorithm is less efficient than other operator 

expressions and their associated algorithms in Eqs. (10) and 117). 

I). Serial Computation of the Constraint Force Algorithm 

An efficient serial implementation of the O(n) CF algorithm is based on 
rewriting Eq. (39) as 

Q = H*P*(U - 4-1Pw(w*P*Y-1Pw)-1w P Y-'PHYT 
* *I (54) 

Here, the key to achieving greater efficiency for both serial and parallel 

computation is to simply perform, as much as possible, the matrix-vector 

multiplication instead of matrix-matrix multiplication. In this regard, the 

matrices 8, 13, and G' do not need to be computed explicitly and only the 

explicit computation of ds is needed. Given YT, the computational steps of the 
algorithm consist of a sequence of matrix-vector multiplications and vector 

* 

additions where the matrices, except for &-I, are either bidiagonal or 

diagonal block matrices. Multiplication of a vector by ~ 4 - l  is equivalent to 

the solution of a symmetric, positive-definite, block tridiagonal system. 

The vector Y can be computed in O(n) steps by using the N-E algorithm 
[31. The matrix-vector multiplications with diagonal or bidiagonal block 

matrices can be performed in O(n) steps. The solution of the block tridiagonal 
system can also be obtained in O(n) steps by using block LDL 
[331 in O(n) steps. Therefore, the computational complexity of the serial CF 
algorithm is of O(n). 

T 

* 
factorization 

Note that, however, Eq. (54) is presented in a coordinate-free form. Hence, 

before its implementation the tensors and vectors involved in its computation 

257 



should be projected onto a suitable frame. The choice of optimal frame for - 
projection of equations and other issues regarding efficient serial 

implementation of the CF algorithm are extensively discussed in [ll, wherein 
the computation cost in terms of number of operations is also evaluated (see 
Table 11). However, as can be seen, even with the most efficient schemes for 

serial implementation, the CF algorithm is significantly less efficient than 

the other algorithms for serial computation (see Table XI). F o r  large n, the 

A-BX algorithm is more efficient than the CF algorithm by a factor of about 

2.5 (in terms of the total number of operations) for serial computation. 

Obviously, for smaller n (say n<12), the CF algorithm is also significantly 

less efficient than the other O(n2) or Oh3) algorithms. 

It should be mentioned that the explicit computation of M-' (though it is 
2 not usually needed) can be performed in O(n 1 steps. To see this, note that in 

Eq. 
block tridiagonal system with n right-hand sides which can be computed in 

O(n 1 steps. M-' can then be explicitly computed by performing a matrix-matrix 

multiplication and a matrix-matrix addition, each in O(n 1 steps. This leads 
to a total computational complexity of o(n  for explicit evaluation of M-'. 

(41)  the computation of the term d18 is equivalent to the solution of a 

2 

2 

2 

IV. New Mass Matrix Factorizations for Computation of Closed-Chain MuPtibody 
Dynamic Systems 

In this section we briefly discuss the application of the new factorization 

of M-' to the computation of dynamics of closed-chain systems. Our discussion 

follows the treatment of the problem as presented in 134-371, wherein it is 
shown that the main computational problems are the evaluation of the 

Operational Space Mass Matrix A 138,391 and its inverse A-'. Note that the 

computation of A is also required for the task space dynamic control of single 

robot arms 138,391. The matrices A-' and A are defined as 

(55) -1 * A = ( $ M  $ )-'cR6x6 and A-' = $ M - ' $ * C R ~ ~ ~  

where $3 is the Jacobian matrix. In [34-371 recursive O(n) algorithms are 

developed for computation of A-', and the matrix A is then computed by 

explicit inversion of A-'. The main computational step in these algorithms is 

the computation of the articulated-body inertia as in Eq. (13) .  Therefore, as 

discussed in Sec. I I . D ,  these O(n) algorithms are also strictly serial. 

6x6n 

Here, we show that the new factorization of M-' directly leads to new 

factorizations of both A-' and A as well as new O(n) algorithms for their 
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computation. These new factorizations are similar to that of M-' since they 
can be described in terms of the Schur Complement and thus provide simple 
physical interpretation and a different and deeper insight into the problem. 
More importantly, however, the resulting algorithms can be parallelized to 

derive both time- and processor-optimal parallel algorithms, i.e., O(log n) 

parallel algorithms with O(n) processors, for computation of A-' and A. 

A. A New Factorization of the Inverse of Operational Space Mass Matrix A-l 

An operator expression of 3 is derived in I34,351. Using the notation of 
this paper, this operator expression is given as 

8 = pw*1-'34 (561 

where p = [k* 0 0 . . . O I C I R ~ ~ ~ ~ .  From Eqs. (40) and (561, an operator 

expression of A-' is then derived as 
n 

A-' = ~(P*)-1~{~*P*Y-1P3t' - R*P * 9 -1 PW(W*P*Y-lPW)-lW*P*Y-lPH}H*(fP)-lp* 

= f3{ (P* P(3434* IF* ( 9  -' - 9 -'PW (W*P*Y -'PW )-'W*P*Y-' ) P (3434.1 ( P )  - ' }p* (57 1 
The above expression can be simplified by noting that from Eq. 

R34* = u - ww* 
By inserting Eq. (58) into Eq. (57) and after some involved algebraic 
manipulations, a simple operator expression of A-' is derived as 

(301, we have 

(58 1 

A-' = @y-'p* - PY-'PW( W*fP*Y-'PW)-'W*P*y-'P* (59) 

This expression can be further simplified since 
* *  -1- 

2, = py-'p* = p I p = 1-1 
n n  n n, n+l 

(60 1 

G* = ~ Y - ' P W  = + * P w  o o . . . o ~ ~ R ~ ~ ~ ~  

This factorization of A-' is then written in the form of the Schur Complement 

(61 1 
n n  n 

A-' = a - 
Note that the matrix B is the same as in Eq. (41). Let us define a matrix 2' 

(62 1 

A-' is then the Schur Complement of dl in 2', i. e. , A-' = (!f'/d). As in the 
previous section, based on the Schur Complement factorization of A-' and the 
structure of matrix I', a set of linear equations can be formed leading to 
both simple physical interpretation and alternative derivation of this 

factorization of A-' (see 1401 for a more detailed discussion). 
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From Eq. (621, A-' can be explicitly computed in O(n) steps as follows. The 
term B-'& can be computed in O(n) steps since it is equivalent to the solution 

of a block tridiagonal system with six right-hand sides. A-1 is then computed 
by performing a matrix-matrix multiplication and a matrix-matrix addition, 

each with a cost of 0(1), leading to a total computation complexity of O(n). 
However, usually the multiplication of A-' by a vector, say F 

the explicit computation of A-' is needed. In this case, it is significantly 

more efficient to directly compute A-lFn+l rather than first explicitly 
compute A-' and then perform the matrix-vector multiplication. Note that the 

computation of A-lF is also done in O(n) steps. 

rather than 
n+l' 

n+ 1 

B. A New Factorization of Operational Space Mass Matrix A 

The operator expression of A is derived by using the matrix identity in 

(52) for inverting the matrix A-1 in Eq. (62) as Eq. 

A = (2, - = 2,-l - I)-'&*(&n-l&* - &)-l&D-' = (pY-'fi*)-' - (64) 
* -1 * -1 (p4-1p*)-1p9-1Pw{w*P*(9-1p* (ps-lp 1 ps-l - 9-l )Pw~-1w*P*9-1p*(p9-1p 1 

The factorization of A can be further simplified by noting that 

Y = W*P*9' -lPW (69 1 

Note that the matrix Y is a rank one modification of matrix B in Eq. (41). The 

factorization of A is then written in terms of the Schur Complement as 

* -1 A = 9 - R Y R  

Let us define a matrix 2 ' '  as 
(70 1 

A is then the Schur Complement of Y in 2" .  i.e., A = (2"/U) .  Again, based on 

the Schur Complement factorization of A-' and the structure of matrix f', a 
set of linear equations can be formed leading to both simple physical 
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interpretation and alternative derivation of this factorization of A-' (see 
1401 for a more detailed discussion). 

As for A-l, from Eq. ( 7 0 )  A can be explicitly computed in O(n) steps since 
the term 9'-% can be computed as the solution of a block tridiagonal system 

with six right-hand sides. A is then computed by performing a matrix-matrix 
multiplication and a matrix-matrix addition, each with a cost of O(1). leading 

to a total computation complexity of O(n). However, usually the multiplication 
of A by a vector, say i 
needed. In this case, it is significantly more effic'ient to directly compute 

A i  n+ 1 
vector multiplication. Again, note that the computation of A+ 

O(n1 steps. 

rather than the explicit computation of A is 
n+l' 

rather than first explicitly compute A-1 and then perform the matrix- 
is done in 

n+ 1 

V. Parallel O(1og n) Algorithms for Computation of Open- and Closed-Chain 

Rigid Multibody Systems 

The parallel implementation of the CF algorithm for a serial open-chain 

system is extensively discussed in 111. Here, we briefly present the results 
of [ll and their extension to the computation of closed-chain systems. 

A. Parallel O(1og n) Algorithms for Open-Chain Rigid Multibody Systems 

The computation of the parallel CF algorithm is performed as follows. 

Step I. Projection and Computation of Matrix S 

The projection of vectors and tensors and the explicit computation of 

matrix SS is performed in O(1) steps with n processors. 

Step 11. Computation of YT 

By using the algorithm in 1201, 3 is computed in O(log n)+0(1) steps 
T 

with n processors. 

Step 111. Computation of iT = 8*3T = W*7'*3-13'3e3T and 6, = ggT = X*F*Y-1P3e3T 

The computation of iT and Qs involves two sequences of matrix-vector 
multiplication wherein the matrices are bidiagonal or diagonal block matrices 

and is performed in O(1) steps with n processors. 

Step IV. Computation of 3 = dmliT 
S 

The SPD block tridiagonal system is solved in O(1og n)+O(l) steps with n 

processors and by using the Odd-Even Elimination (OEE) variant of the cyclic 

reduction algorithm [411. 

_ /  
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s Q, = BZS = H*P*Y-lFJ 12 = Q, + QT 

The computation of 8, is similar to that of QT in Step I11 and is 
performed in O(1) steps with n processors. 

As can be seen, the overall computational complexity of the parallel CF 

algorithm is of Ollog nl+0(1) by using n processors. In [ll it is shown that 
the algorithm can be efficiently implemented on an SIMD parallel architecture 
with n processors and with a Shuffle-Exchange augmented with Nearest-Neighbor 
(SENN) interconnection. The SENN interconnection allows a perfect mapping, 
i.e., with no topological variation, of the parallel algorithm since it 
perfectly matches the inherent communication structure of different steps of 
the algorithm and thus leads to minimum communication cost. In [ll the 
computation and communication cost of the parallel CF are evaluated as 

(732m+653a) r10g2n1 +(542m+439a) and (134rlog2nl +49)c, where m, a ,  and c stand 
for the cost of multiplication, addition, and communicating a single datum 

(r.1 is the smallest integer greater than or equal to XI. 
Note that the parallel algorithm, while achieving the time lower bound in 

the computation, remains highly compute-bound. The ratio of the computation 
cost over communication cost is greater than 10, which indicates that the 
parallel algorithm has a rather large grain size and thus can be efficiently 

implemented on commercially available MIMD parallel architectures. In fact, 

the parallel CF algorithm is currently being implemented on an MIMD Hypercube 
parallel architecture. Furthermore, the parallel CF algorithm allows the 

exploitation of parallelism at several computational levels. In t11 it is 
shown that a greater speedup in the computation can be achieved by exploiting 

a multilevel parallelism and implementing the algorithm on an architecture 
with 3n processors. 

B. Parallel O(1og nl Algorithms for Closed-Chain Rigid Multibody Systems 

1. Computation of A- l  and A-lF 
n+l 

The explicit evaluation of matrix 4, similar to Step I of Sec. V.A,  can be 

performed in O(1) steps with n processors. The term d-'€ in Eq. 

represents the solution of an SPD block tridiagonal system with 6 right-hand 
sides and can be computed in O(1og n)+ O(1) steps with n processors by using 
the OEE variant of the cyclic reduction algorithm. A-' is then computed by 

performing a matrix-matrix multiplication and a matrix-matrix addition wherein 

each operation can be performed in O(1) steps with O(1) processors. This leads 

to a computational complexity of O(log n)+O(ll with n processors, which 

(62) 
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indicates a both time- and processor-optimal parallel algorithm for evaluating 

A-'. Similar results with greater computation efficiency can be obtained when 
evaluating A-'Fn+t since the solution of an SPD block tridiagonal system with 
a single right-hand side is needed. 

2. Computation of I\-* and A-*F 
n+ 1 

The explicit evaluation of matrix Y ,  similar to that of 4 ,  can be performed 
in O(1) steps with n processors. The rest of the computation in Eq. (70) is 

similar to that in Eq. (62). Therefore, both A-' and A-lFn+l can be computed 
in O(1og n)+0(1) steps with n processors, which indicates both time- and 

processor-optimal parallel algorithms for the computations. Note, however, 
that, unlike the matrix A, which is always SPD, for some configurations, the 
matrix Y can become singular [34-371, and thus special care should be taken in 

,computation of Eq. (70). However, it should be mentioned that the new and 
simple factorization of both A-' and A provides much better insight for the 

analysis of the singularity in the computation of A 1401. 

VI. Discussion and Conclusion 
In this paper, we presented parallel O(log n) algorithms for computation of 

open- and closed-chain rigid multibody dynamics. These parallel algorithms 
were derived from new O(n) algorithms for the problem. These O(n) algorithms 
are based on a new force-decomposition strategy which results in new 

factorizations of M-', A-', and A,  presented in Eqs. (401, (621, and ( 7 0 ) .  

Some important conceptual features of these new algorithms and their 

underlying factorizations can be summarized as follows. 

1. The factorizations of M-', A-', and A are very similar and can be described 
in terms of the Schur Complement. Due to this similarity, both serial and 
parallel algorithms involve similar computational steps. 

2. Compared to the previous factorization of mass matrix, which is based on a 

multiplicative decomposition of M-' (see Eq. (23) 1 ,  the new factorization 
leads to an additive decomposition of M-' which involves simpler matrices, 

i. e. , block tridiagonal matrices. 

3. Unlike the previous approaches, wherein A-' is first recursively computed 
and then A is obtained by explicit inversion of A-', independent 
factorizations for both A-' and A are derived, which allows direct computation 

of either of them. 

From a computational point of view, the main feature of the new algorithms 
is that they are strictly parallel algorithms. That is, as was shown through 
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Algorithm Computation Cost Number of Processors 

A-B I 586x1 - 371 - 
CF 1500n - 755 - 

SL CF i385ri0g~nl + 981 n 

Serial 

Parallel ML CF 780rlog2n1 + 595 3n 

o ( ~ ~ )  6n+69[log7nl + 340 n(n+l)/2 

A-BI: Articulated-Body Inertia Algorithm. CF: Constraint Force Algorithm 

SL CF: Single Level Parallel CF. ML CF: Multilevel Parallel CF 

Oh3): Parallel O h 3 )  algorithm in [21. 

Table 11. Computation Costs of Serial and Parallel Algorithms 

an extensive analysis in 111 for a single serial chain, the algorithm is less 

efficient than other O(n) algorithms for serial computation (see Table 11). 

However, based on the analysis in Sec. II.D, they are the only known 

algorithms that can be parallelized and lead to both time- and processor- 

optimal parallel algorithms for the problem. 

The computation costs of different serial and parallel algorithms for the 

problem are presented in Table 11, wherein it is assumed that m = a. As can be 

seen, for small n, the parallel algorithm resulting from parallelization of 

the O(n ) algorithm with O(n 1 processors is the most efficient. However, as n 
increases, so does the efficiency of the parallel O(1og n) algorithms. 

3 2 

As the last point, it should be emphasized that the parallel algorithms 

developed in this paper--in addition to being theoretically significant by 

proving, for the first time, the existence of both time- and processor-optimal 

parallel algorithms for the problem--are also highly practical from an 

implementation point of view. This is due to their large grain size and 

simple communication and processor interconnection requirements. In fact, 

these algorithms are currently being implemented on a Hypercube parallel 

architecture. 

Acknowledgments 
The research described in this paper was performed at the Jet Propulsion 
Laboratory, California Institute of Technology, under contract with the 
National Aeronautics and Space Administration (NASA). The__author gratefully 
acknowledges many insightful discussions with Dr. G. Rodriguez of JPL 
regarding different aspects of this research work. 

264 



s 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

A. Fijany,"Parallel O(Cog N) Algorithms for Rigid Multibody Dynamics," 
JPL Eng. Memorandum (Internal Document) EN 343-92-1258, August 1992. 
A. Fijany and A.K. Bejczy,"Techniques for Parallel Computation of Mechani- 
cal Manipulator Dynamics. Part 11: Forward Dynamics," in Advances in 
Control and Dynamic Systems, Vol. 40: Advances in Robotic Systems Dynamics 
and Control, C.T. Leondes (Ed. 1, pp. 357-410, Academic Press, March 1991. 
J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, "On-Line Computational Scheme for 
Mechanical Manipulator, 'I ASME J. Dynamic Syst. , Meas. , Control, Vol. 102, 
pp. 69-76, June 1980. 
M.W. Walker and D.E. Orin,"Efficient Dynamic Computer Simulation of 
Robotic Mechanism," ASME J. Dynamic Systems, Measurement, 

D.E. Rosenta1,"Triangularization of Equations of Motion for Robotic 
Systems," J. Guidance, Control, and Dynamics, Vol. 11, pp. 278-281, 1988. 
A.F. Vereshchagin,"Computer Simulation of the Dynamics of Complicated 
Mechanism of Robot Manipulators," Engineering Cybernetics, Vol. 6, 
pp. 65-70, 1974. 
W.W. Armstrong,"Recursive Solution to the Equation of Motion of an N-Link 
Manipulator," Proc. 5th World Congress on Theory of Machines and 
Mechanisms, pp. 1343-1346, 1979. 
R. Featherstone,"The Calculation of Robot Dynamics Using Articulated-Body 
Inertia," Int. J. Robotics Research, Vol. 2(1), pp. 13-30, 1983. 
G. Rodriguez,"Kalman Filtering, Smoothing and Recursive Robot Arm Forward 
and Inverse Dynamics, I'  IEEE J. Robotics and Automation, Vol. RA-3(6), 
pp. 624-639, Dec. 1987. 
G. Rodriguez and K. Kreutz-Delgado,"Spatial Operator Factorization and 
Inversion of the Manipulator Mass Matrix," IEEE Trans. Robotics and 
Automation, Vol. RA-8(1), pp. 65-76, Feb. 1992. 
G. Rodriguez, K. Kreutz, and A. Jain,"A Spatial Operator Algebra for 
Manipulator Modeling and Control, 'I Int. J. Robotics Research, vol. 10(4), 
pp. 371-381, Aug. 1991. 
D. Rosenta1,"Order N Formulation for Equations of Motion of Multibody 
Systems," Proc. SDIOINASA Workshop on Multibody Simulation, pp. 1122-1150, 
Sept. 1987. 
D.S. Bae and E.J. Haug,"A Recursive Formulation for Constraint Mechanical 
System Dynamics: Part I. Open Loop Systems," Mech. Struct. & Mach., 
Vol. 15(3), pp. 359-382, 1987. 
A. Jain,"Unified Formulation of Dynamics for Serial Rigid Multibody 
Systems," J. Guidance, Control, and Dynamics, Vol. 14(3), pp. 531-542, 
May/June 1991. 
A. Fi jany and R. E. Scheid, "Efficient Conjugate Gradient Algorithms for 
Computation of the Manipulator Forward Dynamics," Proc. NASA Conf. Space 
Telerobotics, Vol. IV, pp. 329-340, Jan. 1989. 
A. Fijany and R.E. Scheid,"Fast Parallel Preconditioned Conjugate Gradient 
Algorithms for Robot Manipulator Dynamics Simulation," To appear in J. of 
Intelligent & Robotic Systems: Theory & Applications, 1992. Also, in JPL 
Eng. Memorandum (Internal Document) EM 343-1196, Aug. 1991. 
A. Fijany and A.K. Bejczy,"Parallel Algorithms and Architecture for 
Computation of Robot Manipulator Forward Dynamics," Proc. IEEE Int. Conf. 
Robotics and Automation, pp. 1156-1162, April 1991, Sacramento, CA. 
H. Kasahara, H. Fujii, and M. Iwata,"Parallel Processing of Robot Motion 
Simulation," Proc. 10th IFAC World Congress, July 1987. 
C. S. G. Lee and P. R. Chang, "Efficient Parallel Algorithms for Robot Forward 
Dynamics Computation," IEEE Trans. Syst., Man, and Cybern., Vol. 18(2), 
pp. 238-251, March/April 1988. 

Vol. 104, pp. 205-211, 1982. 

265 



20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29 * 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

C.S.G. Lee and P.R. Chang, "Efficient Parallel Algorithms for Robot Inveise 
Dynamics Computation, 'I IEEE Trans. Syst. , an, and Cybern., Vol. 16(4), 
pp. 532-542, July/August 1986. 
I. Sharf, Parallel Simulation Dynamics for Open Multibody Chains, Ph.D. 
Diss., Univ. of Toronto, Canada, Nov. 1990. 
I. Sharf and G.M. T. D'Eleuterio,"Parallel Simulation Dynamics for Rigid 
Multibody Chains," Proc. 12th Biennial ASME Conf. on Mechanical Vibration 
and Noise, Montreal, Canada, Sept. 1989. 
I. Sharf and G. M. T. D' Eleuterio, "Computer Simulation of Elastic Chains 
Using a Recursive Formulation," Proc. IEEE Int. Conf. Robotics and 
Automation, pp. 1539-1545, Philadelphia, PA, 1988. 
I. Sharf and G.M. T. D'Eleuterio,"Parallel Simulation Dynamics for Elastic 
Multibody Chains," Proc. IEEE Int. Conf. Robotics and Automation, pp. 740- 
747, Cincinnati, OH, 1990. 
J. Miklosko and V. E. Kotov (Eds. 1, Algorithms, Software, and Hardware of 
Paral le1 Computers. Springer-Verlag, 1984. 
L. Hyafil and H.T. Kung,"The Complexity of Parallel Evaluation of Linear 
Recurrences, 'I J. ACM, Vol. 24(3), pp. 513-521, July 1977. 
P. C. Hughes and G. B. Sincarsin, "Dynamics of an Elastic Multibody Chain: 
Part B - Global Dynamics," Dynamics and Stability of Systems, Vol. 4(3&4), 
pp. 227-244, 1989. 
C. J. Damaren and G. M. T. D' Eleuterio, "On the Relationship between Discrete- 
Time Optimal Control and Recursive Dynamics for Elastic Multibody Chains," 
Contemporary Mathematics, Vol. 97, pp. 61-77, 1989. 
J. Baumgarte,"Stabilization of Constraints and Integrals of Motion in 
Dynamical Systems," Computer Methods in Applied Mechanics and Engineering, 
Vol. (11, pp. 1-16, 1972. 
R.E. Roberson,"Constraint Stabilization for Rigid Bodies: An Extension of 
Baumgarte's Method," Proc. IUTAM Symp. Dynamics of Multibody Systems, 
pp. 274-289, Munich, 1978. 
R.W. Cottle,"Manifestation of Schur Complement," Linear Algebra and its 
Application, Vol. 8, pp. 189-211, 1974. 
A. Fijany, I. Sharf, and G.M. T. D'Eleuterio, "Parallel O(Log N) Algorithms 
for Computation of Manipulator Forward Dynamics," Submitted to IEEE Trans, 
Robot. Automat. 
G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd Edition, The Johns 
Hopkins Univ. Press, 1989. 
G.Rodriguez,"Recursive Forward Dynamics for Multiple Robot Arms Moving a 
Common Task Object," IEEE Trans. Robot. Automat., Vol. 5(4), Aug. 1989. 
G.Rodriguez and K. Kreutz,"Recursive Mass Matrix Factorization and 
Inversion: An Operator Approach to Open- and Closed-Chain Multibody 
Dynamics," Jet Propulsion Lab. Publication 88-11, March 1988. 
K. W. Lilly and D. E. Orin, "Efficient O(n) Computation of the Operational 
Space Inertia Matrix," Proc. IEEE Int. Conf. Robotics & Automation, 
pp. 1014-1019, Cincinnati, OH, May 1990. 
S .  McMillan, P. Sadayappan, D. E. Orin, "Efficient Dynamic Simulation of 
Multiple-Manipulator Systems with Singular Configurations," Proc. IEEE 
Int. Conf. Robotics & Automation, May 1992. 
0. Khatib,"The Operational Space Formulation in the Analysis, Design, and 
Control of Manipulators, 3rd Int. Symp. Robotics Research, 1985. 
0. Khatib,"A Unified Approach for Motion and Force Control of Robot 
Manipulators: The Operational Space Formulation," IEEE J. Robot. 
Automat., Vol. RA-3, pp. 43-53, Feb. 1987. 
A. Fijany,"New Factorization Techniques and O(n) Algorithms for 
Computation of Operational Space Mass Matrix and its Inverse," In 
preparation. 
R. W. Hockney and C. R. Jesshope, Paral lel Computers, Adam Hilger Ltd. , 1981. 

266 



aral ic Ul 

Scott McMillan P. Sadayappant David E. Orin 

Department of Electrical Engineering 
+Department of Computer and Information Science 

The Ohio State University 
Columbus, OH 43210 

Abstract 

In  this paper, efficient dynamic simulation algorithms for a system of m manipulators, 
cooperating to manipulate a large load, are developed; and their performance, using two 
possible forms of parallelism on a general-purpose parallel computer, is investigated. One 
form, temporal parallelism, is obtained with the use of parallel numerical integration methods 
[ l ] .  A speedup of 3.78 on four processors of a CRAY Y-MP8 was achieved with a parallcl 
four-point block predictor-corrector method for the simulation of a four manipulator system. 
These multi-point methods sufler from reduced accuracy, and when comparing these w m  
with a serial integration method, the speedup can be as low as 1.83 for simulations with thc 
same accuracy. To regain the performance lost due to accumcy problems, a second form of 
parallelism is employed. Spatial parallelism allows most of the dynamics of each manipulator 
chain to be computed simultaneously. Used exclusively in the four processor case, this form 
of parallelism in conjunction with a serial integration method results in a speedup of 3.1 on 
four processors over the best serial method. In cases where there are either more processors 
mailable or fewer chains in  the system, the multi-point parallel integration methods me 
still advantageous despite the reduced accuracy because both forms of parallelism can then 
combine to generate more pamllel tasks and achieve greater eflective speedups. This p a p w  
also includes results for these cases. 

1. Introduction 

With increases in the structural complexities of today's systems, such as multiple manip- 
ulators, multilegged vehicles, and flexible robots, parallelization of the dynamic algorithins 
for these systems must be considered in an effort to improve computational rates. With 
significant speedups over previous implementations, real-time performance of graphic ani- 
mation would make man-in-the-loop remote control of these systems feasible 121. And witli 
super-real-time simulation (computing seconds of motion in milliseconds), an entirely new 
approach to on-line robotic control using predictive simulation for planning is within range 
[3]. One promising area of research which is striving t o  achieve these computational rates 
focuses on the use of parallel algorithms. 

In previous work, fine-grain parallel algorithms have been developed for robot dynarnics 
computations. Some require the use of special-purpose architectures t o  implement the fine- 
grain parallelisiii of the computations required for a single-chain system [4, 5 ,  6, 71. Othcrs 
tleconipose the algorithm into groups of concurrent tasks that are scheduled oil a iiurnher of 
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tightly coupled parallel processors to produce sp dup [8, 91. All of these algorithms, while 
designed to perform well on specific parallel ar tectures, are usually much less efficient 
when implemented on available general-purpose parallel machines with a limited number of 
processors. These systems were not designed to handle the large amount of interprocessor 
communication and synchronization that is required by the fine-grain tasks. 

In our work, parallel algorithms which run efficiently on existing ge -purpose parallel 
computers are investigated. In the initial stage of this research, the dynamic algorithms 
required to  simulate a single, open-chain robotic manipulator were effectively parallelized 
[ 11. The approach used a parallel block predictor-corrector integration method to achieve 
a temporal parallelism which enabled the forward dynamics problem to be computed for 
multiple points in time simultaneously. In this paper, the work is extended to simulate 
systems of multiple manipulators that are cooperating to manipulate a large load. In this 
case, a second form of parallelism which corresponds to the system’s structural parallelisin 
is explored. Called spatial parallelism, it allows most of the dynamics of the individual 
chains to be computed in parallel as well. 

This work shows that there are various costs associated with the two forms of paral- 
lelism which affect their efficiency. With temporal parallelism, the accuracy of the parallel 
integration methods is lower than the corresponding serial methods. As a result, smaller 
stepsizes must be used, and hence, more computation must be performed with the tempo- 
ral parallel methods to achieve the same accuracy. With spatial parallelism, most of the 
dynamics may be computed in parallel; however, a serial portion of the algorithm which 
computes the dynamics of the common load reduces the overall efficiency of this parallelism 
as well. The advantage of these methods is that they may be combined by implementing the 
spatial parallelism within each parallel integration task to gain even greater speedups. Our 
results show the effects of reduced efficiency of both methods and how they are combined 
to gain the greatest speedups on varying numbers of processors. 

In the following section, the algorithm to simulate the multiple manipulator system 
is developed. In this development, the dynamics used in the previous work for a single 
manipulator are extended and the spatial parallelism in this algorithm is presented. In 
Section 3, the block predictor-corrector integration methods are presented which provide 
various amounts of temporal parallelism in the simulation problem. Section 4 discusses 
how both forms of parallelism are combined and implemented on a general-purpose parallel 
computer. This algorithm is then implemented on the CRAY Y-MP8/864, and the speedup 
results are given in Section 5 for various configurations of the simulation system including 
spatial parallelism only, temporal parallelism only, and a combination on various numbers 
of the CRAY’s processors. Finally, a summary and conclusions are presented in Section 6. 

2. Parallel Algori thm for Multiple Manipulator  Dynamic Equat ions 

In this section, an efficient dynamic simulation algorithm for a multiple, closetl-chain 
manipulator system is developed, and the spatial parallelism in the algorithm is invcsti- 
gated. The system contains m manipulators, each with N degrees of freedom, that arc 
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rigidly grasping a common load, called the reference member. Each simple, closed chain 
(manipulator) is governed by the dynamic equations of motion for a single chain. Numbering 
the chains in the system 1 through m, the equation for each chain is given as follows: 

T k  = H k ( q k ) q k + c k ( q k , q k ) + G k ( q k ) + J ~ ( q k ) f k  for all k =  1 , . . . , m ,  (1) 

where 

T k  
q k ,  q k ,  q k  
H k  
c k  
G k  
Jk 
fk 

N x 1 vector of torques/forces of the joint actuators, 
N x 1 vectors of joint positions, rates, and accelerations, 
N x N symmetric, positive definite inertia matrix, 
N x 1 vector specifying centrifugal and Coriolis effects, 
N x 1 vector specifying the effects due to gravity, 
6 x N Jacobian matrix, and 
6 x 1 force exerted by the tip of chain k on the reference member. 

The “for all” in Eq. (1 )  indicates that  the equation may be computed for all chains in parallel 
provided the required quantities are known. Since we are interested in the solution to  the 
Forward Dynamics (or simulation) problem, the state of the system, consisting of joint 
positions and rates, and the input joint torques/forces are given. The joint accelerations for 
each chain must then be computed. Lilly and Orin [lo] present an efficient serial algorithm 
for Forward Dynamics which is the basis for the parallel implementation used in this paper. 

By grouping some terms from Eq. ( 1 )  and solving for the joint accelerations, we obtain 
the following equation: 

q k  = qkopon ‘- - H k ’ J F f k  for all k = 1,. . . , m, (2 1 
where qkopen is the vector of joint accelerations for chain k if it were not contacting the 
reference member causing the tip force to be zero. This is called its open-chain sohition 
which was implemented in 111. Note that this quantity, as well as Hi’JT,depends only on the 
system state and input joint torques/forces and may be computed from known quantities. 

An equivalent operational-space formulation for the dynamics of a closed-chain manip- 
ulator can be found by using the following relationship: 

x k  = J k q k ,  (3) 

where x k  is the Cartesian velocity of the tip of the manipulator. Taking the time derivative 
of both sides yields the equation for the closed-chain acceIeration of the tip: 

X k  = J k q k + J k q k ,  ( 4 )  

and substituting from Eq. (2) yields the following: 

x k  = Xkopen - &‘fk, for all k = 1 , .  . .,m, ( 5 )  

Xkopen = J k q k  -k Jkqkopen,  and (6) 

where 
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k (7) 

The quantity, x k w e n ,  is the acceleration of the tip of chain k if it were open, and A k  is the 
operational space inertia matrix 1111. Both quantities may be computed given the current 
state of the system and the input. The physical interpretation of Ak is an inertial quantity 
which combines the dynamic properties of the chain and projects them to its tip. It is 
the physical resistance that is "felt" when a force is exerted on the tip, and it defines the 
relationship between the force that is applied to the tip, and the resulting acceleration of 
the tip of the chain, x k ,  The advantage to using these operational space quantities is that 
the matrix sizes are constant regardless of the number of degrees of freedom in the chain. 

With the chains attached with a fixed grip to the reference member, the accelerations 
of the tips of each chain, at an appropriate point attached to the end-effector, are the same 
and are equal to the reference member acceleration, a,. As a result, Eq. ( 5 )  can be rewritten 
as follows: 

a, = xkopen - Ah,'fi, for all k = 1 , .  . .,m. (8) 

Now the dynamic behavior of the reference member can be determined using a spatia.1 
force balance equation. This states that the sum of the spatial forces exerted by the tips of 
the chains and any other external forces (including gravity) is related to the acceleration of 
the reference member through its inertia. This may be written as follows: 

m 

fk + gT I ra ,  + br 
k=l  

where 

g, 
aT 
I, 

6 x 1 vector specifying the force of gravity exerted on the reference member, 
6 x 1 acceleration vector of the reference member, 
6 x 6 spatial inertia of the reference member [lo], 

and the last term, b,, is a spatial vector specifying the bias force due to the spatial velocity 
of the reference member. 

In this work, we also assume that the chains are not in singular configurations, and 
consequently, all of the A,' matrices are non-singular. Therefore, the unknown force ternis, 
f k ,  may be isolated in Eq. (8) and substituted into Eq. (9). After collecting terms, the 
following equation results: 

This equation states that the sum of all the inertias of the system niultiplied by the referenre 
rnernber acceleration is equal to the sum of all the forces that are exerted on the refwence 
member. The acceleration term, a,, may now be determined from this linear system of 
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Figure 1: Closed-Chain Dynamics Algorithm. 

equations using any linear system solver (in this case Cholesky decomposition can be used). 
Finally a, is substituted back into Eq. (8) to  determine the tip forces, fie, on each chain and 
this can then be used to determine the joint accelerations from Eq. (2). 

The flowchart in Figure 1, outlines the steps in the algorithm to compute the desired ac- 
celerations. This constitutes the “derivative computation” which uses the state information 
that is provided by a numerical integration routine. The  additional computation required 
for the closed chain dynamics that were not present in the open-chain algorithm used in 
[l] is indicated with the appropriate equation numbers except for the computation of the 
manipulator Jacobian. With slight modification t o  the inertia matrix routine that was used 
in [l], this matrix may be computed as well. The algorithm for this computation can also 
be found in [12]. Note that the Open-Chain Dynamics (OCD) and Closed-Chain Dynarn- 
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Processor Number (Chain): 

(1) (2) 

. . .  

+ t + 
synchronization barrier 

I I I I 

wait for event ----&&&, 
Figure 2: Spatial Parallelism in Multiple-Chain Dynamic Equations (Serial RMA Compu- 
tation). 

ics (CCD) blocks are repeated for each chain in the system, while the Reference Member 
Acceleration (RMA) is performed once for a given derivative evaluation. This implies that 
the OCD and CCD computations for each chain may be executed in parallel. 

Figure 2 shows how this algorithm, along with a numerical integration method, would 
be implemented on a general-purpose parallel computer. The CS (Compute State) block 
consists of the integration method that is used to  compute the s ta te  of the required chain, 
and will be discussed in the next section. A processor synchronization is required after the 
parallel OCD computation in order to collect the chains’ operational space inertia matrices 
and open-chain accelerations before the serial RMA computation is performed. In Figure 2 
this is shown as a barrier which holds the parallel tasks which have completed the OCD 
section until all m of them have finished. After the serial computation is completed by one 
processor, it signals the other processors to continue with the parallel CCD computations. 
This is accomplished by posting an event signal for which the other processors are waiting. 

This computation can be modified to remove the event synchronization as shown 
in Figure 3. This is accomplished by allowing each task to maintain its own “copy” of the 
reference member information and perform the same computation on all of them. While 
this introduces redundant computation, it can actually reduce the wallclock time because a 
costly synchronization has been removed and the same time that was spent waiting for one 
processor to perform the RMA calculation is now used to  perform it on all of the processors. 
This algorithm is then used within the framework of various parallel integration nirthods 
that are described in the next section. 
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Processor Number (Chain): 
(1) (2)  

Figure 3: Spatial Parallelism in Multiple-Chain Dynamic Equations (Redundant Parallel 
R MA Computation). 

3. Parallel Integration Methods 

Many different algorithms exist to  perform numerical integration. One set of algorithms 
which has shown in the past to be readily parallelizable are predictor-corrector methods. 
The standard serial algorithm, commonly abbreviated PECE, consists of two pairs of steps 
which correspond t o  the letters of the abbreviation. The  steps consist of Predicting the next 
state and Evaluating the derivative based on this prediction, and then Correcting the state 
with a corresponding derivative Evaluation. The derivative evaluations required in both 
steps to  determine the accelerations were presented in the last section, and the methods for 
predicting and correcting the states are described here. 

In this paper, fifth-order methods are used because they provide an adequate tradeoff 
between accuracy, which tends to  increase with order, and stability, which tends to  decrease 
with order. Figure 4 shows the quantities needed and computed in both steps of the serial 
method. This method, usually called PECE5, will be referred to  as BlPC5 in the rest of 
this paper to  indicate a one-point block method which utilizes fifth-order predictor-corrector 
formulas. The predictor step, shown in Figure 4(a), uses a linear combination of five past 
derivative values, f - 4 , .  . .,fo (hence it is fifth-order) and the state a t  the most recent point 
in time, yo to predict the state of the system (joint and reference member positions and 
rates) at the next point in time, y;. With this, the algorithm in the previous section can 
be used to  compute the derivative (joint and reference member accelerations) at this point, 
ff, which is based on the predicted state. To correct the state in the second step of the 
method, the quantities shown in Figure 4(b) are used. In this step, the “oldest” derivative 
value is dropped and the linear combination used t o  compute the corrected state, y:, now 
includes the new predicted derivative value. The same state quantity, yo, is used rather 
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Computed: i, 

Figure 4: Serial BlPC5 Integration: (a) predictor step, (b) corrector step. 

Given: f, f-, f-2 

- - " " " * 
t 

(a) 

Computed Y:,f;: YZ"$ Yl'f3" Y,".f4" 

Figure 5: Four-Point Parallel B4PC5 Integration: (a)  predictor step, (b) corrector step. 

than the predicted one for reasons of stability and accuracy of the method. Finally, the 
corrected derivative value is computed using yy. Then in the next iteration of the method, 
the values are shifted and four old derivative values and the new corrected derivative and 
state values are used. 

A parallel version of this method called the block predictor-corrector method was first 
formulated by Birta and Abou-Rabia [13] and used in our previous work [I]. The fifth- 
order version of this method, B4PC5, is shown in Figure 5. In this method, a block of 
four points are computed in parallel during a single iteration. Each processor is responsible 
for computing the required quantities at a single point in the block. In the predictor step 
shown in Figure 5(a), each processor computes the predicted value for its point using the 
same information (but with a different linear combination) in parallel. Then each iises 
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Figure 6: Two-Point Parallel B2PC5 Integration: (a) predictor step, (b)  corrector step. 

the dynamics algorithm t o  compute the derivative at its point in parallel as well. In the 
corrector step, an entire block of old derivative values are discarded in favor of the predicted 
ones as shown in Figure 5(b). Once the processors have swapped the derivative information 
from the predictor step, correction and subsequent derivative evaluation can again be done 
in parallel. 

The B4PC5 method offers a way to  simulate the system using four processors in parallel. 
Because the method extrapolates farther from the known values in the predictor step, it 
is subject to larger errors for a given stepsize. Also, when both forms of parallelism are 
combined in the next section, the number of parallel tasks niay exceed the number of 
processors available. For these reasons, we developed a two-point parallel method called 
B2PC5 which lies between the two methods described thus far in terms of parallelism and 
accuracy. This method is shown in Figure 6. Instead of predicting four points as in the 
B4PC5, it only predicts two new points and thus can be implemented in parallel on two 
processors. The coefficients for both steps of this method were computed using the method 
of undetermined coefficients so that the resulting method is fifth-order as well. 

The structure of the temporal parallelism for a single block of the parallel integration 
methods presented in this section is shown in Figure 7. The PE (coxnpute Predicted state 
and Evaluate the derivative) and CE (compute Corrected state and Evaluate the derivative) 
blocks in this figure make up the predictor and corrector steps in these methods along with 
the derivative evaluations described in the previous section. There are p parallel tasks which 
correspond to the number of block points computed by the method during a single iteration. 
A single column of blocks represents the computation of the solution of the entire 712-chain 
system for a specific point in time on one of p processors. Barriers are used to  synclironize 
these parallel tasks after each derivative evaluation so that state and derivative information 
may be exchanged. An event is also used so that a small amount of serial processing may 
be performed by a single processor before starting the next integration iteration. 
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Figure 7: Temporal Parallelism in Dynamic Simulation. 

4. Implementation of Combined Parallelism 

Both forms of parallelism, spatial and temporal, can be combined by introducing the 
spatial parallelization of the derivative evaluations in Figure 3 into the individual PE/CE 
computational blocks of Figure 7. In this case, the CS (Compute State) blocks of Figure 3 
become the predictor or corrector equations of the desired integration method. A modi- 
fication is then made to decrease the required synchronization between all of the tasks to 
improve the performance. This modification is made to the barriers and events associated 
with the temporal parallelism. Because the integration of the state of each chain depends 
only on its own values at  all of the block points, the temporal barriers are broken apart 
so that each one only synchronizes with the processors associated with the same chain. 
In some sense, these temporal synchronization points have been spatially parallelized. In 
addition, the serial Shift Blocks task can also be spatially parallelized. 

Figure 8 shows the resulting implementation which consists of as many as m p  paral- 
lel tasks. Also included in this figure are the synchronization commands that are used in 
the implementation on the CRAY Y-MP8/864. The simulation code was written in FOR- 
T R A N  (Version 5.0 running under UNICOS Release 6.0) using macrotasking commands to 
implement the parallelism. The BARSYNC commands correspond to the synchronization 
barriers and the argument supplied to this command corresponds to the number of parallel 
tasks that must be synchronized by it. Finally, the EVPOST-EVWAIT commands pro- 
vide the mechanism by which certain processors are suspended while others perform serial 
operations. 

In order to examine the effects of various configurations on the parallelism (taking tlie 
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Figure 8: Structure of Combined Spatial and Temporal Parallelism. 

number of integration block points, number of chains, and number of physical processors 
into account), a mechanism was included in the implementation which allows the user to 
specify the number of desired parallel tasks along both the temporal and spatial dimensions 
of the simulation regardless of the number of chains and block points. These numbers are 
denoted by m and @, respectively, and are used in place of m and p in Figure 8 when 
referring to the number of actual parallel computational blocks. With this mechanism, 
for example, t h e  required computation could be paired off and a single processor could be 
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Table 1: Speedup Results for B4PC5. 

Integration 
Tasks, fi 

1 
4 
2 
1 
4 
2 

2 

T 
(sec.) S,  
0.241 1.00 
0.0637 3.78 
0.0668 3.61 
0.0731 3.30 
0.0390 6.18 
0.0417 5.78 

8 
4 
2 
4 

responsible for the computations of two chains (or two block points, or both) instead of 
just one. This would allow the computation of a larger system, in which mp exceeded the 
number of processors, to be efficiently mapped to smaller parallel machines. In order to 
maintain the load balance, however, the specified partitions in both dimensions should be 
integer divisors of the total number of block points and chains, respectively. R.esults for 
various partitions of the computation using this method are given in the next section. 

5. Results 

With the parallel algorithm described in the last section, a system consisting of four 
PUMA 560 manipulators was simulated. A test trajectory with a duration of one second 
was generated which consisted of lifting a 4kg object 0.8 meters straight up. Then an 
appropriate joint torque profile was computed which, when applied to the joints of the 
manipulators, would produce the desired motion. These torques were used as input into 
the simulator, and the error in the final position of the reference member was used as a 
measure of accuracy for the various integration methods. Only this value was reported for 
brevity and also its accuracy was representative of the accuracy of the rest of the states in 
the system. 

The simulation was then executed using the B4PC5 integration method on 1, 4, and 
8 of the Y-MP’s eight processors. Using the mechanism for partitioning the computation 
among existing processors, the block point and chain computations were partitioned singly 
(one chain and one block point per processor), in pairs (two chains and two blocks points), 
all together, or any useful combination thereof. A fixed integration stepsize was used and 
varied over a number of runs so that a profile of execution time versus error was produced. 
To get a fair comparison of relative performance between the different integration methods 
in later experiments, an estimate of the execution time, T ,  required to achieve an error of 

meters was reported in Table 1 .  

Examining these execution times for a given number of processors, it can be seen that 
they increased as the number of temporal parallel tasks, 13, decreased. When f i  is less 
than four, the full amount of temporal parallelism provided by this integration method 
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# Processors Chain 
Requested Tasks, iiz 

1 1 

4 1 
2 

4 

8 2 
4 

is not being fully utilized. As a result, increased numbers of redundant reference member 
acceleration (RMA) calculations are being performed by each processor in an effort to avoid 
the extra synchronization point that was discussed at  the end of Section 2. Consequently, 
the best speedups due to parallelization, S,, were achieved by using the greatest amount of 
temporal parallelism which was as high as 3.78 on four processors. Runs were also made 
while requesting all eight of the Y-MP’s processors and a speedup of 6.18 was still achieved 
despite a n  inability to  gain dedicated use of these processors in our multi-user environment. 

Integration Block T 
Tasks, 13 Size (sec.) S, s a  ST 

1 4 0.241 1.00 0.485 0.485 
2 0.152 1.00 0.770 0.770 
1 0.117 1.00 1.00 1.00 

4 4 0.0637 3.78 0.485 1.83 
2 4 0.0668 3.61 0.485 1.75 

2 0.0444 3.42 0.770 2.63 
1 4 0.0731 3.30 0.485 1.60 

2 0.0463 3.28 0.770 2.53 
1 0.0377 3.10 1.00 3.10 

4 4 0.0390 6.18 0.485 3.00 
2 4 0.0417 5.78 0.485 2.80 

2 0.0295 5.15 0.770 3.97 

When f j  was less than four, simulations using an integration method with a smaller block 
size, such as B2PC5 or serial BlPC5, were also tried. Because these methods compute 
fewer points per iteration, the cost that is incurred is an increased number of iterations 
(and hence, parallel task synchronizations) than the B4PC5 method for a given integration 
stepsize. However, the overall efficiency of these methods increased because they were more 
accurate. This resulted in fewer iterations and less execution time for a given amount of 
error. The complete set of results using the various integration block sizes as well as parallel 
configurations is shown in Table 2. 

In this table, S, is the speedup for a given method over the serial runtime using the 
same integration method. Since there is an accuracy loss associated with the larger block 
methods a speedup due to algorithmic changes, Sa, is also reported. This corresponds to the 
amount of time relative to the BlPC5 method that is required by the methods to compute 
the trajectory with a given error. Based on the serial results for the three integration 
methods, the traditional serial method, BlPC5, took less than half the time to simulate 
the trajectory to the desired accuracy as the B4PC.5, and the performance of B2PC5 fell in 
between. The last column shows the total effective speedup of the various configurations. 
This is based on the time required for the method to simulate the trajectory to the desired 
accuracy as compared to the best serial time which was exhibited by the BlPC5 method, 
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and it is equal to the product of S, and Sa. When compared with the best integration 
methods the S, speedups obtained with the B4PC5 method must therefore be cut in about 
one-half, and the B2PC5 speedups are reduced by approximately 23%. 

Therefore, the best effective speedups were obtained using the integration method with 
the smallest block size while partitioning the computation so that the number of parallel 
tasks was equal to the number of processors. Since the system had four chains, the serial 
BlPC5 method was the best on four processors and the resulting speedup was 3.1. On 
eight processors, where the serial method could not be used and still have eight parallel 
tasks, the B2PC5 method showed the greatest speedup at 3.97. From these results it would 
appear that the B4PC5 has no advantage. However, if a system with a smaller number of 
chains is to  be simulated, this method would allow a greater number of parallel tasks to be 
generated than the other methods and would most likely exhibit the greatest speedup. 

6. Summary and Conclusions 

In this paper, two approaches for achieving effective parallelization for dynamic sim- 
ulation on a general-purpose parallel computer were presented. One approach that was 
discussed in [l] for parallel simulation of a single chain system was based on temporal par- 
allelism achieved with the use of a parallel numerical integration method. In this paper, the 
work has been extended to include multiple chain systems which introduce a second foriii 
of parallelism. Called spatial parallelism, the form comes from the ability to compute the 
dynamics of individual chains in the system simultaneously. 

Various ways to use both forms of parallelism to the greatest advantage were investi- 
gated. The greatest effective speedup from these methods was gained by partitioning the 
computation into as many load balanced parallel tasks as possible while using the integra- 
tion method with the smallest block size. This implies that the greatest amount of spatial 
paraIIelism, and the most accurate integration methods should be employed. 

With the general rule in mind, our results for the simulation of a four chain systeiii 
showed that the greatest speedup on four processors of the CRAY Y-MP8 was 3.1. This 
was achieved with spatial parallelism only, and the use of the serial predictor-corrector 
integration method. Even greater speedup was achieved on eight processors when full 
spatial parallelism was used. In this case, a two-point parallel integration method was 
used to achieve the desired amount of parallel tasks. And it appears that the four-point 
integration method would be beneficial if sixteen processors are available. 

An additional benefit to these forms of parallelism is that they do not preclude any of 
the previous work mentioned in the introduction that dealt with the fine-grain parallel algo- 
rithms for computation of the robot dynamics quantities. The special-purpose architectures 
required could be set up in parallel and used in conjunction with the methods discussed 
in this paper. The resulting combination of parallel computation could be thought of as 
occurring in three dimensions, and shows promise for even greater speedups. 
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Abstract 
This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) 

real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space 
Administration’s Cassini spacecraft. The spacecraft model consists of a central flexible body 
with a number of articulated rigid-body appendages. The demanding performance require- 
ments from the spacecraft control system require the use of a high fidelity simulator for 
control system design and testing. The DARTS algorithm provides a new algorithmic and 
hardware approach to the solution of this hardware-in-the-loop simulation problem. It is 
based upon the efficient spatial algebra dynamics for flexible multibody systems. A par- 
allel and vectorized version of this algorithm is implemented on a multiprocessor low-cost 
computer to meet the simulation timing requirements. 

1. Introduction 

The Cassini mission will be the first to  conduct an in-depth study of the Saturnian system 
by sending a spacecraft and a probe to the planet. The planned launch date is in the mid 
1990s with an arrival date in mid 2004. The major scientific goals of the mission are to 
obtain fundamental new information about the origin and evolution of the solar system, 
molecular evolution in space and its possible role in the origin of life, and astrophysical 
plasma dynamics and processes. There are twelve instruments on board and they can be 
grouped into three categories: 

0 Scanning-platform-mounted high-precision pointing and scanning instruments for imag- 
ing and spectroscopy in visual and infrared. 

e Turntable-mounted instruments for plasma, charged particles, and magnetospheric 
imaging and dust detection. 

0 Basebody-mounted instruments such as the magnetometer and plasma/radio wave 
sensors on extended booms, radar mapper for imaging of Titan’s surface using the 
spacecraft high gain antenna. 
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The spacecraft also carries the Ruygens Probe, supplied by the European Space 
Agency, which contains six instruments to take science measurements as it enters Titan’s 
atmosphere. 

Figure 1 shows the deployed Cassini spacecraft. The probe is shown off to the left 

Figure 1: A schematic of the Cassini 

exposing the spin/eject device. At the top of the spacecraft is 
Three booms are attached to the upper equipment module. 

spacecraft 

the high and low gain antenna. 
They carry the high-precision 

scanning platform (HPSP), the magnetometer and the 10-m plasma/radio wave antenna, 
and the turntable. The middle spacecraft structure contains the propulsion tanks carrying 
68% of the spacecraft mass. At the bottom of the propulsion module is the lower equipment 
module which supports three radioisotope thermoelectric generators for spacecraft power, 
four reaction wheels, the articulated probe relay antenna, and the articulable main engine. 

The HPSP articulates in two directions, one about the boom axis and one about an 
orthogonal intermediate axis. The turntable rotates continuously about the boom axis at 
0.1, 1.0, or 3.0 rpm. The probe relay antenna has one degree of freedom (dof) about an axis 
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parallel to the turntable boom. The main engine can be articulated about two axes allowing 
velocity control along the high gain antenna beam direction. 

There are a number of key attitude control functions the spacecraft must perform. 
The spacecraft must acquire the Sun and certain stars for inertial reference shortly after 
launch. Then it will maintain Earth/Sun pointed for ground communication and thermal 
control. There are a number of propulsive maneuvers for plane changes and orbit insertion. 
During the science phase of the mission when the Huygen Probe will be released into Titan, 
the data from the probe will be collected and relayed by the spacecraft back to Earth. The 
spacecraft will spend the next 4 years conducting intensive scientific investigations of the 
Saturnian system. 

The primary attitude control sensors are the star sensors and the gyroscopes located 
on the HPSP. The key actuators are: (1) the electro-mechanical actuators for the HPSP, 
the turntable, the main engines, and the reaction wheels; and (2) the chemical propulsion 
thrusters for attitude control, and the main engines. During main engine firing, the gyro- 
scopes are used as the control sensor and they are separated from the main engine gimbal 
actuators by the spacecraft bus and boom, which are nonrigid. Furthermore, the bus carries 
a large amount of liquid propellant. This sensor and actuator noncollocation problem is 
one that requires high fidelity dynamics simulation of the spacecraft for control design and 
testing. This simulation must also be used to develop all the control loops including the high 
precision control loop. 

The simulation requirement is most stringent for real-time hardware-in-the-loop test- 
ing when flight hardware and software are integrated with a simulation of the spacecraft. In 
the mid 1980s, technology precluded the use of hardware-in-the-loop simulation for all but 
the simplest dynamic systems (typically single-axis rigid-body equations). Since the late 
1980s, technology has advanced to a point that fairly complex spacecraft can be simulated in 
real-time but the cost of the computer hardware is very high. Part I of this paper presents a 
new algorithmic and hardware approach to this important hardware-in-the-loop simulation 
problem. 

The Cassini spacecraft was simplified in June 1992 to cut mission costs. The new 
baseline eliminated the articulated HPSP and the turntable. The dynamics of the spacecraft 
were simplified and so were the simulation requirements. We look at the pre-June 1992 
Cassini simulation needs and present the DARTS (Dynamics Algorithms for Real-Time 
Simulation) solution to this technically more challenging problem. 

The DARTS algorithm is based upon the spatial algebra flexible dynamics algo- 
rithm [l]. Part I of this paper describes the functional capabilities and requirements of the 
DARTS simulator. It also contains an overview of the spatial algebra algorithm for flexible 
multibody dynamics. A parallel and vectorized version of this algorithm has been developed 
and implemented on a multiprocessor real-time computer consisting of a pair of SKYbolt 
i860 vector processors. These processors are high performance computers and are relatively 
inexpensive. Part I1 of this paper describes the parallel/vectorization of this algorithm and 
the  real-time computing hardware and implementation. 
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The multibody model for the Cassini spacecraft is a star-topology dynamics model consisting 
of a central flexible “extended” bus body (denoted BUS in Figure 2) to which a number of 
articulated rigid-body appendages are attached. One such model for the spacecraft is shown 
in Figure 2. In this model, the bus body encompasses all bodies with significant structural 

BUS 

Figure 2: A star-topology multibody model for the Cassini spacecraft 

flexibility such as the magnetometer boom and the platform truss structures. The articulated 
rigid-body appendages in the model include the high-precision scanning platform (HPSP) 
and the low-precision pointing platform (LPPP), four reaction wheels, two engine assemblies, 
and a pair of pendulum models for the fuel tanks. 

The DARTS simulator has been designed to handle the flexible multibody dynamics 
of such a model for both the real-time and non-real-time simulation needs for the Cassini 
Project at the Jet Propulsion Laboratory. Some of the important features of this star- 
topology implementation of DARTS are described below. 

The real-time DARTS was required to compute the generalized accelerations for the 
spacecraft within 5 ms. This timing requirement was for a model consisting of ten articulated 
appendages and five flexible assumed modes for the bus with overall 25 degrees of freedom. 

During initialization, DARTS reads the data defining the spacecraft star-topology 
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model from a user specified model file (referred to herein as the ODEL file). Changes to 
the spacecraft model do not require any additional changes or recompilation of the DARTS 
software. Thus, spacecraft model changes, such as in the number of appendages, the mass 
and inertia properties, kinematical properties, the type of hinges, etc., require only the 
updating of the MODEL file. Evolutionary changes in the spacecraft model, as well as multiple 
models for early and late mission scenarios, can thus be easily handled using DARTS. 

There are no restrictions within DARTS on the number of appendages or on the 
number of assumed modes used to model the bus flexibility in the spacecraft model. The 
assumed modes’ data for bus flexibility is also provided in the MODEL file. This data includes 
the modal vectors for the various nodes which serve as attachment points for the appendages, 
actuators, and sensors on the bus. The modes are assumed to be eigen-modes and, therefore, 
the stiffness and damping matrices for the bus are diagonal matrices. Spacecraft models with 
fidelity ranging from rigid-body models to high-fidelity models with a large number of modes 
can be used by simply changing the MODEL file. 

Pin, universal and gimbal rotational hinges, and one degree of freedom prismatic 
hinges between the appendages and the bus have been implemented in DARTS. 

For the most part, during spacecraft simulations, the generalized force for the hinges 
is provided as an input, while the corresponding generalized accelerations are computed by 
DARTS. These hinges are referred to as “regular” hinges. DARTS also allows “prescribed 
motion” hinges - i.e., hinges for whom the generalized acceleration is provided as an input 
while the corresponding generalized forces are computed by DARTS. Prescribed motion 
hinge models are required for engine thrust vector control and for testing fault-recovery 
algorithms. DARTS allows multiple-degree-of-freedom hinges to be a hybrid combination 
of regular and prescribed motion degrees of freedom. The degrees of freedom can also be 
switched from regular to prescribed motion models (and vice versa) during run time. This 
feature is useful for simulating fault events such as hinge lockup as well as the dynamics of 
probe release. 

DARTS allows for an arbitrary number of sources of external forces and moments on 
the spacecraft. Within DARTS, these external forces and moments are assumed to be applied 
by actuators located on the spacecraft. The actuators can include physical actuators such as 
thrusters, as well as pseudo-actuators, used to model disturbance forces from misalignment, 
comet dust, gravity gradients, etc. These actuators differ from the hinge actuators in that 
the latter only contribute to the generalized forces for the spacecraft. The external force 
actuators can be at arbitrary locations on the bus and the appendages. Data regarding the 
location and number of these actuators is provided in the MODEL file. The external force data 
is assumed to be defined in the actuator’s reference frame. 

DARTS allows for an arbitrary number of sensors on the spacecraft. Sensors can 
include accelerometers, cameras, gyroscopes, sun sensors, etc., and can be at arbitrary lo- 
cations on the bus and the appendages. DARTS computes the orientation and location of 
each sensor with respect to the bus frame. The velocity and the acceleration of each sensor 
are also computed in its own reference frame. The number and location of the sensors are 
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once again specified through the 

DARTS allows a limited number of changes to the spacecraft model during run time. 
It is possible to switch a hinge degree of freedom between prescribed to regular motion status 
during run time. There is also a limited (quasistatic) capability for handling changes to the 
mass and inertia properties of the appendages. This feature can be used to handle changes 
in fuel mass due to fuel depletion during engine burns. 

The kinetic energy, the deformation potential energy, and the linear and angular 
momenta of the spacecraft are computed by DARTS. Also computed are the location and 
velocity of the center of mass of the spacecraft. 

The structure of the DARTS software is in the form of a subroutine. It is completely 
portable across different computing platforms and can be used as a part of off-line simulations 
for control subsystem design as well as for hardware-in-the-loop real-time simulations. 

3. The DARTS Spatial Algebra Algorithm 

The DARTS dynamics algorithm is based upon the high-speed spatial algebra algorithm for 
flexible multibody dynamics described in reference [I]. The algorithm also incorporates the 
new techniques for handling prescribed motion described in reference [2]. A brief overview 
of the main developments that forms the basis of the DARTS algorithm is presented. 

For the sake of brevity, a description of the nomenclature used here is omitted and, 
instead, details are described in reference [l]. The equations of motion of a (tree-topology) 
flexible multibody system can be written in the form 

T = Mg+C (3 .1)  

where the mass matrix M and the vector of Coriolis and centrifugal forces C are given as 
follows: 

A M e 'HipMmip*3-I* E ?RNdofsxNdofs and C = 3-I@(Mmip*a, + b,  + Km9) E sRNdofs (3.2) 

x and T denote the vectors of generalized velocities and forces for the system. The definition 
of the spatial operators, such as 3iI, ip etc., in Eq. (3.2) can be found in reference 111. The 
expression for the mass matrix M in Eq. (3.2) is referred to as its Newton-Eder Operator 
Fuct orization. 

The following equation describes an alternative factorization, known as the Innoun- 
tions Operator Factorization of the mass matrix: 

M = [ I  + X(aIC]D[I + X(aK]* (3.3) 

In this factorization, the factor [ I  + X@K] is square, block lower triangular and nonsingular, 
while D is a block diagonal matrix. This factorization may be regarded as providing a 
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closed-form expression for the block LD L* decomposition of M .  The following equation 
gives the closed-form operator expression for the inverse of the factor [I  + 'FI@IK]. 

K]-' = [I  - X @ K ]  (3.4) 

It follows from Eqs. 3.3 and 3.4 that the operator expression for the inverse of the mass 
matrix is given by: 

Once again, note that the factor [I-'FI@K] is square, block lower triangular and nonsingular 
and so Eq. (3.5) may be regarded as providing a closed-form expression for the block LDL* 
decomposition of M-'. The operator expression for the mass matrix inverse in Eq. (3.5) 
leads to the following operator expression for the generalized accelerations 2: 

M-' = [I - 'FI\.IrK]*D-'[I - 3.191(] (3.5) 

= [I - H9Ii]*D-'[T - 'FI@{IiT + Pa, + b, + Ii,79}] - K*9*um 

This expression for the generalized accelerations directly leads to a recursive algorithm for 
computing the dynamics of the system. The structure of this algorithm is very similar in 
form to the articulated body algorithm for rigid multibody systems. The computational 
cost of this algorithm is reduced by separately processing the flexible and hinge degrees of 
freedom at each step in the recursion. 

Based upon the unique features of the star-topology dynamics model for the Cassini 
spacecraft, the general spatial algebra algorithm has been simplified to obtain the DARTS 
algorithm. The primary simplifying features of the model are: (a) only the central bus body 
is a flexible body; (b) the model has only single body appendages; (c) all of the appendages 
are rigid bodies; and (d) the spacecraft is a free-flying multibody system. The computational 
cost of the algorithm for a 10-body spacecraft model is shown in Figure 3. 

3.1 Algorithm Structure 

Details of the computational steps of the DARTS algorithm can be found in reference [l]. It 
consists of three recursive sweeps whose structure is shown in Figure 4. Sweep 1 consists of 
an outward recursion (from the bus to the appendages) to compute the kinematics, velocities, 
and nonlinear Coriolis and centrifugal terms for all the appendages. This is followed by Sweep 
2 which is an inward recursion from each appendage towards the bus. During this recursion, 
the articulated inertias and residual forces for each of the appendages are computed. The 
computation of the residual forces takes into account the external forces from any actuators 
on the appendage as well as the hinge torques for the appendage. The computations for 
each -- of the appendages are carried out independently of each other. 

When these appendage computations are complete, the results from each appendage 
are used to compute the overall articulated body inertia and residual force for the bus. 
Unlike the case of the appendages, the computations here are more complex because of the 
structural flexibility of the bus. In addition to the rigid-body component, additional modal 
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Figure 3: Computational cost versus the number of bus modes for 
the DARTS algorithm 

components have to be computed. The bus articulated body inertia and residual force are 
used to compute the rigid-body acceleration and modal acceleration for the bus. 

This step is followed by Sweep 3, which consists of independent outward recursions 
from the bus to  each of the appendages. During this recursion, the hinge accelerations for 
each of the appendages are computed. Also as each body is processed, the attitude and 
velocity information for each sensor is also computed. This completes a single evaluation of 
the spacecraft dynamics. 

3.2 Prescribed Motion 

The above algorithm has been modified in order to handle prescribed motion hinges. While 
most of the hinge degrees of freedom on the spacecraft are “regular,” there are some hinge 
degrees of freedom, such as the engine gimbal assembly, that are modeled as undergoing 
prescribed motion. Moreover, fault-recovery algorithms are tested by simulating actuator 

304 



Figure 4: Structure of the star-topology DARTS algorithm 

lock-up faults using prescribed motion models. This requires changing the status of the 
degree of freedom from regular to prescribed motion mode during run time. 

With prescribed motion degrees of freedom, the dynamics problem is a “mixed”prob1eni 
in that for each hinge degree of freedom either the generalized force or the generalized ac- 
celeration is known, and the complementary information for each degree of freedom needs 
to be computed. The prescribed motion features are implemented in DARTS using a re- 
cently developed spatial algebra algorithm for prescribed motion [2]. The structure of this 
algorithm turns out to  be a simple variant of the regular dynamics algorithm and retains 
the same recursive structure. In the prescribed motion algorithm, during the articulated 
body recursion of Sweep 2, each hinge is checked for its regular/prescribed motion status. 
Depending on the status, the articulated body inertia and the residual force are computed 
differently using whichever of the generalized force or the generalized acceleration is known 
for the degree of freedom. The changes required to handle prescribed motion are entirely 
local to the hinge and do not affect the computations for any other hinge. The outward 
recursion of Sweep 3 is similar to Sweep 2 as well. Depending on the  regular/prescrihcd 
motion status of a hinge, the unknown - the generalized acceleration or the generalized force 
- for the hinge is computed. Once again, the changes required to do the computational steps 
are completely local to  the hinge and do not affect the computations at  any other hinge. This 
algorithm allows the component degrees of freedom of multiple-degree-of-freedom hinges to 
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have arbitrary regular/prescribed motion status. This is especially useful for simulating a 
variety of actuator faults. 

he local nature of the changes to the computations for a prescribed motion makes 
it simple to implement. Moreover, there is little computational overhead when the regu- 
lar/prescribed motion status of a hinge is changed during run time. This is in contrast with 
the conventional prescribed motion algorithms which treat the prescribed motion as a global 
constraint on the dynamics. 

4. Conclusions 

Part I of this paper describes the functional capabilities of the DARTS flexible dynamics 
simulator for the Cassini spacecraft as well as the high-speed spatial algebra computational 
algorithms. The DARTS software is being used throughout the Cassini Project for control 
algorithm design and analysis, flight software integration and testing, and for real-time 
hardware-in-the-loop simulation. DARTS has been designed to be completely portable to 
run on different computing platforms. DARTS has also been designed to be data-driven. 
Thus DARTS can handle different spacecraft models to meet the various design and testing 
scenarios without any software modification. This feature considerably simplifies software 
maintenance since the same software is being used across the whole project. Due to the data- 
driven feature, the recent significant design changes to  the spacecraft have not required any 
modifications to the DARTS software. 

5 e Acknowledgment 

The research described in this paper was performed at the Jet Propulsion Laboratory, Cal- 
ifornia Institute of Technology, under contract with the National Aeronautics and Space 
Administration. 

References 

111 A. Jain and G. Rodriguez, “Recursive Flexible Multibody System Dynamics Using Spa- 
tial Operators,” Journal of Guidance, Control and Dynamics, Nov. 1992. In press. 

[2] A. Jain and G. Rodriguez, “Recursive Dynamics Algorithm for Multibody Systems with 
Prescribed Motion,” Journal of Guidance, Control and Dynamics, 1992. In press. 

306 
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1. Introduction 

Part I of this paper presented the requirements for the real-time simulation of Cassini 
spacecraft, along with some discussion of DARTS algorithm. Here, in Part I1 we discuss the 
development and implementation of parallel/vectorized DARTS algorithm and architecture 
for real-time simulation. Development of the fast algorithms and architecture for real-time 
hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it 
represents a hard red t ime  problem, in the sense that the correctness of the simulation 
depends on both the numerical accuracy and the exact timing of the computation. For 
a given model fidelity, the computation should be completed within a predefined time 
period. Further reduction in computation time allows increasing the fidelity of the model 
(i.e., inclusion of more flexible modes) and the integration routine. 

An analysis based on the computational structure of DARTS and the specific dynamic 
model of the spacecraft is made to determine efficient algorithmic/ architectural techniques 
for achieving real-time simulation capability. This analysis indicates that a combined 
parallel/vector algorithmic technique along with a multiple vector processors architecture 
represents the most efficient and cost-effective approach. 

The most important (and the new) issue in this paper is the development of the vec- 
torized algorithms for spacecraft dynamic simulation. Until recently, only the users of 
vector supercomputers for non-real- time applications were concerned about the vectoriza- 
tion issue. Usually, the vectorization was limited to the use of the automatic vectorizers, 
provided by the vector supercomputers vendors, using an already developed software code. 
This represents a suboptimal use of the vector supercomputers computing power since the 
automatic vectorizers have a very limited capability and are efficient only for low level 
vectorization. For most problems, a significant speedup can be achieved by developing a 
new algorithm or restructuring the old algorithm by global vectorization of the compu- 
tation. However, due to the non-real-time nature of the applications, the fact that the 
vector supercomputers even in scalar mode (for serial computation) were faster than any 
other serial processor, the time and effort required for the development of new vectorized 
algorithms and software codes, the users were, most often, satisfied by the suboptimal per- 
formance. As a result, the development of the vectorized algorithms has been studied for 
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very few and mostly regular problem, e.g., matrix-vector operations, direct and indirect 
(iterative) linear system solution, etc. To our knowledge, the vectorization of multibody 
dynamics has been only recently studied for a rather simple case of a serial chain of rigid 
multibody (a robot manipulator) on Cray supercomputers [5,6]. 

However, this situation is rapidly changing and more effort is being made on the 
analysis and design of vectorized algorithms and software. This is motivated by the advent 
of a new generation of low-cost single-board vector processors with computational powers 
previously offered by the vector supercomputers. These new vector processors provide, 
for the first time, the opportunity for the design and implementation of high performance 
embedded computer architecture for real-time applications. However, in order to meet the 
real-time constraint, efficient vectorized algorithms need to be developed for exploitation 
of computing power of these new vector processors. 

The hardware and software considered in Part I1 of this paper represent the first 
generation of such low-cost vector supercomputers. As such, they lacked some important 
features for efficient vectorization and parallelization. However, since the development 
of this work, significant improvement has been made on hardware and software of new 
generations. The approach developed in Part I1 of this paper and the lessons learned 
through practical hardware and software implementation, along with these advanced new 
generations of multiple vector processors, indicate that the real-time simulation capability 
for more complex systems such as the Space Station is now achievable. 

Part I1 of this paper is organized as follows: Section 2 reviews the different algorithmic 
and architectural techniques for fast implementation of DARTS, and discusses the features 
of selected target architecture; Section 3 discusses techniques for global vectorization and 
efficiency of vector algorithms; Section 4 discusses some implementation issues and several 
aspects of the implemented algorithms through examples; and finally, Section 5 contains 
some discussion and concluding remarks. 

2. 

A. 

Algorithm and Architecture Selection For Real- 
Time Simulation 
AN ANALYSIS OF ALGQRITHMIC / ARCHITECTURAL TECH- 
NIQUES FOR FAST IMPLEMENTATION OF DARTS 

Generally, there are three algorithmic/architectural techniques that can be used to 
speed up the computation of a given problem: symbolic manipulation, parallelization, and 
vectorization. The choice of one or a combination of these techniques depends on: (1) the 
structure of computational problem, and (2) the availability and cost effectiveness of the 
required computer architecture. 

Symbolic manipulation is a rather straightforward technique that is widely used in 
multibody dynamics community (see, for example, [12]). Using this technique, a greater 
computational efficiency can be achieved by eliminating the redundant operations and 

308 



Figure 1. Cassini Spacecraft Star-Topology Dynamics Model and Computational 
Steps of DARTS 

ETHERNET 

E 

w 3  

Figure 2. Dedicated ParallelNector Computer Architecture for Real-Time 
Dynamic Simulation of Cassini Spacecraft 

68030 SBC SKYbolt 
Internal Host Vector Processor 1 

309 

Memory Reflector 
SKYbolt 

Vector Processor 2 



generating the symbolic expressions for the equations. However, two issues regarding the 
application of the symbolic manipulation technique need to be considered. First, the 
speedup due to the symbolic manipulation should be analyzed in a relative context and 
not as an absolute one. That is, if the original algorithm has a compact, efficient, and 
recursive structure-which is the case for DARTS-then the use of symbolic manipulation 
will not result in a noticeable speed-up. Second, the evaluation of the symbolic expressions 
is a strictly serial computation. Hence, if symbolic manipulation is used, then it would be 
difficult to further reduce the computation time by parallelization and/or vectorization. In 
this case, the only way to reduce the computation time is to use a faster serial processor. 

However, both the structure of DARTS and the specific model (star topology and 
flexible bus) of the Cassini spacecraft make the computation highly suitable for paral- 
lelization and/or vectorization. For parallel computation, at first glance it may seem that 
the Computation can be fully parallelized by assigning one processor per body. However, 
as discussed below, this will lead to a limited speed-up. For vector computation, a large 
part of the computation can be described in terms of two basic operations: scatter and 
gather operations, which are highly suitable for vectorization since they involve operations 
on large matrices and vectors. Furthermore, the size of matrices and vectors increases with 
both the number of flexible modes and the number of appendages. In order to better assess 
the suitability of the computation for parallel and/or vector computation and analyze the 
resulting algorithmiclarchitectural trade-offs, a more careful study of the structure of the 
computation is needed. Note that in this study we are only interested in the coarse grain 
parallelism since it can be exploited by low-cost , commercially available, multiprocessor 
architect we. 

The basic computational steps of the DARTS for the Cassini spacecraft (Figure 1) 
can be summarized as follows (see [1,3] for a more detailed discussion): 

Step I: 

1. Propagate the linear and angular velocity from the bus to appendages. 

This step is suitable for both parallelization and vectorization. It can be done in 
parallel for all appendages. It also represents a scatter operation and can be done by 
performing a single, large matrix-matrix multiplication (see Section 4). 

2. Compute the gyroscopic accelerations and forces of the appendages. 

This computation is more suitable for parallelization since it can be done in parallel 
for all appendages. It involves matrix-vector operations with rather small vectors and 
matrices which makes it less efficient for vectorization (see also Section 4). 
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1. 

The propagation of the Articulated-Body Inertia from appendages to the bus can be 
performed in parallel for all appendages. But the computation of the Articulated-Body 
Inertia of the bus remains serial and also involves many-to-one type of interproces- 
sor communication. However, both the propagation of the Articulated-Body Inertia 
from appendages and the computation of Articulated-Body Inertia of the bus can be 
described in terms of gather operations, which involve matrix-matrix multiplications 
with very large matrices and, hence, they are highly efficient for vector computation. 

2. Propagate the residual forces from appendages to the bus and compute 
the effective residual forces of the bus. 

Again, the propagation of the residual forces from appendages to the bus can be per- 
formed in parallel for all appendages. But the computation of residual force of the bus 
remains serial and also involves many-to-one type of inter-processor communication. 
However, both the propagation of the residual forces and the computation of residual 
force of the bus can be described in terms of gather operations, which involve matrix- 
vector multiplications of large matrices and vectors and, hence, are highly efficient for 
vector Computation. 

Step 111: 

1. Compute the acceleration of bus. 

The computation of acceleration of bus involves the solution of a symmetric, positive 
definite, linear system which is more suitable for vectorization than for coarse grain 
par allelizat ion. 

2. Propagate acceleration of bus to appendage. 

As in Step 1.1, this propagation can be performed in parallel but it also involves one 
type to many types of interprocessor communication. It also represents a scatter 
operation and can be done by performing a single, large matrix-vector operation. 

3. Compute hinges acceleration. 

Similar to Step 1.2, this computation is more suitable for parallelization since it can be 
done in parallel for all hinges. It involves matrix-vector operations with rather small 
vectors and matrices which makes it less efficient for vectorization. 

The above analysis clearly suggests that the computation of DARTS for the Cassini 
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spacecraft can be speeded up by both parallelization and vectorization. Furthermore, a 
combined parallelization/vectorization algorithmic approach can lead to a speed-up greater 
than that achievable by either parallelization or vectorization alone. This combined algo- 
rithmic approach is further motivated by the emergence of low-cost multiprocessor archi- 
tectures that employ vector processors, such as Intel i860, as the node processor. 

There are, however, two issues that need to be considered in applying this combined 
algorithmic approach, which also can afFect the choice of an optimal target architecture 
for its implementation. The first issue is that a limited speed-up can be achieved by 
assigning one processor per body since the ratio of fully parallelizable computations over 
strictly serial computations isn't very large. This is mainly due to the specific model of 
Cassini spacecraft; that is, rigidity of the appendages and high flexibility of the bus. In 
fact, most of the fully parallelizable parts of the algorithm involve the computations for 
the rigid appendages; e.g., Steps 1.2 and 111.3, which are less intensive than the strictly 
serial parts that involve the computations for flexible bus, and also the computation of 
Articulated-Body Inertia (Step 11.1) and acceleration (in Step 11.1) of the bus. 

Another important factor for efficient parallelization of the computation is the proces- 
sors interconnection. As stated before, the parallelization of DARTS for Cassini spacecraft 
involves many-to-one and one- to-many types of processors communication. Therefore, 
without an interconnection structure that can handle fast processors communication of 
these types, the communication overhead can degrade the achievable speed-up. 

The second issue is that there is a trade-off between the degree of parallelization (Le., 
number of processors), and the degree of vectorization. To see this, let us consider those 
steps that are suitable for both parallelization and vectorization (Steps 1.1,11.2, III.2,etc.). 
For example, in Step I.l., with one processor per appendage, the propagation can still be 
done by performing matrix-vector operations with small matrices. However, if the number 
of processors is reduced-which also reduces the speedup due to the parallelization-then 
the propagation for more than one appendage is done by each processor which implies that 
the size of matrices and hence the speedup due to vectorization increases. 

B. THE CHOICE OF TARGET ARCHITECTURE 

Based on the above analysis and given the possible options on the commercially avail- 
able low-cost multiprocessor architectures (at the time of this project) and other constraints 
on cost, hardware and software development time and effort, we chose a two-vector pro- 
cessors architecture [2]. This choice was based on our conclusion that, in order to speed up 
the computation, it was more efficient (both from an algorithmic and architectural point 
of view) to exploit a limited parallelism but attempt to exploit maximum vectorization. 

Figure 2 shows the dynamic simulation system [2]. It consists of a SUN workstation 
and a VME subsystem. The SUN workstation is the host of system, which is used for 
software development, and is interconnected through ETHERNET to the VME subsystem. 
The VME subsystem includes a general-purpose single-board computer based on 68030 

312 



processor, which is the local host of VME subsystem, two board vector processors, 
and a memory reflector board for high speed interface with another VME system, the 
real-time control computer. 

Each vector processor is a SKYbolt VME bus compatible board with an i860 as the 
vector processor and an i960 as the communication processor. The choice of the SKYbolt 

r other commercially available 860-based boards was mainly due to a faster main 
memory [2]. The SKYbolt was the only one that provided a SRAM main memory while 
the others had a DRAM main memory with a memory bandwidth of half of that of SRAM 
main memory. As will be ‘discussed in Section 5, our practical implementation showed that 
the choice of the SRAM main memory resulted in a very decisive factor in meeting the 
real-time constraint . 

The VME compatibility was basically required for the purpose of integration with and 
the interface to the rest of the spacecraft hardware-in-the-loop simulation hardware. Based 
on the vendor’s specification, the SKYbolt board provided three communication channels 
through the VME port, VSB port, and AUX (a fast and private I/O) port [13]. Therefore, 
it was originally assumed that the communication between the two SKYbolt boards would 
be performed by using the fast AUX port. However, neither AUX port nor VSB port 
were functional at the time of our implementation. This forced us to use the VME bus as 
the communication bus between the two SKYbolt boards. However, the VME interface 
chips on the SKYbolts were not fully functional. This resulted in a significant loss in the 
communication speed between the two SKYbolts compared to the nominal speed of the 
VME bus. As a result, our system was highly imbalanced for parallel computation since 
the processors’ computation speed (particularly in full vector mode) was much greater than 
the bus’ communication speed. This implied that only very coarse grain parallelism with 
minimum communication requirement could be efficiently exploited by the system. Note 
that, even by using a fully functional AUX channel the system would have still remained 
imbalanced. This clearly indicates that , without using an extremely fast communication 
structure, efficient parallel computation with multiple vector processors such as i860 would 
not be possible (see Section 5). 

3. Vectorization Strategy 

The SKYbolt can be used as an accelerator, Le., simply as a fast serial processor, 
to speed up the serial computation. According to the vendor’s claim, in accelerator 
mode the SKYbolt can provide a speed-up of about 2 over the SUN Sparc 11. Our double 
precision implementation of serial DARTS algorithm on both the SUN Sparc I1 and the 
SKYbolt showed a similar speedup (Table I). This result indicated that, in order to meet 
the real-time constraint, a greater speedup through vectorization of the algorithm was 
needed. 

The i860 has peak computational power of 80 and 64 MFLOPS for single- and double- 
precision computation. It has most of the functional units of vector supercomputers. 
However, the vector supercomputers, such as the Cray series, in addition to a fast vector 
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processing unit, also have a fast (usually the fastest available) scalar processor for serial 
computation [8,10]. For 860, both vector and serial parts of the computation are per- 
formed by the same units. As a result, the i860 has a poor ratio of speed of serial over 
vector computation because the speed of serial computation (as can be seen by the above 
comparison with SUN Sparc 11) is much less than that of vector computation. Thus, a 
higher degree of vectorization, even more than that for vector supercomputers, is required 
for i860 to achieve a satisfactory sustained computation power. 

The SKYbolt also provides a software environment almost similar to that offered 
by the vector supercomputers. However, the i860 and the SKYbolt represent the first 
generation of such low-cost vector processors and, therefore, lack many important features 
needed for efficient vector computation (see Section 5) .  Nevertheless, the strategy for 
vectorization on the SKYbolt is basically similar to that for other vector processors. In 
the following, we briefly discuss some of the key issues that have been considered in the 
design, analysis, and implementation of the vectorized version of a DARTS algorithm. 

A. LOCAL AND GLOBAL VECTORIZATION TECHNIQUES 

There are two techniques for vectorization of a given computation [9,10]: local and 
global vectorization. The SKYbolt, like vector supercomputers, provides two tools for local 
vectorization. The first tool is a library of highly optimized routines for matrix-vector and 
other operations that can be used by subroutine calls. The second tool is an automatic 
vectorizer that analyzes the data dependency and then vectorizes the computation of in- 
nermost Do-loops (;.e., scalar loops) of the overall computation [7,8-lo]. Another widely 
used technique not in the above computation is chaining of the operations [8-lo]. 

However, if the matrices and vectors are small, then the, use of optimized routines 
does not significantly increase the performance. Also, if a code is already developed and 
optimized for serial computation, then it may have strong data dependency in which even 
the most advanced automatic vectorizers cannot vectorize. For most problems a greater 
speedup can be achieved by recasting the algorithm in a form suitable for vector computa- 
tion, i.e., by a global vectorization. This is more difficult than the local vectorization and 
can be only done by the algorithm designer [9,10] as it may require major restructuring 
of the data and computation of the algorithm. In Section 4, we discuss some examples of 
such global vectorization. It should be also mentioned that our practical implementation 
indicated that even efficient use of library routines may require restructuring of the com- 
putation. There are not well-defined techniques for global vectorization and it is indeed 
highly problem dependent [9]. Nevertheless, there are several key issues regarding efficient 
vectorization that need to be taken into account in the design and analysis of vectorized 
algorithms. These issues are briefly reviewed here. The reader is referred to [7, 9-11] for a 
more detailed discussion. 

B. THE EFFICIENCY OF VECTOR ALGORITHMS 

The speedup of vectorized algorithms, like parallel algorithms, is measured according 
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to the Amdahl's Law. 

Let f represent the vectorized fraction of the computation, k the speed of vector 
operations relative to the speed of scalar operations, and SP the speedup of the vectorized 
algorithm over serial algorithm. It follows then that 

In order to increase the speedup, f and k should be increased. k is a function of the size 
of vectors and matrices as well as the type of matrix-vector operation. The computation 
time, T ,  of a vector operation is given as: 

T = r + n t  (2) 

where n and t stand for the size of the vectors and the clock time of the vector processor. 7 
represents the overhead of vector operation due to the loop setup, load and store operations, 
etc. 7 then the computation of vector operation is 
dominated by nt. That is, k is maximized and the vector processor performs one operation 
per clock cycle. 

If n is large enough so nt >> 

There is a vector size below which vector computation becomes less efficient than 
scalar computation. This size is called breakeven point [7] and is designated as n B  . The 
value of nB depends on the type of operation. There is no information on n for the 860. 
Although originally we suspected ng to be rather small [3], in practical implementation 
and for various matrix-vector operations we found ng to be quite large (several times that 
for Cray series), which indicates that only operations on very large matrices and vectors 
can be efficiently implemented on the 2360. 

As a conclusion, in vectorizing the algorithm an attempt should be made to: 

(1) increase the number of matrix-vector operations, and hence increase f ;  and 

(2) increase the size of the vectors and matrices, n, so that n >> ng , and hence increase 
IC. 

C. MEMORY BANDWIDTH AND DATA ORGANIZATION 

For vector processing, the data movement may sometimes take more time than the 
computation (see the example in Section 4). Therefore, the second issue in analyzing 
the performance of vector supercomputers is the data structure. To efficiently use the 
high speed floating-point units, data should be fed with adequate speed. In the pipelined 
mode, the is60 can initiate two floating-point operations (one add and one multiply) per 
clock. This requires fetching four operands and storing two results per clock which indeed 
requires a very high bandwidth memory. To achieve such a high bandwidth, the vector 
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supercomputers use a hierarchical memory organization. owever, in addition to the 
memory organization, the data structuring is also needed for achieving and maintaining 
the high bandwidth. For example, while the i860 can perform two floating-point operations 
per clock cycle, fetching an operand from an arbitrary location in the main memory can 
take several clock cycles. 

The memory organization of vector supercomputers usually includes a set of registers, 
as a fast and limited size memory; a cache memory, as medium-size medium-speed memory; 
and a main memory, as a large and slow memory. The i860 has a set of thirty two 32-bit 
data registers and 8 Kbyte (1 K double-precision) data cache. The selected SKYbolt board 
provides a 2-Mbyte fast SRAM memory as the main memory. Unlike the register-oriented 
vector supercomputers, such as Cray series, which utilize a larger size register (in the order 
of Kbyte), the i860 has a rather small size set of registers. However, it is claimed that the 
cache memory can be used with the same performance as the registers for vector operations 
141 - 

To minimize the data movement overhead, the following issues need to be considered: 

1. Data Contiguity: 

The related data should be located, as much as possible, in the contiguous locations 
in the cache and main memory. Obviously for vector operation the elements of the 
vectors (and matrices) should be stored in contiguous locations, i.e., with unit vector 
stride. The vector instructions that access memory have a known pattern and if the 
elements of vectors (matrices) are all adjacent, then the maximum speed in data access 
is achieved by pipelining. 

2. Data Locality: 

Given the slow speed of the main memory, the access to the main memory should be 
minimized. This implies that the intermediate data should be kept in the registers and 
cache memory. Also, once data is fetched from the main memory and loaded into 
the cache, all of the operations that require the data should be performed before 
the data is returned to the main memory, i.e., the vector touch should be minimized. 
Given the limited size of the cache, this may even require reordering the computation. 

As a conclusion on the design of efficient vector algorithms, we would like to quote 
from [ll, p. 471, ” W e  have shown that the e f i c i e n c y  of a vector- pipeline matrix  computa- 
t ion  depends upon the vector length, the vector stride, the vector touch, and the data re-use 
properties of the algorithm. Optimizing with respect to  all these attributes is very compli- 
cated and something of a n  art. A good compiler can of course do some of the  thinking f o r  
us,  but do not  count o n  it!” 

Note that in [ll] general matrix computations are consideredwhich are much simpler 
than a rather complex algorithm such as DARTS. 
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Based on the analysis of Sections 2 and 3, we first developed a parallel/vectorized 
version of DARTS [3]. However, the practical implementation of this algorithm resulted in 
an interactive vectorization process. Detailed timing was used to measure the computation 
time of each subroutine and the overall computation. The data structure and operations 
of the algorithm were then constantly modified to minimize the computation time. As a 
result, the final implementation was different from the original algorithm in [3]. Two issues 
made these modifications necessary. First, the algorithm in [3] was based on general and 
theoretical assumptions regarding vector processing. Given the fact that this was our first 
experimentation, many lessons were learned on detailed practical issues through actual 
implementation. The second, and more important, issue was due to the shortcomings of 
both hardware and software of the SKYbolt. Some of the necessary routines either were 
not provided or were not functional. Also, no means was provided to control the cache 
memory (see also Section 5). As a result, we were forced to develop our own subroutines 
or to change the computation. Here, we discuss some of the implementation issues. Due 
to the lack of space, only a few representative examples are given. 

A. SCATTER OPERATIONS: VELOCITY PROPAGATION 

The propagation of velocities is a simple, but representative, example that shows 
how the topology of the spacecraft allows efficient global vectorization of computation, 
which follows m and n that stand for the number of bus flexible mode and the number 
of appendages. Here, the main computation is the evaluation of the deformation variables 
for all the appendages: 

For i = 1 to n, 
m 

j =  1 

m 

j = 1  

m 

j=l 

m 

j = 1  
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A A where q = col{~j} and + = c o l { + } ~ % ~ ~ ~  are the vectors of modal deformation coordinates 
of the bus. X i j  and y i j ~ % ~ ~ ~  are the rotational and translational disp ment vectors 
of the j t h  mode for the ith appendage, A(;) = row{Xij} and y ( i )  = r o w ( y i j } ~ % ~ ~ ~  - 
&(i), at ( ; ) ,  S,(i), and S , ( i ) ~ % ~ " l  are the translational and rotational deformation and the 
linear and angular deformation velocities of appendage i. Due to the star topology of 
the spacecraft, the propagation for all appendages can be done simultaneously, Le., the 
computation in Eqs. (3)-(6) can be done in parallel for all i = 1 to n. 

A A 

For serial computation, the two forms in Eqs. (3)-(6) have the same cost while the 
second form is more efficient for vector computation. This efficiency for vectorization can 
be further increased as follows. Define 

6 = { q  Ij}c?RmX2; X = A col{X(i)} and y = A col{y(i)}~?R 3 n x m .  , fi e { ;} E g 5 n x m .  

A 
Sr = CO1{6r(i)}, he = col{St(i)}, 6, = ~01{6,(i)}, and 6, = col{6~(i)}e%3nx1; 

Sr t  = (ii) and 6,, = (k)  E % ~ ~ ~ ~  ; and S = {6uvSre}E%6nX2. 

The computation in Eqs. (3)-(6) can then be performed by a simple matrix-matrix multi- 
plication as: 

Note that the matrix f I  is constant and can be precomputed. Also, the above computation 
results in a certain arrangement of the vectors &(i), Sf(;) ,  S,(i), and &(i), which affects 
the rest of the computation and should be taken into account. However, because of the 
structure of the matrix fi and the vector 6 is not efficient to use, the regular matrix-matrix 
multiplication routine is based on the vector-dot operation (see below). 

S = f i +  (7) 

B. SCATTER AND GATHER OPERATIONS: FORCE AND ACCELERA- 
TION PROPAGATION 

Using similar technique as for the velocity propagation, the propagation of force and 
acceleration can be globally vectorized and represented in terms of large matrix-vector 
multiplications ai [3J: 

Z ( B )  = ( 7 )  2,s + Ii- = (rI*#)Z,+ + Iil 

cy; = (rIq5*)o(B) = (rIq5*)cr(B) (9) 
where Z ( B )  and ~ ( B ) E % ( ~ + ' ) ~ ~  are the vectors of residual force and acceleration of the 
bus. Z:(z) and a r ( i ) ~ ? I ? ~ ~ ~  are the residual force and acceleration of appendage i, and 

2: = col {Z:(i)} and = col { a : ( i ) } ~ X ' ~ ~ ~  - ~ I E % ~ ~ ~ ~  is an appropriate combination 
of A(;) and y ( i )  and can be precomputed. q 5 ~ % ~ ~ ~ ~  is a sparse matrix that needs to be 
formed in real time. In Eqs. (8)-(9), I I * ~ ~ E % ( ~ + ' ) ~ ~ ~  and r I q 5 * ~ % ~ ~ ~ ( ~ + ' ) .  

A A 
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The matrix-vector multiplication routine provided by the SKYbolts (and other vector 
supercomputers) is based on the vector-dot operation. Consider a matrix-vector multipli- 
cation as V = MU where M is a P matrix and let ’) and M(i) denote the rows and 
columns of matrix M ,  respectively. e vector-dot ba routine is given: 

However, another possible algorithm for matrix-vector multiplication is based on the 
SAXPY (scalar-vector multiply plus vector) operation [ll]: 

For i = 1 to Q, 
vi = v”l + M(i)U(i)  

Both the vector-dot and SAXPY operations are highly suitable for vector computation. 
The operation in Eq. (10) requires P vector-dot operations on vectors of dimension Q 
while that in Eq. (11) requires Q SAXPY operations on vectors of dimension P. Based 
on our discussion in Section 3.B, it then follows that the P < Q, the vector-dot based 
routine, and the P > Q, the SAXPY based routine, are more efficient. 

For our implementation, the values of n and m were n = 13 and m = 10. Thus, the 
vector-dot routine is highly optimal for matrix-vector multiplication in Eq. (8) because 
it requires 16 vector-dot operations on vectors of dimension 78. However, it is highly 
inefficient for Eq. (9) as it requires 78 vector-dot operations on vectors of dimension 16. If 
the SAXPY based routine is used for Eq. (9), then it requires only 16 SAXPY operations 
on the vectors of dimension 78. 

The C language was used for the development of our vectorized code, which implied 
that the matrices are stored by rows. However, for efficient implementation of the SAXPY 
based routine, matrices need to be stored and fetched by columns. For Eq. (9), the need 
for transposing the matrix nq5* can be simply eliminated by rewriting it as: 

Another advantage of Eq. (12) is that for both Eqs. (8) and (12), only the matrix rI*4 
needs to be formed. 

Our SAXPY based routine, though developed in C language, significantly increased 
the computational efficiency and was used very frequently. Obviously, if this routine is 
provided by the vendors and developed in assembly language, it can offer an even greater 
computational efficiency. Note that, for the matrix-matrix multiplication in Eq. (7), we 
also used a SAXPY based matrix-matrix multiplication routine that is more efficient than 
the vector-dot based routine. 
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The computation of the articulated-body inertia, P ( B ) E ! R J ~ ( ~ + ~ ) ~ ( ~ + ~ ) ,  and accelera- 
tion, a(B) ,  of the bus represents the major computation-intensive parts of the vectorized 
algorithm (over 30% of the total computation time). As stated before, the computation 
of P ( B )  represents a gather operation and was globally vectorized in a similar fashion as 
the computation of Z ( B ) .  However, significant reduction (more than 50%) in computation 
time was achieved by several changes in the data structure and the type of operations to 
find the most optimal way for computation of P(B) .  In the final form, the symmetry 
of P(B)  was exploited and only the diagonal and lower triangular parts of P(B)  were 
computed. a(B)  is computed as the solution of the system. 

P(B)a(B)  = e(B)  

We first used a Cholesky-based routine provided by the SKYbolt’s library for the solution 
of the symmetric, positive definite, system in Eq. (13). Later, we developed a routine based 
on the LDL* decomposition [ll] that did not require square-root operation. Although our 
routine was developed in C and was not vectorized, it was significantly faster than the 
SKYbolt’s routine. However, the main motivation for and the advantage of this routine 
was that, given the way the matrix P( B )  was computed, it could easily be used for solution 
of Eq. (13) without any need for data movement. Again, if this routine is developed by 
the vendor in assembly language and in fully vectorized form, it can offer an even greater 
computational efficiency. 

D. DATA MOVEMENT MINIMIZATION 

Major improvement in the efficiency of the vectorized algorithm was achieved by 
minimizing the data movement overhead through modification of the data structure and 
operations of the algorithm. Here, a few examples are discussed. 

1. Matrix-Matrix Multiplication 

The computation of vectorized DARTS involves many matrix-matrix multiplications 
as A = BC for both small and very large matrices. A vector-dot based matrix-matrix 
multiplication routine requires that first the matrix C be transposed. However, if matrix 
C is symmetric, then it does not need to be transposed. The SKYbolts provided two 
matrix-matrix multiplication routines for the general (nonsymmetric matrix) case and the 
special case (symmetric matrix). However, even for the general case, whenever possible 
we eliminated the need to transpose the matrix C by either forming C* (if it could be 
precomputed) or directly computing C*. 

Another frequently used operation was chained matrix-matrix multiplication, as 
A = BCB*, for both small and very large matrices and with C being a symmetric ma- 
trix. For example, this type of matrix-matrix multiplication occurs in projection of mass 
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matrices of the appendages onto the bus frame or in computation of P(B). Th' 1s opera- 
tion can be performed without any need for matrix transposition by simply rewriting it 
as A = B(BC)* . This simple modification resulted in a significant reduction of the data 
movement overhead particularly for computation of P( ) wherein the matrices involved 
in the Computation were very large. 

2. Vector Touch Minimization 

One of the widely used operations in the vector processing is a GAXPY (matrix-vector 
multiply plus vector) operation [ll] as VI = MV2 + V3 wherein M is a matrix and VI, V2, 
and V3 are vectors. In addition to the computational efficiency, a GAXPY routine reduces 
the vector touch since the vector V, = MV2 does not need to be explicitly computed, 
stored, and reloaded. However, the SKYbolt's library did not provide such a routine and 
we had to develop our own routine. Several other routines were also developed for other 
operations with the purpose of minimizing the vector touch. 

3. Data Structure Modification 

Our major effort in reducing the data movement overhead was based on modifying 
the data structure of the algorithm to find the most optimal form. Here, we give a simple 
example that underlines the importance of the data movement overhead minimization. The 
computation times of evaluating angular, a,;, and linear, a,,*, gyroscopic acceleration 
of appendages for i = 1 to n, were measured as 137 ps and 121 ps. For the rest of the 
computation, it was then required to merge the vectors a,i and av i  and form a vector 

ai = { 2; }. However, it took 143 ps to form the vectors ai for i = 1 to n which was . , 
greater than the computation time for either a,i or av i .  The algorithm was then modified 
to directly compute and form the vectors ai without any data movement. This simple 
example clearly shows that for vector processing the data movement time can be even 
greater than the computation time. 

E. GLOBAL VECTORIZATION OF SMALL MATRIX-VECTOR OPERA- 
TION LOOPS 

A rather significant part of the DARTS algorithm, which seemed to be unvectorizable, 
An example of such frequently involved many Do-loops with small vectors and matrices. 

occurring Do-loops is: 

For i = 1 to n, 
&i MiV2i + V3i 

where Vli,V2ir and V3i are 3 x 1 vectors and Mi is 3 x 3 matrix. Due to the small 
dimension of vectors and matrix, it is more efficient to use scalar (serial) routines for such 
Do-loops. However, we developed a technique for global vectorization of such Do-loops. 
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(Reference Time) 
Serial DARTS 

Serial DARTS 
on 1 SKY Bolts Faster Hardware 

Vectorized DARTS 
on one SKY Bolt 7.29 ms 

1.7 
Vectorization 

ParallelNectorized DARTS 
on two SKY Bolts 4.82 ms 

1.5 I Paraiielization Vectorization I 
Table 1. Comparison of different algorithmdarchitectute computational efficiency 

To see this, let us define 

A A A A VI = col {Vli},V2 = col {V2i},V3 = col { V 3 i } ~ % ~ ~ ~ ~ ,  and M = diag { M , } E ! J ~ ~ ~ ~ ~ ~  

The above loop can then be replaced by a single matrix-vector multiplication: 

Of course, due to the sparse structure of matrix M ,  it is highly inefficient to compute Eq. 
(15) by performing a general matrix-vector multiplication. However, the matrix M is a 
banded matrix with the nonzero elements only on its five leading diagonals. The compu- 
tation in Eq. (15) can be efficiently done by performing the matrix-vector multiplication 
by diagonals. To see this, let M i ,  j = -2 to 2, denote the diagonals of matrix M ,  where 
M o  is the main diagonal. 

The computation in Eq. (15) can then be done: 

For j = -2 to 2, 
vj = M j  0 v2 + vj-l 
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where 0 indicates element-by-element multiplication of two vectors. The element-by- 
element vector multiplication plus vector operation in Eq. (16) is highly efficient for 
vector computation and it is also provided by the SKYbolt's library. The efficiency of 
this technique for global vectorization results from the fact that it involves five such vector 
operations on large vectors. However, we did not implement this technique since the routine 
provided by the SKYbolt's library was not functional for double precision. Furthermore, its 
efficient implementation requires the minimization of the data movement overhead which 
may occur in forming the diagonals of matrix M .  This requires a direct control of cache 
memory, which was not possible on the SKYbolt. Nevertheless, for future applications, 
this technique is very promising as it allows the seemingly strictly serial Do-loops to be 
vectorized. 

5.  Discussion and Conclusion 

Table I shows a comparison of the different implementations of DARTS for a 13-body 
and 10-flexible modes model of Cassini spacecraft. As stated before, the speedup of the 
vectorized algorithm increases with the increase in the number of flexible modes and/or 
the number of bodies. For a 13-body and 20-flexible modes model, the vectorized algo- 
rithm achieves a speedup of 2 over serial DARTS on one SKYbolt. We did not discuss 
the algorithm's parallelization in detail. Suffice it to mention that, despite using several 
strategies to overlap the computation and communication as much as possible, the com- 
munication overhead from the slow VME bus remained a major bottleneck, which explains 
the rather poor speedup of parallelization. 

Here, we would like to summarize some of the shortcomings of the SKYbolt and to 
discuss some desired features. 

A. DOUBLE-PRECISION PERFORMANCE 

The i860 is claimed to be a 64-bit vector processor [4]. However, it has a 128-bit wide 
data path, which means that only two double-precision operands can be simultaneously 
loaded from or stored to the cache memory. This significantly reduces the speed of the 
processor for those vector operations that involve three operands. We implemented our 
vectorized algorithm with double precision. Although, we did not try the single-precision 
implementation of the algorithm, given the high vectorization degree of our algorithm, a 
much greater speedup can be expected for single-precision implementation. 

B. LIMITED CACHE MEMORY AND LACK OF CACHE MANAGEMENT 

The SKYbolt did not provide a means for managing the cache memory. Thus, we 
could not further reduce overhead caused by the data movement between the cache and 
main memory by explicitly defining the physical location of data in the cache memory and, 
hence, increasing the data re-use. As a result, most of the computation was performed 
on the data located in the main memory which, in addition to increasing the overhead, 
significantly reduced the computation speed of both scalar and vector operations. Given 
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this extensive use of the main memory, a DRAM main memory with a slower speed over 
an SRAM main memory, would have increased the overhead by a factor of 2. 

For double precision, the size of is60 cache is 1 K. However, the vectorized algorithm 
involved the operations on matrices larger than the size of the cache. For example, the 
matrix lI*$ in Eqs. (8) and (12) is of dimension 16 x 78 and the computation of P ( B )  
involves even bigger matrices. An efficient technique for handling such cases is the seg- 
mentation of the computation [lo]. However, this requires a direct control of the cache 
memory which, as stated before, was not possible. 

C. SKYBOLT’S LIBRARY 

As stated before, the SKYbolt’s library did not provide some of the useful routines 
that were frequently used in our implementation. Also, some of the routines provided were 
not functional either at all or for double precision. 

Despite all the above shortcomings, the SKYbolt was highly cost effective and allowed 
us to meet our goal (see Table I)  with a relatively short development time. As stated 
before, the SKYbolt represents the first generation of low-cost vector processors. The new 
generations not only provide a drastic reduction in the cost over performance ratio, but also 
significant improvements in both hardware and software. The size of cache memory in the 
new versions of i860 has increased by a factor of 2. Single board multiple i860 processor- 
based architectures 1131 are now offered that present a much more balanced system for 
parallel computation since the communication between processors can be performed on 
board and via a fast interconnection network. The library routines are also improved. 
In particular, based on our suggestions to the vendors, new routines including some of 
the routines developed by us, e.g., the SAXPY-based matrixrvector and matrix-matrix 
multiplication routines and LDL* routine for linear system solution,were added to the 
library. 

The results of our work, along with the significant improvements in both the price 
and performance of these architectures, clearly suggest that the parallel/vector algorithms 
and architectures present a highly efficient and low-cost approach for achieving real- time 
simulation capability for even more complex and computationally demanding multibody 
systems, such as the Space Station. In particular, it should be mentioned that the Space 
Station has a star topology that allows the application of a similar global vectorization 
strategy as for Cassini spacecraft. Also, due to the flexibility of Space Station appendages, 
not only the computation for appendages can be vectorized but also, based on our analysis 
in Section 2, more vector processors can be used to increase the speedup to the paralleliza- 
tion. 
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Multi- Body Simulation Application 
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1 Introduction 

This paper discusses an application of multi-body dynamic analysis con- 
ducted at the Boeing Company in connection with the Space Station (SS) 
Common Berthing Mechanism (CBM). After introducing the hardware and 
analytical objectives we will focus on some of the day-to-day computational 
issues associated with this type of analysis. 

1.1 Hardware 

The major components of the CBM are the four 5-bar mechanisms, two 
berthing port contact rings, and the alignment guides. The function of 
the CBM is to complete the attachment of two modules once the modules 
are in close proximity. The modules are initially placed with either the 
Space-Station Remote Manipulator System (SSRMS) or the Shuttle Remote 
Manipulator System (SRMS). Once the modules are in position the RMS is 
put in Zimp-mode, which signifies that all RMS actuators are disabled and 
the arm can be driven by external forces to a new position. Moving the 
RMS while it is in the limp-mode means that some of the RMS actuators 
must be back-driven. The amount of force required to back-drive an RMS is 
a function of the arm position, which determines what combination of RMS 
joints must be driven. 

After the RMS has been placed in limp-mode, and any residual motion 
has ceased', the final berthing sequence is initiated. The four capture latch 
mechanisms extend, then retract in an effort to grrtb the passive berthing 

'New requirements specify berthing operations shall tolerate small residual motions. 
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module’s latches. As the two modules are being pulled together, the align- 
ment guides force the two modules into precise alignment through contact. 
Once the modules are in contact, a set of powered bolts2 fastens the two 
modules together. 

Figure 1 shows the active and passive ports of the CBM3. The active port 
contains eight alignment guides and the four capture-latch mechanisms. The 
passive port contains four alignment guides, which fit tightly between the 
active port guides when the two ports are berthed. Typical module and 
station weights can range from 30,000 lbf to 450,000 lbf. 

Figure 2 depicts the capture-latch mechanism. The mechanism consists 
of four links: the two drive-arms, the idler-arm, and the capture-arm. Only 
one of the drive-arms is actually driven; we shall call this the primary drive- 
arm. The other pivots freely about the drive shaft; we shall call this the 
secondary drive-arm. The primary drive-arm is powered by a DC motor 
with a purely mechanical clutch, which limits the applied torque. The motor 
control attempts to drive the motor at a constant speed of 2 rpm. At the 
time the analysis was performed the motor-clutch design was not final. It 
was assumed that the rate sensor for the motor would be placed on the 
output shaft of the clutch. The capture-latch mechanism has a total weight 
of approximately 5 lbf. 

Initially the mechanism is in the open state. When the mechanism is com- 
manded to close, the capture-arm swings into the passive port and travels 
down the edge until it engages the passive port capture-latch fitting. The 
mechanism drive arm continues to rotate at 2 rpm until ‘the drive-arm is 
over-center and the ports are in contact. 

Figure 3 depicts the capture-latch mechanism motion for a typical berthing. 

2 Objective 

The principle objective of the analysis effort was to assess the capability of 
the CBM to function in the presence of SSRMS back-drive forces, friction, 
and worst-case port-to-port misalignment. The capture-latch mechanism 
drive motor and clutch have a slip-torque-limit of 40 in-lbf. The definition 
of worst-case SSRMS back-drive forces had not been finalized. In order to 

2For the rest of this paper will will ignore the powered bolts since they are not a part 

3The CBM alignment guide configuration was not finalized at the time the analysis 
of this analysis. 

was performed 
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Figure 1: Common Berthing Mechanism, Active and Passive Ports 
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Figure 3: Common Berthing Mechanism, Capture-Latch Mechanism Motion 
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finalize the design, an analytical capability to assess the design in the face 
of changing requirements was necessary. 

3 Decisions 

At this point we had to decide how best to construct a simulation capability 
in a short period of time. Listed below are most of the options that were 
considered for this task, and a few words explaining each option’s strong 
and/or weak points. 

1. A Boeing in-house FORTRAN code exists that is well developed for 
transient dynamics problems, but has very little constraint capability. 
All degrees of freedom (d.0.f.) must be expressed in a common global 
coordinate system. This means that a mechanism, whether it is in a 
plane of the global coordinate system or not, must have more degrees 
of freedom than are required. For this particular problem we have 
four 5-bar mechanisms, thus we will have to have 96 d.0.f. just for the 
mechanisms. Furthermore, we will have to add “soft-constraints” to 
remove the d.0.f that we did not want in the first place. This program 
is very good at some problems, but this does not appear to be one of 
them; both the size of the problem, and the 80 plus extra opportunities 
to  make a mistake were significant factors in the decision not to use 
this program. 

2. There is always the option to roll-your-own. In this case an integrator 
and functions to evaluate a set of state-space equations are all that is 
needed. However, this is no small task. Writing all the support func- 
tions is a considerable effort. Experience has shown that 3-4 months 
could easily be spent writing all the code for a rigid-body analysis. The 
problem is there is then no room left for the errors or changes that wilI 
surely be made. However, if the time had been available this method 
may have been chosen. The resulting program, specifically tailored to 
this problem, may have been significantly faster than a program that 
utilizes a general formulation. This is a very import consideration if 
the program is going to be used on flight hardware. When flight hard- 
ware, and people are involved, safety is an important issue. There can 
be a tremendous amount of what-if games played; the result is the 
analyst gets to run hundreds, maybe thousands of simulations. 
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3. A commercially available tool such as ADAMS, SD-FAST, or DADS 
could be used. ADAMS has been used in the past for this type of anal- 
ysis, and has proven quite useful. The fact that the analysis would be 
performed in two cities, and on several different computers was a severe 
disadvantage for the commercial codes. It would be a very expensive 
proposition to purchase 3-4 commercial licenses for 1 analysis task. 

4. TREETOPS was considered for several reasons: TREETOPS uses a 
formulation based upon Kane’s method, and therefore does not need 
to use additional equations for constraints between bodies such as pin- 
joints. See References [l] through [2]. One draw-back to this method 
is the assembly of a system mass matrix. As the size of the simulation 
grows the inversion of [MI4 grows like N 3 .  
TREETOPS has a menu-driven preprocessor which performs some 
error checking on the inputs. In many cases, the model is completely 
defined in the input file. The point being that an analyst can usually 
get a faster start if he/she does not have to write and debug code at 
first . 
TREETOPS is freely-available. Marshall Space Flight Center (MSFC) 
will supply interested parties with a tape of the FORTRAN source 
code. The recipient has the freedom to compile and use the software on 
any available computer. There are no restrictions to number of users 
or installations. The only restriction is that you do not re-distribute 
it; this is to help MSFC keep track of usage, and versions of the code. 
Additionally TREETOPS capabilities put it in the sameclass as the 
commercially available codes as far as capability (it is lacking in the 
graphical-user-interface dept .). 

For this project TREETOPS was chosen. We knew we would probably 
have integration problems with almost any simulation tool we choose due to 
the small masses of the capture-latch mechanisms, and the high frequencies 
that contact forces usually introduce. 

4 Computational Issues 

There is not enough space here to discuss all aspects of the analysis, or even 
cover it in a chronological overview. Instead we will focus on those aspects 

‘An N-by-N matrix. 
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3 
1 

Figure 4: Capture Latch Mechanism, TREETOPS Model 

that were either a source of difficulty, or required a large amount of the 
analyst’s time. 

4.1 Results Visualization 
Interpretation of the simulation results, especially for a 3-dimensional ana- 
lytical simulation, is often an overlooked issue. A great portion of time is 
occupied with interpreting simulation results. Not only does a good visual- 
ization tool speed up the process, but also reduces the likelihood of errors. 
To illustrate the point . . . Figure 4 contains a simple representation of the 
TREETOPS mechanism model with the joints numbered; Figure 5 shows 
time history results of the joint relative euler angles. With this data alone 
it is difficult, and time consuming to verify that the output is correct. Espe- 
cially since all the joint angles are not directly related to a either common 
frame, or a common body. Now add graphical animation output (see Fig- 
ure 6) to the information at hand. As most will agree, the same conclusion 
can be arrived at quicker, and with more confidence if Figure 6 is available. 

4.2 Numerical Integration 
Throughout this analysis there were constant problems with the integration5 
step-size. Every time a new contact force model or a new simulation condi- 
tion was introduced, the trial and error process of determining an adequate 

5The standard TREETOPS integrator is a 4 t h  order Runge-Kutta 
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Figure 6: Capture-Latch Animation 
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step-size was repeated. An initial step-size of & the period of the highest fre- 
quency component in the model was used repeatedly. However, this method 
often left us with a step-size that was too small. How can a step-size be too 
small? When the required simulation duration is 15-25 seconds (real time) 
a very small step-size can result in hours of cpu-time; this is unacceptable 
in the development phase of the analysis. 

An additional factor interfered with our efforts to find a reasonable step- 
size. The difference between largest and smallest mass values was eight 
orders of magnitude. Since the mass matrix is inverted at every integra- 
tion step, an ill-conditioned mass matrix can cause run-time problems that 
exhibit symptoms similar to step-size problems. When the simulation is 
unstable TREETOPS will often expire with the message “Mass matrix noJ 
positive definite”. Since the mass matrix is configuration dependent, this 
implies that the system has reached a numerically impossible state. 

Since there were two significant contributors to our integration problems, 
we decided to eliminate one of the sources. Since the mechanism velocities 
are small we decided to test the assumption that the mechanism compo- 
nent mass properties played a s m d  role in the overall system dynamics 
by increasing the mechanisms mass properties by two orders of magnitude. 
Simulation comparisons with earlier simple mechanism models showed that 
this assumption was reasonable for some conditions. However, we must be 
careful and use this assumption only as a stopgap, and not a permanent fix. 

4.2.1 Contact Modeling 

The contact modeling effort deserves some attention because at least 50% of 
the total effort was spent in the pursuit of accurate contact models. Not only 
did the contact models take a significant amount of man-power to produce; 
they also require a significant amount of computer time to simulate. For 
this problem there are 5 plausible types of contact: 

1. Latch-arm / capture-hook. 

2. Passive port ring / active port ring. 

3. Passive port alignment guide / active port alignment guide. 

4. Passive port alignment guide / active port ring. 

5. Active pert alignment guide / passive port ring. 

360 



For each type of contact, specific geometric calculations are performed 
to check for interference, or constraint violation on a case-by-case basis. If 
interference is detected a reaction force is computed. The reaction force is 
a function of the interference and the interference rate. We will look briefly 
a t  the alignment guide/guide contact model as an example. 

The guide/guide contact is modeled with an edge/edge contact model. 
Figure 7 contains a picture of the model nodes, local coordinate systems and 
vectors used in the contact force computation. The procedure uses the cross 
product of two vectors, each representing an edge to facilitate computation 
of contact forces. The logic used follows: 

1. Compute C = R, x Rb where R, = Ai - A2 and Rb = Bi - 
B2. The shortest distance between the two lines will have the same 
direction as C. 

2. Transform the position and velocity vectors of the edge endpoints into 
the new coordinate system defined by the direction cosine matrix A, 
formed as follows: 

C x R, 

3. The shortest distance between R, and Rb is the distance between Ai 
and Bi along the C axis. If that distance is less than zero: 

(a) Compute point of intersection: 

(b) Calculate offsets: 
aoff = intx R, 

bff = ((iRtZ - s 1 ( 2 ) ) 2  -/- (B1(3))2) 112 * Rb 

(c) Calculate relative velocity at point of intersection: 

Va = Val + ma x mff 

v b  = Vb1-k wb x bff 
where Val ,  Vbl, w,, and W b  are the velocities a t  points A1 and 
B1. These velocities are supplied by TREETOPS. 
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The above procedure calculates the relative distance and velocity be- 
tween the two edges. A FQRTRAN subroutine that performs this task 
can run anywhere from two to four pages (including comments). Once the 
contact geometry is defined the remaining task is to define the physical 
properties of the contact. 

For elastic contact at low velocities it may be acceptable to use a simple 
linear6 spring and damper to model the impact effect. Calculation of the 
proper stiffness can usually be accomplished via careful static analysis of 
the involved components. One can take the local stiffness, and combine it 
in series with the global stiffness of the contacting parts. In this case the 
load path we are concerned with is the in-plane loading of the edges of an 
alignment guide. Like the integration step size, calculated contact stiffness 
values are only a starting point. Once the initial value is calculated it must 
be tested. Insight into the appropriateness of the initial value can be gained 
by observing the measured deflections at the point of contact. 

4.3 Back-Driving the RMS 

Modeling and simulating the RMS back-drive forces was one of the simpler 
aspects of the analysis. Why is such a complex piece of hardware simple? 
Neither the SSRMS or the SRMS was modeled in any detail. Instead a 
requirement-model was assembled. A requirement-model does not necessar- 
ily behave like the physical component it is supposed to represent; instead its 
behavior is representative of the worst-case events or conditions as spelled 
out in the requirements document. In this case the requirement-model of the 
RMS was an arm that supplied a constant 150 lbf resistance in all directions. 

Simulations showed that the existing capture-latch mechanisms could not 
successfully close the gap between the active and passive ports. Indeed sim- 
ulations showed that a mechanism with 3 times the authority was required 
to pull the two ports together under extreme misalignment conditions and 
worst case contact friction and RMS back-drive forces. 

5 Summary 

We have discussed various aspects and problems associated with a 3-4 month 
analysis effort. Unfortunately there is not room enough to discuss all of the 
problems involved. From a computational point of interest it is important 
to note: 

%near in the sense that the spring has a constant stiffness when engaged 
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1. Data visualization tools (VDS, BPLOT) are crucial to performing a 
timely analysis. As simulations get more and more complex, so must 
the output visualization capability. 

2. The method used herein for calculating contact forces is much too 
tedious, time consuming, and error prone. If this method proves to be 
the most computationidly efficient, then some way of speeding up the 
algorithm development and debugging is in order. 

3. It is important to  select the software tool best suited for a particular 
job. Therefore, a collection of specialized tools like TREETOPS, that 
solve a certain class of problems well, is essential. Our experience 
shows that software that tries to do everthing, ends up doing nothing 
well. 
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Simulation of Linear Mechanical Systems 

S. W. Sirlin 
Jet Propulsion Laboratory 

California Institute of Technology 
Pasadena, CA 91109 

INTRODUCTION 

A dynamics and controls analyst is typically presented with a structural dy- 
namics model and must perform various input/output tests and design control laws. 
The required time/frequency simulations need to be done many times as models 
change and control designs evolve. 

This paper examines some simple ways that open and closed loop frequency 
and time domain simulations can be done using the special structure of the system 
equations usually available. Routines were developed to run under Pro-Matlah [ 11 
in a mixture of the Pro-Matlab interpreter and Fortran (using the .mex facility). 
These routines are often orders of magnitude faster than trying the typical “brute 
force” approach of using built-in Pro-Matlab routines such as bode. This makes the 
analyst’s job easier since not only does an individual run take less time, but much 
larger models can be attacked, often allowing the whole model reduction step to he 
eliminated. 

I will first briefly discuss the standard model forms, then address each of the 
simulation cases separately. 

LINEAR MECHANICAL SYSTEM MODELS 

Linear mechanical system models have a special second order differential form. 
In general the various structural dynamics codes generate equations in the form: 

M q  + Nq + Ii’q = Bu + G f, (1) 

where qeR” is the modal state, ueRm is the control input, yeRP is the output, 
and feRq is the disturbance input. Systems of the above form can almost always 
(generically) be put into modal form, and this modal form is typically what is given 

,to the dynamics and controls analyst by the structural modellers (e.g. NASTRAN 
out put) : 
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5 + 2C7i + Aq = Bu + Gf, 
y = cpq + C,G + Bu, 

(2) 

where qcR" is the modal state, C and A are diagonal matrices, u and f are tlie 
control input and disturbance force respectively, and y is the output which can be 
position, velocity, input force, or some combination of these. The transformation 
to the form (2) is not easy for general damping, ( N )  but typically damping is so 
poorly known that simple modal damping models suffice. I will assume that (2) is 
available for the rest of the paper. 

The standard analysis tools of Pro-Matlab require first order form, which can 
be done as follows: 

i = A x  + Bu + G f, 

y = cx, 
(3) 

Note that the special structure does not fit any of the standard forms (block diag- 
onal, triangular, banded, or Hessenberg). 

To the above plant equations must be added typical control dynamics: 

(4) .Li, = Acw + Bc(r - y), 

u = Ccw + Dc(r - y), 

where r is some reference command input. Again resorting to brute force we have 
the whole system: 

i = A z +  Br + Gf, 
y = C Z ,  

(5) 

Ac 1 ' 
- ~ = [  BDC B c ] ,  G = [ f ] ,  C = [ C  01. 
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Note that now even the special structure of (3) is not present (in general) even in the 
upper left block of the matrix. Due to the feedback we have lost all information 
regarding the eigenstructure. The system may not even be very sparse anymore. 

FREQUENCY DOMAIN RESPONSE - OPEN LOOP 

If we desire to compute the open loop frequency response for (2,3) 

H ( s )  = C(IS - A)-’B,  

there is the built-in bode command of Pro-Matlab, that uses the well known method 
of Laub 121. While the method is efficient for the general case, given the special 
structure of (2) we can write down a much simpler solution: 

This can be easily implemented using just a few lines of the Pro-Matlab in- 
terpreter, the only trick being to come up with some way of representing a rank 3 
array. The header of a routine that does this, freqmld, is listed in the Appendix. 
Timing results are as one would expect. From Figure 1 (results obtained on a VAX 
11/780), the brute force computation time increases roughly quadratically, while 
the direct solution requires only a linear cost with system order. 

FREQUENCY DOMAIN RESPONSE - CLOSED LOOP 

Once the system of (2,4) is put into the form (5) then the same standard tools 
apply as for the open loop case. As was pointed out above, the feedback destroys 
all of the open loop eigenstructure, hence there is no direct solution as in the open 
loop case. On the other hand consider Figure 2.  Taking an “analog” approach to 
the analysis, given the individual transfer functions for the plant and the control 
one can combine them to get the overall transfer function via the usual algebra in 
the frequency domain: 

H ( s )  = GF(I  + GF)-’ = G(I  + GF)-’F = ( I  + GF)-l  GF. 

In comparison to the brute force approach, there are a few issues: 

o We can take advantage of any special forms for the individual blocks - this is 
clearly advantageous. 
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frequency response computation 

201 1 
0 5 10 15 20 25 30 35 

sws 14-Aug-92 system order 

Figure 1. Computation time for open loop frequency response: Hessenberg versus 
freqmZd (specialized for mechanical systems). The test case is a second order system 
with a variable number of modes. 

Figure 2. A simple closed loop system. 

o We require matrix inversion of the order of the minimal input (to the plant or 
the control) - this is not clearly good or bad computationally. We’re trading 
the usual n2 cost for m3, which is likely to be advantageous for large plants 
with only a few feedback loops, but a loss for full state feedback. 

-- 

o The technique allows work directly with experimentally determined transfer 
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functions - there is no need for system identification to proceed all the way to 
a state space model. 

105 

104 

U 

8 
r? ‘J 

103 

102 

o We require storage of the intermediate results - this is an implementation issue. 
Currently the routines I have [3] first generate the individual transfer functions 
then combine the results. In some cases the memory to hold all the individual 
transfer functions can be quite high. This cost can be eliminated by moving 
the whole routine to Fortran however. The header of a routine that implements 
this, feedbackmtf,  is listed in the Appendix. 

- 
- 

- - - - 
- 

generic 
- 

- - - - - 
- - 
- 

- - -*------< ___---- ___--- ___--- ___---- - feedbackmtf __/---- ___---- - - ___---- 
_________L------ ______----- 

4 6 a 10 12 14 16 

As a simple example, consider a plant with 64 modes, 4 outputs, rn inputs, and 
m pseudo-derivative feedback controllers. Timing results (again on a VAX 11/780) 
for a modest test case are shown in Figure 3. 

Figure 3. Computation time for closed loop frequency response: generic system 
approach versus subsystem approach ( feedbackmtf) .  A 64 mode example with a 
variable amount of feedback. 
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A more stressing test, but one of practical interest was the NASA CSI (Control 
Structure Interaction) Focus Mission Interferometer (FMI) structural control [4]. 
The FMI is a 30m baseline interferometer, with the goal of controlling optical 
pathlength to the nanometer level. The plant model has 527 modes, with 17 rigid 
body modes and modal frequencies from 3.9 to 40000Hz. To this we want to add 
25 9-state controllers with displacement and force measurements, and force output. 
This gives a total system order of 1279. Use of the Hessenberg routines on the whole 
system is completely unrealistic in this case. Model reduction is a sensible approach, 
especially as modes above 100 H z  are not believable. On the other hand it is clear 
that model reduction is only required due to the numerical inefficiency of dealing 
with the problem as a whole block. Calculations of the individual components can 
be easily carried out using the full model without having to worry about truncatim 
issues such as residual flexibility or the need for augmenting the reduced system with 
Ritz vectors [5]. The computation (for 1068 frequency points) took 4640s inverting 
the 25 x 25 input force matrix at every frequency. If this is to be done many times 
for the same system, then clearly model reduction is desirable, but if done only a 
few times (as was the case here), then model reduction isn’t worthwhile. In this 
case only a 1 x 1 inverse is really required as the structural loops are all uncoupled, 
and so some time is certainly wasted in the (LINPACK) routine checking zeroes. 
Trying to construct more efficient routines I’ve run into some of the limitations of 
Pro-Mat lab: 

o Using an external (Fortran) routine many times (say for sequentially closing 
many loops) can lead to enormous allocation of unnecessary memory, 

o Describing a system as separate blocks requires a data object much more com- 
plex than a matrix. What is needed is the concept of a data structure, for 
example that of the C language, or even better something that could be cre- 
ated, changed, and destroyed interactively such as the generalized arrays of 
APL2 or J[6]. Without this function, input lists must be long and specialized 
to particular cases. 

In spite of these limitations, the tool is quite useful, enabling analysis for large 
systems and being fast for more modest systems. 

TIME DOMAIN RESPONSE - OPEN LOOP 

While the general solution to (3) is given by the well known matrix exponential, 
this is very difficult and expensive to compute in practice for general systems [7 ] ,  
often requiring a model reduction step. 
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On the other hand, the solution to (2) above is quite obvious since we just have 
a set of uncoupled second order equations. The solution is 

f T  = Bu + Gf, 
where the @ p k  and I'k matrices are easily calculated given the k t h  eigenvadue (with 
various special cases depending on whether it is 0, real, imaginary, or complex). The 
computational cost increases linearly with state order. In addition the propagation 
from one time to the next can be done with a 2n x 2 matrix (n @ k ' s )  versus the 
usual 2n x 2n exponential matrix, saving on storage space. 

Results for the Galileo spacecraft present another practical case of interest. The 
model at hand was built for investigating the possibility of finding ways to shake 
the spacecraft to free the stuck high gain antenna. The model had 142 modes, with 
8 rigid body modes (6 for the whole plus the dual spin main bearing and a scan 
platform bearing), and with structural modal frequencies from 0.143 to 144Hz. In 
the case shown the response of the system to the deployment and stow of a movable 
low gain antenna (LGA) was investigated. We've also looked at the system response 
to thruster firings and to torques at the spin bearing and scan platform bearing. 

The routines were coded in Fortran, linked to Pro-Matlab, and run on a Sun 
SPARCstation 2 (Figure 4). The header for the main routine,.ZsimZ, is listed in 
the Appendix. The computational gain in comparison to the standard built in 
Pro-Matlab c2d and lsim on the whole system is evident. 

TIME DOMAIN RESPONSE - CLOSED LOOP 

To see how to close the loop we look first at a simple coupled system with no 
external inputs: 

$ 1  = "1x1 + " 2 x 2 ,  

X 2  =: Biz1 + B222. 

The exact solution is again the matrix exponential 
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sws 14-Au~-92 time steps 

Figure 4. Galileo LGA deployment response calculation cost. Standard approa.ch 
( c2d and bzm) versus approach specialized for mechanical systems (lsim2). 

Unlike the frequency domain case, we can't easily find the response of the two 
systems separately and then combine algebraically (this would require a convolution 
in time). On the other hand if x2 were controller states in a discrete controller, we 
would be perfectly justified in generating the responses for each system separately 
assuming a zero order hold for the other system, as this is exactly what really 
happens. Arguing that this must still be reasonable for low pass analog controllers, 
we have an approximate solution: 
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Comparing the approximate to the true solution, we see that 

so that the error e ( t )  = 1 1 ~ - ? ; . 1 1  is of order t 2 ,  so this method is of order 1. With this 
method we can use any special structure present in the individual subsystems, which 
can save considerable computational cost. On the other hand we must make sure 
to take a small enough time step. Currently a Fortran/Pro-Ma.tlah implementation 
just uses a fixed step size. Local error estimates could be used to warn of possible 
trouble or change the step size. The routine IsimZfi (the header is listed in the 
Appendix) is the current implementation of these ideas. 

Returning to the Galileo example, the previous section mentioned 8 rigid body 
modes, but the spin bearing and scan platform bearing (“these are called the Clock 
and Cone degrees of freedom for the scan platform) are likely to be in a “caged” 
mode, actively controlled to have about 0.25Hz natural frequency with 70% damp- 
ing ratio. A 2-state controller was added to implement this. Figure 5 shows the re- 
sults of a Fortran/Pro-Matlab implementation, again comparing with the standard 
generic path in Pro-Matlab on a Sun SPARCstation 2. Note that the simulation 
times are very close to the open loop case. The difference in the system state was 
less than 4% for this case, in which the time step used was l l m s e c .  The time step 
was chosen based on the minimum discretization for thruster pulses rather than to 
minimize simulation error. 

SUMMARY AND CONCLUSIONS 

A set of tools has been built specifically for linear mechanical systems, open 
and closed loop, for use with Pro-Matlab. These tools use the pre-existing open 
loop eigenstructure typically available for structural dynamics models, which can 
save orders of magnitude in cpu time for typical problems. 
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II) 

Figure 5. Galileo LGA response calculation cost given closed loop clock a.nd 
cone control. Standard gystem approach versus approximate subsystem approach 
(kh~2fb) .  

For closed loop systems, treating the analysis of each block separately allows 
analysis of problems that might otherwise be too large, reducing or eliminating the 
model reduction step in the analysis. 
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APPENDIX 
atlab ROUTINES FOR SIMULATION SOME SELECTED Pro- 

Below are included the selections from headers for the main routines used in 
the above examples. 

I. Frequency domain 

A. Openloop 
function [ht] = freqm2d(sigma2,omega2,b,c,d,np, w) 
% [h] = f reqm2d(sigma2, omega2, b, c ,d,np, w) 

% MIMO tf calculation, given second order modal form 

% SA 2 x(i) + sigma2(i) s x(i) +omega2(i) x(i) = b(i,:) u 

% 

% 

% 
% y = Cypl 
% Cyvl 
% 
% yp = cp x + dp u 
% 
% 
% c = Ccpl d = [dp] size np 
% CCVI [dvl 
% 
% The results are returned in a matrix 
% 
i! h = [hll, h12, . . . , hlm, 1 
% [h21, . . .  1 
% [. . . 
x 
% given m inputs and q outputs, 
% where each hij is an npts x I vector. 
% 

yv = cv s x + dv s u 

B. Closed loop 
function ht=f eedbackmtf (g ,mg ,ng, f g , h ,mh ,nh ,f h, np) 
% function ht=feedbackmtf(g,mg,ng,fg, h,mh,nh,fh, np) 

% 
% 

Combine the frequency response of two systems in a feedback 
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11. Time domain 

A. Openloop 
% function [x, dx]= lsim2(sigma,lambda,b,u,dt,xO, dxO); 
% 

% 

Generate the time response of the system: 
% 

% 
(dA2)x + 2 sigma dx + lambda x = b*u 

B. Closed loop 
%function [y,u,x,dx,maxle]= lsim2fb(sigma,lambda,b,g,f,cp,cv, . . .  
I! Ac ,Bc ,Cc ,Dc, r ,dt ,xO, dxO) ; ’ 
% 
% Generate the time response of a second order system with feedback: 

% 
% y = cp x + cv (d/dt) x ’ 

% 
% (d/dt) w = Ac w + Bc (r-y) 
% u = Cc w + Dc (r-y) 
x 

% 
(d/dt)A2 x + 2 sigma (d/dt)x + lambda x = b u + g f 
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.H. Fan', J. Barlow3, A.L. Tits', M.B. Tischler4 

Abstract 

An optimization-based methodology for linear control system design is outlined by con- 
sidering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design 
specifications is accounted for: internal stability, decoupling between longitudinal and lat- 
eral motions, handling qualities and rejection of wind gusts, while taking into account physi- 
cal limitations in the swashplate displacements and rates of displacement. The methodology 
crucially relies on user-machine interaction for tradeoff exploration. 

1, Introduction 

Airframe concepts for future rotorcraft such as the light attack helicopter (LHX) include 
high effective hinge offset rotors and multiple control effectors to maximize maneuverability. 
This and other possible features lead to  a high level of bare airframe instability, control cross 
coupling, and control redundancy. At the same time there is a need to  include explicitly in 
a design methodology numerous specifications on control limits, actuator capabilities, cross 
coupling limits, and handling qualities. The classical control techniques which have been the 
primary tools of the industry are not well suited for such complex combinations. There is a 
great need for improved techniques. Numerous modern control methodologies have recently 
been proposed for application to these types of problems(e.g., [l-31). However these studies 
have not adequately accounted for the many practical implementation problems of rotorcraft 
[4]. Key concerns in evaluating prospective modern control designs are the interaction of the 
rotor system dynamics [5] and the explicit inclusion of the complex design specifications( Mil- 
Specs [SI) in the design process. 

A methodology is proposed that can account for various types of concurrent specifica- 
tions: stability, decoupling between longitudinal and lateral motions, handling qualities, 
and physical limitations of the swashplate motions. This is achieved by synergistic use of 
analytical techniques (Q-parametrization of all stabilizing controllers, transfer function in- 
terpolation) and advanced numerical optimization techniques. The proposed methodology 
includes a two-parameter controller with separate consideration of the feedforward and the 
feedback portions. Preliminary results on the input/output part of the design were reported 
in [7], where a 21-state model was used for the aircraft. Here overall results are reported on 
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a 37-state model generated by the UM-GenHel [8] nonlinear simulator. Nonlinear validation 
is also presented. 

central tool in this study was the interactive optimization-based package CONSOLE 
[9,10]. CONSOLE handles multiple (competing) objective functions, and constraints can be 
“soft” (moderate violations are allowed) or “hard”. Specifications can be “functional9’, i.e., 
involve an entire time- or frequency-response rather than a single time or frequency point. 
For each specification, the designer provides a “good value” and a “bad value” ( a  “good 
curve” and a “bad curve” in case of a functional specification) and these can be interactively 
adjusted as tradeoffs are identified. 

In Section 2 below, we briefly describe a simplified model of a rotorcraft in hover (based 
on the UH-60). In Section 3, a set of design specifications is proposed. In Section 4, 
the design methodology is outlined. In Section 5, some results are presented, including 
validation on the nonlinear model. Section 6 is devoted to some final remarks. 

2. A Linearized Model for an UH-60 in Hover 
The model we used for controller design, denoted by Po(s), is a 39-state linear model 

generated from UM-GenHel. UM-GenHel, developed at the Aerospace Engineering Depart- 
ment of the University of Maryland, is a nonlinear flight simulation program for helicopters 
[8]. It models the high order dynamics (such as main rotor blade motions and main rotor 
inflow) of the helicopter, and can generate linearized models of the helicopter at various 
flight conditions. The last six states of this linearized model correspond to hidden modes 
associated with the engine dynamics. These six states were removed from the model, leav- 
ing a 33-state minimal realization of Po(s). This realization has one pole a t  zero and a pair 
of real poles in the open right-half plane. It is non-minimum phase and strictly proper. 
In each of the four channels, the control system actuator is modeled by a first order Pad6 
approximation corresponding to a 0.050 second delay. This yields a final count of 37 states. 

An overall block diagram of the closed-loop system is represented in Figure 1. The 
four variables of the input 6, = (hS4, JSg, S,,, 6,+) of Po(s) represent respectively the lateral, 
longitudinal, and collective displacements of the swashplate, and the position of the tail 
rotor actuator. The output is y = (u,  v, w,p, q, T ,  +,e, $), the variables of which stand for 
longitudinal velocity (u) ,  lateral velocity (v), vertical velocity (w), roll rate (p), pitch rate 
(q ) ,  yaw rate ( T ) ,  roll angle (+), pitch angle (e), and yaw angle (+). The delay block De(s )  
has 4 states, 4 inputs, and 4 outputs. The command input 6 = (Sd,Sg,S,,S+) consists of 

Figure 1: Control system configuration 
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roll command (&), pitch command (so), collective command (&), and yaw command ( 6 ~ ) .  
The rotorcraft is to be controlled by a two-parameter controller C(s). 

s 

A wide range of specifications, in both the time- and frequency domains, are to be 
satisfied. First, the closed-loop system must be interndy stable. Second, to  the extent 
possible, it is desired that the various longitudinal and lateral modes be decoupled and 
approximate specified step responses (handling quality specifications). Specifically, the 
pitch command should mostly affect the pitch angle (and pitch rate) and the longitudinal 
velocity; the collective command should mostly affect vertical velocity; the roll command 
should mostly affect the roll angle (and roll rate) and the lateral velocity; and the yaw 
command should affect mostly the yaw angle (and yaw rate). The "diagonal" responses 
should exhibit desirable characteristics as given in [SI. Third, the displacement and rate 
of displacement of the swashplate may not violate some physical limitations. Lastly, the 
closed-loop system should exhibit good performance in gust rejection. The mathematical 
formulation of these specifications is described below. (Note: all inputs are expressed in 
inches of stick.) 
Spec 1 The closed-loop system is internally stable. 
Spec 2 When the input 6 = [0 5 0 OIT: 
Spec 2.1 Pitch response e ( t )  should lie between the two curves Cl(t)  and C,(t) of Figure 2. 

steady state (SA) = 0.5 rad. 
overshoot = 35% settling = 5% 

Figure 2: Boundaries for pitch response 

Spec 2.2 Decoupling: (i) + ( t ) ,  + ( t )  should have the absolute values less than 5% of O(5) for 
t E [0,5]; (ii) v(t), w( t )  should have the absolute values less than 5% of u(5) for t E [0,5]. 

381 
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WBW (rad/sec) 

Figure 3: Handling quality specification 

Spec 2.3 Physical limitations on swashplate displacements: the absolute values of 6,,(t) + 
SSc(t) ,  Gse(t) +6,4(t), s,,(t) t bsc( t ) ,  &4(t), &e(t ) ,  SSc(t), and bs+(t) should all be less than 10 
inches for t E [0,5]. 
Spec 2.4 Limitations on the velocities of the swashplate motion: the absolute values of 
ise( t )  + &sc(~ ) ,  i s e ( t )  + issd(t), bs,(t) + i s C ( t ) , & 4 ( t ) ,  bse(t) ,  i,,(t), and i s e ( t )  should all be less 
than 10 inches per second for t E [0,5]. 
Spec 3 Let He be the transfer function from 60 to 8. Suppose WBW (bandwidth) and rp 
(phase delay) are defined based on the Bode plot (phase part) of H e ,  such that WBW is the 
frequency corresponding to 45 degree phase margin, and phase delay rp is defined as 

where w180 is the frequency at which the phase angle attains -180 degree, and <P2wleo is 
the phase angle a t  frequency 2~180  (see [4]). Then the graph of (WBW, rp) should lie within 
region Level 1 in Figure 3. 
Spec 4 When the input S = [5 0 0 OIT: 
Spec 4.1 Roll response 4(t) should lie between the two curves C,(t) and C2( t )  of Figure 2, 
with s.s.= 1 rad. 
Spec 4.2 Decoupling: (i)  B ( t ) ,  $( t )  should have the absolute values less than 5% of (6(5) for 
t E [0,5]; (ii) u(t) ,  w ( t )  should have the absolute values less than 5% of v(5) for t E [0,5]. 
SPec 4.3 Physical limitations on swashplate displacements: same as spec 2.3. 
Spec 4.4 Limitations on the speed of swashplate motion: same as spec 2.4. 
Spec 5 Same as Spec 3 with He replaced by H,, the transfer function from 64 to (6. 
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en input = [0 0 0 2.51 : 
Yaw rate r ( t )  should lie between the two curves C,(t) and C2(t) of Figure 2, with 

ecoupling: p( t ) ,  q( t )  should have the absolute values less than 5% of r ( 5 )  for 
t E [0 ,5] .  
Spec 6.3 Physical limitations on swashplate displacements: same as spec 2.3. 
Spec 6.4 Limitations on the speed of swashplqte motion: same as spec 2.4. 
Spec 7 Same as Spec 3 with He replaced by H 4 ,  the transfer function from 6,~ to q3. 
Spec 8 When input = [ 0 0 5 0 ] : 
Spec 8.1 Vertical velocity w ( t )  should satisfy 

for all t E [0 ,5] ,  where li' = 10, T = 0.2, T = 5, and L-' denotes the inverse Laplace 
transform. 
Spec 8.2 Decoupling: u(t),  v(t) should have the absolute values less than 5% of w(5) for 

Spec 8.3 Physical limitations on swashplate displacements: same as spec 2.3. 
Spec 8.4 Limitations on the speed of swashplate motion: same as" spec 2.4. 
Spec 9 A wind gust, which is modeled by the step response of 

t E [0 ,5] .  

0.44s 
9(4 = (s + 1 ) 2  ' (gust model) 

is to be injected at  the output nodes 4, 9, and II, in turn. 
Spec 9.1 The closed-loop transient response at  the corresponding node, when the wind gust 
is injected, should be kept within the envelope of the step response of 

0.155s 
hallow(s) = s2 + 1.77s -+ 0.462' 

Step responses of g(s)  and hallow(s) are shown in Figure 4. 
Spec 9.2 Physical limitations on swashplate displacements, same as spec 2.3, but time in- 
terval is changed to [O ,oo) .  
Spec 9.3 Limitations on the speed of swashplate motion, same as spec 2.4, but time interval 
is changed to [O,oo). 

We remark that, given the highly coupled dynamics of the plant (Po(s)>, these speci- 
fications are very stringent, and to our knowledge no controller has been built so far that 
satisfies all these specifications. 

The asymmetry of the rotorcraft places fundamental limitations on the amount of de- 
coupling that can be achieved between the various channels. The most striking instance is 
the impossibility of maintaining a constant nonzero pitch angle without steady state bank- 
ing. For the linear model used in this study, it can be verified (see [11,12] for details) that 
the minimum achievable ratio between steady state roll and pitch angles is slightly over 
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Time in seconds 

Figure 4: Gust model and allowable closed-loop response 

20%. Note however that this does not preclude the possibility of meeting specification 2.2 
as it requires significant decoupling over the first 5 seconds only. Yet, this limitation ought 
to be kept in mind when interactively exploring possible tradeoff designs. 

4. Methodology 

Design of a two-parameter controller proceeds as follows [13]. First the overall aircraft 
transfer matrix (rotor + airframe dynamics + delay) P(s )  = Po(s)D,(s) is factorized over 
the ring of stable transfer functions, i.e., 

P(s)  = N(s)D- ' ( s )  = b- ' ( s )R(s )  

where N ( s ) ,  D(s) ,  N ( s )  and b ( s )  are stable transfer matrices, ( N ( s ) , D ( s ) )  are right 
coprime and ( & ( s ) , b ( s ) )  are left coprime. Next let X ( s )  and Y ( s )  be stable transfer 
matrices satisfying the Bezout identity 

X ( s ) N ( s )  + Y ( s ) D ( s )  = I 

Then all stabilizing controllers can be obtained according to the block diagram of Figure 5 
where both Q(s)  and R(s)  range over the class of all stable transfer matrices of appropriate 
dimension (with the condition that det(Y(s) - R(s )R(s ) )  does not 'vanish identically). 

Figure 5: Two-parameter controller 
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It is easily verified that the overall transfer function T ( s )  from 6 to y is given by 

- 

0 1 
P2j-1 P2j 

while the transfer function from S to the swashplate displacements S, by 

, B =  

Thus both are independent of the R parameter. On the other hand the transfer function 
from disturbance inputs de and d, to  those same outputs y and 6, is given by 

1 [ N(s ) (Y( s )  - R(s)B(s) )  - N ( s ) ( X ( s )  + R ( s ) b ( s ) )  + I D(s) (Y(s )  - R ( s ) W )  -D(s ) (X( s )  f R ( s ) m )  

which is independent of the Q parameter. By adopting the two-parameter controller struc- 
ture, the control designer can then separate the design problem into two independent sub- 
problems of input/output performance (to be solved by choosing a ”good” Q: &-design) 
and of disturbance rejection (to be solved by choosing a ”good” R: R-design), respectively. 
At the same time, internal stability will be automatically guaranteed if the chosen Q ( s )  and 
R(s) are stable. 

Q-design 
We just saw that any stable Q(s) yields a stable T ( s )  and any stable T ( s )  corresponds 

to a stable Q(s), so that this “Q-parameterization” automatically takes care of specification 
1. Concerning the other input/output specifications, the structure of the problem allows 
another major simplification. Note that each one of the specifications 2-8 involved only one 
of the four input channels and (see (4.1-2)) each column of Q ( s )  affects the 1/0 
transfer function corresponding to  exactly one input channel (i.e., exactly one column of 
Q(s) ) .  As a result the problem can be decomposed into four optimization problems, each 
one involving a single column of Q(s)  and the specifications involving inputs corresponding 
to that column. Thus, interactive optimization will be used, for each input channel, to try 
to  satisfy the corresponding input/output specifications; this will involve a single column 
of Q(s), which we will denote by q(s). 

A possible parametrization for ~ ( s ) ,  once its McMillan degree n has been chosen, is by 
writing 

with 

A =  

q( S )  = C( SI - A)-l B + D 
0 1  
Pl  P2 

0 1  
PJ P4 

(4.3) 

(4.4a) 
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if n = 2 j  i s  even, and 

J P2j-1 P2 j  

P2j+1 

if n = 2j  + 1 is odd, and using the pj’s as well as all entries of C and D as free parameters. 
Indeed, it is clear that by constraining the pi’s to  be negative, only stable Q(s )  will bs  
generated; it is also easy to show that the family of matrices Q ( s )  thus generated is open 
and dense in the set of stable matrices of McMillan degree n. 

One difficulty with the parametrization just proposed is the ensuing large number of 
designparameters, resulting in (i) large computation times and (ii) likeliness that a local 
rather than global optimum be reached. The following heuristics drastically reduces the 
number of design parameters by eliminating a large portion of “clearly nonoptimal” q( s) 
and likely retaining enough of the “good” ones to allow a “close to  optimal” q(s)  to be 
identified. For given A and B (Le., given p;’s) and given “sampling frequencies” q, . . . ,we 
(the pi’s and the w;’s will be the design parameters) corresponding C and D are selected 
by solving, in a least square sense, 

(4.5) 

where T ( s )  is an approximate “desired” transfer function constructed from the specifica- 
tions: good “diagonal” responses and “off diagonal” responses set to zero. (The method that 
was actually used is somewhat more sophisticated in that it involves solving two successive 
linear least squares problems: see [11,12].) 

To summarize, the numerical optimization process will proceed as follows. Given values 
of the p;’s and wi’s (design parameters), q(s) will be obtained by solving for C and D the 
linear least square problem; time and frequency responses of the closed-loop system will 
be computed (by invoking MATLAB); the values of the specifications and their gradients 
(with respect to  the design parameters) will be determined; the Optimization algorithm (the 
heart of CONSOLE) will use this information to select new values of the design parameters; 
and the cycle will start again until the designer decides to  interrupt it. The designer can 
then relax or tighten selected specifications in order to explore various tradeoffs. 

In addition to  the specifications outlined in Section 3, it may be desired to  achieve or 
approach certain steady state values when unit steps are fed into individual channels. In 
view of the Final Value theorem, these values are determined by Q(0).  The best value Q* 
for Q(0)  can be determined, again, by solving a linear least squares problem. Let q* be a 
column of Q*. Then, in view of (4.3), we may require that 

C(-A)- ’B + D = q*, 

i.e., 
D = q* + CA-’B. 
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Substituting this expression for D in (4.5) we obtain a linear least squares problem in C only. 
ote that, in the design results reported below, there was no such steady state requirement. 

A major difference with the Q-design is that the columns of R(s)  cannot be designed 
independently, as each of these columns may affect all disturbance rejection specifications. 
Thus a parametrization of the form (4.3-4), where C and D are obtained by solving a linear 
system of the form (4.6) in the least squares sense, is used for the entire matrix R(s). 

5. Results and Validation 

Based on our Q-design results, it is found that in the lateral, longitudinal, and tail 
collective channels, the swashplate rate specifications (Specs 2.4, 4.4, 6.4) are competing 
with the handling quality (based on frequency response) specifications (Specs 3, 5, 7). 
Specifically, for the handling quality indicator ( W B W , T ~ )  to  lie within region Level 1 in 
Figure 3, the swashplate rates will attain magnitude above 10 inch/sec within the first 0.1 
second. For example, Figure 6 and Figure 7 show the results of a design of the second 
column of Q (the longitudinal channel) on Specs 2.4 and 3. For this design, Spec 2.4 is 
satisfied but Spec 3 is not. Figure 8 and Figure 9 show the results of another design of the 
same column of Q on Specs 2.4 and 3. For this design, Spec 3 is satisfied but Spec 2.4 is 
not. 

Our R-design results are that Specs 9.2 and 9.3 are satisfied, but Spec 9.1 is not. Figure 
10 shows the response of the roll angle + ( t )  (or, respectively, the pitch angle 6 ( t ) ,  or the yaw 
angle $( t ) )  when a wind-gust, modeled by the step response of 0.44s/(s + is injected a t  
the roll angle node (or, respectively, the pitch angle node or the yaw angle node). From the 
figure, one sees that the graphs of the response do not lie within the allowable envelope given 
in Spec 9.1. Hence Spec 9.1 is not satisfied. The figure also suggests that the helicopter 
cannot act fast enough to respond to  the gust, and can counteract the gust only after 0.3 
second. 

We finally choose a design of the controller for which the specifications on swashplate 
rates (Specs 2.4, 4.4, and 6.4) are satisfied but the handling quality specifications (Specs 
3, 5, and 7) are not. This controller has 152 states. It is then reduced to  82 states via the 
balanced realization method. It has been examined, by checking against the specifications, 
that the performance of the order-reduced controller on the linearized model is as good 
as the unreduced, 152-state controller. This order-reduced controller is tested on both the 
UM-GENHEL linear and nonlinear simulation program. Based on the comparison between 
the open-loop time responses (to a step input) of the nonlinear and the linearized model, it 
is found that the nonlinearity of the helicopter model is very high. 

Figure 11 shows some of the relevant time responses of the closed-loop (linear and 
nonlinear) systems, when a 5 unit (in terms of inches of stick command) step command 
input is put on the lateral channel (66) of the controller. One notices from this figure that, 
after 2.5 seconds, the closed-loop responses of the nonlinear model do not match those of 
the linear model very well. However, given the high nonlinearity of the dynamics of the 
nonlinear model, this phenomenon should be expected. For example, Figure 11 shows that 
a t  2.5 seconds after the control command has been issued, the roll angle of the nonlinear 
model is about 1 radian. This flight condition is very different from hover, and hence 
the dynamics of the nonlinear model at this point may be very different from that of the 
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linearized model for hover. 
ne would expect the discrepancies between the response of the closed-loop nonlinear 

system and that of the linear system should be less, if the magnitude of the control input 
is lowered. Figure 12 gives the comparison between the relevant responses of the nonlinear 
and linearized model, when the magnitude of the command input is lowered to  1. This 
clearly confirms that the response of the nonlinear model matches better with that of the 
linear model than before. 

Finally, closed-loop responses of both the nonlinear and linear model, due to gust dis- 
turbance, are examined. For example, Figure 13 shows the roll angle response when gust 
is injected at the roll angle node. Notice that there are some discrepacies between the roll 
angle responses of the linear and the nonlinear model. 

6. Discussion 
The controller discussed in Section 5 is but one of the many sub-optimal controllers 

obtained when running CONSOLE. Indeed, a key advantage of an interactive package such 
as CONSOLE is that it allows the designer to explore alternative solutions by fine tuning the 
various target responses (this is especially so with CONSOLE’S not yet released graphical 
interface) . 

It turns out that even the stability specification is amenable to tuning. Indeed, as 
discussed in [13], the Q-parametrization approach can be extended to generalized stability, 
i.e., confinement of closed loop poles in a more general region II of the complex plane. This 
can be achieved by (i)  factoring P ( s )  in the ring of 11-stable (rather than Hurwitz stable) 
transfer functions and (ii) take for Q ( s )  and R(s) any matrices with all their poles in TI. 
The latter can be accomplished by suitably modifying parameterization (4.4). E.g., if TI is 
as in Figure 14, it suffices to replace in (4.4) 2 x 2 blocks of the form 

‘ I  [ (1 - y)(b - 2)2 - 22(yk2 + 1) 22 
0 

and let z and y vary over [ (u + b)/2,b] and [0,1], respectively (see [11,12] for details). 
Finally, the merits of the approach discussed in this paper should be compared to  those 

of the convex optimization approach proposed by S.P. Boyd and C.H. Barratt [14]. The 
main advantage of the latter is that it always yields the globally optimal design for the 
given specifications (for Q(s )  and R(s) ranging over a finite dimensional subspace of the 
space of stable transfer matrices). A crucial requirement, however, is that all specifications 
be convex (as functions of the closed loop transfer matrix). It turns out that some of the 
specifications considered in the present study (in particular handling quality specifications 
such as Spec 3) do not satisfy this requirement (see [11,12] for details). Compared to  the 
Ritz parameterization used in [14], while parameterization (4.3-4) would destroy any existing 
convexity, it has the advantage to  cover all (in fact, “almost all”) stabilizing controllers of 
a given degree. 
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Figure 6. Pitch command: swashplate rates 
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Figure 10. Time-responses to wind gust 
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Figure 11. Nonlinear validation: large signals 
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Abstract: In this paper, the Manousiouthakis parametrization of all decentralized stabilizing 
controllers is employed in mathematically formulating the 1 optimal decentralized controller 
synthesis problem. The resulting optimization problem is infinite dimensional and therefore not 
directly amenable to computations. It is shown that finite dimensional optimization problems 
that have value arbitrarily close to the infinite dimensional one can be constructed. Based on this 
result, an algorithm that solves the 1’ decentralized performance problems is presented. A glo- 
bal optimization approach to the solution of the finite dimensional approximating problems is 
also discussed. 

*Author to whom correspondence should be addresscd. Tel (310)-825 9385, FAX (310)- 
206 4107. 



Consider 
T way: u1 =(u11 

T T  
y2=@21,y22, 

a feedback control loop with its inputs and its outputs partitioned in a compatible 
4 1 2 ,  - - - ,hn) , u2=(~214422 ,  - - ,u2d , y1 =(y11,y12, * - * ,yln) and 
- * - ,yTn)T . The controller C is decentralized iff it is block diagonal i.e. the i-th 

subvector, yli ,  of the manipulated variable vector is only affected by the i-th subvector, y z ,  of 
the measured output: 

T T T  T T  T T  T T  T T  

Since the early 70's significant research effort has been expended on the subject of decen- 
tralized control. Nevertheless, two unanswered questions remain : 
(a) given the set of measurements and manipulations, how does one select the appropriate pair- 

ings ? 
(b) How can one assess fundamental limitations to decentralized control system performance ? 

The first question is referred to as the decentralized control structure synthesis problem 
while the second can be unequivocally addressed only through the optimal decentralized con- 
troller synthesis problem. Given the set of measurements and manipulations, the solution of the 
decentralized controller structure synthesis problem determines the flow of information in the 
control loop, or equivalently the pairings between the measurements and the manipulations. The 
solution to the second problem determines the best achievable closed-loop dynamic performance 
for the given decentralized control structure. 

It has been established, that given a plant and a decentralized structure there may not exist 
any decentralized stabilizing controllers with that structure. Aoki (1972) [2], demonstrated that 
there may exist decentralized control structures that prevent stabilization of the closed loop. 
Wang & Davison (1973) [ 161, introduced the notion of decentralizedhed eigenvalues also 
called asfied modes of a given system. Algebraic characterizations of the notion of decentral- 
ized controllability, which is related to the fixed mode concept, for the two input vector case are 
given in Morse (1973) [ l l ] ,  Corfmat & Morse (1976) [3], [4], and Potter, Anderson & Morse 
(1979) [12]. Anderson & Clements (1981) [l], employed algebraic concepts and characterized 
the decentralized fixed eigenvalues of a system and presented computational tests for the 
existence of fixed modes. 

the fractional representation approach to control theory. For linear time invariant processes, 
Manousiouthakis (1989) [9] presented a parametrization of all decentralized stabilizing controll- 
ers for a given process and a fixed decentralized control structure. Within this framework, any 
decentralized stabilizing controller is parametrized in terms of a stable transfer function matrix 
that has to satisfy a finite number of quadratic equality constraints. For the same class of 
processes (LTI plants) Desoer and Gundes presented an equivalent parametrization where the 
stable parameter satisfies a unimodularity condition (Desoer & Gundes, 1990, p.122, 165) [7]. 

In this paper, the Manousiouthakis parametrization is employed in mathematically formu- 
lating the optimal controller synthesis problem. The decentralized performance problem is for- 
mulated as an infinite dimensional 1 ' optimization problem. Performing appropriate truncations 
a finite dimensional optimization problem is obtained. Theorems that establish the connection 
between the two problems are presented. It is shown that iterative solution of the finite dimen- 
sional problem creates a sequence of values that converges to the values of the infinite 

Recently, the issue of stability of decentralized control systems has been addressed within 
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dimensional problem. ased on these conergence results a computational procedure that yields 
&-optimal solutions to I optimization problem is outlined. Locally optimal solutions to the 
intermediate fin 
tion algorithms 
approximations guarantees that the limit of the sequence that is being created corresponds to the 
best performance that can be obtained by the given decentralized structure. Feasibility (or 
infeasibility) of the optimization problem is equivalent to existence (or nonexistence) of decen- 
tralized controllers with the given structure. 

dimensional problems can be obtained through existing nonlinear optimiza- 
INOS, GIN0 etc.). Global solution of the intermediate finite dimensional 

2. Mathematical Preliminaries 

2.1. Fractional Representations of Linear systems 

with entries that belong to G. Also let S be the set that includes only the stable members of G 
and let M (S) be the set of matrices with entries that belong to S. 
In this work, theoretical results related to the notion of doubly coprime fractional representa- 
tions and the parametrization of all stabilizing compensators are used. These results and a com- 
plete exposition of the underlying theory can be found in Vidyasagar (1985; pp. 79, 83, 108, 
110) [ 141. The notation used in the present work is compatible with the notation in the 
aforementioned reference. 

Let G be the set of all proper, rational transfer functions and M (G) be the set of matrices 

2.2. Input - Output Linear Operators 

systems is the input - output approach. Although the theory has been developed for both continu- 
ous and discrete systems, in this work the focus is on discrete systems. 

In the sequel the fact that every linear BIB0 operator can be represented by an 1 * sequence 
will be utilized. For such operators the 1 - 1 Do induced norm is equal to the 1 ' norm of the 
corresponding 1' sequence. The results that are used can be found in Desoer and Vidyasagar 

One of the frameworks developed to describe the stability and performance of dynamical 

(1975; pp. 23-24, 100,239) [SI. 

2.3. Elements from Real and Functional Analysis 

all sequences with finitely many nonzero elements is dense in I' will also be used. Properties of 
the compact sets will be used in Lemma 2 in Section 4. The related theory is given by Wheeden 
& Zygmud (1 977, pp. 4,8-9, 134) [ 171. 
The properties of point-to-set mappings are also used. All relevant results can be found in 
Fiacco (1983; pp. 12, 14) [6] .  

The notion of denseness will be used in the proofs in Section 4. The fact that the set q0 of 

3. Parametrization of Decentralized Stabilizing Controllers 
In this section, the results presented by Manousiouthakis (1989) [9] are outlined. The 2- 

channel case is outlined in section 3.1. In section 3.2, the result corresponing to the general 1- 
channel case is presented. 
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Consider a feedback control system shown with plant P and controller C: 
r 1 

Manousiouthakis (1989) [9], demonstrated that based on the YJB parametrization of all stabiliz- 
ing compensators for a given plant, the set of all 2-channel decentralized stabilizing compensa- 
tors for the given plant can be described as: 

where, 

and 

3.2. I-Channel Decentralized Control 
The parametrization of all ZxZ block diagonal stabilizing controllers is based on the results 

of the previous section, namely relations (l), and (la). It has been established that the set of all 
I-channel decentralized stabilizing controllers can be parametrized as (Manousiouthakis, 1989) 

sdp)={ C = ( x + D p Q ) ( ? - N p Q ) - '  , det(f-NpQ j # O ,  Q E  M ( S ) ;  

S 1; + Q S2; + S3J Q + Q S4;  Q = 0 , j = 1 , - - ,I-1 

[91: 

(4) 

The transfer matrices Si, , i = 1,2,3,4 , j = 1, . ,I -1 are given by relations similar to (la). 
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The performance problem is often posed as follows : determine whether the output of the 
system remains within specified bounds for all bounded external disturbances and for all times. 
The idea of considering disturbances bounded in magnituded was introduced by Vidyasagar 
(1986) [ 151 and led to the I -optimal control problem. 

(a) Disturbance, d,  is bounded 
The mathematical formulation of the problem is performed as follows: 

OSld(k)lSwl , V k r O  <=>IIWT'dll-Sl. 

(b) Output, y,  is bounded 

(c) Satisfr bounds on y for all allowable d 

Let H ( P , C )  be the closed loop map between the disturbance ( d ) and the output (y). Then, 
y = H ( P , C )  d. According to (c) the output of the system remains within the desirable bounds iff 

To determine what is the best performance that a decentralized controller can deliver, the 
value of the following optimization problem should be identified 1 

If the value of this problem is less than 1 then there exist controllers with the given structure 
such that the output of the system satisfies the performance requirements. For simplicity in nota- 
tion, w 1 and w2 will be augmented in the map H (P,C>. 

Employing the parametrization of all stabilizing decentralized controllers the last optimiza- 
tion problem is expressed in terms of the stable map Q E M ( S )  : 

subject to, 

S i  + Q S 2 + S 3 Q + Q S d Q = O  
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In the last problem, the optimization variable belongs to an infinite dimensional linear 
space. In addition, the closed loop map H ( P , Q )  is affine in Q ; H (P,Q)= T I  - T2 Q T3 where 

(Vidyasagar,1985, p. 110) [14]. 

t i=  ( t i(k) )r=o , i =  1,2,3 and q =  ( q ( k )  
appropriate dimensions. Then, the sequence h (p,q)= { h ( k )  ) ;=O is given by : 

(S), are known and depend on the factorization of P that is employed 

Let h @,q) be the impulse response sequence that corresponds to H (P ,Q) .  Let also 
where t i ( k )  andq(k) are real mamces of 

Similarly, lets 1,s2,s3,s4 be the impulse response sequences, members of M ( l ' ) ,  that 
correspond to S1,S2,S3,S4 respectively and si= ( s i ( k )  )j;?=o i =  1,2,3,4. Then, the quadratic 
constraint is satisfied iff all the elements of the impulse response sequence that coresponds to the 
LHS are equal to zero. Thus the following infinite set of quadratic equality constraints is 
obtained: 

The objective function of (DPP) becomes: 

where 

Based on (1) and (2) (DPP) is transformed into the following constrained 1 '-optimization 
problem: 

(DPPs) 

subject to, 

f k ( q ) = 0  , V k 2 0  

For a given sequence q and a value of k,  fk(q) is an mxn matrix with entries: fiJ(q) , i=l ,  ..., rn , 
j =1 , ..., n. Then (DPPs) can be reformulated as: 

. .  

4-00 



subject to, 

These optimization problem are infinite dimensional; the optimization variable (4) lies in 
an infinite dimensional linear space and the constraint is also infinite dimensional. In the follow- 
ing, it will be shown that one can obtain solutions, arbitrarily close to the solution of these prob- 
lems, by solving appropriately constructed finite dimensional optimization problems. 

To reduce (DPPs) to a finite dimensional optimization problem two types of truncations are 
performed: 

Truncate the constraint 

subject to, 

and 

Truncate the variable q and the constraint 

vNM= inf ll~o7,4)llP 
q E @ o , N  

subject to, 

f & ) = O ,  k=O,-.*,M 

where Q o , ~  c Q0 is the set of all fkxa sequences with their first N + 1 elements nonzero. 
In the following, it is assumed that (DPPs) is feasible, thus feasibility of (DT1) is 

guaranteed. Under this condition, feasibility of (DT2) is' guaranteed provided that N > M. The 
following theorem establishes the relationship between (DTl) and (DT2). 

Theorem 1 
lim v r = v M  
N+- 

Before proceeding with the proof of the theorem, let us consider the following sets: 
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and 

The first set is the feasible set of (DT1). The feasible set of (DT2) is a subset of the second set. 
Then the following lemma establishes a result that will be used in the proof of theorem 1. 

Lemma 1 
The set  go,^ is dense in GM. 

Proof of Lemma 1 
To prove that the first set is dense in the second it suffices to show that : given 6 > 0 and 

q E GM there exists q 1 E  go,^ such that 114 -q  1 llp e 6. 
The set of M+1 constraints f ; (q)  = 0 , i=O, - 

the sequence q. Any other sequence with the same M+1 first elements satisfies the constraints. 
Therefore, q can be partitioned as : q = [ qU I q b  3 E GM, where qu E R’+’ is the vector of ele- 
ments of q that appear in the constraints. Clearly, q b  E Z and there exists a sequence q 1,b E o0 
such that for given 6 > 0 => 11qb -q  1,b llp e 6. The sequence q 1 = [ qa 1 q 1,b 3 is a member of 
 go,^ and : 

,M involves only the first M+1 elements of 

114-41 l l f l  =Ilsu-4u111 + 1 1 ~ b - ~ l . & 1 1 f ~  e 6. 

Now, the proof of theorem 1 follows. 

Proof of Theorem 1 
M We want to prove that lim vf = v . 

Equivalently, for a given E > 0 we want to prove that there exists N such that ]vM -v# I< E. 

N+- 

Since, v M  = inf llh @,4) 1111, for a given E > 0 there exists a q E GM such that : 
q E G M  

Since llh 07, .)1111 is continuous on GM then, given q~ GM there exists 6 > 0 such that for all 
q’E GM , 

Since  go,^ is dense in GM => there exists q 1 E  go,^ : 114 - q  1 1111 e 6. Let N be the smallest 



number such that q 1 E @ o , ~  and q 1 satisfies the last relationship. 
Consequently , 

From (2) and (3) the following relation is obtained : 

I vM-ll~@,ql)llrl I < E 

Sincev'Ivfl andOIvflIllh(p,ql)llp we finally obtain : IvM-vflI<~. 
0 

This theorem establishes the first a proximation result. However, its application assumes 
that for any given N and M the value VN is known, or can be computed. The solution of (DT2) 
involves the minimization of an infinite sum. 

J 

Given an Zixn sequence 5, its 1 (L )  sum is defined as : 

Define the set of sequences q E  go,^ that are norm bounded by some positive number B : 

The set +:,N is finite dimensional (so is &N), closed, bounded and therefore by the Heine-Bore1 
theorem it is compact. Consider a formulation of (DT2) where the variable is norm bounded: 

v m =  in; Ifh (P,4)Ilrl 
4 E  @*,N 

subject to, 

J ; : ( q ) = O ,  i = O , - , M  

Clearly, vfl I vfl (B for all values of B .  
Let 4 E @,,N be a suboptimal solution of (DT2), i.e.: 

The norm of 4 is finite. Let I14llfl= B (E), Existence of the solution of (DT2a) is guaranteed by 
the compactness of its feasible set (see proof of lemma 2). Let 4' be the solution of (DT2a). 
Then, 4' satisfies the relation: 

Then, combining these statements the following is obtained: 
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E > 0 ,  33B (E) ; Olvfl(B (~) ) -vf l  < E 

is selected to be sufficiently large, the solution of (DT2a) is arbitrarily close to the solution 
of (DT2). In subsequent sections it will be demonstrated that the calculation of bounds for the 
optimization variables is feasible. 

Based on this discussion, the following optimization problem is formulated: 

subject to, 

f k ( 4 ) = 0 ,  k = O , - - , M  

The following lemma establishes the fact that the solution to (DT2) can be obtained through 
iterative solution of @T3) for increasing values of L. 

Proof 
The sequence ( V ~ L  ) r = ~  is nondecreasing and bounded: 

Y L ~ o :  O I V N , L S V $ ( B ) .  M 

AS a result :3a > o ; lim V E L  = a. 
L+- 

This limit cannot be greater than v#(B). Assume that a < v#(B] .  

The feasible set of (DT3) is compact. Indeed, it can be written as the intersection of a finite 
dimensional, closed and bounded set (+if,,) with a finite dimensional closed set: 

As a result the feasible set is finite dimensional, closed and bounded. 

that (Luenberger, 1969; p.14) [SI: 
From the continuity of the I ( L )  norm, and the compactness of the feasible set it follows 

~ ~ L > O , % L E  $ : , N ~ G ~ . M  ;vKL=II~(PJIL)IIP(L) 

Compactness of the feasible set implies that the sequence { 4~ ]& has a subsequence 
{ 4~~ ] F=o that converges in Q o , ~  n  go,^: B 

Then, 



M lim vN,L = lim l l h ( ~ ~ q L ) l l r l ( ~ )  = lim I l h @ , ~ ~ k ) l l i 1 ( ~ k )  = l lh@~) l l r l  = a  
L +-- L+- k+- 

This contradicts the assumption that a < vfl(B). Hence, a = v { ( B ) .  

In summary, lemma 2 establishes that solution of (DT3) for increasing values of L identifies the 
solution of (DT2a). Based on the "equivalence" of (DT2a) and (DT2), it can be said that this 
iterative procedure identifies E - optimal solutions of (DT2). 
Remark : In the case where the coprime factors of P have been constructed to be FIR'S, for each 

(I E Q o , ~  the sequence h @,4)  will have a finite number of nonzero elements. This number is 
known and depends only on N .  Therefore the norm of h @,q) can be exactly calculated by a 
finite sum. In this case, the exact solution of (DT2) is obtained in one step. 

The relation between the two different types of truncated problems has been established 
through Theorem 1. In the remaining of this section the connection between (DT1) and (DPPs) is 
shown. For a non-negative real number 6 consider the following sets: 

m n -  m n M  
E l f x n  : C C C I .@(q> I I q E LAxn : C C C I j P ( q )  I I 6 

i=l j=l  k 0  i=l  j=1 k=O 

Then, the following theorem holds: 

Theorem 2 

negatives reals to subsets of 1 Then, 
Assume that G ( a )  and GM(-) represent upper semicontinuous mappings from the non- 

lim V* = v.  
M 4 -  

Before we proceed with the proof of Theorem 2, two intermediate results will be presented. 
Consider the two optimization problems: 

m n -  

llh@,q>11p +OX C C ~.hJ(q)  I 
i=l j=1 k=O 

and 

It is easily verified that (Pl) is the penalty function formulation of (DPPs-a) (Luenberger, 1969, 
pp.302-305) [8]. For this type of problems the following lemma can be shown to hold: 

Lemma 3 
Let { d 1 T=o be an icreasing sequence such that lim or = 00. Let also G ( e )  be an upper semicon- 

tinuous mapping from the non-negative reals to subsets of Lkxn. Then, the following statements 
hold: 
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1. v(or+l) 2 v(0') 
2. vrv(o ' )  
3. limv(o') = v  . 

r-)oo 

Proof 
Part I & 2 
The proof of Part 1 & 2 is performed in a similar way as the proof of statements 1 & 2 in Lemma 
1 in Luenberger (1969, p.305) [8]. 
Part 3 
From Part 1 & 2 it follows that the limit exists and is less than or equal to v. The proof is similar 
to the proof of Part 3 in Lemma 4.2 in Sourlas and Manousiouthakis (1992) [13]. 

the same line of arguments the following corollary can be shown to hold: 
Employing 

Corollary 1 
Let G"(.) be an upper semicontinuous mapping from the non-negative reals to subsets of I ;= .  
Then, 
1. V M ( d + 1 )  2 @ ( o r )  

2. v"2v"(o') 
1. limvM(mr) = vM . 

For a given value of a, Lemma 4 establishes the relation between v'(o) and v(o). 
r-+- 

Lemma 4 

Proof 
The proof is based on the fact that the sequence { f&) } :=O belongs to 
approximation of the infinite sum in the penalty term in (Pl) with a finite sum. The detailed 
proof can be found is similar to the proof of Lemma 4.3 in Sourlas and Manousiouthakis (1992) 

thus allowing the 

~ 3 1 .  

Now the proof of Theorem 2 follows. 

Proof of Theorem 2 
The proof consists of two parts. First existence of the limit will be shown and then conver- 

gence to v will be demonstrated. The sequence vM is nondecreasing, and bounded above by v. 
As a result, it converges to a real number: 

n M a= l i m v  I v .  
M+=- 
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Using Corollary 1, Lemma 3 and 4 the last relation can be rewritten as: 

a= lim vM= lim lim vM(o><v= lim lim vM(o> 
M - m  M + m  a+- O-+-M+- 

(4) 

In the remaining of the proof it will be shown that the two iterated limits are equal. 

Using the proof technique of Lemma 3 it can be established that: 

This implies that: 

In view of (4), the last relation implies that a= v. 
As a result, the following statement has been proven: 

a= lim v~ = lim lim VN,M = v 
M+= M+mN+- 

4.2. Computational Procedure 

which involves solution of (DT3) for increasing values of L, N and M. The finite dimensional 
optimization problem can be formulated as a nodinear program, which can be solved by finite 
dimensional optimization techniques. For a particular example, the structure of the nonlinear 
program is given in appendix A. 

The computationally intensive part of the procedure is the solution of (DT3), which is a 
nonlinear programming problem, for different values of L, N and M. The resulting nonlinear 
programs are nonconvex, due to the existence of the quadratic equality constraints. Nevertheless, 
global solution of these problems determines the globally optimum performance that can be 
achieved by a certain decentralized structure. If (DT3) is solved locally, then the limit of the 
resulting sequence will identify an upper bound to the I optimal decentralized performance. 

In view of theorems 1,2 and lemma 2, the value v is obtained through a limiting procedure, 

4.3. Global Optimization Approach 

have recently been developed. Manousiouthakis & Sourlas (1992) [ 101, presented a procedure 
that is based on the transformation of the original nonlinear optimization problem into one that 
has convex constraints and objective with an additional separable, quadratic, reverse convex 
constraint. Employing this transformation procedure, (DT3) becomes a convex programming 
problem with an additional reverse convex, quadratic and separable constraint. This problem 

Global optimization approaches that solve the general nonconvex optimization problem 
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can then be solved and its global optimum can be identified through the use of a branch and 
bound type of algorithm. 

The implementation of this global optimization algorithm requires the existence of valid 
upper and lower bounds for all elements of the the sequence q that appear in the quadratic equal- 
ity constraints in (DT3). Bounds on these variables can always be obtained from local minima 
information, namely the value a local minimum of (DT2) for fixed values of N and M. One can 
always obtain such information if the solution of @T3) for fixed N, M and increasing L is per- 
formed using local optimization algorithms. The generated sequence of values converges to the 
value of @T2) at a local minimum. Let 6lOcd be this value. This is an upper bound to the glo- 
bally optimal value of (DT2). Thus, for 4 E q o , ~  and for each value of L, it holds that: 

Then, one can obtain lower (upper) bounds on all elements of the sequence q through the solu- 
tion of a minimization (maximization) problem with objective the corresponding element of the 
sequence and constraints the inclusion realtions that appear in (5). These optimization problems 
are linear. 

5. Example 
In this section the computational procedure introduced in section 4.2 is applied to the fol- 

lowing 2x2 example. 

P ( z ) =  

3 z + 1  0.5 z +2 
Z Z 

z 2  +2.5z + 1 3.2 -1-4.5 
2 Z Z 

The objective of our analysis is to determine the best possible achievable performance for 
a decentralized control system featuring the pairings [ ( y 1 , u 1 ) ; ( y 2 , u2 ) ) . 

Parametrization of all Decentralized Stabilizing Controllers 
The process P is stable. Therefore one can select coprime factors as follows: 

- 
N p = N p = P  , D p = Y = Z ,  D p = Y = I ,  X = X = O  

According to (Z), sec.3.1 , any stabilizing controller for P is parametrized as: 

The controller C is decentralized iff 

Q21P12=P21Q12 
Q ~ ~ = - P I ~ ( Q I I  Q22 - Q i 2 Q 2 1 )  
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utput map between disturbances and output is given by: 

N ( P , C ) :  u 2 + y 2  ; N ( P , G ) = ( I + P C ) - ' P = ( z -  

N M  v# 
0 0 8.00 
1 1 6.70 
2 2 5.85 
3 3 5.5 1 
4 4 5.32 

Problem Formulation 
The disturbance rejection problem is formulated according to the guidelines introduced in 

section 4.1. First, the known bounds on the disturbance and the desired bounds on the objective 
are defined: 
Disturbance: ug(t)  E [-1,1] x[-l,l] , t f t  
Output: y g ( t ) E  [-l,l]x[-l,l], t f t  

Then, (DPPs) is readily formulated and transformed to (DT3) according to the procedure 
presented in Section 4. Based on Appendix A, (DT3) is in turn transformed into a nonlinear pro- 
gramming problem. Since the coprime factors are F.I.R. then the solution to (DT2) is obtained 
in one step. ForN=M=O, 1,2 the globally optimum value of the corresponding optimization 
problem has been identified. The complete sequence of values that converges to the value of v 
for this particular problem is shown in the following table: 

N M  v g  
5 5 5.20 
6 6 5.16 
7 7 5.13 
8 8 5.13 
9 9 5.13 

Hence, with E= 
to be 5.13. When only the linear constraints are considered the value of the global lower bound 
to the 1' decentralized performance is 4.98. The 1' - optimal centralized performance, for the 
same set of specifications was to found to be equal to 4.72. 

the value of the 1 ' - optimal decentralized performance problem was found 

6. Conclusions 

the 1' optimal decentralized performance problem has been formulated as an infinite dimen- 
sional optimization problem. This problem was transformed into a finite dimensional one 
through the introduction of appropriate truncations. Theorems that establish the equivalence (in 
the limit) of the original problems to their finite dimensional approximations were proven, and a 
computational procedure was proposed. It has been established that solution to the optimal 
decentralized performance problem amounts to global solution of a series of quadratically con- 
strained programming problems. If locally optimal solutions are identified for each of the finite 
dimensional problems, the limit of the corresponding sequence of values will be an upper bound 
to the optimal 1 ' decentralized performance. Based on this work, one can actually evaluate the 
best performance achievable by a given decentralized structure. 

Based on the Manousiouthakis parametrization of all decentralized stabilizing controllers, 
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Appendix A 
The optimization problem (DT3) can be formulated as a nonlinear programming problem. 

The steps that make this transformation feasible follow. For illustration purposes the 2x2 case, 
with stable plant, the same as the one in the example, is considered. From the definition of the 
I’(L) sum : 
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Using the definition of the maximum as the least upper bound, (DT3) is finally transformed 
into: 

subject to, 

J k=O 

where f k ( q )  and g k ( q )  are scalar constraints resulting from the application of the parametrization 
to this particular case (2x2 controller, stable plants). 
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Abstract 

A rational interpolation method for approximating a frequency response is presented. 
The method is based on a product formulation of finite differences, thereby avoiding the 
numerical problems incurred by near-equal-valued subtraction. Also, resonant pole and 
zero cancellation schemes are developed that increaae the accuracy and efficiency of the 
interpolation method. Selection techniques of interpolation points are also discussed. 

1 Introduction 
Consider the linear time-invariant system given by the state-space model 

x = Ax+Bzc 
y = cx 

where A E n t n A X n A ,  B E R n A X n B ,  C E R n c X n A ,  and the state vector, input vector, and 
output vector, x ,  u, and 8,  respectively, are properly dimensioned. We shall refer t o  the 
matrices, A, B, and C ,  as the state coupling matrix, the input coupling matrix, and the 
output coupling matrix, respectively. 

The frequency response of such a modeled system is defined as the Laplace transform of 
the input-output relationship evaluated along the j w k i s ,  

G(w) = C ( j d  - A)”B (3) 

where 
O < W < o O .  

‘This research was supported in part by the Air Force Office of Scientific Research under Contract NO. 
AFOSR91-0240. 
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fast and reliable interpolation method to compute frequency response is 
basic idea of this method is based on the simple Taylor series approximation 

G(w + h) = To + Tih + * 0 t Tkhk + Ek (4) 

but considered in the general interpolation form with k+l interpolation points ho, hl, . . . , hk: 

The coefficient matrices, Go,G1,. . .,Gk are of size nc x ng as is the truncation error E&. 
Therefore, the cost of evaluating the matrix polynomial approximation 

Pk(h) = Go+Gl(h-  h o ) + . " + G k ( h - n o ) ( h - h l ) . . . ( h -  hk-1) (6) 

is just kngnc floating-point operations (flops). The cost of computing each coefficient ma- 
trix is approximately the same ils evaluating G by the method that would normdy be 
preferred. 

The polynomial interpolation scheme works well as long as w is not near a resonant pole or 
zero of the system. In order to avoid this problem, we introduce methods of preliminary 
pole and zero cancellation. These greatly increase the accuracy of the interpolation scheme 
while causing only a negligible increase in the cost of computing the coefficient matrices. 

We shall also discuss the implementation of this algorithm including ideas on the selection 
of interpolation points. 

2 Existing Frequency Response Methods 
2.1 Straightforward Computation 

An obvious method for computing frequency response for a system modeled in state-space 
form is first to perform an LU decomposition in order to solve the linear system 

- A)X = B ,  (7) 

followed by a matrix multiplication involving the solution to (7), 

G(w) = C X .  

This method does not exploit any special structure, e.g., sparse or banded, and therefore 
would only be used for general systems. To compute a frequency response implementing 
this method, for just one value of w, approximately in: t i ( n ~  + n c ) n i  t nAngnc flops 
are required. As the number of desired frequency points becomes large, the calculation of 
the entire frequency response becomes computationdy intensive. 
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e ei orit 
order to reduce computation cost, several methods have been developed in order to re- 

duce the cost of solving the linear system (7) either by exploiting the structure of the state 
coupling matrix or by implementing a similarity transformation to put the matrix A into 
an exploitable form. One method of the latter variety is the Principal Vector Algorithm 
(PVA) [lo]. 

The idea of the PVA is to initially transform the state coupling matrix into a Jordan 
Canonical Form (JCF). The algorithm uses the principal vectors to  compute the JCF in a 
more accurate way than previous such algorithms. Let 

A = M"JM (8) 
where J is in Jordan form. If we substitute this identity into (3), the frequency response 
becomes 

G(w) = CMM''(jwI - A)"MM"B 

The initial transformation using the PVA to compute the JCF requires only O ( n i )  flops if 
the state coupling matrix is not defective while O(ni) flops are required if the matrix A 
is defective. Note that this transformation only occurs once, thus the cost is only incurred 
once. The advantage occurs in computations at each frequency point where the cost is 
reduced to O ( ~ A  + nAnBnc) flops in the nondefective case and O(#TZA + nAngnc) flops 
in the defective case. So the computational saving occurs after the computation of one 
frequency point in the former caseand n A  frequency points in the latter case. 

= C ' ( j ~ 1 -  J)-'B. (9) 

Although this algorithm produces significant savings in the computational cost of a fre- 
quency response, it can also frequently encounter numerical instabilities. First, the JCF is 
extremely unstable. The slightest perturbation can change a defective matrix into a non- 
defective matrix. Another problem is that the similarity transform may be ill-conditioned 
with respect to inversion depending on the basis of eigenvectors. If they are guaranteed 
to form a matrix which is well-conditioned with respect to inversion it6 would occur if the 
matrix were normal, the algorithm is very effective. 

2.3 The Hessenberg Method 
Another algorithm which uses similarity transformations to put the state coupling ma- 
trix into an exploitable form is the Hessenberg Method [4]. This algorithm is the current 
standard for computing the frequency response for generic dense systems. The Hessenberg 
Method, as its name implies, performs an initial transformation on the state coupling matrix 

-- to reduce it to upper Hessenberg form. So in this case, we use the identity 

A = Q-'HQ, 
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essenberg form, instead of the JGF identity (8), in the 

As with PVA, this initial transformation is performed only once at the start of the algo- 
rithm at a cost of O(n5)  flops. When this transformation is used, the cost of computing, 
the frequency response at each d u e  of w becomes O(ni(ng  4- 1) + n~ngnc) flops. usually, 
ng < nA so a significant reduction in computation can be realized. 

Fortunately, there always exists an orthogonal transformation to reduce the state coupling 
matrix into an upper Hessenberg form. This prevents ill-conditioning from being introduced 
into the calculations by the similarity transformation as can occur with the Principal Vector 
Algorithm. 

2.4 Sparse Systems 
Many of today’s large ordered systems are sparse systems. A sparse system is one whose 
modeling matrices have relatively few nonzero entries when compared to the total number 
of entries. In such cases the Hessenberg Method should not be used. Instead of maintaining 
sparsity, the initial transformation will create a large dense system which then must be 
solved. There exist many storage techniques for sparse matrices which require a significantly 
smaller amount of memory allocation than a full matrix of the same order would require. 
Also, sparse matrix algorithms have been developed to exploit sparsity in order to reduce 
the computational costs in comparison to their dense counterparts. (See [6], [SI, and [7].) 
These algorithms attempt to prevent the cost of solving the linear system (7) from growing 
to O(ni) flops. 

2.5 Frequency Selection Routines 

The cost of computing an entire frequency response can also be reduced by eliminating 
needless recalculations or overcalculations in attempts to get a desired resolution in the 
solution. When the frequency mesh is too coarse to give the required information, usually 
the user recomputes the entire frequency response. Often, the response from the previously 
computed frequency values either is recalculated or just ignored in the new calculation. 
Also, many times the user creates a fine frequency point mesh across the entire frequency 
range. Usually, only in small subregions is the finer mesh needed. A coarser mesh would 
suffice over the rest of the frequency range. 

In an effort to eliminate these unnecessary calculations but still give the required accuracy, 
so-called adaptive routines have been developed. These routines adapt the frequency point’s 
selection to the characteristics of the system being analyzed. 

One such adaptive scheme is similar in nature to the QUANC8 adaptive integration routine 
[l]. The basic idea is first to select the endpoints of an interval in the desired frequency 
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region. quency responses of the two points are compared e 
between 
is divided in half. Then the three points are compared. If their differences are outside 
the tolerances, the subintervals are again halved. This subinterval halving continues until 
the tolerances are met across the entire interval or until a specified number of fiequency 
points has been calculated. A single-input single-output variation of a method based on 
subinterval halving has been implemented commercidy 151. 

udes or their phases is greater than specified toler th 

The use of a priori infdrmation, e.g., the locations of poles and zeros of a system, can also 
be used in the choice of frequency locations. More points are placed in the areas where the 
poles and zeros of a given system have an effect. Fewer points are placed outside these areas. 
Such a method is now being implemented in a linear system package [2] to automatically 
choose the frequency range over which the frequency response is computed as well as to 
determine the number of points needed to be calculated. 

These adaptive schemes also can be combined to form hybrid routines. This would permit 
an initial placement of points with the a priori method and then create the frequency mesh 
to join the regions between the areas of the initial placement. 

3 Polynomial Interpolation 
In order to compute the coefficient matrices, GI,. . . , Gk, of the interpolation equation 

Pk(h) = Go+Gl(h-ho)+*..+ Gk(h-ho)(h-hl).. .(h-hk-l) (10) 

finite differences will be employed. The first-order difference is defined as 

while higher-order differences are defined  at^ 

If we let 
M(h)  = ( j h 1 -  &)-I 

where 

the ktA-order interpolation approximation can be written it8 

A0 = - jwI + A, 
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with the interpolation error 

Now, for convenience, define 

and 

& = M(h) -&(h)  
k 

i-0 
= Affho, hi, ..., hk, h] n ( h  - hi). (18) 

Although finite differences have a certain elegance to their formulation, they can encounter 
numerical inaccuracies due to the subtraction of near-equal-valued quantities. An extreme 
example of this is the case in which all of the interpolation points are the same. In theory, 
the first-order difference is exactly the first derivative of M, but numerically it is useless. 
Fortunately, the differences of the resolvent function (13), can be expressed in matrix prod- 
uct forms which avoid these cancellation problems as the following theorem shows. 

Theorem 1 For the Fesolvent function, the matriz diference functions in (12) satisfy 

Proof: Using (13) 

Thus the fist fmite difference becomes 

Af[ho, hl] = - j ~ ( h o ) M ( h 1 )  

which proves (19) for m = 1. Now suppose that (19) is true for m- 1. Since M (  ho) . . . , M( hm) 
-- all commute with each other, we find that 
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- 1 ) )  / ( h m  - ho) 
= 
= 

(-j lm-' ( ~ ( h l )  * * * M ( h m - 1 ) )  ( M ( L )  - M ( ~ o ) )  / ( h m  - bo) 
( - j ) m  (M(h1) * * * M ( h m - 1 ) )  M(ho)M(hm) 

= ( - j ) m M ( h o ) M ( h l )  * * * M ( h m ) .  

Thus (19) is true for m and thus, by induction, the theorem is true. 0 

If we now substitute the resolvent identity (19) into (17) and (18) and use the commutative 
property of the resolvent functions, the interpolation approximation becomes 

Pk(h) = M(ho) + ( - j )M(hl)M(ho)(h - h0) + ' *  ' 

+(-j)kM(hk)M(hk-i)  * .M(ho)(h - ho) * * . (h  - hk-1) (20) 

with the error formula 
& = M ( h )  - &(h) 

k k 

i=a i=O 

= ( - j )k+l  n M(h;) n ( h  - h;)M(h). 

The next lemma gives an interpolation series for the resolvent using the original k + 1 
interpolation points and setting all of the higher-order interpolation points equal to zero. 
For convenience we shall use the notation M ( 0 )  = Mo. Note that if all of the interpolation 
points are set equal to zero the analysis would be that of the Taylor series. 
Lemma 2 Let ho, . . ., hk &e given and set hm = 0 for all m > k. For 

M may be expanded as 

M(h)  = E ( - j y  fi M(h;) E 1 ( h  - hi). 
m=O i=O i=O 

Proof: Let e >  k. By (21), 
C 

M(h)  - ( - j y  fi M ( h i ) E 1 ( h  - hi) 
m=O i=O i=O 

C C 

i-0 id 
= (-j)'+l n M(h;)  n ( h  - hj)M(h) 

k k C 

i=O i=O i=k+1 
= (-j)'+' rl[ M(h;)  n ( h  - hj)M(h) n Moh 

k k 

i=O i=O 
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00 if and only ) < 1, which is the well-known 
convergence r e q ~ ~ e m e n t  ometric series. the definition of 
( j d  - A)-1. Hence, 

where 

This lemma is also important in the development of a pole and zero cancelling routine. 

4 Pole and Zero Cancellation 
Polynomial interpolation approximation works well unless the LTI system being analyzed 
has poles or zeros near the imaginary axis.  Such poles and zeros are called resonant poles 
and resonant zeros. The following examples provide the general idea of the effect. 

Example: The deleterious effect of poles and zeros can be illustrated 
rational function example. Consider 

= 1+3s+6z2+ ... 1 + 22 + 3s2 
1-2 f (4 = 

by means of a scalar 

(25) 

We can use a polynomial approximation to evaluate this function at various values of 2. 

Suppose that we choose a second-order polynomial approximation: 

j ( z )  = 14- 32 + 6z2. 

If we evaluate for z = 0.01 and z = 0.99, we get the approximations 

f(O.01) = 1.0306, 

f(0.99) = 9.8506, 
and 

respectively. If we compare these to the actual values, 

f(O.01) = 1.0306061 

f(0.99) = 592.03, 
and 
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we can see that as we approach a ole, a much higher-order approximation is required in 
t even modest accuracy, 

However, if initially we eliminate the pole before we make our calculations for values near 
x = 1, the accuracy of the method increases dramatically. Again, use a eecond-order 
approximation with pole cancellation, and we get 

= (1 + 2s + 322). 1 t 22 4- 322 
f(2) = (1 - 2) 

1-2 

After evaluating j, we let 
f 

f =  
As can be seen in this case, the second-order interpolation is exact. In most cases, however, 
only a marked increase in accuracy is realized. 

In order to cancel a pole in our frequency response, we write 

( j h  t j w  - A)M(h) 
( j h  + j w  - A) 

M ( h )  = 

and then find a polynomial approximation of ( jh+ jo -  A)M(h). Therefore, our interpolation 
becomes 

9 (26) 
Go + G l ( h  - ho) -I- * t Gk(h - ho) * * ( h  - hk-1) 

G(w + h) = 
( jh  + j w  - A) 

where the coefficient matrices are for a system devoid of the resonance problem. The 
following lemma shows how to compute the new coefficient matrices while preserving the 
form of the interpolating series. 

Lemma 3 Let ho, . . . , hk be given and set hm = 0 for all m > k .  For lhl < T ,  where r is 

defined in @4), define the coeficient matrices F$) implicitly via 

n +oo m-1 

t=l m=O i=O 
n ( j h  t j w  - At)M(h) = F$) n ( h  - hi) . 

Then 

m 

and 

m =  O , l ,  ... 
where we define FL? = 0 for all e. 
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Equation (28) is immediate from (23). 
m-1 

m=O i=O m=O i=O 
( j h  -+ j w  - An) Ft) ( h  - hi). (30) 

The assumptions that hm = 0 for all m > k and IhJ < T ensure that the series in (30) are 
absolutely convergent. We may thus rearrange the left-hand summation as follows: 

+oo m-1 

m=O i=O 

m=O i=O 
+oo m-1 

m=O iro 

Comparison with (30) gives (29). 0 

If we need to cancel resonant zeros, we then need to find a polynomial approximation of 
I&,. The following lemma illustrates how this is done. 

Lemma 4 Let ho, h l , .  . ., hk be given and set hm = 0 for all m > I C .  For lhl < r ,  where r 
is defined in (24), define the coefficient matrices D t )  implicitly via 

m 
Then 

0:) = (-j)" n M(h;) ,  

= (~t-l) - j ~ c l ~ ) / ( j h  + j w  - zn>, 

(32) 

(33) 

i=O 

and 
m = O,l, ... 

(4 where we define D-, = 0 for all e.  
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to that of the prece except that we start 

+m * +oo m-1 

m=O id m=zO i-0 
( j h  + j w  - A*) Dk' (h - hi) = C Ilk-') (h  - hj) (34) 

and continue from there. cl 

5 Frequency Response Interpolation Algorithm 
Step 1 Solve for Xo in 

and then solve recursively for X I , .  . . , xk in 
(j(ho + w ) l  - A)& = B , 

(j(hm + w ) l  - A)Xm = -jXm-1 . 

Step 4 Form the coefficient matrices GO,. . . , Gk via 

G = CX,")(') . 

Step 5 

(35) 

(36) 

(38) 

(39) 

Remark 
The method used to solve the recursive linear systems in the first step of the algorithm 
depends on the initial structure of the LTI system being investigated. If the system has an 
exploitable structure such as sparsity, an algorithm thai; exploits that particular structure 
will be used. If no such structure exists, an initial similarity transformation, most likely to 
upper Hessenberg form, will be applied to the system. 
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The placement of the interpolation points is of great importance in getting a good ap- 
proximation to the frequency response. We have tested three simple methods to place the 
interpolation points: linear, loglinear, and Chebyshev. We have also tested placement using 
the a priori information of the pole locations. 

Since frequency response is usually plotted against frequency on a log scale, the use of lin- 
early spaced interpolation points does not usually perform well. It places too many points 
at the end of an interval. Both the loglinear and the Chebyshev interpolation point place- 
ments have shown promise. The loglinear placement technique usually gives an excellent 
approximation in the beginning to the middle of an interval, but sometimes can fail mis- 
erably at the end of an interval. The Chebyshev interpolation points (see [8] )  spread the 
approximation error fairly evenly across the interval. However, several times the error of 
the Chebychev selection, although acceptable, is larger than that of the acceptable range 
of a loglinear interpolation of the same size. Currently, we are investigating possible hybrid 
techniques to exploit the best of both placement schemes. 

In the cases where we have tried placing interpolation points with the knowledge of the poles 
and zeros of the system the results have been mixed in comparison to the two previously 
mentioned techniques. What has been learned is that under no circumstances should the 
interpolation points be the same as the resonant frequency of a resonant pole or zero. How- 
ever, placing an interpolation point near the resonant frequency improves the approximation 
significantly. 

7 Conclusion 

In this paper we have presented a rational interpolation method for computing the frequency 
response of a system. A significant computational savings can be achieved over several of 
the current methods for computing a frequency response. An error analysis for the method, 
together with other details, can be found in 131. 

The method presented in this paper avoids the numerical problem of subtraction of near 
equal quantities in the difference terms by using the resolvent identity of Theorem 1. Also, 
simple pole and zero cancellation techniques significantly increase the accuracy of the algo- 
rithm. 

We are currently writing a software package to implement the algorithm in this paper. In 
addition, we are extending this algorithm for use with descriptor systems. 
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An Application of the IMC Software to Controller Design 
for the JPL LSCL Experiment Facility 

Guoming Zhu and Robert E. Skelton 

Space Systems Control Laboratory 
1293 Potter Engineering Center 

Purdue University 
West Lafayette, IN 47907 

ABSTRACT 

A software package which Integrates Model reduction and Controller design (The 
IMC software) is applied to design controllers for the JPL Large Spacecraft Control 
Laboratory Experiment Facility. Modal Cost Analysis is used for the model reduction, 
and various Output Covariance Constraints are guaranteed byT the controller design. 
The main motivation is to find the controller with the "best" performance with respect 
to output variances. Indeed it is shown that by iterating on the reduced order design 
model, the controller designed does have better performance than that obtained with the 
first model reduction. 
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e objective of this research is to develop controller design softw 
and Control) for a realistic flexible space s 
rests are two-fold: i) the design of high ~ r f o ~ a n c e  fixed order 

dynamic controllers for this complex structuxe, and ii) to test the efficacy of the IMC 
software for the search of the controller with the %est'1 performance, among all model 
based controllers. 

Almost all available controller design techniques are based upon a given model 
of the physical plant. In general, perfect models are impossible to construct. Modeling 
error exists in every mathematical model used for control design. There are three ways 
to deal with modeling error in a controller design procedure. First, one may use robust 
control theory. The controller designed with robust control theory is tolerant to a 
specified set of modeling errors. But a poor model may lead to a poor controller even if 
the Controller is robust with respect to the given model. Second, one may treat the 
modeling and controller design as a combined problem, and try to refine the design 
model to find one that is "appropriate" for controller design in the sense of best closed 
loop operation. The third method is adaptive control which intends to adjust the 
controller in real-time to compensate for modeling errors. 

From our experience a nominal controller design procedure based on an 
"appropriate" model may yield better performance than a robust controller that is based 
on an poor model (say, given by finite element modeling or identification). Hence, we 
use the second method to obtain a design model that is more compatible to the 
particular controller design than the other two methods. 

In this research the integrated design procedure is applied to design controllers 
for the LSCL Experiment Facility. Assuming that a "true enough" high order 
mathematical model can be obtained by some modeling method (analytical or by 
identification), our procedure reduces the "true enough" model (we shall call this the 
"evaluation model") to an order appropriate for full order controller design based on the 
reduced order model. Repeating the model reduction and controller design by using 
closed loop information such that the process is convergent, the integrated procedure 
produces a design model "appropriate" to the corresponding controller. 

The model reduction technique used in this experiment is the Modal Cost 
Analysis (MCA) which calculates each modal contribution Vi to a weighted quadratic 
cost function [7-91. 
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i 9  

i= 1 

ber of modes in the model. smallest con~bution (s 
indicates the modes to be deleted in the reduced model. Closed form analytical 
expression of Vi are available, see [8]. 

Two controller design methods (BOCC and EOL,) were applied to this 
experiment. The BOGC algorithm [ 1-43 designs controllers minimizing the control 
effort subject to output covariance constraints (for zero mean white noise input). The 
BOCC algorithm can be also used to satisfy the output f, constraints when the input is 
an f2 disturbance. The EOL, algorithm [5] is an extension of the deterministic 
interpretation of the BOCC. The EOL, designs controllers to satisfy given output f, 
constraints when the input f-2 disturbances have an outer product matrix upper bound. 
The main difference between those two design algorithms is that the BOCC algorithm 
only iterates on the feedback gain, but the EOL, algorithm iterates on both estimator 
and control feedback gains. We only present the BOCC results in this paper. The 
definition and solution of the BOCC and E O L  can be found in [3-51. 

There are two iteration loops in the IMC software, one inner loop and one outer, 
used to realize the integration of model reduction and controller design. The inner loop, 
called the a-loop, intends to obtain the controller for "best" performance (with respect 
to the evaluation model) with the given reduced order model (called the design model) 
by gradually increasing the required performance (smaller variance constraints). The 
outer loop iterates on the design model to make the design model be "appropriate" to 
the corresponding controller with the "best" performance. 

The paper is organized as follows. Section 2 combines model reduction and 
controller design techniques which is the main philosophy of the IMC softwaxe 
presented in Section 3. The controller design and test results are presented in Section 4. 
The last section adds some conclusions. 

2. INTEGRATION OF MODEL REDUCTION AND CONTROLLER DESIGN 

It is well known that finding a good model for control design is a difficult 
problem because of uncertain parameters, nonlinearity and neglected dynamics of the 
physical system. It is impossible to separate the modeling and controller design 
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ple, conside~ng a linear system 
control theory to design a controller. 
earized at some nominal point, but the no 

control signal level of the controller which will be designed after l ine~za t ion  of 
actuator model. Consequently, the modeling and controller design problems become an 
iterative process, see the examples in [6] .  

In this section we mainly consider the effect of the neglected dynamics of the 
physical system. We are trying to obtain the "best" performance for a high order given 
physical system with a fixed order controller. There are at least three ways to find a 
fixed order controller for a given linear system. The first way is to design a fixed order 
controller directly. The second is to design a full order controller first and then reduce 
the controller to the required order. The last one is to reduce the model first and then do 
the full order control design based on the reduced order model. The advantage of the 
first method is that the performance of the closed loop system with the designed 
controller is guaranteed. But unfortunately there exists no closed form for the design of 
such controllers. Since full order controller design methods are available for most 
control theories, H,, LQG and so on, we will use a variation of the third method, we 
call the integration of model reduction and controller design, to design reduced order 
controllers. 

The integrated design procedure, utilizing Modal Cost Analysis for model 
reduction and the BOCC or EOL, for controller design, is shown in Figure 1. The 
design procedure searches for the controller with the "best" performance by tuning the 
design model until the design model corresponds to the controller with the "best" 
performance. This procedure is developed under the following basic assumption that 
the only modeling errors existing in the design model are from the model reduction, Le., 
the evaluation model is assumed to be "true enough". This assumption allows us to 

evaluate the designed controller based on the evaluation model, prior to hardware 
testing in the lab. Of course, we also compare these analytical results with the 
experimental results. 

The evaluation model in Figure 1 can be obtained either from system 
identification or from mathematical modeling, e.g., the finite element model combining 
with the sensor and actuator dynamics. Generally, the size of the evaluation model is 
too large for controller design. Hence, the model reduction is necessary. -- 
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riance with respect to 

output covariance. Hence, the choice of those two matrices will directly effect the 
model reduction. How to choose Q and w is a major subject of this paper. For the first 
iteration of this experiment, matrix W is the input white noise covariance matrix Wp, 
and Q and R are diagonal matrices whose elements are the inversed square of the hard 
limitation on inputs and outputs, respectively. 

The main philosophy of our a-loop in Figure 2 is to obtain a sequence of 
controllers from low control effort to high. Here a denotes the controller number. The 
controller sequence is obtained by reducing the required performance specification 
during controller design. 

The main purpose of the BOCC a-loop is to obtain the "best" performance with 
the given (reduced order) design model (obtained from MCA model reduction of the 
evaluation model), which is expressed in the following form 

xp(k+l) = Apxp(k) + B,u(k) + 
Yp(k) = Cpxpoc) (2.1) 

The BOCC a-loop starts with the evaluation and design models. Suppose that the 
output yp can be divided into m output groups 9i. Let Yi(0) (i = 1, 2, ..., m) denote the 
open loop output covariance of the evaluation m d e l  for output group ?i, assuming that 
the open loop system is asymptotically stable. Define Li (i = 1, 2, ..., m) to be a lower 
bound of the output covariance of the closed loop system with any full order controller. 
Hence, any specification which is less than or equal to Li is unachievable with respect 
to the design model. Then the specification matrix Yi(U) (i = 1, 2, ..., m) can be 
generated by the following equation 

where 0 < p <  1 is a design parameter and a is the integer counter (iteration number for 
the a-loop). Note that the specifications are gradually reduced as a increases. The main 
reason to use (2.2) to produce specification Yi(cL) is to make the change of specification 
small (from one iteration to the next) when it is close to its lower bound L,. 
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- 
esign specifications 

the design model and the ath controller is as 
ith index a, called the ath controller, using 

because the BOCC controller is an LQG controller with a special choice of the output 
weighting matrix. But the closed loop system with the evaluation model may not be 
stable. If the closed loop system with respect to the evaluation model is unstable, the 
a-loop will be terminated, according to the BOCC a-loop diagram in Figure 2, 
otherwise the output covariance matrices Yf(a) and Yf(a) with respect to the 
evaluation and design models will be computed for future use. 

Since the open loop system is asymptotically stable, the closed loop system will 
be asymptotically stable if the controller gain is small enough. As the control gains 
increase, i.e., a increases, the closed loop system with respect to the evaluation model 
may become unstable. Hence, a plot similar to Figure 3 can be generated for analysis. 
We use a b  to denote the point with the "best" performance with respect to the 
evaluation model. The information on the %th controller will be used for the new 
model reduction because we want the design model to be "appropriate" to the controller 
with the "best" performance. The new output and input weighting matrices Q and R will 
be computed in the following way 

and 

where 0 I I 1 and 0 I ar, I 1 are design parameters. R(0) is the controller channel 
input weighting matrix used in the first MCA model reduction. Us(ab) and Up(%) 
(i = 1, 2, ..., nu) are the closed loop input variances of the q t h  controller with respect 
to the evaluation and design model respectively. Similarly, Yf(%) and Yf(q,) are the 
output covariances. The main reason to add these items to correct the input and output 
weighting matrices is to reduce the differences between the evaluation and design 
models for the % th controller. 

Qi(ab) is the convergent output weighting matrix for the ith block during the 
design of the ~ t h  controller. The importance of Qi(%) can be clearly observed in the 
OVC problem (a special case of the BOCC problem when each block has dimension 
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t is noted that during the 
is adjusted so that if 

corresponding i will be increased accordi 
the current output variance Yi and the specification Ti. Consequently, those outputs 
with hard-to-achieve specificarions (indicated by Yi = Ti) will end up with large a's, 
and those with easy-to-achieve specifications (Yi < Ti) will have the small Qi's. In fact, 
for those outputs that end up with variances smaller than the corresponding Vi's the 
final convergent Qi's will be zero. This implies that these output constraints are not 
important and can be disregarded during design. However, at the beginning, this 
information is unknown. As a result, the convergent Q appropriately reflects the 
importance of each output with respect to the given specification. This property is very 
helpful for the model reduction using Modal Cost Analysis, because MCA calculates 
the contribution of each mode to a weighted output cost E-yTQy and deletes the least 
important modes accordingly. Hence, if the weighting matrix can appropriately reflect 
the importance of each output, then the reduced model using MCA will keep the 
information which is important to the required performance. 

The controller evaluation part mainly evaluates the designed controllers in the a- 
loop study to see whether the performance is satisfactory or not. The evaluation (plot in 
Figure 3) will provide the information to adjust these design parameters, e.g., %, ol, 
and so on, in the a-loop study. 

As a result, it is clear now that in the integration of model reduction and 
controller design there are two iterative loops, the Q-loop and a-loop. The Q-loop is 
used to combine the model reduction and the controller design process such that at 
convergence the design model corresponds to the controller with the "best" 
performance. The a-loop intends to search for the controller of the "best" performunce 
with respect to the evaluation model, and a given design model. 

3. THEIMC SOFIWARE 

An IMC (Integration of Model reduction and Controller design) software has 
been developed to integrate the model reduction and controller design process 
presented in the last section. The IMC software makes it possible to obtain the rapid 
redesign capability in a workstation environment using MATLAB. 
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computation, and some expert is needed to manage the whole integrated design process. 
Some parameters must be chosen, and if changed, the whole process must be repeated. 
In order to reduce the repeated work during the integrated controller design process, we 
are motivated to put all the independent software modules, e.g., MCA model reduction, 
OVC, BOCC and EOL, controller design software, together to form a software 
package IMC. If some information of the physical system (like pulse responses), or a 
mathematical model is available, the software will go through the whole integrated 
process automatically such that a person who has no knowledge of MATLAB can 
design controllers using this software. This software is programmed in MATLAB 
which is available in most workstations. 

The main idea of this software is shown in Figure 1. For a physical system, the 
mathematical model of the given system can be obtained by identification or by 
mathematical modeling. Then the software starts either with the signals which are 
necessary for identification or with the given mathematical model. Based on the given 
model or identified model, the integrated process will produce controllers for 
evaluation. If the requirements of the evaluation are satisfied, the controllers can be 
implemented in the hardware equipment for testing. 

For this experiment, we used the finite element model plus sensor and actuator 
dynamics as our evaluation model. The IMC controller design process is shown in 
Figure 2. The IMC software (Version i m c j 0 3 )  has seven modules as follows. 

i) 

ii) 

iii) 

iv) 

v) 

vi) 

Constructing a continuous and discrete evaluation model from the given 
finite element model. 

Constructing a design model by MCA model reduction. 

Constructing a discrete evaluation model by identification (not available). 

a-loop study - discrete OVC controller design. 

a-loop study - discrete BOCC controller design. 

a-loop study - discrete EOL, controller design. 
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vii) uation Tool. 

n a controller fro 
discrete state spa 

controller design module, (for example, the BOCC a-loop study), one can iterate on the 
modules ii) and iv) to carry on the Q-loop. After the Q-loop has converged, one can 
evaluate designed controllers using module vii). Now let us introduce each module in 
detail. 

Using frequencies and mode shape vectors obtained from the finite element 
analysis, the first module combines the finite element model with sensor and actuator 
dynamics to form a continuous time state space model. By choosing a proper sampling 
rate, the discrete evaluation model can be obtained by discretizing the continuous time 
model. In the case that the order of the finite element model is relatively high, an 
additional (optional) MCA model reduction can be applied to obtain a lower order 
evaluation model. 

The MCA model reduction module includes two kinds of MCA model reduction 
routines, continuous and discrete versions. The discrete reduced order model can be 
obtained from the discretized high order model by both continuous and discrete MCA 
model reductions, because both MCA results provide the contribution of each mode to 
the total cost, which can be used to decide which mode should remain in the design 
model. Also a modal cost analysis table will be generated. 

Using the pulse responses or white noise responses, the identification module (not 
yet available) will produce an identified evaluation model by the q-Markov COVER 
method in [ 11- 131. 

The a-loop study modules for the OVC, BOCC and EOL, controller design are 
similar. Here we only discuss the BOCC a-loop study module. The block diagram of 
the BOCC a-loop study is shown in Figure 2. The main philosophy of the a-loop study 
is to obtain a sequence of the controllers from low control effort to high. As a result, the 
controller of the "best" performance can be obtained among those controllers. 

The evaluation tool box module includes seven blocks described as follows. 

i) Plotting pole locations. 

ii) Discrete simulation of pulse responses. 

iii) Plotting output variances with respect to a. 
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ontinuous simulation of pulse responses. 

vi) Transferring ATLAB data file to ASCII code data files. 

vii) Plotting FORTRAN simulation responses. 

4. CONTROLLER DESIGN AND EXPERIMENTAL RESULTS 

4.1 System Description and State Space Model 

The JPL Large Space Control Laboratory Experiment Facility [14] is shown in 
the Figure 4. The main component of the apparatus consists of a central hub to which 
12 ribs are attached. The diameter of the dish-like structure is slightly less than about 19 
feet, the large size being necessary to achieve the low frequencies desired. The ribs are 
coupled together by two rings of wires which are maintained under nearly constant 
tension. Functionally, the wires provide coupling of motion in the circumferential 
direction which would otherwise occur only through the hub. The ribs, being quite 
flexible and unable to support their own weight without excessive droop, are each 
supported at two locations along their free length by levitators. A levitator assembly 
consists of a pulley, a counterweight, and a wire attached to the counterweight which 
passes over the pulley and attaches to the rib. The hub is mounted to the backup 
structure through a gimbal arrangement so that it is free to rotate about two 
perpendicular axes in the horizontal plane. A flexible boom is attached to the hub and 
hangs below it, and a weight, simulating the feed horn of an antenna, is attached at the 
bottom end of the boom. A 3 foot long boom is used for this experiment. 

Actuation of the structure is as follows. Each rib can be individually manipulated 
by a rib-root actuator mounted on that rib near the hub. A rib root actuator reacts 
against a mount which is rigidly attached to the hub. In addition, two actuators are 
provided which torque the hub about its two gimbal axes. The hub torquers do not 
provide torque directly but rather are linear force actuators which produce torque by 
pushing or pulling at the outer circumference of the hub. The placement of these 
actuators guarantees good controllability of all of the flexible modes of motion. The 
locations of the actuators are shown in Figure 5. Two hub actuators are used for control 
in x and y directions. They are denoted by HA1 and HA10 respectively. The transfer 
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command torque to net torque is sho 

T(s) 3947.8 -= 
-43s + 3947.8 

Only four rib root actuators are used in this experiment. They are rib root actuators on 
ribs 1,4,7 and 10, denoted by RA1, RA4, RA7 and RA10. The transfer function from 
the command force to the net force is 

F(s) 24674 -= 
Fc(S) s2 + 11 1.1s + 24674 - (4.2) 

The sensor locations are also shown in Figure 5. First, each of the 24 levitators is 
equipped with a sensor which measures the relative angle of the levitator pulley. The 
levitator sensors thus provide, in an indirect manner, the measurement of the vertical 
position of the corresponding ribs at the points where the levitators are attached. Four 
position Sensors measure rib displacement at the rib-root actuator locations. Sensing for 
the hub consists of two rotation sensors which are mounted directly at the gimbal 
bearing. There are a total of 24 levitator sensors used for measurements. They are 
denoted by LS1 to LS24. The transfer function from the physical output to the 
measurement is assumed to be one because the optical sensor has pretty wide 
bandwidth. Two hub optical angle sensors, HSl  and HS10, are used to measure the hub 
angle in x and y directions. Similarly, the transfer function is assumed to be one. Only 
four rib root sensors, RS1, RS4, RS7 and RS10, are available for measurements. The 
dynamics are omitted (the transfer function is assumed to be one). Since the hub and rib 
root Sensors are very noisy, a first order filter is applied for each of those six sensors. 
The transfer function of the filter is 

502.65 H(s) = 
s+502.65 * 

(4.3) 

A summary of outputs and inputs is contained in Table 1. 
JPL created two finite element models with 30 and 84 modes respectively. The 

30 mode finite element model is used in this experiment. All modes with natural 
fquenc ie s  less than 10 Hz are given in Table 2. Let the structure be described in its 
modal coordinates by the following 
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where Ua is the actuator output signal and y is the displacement vector co-located with 
the sensor inputs. JPL provided 30 frequencies (ai, i = 1, 2, ..., 30) and 30 mode shapes 
(pi, i = 1, 2, ..., 30) obtained from a finite element analysis. 

The actuator output signal Ua is now filtered by hub actuator and rib root actuator 
dynamics modeled by the following 

where u is composed of the command signals to the hub and rib root actuators, and w, 
is the actuator noise with intensity w,. The measurement output z now can be 
presented by 

x, =A,x,+B,y 
z = Csxs + D,y + v 

(4.6) 

where v is the sensor noise with intensity v. Combining models (4.4-4.6), we can 
obtain a continuous time full order model.Since the frequencies of all modes in our 
model are less than 5 Hz, we discretize the continuous model at 25 Hz which is the 
computer sample rate. The discrete evaluation model is as follows. 

(4.7) 

where wp and v are white noise with covariance matrix W, = wp/25 and V = q/25 
respectively . 

4.2 The BOCC Controller Design and Experimental Results 
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e design strategy used here is the integration of model reduc 
design introduced in the last section. Using the open loop experime 
we adjusted some frequencies, damping coefficients and inpudoutp 
that the responses of the finite element model combining with the sensor and actuator 
dynamics were closer to the experimental pulse responses. The adjusted frequencies 
and damping coefficients are shown in Table 2. The magnitude coefficients vary in 
different designs. 

4.2.1 The OVC Design and Experimental Results 

The OVC Controller Design 

We start controller design with the OVC algorithm because the OVC problem is a 
special case of the BOCC. Note that in this case the constraints on the output 
covariance matrices reduce to those on output variances. Hence, all the constraints are 
scalars. Some errors in the finite element model of the structure are found. The errors 
result from the sign convention on the hub sensors. Also the units used in the finite 
element model and those used in the real-time control computer are different. The units 
used in the measurement and output are meter and radian in the finite element model 
but those in real-time control computer are milli-meter and miili-radian. We use 
inpudoutput scaling matrices to overcome unit differences and finite element modeling 
errors. The input scaling matrix is 

S ,  = diag[0.5, -1, 1, 1, 1, l]e+3 , (4.8) 

and the output scaling matrix S ,  is a diagonal matrix with unity diagonal entries except 
the 26th diagonal element which is negative unity. The finite element model provided 
by JPL is modified by redefining the input vector Suu, and output vector S,y as u, and 
y in (4.4) respectively. The evaluation model used in this design is obtained by 
combining the modified finite element model, sensor and actuator dynamics in (4.4- 
4.6). The evaluation model is discretized at a sampling frequency 25 Hz. The state 
space realization of this model is in the form (4.7), where 4, Be, De. C, and are 
the system matrices respectively of dimension 78 x 78, 78 x 6, 78 x 6, 30 x 78 and 
30 x 78, and u, yp and z are input, output and measurement vectors, respectively, as 
described in Table 1. Vector wp is the system noise from hub and rib root actuators with 
the following variances, 

-- 
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= diag[O.W, 0.04, 0. 

easurement noise of the levitator, 

V = block diag [1.5625122, 3.05012, 0.250014] , (4.10) 

where the suffix of matrix I indicates the dimension of the identity matrix. Ail the 
variances are taken from signal to noise ratios. 

In order to decide the order of the controller to be used, we designed 12th, 16th, 
20th and 24th order controllers for the first Q-loop. It turns out that 16th, 20th and 24th 
order controllers have close performances with respect to the evaluation model. But the 
12th order controller yields poor performance. Hence, we choose controller order to be 
16. The 16th order controller is designed by using the design methodology presented in 
the last section. 

The design parameters used in this design for the Q-loop are 

p = 0.2 ; % =0.5 ; a, = 0.5 . (4.1 1) 

We compute the open loop output variance Yi(0) with respect to the evaluation model, 
and the lower bound Li for the design model. 

The Modal Cost Analysis results for the different Q-loops 1 and 3 can be found 
in Table 3. The first 8 dominant modes in the Q-loop 1 and 3 are the same. Hence, in 
this case the Q-loop will not converge but oscillate between two models which are 
obtained in Q-loop 1 and 2. Since the "best" performance with respect to the evaluation 
model is obtained in Q-loop 2, we use the reduced order model of Q-loop 2 which 
keeps modes 2, 1, 14, 13,27,28,4 and 6 as the final design model. The iteration on the 
Q-loop is terminated at Q-loop 3. 

Note that for each Q-loop the OVC a-loop algorithm produces a number of 
controllers from low to high control effort. The inpudoutput variance curves of Q-loop 
2 for the 16th order controller design are shown in Figure 6. The solid curve with "0" is 
the performance of the controllers obtained from the OVC algorithm evaluated with the 
design model. The dashed line with I@*" evaluates these controllers with the evaluation 
model. In the a-loop study, 13 controllers are produced. The first 12 controllers 
stabilize the evaluation model. The output variances of the closed loop system with 
respect to the evaluation model are plotted in Figure 6. The a-loop iterations terminate 
because the 13th controller destabilizes the evaluation model. 
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it can be observed that 

. Similar inputloutput vari 
order to show the improvement of iteratin 
differences between the output variances of Q-loop 0 and those of Q-loop 2 for each 
output. Let Y2(i,j) and Yo(i,j) denote the ith output variance obtained by evaluating the 
jth controllers of Q-loop 2 and 0 with the evaluation model respectively. Plots 
[Y2(i,8) - Yo(i,8)]No(i,8) and [Y2(i,9) - Yo(i,9)]No(i,9) can be found in Figure 7. 
Since plots for controllers 8 and 9 are negative for almost all outputs, it is clear that the 
Q-loop improves the model reduction and controller design process, i.e., a better 
controller with respect to the evaluation model can be obtained by integration of model 
reduction and controller design. 

closed loop syste 

The OVC Controller Experiment 

Controllers 1, 3, 5, 7, 9, 11 and 13 of Q-loop 2 were tested on the JPL LSCL 
Experiment Facility. It is expected that the responses of controller 1 are pretty close to 
the open loop ones due to low control effort. The sequence of controllers allows one to 
do lab tests easily with little risk of damaging the system. Starting with low control 
effort controller, we can test controllers one by one with increased control effort, and 
stop the test when some controller destabilizes the system, or the oscillations become 
unacceptable. Because the control effort is increased gradually, the test facility will not 
be damaged. This is a nice feature of the integrated controller design strategy. 

Since the system is highly damped, a pulse input with the width equal to a sample 
period (0.04 second) does not excite the system much. Hence, it is difficult to compute 
all the output variances by experimental data. We did the pulse experiments for each 
controller obtained in Q-loop 2 with pulse input on HA1 and HA10 respectively, where 
the magnitude of the pulse is 2 Newton-meters, and the width is 4 seconds (100 sample 
periods). We computed the input and output c2 norms in the following way 

k=101 

(4.12a) 

(4.12b) 

where A = 0.04 second is the sample period and p = 1001 is the number of sample 
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evaluation model, and the solid line with "0" is also from simulated data but with the 
design model. Note that we did not test every controller designed in the a-loop study of 
Q-loop 2. Hence, the "+" signs on Figure 5.4 are the f2 norms of the open loop 
responses and closed loop responses related to controllers 1, 3,5,7,9, 11 and 13 from 
left to right. Due to noisy data and the difference between the finite element model and 
the real structure, lab tested l 2  norm curves stay above the simulated ones. It is obvious 
that the 9th controller in the a-loop study of Q-loop 2 provides the "best" closed loop 
12 response, which is consistent to the a-loop study result. In the a-loop study of Q- 
loop 2, the 13th controller destabilizes the evaluation model. It turns out that the closed 
loop system with that controller is unstable, too. It is clear from Figure 8 that the C2 
norms blow up for controller 13. Hence, the test result agrees with the analytic one. The 
controller yielding the best performance experimentally is the best controller from the 
analytical designs. 

Because the control experiment facility has no special channels to apply 
disturbances, the test has been done in such a way that the system is open loop at t = 0, 
when exciting signals are applied to the structure through control actuators. When the 
open loop command signals vanish, the control loop will be closed to conduct the 
closed loop experiment. Hence, the exciting signals applied through the actuator 
channels provide the initial condition for the structure. 

The pulse responses of HA1 with controller 9 of Q-loop 2 are shown in Figure 9, 
where all input pulses are with the magnitude 2 Newton-meters and period 4 seconds. 
Hence, the closed loop control started at the 4th second, and open and closed loop 
responses are supposed to be the same for the first 4 seconds. It is obvious that the first 
two modes with frequency 0.0902 Hz are excited.From those responses, it is clear that 
the controller improves the performance of the system. 
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From the experience of the OVC controller design we feel that it is not necessary 
to use all outputs for controller design because of the symmetrical property of the 
structure. Hence, we choose to reduce the output number for the model reduction and 
control design process but still use all 30 measurements for the control design purpose. 
Outputs used for the BOCC design are 

Yp = b 1  Y4 Y13 Y16 Y25 Y26 Y27 Y28IT - (4.13) 

We group outputs in the following way 

(4.14) 
Y16 

Hence, in this case constraints of the BOCC problem are 2 x 2 matrices for all output 
groups. Physical interpretation of this design is clear. Consider the output group f3 

which is hub angle in x and y directions. Suppose that the maximal singular value of the 
constraint matrix is 03. Then the design will guarantee that the hub angle at any 
direction of x-y plane will be less than or equal to the square root of a3 times the input 
C2 norm. 

According to the lab test of the OVC controllers, the output scaling matrix is 
changed as follows 

S, = block diag[I24, 1, -1, O.&] , (4.15) 

where the subscript of matrix I denotes the dimension of the identity matrix. The input 
scaling matrix remains unchanged. 

The noise covariance matrix Wp is changed to a non-diagonal one to allow 
correlated noise on rib root actuators, where 
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- - 

p = 0.2 ; aq = 0.5 ; = O S  . (4.17) 

- 
0.040 0. 
0.000 0.040 O.OO0 
0.000 0.000 0.720 
0.000 0.OOO 0.360 0.720 0.360 0.360 
0.000 0.000 0.360 0.360 0.720 0.360 
0.000 O.OO0 0.360 0.360 0.360 0.720 - - 

The open loop output covariance matrix and lower bound of the 'output covariance 
matrix are computed in same way as in the OVC design. 

The MCA model reduction results of the BOGC design is quite similar to the 
OVC Case. The Q-loop does not converge but oscillates between two design models. 
We plot the closed loop output maximal singular value curves with respect to the 
summation of input variances, where the maximal singular values are computed with 
respect to the design and evaluation models. The plot for Q-loop 2 is shown in Figure 
10, where all symbols have the same meaning as those in the OVC design. It is 
observed that the "best" performance of output group 1, which is difficult to be 
achieved by the design, is provided by the 12th controller designed in Q-loop 2. Those 
controllers designed in Q-loop 2 were tested in the lab. In the a-loop, fifteen 
controllers are designed. All controllers stabilize the evaiuation model. The 12th 
controller provides the "best" performance for output group 2. 

The BOCC controller Experiment 

The controllers 1,3,5,7,9, 11 and 13 of Q-loop 2 were tested on the JPL LSCL 
Experiment Facility. We define the f-2 norm for each output group as 

with the same definition on the input (2 norm as in the OVC case. The inpudoutput f-2 

norm curves of the BOCC test are shown in Figure 11. From the inputloutput f-2 norm 
plots in Figure 5.11, the "best" 12 performances are obtained by the 11th controller of 
Q-loop 2. The analytical c 2  responses of output group 4 are quite different from the 
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5. CONCLUSIONS 

A reduced order controller design methodology with an integration of model 
reduction and controller design has been applied to the JPL LSCL Experiment Facility. 
This design strategy is an extension of that in [lO,15]. The design strategy has provided 
a practical method for large space structure controller synthesis. The application of this 
strategy to the JPL LSCL Experiment Facility has met our high expectation. 

From this experiment, we see that iterating between modeling and control 
(selecting an "appropriate" design model) plays an important role in the controller 
design. For two different design objectives (the OVC and BOCC designs), the iteration 
in the Q-loop improves the design model, which indicates that the integration of model 
reduction and controller design does improve the controller synthesis. 

This is the first BOCC controller design tested in lab. The BOCC design 
algorithm, which is a generalization of the OVC and OCC algorithms, works well for 
this project. The difference in the performance between the OVC and BOCC design is 
attributed to the difference in the type of design specifications, rather than any 
preference for one method over the other. The BOCC is much more general, including 
the OVC as a special case. 

Finally, a MATLAB software package IMC has been produced to integrate 
modeling and controller design for flexible structures. This is the first experimental test 
of this software. 
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Notation 
LS1-LS24 ( y ~  - y ~ )  

I 69.8(mrad) 
Rib Root Actuator Rib Root Sensor 

Limit 
114.3 (mm) 
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Mode No. 

1 
2 .  
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

(Original) 
0.0902 
0.0902 
0.2089 
0.2527 
0.2527 
0.2894 
0.2894 
0.3218 
0.3218 
0.3435 
0.3435 
0.3509 
0.6150 
0.6150 
1 SO83 
1 S295 
1.5295 
1.5461 
1.5461 
1 S625 
1 S625 
1 S744 
1 S744 
1.5746 
1.6842 
1.6842 
2.577 1 
2.577 1 
4.8576 
4.8576 

( M d f i d )  
0.0975 
0.09 17 
0.2089 
0.2527 
0.2527 
0.2894 
0.2894 
0.3218 
0.32 18 
0.3435 
0.3435 
0.3509 
0.6250 
0.6200 
1 SO83 
1.5295 
1 S295 
1.5461 
1.5461 
1 S625 
1 S625 
1 S744 
1.5744 
1 S746 
1.6842 
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-loop 1 
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-loop 3 
ab=9 
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4.8554eM 
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4.7 18% 1 
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Abstract 

The dynamics and control of flexible aerospace structures exercises many of the 
engineering disciplines. In recent years there has been considerable research in the developing 
and tailoring of control system design techniques for these structures. This problem involves 
designing a control system for a multi-input, multi-output (MIMO) system that satisfies various 
performance criteria, such as vibration suppression, disturbance and noise rejection, attitude 
control and slewing control. Considerable progress has been made and demonstrated in control 
system design techniques for these structures. The key to designing control systems for these 
structures that meet stringent performance requirements is an accurate model. It has become 
apparent that theoretically and finite-element generated models do not provide the needed 
accuracy; almost all successful demonstrations of control system design techniques have involved 
using test results for fine-tuning a model or for extracting a model using system ID techniques. 

This paper describes past and ongoing efforts at Ohio University and NASA Marshall 
Space Flight Center (MSFC) to design controllers using "data models". The basic philosophy 
of this approach is to start with a stabilizing controller and frequency response data that describes 
the plant; then, iteratively vary the free parameters of the controller so that performance 
measures become closer to satisfying design specifications. The frequency response data can be 
either experimentally derived or analytically derived. One "design-withdata" algorithm 
presented in this paper is calied the Compensator Improvement Program (CIP). The current CIP 
designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are 
achieved. The center-piece of the CIP algorithm is the constraint improvement technique which 
is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, 
feasible performance metrics from iteration to iteration. The paper also presents a recently 
demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design 
System (MADCADS), developed for achieving H, type design specifications using data models. 
Control system designs for the NASAIMSFC Single Structure Control Facility are demonstrated 
for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that 
require analytical plant models are also presented. 
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Introduction 

The performance objectives in the design of controllers for flexible structures (FS’s) 
include vibration suppression, disturbance rejection, and attitude control. FS’s are characterized 
by having many low frequency, closely spaced, lightly damped structural modes. For controller 
designs to meet specifications, several structural modes must lie within the control system 
bandwidth. Because the structural modes of FS’s are inherently lightly damped, they can cause 
vibrations problems once excited, and they provide paths of propagation between disturbances 
and quantities being controlled or regulated. The controller design process must either dampen 
or suppress (notch) these modes. 

Because the modes for many FS’s are closely spaced in frequency, the design process, 
e.g., LQG, H, , loop-at-the time, p-synthesis, etc., used to dampen and/or suppress these modes, 
typically produces controllers with lightly damped characteristics in the Frequency range of those 
modes inside the control system bandwidth. This produces significant problems of robustness 
to model inaccuracy. Experience has shown that models developed either from physical laws or 
finite element methods (FEM’s) do not provide sufficient accuracy for controller designs for FS’s 
with stringent vibration/disturbance/attitude performance specifications. It is not anticipated that 
significant breakthroughs will occur in control system model development from either physical 
laws or FEM’s in the next decade. 

An alternative is to develop control system design models from test results. The normal 
approach is to fabricate the FS, perform testing, and extract an analytical control system design 
model from the test data. The last step is called system identification (ID), and the results can 
either be a time domain or frequency domain model. This process is not trivial and is greatly 
complicated by FS’s being inherently multi-input, multi-output (MIMO) in nature. In fact, 
system ID for FS’s is still more of an art than a science and is time consuming and numerically 
intensive. Furthermore, for the MIMO case the order of the resulting model of the system can 
easily exceed one hundred. Numerical techniques used to design controllers cannot normally 
handle orders of this magnitude. To circumvent the order problem, the model is reduced, using 
model reduction schemes. The model reduction schemes “throw things away”, and some produce 
models with different modes and mode shapes than were produced by system ID. The 
consequence is a design model that is significantly different from that identified. A controller 
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design based on the reduced model may or may not produce a closed loop system satisfying 
design specifications. e design does not meet sp~ifications, the designer must either find 
a better model or fine-tune the design. 

Alternate approaches are obviously needed. Approaches that directly utilize data models, 
Le., test data or frequency response data obtained by operating upon test data by an FFT, to 
design controllers or fine-tune reduced order controllers, can avoid or circumvent the pitfalls of 
the system ID, model reduction, controller design process. 

The philosophy of designing controllers using data models is not new. One of the most 
successful ventures in the development of an automated approach to the design of controllers for 
complex aerospace vehicles using frequency response data models is the Compensator 
Improvement Program (CIP) developed for NASA/MSFC in the 1970's for aiding in the design 
of controllers for the ascent flight control systems of the Saturn V and the Space Shuttle [ 1,2]. 

In this paper the description of the control system design problem as an abstract 
mathematical programming problem is presented. This is followed by a brief description of a 
straightforward algorithm used to find the solution to this problem using data models. Next, the 
basic features of two software programs, the CIP and the Model and Data Oriented Computer- 
Aided Design System (MADCADS) that implement variations of this algorithm are described. 
The application of these programs to the design of controllers for a flexible structure are then 
presented. Finally, plans for future enhancements to CIP and MADCADS are described, 
followed by concluding remarks. 

An Algorithm for Design with Data Models 

This section illustrates how the control systems design problem can be cast as a 
mathematical programming problem and presents a viable, iterative algorithm for its solution. 
Two software programs using this iterative algorithm are then described. 

Problem Statement and Solution 

The problem of designing a controller to meet various specifications can be stated 
abstractly as a mathematical programming problem of the form: Find x E R" to satisfy 

&(I) 2 0, i = 1,2, ..., N, 

where each J is a function corresponding to a design specification and x is a vector of design 
-- variables that correspond to the free parameters of a controller representation. An approach to 

solving this problem using data models that has been proven effective is the Constraint 
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Improvement Technique (CIT). e CIT is based upon the fundamental principles of 
optimization in finite ~imensional spaces under the assumption that the constraint functions are 
differentiable functions of the controller's parameters. The CIT has the following algorithmic 
structure. Let dk) denote the value of the parameter vector at the k" iteration. Set k = 1. 

Step 1: r e s t  for convergence.] If all the constraints are satisfied, stop. Set the 
solution equal to x",. 

Step 2: [Calculate a search direction.] Compute a nonzero d(k) E R" that has 
the possibility of improving some function of the constraints. 

Step 3: [Calculate a step length.] Compute a nonnegative a(k) such that when 
the constraint fimctions are evaluated at dk) + aWk) a measure of 
algorithm progress is improved. 

Step 4: [Update parameters.] Set = dk) + dkWk) and k + k + 1. Go to 
Step 1. 

The key step in determining performance for this algorithm structure is the calculation 
of the search direction. The search direction as determined by CIT is calculated by.finding d(k) 
such that 

where V' is the gradient of the i " constraint function, cy) is a positive scalar and 7"') is a set 
denoting the constraints violated at the k" iteration. If the number of elements in Fk) is less 
than or equal to the dimension of the parameter space and all the V'(x@)) are linearly 
independent then there exists a d(k) to satisfy Equation 2. The requirement that eachcy) > 0 
insures that all the violated constraints can be "theoretically" improved at each iteration. 
Equation 2 is actually an underdetermined system of linear equations that can be written in the 
form 

where is a matrix with rows formed from the gradients and dk) is a vector formed from the 
C ; ~ ) ' S .  The angle between the search direction and the i" gradient is given by 
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Minimizing the 2-norm solution for d(’) in Equation 3 keeps this angle as small as possible for 
each i . Experience has shown that choosing 

(which causes Of) = 6:) V i, j E T@)) provides good algorithm performance. 

CIP Overview 

The first software program to employ CIT has been CIP; a viable candidate for 
improving or augmenting control system designs for FS’s. It can be used to recover lost 
performance caused by spillover in state space or transfer function designs or to fine-tune loop-at- 
the-time designs. The essence of CIP is to start with an initial stabilizing design and iteratively 
increment the design parameters so as to improve open loop performance measures. The initial 
version of CIP was developed to improve designs of controllers for single input, multiple output 
systems [ 11. Later CIP was extended to handle true MIMO systems 121. 

CIP views the connection of the controller/plant as a multiple loop system. The general 
block diagram for which CIP has been tailored is shown in Figure 1. The design philosophy 
implemented in CIP is to iteratively increment the parameters of the controller so that 
simultaneous improvement of the open loop frequency responses of each loop occurs with all 
other loops closed. For complex systems, such as FS’s, this task is pragmatically impossible by 
manual design techniques. In regard to Figure 1 the loops are broken between the controller and 
the plant. 

The prominent features and characteristics of CIP are described as follows: 

(1) The plant or system is assumed to be described in the form of a transfer function matrix. 
CIP requires frequency response data of each element of this matrix for a system 
description. By using frequency response data as a system model, numerical 
problems in handling large order systems are eliminated, and experimentally determined 
frequency responses can be directly accommodated. 

(2) Performance specifications can be made frequency dependent. This accommodates 
different specifications for phase and gain stabilization regions. 
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Figure 1: General Block Diagram for which CIP is Designed 

(3) The controller is described as a transfer function matrix in which each element is 
represented as a ratio of first and second order factors. For continuous controllers these 
are s-plane functions, whereas for digital controllers these are w-plane functions. The 
coefficients of these factors are varied by CIP to improve the system performance. By 
constraining the variations in certain coefficients, restrictions can be placed on a 
controller element. For example, the D.C. gain of an element can be held constant to 
assure steady-state error performance, the coefficients of first order factors can be 
constrained to be positive in order to avoid first order right-half plane poles and zeros, 
or the damping ratios of second order factors can be specified to be above minimum 
values in order to assure robustness of the controller. 

(4) CIP can test for system stability on each iteration. 

(5) The coefficient change vector computed by CIP assures from iteration to iteration that 
an improved design results. 

The code is started by specifying the system with frequency response data for each 
element of the transfer function matrix, the initial compensation, the desired design 
specifications, etc. At each iteration the performance measurements of the system are evaluated 
by opening each feedback loop, with all other loops closed, and determining stability and 
attenuation margins. The performance measurements are compared with respect to the design 
specifications; if all specifications are satisfied, the design is complete, and the process is 
terminated. Otherwise, the controller coefficient change vector (search direction) is computed 
using the gradients of the unsatisfied performance measurements with respect to the free 
parameters of the controller. A step is then taken along the search direction to compute a new 
compensator such that an improved solution is assured. If a step cannot be found that improves 
the performance measures above some user specified minimum, convergence is assumed. 
Otherwise, the iterative process is repeated. 

-- As discussed previously, a property of the search direction computed by CIT is that it 
has a positive inner product with all gradient vectors; as a consequence, it is theoretically 
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possible to simultaneously improve all unsatisfied performance measurements. 
a practical point of view small d e ~ a ~ a t i o n s  in some performance measurements are greatly 
outweighed by large improvements in one or more of the others. Such a philosophy has been 
incorporated into CIP. 

MADCADS Overview 

Recently, MADCADS, a code similar to CIP and based upon CIT, has been developed 
to use frequency domain data models to design controllers to meet H, -type multivariable control 
system design constraints 131. An example of a typical constraint is the shape of the.frequency 
response of the maximum singular value of the sensitivity function which can be written as 

where c is a function defined so as to achieve desired closed loop specifications. 

In contrast to CIP, MADCADS uses a state-space realization to parameterize the 
controller in order to provide more flexibility in the controller's structure. Since the number of 
parameters in an arbitrary state-space realization is rather large (more than n2 for an n" order 
controller), it is necessary for computer memory limitations and algorithm performance to limit 
the number of parameters that are free to change at each iteration. In the current MADCADS 
the number of free parameters is limited by restricting the "A " matrix of the realization to be 
in upper-Hessenberg form. This does not pose any serious limitations on the structure of the 
controller. MADCADS also differs from CIP in that controllers for sampleddata systems are 
designed directly in the z-plane rather than in the w-plane. The current version of MADCADS 
does not assume any particular block diagram; rather the user must code subroutine modules to 
calculate constraints and gradients as they are needed. A large library of these modules has been 
developed for frequency dependent singular value constraints for various control system 
configurations. 

Applications to the SSC Facility 

This section describes the application of CIP and MADCADS to a flexible aerospace 
structure ground test facility. The details of the controller design procedures and experimental 
results of the implementations are also presented. 

Description of the SSC Facility 

A schematic of the NASA Marshall Space Flight Center Single Structure Control (SSC) 
Facility is shown in Figure 2. The SSC Facility is suitable for the study of line-of-sight (LOS) 
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and vibration suppression control issues as pertaining to flexible aerospace structures. The 
primary element of the SSC Facility, a spare Voyager magnetometer boom, is a lightly damped 
beam measuring approximately 45 feet in length and weighing about 5 pounds. 

Figure 2: Schematic of the ACES Structure 

The goal of the control system design is to maintain the reflected laser beam in the center 
of the antenna (location of the detector) in the presence of disturbance introduced by the base 
excitation table (BET). The digital controller is to be implemented on the HP9000 computer 
located at the facility using the fixed sampling rate of 50 Hertz and a fixed, one sample period 
computational delay. The results of other controller designs for the SSC Facility have been 
reported in the literature [4]. 

The experimental open loop frequency response from the y-axis of the Image Motion 
Compensation (IMC) gimbals to the x-axis LOS error is shown in Figure 3. The effect of the 
computational delay is quite apparent from analysis of the phase characteristic. The frequency 
responses of the other axes of the IMC-to-LOS are similar, although the cross-axis terms have 
less gain. The open loop frequency response from the y-axis Advanced Gimbal System (AGS) 
gimbal to the y-axis base gyro is shown in Figure 4. This response reveals the numerous lightly 
damped modes of the structure. The frequency responses of other elements of the AGS-to-base 
gyros transfer function matrix are similar. Mathematical modeling of the structure does not 
provide a model with sufficient fidelity to accomplish the above stated design goal. The 
frequency responses shown in Figures 3 and 4 were obtained by first exciting the system with 
pseudo-random inputs applied by the IMC and AGS, respectively, collecting the time response 
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data and then using FT techniques to compute the frequency response data. Averaging 
techniques were 
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used to minimize the effects of noise and environmental disturbances. The error in the AGS 
magnitude data is estimated to be 10 dB or less for frequencies above 0.5 Hz. 

There is a pendulum mode in the axis represented by Figure 4 with a frequency of 
roughly 0.15 Hz. As can be seen, the data does not show a lightly damped mode at this 
frequency. This is a resolution problem caused by a limitation in the data acquisition system 
hardware preventing the storage of a sufficient number of data points for accurately computing 
the frequency response characteristics of this mode. In fact, from other studies it is known that 
the frequency response data should show a peak of roughly 40 dB above the value shown. 

Apdication of CIP 

Since it is felt by the authors that an important factor in achieving a successful design for 
the system is the attainment of increased damping of the modes of the structure, the design using 
CIP has been limited to this goal. From Figure 4 it is seen that all the modes up to 5 Hz are 
reasonably phase stabilized. The first 180 degree crossing is roughly at 8 Hz. The design 
strategy is to gain stabilize all modes above 3 Hz, leave the modes below 3 Hz phase stabilized, 
and close the loop with a D.C. compensator gain of at least 60 dB. It is expected that significant 
damping will be added to all modes less than 3 Hz. The major difficulty in carrying out the 
design strategy is to roll-off (gain stabilize) the modes above 3 Hz while not adversely affecting 
the phase of the modes below 3 Hz, viz., minimizing phase lag spillover. 

As a start, a low pass elliptic filter is designed with a break frequency of 6 Hz. The 
elliptic filter is chosen in order to minimize the phase lag spillover in the frequency range less 
than 3 Hz and to provide satisfactory attenuation of modes above 6 Hz. The stability and 
attenuation margins with this compensation are shown in Table 1. 

CIP was run for 18 iterations and converged without satisfying all the design constraints, 
although significant improvements had been made. A third order factor with unity frequency 
response with poles near the frequencies where the constraints were not satisfied was placed in 
cascade with the resulting compensator. CIP then ran for 24 more iterations and satisfied the 
design constraints. The resulting margins are given in Table 2. 

The resulting compensator was transformed to the time domain and down-loaded to the 
control computer of the SSC Facility. As expected significant improvements in performance 
were observed. In fact, test results showed that the damping of the pendulum mode more than 
tripled. It was assessed that more damping could be obtained if the D.C. gain could be raised; 
it was also realized that the loop gain could be doubled without jeopardizing the stability of the 
loop. The gain was raised conservatively to 1500, and a two cycle sine pulse at 0.15 Hz was 
applied. The results are shown in Figure 5. If this is closely compared to the open loop 
response with the same excitation, shown in Figure 6, several observations can be made. The 
pendulum mode damping has been increased by a factor of three, as estimated from comparison 
of the logarithmic decrements. The modes with frequencies of roughly 0.58, 0.76 and 1.9 Hz 
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are not detectable. A closed loop mode with a frequency of 

not be predicted due to the fact that there is roughly 10 dB and 25 degrees uncertainty in the 
frequency response at this frequency. Further design work would involve performing more 
extensive identification studies at the appropriate frequency, possibly utilizing the closed loop 
response. 

a mode not being s u ~ c i e n t ~ y  hase stabilized with th 

Table 1: Design Constraints at Iteration 1 

I I I 2.82 8.6 dB 8da  I 
M i u m  phare Margin 
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M a x i I l l ~  AaallIatim h4argin 
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Table 2: Design Constraints at Iteration 42 
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Figure 5: Closed Loop Response to a Two- Figure 6: Open Loop Response to a Two- 
Cycle Sine Pulse Input Cycle Sine Pulse Input 
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In the application of MADCADS, a complete multivariable design is performed. The 
basic design philosophy is to dampen the pendulum modes and the bending modes of the 
structure by using feedback from the base gyros to the AGS while using the IMC gimbals with 
feedback from the detector to maintain the e detector. Due to 

separately. One concern is the impact of disturbances that reach the IMC gimbals through the 
connecting arm that is attached to the base (as opposed to disturbances impacting the detector). 
Due to the inherently high optical gain from the IMC to the detector these disturbances can have 
a significant impact on the LOS error. To compensate for the effects of these disturbances it is 
not only necessary to maintain high loop gain over the frequency band of interest but to also 
maintain high IMC controller gain as well. Analysis of Figure 3 reveals that achieving high 
controller gain while also maintaining acceptable stability margins is difficult because of the 
combination of the high optical gain and the additional phase lag introduced by the computational 
delay. Fortunately, the impact of these disturbances can also be reduced by increasing the 
damping of the modes of the structure using the AGS; thereby reducing the motion of the base 
and the arm supporting the IMC gimbals. It is also desired to maintain reasonable levels of 
stability robustness. 

sufficient decoupling, each two-input, two IMC) is ed 

The first step of the design procedure is the determination of a set of closed loop 
constraints consistent with the design philosophy such as those given in the first column of 
Table 3. Next, initial controllers are designed for the IMC-to-LOS and AGS-to-base gyro 
subsystems using a classical one-loop-at-a-time technique with the experimental frequency 
response data. Although the attempt was made to satisfy the constraints when designing the 
initial controllers, they are not satisfied as can be observed by comparing the first and second 
columns in Table 3. The initial controller for each subsystem is l0"h order. It should be noted 
that recently developed high fidelity models are 60' order for the AGS-to-base gyro loops alone 
[5].  Design techniques such as LQG and H, would yield controllers of at least this order 
(excluding weighting). 

The multivariable design (Le., taking cross-axis coupling within each subsystem into 
account) is then performed for each subsystem using MADCADS. The code is started with the 
initial 10' order controllers described above, with no restrictions other than stability placed on 
the structure of the controllers. After approximately 100 iterations on each subsystem 
MADCADS converges without satisfying all the constraints. The final values of all the constraint 
functions are provided in the third column of Table 3. 

Rather than trying to improve the design further, it was decided to implement the 
resulting 20"' order controller. The open loop x-axis LOS error due to an x-axis BET pulse 
disturbance intended to simulate the effect of spacecraft crew motion is shown in Figure 7. The 
dominant behavior in the response is the lightly damped 0.15 Hz pendulum mode. As shown 
in Figure 8, closing the loop with the resulting controller considerably reduces the impact of the 
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pendulum mode and the first bending mode. The 
motion disturbance was applied to the y-axis of ch 

Initial Value 

0.2289 
0.2276 
0.2827 
0.2805 
10.0020 
0.3649 
0.3585 
0.3600 
0.3589 

Final Value 

0.5090 
0.5056 
0.6072 
0.61 12 
14.1000 
0.5996 
0.5988 
0.6719 
0.6712 

IMC represents IMC subsystem; AGS represents AGS subsystem 
G represents plant; 
z = ej2*fT, T = 0.02 sec 

K represents controller 

Table 3: Summary of MADCADS Design Constraints and Results 

-0.1 ' - I 
0 50 100 150 

Time (sac) 

Figure 7: Experimental Open Loop x-axis 
LOS Error due to Crew Motion Disturbance 

Figure 8: Experimental Closed Loop x-axis 
LOS Error due to Crew Motion Disturbance 
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Both CIP and MADCADS have been demonstrated to be viable control system candidates 
for large space structures. There are ongoing programs at Ohio University and NASA/MSFC 
to refine and enhance these codes. This section briefly discusses these refinements and 
enhancements. These modifications fall into two basic categories: algorithm improvements and 
user interface improvements. 

Algorithm Improvements 

In order to increase the utility of CIP and MADCADS it is planned to increase the 
variety of constraints that can be handled. Current plans for CIP include the incorporation of 
constraints on the shapes of closed loop frequency responses and the use of state-space 
realizations to parameterize the controller. The ability to perform designs directly in the z-plane 
is currently being incorporated into CIP. Current plans for MADCADS include incorporation 
of constraints on the shapes of frequency responses of individual J/O pairs, operator 2-norm 
constraints (H,-type constraints), as well as constraints on the damping ratios of the controller’s 
poles and the zeros of individual 110 pairs of the controller. Other improvements for both CIP 
and MADCADS include better methods for calculating search directions and the application to 
the more general block diagram shown in Figure 9. 

Forward Path 
P&llter 

r 

n 

Figure 9: Proposed Block Diagram for CIP and MADCADS 
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Current versions of CIP and MADCADS run in batch environments; hence user 
interaction is very limited and tedious. Experience has shown that the ability for the user to 
monitor algorithm performance and make design tradeoffs during code execution is needed. 
Therefore, work is in progress to develop versions of CIP and MADCADS that operate in a 
professional graphics workstation environment. It is planned to include in the codes the ability 
to monitor the progress of the design constraints in real-time by automatically updating graphics 
windows containing plots of the constraint functions. Other planned features include the ability 
to specify constraints graphically through the use of a mouse (this is especially convenient for 
specifying frequency domain constraints), single-step execution, and the ability to change the 
design constraints between iterations. 

Conclusions 

A review of ongoing research efforts in the area of multivariable controller design using 
data models at Ohio University and NASA Marshall Space Flight Center has been presented. 
The results of the application of two software programs, the Compensator Improvement Program 
and the Model and Data Computer Aided Design System, to the design of controllers for a 
flexible aerospace structure ground test facility was also presented. Both applications provided 
promising results. Future plans for expanded versions of CIP and MADCADS were also 
discussed. 
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Abstract 

The effectiveness of viscous elements in introducing damping in a structure is a function of 
several variables, including their number, their location in the structure, and their physical 
properties. In this paper, the optimal damper placement and tuning problem is posed to op- 
timize these variables. Both discrete and continuous optimization problems are formulated 
and solved, corresponding, respectively, to the problems of placement of passive elements 
and to  the tuning of their parameters. The paper particularly emphasizes the critical com- 
putational issues resulting from the optimization formulations. Numerical results involving 
a lightly damped testbed structure are presented. 

1. Introduction 

A problem of considerable importance in the development of technology for future space 
structures is the analysis and optimization of passive elements placed in these structures. 
Passive damping introduced by these devices is an effective mechanism for reducing peak 
responses in the vicinity of resonant frequencies for lightly damped systems. This not only 
enhances the stability of the open-loop system, but also allows for the implementation of 
more aggressive control strategies to  achieve greater performance. This philosophy is being 
pursued on a series of Control Structure Interaction (CSI) testbeds at the Jet Propulsion 
Laboratory. 

The effectiveness of viscous elements in introducing damping is a function of several vari- 
ables, including their number, their location in the structure, and their physical parame- 
ters, namely damping and stiffness coefficients. This paper is concerned with the optimal 
placement and tuning problem for the passive viscous dampers with emphasis on its com- 
putational aspects. 

Two qualitatively different optimization problems arise in this context: a combinatorial 
optimization problem which determines the placement of elements, and a mathematical 
programming problem which optimizes (tunes) the damper parameters. In our approach, a 
simulated annealing strakegy [4] is used for the combinatorial Optimization problem, while a 
sequential quadratic programming algorithm (SQP) [a] is applied to the damper parameter 
optimization problem. One of the most iniportaiit ingredients in any optimization prob- 
lem is the cost functional evaluation, regardless of the performance metric that is used. 
This is particularly true for the optimal damper placement and tuning problem due to  the 
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complexity of the system. The performance metric chosen here is the IHz-norm of selected 
transfer functions of interest. An excellent candidate is the transfer matrix between external 
disturbance inputs and the controlled outputs. 

It is well known that the computation of the IHz-norm requires solving a Lyapunov equation. 
However, due to the high-dimensionality of the system model, it is unrealistic to use the 
full-order model in any computation. A reduced-order model must be generated to make the 
computation involved more manageable. The Ritz reduction method that has been studied 
in [l] is employed to reduce the numerical bottleneck created by solving large systems of 
this type. 

The paper is organized as follows. Section 2 presents the dynamic model of a viscously 
damped structure. The general optimal damper placement and tuning problem is formu- 
lated in Section 3 with a review on the computation of the Hz-norm of the particular transfer 
matrix which is chosen to  be our performance metric. Section 4 addresses the computation 
issues involved in our optimization problem. In particular, the Ritz reduction method will 
be described in detail. A number of numerical examples involving the JPL testbed structure 
are presented in Section 5. Finally, concluding remarks on future work are given in Section 
6. 

2. Dynamic Modeling for Viscously Damped Structures 

Throughout this paper, it is assumed that the dynamics of the undamped structures can 
be described by a linear, second-order matrix differential equation of the form: 

Here t denotes the n-dimensional vector of generalized coordinates, d is an Z-dimensional 
external forcing input vector, 111 is the ~ 2 ,  x n symmetric, positive definite mass matrix, I< 
is the n x n symmetric, positive definite stiffness matrix, and Bd is the n x Z forcing input 
influence matrix. 

Assume that a discrete passive damper is placed between two nodal points in the structure, 
replacing the original structural element. The passive damper is modelled a,s a device that 
applies a force a t  the nodal points with equal magnitude but in opposite directions and 
proportional to the relative displacement and velocity between the nodal points. 

The dynamic structural model incorporating the damper actuator force, u, is written as 

where the vector b represents the influence vector associated with u. The force u generated 
by the damper is modelled as a constant. linear combination of collocated position and 

,i * 
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velocity feedback so that 

with yp = bTz and yv = b T i  where yp and yu denote the position and velocity “mea- 
surements,” respectively, and 12, denotes the damping rate, which is always taken as a 
nonnegative quantity to  ensure stability. The parameter kP is only required to be greater 
than or equal to the value -ke ,  where ke denotes the stiffness of the structural element that  
has been replaced by the damper. When -12, 5 ICp < 0, the structure is softened, while 
kp > 0 causes the structure to be stiffened. 

Hence, the dynamic structural model with the inclusion of a passive damper can be repre- 
sented as 

21 = -@pY, + k,Yu) (3) 

4f.Z + (I< + kpbbT)z = b(-kPbTz - k,,bTi) + Bdd , (4) 
or 

ME + ( k , b b T ) i  + (I< + kpbbT)z = Bdd . 

A more general model including multiple passive dampers can be written as 

i=l i= l  

where np is the number of passive dampers in the structure. 

3. Optimal Placement and Tuning Problem for Passive Dampers 

The general optimal placement/tuning problem of passive dampers can be posed as 

min niin JcOst (  Bp ,  ICp, IC,) 
K P E K p , K v € K ~  B p E U p  

( 5 )  

(7)  

where 

0 Jcodl(Bp, ICp, ICu) is defined as the performance metric for the optimization with a 
given damper configuration of locations corresponding to Bp and the corresponding 
stiffness and damping rate ICp and I<, 

A . .  
0 ~ p = { ( b i , , b i 2 ,  ...,binp):21,23,...,inp E Np, i, # i p , V a 7 p =  1,2, ..., n p ( a # p ) }  

(hie is the influence vector corresponding to the iath location). 
A 

0 ICp={(kpil,kpia,..-,kpi.p) :ii,i2,-..7inp E N P , L  # i p , v a , P =  1,‘2,..-,np(a#P)} 
(kP3 is the stiffness correction corresponding to the damper at  j t h  location, and 

ks,,, I kp, + L e ,  _< hsmol 

where IC,, is the element stiffness of the unda.mped structure at  j t h  location, ksmin and 
k,.,,,, are the lower and upper bound of the damper stiffness). 
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A ~ ~ = { ( k  u , ~ , k u , ~ , . . . , k ~ , * ~ ) : i i , i 2  ,... , in ,  E N P , & #  i p ,Va,P= 1,2 ,..., n , ( a # P ) }  
(kuJ is the damping rate corresponding to the damper at j t h  location, and 

0 5 ku, i li.,,,, 

where ku,,, is the highest possible damping rate for the passive damper). 

0 Np is defined as the set of all candidate locations for placement. 

It is clear that the above optimization problem is a joint “ c ~ n t i n u ~ ~ ~ + d i s c r e t e ”  optimiza- 
tion problem. The selection of locations ( Bp)  for placement is a “discrete” combinatorial 
optimization problem while the selection of values for Iip and IC, (tuning) is a continuous 
mathematical programming problem. 

Two types of performance nietrics are typically considered. The first one is the structural 
modal damping for selected modes. The computation involved is to  solve for the eigenvalues 
of the “A”-matrix obtained from writing ( 6 )  in first-order form for a given damper config- 
uration with corresponding damper stiffness and damping coefficients. The second type 
of criterion requires both the external disturbance input vector and the controlled output 
vector to  be specified. As discussed in [GI, a meaningful and numerically tractable criterion 
for the associated optimization problem is to minimize the R2-norm of the transfer function 
from d to yo. In addition, a weighting function Wd(s)  can be used t o  model the spectral 
property of d and a weighting function Wp(s)  can be used to  improve the performance of 
yo over a certain frequency range. In this case, the cost functional is simply 

J c o s t  = IlJVp(s)Gp(S; B p ,  l i p ,  KJ)%(s)ll2 (8) 

where Gp(s; B p , K P , K u )  is defined a s  the transfer matrix from the d to yo with a given 
damper configuration of locations corresponding to  Bp and with the corresponding stiffness 
and damping coefficients, K p  and I<,,. For a given damper configuration (Bp,  ICp, ICu) and 
the weighting functions (Wp(s), W d ( s ) ) ,  the ?-la-norm can be computed through the solution 
of a specific Lyapunov equation. 

Define 
T ( s )  = U>(s)Gp(s; Bp,  ICp, Ii,,)lYd(~) 

and assume that T(s) has the state-space realization ( A ,  B ,  C) where the matrix A is asymp- 
totically stable. Then the corresponding R2-norm of T ( s )  is simply 

l l~(s)1~2 =  trace(^^^)] 1’2 =  trace(^^^^)] ’’’ 
where P and Q are the positive semi-definite solutions of the following two Lyapunov 
equations: 

A P  + PA* + B B ~  = o (9) 
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and 
A ~ Q + Q A + C ~ C = O ,  

respectively [3]. 

4. Computational Issues and Model Reduction 

As discussed in the previous section, the damper placement and tuning problem includes 
solving a nonlinear mathematical programming problem for tuning, and a combinatorial 
optimization problem for placement. 

In particular, the combinatorial optimization problem is known to  be difficult due to  the 
fact that  the potential number of candidate locations for placement ( N p )  will be large in 
large space flexible structures. However, relatively few passive devices ( n p )  will be available. 
In general, N p  >> np,  and the total number of combinations, n,! ( N ; - n p l ! ,  N !  is usually very 
large. Therefore, it is impractical, if not completely impossible, to try the exhaustive search. 

In our approach, a sequential quadratic programming algorithm (SQP) [2] is applied to 
the damper parameter tuning problem while a simulated annealing strategy [4] is used for 
the combinatorial optimization problem. The question of developing a hybrid approach for 
combining these strategies into a single approach will not be dealt with here and is one of 
our future research topics. 

Our current, strategy is to  solve each of these problems individually. One approach is to solve 
the damper parameter tuning problem for each candidate location first. These parameters 
will then be used to evaluate the cost functional in the simulated annealing process. 

Another approach is to use a “pruning” process after each of the candidate locations is 
“tuned.” This pruning process is simply to choose the top Np’ candidate locations accord- 
ing to the ranking of their respective optimized cost functional where N p  >> Np’ > np. 
An exhaustive combinatorial search is then conducted throughout this subset to find the 
“optimal” combination of elements which yields the smallest 7f2-norm cost. This ad hoc 
pruning approach has been demonstrated to be quite useful. However, it is difficult to make 
a general statement regarding the solutions of these sub-optimal approaches as compared 
to the optimal ones. 

As stated in the Introduction, one of the most important ingredients in any Optimization 
problem is the cost functional evaluation. This is particularly true for the optimal damper 
placement and tuning problem due to the complexity of the system. The performance 
metric chosen here is the ‘?&-norm of selected transfer functions of interest. 

The procedure to compute the ‘&-norm of a stable transfer matrix has been given in Section 
3 and requires solving a Lyapunov equation. However, it is impractical, if not impossible, 
to use the fuII-order model in the computation of the ”&-norm since the order of the model, 
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2 x n, is typically very large. Hence, a high-fidelity, low-order, reduced model must be used 
to perform the required computation efficiently. 

The Ritz reduction method that has been studied in [l] is employed to  reduce the numerical 
bottleneck created by solving large systems of this type. Details of this model-reduction 
method will be described in the rest of this section. 

The Ritz Reduction Method 

To solve the optimization problem posed in the previous section, it is impractical, if not 
impossible, to use the full-order model in the optimization process since the order of the 
model, 2 x n, is typically very large. Hence, a high-fidelity, low-order, reduced model must 
be used to perform the required computation efficiently. 

The model-reduction method considered here is a second order reduction technique based 
on reducing the number of generalized coordinates of the system via a transformation of 
the form z = Pq, where q E RN with N < n. Applying the transformation P to (6) results 
in the reduced-order model 

The transformation matrix, P ,  consists of the first nz ( m  << n )  eigenvectors corresponding 
to  the first m eigenvalues, { w l ,  w2 ......, om), and an additional Ritz vector to account for 
the static correction for each of the forcing inputs. This method will be referred to  as the 
“Ritz reduction method.” A detailed discussion on this subject can be found in [l]. 

Suppose that the lowest m eigenvalues and their corresponding eigenvectors are known 
and Qi, is defined as the n x m matrix consisting of the m eigenvectors corresponding to 
{w l ,  w2 ......, w,}. Then the desired Ritz vector corresponding to  bi ( i th  damper) is simply 
the solution to the following linear equation: 

It is desirable for the transformation matrix to preserve A$-orthonormality. Therefore, +i 

needs to be M-orthonormalized. This is done easily by first 

1. making +i &?-orthogonalized to Qm 

and then 
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2. making & M-normalized, i.e., 

SimiIarly, the desired Ritz vector corresponding to b, ( j t h  external disturbance input) can 
be computed using the same procedure. 

Note that for each of the forcing inputs, one Ritz vector needs to  be computed. The 
forcing inputs could be either the force inputs corresponding to the dampers or external 
disturbance inputs. Let & denote the M-orthonormalized Ritz vector corresponding to 
the i th influencing input vector, bi,  and 45, denote the AI-orthonormalized Ritz vector 
corresponding to the j t h  external disturbance influencing input vector, b ,  . Note that each 
of the corresponding Ritz vectors is M-orthonormalized to am; however, the (nP + I )  Ritz 
vectors may not be M-orthogonal among themselves. An additional M-orthogonalized step 
is required. Define 

m r i t z  = [4  4 -.* gp 4il +i2 e - -  G~ 1 

= &;tzM&ri*z, and K r i t z  = &:lzI<&ritz 
and form 

to find &ritz  such that &ritz is Mritz-orthonormalized, Le., 

&;tzMri t z&ri t z  = I (n ,+ l )x (n ,+t )  9 and +;f i t zIcr i t z&ri t z  = f i 4 i t z  

where f i r i t ,  = diag [ wrl wr, ... U T n p + ,  1. 
Define iPr i t z  = &ritz  * !britz, then the Af-orthonormal trans€ormation matrix P is 

and Eq. (11) is equivalent to 

where N = rn + np + I is the order of the reduced model, and Q N  = diag [ fim f i r i t z  1. 
The reduced-order model in Eq. (10) can also be rewritten in the state-space representation 
as 

where 2 = [ i] is the state vector. 
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A detailed description of the JPL testbed can be found in [5] (see Figure 1). Briefly, the 
system is modeled with 249 degrees of freedom and contains 186 candidate locations to 
insert passive damping elements. 

Because the accuracy of the cost functional evaluation methods is of paramount importance 
in the optimization process, Table 1 contains a comparison of eigenvalue approximations 
using the full-order model, the Ritz  reduced model, and a modally reduced model. The 
second column in part (a) of the table contains the eigenvalues of the undamped nominal 
system. All of the other values correspond to the damped system with three viscous dampers 
placed at  the locations 132, 140, and 142. It is assumed that the three dampers have the 
same damping and stiffness coefficients: 320 Zbs - sec/in and 8,000 &/in respectively. 

The conclusion here is that the Ritz reduction method yields high-precision estimates with 
enormous reduction in computation. In this example, instead of solving a 498 x 498 eigen- 
value problem, the results can be obtained by solving a 30 x 30 eigenvalue problem which 
results from the Ritz reduction method. However, the modally reduced model produces 
inaccurate results. What is of equal significance is that not only does the modally reduced 
model produce inaccurate results, it also leads to inaccurate trends for choosing damper pa- 
rameters. Figure 2 contains damping predictions of the second system mode as a function of 
the damper viscous parameter coefficient. Note that the full and Ritz reduced models lead 
to  an optimal coefficient of approximately 500 Zbs - sec/in,  while the modally reduced model 
leads to a significantly larger value that is far from optimal. The Ritz reduction method 
also leads to very accurate approximation to the 'Fla-norm, with 6 digits of accuracy. 

Table 2 contains the eigenvalues of the damped system where the three dampers are placed 
at  the locations 6, 19 and 91. The three locations are the simulated annealing solution to 
the optimal damper placement problem. The performance metric is the 'Ha-norm of the 
transfer function from an input disturbance located a t  grid point 412 between the third 
and fourth bays of the structure, to the outputs consisting of all of the nodal displacements 
directly beneath the trolley (see Fig. 1). The disturbance was generated as the output of 
a Gth-order low-pass filter with a bandwidth of 25 Hz. This weighting function is chosen 
to reflect the objective of disturbance reduction in the frequency range below 25 Hz. A 
representative comparison of the undamped and damped frequency responses is given in 
Figure 3. 

6. Concluding Remarks 

The use of strategically placed and tuned passive elements in future large space structures 
will play a significant role in their design and development. The ability to  analyze, predict, 
and ultimately optimize system performa.nce with respect to these passive devices is critical 
for the application of this damper placeinent technology. 
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A comprehensive overview of the optimal damper placement and tuning problem was pre- 
sented in this paper. Approaches and computational aspects of the associated optimization 
problems were discussed. The results of the paper indicate that significant levels of damping 
can be introduced into these structures in a very systematic and tailored fashion. 

Although reasonably good results have been demonstrated using the approach presented 
here, the combined discrete plus continuous optimization problem was essentially solved for 
each individually. This is the major drawback of our current approach. Our future work will 
concentrate on the development of a hybrid approach to  jointly solve the two qualitatively 
distinct optimization problems. 
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Figure 1. JPL CSI Phase B Testbed 
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(a) Frequency (in Hertz) 

Mode 
Damped System 

249 Modes 12 Modes plus 15 Modes 
(Full order) 3 Ritz vectors (Truncation) 

Table 1. Undamped and Damped Eigenvalues 
(Damper Locations: 132, 140, and 142) 

I Mode 11 Frequency (Hz) I Damping (%) ] 

Table 2. Eigenvalues of the Damped System with ‘&-Optimized 
Damper Locations a.t 6, 19, and 91. 
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Figure 2. Damping Prediction by Reduction Methods 
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Figure 3. Disturbance Frequency Responses of Undamped and Damped Systems 
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Abstract 

A Workstation has been designed and constructed for rapidly simulating motions 
of rigid and elastic multibody systems. We examine the Workstation from the point 
of view of analysts who use the machine in an industrial setting. Two aspects of the 
device distinguish it from other simulation programs. First, one uses a series of windows 
and menus on a computer terminal, together with a keyboard and mouse, to provide 
a mathematical and geometrical description of the system under consideration. The 
second hallmark is a facility for animating simulation results. An assessment of the 
amount of effort required to numerically describe a system to the Workstation is made 
by comparing the process to that used with other multibody software. The apparatus 
for displaying results as a motion picture is critiqued as well. In an effort to estab- 
lish confidence in the algorithms that derive, encode, and solve equations of motion, 
simulation results from the Workstation are compared to answers obtained with other 
multibody programs. Our study includes measurements of computational speed. 

Int roduet ion 

A companion paper, Ref. [l], describes in detail a Workstation consisting of hardware and 
software designed specifically for performing numerical simulations of motions of rigid and 
elastic multibody systems. Through a series of windows and menus on the Workstation’s 
console, an analyst describes a system’s topography and mass distribution, provides in- 
formation associated with elastic behavior of the system’s bodies, and creates geometric 
representations of each body for animating simulation results. Dynamical equations of 
motion for the system of interest are derived via symbolic manipulation and an order N 
algorithm based on Kane’s method [2], tailored to take advantage of four parallel processors, 
and encoded into FORTRAN subroutines. Simulation results can be displayed as numerical 
values, plots, or a threedimensional animation. 

We are in the process of becoming familiar with the Workstation, and suggesting ways 
to make it easier to use. Evaluations are presented here that are subjective and, where 
possible, objective in nature, based on our experiences thus far. 

The manner in which multibody systems are described is addressed first. Second, we take 
up the means of presenting simulation results- in the form of curves, or as a motion picture. 

*Aerospace Engineer, Vehicle Dynamics Section. 
ICo-op Student (University of Colorado at Boulder), Vehicle Dynamics Section. 
*Engineer; Guidance, Control, and Aerosciences Dept. 
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Next, comparisons of results with those from other simulation programs are discussed, 
followed by comparisons of computational speed. Finally, a summary of suggestions for 
some of the more significant improvements to the Workstation is presented. 

Describing a Multibody System 

Before a simulation can be performed with the Workstation, one must furnish numerical 
information about the topography of the system of interest, the mass distribution of each 
body, and elastic behavior of deformable bodies. If the system’s motion is to be animated, 
geometric representations of each body must be supplied as well. 

Data-entry windows appearing on the Workstation console are the principal avenues 
for supplying mathematical descriptions of a system. Familiarity with a text editor is 
unnecessary when using the windows, which contain graphical “buttons”, and well defined, 
labeled fields into which numerical values are typed, as shown in Fig. 1. The colors black 
and grey are used to distinguish relevant information from the irrelevant. For example, 
if a body is regarded as rigid, “Model Reduction” and all of the labels and fields related 
to elastic behavior become grey. Messages are produced instantly to give notification of a 
user’s mistakes. All of the information supplied through the windows is stored in a data- 
entry file. The windows are intended to free analysts from having to know the format of 
the files; however, the goal is not altogether achieved. Moreover, the windows present a few 
disadvantages. 

Numerical information needed to describe a system often lies scattered over several 
computers. Data can be “cut” from a file residing on another machine and “pasted” into a 
data-entry file on the Workstation when the contents of both files are displayed in separate 
portions of the console; however, this requires a knowledge of data-entry files’ format. 
This kind of information exchange is not possible when data-entrj windows are used- an 
inconvenient state of affairs. 

It is easier to check a system description for errors by inspecting a single data-entry file, 
rather than many data-entry windows. In many cases, correcting slight errors or making 
minor changes is accomplished more quickly by editing a file than by using the windows. 
Additional motivation for working directly with data-entry files arises because the Worksta- 
tion can serve (in addition to an analyst on the console) one or more remote users through 
a computer network, but the data-entry windows can not be displayed on remote terminals. 

The data-entry windows seem most useful when a system is to be described for the first 
time, or when major changes are to be made. Although the files in which descriptions are 
stored contain many comments indicating the nature of particular numerical values, it is 
essential that the user’s manual contain a complete explanation of valid options, data types, 
and proper placement. 

-- A system composed of several rigid bodies fastened together is simpler to deal with 
than a system that includes deformable bodies. Therefore, the method for describing rigid 
bodies is reviewed first, followed by a discussion of the process by which an analyst creates 
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Figure 1: Data-Entry Window 

geometrical representations of each body to be included in a motion picture. Finally, the 
procedure for providing descriptions of elastic bodies is considered. 

System Topography and Mass Distribution 

System topography (the manner in which bodies are connected) and mass distribution of 
rigid bodies are described more or less straightforwardly. One way to assess the ease or 
difficulty of the procedure for describing systems is to compare it to the corresponding 
activity performed with other multibody software, such as SD/FAST [3, p. 2361. The 
“free” format and use of keywords in SD/FAST system-description files circumvent many 
of the problems associated with the Workstation’s data-entry windows. Table 1 represents 
a comparison of the information required to describe a rigid-body system to SD/FAST, and 
the Workstation; it reveals both similarities and differences. 
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Table 1: Information Required to Describe System 

Position vector from 
i some point on inboard 
body to J. 

SD/FAST 
Body Name 
Mass of Body 
Three Moments of In- 
ertia 
Three Products of In- 
ertia 

Inboard Joint Type 
(e.g. slider, pin, 
u- j oint)  

Name of Inboard Body 

Position vector from 
B* to J, a point fixed 
in adjacent bodies. 
Position Vec- 
tor from inboard body 
mass center to J. 

Workstation 

Body Number 
Mass of Body 
Three Moments of In- 
ertia 
Three Products of In- 
ertia 
Position vector from 
Q, some point on body, 
to B*, body maw cen- 
ter [default (1,1,1)]. 
“Inertia reference” : 
Point for which inertia 
scalars are provided [Q 
(the default) or B*]. 
A number to identify 
each node (point of in- 
terest) on each body. 

Inboard Joint Number. 
Number of 
0 prismatic pins 
0 revolute pins 
Numbers of two adja- 
cent Bodies and two 
nodes fixed on joint. 
Position vector from Q 
to J. 

Comments 

(if necessary) 

(With SD/FAST, positions of 
points are measured from B*) 

(With SD/FAST, inertia 
scalars for B* must be given) 

Analyst can make use of pre- 
defined sensors and actuators 
with Workstation, but not 
with SD/FAST. 
SD/FAST ‘has a ball joint, 
Workstation doesn’t. 
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The first item under the Wor~tation column that lacks a counterpart under the SD/FAST 
column is the position vector from Q, some point fixed in the body under consideration, to 
B*, the mass center of that body. With SD/FAST, the positions of all points of interest in a 
body are measured porn B*; with the Workstation, the positions may be measured from any 
point, Q. This versatility in the Workstation can be an asset because analysts often receive 
data in which positions are measured from some point other than B*. However, unless Q 
is an interesting point in its own right, measurements from B* are preferrable because the 
amount of information to be supplied is minimized. In practice, Q is often a point that 
does not come into play in a derivation of equations of motion. A good example of such 
a point is the geometric center of a space station’s central truss. On the Workstation, one 
can provide measurements from B*, so long as the position vector from Q to B* is made to 
vanish. Unfortunately, the vector from Q to B” that is displayed when a data-entry window 
first appears is 1 unit in each of three directions. It is extremely unlikely that a vector of 
this magnitude and direction can be used in practice; one that is 0 units in each direction 
is more likely to result in a savings of analysts’ time. 

The second item without a counterpart is a pair of buttons in the data-entry window 
that gives analysts the option of providing inertia scalars of a body (moments and products 
of inertia) for either point Q or B“. Central inertia scalars must be used with SD/FAST; 
in other words, they are for B*. On the Workstation, point Q is selected when the window 
first appears. In practice, however, central inertia scalars are used most often, so a small 
amount of time can be saved if B* is preselected by the machine. 

Points that remain fixed in two adjacent bodies, points at which forces are applied, and 
a body’s mass center, are all of special interest in connection with formulating equations 
of motion. The two simulation programs deal with such points in different ways. With 
SD/FAST, a multibody system’s topography and mass distribution are described without 
reference to points at which forces are applied, and users do not spend time applying numeric 
or alphabetic labels to points that remain fixed in adjacent bodies. ‘ On the Workstation 
one refers to points of interest (other than mass centers of bodies) as nodes, and gives 
every node a numerical label that can serve as a shorthand for three measure numbers of 
a position vector. The labels provide an easy way of specifying locations of accelerometers, 
position sensors, reaction jets, and control-moment gyroscopes, all of which are modeled in 
pre-written routines available on the Workstation. 

The procedure for describing joints that connect adjacent bodies is another area in 
which SD/FAST differs from the Workstation. Users of SD/FAST may choose a joint from 
a predefined set, which includes pin slider, u- joint etc. The name of an appropriate 
joint is registered in a system-description file. If a joint that is not a member of the set 
is to be used, it can be created with the joints available, and bodies without mass. On 
the Workstation one refers to a joint by a number; indicates whether there are 0, 1, 2, 
or 3 prismatic pins in the joint; and whether there are 0, 1, 2, or 3 revolute pins in the 
joint. The Workstation requires no more than six keystrokes: three to erase preexisting 
numbers, if necessary, and three to enter the appropriate numbers. If one is constructing 
a system with joints unavailable in SD/FAST, the amount of labor required by SDIFAST 
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is obviousiy greater than that expended on the ation is probably 
the exception instead of the rule. When dealing with one of SD/FAST’s predefined joints, 
there is little difference in the level of effort put forth in this area. One joint that can be 
taken advantage of with version B of SD/FAST, a ball joint, is unavaiIable to users of the 
Workstation. 

The different approaches to describing joints and points of interest culminates in (or 
follows from!) a difference in the way one indicates which bodies are connected to one an- 
other. The names of one inboard body and one inboard joint are associated with each body 
described to SD/FAST, with the possible exception of the base body. This information, 
together with two position vectors, completely describes the way in which adjacent bodies 
are fastened together. Instead of providing the name of an inboard body, one must, when 
using the Workstation, supply the numbers of two bodies to be connected by a joint, as well 
as the number of a node on each body. The former procedure is decidedly easier than the 
latter. 

A description of a body’s orientation is, in general, accomplished with the aid of three 
orthogonal, right-handed basis vectors, regarded as fixed in the body. Each basis vector 
associated with a body has the same direction as the corresponding vectors of every other 
body for the system configuration that is described to SD/FAST. All joint angles and 
displacements are, by definition, equal to zero in that case. Users of the Workstation do 
not face a similar restriction. By recording measure numbers of two orthogonal unit vectors 
in each of two bases fixed in adjacent bodies, an analyst can define angular displacements 
of a joint to be zero when both bases are not aligned. This feature can prove useful when 
dealing with NASTRQN information that has been produced by several people not working 
with a common basis. 

kstation, but this s 

Geometric 0 b jects for Animations 

Multibody simulations are, first and foremost, performed in order to obtain knowledge of a 
system’s motion. Relatively large changes in position and orientation are best displayed on 
the Workstation in a three-dimensional animation- an extremely useful complement to a 
traditional two-dimensional plot, useful for depicting relatively small movements. So-called 
rigid body motion of a system is represented in an animation, but elastic behavior is not. 
The facility for animating rigid-body motion is one of the features that distinguishes the 
Workstation from many other simulation programs. 

The apparatus for creating objects for a motion picture is not intended to take the 
place of a computer-aided design program. It should, however, be capable of producing 
simple models quickly. Plans call for the Workstation to make use of Integrated Design and 
Engineering Analysis Software (IDEAS) geometric models €or animation, when such models 
are available. 

Rigid geometrical objects that play the part of each body in an animation are constructed 
in a window that displays three orthographic projections, a perspective view, and several 
pull-down menus. An object appears in the orthographic projections as a wireframe. In the 
perspective view, an object can be shown either as a wireframe or a colored solid, and can be 
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seen from any angle. 
constructed with a number of basic two-dimensional and three-dimensional objects: lines, 
rectangles, triangles, cubes, spheres, and cylinders. Extrusion and revolution, two laborious 
activities, can be used to create complex objects. The machine responds much more slowly 
when dealing with many objects, or objects that are complex. 

New objects are placed into one of the planar views, and appear simultaneously in 
all views: their position, size, or orientation can be adjusted by selecting an appropriate 
option from one of the menus, and moving a mouse pointer to the planar view from which 
the changes are to be made. Adjustments can be regulated with either a mouse or arrows 
on the keyboard; both are usually needed because the behavior of the mouse is not easy to 
control, and the arrow keys act very slowly. Precise changes in an object’s orientation or 
size are difficult to make; consequently, one is often faced with the inconvenience of repeated 
adjustments. 

Before an object can be edited, it must first be selected a procedure not easilyperformed 
on the Workstation. The most straightforward way to pick out an object would be to use 
a mouse to select it from one of the orthogonal projections. However, this approach has 
proven unsatisfactory: when several objects are close together, the wrong object is often 
chosen. Instead, one now works the way through three levels of menus to choose from a list 
of names of basic objects that have been created. The process would be speedier if the list 
were at a higher level. The current procedure produces lengthy delays while the computer 
registers a user’s choice of an object. On several occasions the program has crashed while 
dealing with a large number of objects. 

Each body is composed of one or more objects, selected and grouped together by a 
user. A body’s appearance may be simple or detailed, depending on the number of objects 
included in the group. A number, corresponding to one of the bodies described in a data- 
entry window, is assigned by a user to each group. One drawback to this process is that 
once a group has been formally established, it can not be dissolved. Objects that are part of 
a group can not be edited, nor can objects be added to or removed from a body. Changing 
a body’s appearance is cumbersome: it must be deleted entirely, and then re-created from 
scratch. 

Up to now, the animation facility’s biggest shortcoming has been the necessity for a 
human to perform two tasks manually. The point Q, described in the Section on system 
topography, had to be identified for each body. In addition, an orthogonal triad of color- 
coded vectors had to be correctly oriented in each body to identify the directions that were 
used in the descriptions in the data-entry windows. If any of this was done improperly, 
bodies appeared to“jump” at first, or drift apart in the course of an animation. The process 
involved a great deal of trial and error, and consumed much of an analyst’s time. Since the 
computer is better suited for these jobs, its help is being enlisted in several ways. 

First of all, a user assigns a scale to the grid lines in the orthogonal projections. The com- 
puter uses information from a data-entry file, together with the scale, to place graphical 
reference points of each body, and orient each triad of colored vectors correctly. Subse- 
quently, an analyst adjusts the size of geometrical objects and matches up a body with 

ach of the four views can be magnified to various levels. 
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. Development of automatic placement of reference points and direction vectors 
is continuing. Two features that might aid a user in proportioning geometric objects are a 
display of the mouse pointer’s coordinates, and an indication of each joint’s location. 

Information for Elastic Bodies 
In the data-entry windows discussed earlier, a body may be designated as either rigid or 
elastic. For each deformable body, one must provide the number of mode shapes to be 
used, numbers that identify the modes of interest, and a number to identify a file in which 
NASTRAN information for the body resides. In return, one is excused from the chore of 
supplying body mass, mass center position, and inertia information, all of which are con- 
tained in the NASTRAN file. In addition, the analyst indicates the nature of structural 
damping, and numerical values of damping ratios. The presence of modal integrals in equa- 
tions of motion indicates coupling between rigid body motions and motions arising from a 
body’s elasticity, as well as between motions identified with elastic modes. A user is asked 
to indicate whether modal integrals should contain terms in which mode shapes and slopes 
appear to lst, 2nd, or 3rd order. Automatic model reduction, and boundary condition 
specification, which can be used to simplify equations of motion, are planned but not yet 
available. 

Each point of interest on an elastic body must be associated with a NASTRAN grid 
point. In the data-entry window for each node, an analyst must record an identifying 
number, obtained by inspecting a table in a NASTRAN output file. This frees one from 
the task of furnishing a node’s position, which is present in a NASTRAN file. The present 
Workstation user’s manual does not contain a discussion of the way in which NASTRAN 
must be used to produce data for the Workstation. Moreover, the manual lacks information 
regarding the maximum number of grid points and mode shapes th,at can be dealt with. 

Plotting and Animating Simulation Results 

Time-histories of generalized coordinates, generalized speeds, and a wide variety of other 
simulation parameters are recorded in a file, and can be displayed as two-dimensional curves. 
An analyst chooses which variables to plot, and has control over details such as the number 
of figures on a page, and the scales of the ordinate and abscissa. A change in any one of 
these items requires that the window containing the curves be closed, and all of the items 
over which the user exercises control must be specified again. A considerable amount of 
time can be saved if repetitious selections are eliminated by allowing a single change to be 
made while the curves remain visible. 

An animation is performed with a geometric model of a system and information from a 
numerical simulation that has been recorded in a file. Animations can be displayed in one 
of three orthogonal projections, the perspective view, or all four views at once. Models can 
be examined from any angle, and portions of any view can be magnified. 

The geometric model may be displayed as a collection of wireframes or colored solids. 
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Animations take place considerably faster when working with the wireframes. One can 
control the motion picture in much the same way as one uses a video cassette recorder; 
playing scenes backward or forward in time, and pausing at any point. The Workstation 
lacks a feature that allows an animation to begin from an instant in time specified by a 
user. This would be useful for viewing interesting scenes without first watching preceding 
material. 

To summarize, the animation apparatus enables one to check the reasonableness of 
simulation results in a way that is pleasing to the eye. It is said that a picture can be worth 
a thousand words: an animation can, in some cases, be worth ten or twenty plots, especially 
when bodies in a system undergo large changes in orientation. 

Simulation Results 

In order to check the simulation results given by the Workstation, and form an opinion 
about the ease with which the Workstation can be used, attempts have been made to re- 
create several simulations that have been performed by other means. Brief descriptions 
of those simulations, together with comparisons of the outcomes, shall be given presently. 
First, however, we take up two general topics related to simulation results. 

Initial values of joint angles, displacements, and speeds, as well as orbital parameters, 
are typed into fieIds in the data-entry windows. Angular values must be given in units of 
radians. The authors, who often receive and report information in units of degrees, find this 
inconvenient. Plots of time histories of angular quantities are presented in radians, making 
it difficult to compare results to those from other simulations. It would certainly be useful 
to have an option for working with either unit. 

Opportunities for mistakes in deriving, encoding, and numerically integrating equations 
of motion are legion. The use of symbol manipulation in programs like SD/FAST and 
AUTOLEV [4], and the Workstation’s software, almost eliminate the possibility of human 
error. Nevertheless, it is always advisable to check the results of numerical integrations. 
One way of doing so is to evaluate an integral of the equations of motion, if one is available, 
and verify that it remains constant at every step. To this end, SD/FAST and AUTOLEV 
can derive and encode expressions for system central anguIar momentum and kinetic energy, 
in a Newtonian reference frame. The Workstation lacks a facility for testing results in this 
way, but plans call for one to be added. 

Simulation of Centrifuge Operations 

A Space Station Fkeedom centrifuge facility comprised of two rotors, each 2.5 meters in 
diameter, is being developed by NASA’s Ames Research Center to perform experiments 
involving plants, rodents, and primates. The service rotor will spin up once or twice a day 
in order to install or remove experiments from the main rotor, which will remain spinning 
for about a month at a time. 

Refs. [5] and [6] describe simulations carried out at NASA’s Johnson Space Center to 
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Figure 2: Space Station Topography 

quantify the effects of centrifuge operations on the Station’s attitude behavior and the 
performance of Control Moment Gyroscope (CMG) momentum management algorithms. 
In order to test-drive the Workstation, we attempted to duplicate a simulation very much 
like those mentioned in Refs. [5] and [6], which were performed with the Space Station Multi 
Rigid Body Simulation (SSMRBS), a collection of “user-supplied’’ routines written to work 
together with routines produced by SD/FAST 131. 

The Space Station, sans the centrifuge rotors, is made up of eight bodies fastened 
together with simple revolute joints, as shown in Fig. 2: a core body, two truss structures 
immediately outboard of the core, three pairs of solar arrays attached to the outboard truss 
structures (two to the starboard, one to the port), and two radiator panels attached to the 
core body. 

Each rotor is treated 8s a disk with uniform mass distribution, attached to the Station’s 
core body by means of a simple revolute joint that keeps the rotor’s mass center fixed 
in the core body. The angular displacements, speeds, and accelerations of the rotors in 
the core body are prescribed functions of time. As a result, several aspects of centrifuge 
operations are not taken into account: the change in mass distribution when experiments 
are moved from one rotor to another, translations of the service rotor, any mass imbalance 
of the rotors, and motion that results from vibration isolation mounts or centrifuge control 
systems. The results of interest are not likely to be altered significantly by including these 
details in a simulation. 

The simulation, which is ten orbits in duration, is representative of much of the analysis 
that is done in support of the Space Station program in the area of attitude control: it 
involves the CMG attitude control system, controlled motion of outboard truss structures 
and solar arrays, and prescribed motion of appendages. The initial altitude of the Space 
Station is approximately 200 nautical miles, and the action of gravitational forces on each 
body is modeled. 

The Preliminary Design Review momentum management algorithm is used to con- 
trol the orientation of the Station’s core body in a local-horizontal-local-vertical reference 
frame. The motion of each alpha and beta joint is controlled independently by means of a 
Proportional-Integral-Derivative (PID) feedback scheme. The Workstation subroutines as- 
sociated with core body and appendage control are, as nearly as possible, identical to those 
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station handbook fails to delineate the argument list 
that must be present in a user-written “controller” routine. Both centrifuge rotors remain 
motionless for the first five orbits, after which the angular speeds of both rotors reach an 
absolute value of 174.3 deg/s in 130 seconds. The angular speed of the main rotor remains 
constant for the final five orbits, while that of the service rotor remains constant for five 
minutes and then returns to zero in 130 seconds. 

The algorithm used to calculate gains for the PID controllers on the Workstation are 
slightly different from those used in SSMRBS. Furthermore, there are differences in the 
ephemerides used to compute the direction to the Sun. Although the simulation results 
from the two programs share a very strong resemblance, they are, understandably, not 
identical. In both cases, the system central principal axes of inertia are nearly parallel to 
local vertical and local horizontal, and normal to the orbit plane; the average steady-state 
magnitude of the sum of CMG central angular momenta is less than 3,500 ft-lk-sec, and 
the amplitude of the oscillations in the solar arrays’ beta joints is approximately 1.5 deg. 
In neither case does the spin-up of the centrifuge rotors have a pronounced effect on the 
attitude motion of the core body. 

Motions depicted in animations of the simulation results are entirely consistent with 
the information contained in two-dimensional plots. One interesting observation is that a 
viewer is presented with an optical illusion in which the main centrifuge rotor appears to 
spin at approximately the same speed as the outboard truss structures: about 0.064 deg/sec. 
Movement of the service rotor is barely noticeable. These phenomena are related to the 
frequency with which results are recorded. The main rotor should appear to spin faster, 
and more service rotor motion should be visible, if data are recorded more often. However, 
the animation will last longer. An animation of results from the simulation of centrifuge 
operations takes just over two minutes to watch when bodies are depicted as colored solids, 
and data is saved at intervals of 100 seconds. Means of speeding up and slowing down a 
motion picture would be useful, particularly when angular or linear speeds of bodies differ 
by, say, more than a factor of 10. 

Other Rigid Body Simulations 

Results from other simulations of Space Station motion, performed on the Workstation, 
have been compared to results obtained with Lockheed Engineering & Science Company’s 
Station Control Simulator (SCS), which makes use of an algorithm based on Kane’s method, 
and can simulate motion of Systems with elastic bodies. The SCS algorithm is an order N 
variety [7], patterned after the material in Refs. [8], [9], [lo], and [ll]. 

In this Section we discuss three simulations of a rigid body spacecraft’s motion, in which 
forces from a 55 lbf reaction control jet are applied for 200 milliseconds to the Mission-Build 
5 (MB-5) configuration of Space Station needom, shown in Fig. 3. A fixed-step, 4th order 
Runge-Kutta scheme is used in all of the simulations to numerically integrate equations of 

-- motion from time t = 0 to t = 20 seconds, with a step size of 0.01 seconds. Two sensors, 
a rate gyroscope and an accelerometer, are placed at the center of mass of the Guidance, 
Navigation, and Control pallet. 
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y whose mass distribution is identical to that of the 
Space Station. In case 11, five bodies are rigidly attached to one another: a core body, 
a truss structure immediately outboard of the core, two solar arrays connected to the 
outboard truss structure, and a radiator panel fastened to the core body. The distribution 
of the system’s mass is the same as that of the body in case I. Clearly, a program’s results 
for case I should be identical to those for case 11. Case I11 differs case I1 in that the 
five bodies are fastened together with simple revolute joints; the relative angular speed of 
each pair of adjacent bodies is a prescribed constant, and initial angular displacement at 
each joint is non-zero, 

Results from simulations performed with the Workstation are in agreement with those 
obtained 

Figure 3: Space Station, Mission Build 5 

Elastic Body Simulations 
In this Section we compare results of simulations that are similar to those described in the 
preceding Section; however, the bodies are regarded as deformable. 

Case IV, like case I, involves a single body. MacNeal-Schwendler Corp’s NASTRAN 
has been employed to compute structure mode shapes and frequencies; 35 modes whose 
frequencies are below 10 Hz. have been retained. Cases V and VI are the elastic counterparts 

502 



of cases I1 and 111, where the number of retained modes for bodies 1,. . . , 5  are, respectively, 
12, 2, 7, 7, and 6. 

The Workstation yields results that are similar to those of SCS in cases IV, V, and VI. 
Time histories obtained with each program are best described as oscillations superimposed 
on the curves obtained in the corresponding rigid-body simulations- a reassuring sign. 

Computational Speed 

The overriding objective in the design of Workstation hardware and software was to max- 
imize computational speed in multibody simulations. Therefore, comparisons with other 
programs are once more in order. Computational tasks, with the exception of numerical 
integrations of equations of motion, are performed by the Workstation’s Silicon Graphics 
Personal Iris. Integrations are handled by one or more of the four parallel processors, which 
are not part of the Iris’ hardware. 

SD/FAST uses 27.6 seconds of CPU (Central Processing Unit) time on a SUN 4/60 
SPARCstation 1 to derive and encode equations of motion for the 10-body space station 
with centrifuge rotors. The same task is accomplished in 24.4 CPU seconds by the Personal 
Iris. The 10-orbit simulation is performed in 304 CPU seconds by SSMRBS (also on a SUN 
SPARC l) ,  while the Workstation takes about 100 CPU seconds. It is important to have an 
idea of the number of operations that can be performed over some period of time by each of 
the machines involved in this comparison. Our best estimate is that the SUN is capable of 
doing 1.4 x lo6 floating point operations per second (flops). The Personal Iris accomplishes 
about 0.9 x lo6 flops, and a Workstation processor probably carries out 10 x lo6 flops for 
this task. The equations of motion written by our copy of SD/FAST are of order N 3 ,  and 
those from the Workstation are order N, but, in this case, the Workstation makes use of 
only‘one of the four processors during the simulation. The system of interest posseses only 
13 degrees of freedom, so a significant difference in the speed of the two simulations should 
not be expected since, as is pointed out in 18, p. 5281, the order N and N 3  methods “are 
roughly equivalent for robots with between six to ten degrees of freedom.” 

Table 2 presents a comparison of computational speeds for the programs used in cases 
I-VI. The amount of time (in CPU seconds) required to perform the 20-second simulation 
is contained in the columns labeled “Sim”, while the time spent prior to the simulation 
to process information from NASTRAN files, in cases IV-VI, is reported in the columns 
labeled “Flex”. The machine on which the SCS resides, a Cyber 930, can perform about 
1 x lo6 flops. The Workstation is 2 to 3 times as fast as SCS in carrying out the rigid-body 
simulations, and about 4 times faster at the elastic-body tasks. It should be pointed out that 
the SCS does not employ symbolic manipulation to derive equations of motion; consequently, 
i t  does not enjoy the accompanying advantages in computational speed described in Ref. [3]. 
However, SCS is about 1.3 times faster than the Workstation at calculating modal integrals, 
and in case rV, 40 times as fast! 
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Table 2: Comparison of C U Time, in seconds 

r CASE 11 WORKSTATION 11 scs 1 
1 11 (Cyber 930) I 

Conclusions and Recommendations for Improvements 

The Workstation holds a great deal of promise for expeditious simulation of motions of 
multibody systems: symbolic manipulation, an order N algorithm that accounts for elastic 
behavior, parallel processors, and a facility for animation are married together in the interest 
of computational speed and informative display of results. In tests performed thus far, the 
Workstation yields solutions that agree with those of other programs. 

The advances in computational speed can be accompanied by more efficient use of 
analysts’ time: the processes of describing a system and viewing simulation results are 
hampered by several aspects of Workstation software and documentation. To that end we 
make the following recommendations. 

1. Modify certain preselected quantities in the data-entry windows. 

2. Speed up selection of geometric objects, and make the menu more accessible. 

3. Continue modifications to provide computer assistance in creating geometric models. 

4. firnish means to change motion picture speed, and to specify a time at which an 

5. Provide an option to work with angular quantities in degrees or radians. 

6. Provide a facility for checking results of numerical integrations. 

7. Place additional material in the User’s Manual 

animation begins. 

(a) a complete explanation of data-entry file format, and controller routine argument 

(b) documentation on using NASTRAN to produce data for the Workstation. 
(c) information on limitations, such as maximum number of bodies, grid points, and 

list. 
-- 

mode shapes. 
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Abstract 
Conventional end-to-end ground tests for verification of control system performance become 
increasingly more complicated with the development of large, multiple flexible body spacecraft 
structures. The expense of accurately reproducing the on-orbit dynamic environment, and the 
attendant difficulties in reducing and accounting for ground test effects limits the value of these 
tests. 

TRW has developed a building block approach whereby a combination of analysis, simulation, 
and test has replaced end-to-end performance verification by ground test. Tests are performed at 
the component, subsystem, and system level on engineering testbeds. These tests are aimed at 
authenticating models to be used in end-to-end performance verification simulations: component 
and subassembly engineering tests and analyses establish models and critical parameters, unit 
level engineering and acceptance tests refine models, and subsystem and system level tests 
confirm the models' overall behavior. 

The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural 
interaction testbed with a multibody flexible structure to investigate new methods of precision 
control. This testbed is a model for TRWs approach to verifying control system performance. 

This approach has several advantages: 1) no allocation for test measurement errors is required, 
increasing flight hardware design allocations, 2) the approach permits greater latitude in 
investigating off-nominal conditions and parametric sensitivities and 3) the simulation approach 
is cost effective, because the investment is in undersmding the root behavior of the flight 
hardware and not in the ground test equipment and environment. 
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Introduction _ _  _ -  

Conventional end-to-end ground tests for verification of control system performance become 
increasingly more complicated with the development of large, multiple flexible body spacecraft 
structures. These future generations of NASA and DOD spacecraft will require a high level of 
agility and precision in line-of-sight pointing. In addition, many missions will have multiple 
gimbaled payloads that must maintain precise pointing despite large maneuvers of the main 
spacecraft and other appendages. Dynamic range and bandwidth considerations demand a 
dimensionally stable structure with multiple overlapping control systems. The expense of 
accurately reproducing the on-orbit dynamic environment, and the attendant difficulties in 
reducing and accounting for ground test effects limits the value of end-to-end tests. 

Conventional spacecraft design techniques in the areas of structures, materials, and control 
systems are incapable of meeting these future space mission requirements. Improvements are 
required in all areas, and the new approaches need to be integrated and verified. In particular, an 
integrated design process is needed in order to exploit the potential synergy among the disciplines 
while minimizing mission risk due to h a r m 1  controVstructura1 interactions. 

TRW has developed a method of coordinated controVstructural design that has been used to deal 
with large, structurally complicated spacecraft. This approach involves a combination of 
analysis, simulation, and test to coordinate the design of the control system and structure. This 
methodology has two effects: it leads to a truly integrated design process where required, and it 
reduces the reliance on end-to-end ground test for performance verification. 

Instead of an end-to-end ground test, tests are performed at the component, subsystem, and 
system level on engineering testbeds. These tests are aimed at authenticating models to be used 
in end-to-end performance verification simulations: component and subassembly engineering 
tests and analyses establish models and critical parameters, unit level engineering and acceptance 
tests refine models, and subsystem and system level tests c0nfk-m the models' collective behavior. 

This verification approach has several advantages: 1) no allocation for system test measurement 
errors is required, increasing flight hardware design allocations, 2) the approach permits greater 
latitude in investigating performance under off-nominal conditions and parametric sensitivities 
and 3) the simulation approach is cost effective, because the investment is in understanding the 
root behavior of the flight hardware and not in the ground test equipment and environment. In 
addition, the simulation is a very effective requirements allocation and verification tool. 

The Recision Control of Agile Spacecraft (PCAS) Independent Research and Development 
project has developed a control structural interaction testbed with a multibody flexible structure to 
investigate new methods of precision control. The test article is an 1 Moot long space truss 
mounted on an air bearing so that it is free to slew over a 60-degree arc. Attached to the truss is a 
flexible appendage system for study of multiple body interactions. The project dso includes 
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testbed control equipment and measurement instrumentation. TRWs design and verification 
approach has been used on this testbed.. 

This paper will briefly describe TRW's approach to multiple flexible body design and 
verification. The coordinated design and verification methodology used in the development of 
the control system and the performance simulation will be discussed. The control structural 
interaction testbed, results obtained from design work, and tests performed to date will be 
summarized. 

Motivation/History 

TRW has been a major developer and integrator of space vehicles for over 30 years. A 
methodology for coordinated control/structural design and verification for complicated satellite 
systems (large and structurally rich) has evolved over the years that has proven to accurately 
predict on-orbit performance. The approach does not require end-to-end performance testing but 
relies on a carefully constructed performance simulation with models authenticated by 
appropriately defined tests. The extension of this methodology for future large space structures 
that require state-of-the-art structure design is possible with the use of a control structural 
interaction testbed. 

Testbed facilities are widely used in the study of active control of flexible structures 
(Reference 1). TRWs testbed design is a natural evolution of years of work in the control 
structural interaction (CSI) arena (References 2-20). Figure 1 is a summary of TRWs technology 
heritage regarding CSI. 

The testbed design was influenced by TRWs approach to design and verification of large space 
structures. The testbed embodies the characteristics of and has performance metrics traceable to 
future agile spacecraft missions. It can be used to verify simulation tools and modeIs and is easily 
reconfigurable to specific projects. 

The Coordinated Design Process 

Conventional spacecraft design techniques are based on the independent design of the control and 
structure subsystems (see Figure 2). Usually the structure is designed with little or no regard for 
either adverse controllstructural interactions or beneficial control/structure synergy. A control 
system (Le., sensors, actuators, and control laws) is then designed for the predefined structure, 
using at most mode separation and mass property information. This approach has been 
successfully employed on many past spacecraft where mission requirements permitted generous 
separation between structural frequencies and control bandwidths. 

i 

The trend toward simultaneous requirements of large size, light weight, rapid slew, and precision 
pointing precludes designs that rely solely on controVstructure frequency separation. Also, a 
predetermined structure may unduly restrict the type and location of control sensors and 
actuators. Iterating the independent strueturdcontrol design procedure may, depending on the 
requirements, finally Iead to an acceptable design. However, for demanding missions, the 
independent design procedure will usually lead to a spacecraft that is far from optimal in terms of 
weight, size, power, performance, robustness, and desigdproduction cost. 

TRW currently implements a coordinated approach to controVstructure design (see Figure 3.) 
This approach combines design information and requirements to blur the traditional separation 
between the structure and control design. The structure is designed not only to meet loads 
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Figure 2. Independent Design 

requirements (Le., stowed loads or stowed stiffness requirements), but also stiffness requirements 
levied by the control subsystem so that system performance and stability is assured. This 
approach also is a natural step to an integrated design, where not only is the structure designed so 
that the control subsystem can meet its performance requirements, but also that the structure 
subsystem depends on control subsystem performance to meet its design requirements (see 
Figure 4.) Integrated design opens up a range of new options and approacxes. For example, in 
the independent design process, the structure is often designed to achieve a specific first modal 
fiequency, based on structure/control frequency separation. Total system weight could be 
reduced, however, by combining active shape control with the structural design to achieve the 
required total stiffness. In some cases, neither the passive structure nor the active control alone 
can meet the stiffness requirements, but together they do. Likewise, bandwidth and robustness of 
the attitude control loops can be increased by incorporating active or passive damping into the 
structure. 

Figure 5 shows a more detailed view of the control system design process with coordinated 
structural design. Structurdcontrol design iterations are performed concurrently, rather than 
sequentially. In this way, detrimental interactions can be identified and avoided prior to the 
fabrication of the flight hardware. Figure 6 shows the concurrent control/structure design process 
to determine structural stiffness requirements needed for acceptable pointing performance. Once 
these initial requirements are established, changes to the stiffness requirements resulting from 
detailed analysis or component tests follow the process shown in Figure 7. 

Referring again to Figure 5, this coordinated design process results in the development of a 
performance simulation that incorporates models of all significant effects, including struchual 
dynamics, control and sensor dynamics, control law implementation, and models of the system 
environment. This performance simulation is the tool used to assess requirements allocation and 
design changes, and to incorporate information from component and breadboardhrassboard tests. 

The Verification Process 

This coordinated design approach has two effects: it leads to a truly integrated design approach 
where required, and it reduces the reliance on end-to-end ground test for performance 
verification. Because both the coordinated and the integrated design approach rely on a system 
simulation for assessment of the design, it is a natural progression to rely on the simulation to 



Figure 3. Coordinated Design 

support formal verification of the system performance. TRW defines the verification activity as 
the series of steps taken to show that a design meets its requirements. The validation activity is 
the series of steps that show the the requirements are consistant. 

Three aspects have to be considered: unit (subsystem, box, slice) interface verification, 
performance verification, and functional validation. Interface verification is the process of 
determining that the unit meets it interface requirement as specified in the unit specification. For 
example, this is routinely determined as part of the box acceptance test and is verified at the 
system level during box integration onto the spacecraft. Performance verification proves that the 
parameter to be verified satisfies performance specifications. Examples of such elements for an 
attitude control subsystem include pointing accuracy, jitter,. attitude deterhination accuracy, etc. 
The final aspect is functional validation, which is the demonstration that the elements function as 
assumed in various verification processes. 

TRW's verification philosophy and design approach are complementary. Functional validation is 
achieved by early integration of breadboard and engineering models into a hardware-in-the-loop 
testbed. This provides early checkout of hardware and hardware-software interfaces and validates 
the overall system model used in the performance simulation. The performance verification is 
provided by the end-to-end performance verification simulation whose models are anchored by 
component, assembly, and system level tests. 

Functional operation of the system is determined with hardware-in-the-loop tests. These tests 
help to anchor the performance simulation and assess the implementation of the functional 
requirements in the flight hardware and software. Figure 8 shows the arrangement of equipment 
in a hardware in the loop test. In the 1960s and 1970s TRW performed Moving Base Tests to 
verify the operation of the spacecraft attitude control subsystem. The spacecraft sensors, 
actuators, and control electronics were mounted on an air bearing so that the entire assembly was 
free to move in response to the thrusters or reaction wheels. The spacecraft hardwired logic 
would respond to this motion and the response would be compared to the results predicted by 
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analysis. These tests verified attitude control subsystem operation as implemented in the logic 
circuits and validated the mathematical modeling used to design the control laws. 

Due to the expense and difficulty of accurately simulating the spacecraft motion and performance 
with larger spacecraft on an air bearing, Moving Base Tests were replaced by Fixed Base Tests, 
or hardware-in-the-loop tests. This was possible because a high degree of confidence in the 
mathematical modeling of rigid body dynamics exists after years of test validation and successful 
on-orbit performance. The hardware-in-the-loop tests use analog and digital computers together 
with interfacing electronics to sense control system actuator outputs and provide sensor inputs. 
The spacecraft components were not free to move, hence the name Fixed Base. 

Sensed outputs are input to a computer where the resulting motion of the spacecraft is 
mathematically modeled. The simulated motion is used to determine the proper stimulation to be 
applied to the sensors. The simulation of the spacecraft motion was computationally demanding, 
resulting in the development of special hardware and software techniques to perform these 
functions. Increases in computer processing speed and reductions in cost have simplified the 
simulation process. 

Because of increasingly complex anitude control subsystem performance requirements, the 
hardware-in-the-loop tests also changed from being a formal verification of the subsystem 
performance to an engineering development test. Realtime demands of the test made it 
impractical to put all the performance simulation fidelity into this test. The formal verification of 
the subsystem performance is by analysis and the performance simulation. The hardware in the 
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Figure 6. Initial Requirement Development Process 

loop test is used to provide confidence in the functionality and compatibility of the control 
subsystem hardware and software and the model used in the verification simulation. 

Performance verification by simulation offers several advantages over a ground based end-to-end 
performance verification test approach. In the test approach, allocation for test measurement 
errors erodes already stringent requirements, which compounds flight hardware design 
challenges. Additionally, if the flight hardware is state of the art, the test support requirements 
are potentially beyond state of the art or demand expensive precision. The simulation approach is 
cost effective: the investment is in understanding the root behavior of the flight hardware and its 
environment, and not in developing elaborate test equipment and envirorqents. Finally, this 
process permits greater latitude in investigating performance under off-nominal conditions. This 
design and verification approach has been used on a control structural interaction testbed 
developed by TRW. 

The Control Structural Interaction Testbed 

The Precision Control of Agile Spacecraft (PCAS) project is a company funded Internal Research 
and Development program to investigate new design techniques to deal with future generations of 
NASA and DOD spacecraft (References 9, 14, 16,17). These spacecraft will require a high level 
of agility and precision of line-of-sight (LOS) pointing. Simultaneous requirements on agility 
and pointing, as well as limits on size and weight present significant technical challenge for 
spacecraft designers. LOS control for these spacecraft will be needed typically over a wide range 
of motions (in both amplitude and frequency.) Submicroradian jitter requirements to satisfy 
payload performance must be balanced with large payload fields of view (Le., 50 to loo0 
microradians) and fields of regard (2 to 50 degrees.) In addition, many missions will have 
multiple gimbaled payloads that must maintain precise pointing despite large maneuvers of the 
main spacecraft and other appendages. Dynamic range and bandwidth considerations demand a 
dimensionally stable structure with multiple overlapping control subsystems. Many missions will 
require at least four levels of control: slew, attitude, shape, and vibration. The singIe -bay truss 
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structure (see Figure 9, Reference 4) used for many years of research needed to be recycled to 
provide a relevant testbed. 

A mission analysis was performed'to gather a set of requirements for the design of a control 
structural testbed test article. Candidate configurations were evaluated on the basis of proper 
scaling of flexible dynamics characteristics, strength, and versatility. A multi-bay truss mounted 
on a single axis air bearing ( with provisions for mounting a flexible appendage) was selected for 
final detailed design. Conflicting requirements of high angular acceleration, low natural 
frequencies, and structural integrity were resolved through design iteration. Parameters traded 
included truss length and width, number of bays, member cross section, joint mass, and inclusion 
of gravity off-load guy wires. 

Figure 10 shows the final truss configuration. The truss is long (1 8 feet) and narrow (10 inches) 
to provide low frequencies in the slew plane and higher frequencies in the vertical direction. 
NASTRAN modeling of the nominally loaded truss yielded a 5.5 Hz horizontal plane 
fundamental frequency and moment of inertia consistent with the required 4 degree per second 
per second slew angular acceleration. The truss has sufficient strength to support enough 
additional mass to reduce the horizontal plane fundamental frequency to the 4 to 5 Hz range, with 
some reduction in slew acceleration. Guy wires are used to raise the fundamental frequency in 
the vertical direction to 13.2 Hz while the backing structure provides moment balance and a 
platform for mounting a flexible appendage. 

An evaluation of truss construction methods led to the selection of the patented STAR*NET 
Structures threaded hub system. This system allows easy interchange of the baseline aluminum 
structure qith passive and active composite members. Control hardware, such as the Surface 
Accuracy Measurement System (SAMs) sensor targets, reaction wheels, and proof mass 
actuators, can also be placed at any bay of the truss. This modular design is ideal!y suited to 
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evaluation of a wide variety of structure and control concepts and allows realistic measures of 
sensitivity to structural parameters and sensor/actuator location. 

Testbed control equipment, shown in Figure 12, is also configured for modularity and interchange 
ability. A Digital Equipment Corporation MicroVAX I1 computer hosts the test software and 
provides interfaces with the Structural Control Processor (SCP) and Numerix vector processor. 

The SCP implements the very high bandwidth multi-input multi-output control laws for active 
vibration control using embedded piezo-ceramic actuators and sensors. The SCP is a TRW 
developed, flight qualifiable control computer based on 32-bit floating point digital signal 
processors, and is currently programmed to perform 12 parallel digital filters with sample rates of 
2.8 kHz. The SCP has a maximum sample rate of 30 kHz. Adaptive active structural control 
capability is provided by a high speed serial link for real time update from either the MicroVAX 
or a PC to the SCP. Identification algorithms and control laws for the appendage and the truss 
actuators are implemented in the Numerix vector processor. Numerix supplied Analog to Digital 
(AD) and Digital to Analog (D/A) cards are used to convert analog sensor inputs to a form 
suitable for the vector processor and to provide signals for the actuators. The digital input 
capability of the Numerix vector processor is expanded with a custom digital conditioning 
electronics assembly. 

The truss is carried on a custom Anorad air bearing equipped with a 30 foot-pound peak torque 
brushless DC motor. Maximum acceleration is greater than 4 degrees per second per second with 
nominal truss inertia. Slews of up to 60 degrees can be accommodated with the 18 foot truss. 
The air bearing contains an optical encoder accurate to 1 microradian, which can be read by either 
the Numerix vector processor or the MicroVAX. Two SAMS sensors mounted on the truss allow 
relative deflection measurements of the truss during slew. A laser interferometer target is 
mounted on the truss endpoint to measure slew/settle residual motion. 

5 17 



Figure 9. Single Bay Truss 

The flexible appendage system, shown in Figure 12, is configured either for stand alone operation 
or as part of the multi-body truss. A complete drive system, including a 20 foot-pound peak 
torque Pacific Scientific brushless DC motor with resolver, motor controller, and computer 
interface was integrated in 1989. Use of a Ringfeder shaft locking assembly allows convenient 
interchange of the appendage structure. Presently attached to the drive is a 3 foot 'long flexible 
appendage fitted with a SAMs sensor. Four multiplexed light emitting diodes (LED) allow the 
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Figure 11. Control Structural Interaction Testbed Control Equipment 

SAMS to measure the relative deflection of the appendage at four points along the length. A 
custom interface with the Numerix vector processor permits reading each LED position at a 
250 Hz sample rate, for use in closed loop appendage control laws. 

The completed test facility also includes testbed control equipment and measurement 
instrumentation. A Hewlett-Packard 1 &channel modal survey system is used to provide detailed 
dynamic models of the testbed for either control design or identification algorithm verification. A 
Hewlett-Packard multi-axis laser interferometer system with 2 nanometer resolution allows 
structural deformation measurements during slew. A Kaman inductive position sensing system 
with 100-nanometer resolution provides high bandwidth measurements of residual vibration 
during the settle phase. A pneumatically isolated optical bench is provided to support the 
measurements for both truss and component tests. 

To provide the test environment required for precision measurements, the facility is built around a 
20 foot by 30 foot isolated seismic pad located in a dedicated test room. Adjacent to the test 
room is an equipment room and a computer/test operator room. Test room walls are treated to 
increase sound absorption and reduce stray and reflected light. Low velocity air conditioning 
equipment, separate from the house air conditioning plant, further reduces disturbance on the 
testbed. Sealed cable ports in the test room walls provide for electrical connections to the 
computer and equipment rooms, without introducing stray light or air currents. 

Testbed Results 

The testbed has been used to verify the simulation tools and models used in the precision flexible 
spacecraft integrated process. A system level modal survey, with muItipIe accelercmeters, was 
performed to demonstrate the fidelity of the NASTRAN model and obtain accurate modal 

519 



Figure 12. Flexible Appendage System 

damping values. Component tests were conducted on the active members to characterize their 
low level creep and linearity. System level slew tests, with and without active members, were run 
to verify the assumptions made in the simulation and to understand the nature of the dynamic 
response. 

Agreement between modal survey results and NASTRAN predictions was better than 10% for the 
first group of modes, and averaged better than 10% for the second group of modes. This level of 
agreement is satisfactory considering the lack of detail in the model in regard to joint stiffness and 
member preload from manufacturing and assembly variations in the truss members. Observed 
modal damping levels of a few tenths of a percent are typical of those expected from a threaded 
joint type of structure. Modal survey results were used to tune the NASTRAN model to reduce 
the errors in modal frequencies and mode shapes. Table 1 summarizes the results of the modal 
survey. 

Active (embedded piezo-ceramic) composite member hardware models were verified by 
component tests. A test fixture was constructed to permit precision measurement of active 
member motions using the laser interferometer system. Short term and long term creep was 
measured by applying step changes in voltage to the active member actuators and observing the 
response with the laser interferometer. Very low values of creep were observed: responses were 
typically 95% complete in less than 0.1 seconds and 98% complete in less than 0.2 seconds, with 
total creep in the 1% to 2% range. Active member low level linearity was measured by applying 
a small sinusoidal voltage to the actuators and heavily filtering the laser interferometer 
measurement. Response remained linear, with no observable threshold effects, down to the 10 
nanometer resolution of the laser interferometer optical configuration. 

Performance verification of the testbed and the traceability of the simulation was proven by 
conducting system level static and slew tests. Multi-mode (horizontal plane, vertical plane, and 
torsion) active damping in the 10% to 20% range was demonstrated by inserting four active 
members in the truss at selected locations. Active damping control laws were implemented in the 
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structural control processor sampling at 2.8 kHz. Slew control laws were implemented in the 
Numerix computer. 

Figure 13 shows a comparison of simulation and test results for a typical truss slew case with a 
3.5 degree slew in 2 seconds. A high level of correlation between simulation and test is seen 
during the slew phase. During the settle phase, both cases show similar level of ripple at the 
6.4 Hz frequency of the first gain stabilized mode. The discrepancy in response during the early 
part of the settling was trxed to unmodeled dynamics in the air bearing torquer, which will be 
corrected in the next model update. This demonstrates the value of modelling iterations, based on 
test results, to ensure valid simulations. However, since the airbearing is not part of the flight 
system, it also demonstrates the difficulty of removing all test artifacts from an end-to-end test. 

Summary 

TRW has developed a testbed that provides the critical capability to validate control system 
performance for multibody flexible structures for future NASA and DoD missions (high levels of 
agility, submicroradian jitter requirements, large structures). The testbed is easily reconfigurable 
and can be used to validate key models and simulation tools. The emphasis of the testbed design 
is to validate performance simulation tools required and is not intended as a complete ground- 
based end-to-end test. 

This approach to testbed design is very cost-effective and flexible. TRW's methodology is based 
on a proven building block process whereby a combination of analysis, simulation and test has 
replaced end-end performance verification by ground test. Many advantages to this approach 
were described. In particular, the simulation approach grounded by appropriate hardware test 
data is cost-effective because the investment is in understanding the root behavior of the flight 
hardware and not in the ground test equipment and environment. 
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Abstract 

The Phillips Laboratory at Edwards AFB has constructed a test bed for the validation 
and comparison of modeling and control theories for the dynamics and control of flexible 
multibody systems. This project is called the Planar Articulating Controls Experiment 
(PACE). This paper presents the experimental apparatus for PACE and the problem for- 
mulation. An in depth analysis on DC motor dynamics was also performed. 

1. Introduction 

The Air Force remains active in  space systems, and hardware, such as space robots, 
rotorcraft and spacecraft, consists of subsystems which can be described as flexible multi- 
bodies. The dynamics and control of flexible multibody systems has been of interest for 
many years. (Refs. 1-11 ). Identifying, modeling and controlling such systems using various 
theories with confidence has also become an important issue. At present, a real need exists 
for the validation a.nd comparison of various modeling and control theories ba.sed on an 
actual hardware experiment. However, compared to theoretical developments and number 
of computer programs available, experimental verification has never been conducted. To 
this end, tlie Phillips Labora.tory at Edwards AFB has constructed a flexible multibody 
structure which consists of 2 flexible beams connected in series with motors at  both the 
hub and the elbow joint. Figure 1 shows the multibody body structure named the Planar 
Articulating Coiitrols Experiment (PACE). 

2. Experimental Apparatus 

Figure 2 shows tlie PACE control loop which includes 2 flexible arm manipulator, var- 
ious sensors and actuators, amplifiers, an AC-100 data acquisition controller and the VAX 
workstation. Actuators and seiisors are connected to D/A and A/D interfaces of the AC-100 
controller through amplifiers. Sixteen channels are available on each D/A and A/D inter- 
faces. The VAX 3100 workstation controls the AC-100 data acquisition controller with the 
IS1 real-time monitor software whicli includes Matrix);, Autocode and Interactive Animation 
module. 

Tlie motion of tlie multihody test article is constrained to horizontal motion on a 14 
foot squa.re granite table. A n  air conipressor is used to activate an air bearing, which allows 
the whole system to float on air so that friction forces do not exist between the support 
plate and the granite ta.ble. Tlie shoulder motor is fixed at  the center of the granite slab 
and the elbow motor is located a t  the junction of two beams. Thus, the arms can be driven 
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through some trajectory using the DC motors. 

Sensors for PACE include: 

1. Encoders count the change of a square wave; its resolution is 2540 cycles per revolution. 
A differential interface coiiverts the encoder output to  the number of changes in the 
data acquisition time interval, which is proportional to the angular velocity of the 
motor shafts. Tachometers are not being used currently due to  their inaccuracy in 
measurements, as reported by the manufacturer, PMI company. 

2. Lasers trace the positions of two arms. JPL is designing and testing the hardware 
implementation. 

3. Accelerometers will measure accelerations of arbitrary points of interest on the struc- 
ture. 

4. Piezoceramic Sensors will measure strains along beams. 

Actuators for PACE include: 

1. PMI DC motors provide primary torques to slew the arms. Both motors have a gear 
box. 

2. Piezoceramic actuators will suppress vibrations of the a.rms. 

3. Reaction wheels (Optional) will apply a secondary moment to suppress vibrations 
of the arms. 

The free body diagra.m for PACE, seen in Fig. 3, can be divided into 4 components; 2 
DC motors and 2 flexible beams with t ip iiiasses at both ends. The dynamics of DC motors 
should be incorporated into the dynamics of the whole system. Modeling of the PMI DC 
motor with a gearbox is not an easy task since the gear box of DC motor causes noise, 
backlash and power loss. 

3. Problem Formulation 

Before the integration of the components of PACE, DC motor identification was per- 
formed using the unit-step and sine-sweep response tests. The sine-sweep response of the 
elbow, shown in Fig. 5, illustrates the dominant effect of static friction torque on the system 
response. Based on these tests, the mathematical model includes mass moment of inertia, 
viscous and Coulomb damping and static friction. Thus, the equation of motion for the 
shoulder motor is given as 

while the elbow motor is described as 
n21snl& t csU& t c,, ssn(&)  = .(T~ - ~ , f )  - ~1 

n21emB2 Ceu& t C,, s p ( 6 2 )  = n(Te - T,j) - T2 

(1) 

(2) 
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where n is the gear reduction ratio, I,, and I,, are the mass moment of inertias of the 
shoulder and elbow motors, respectively, 81 and 6 2  are the angular displacements of each 
motor relative to motor housings, C,, and C,, represent the viscous damping coefficients 
of each motor, C,, and C,, represent the Coulomb frictions of each motor, T, and T, are 
the motor torques, T,j and T,j represent the static friction torques of each motor, and 
TI and T2 represent the torques tramferred to each arm of the shoulder and the forearm, 
respectively. Note that the subscripts s and e denote the shoulder motor and the elbow 
motor, respectively. The static friction torques, T,j and T,j, are expressed in terms of the 
motor torques, T, and T,. 

-Tsf if T, < -Tsf; 
T,. = { T, if -T:. 5 T, 5 Tsf;  

Tsf if T, > TSj .  
(3) 

Based on the circuits of the DC motors and the servo amplifiers, we can express the motor 
torque i n  terms of the input voltage to the servo amplifier 

Te = - l i e T ( a e j / ,  4- D e )  (4 1 
where l i ,~  and I<,T are motor coiista.nts, as, a, and 0, and Pe are constants of servo am- 
plifiers, and I/, and V, are the input voltage to tlie servo amplifiers, respectively. Equations 
(3) and (4) relate the output voltages of the AC-100 controller to the motor torques of DC 
motors. Note that the minus sign is added in  Eq. (4) because of the direction. Parameters 
of the PMI DC motors were identified independently due to errors in the manufacturer data. 
The identification results for the shoulder and elbow motors are tabulated in Tables 1 and 
2. The material properties of each arm, listed in Fig. 5, will be identified in the near future. 

Equations of motion for PACE are derived using the Lagrangian approach (Ref. 12). 
Since each beam is represented by a. distributed parameter system, the resulting equations 
have the form of hybrid equations, i.e., tlie combination of ordinary differential equations 
and partial differential equations. For the numerical simulation and control design, the 
elastic displacements are discretized with the assumed-mode technique, resulting in high- 
order nonlinear ordinary differential equations. Thus, recalling Eqs. (1) and (2), we may 
write the following state equation for the whole system 

x = f(x,F) (5) 

where 

-- 
and 
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in which x is the state, is the control vector, ql and q2 represent the generalized coor- 
dinates for the elastic vibration of each arm, and v1 and v2 are the input voltage to  the 
amplifiers of piezoceraniic actuators and reaction wheels mounted on each beam, respec- 
tively. 

The nonlinear sensor equations are 

Y = g(x,X) (8) 

where y consists of the encoder outputs, output voltages of piezoceramic sensors and ac- 
celerome ters. 

The dynamic analysis of PACE will be performed using both commercial and in-house 
algorithms. 

4. Control Design 

The VAX worksta.tion is equipped with integrated software for data acquisition and 
control, the Real-Time Monitor Control. Fortran or C subroutines can be incorporated into 
the real-time control of PACE. The control objectives of PACE are to drive the arms to a 
certain position with a specified line of sight in minimum time a.nd to suppress vibrations 
simultaneously based on sensor measurements. The authors are performing a survey of 
possible control techniques such as neural network control, nonlinear control and adaptive 
control techniques that can be applied to PACE. The difficulty of finding a control algorithm 
for PACE is in the inherent nonlinearity of the system, including the structural, sensor and 
actuator dynamics. 

5. Summary and Conclusions 

The experimental apparatus for PACE has been described in detail. The current con- 
figuration enables us to verify the iiumericd results of modeling and control theories for 
flexible multibody systems esperimentally. Presently, both sensors and actuators are still 
being mounted to the PACE structure, aiid system identifications of its components must 
continue to be performed. However, in  the near future, PACE will be the ideal test bed for 
researchers studying the dynamics and control of flexible multibody systems. 
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Fig. 1. The Planar Articulating Controls 
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Abstract 

Creating a robot which can delicately interact with its environment has been the 
goal of much research. Primarily two difficulties have made this goal hard to 
attain. The execution of control strategies which enable precise force 
manipulations are difficult to implement in real time because such algorithms 
have been too computationally complex for available controllers. Also, a robot 
mechanism which can quickly and precisely execute a force command is 
diff icult to design. Actuation joints must be sufficiently stiff, frictionless, and 
lightweight so that desired torques can be accurately applied. 

This paper describes a robotic system which is capable of delicate 
manipulations. A modular high-performance multiprocessor control system was 
designed to provide sufficient compute power for executing advanced control 
methods. An 8 degree of freedom macro-micro mechanism was constructed to 
enable accurate tip forces. Control algorithms based on the impedance control 
method were derived, coded, and load balanced for maximum execution speed 
on the multiprocessor system. Delicate force tasks such as polishing, finishing, 
cleaning, and deburring, are the target applications of the robot. 
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A manipulator capable of delicate interactions with its environment must be 
osition controlled 
ve end-eff ector i 

precise force con re two design approaches to creating such a 
structure. One is to design the manipulator so that the entire structure is very 
light. This approach can be very costly since expensive materials and tight 
tolerances are required. The other approach is to attach a low-inertia small 
manipulator to the end of another larger and heavier manipulator. This macro- 
micro structure results in a combined structure with the low end-effector inertia 
of the micro robot and the large workspace of the macro robot. 

Our macro-micro design couples a 3 degree of freedom micro robot to the end 
of a 5 degree of freedom macro robot. A schematic and photograph of the micro 
design is shown in Figure 1, and a schematic of the macro design is shown in 
Figure 2. For the micro robot, the x and y directions are actuated with a parallel 
set of 5-bar-link mechanisms, one attached to each side end of the two motor 
shafts. The z motion is actuated by a fixed motor oriented perpendicular to the x 
and y motors. This motor is attached to the parallel link mechanism through a 
pair of universal joints. The range of motion is 2 centimeters along each axis. 
A fourth pneumatic motor, located furthest from the tip, rotates the tip through a 
series of transmissions at a constant speed for polishing, finishing, and grinding 
applications. 
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Figure 1. The Micro Manipulator 

Figure 2. The Macro Manipulator 
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e accuracy wi 
position itself. The mass of the micro robot also influences the payload 
capability of the macro design. Our design strategy was to simplify the macro 
design by making the micro robot more capable. The main consequence of this 
decision is a large micro workspace, thereby allowing less accuracy and 
performance in the macro. However, the micro’s workspace volume directly 
influences the overall mass and size of the design considerably. In our design, 
reducing travel along each dimension by a factor of two roughly reduces the 
size and mass of the micro robot by a factor of two. 

The main objectives of the micro design were to minimize end-effector inertia, 
minimize joint friction, maintain tip orientation throughout the workspace, and 
support a maximum payload (Le. force exertion) of 3 kilograms. The resulting 
tip inertia is roughly 250 gms. The joint friction was minimized by using direct- 
drive transmission and limited angle flex bearings at the joints. These limited- 
angle bearings offer virtually no friction. They do generate a spring force, 
however, which must be compensated for in the control law. Tip orientation is 
maintained by the parallel 5 bar link structure. 

Secondary goals were to minimize the size and weight of the micro- 
manipulator. The final size is 35.5 by 19 by 17.8 centimeters, and the weight is 
6.3 kilograms. Strain gages mounted on the links provide sensing for 5 
degrees of freedom (as shown in Figure 1). Sensors for detecting a moment 
about the tip axis were not included. 

1 .I Micro kinematics 

The micro robot is a closed-chain kinematic structure with 3 servo actuators to 
produce translational motion in 3 space while maintaining constant orientation. 
To derive the kinematic equations we only need to consider the tip’s position. 
This positioning mechanism can be thought of as three links which are all 
connected by ball joints at one end. The other ends of each link are connected 
to separate actuators, each through a universal joint. Since the joint angle of 
the actuators are always known, the end position of each link is known, and will 
be referred to as PI, P2, and P3 as shown in Figure 3. 
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Ti 

€2 

Figure 3. Kinematic Model of Micro Robot 

Three simple geometric relations which can be observed are as follows: 

ITip-P1 I=L1 
I Tip - P2 I = L2 
I Tip - P3 I = L3 

where L1, L2, and L3 are the lengths of the 3 links. The forward kinematics 
problem is to solve for the Tip position given L1, L2, L3, Pi, P2, and P3. PI, P2, 
and P3 can easily be related back to the joint angles. This solution may be 
visualized geometrically by imagining three spheres with radius L1, L2, and L3 
centered at P1, P2, and P3 respectively. The point where. all three spheres 
intersect is the robot’s tip position. 

Solving these equations for the Tip position is possible. However, the solution 
is a very large and complex high order polynomial. Since it is important that the 
micro robot is servoed at a high rate, it was necessary to develop a more 
computationally efficient approximate solution to the forward kinematics. 

If we assume that the links rarely rotate beyond 10 degrees from the center 
position, we can derive a fairly accurate and simple forward kinematics solution. 
The angles a and 0, shown in Figure 4, describe the orientation of each link and 
can be used to approximate the manipulator’s tip position with the following 
equations: 

Tip, = A, sin el - L1 [ (1 - cos al) + (1 - cos 0,) ] 
Tip, = A, sin 8, .. L1 [ (1 - cos a2) + (1 - COS 82) ] 
Tip, = A3 sin 0, - L1 [ (1 - cos a3) + (1 - cos 03) ] 

539 



Figure 4. Geometric quantities for one branch 
of the micro robot 

These equations are simple enough to be computed quickly so that high speed 
sewoing can be achieved. This solution is very accurate at the center of the 
workspace, and error increases towards the edge of the workspace. The 
influence of this approximation error on the impedance control law is quantified 
in section 3.0. 

1.2 Micro dynamics 

In order to calculate the closed-form dynamic equations of the micro 
mechanism, we assumed a rigid body model which includes 3 independent 
motor inertias, and a lumped mass at the tip with different masses along each 
Cartesian axis. Since the micro robot is carried about by the Macro robot, it is 
important to include the macro’s motion into the dynamic equations. By using 
Lagrange’s equation we derived the following equations of motion: 

L;T AT 
T= eI ( J T M ~ J ~  + lM) + eI (JT + zI T ’ T  R R) M Ji 
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e 
JT 

R 

z 
KF 

% 
Mz 

= rotational matrix from Micro coordinate system 

= force exerted at tip of Micro 
= force created by flex bearings in Micro joints 
= tip position of Macro robot 
=tip position of Micro robot 
= added mass felt by z-axis motor 

to Macro coordinate system 

The macro design is a 5 degree-of-freedom articulated manipulator, as shown 
in Figure 2. This manipulator supports the weight and continuous force exertion 
capability of the micro-manipulator throughout the workspace with 1 g 
acceleration. A 1 meter reach was chosen as a reasonable workspace. The 
main features of this design are high mechanical rigidity, simple kinematics, 
large workspace volume, and cost effectiveness. 

The 5 degree of freedom kinematic structure is very similar to the first five joints 
of a PUMA robot [3]. A 6th joint is unnecessary because the tip of the micro 
robot spins continuously. Link offsets, link lengths, and structural characteristics 
were designed to account for the size and mass constraints imposed by the 
micro-manipulator, however. 

We considered a variety of actuation methods. Options which were considered 
were direct-drive, harmonic drive, spur gear, worm gear, planetary gear, and 
different combinations of these. The goal was to maximize accuracy, resolution, 
and stiffness while staying cost effective. After various optimization procedures 
we decided on a harmonic drive - worm gear double reduction scheme for the 
first three joints. The last two joints, which carry a much smaller load, use 
harmonic drives. 

The procedure for solving for the inverse kinematics equations of this robot is 
very similar to that of the PUMA robot and can be found in many of different 
robotics textbooks [4]. The kinematics and dynamic equations used for 
computed torque control can also be derived very easily using of the 
generalized formulations which have been developed [5]. However, because of 
the high reduction ratios of the transmissions, independent joint control is 
adequate. 
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erformance multipr~c ssor system o satisfy the s 
I demands of c 

system as a general purpose high pe~ormance controller with both hardware 
and software modularity as a key feature. The ability to easily rearrange and 
extend hardware and software modules to support different requirements for 
various tasks is particularly important in experimental projects such as this. 
Frequently designs are unable to accomodate even minor modifications without 
a major impact to the existing system configuration. 

A schematic of the motion control system configuration is shown in Figure 5. 
The four basic units are the compute unit, the global memory unit, the position, 
velocity and digital 110 unit, and the A-to-D D-to-A unit. 

The compute unit is based on Texas Instrument’s TMS320C31 floating-point 
digital signal processor. In our earlier generation systems [6,7], we used a 
novel 30 computing processor which proved to offer much higher performance 
than DSPs or RlSC processors on kinematic and dynamic calculations. 
However, due to the high cost of implementing this design using discrete 
datapath parts we opted to used an off-the-shelf processor. At a crystal speed 
of 33Mhz the TMS320C31 offers 33 MFLOPS of peak power. Each unit 
contains 2 Mbyte of program memory, 2 Mbyte of data memory, 2 
programmable timers, interrupt capabilities for both the 110 Bus and the VME 
bus, and bus arbitration logic for accessing the I/O Bus. The memory is directly 
accessible by the host computer over the VME bus. Different levels of 
concurrency are provided to maximize execution speed. For example, the host 
may access data memory while the processor continues program execution. 
Programs are developed in either C or C++ on the host computer and 
downloaded to the appropriate unit before run time. Seyeral libraries are 
provided to support program development. Remote procedure calls were 
provided so that UNIX services, such as printf(), scanf(), open(), and close(), are 
available for code development. Math functions, functions for accessing 
sensory data, and message passing functions for multi-processing are also 
provided. 

’ 
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Figure 5. The Motion Control System 

The global memory unit contains 2 Mbytes of memory for passing messages 
between compute units, to and from the host, and to store global variables 
shared by multiple compute units. A mailbox message passing scheme is 
implemented to support multiprocessor communication. Information is passed 
from one compute unit to another compute by first acquiring the IO Bus, then 
writing the message into the target compute unit’s mailbox, and then 
interrupting the target compute unit. The target compute unit reads its mailbox, 
and sends an acknowledgement to the sending compute unit. Hardware 
interlocking and interrupt mechanisms are included to achieve high bandwidth 
communication. Reading or writing a message requires -3 ps overhead and 
another 180ns for each 32-bit word. 

The position, velocity, and digital i/O unit accepts 6 channels of 2 channel 
quadrature encoder input and translates that into absolute position and velocity. 
Each channel also supports index pulse detection, which is generally used for 
position homing. Position is stored to 24-bit accuracy and velocity is stored to 
10-bit accuracy. Thirty-two bits of digital input and 32 bits of digital output are 
included for instrumenting relays, proximity sensors, or other on-off type 
devices. 

Velocity is generated by two different schemes, depending on the velocity 
range. At low speeds, velocity is generated in hardware by a free running 
counter which measures time between successive encoder counts. At high 
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effects. 

Velocity is generated in hardware from the optical encoder signal by 
incorporating a free running counter chip which calculates the time between 
successive encoder pulses. Velocity is usually derived from a quadrature 
signal by subtracting the current positipn with the previous sample period’s 
position. This subtraction may result in very quantized velocity signals 
especially at high sample rates, however. The hardware counter method 
produces a much more finely resolved velocity signal. There is still a problem, 
however, since at low speeds there may be significant time delay between new 
velocity acquisitions. 

The A-to-D D-to-A unit provides 9 channels of 12-bit digital-to-analog output, 
and 8 channels of 12-bit analog-to-digital input. Separate digital to analog 
converters are provided for each output channel. A single analog-to-digital 
converter is multiplexed between the 8 input channels. Each channel requires 
3 ys of conversion time. Software routines are provided to configure the card to 
only sample the channels which are in use. Conversion is performed 
continuously and asynchronously only on the channels being used. Therefore, 
the maximum delay from when the data was acquired to when it was read is 3 
ps x number of selected channels. 

The software structure of the operating system level software is shown in Figure 
6. Note that there is a clear separation between the real-time execution 
environment and the non-real-time UNlX environment. The UNlX environment 
is used for program development, user interface, and monitoring the real-time 
system. Because of the UNlX front-end, the robot interface must be carefully 
constructed such that the integrity of the real-time system is not lost. For 
example, UNlX service requests by the real-time system cannot be made while 
servoing since a real-time response from the UNlX process cannot be 
guaranteed. 
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Figure 6. System Software Structure 

Figure 7 shows the general hierarchy of the application software of the system. 
Macro calls provide fast access to the various hardware fedures of the system. 
C language routines provide the next layer, which support functions such as 
synchronizing multiple processes, remote procedure calls to the host, and 
algorithms for performing mathematic operations. At the highest level, object- 
oriented class libraries are supported in C++. 
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A b i e c t  L i b r a r a  

Figure 7. Software Support for Application 
Development 

3.0 Impedance Control for a Macro-Micro Robat 

The impedance control method enables a robot to interact with its environment 
in a well controlled and precise manner [SI. The manipulator’s end-effector 
reacts to environmental disturbances in the same manner as a linear mass, 
spring, damper system. The mass, spring, and damper values are controlled 
electronically and can be different along different axes, and can continuously 
change during a trajectory. 

This method is different from hybrid position/force control 191 since specific 
forces or positions are never specified. The control variable is the equilibrium 
point of the mass, spring, damper system without external forces. The 
advantage of this methodology is that a single control variable and control 
algorithm can be used to guide a robot through interactions with the 
environment. Hybrid position/force control, on the other hand, requires a switch 
in control methods and control variables whenever the robot changes the 
configuration in which it interacts with its environment. 

i 

Figure 8 gives an example of a trajectory specified by the equilibrium path 
where the manipulator comes into contact with a surface, slides across it, and 
then leaves the surface. Note that the nominal force exerted on the surface is 
proportional to the spring constant. By using the spring constant and surface 
location information, it is simple to calculate the equilibrium point’s trajectory to 
produce a desired force across the surface. The force at the contact point will 
be influenced by contributions due to the mass and damper as well. 
Consequently, if precise force control is important, the smaller the mass and 
damper values are the better. The macro-micro design facilitates small mass 
values. 
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xo 

Figure 8. Manipulator trajectory specified by 
equilibrium point 

The impedance equation can be written as follows: 

Fext = M, (XR - X,) + C, (XR - XJ +Ks (X, - Xo) 
where 

F 

X, 
X 0 

M desired mass constant 
C desired damper constant 
K desired spring constant 

external force applied to robot tip 
tip position of macro-micro robot 
desired equilibrium point of macro-micro robot 

ext 

9 

S 

S 

Impedance control of a macro-micro design has the added complexity of 
managing the manipulator’s redundancy to optimize force interactions by 
exploiting the micro robot’s low tip inertia. In other words, the redundancy 
should be used to keep the micro robot from reaching its workspace limit, where 
one or more degrees of freedom would be lost. Our robot has 3 degrees of 
redundancy along the translational axes. Delicate interactions for translational 
motion is possible because of the micro robot. Orientation is left to the macro 
robot and is position controlled. 

A block diagram of the control structure is shown in Figure 9. The impedance 
control law, which outputs torques to the micro robot, is derived by combining 
the desired impedance equation stated above with the equations of motion of 
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ote that the servo control 
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from the micro nto a real-time 
robot. This tr rator uses the 

robot's redundant degrees of freedom by constantly updating the macro robot's 
desired position such that the micro robot is centered in its workspace, and 
hence far from its workspace boundary. Consequently, entire manipulator can 
respond to external disturbances with the quick reaction of the micro robot over 
the entire workspace of the macro robot. 

Robot Command 

Xi - mlcro mbol's actual tip poalin 

f - mro h r s  force sensor readings 

X e - macro robot's actual tip poeitin 

od - desired orientation of macromicro robot 

x ad X ad 
qd - desuedpinr poel in 

Xq - equilibriumpoint 

4 - actualpintpoeitii 

- actual p i  vebciiy 

* *. 
X ad - desied tlp position. velocdy. and acceleration of macm robot 

t - torque 

Figure 9. Impedance control of macro-micro robot 
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accelerat~ons of the 
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quantifies the critical tradeoffs between the ormance versus the 
macro’s performance. We will obtain more these relationships 
through experimentation of the robot. 

With this control strategy, since the macro rely position controlled it 
may be possible to apply this strategy to a nected onto the end of a 
commercial robot. However, the success of this approach is dependant upon 
the ability of the commercial robot to accept and quickly respond to new position 
commands. The requirements of a commercial robot used in this manner will 
become clearer with more experimentation on our robot. 

In order to quantify the errors in the impedance control law resulting from the 
approximations used in section 1.1 we evaluated the control law at several 
different robot configurations and compared the resulting torques with torques 
calculated using exact equations. Nominal values of desired mass, spring, 
damper were chosen, and the micro’s workspace center was used as the 
equilibrium point. To represent the results in a more intuitive framework we 
multiplied the final joint torques with (JT)-I to produce a single force vector. The 
errors are quantified by the percentage different in magnitude, and the 
orientation different in degrees, from the force vector produced by the exact 
method. Figure 10a confirms that error is small at the workspace center and 
increases as we move towards the edge. Figure tOb shows the resulting error 
at different configurations and includes non-zero velocity terms. Note that in all 
of these cases the error in the force vector never exceeds 2 percent in 
magnitude and 1 degree in orientation. 

I I 

0 .o 0.1 0.2 0.3 

Figure loa. Force error w.r.t. Tip offset along X-axis 
(velocity = 0.0, Fx = F, = Fz = 4 Ibs) 
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Figure lob. Force error wi th  non-zero tip velocity 

4.0 Control Implementation on a Multiprocessor controller 

The hardware control system which we assembled for executing the impedance 
control method includes 4 compute units, 2 position velocity units, 2 analog and 
digital units, and one global memory unit. One of the compute units is used for 
a trajectory planner. The execution of the control algorithms are mapped across 
the other 3 compute units to optimize the response of the system. Even though 
there is a great deal of research on automating the processing partitioning a 
task for parallel processing , our approach has been to manually partition the 
problem optimizing for balanced loads and meeting the various real-time 
constraints. 

In addition to parallel processing with multiple compute units, within compute 
units we nested algorithms so that variables which changed faster were 
evaluated more frequently than variables which changed slower. For example, 
calculations which include force readings are grouped together and calculated 
at the highest update rate, and calculations which change only with position are 
grouped together and calculated at a slower update rate. Figure 11 shows the 
update hierarchy employed in our scheme. 
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Figure 11. Hierarchical update rates 

5.0 Conclusion 

Building a robot which can interact delicately with its environment is a 
challenging task. Phis paper describes a robotic system designed for such 
tasks. An 8 degree of freedom macro-micro manipulator is controlled by an 
impedance-based controller, executed on a high performance multiprocessor 
control system. The manipulator’s tip inertia is very low and can therefore react 
quickly to force disturbances. The control method compensates for manipulator 
dynamics, and can generate very precise torques. The multiprocessor offers 
sufficient compute power to meet the real-time demands of the control strategy. 
Preliminary resuits show that this design will be capable of precise force control. 
More conclusive experimental results will be available by the end of the year. 
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ABSTRACT 

The Multibody Modeling, Verification, 
and Control (MMVC) Laboratory is under 
development at the NASA Marshall Space 
Flight Center in Huntsville, Alabama. The 
laboratory will provide a facility in which 
dynamic tests and analyses of multibody 
flexible structures representative of hture 
space systems can be conducted. The 
purpose of the tests are to acquire dynamic 
measurements of the flexible structures 
undergoing large angle motions and use the 
data to validate the multibody modeling 
code, TREETOPS, developed under 
sponsorship of NASA. Advanced control 
systems design and system identification 
methodologies will also be implemented in 
the MMVC laboratory. 

This paper describes the ground test 
facility, the real-time control system, and the 
experiments. A top-level description of the 
TREETOPS code is also included along 
with the validation plan for the MMVC 
program. Dynamic test results from 
component testing are also presented and 
discussed. A detailed discussion of the test 
articles, which manifest the properties of 
large flexible space structures, is included 
along with a discussion of the various 

candidate control methodologies to be 
applied in the laboratory. 

INTRODUCTION 

Approximate numerical methods are 
generally employed to solve the nonlinear 
partial differential equations for flexible 
multibody dynamics. The TREETOPS 
multibody modeling code is one such tool. 
This code uses Kane’s equations and the 
component mode approach for multibody 
simulation. To date, verification of 
multibody tools have has been limited to the 
fixed point case, accomplished by 
comparing component and system mode 
results to those of the NASTRAN finite 
element code. Validation of the modeled 
nonlinear behavior can not be accomplished 
in this manner. Hardware experiments 
highlighting modeling features of interest, 
such as large angle slewing, are required for 
such validation. The Multibody Modeling, 
Verification, and Control (MMVC) Program 
at Marshall Space Flight Center (MSFC) is 
focused on the experimental validation of 
multibody modeiing codes and the 
application of control theory to nonlinear 
dynamic systems. 
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The MMVC Program was initiated in 
November, 1990. The MMVC laboratory is 
currently under development and will 
provide a tcstbed for the execution of 
experiments designed specifically to validate 
modeling of complex systems. Modeling 
features under study are body flexibility, 
including large motions with small and large 
deformation; interface degree-of-freedom, 
including point and line interfaces 
undergoing translation and rotation; 
geometric stiffness, including gravity and 
foreshortening; and constraints, including 
prescribed motions and closed-tree 
topologies. The top-level design of a basic 
set of experiments that emphasize critical 
modeling features presently included in the 
TREETOPS simulation has been completed. 
Beginning with a simple single beam 
experiment and evolving to multiple beams, 
joints, and various topologies, the 
experiments will grow in complexity as each 
modeling feature is examined. The final 
experiment will feature a test article 
traceable to the Advanced X-Ray 
Astronomical Facility (AXAF). Figure 1 
depicts the general methodology of the 
MMVC validation plan. Experiment 
hardware has been fabricated, and individual 
components have been tested. Detailed 
procedures for system-level experiments arc 
being developed. 

Critical to the experiments is the design 
and development of a test facility. A facility 
design was chosen such that an existing 
platform will be modified to accommodate 
the MMVC experiments. Additional 
structure will be added to the platform to 
provide a support base for the test articles 
and to raise the fundamental frequency of 
the platform such that it IS outside the 
frequency range of interest for the 

expcrimcnts. The facility design has been 
finalized, and fabrication should be 
completed next year. An integral part of the 
facility is the real-time closed-loop system 
(RTCS). Its hnction is to process the 
sensor inputs, implement the controller, and 
provide the real-time output signals to the 
actuators. The RTCS is in place and 
functionally verified. 

As part of the MMVC program, 
enhancements to the TREETOPS code are 
planned. The goal is to develop a 
Government-owned "all-in-one" tool that can 
be used to develop structural models of 
multibody systems, perform model order 
reduction, develop controllers, and assess 
controller performance in a closed-loop 
sense via simulation. Currently, the 
simulation tool is a menu-driven program 
used to model and analyze flexible 
multibody structures exhibiting either open- 
or closed-tree topologies. The menu 
program provides the means to implement 
gains for a standard proportional, integral, 
differential (PID) controller or to include a 
user-defined controller. 'Thc results of this 
effort will be the enhancement of 
TREETOPS to include model reduction 
techniques, thermal effects, optical path 
analysis capability, expanded controller 
design capability, and to improve 
computational efficiency. 

The MMVC Program at MSFC will 
provide experimental validation of 
multibody simulations and lead to the 
development of a Governrnent-owned 
multibody modeling and control system 
design and analysis tool. The results of the 
experiments and the enhanced TREETOPS 
code arc and will be publicly available upon 
requcst to the Government. The following 
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sections contain bricf descriptions of the 
TREETOPS code and planned 
enhancements, tllc MMVC experiments and 
validation plan, thc MMVC facility, and 
highlights of the control design techniques 
envisioned for use in thc closed-loop control 
experiments. 

DESCRIPTION OF THE 
TREETOPS MODELING TOOL 

Introduction 

TREETOPS is a time history simulation 
of the motion of arbitrary complex 
multibody flexible structures with active 
control elements. [ 1 ] The name 
TREETOPS, which is not an acronym, 
refers to the class of structures whose 
motion can be siniulatcd by the program, 
those having an opcn- or a closcd-trce 
topology. The program offcrs thc uscr an 
advanced capability for analyzing the 
dynamics and control-rclated issues of such 
structures. 

In the simulation. the total structure is 
considcred as an interconnected set of 
individual bodies, cach described by its own 
modal charactcristics with prescribed 
boundary conditions. An interactive set-up 
program creates all necessary data files. A 
linearization option that provides both the 
simplified model typically used during the 
initial phases of control system design and 
the complex model necdcd for final 
verification is also available. Thus, 
TREETOPS can be used throughout the life 
of a project, and the user is not requircd to 
learn a ncw sirnulation system as the project 
progresses. 

In addition to multibody simulation, 
TREETOPS contains subroutines for 
control system analysis and design. Using 
this complete capability, the user can create 
and lincarize complex, multibody models, 
import the plant model into MATLAB, 
design a feedback compensator in matrix 
form and export the results back to 
TREETOPS as a 'matrix controller' for final 
design Verification. 

The current version can be configured to 
execute on most Unix platforms as well as 
PC class machines. The graphics program, 
TREEPLOT, is customized for specific 
monitors and printers and is continuously 
updated. The PC version of TREEPLOT 
has yet to be developed; however, 
TREETOPS is completely compatible with 
the PC version of MATLAB and this 
product can be used for obtaining graphical 
output from TREETOPS. 

Planned Enhancements for TREETOPS 

A number of enhancements are planned 
for TREETOPS. . ' Among these 
enhancements are order-N formulation for 
greater computational efficiency, the 
inclusion of inverse dynamics control and 
geometric nonlinearities, and an improved 
graphical user interface (GUI) 

The multibody dynamics formulation and 
corresponding solution algorithm presently 
employed in TREETOPS is classified as an 
order-N-cubed approach, where N is the 
number of degrees of freedom. The dynamic 
equations of motion are formulated using 
Kanc's Equations. The algorithm currently 
in use involves a matrix-vector 
iniplcmcntation wherein a gcneraiized NxN 
systcm mass matrix is fomicd and inverted 
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to solve for the N degrcc of frcedoni 
accelerations. 
operations. Rescarch in numerical analysis 
has demonstrated that such problcnis can bc 
solved using ordcr-N algorithms rcquiring N 
operations. These algorithnis essentially 
perform recursive operations to solve the 
equations of motion whcrcin the assembly 
and inversion of a system mass matrix is 
avoided. For a largc system ordcr, order-N 
techniques result in a substantial savings in 
computational time. 

This proccdurc rcquircs N 3 

The increasing dcmand for high- 
operating speed, accuracy, and efficiency 
has led to strict requirements on the design 
of control systems for space-based 
manipulators. This requires consideration 
of a set of highly coupled nonlinear dynamic 
equations to dctermine the control torques 
and forccs neccssary to produce thc desired 
motion of the ninnipulator This also 
suggests the use of more sophisticated 
control schcnics, such as invcrse dynamics 
controllers. Hence, this fcaturc will be 
added to TREETOPS This cnhancemcnt is 
discussed in niorc detail in a later scction. 

Another planned cnhancement is the 
inclusion of the effects of geometric 
nonlinearities. When properly accounted 
for, these terms will accurately reflect the 
motion induced change in stiffkss of the 
structure. The current version of 
TREETOPS uses the assumed modes 
method to describe the elasticity in the links. 
The assumption in this method is that the 
elastic deflection is small and can be 
obtained as a lincar supcrposition of the 
modes multiplicd by thcir respcctivc time- 
dependent amplitudes Thesc dcflcctions are 
the asial and transvcrsc clastic 

displacements, and rotations of a 
configuration point. 

The assumed modes method is perhaps 
the most suitable method to describe the 
elasticity in any arbitrarily shaped body. 
Such a body can be mathematically 
discretized and its modal frequencies and 
mode shapes easily obtained using any linear 
finite element program. An approach is 
sought to compensate for the change in 
stiffness created by the use of the linear 
finite element program. One solution is the 
retention of the nonlinear part of the strain 
expression that is omitted in the linear finite 
element theory. 

In the expression for the potential energy 
due to the nonlinear expression in the strain, 
the impressed loads (stresses) explicitly 
appear. Once these loads are specified, a 
stiffness matrix, called "the geometric 
stiffness matrix," which is analogous to the 
linear stiffness matris, is obtained. This 
approach will be extended to multibody 
systems with arbitrarily shaped flexible 
bodies and included in the analysis code. 

A GUI is currently under development. 
The goals for the GUI development are to 
increase learning speed and simulation 
implementation time, reduce errors, and 
encourage rapid recall for infrequent users. 
The desktop metaphor, with its windows, 
icons, and pull down menus, is very popular 
because it is easy to learn and requires 
minimal typing skills. The requirement to 
memorize arcane keyboard commands is 
also alleviated. The GUI will comprise f i l l  
screen form using cursor keys and a mouse 
for movement from field to field. The input 
options will be dcsigned as a set of icons. 
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TREETOPS currcntly lacks a unificd 
environment in which to run the constitucnt 
programs with transparent data 
communications. The uscr must invokc 
each program at thc command line with a 
problem name. The commands have a three 
level hierarchy. The uscr is constrained to 
sequential movcmcnt from a highcr lcvcl to 
lower level. In addition thc user must 
remember the exact command for each 
operation. Thus the user has the burden of 
with committing the entire command set to 
memory. With the new GUI, the user will 
be able to specify a problem name and 
choose any of the available options, 
including NASTRAN, TREESET, 
TREESEL, MATLAB, and others. If the 
option the uscr selccts requires any 
interaction, then a form for that interaction 
is presented on the scrccn and the users 
simply providcs the required input data. 
Communication bctwccn the diffcrcnt 
program elements will be through data filcs, 
but will be transparent to the uscr The GUI 
will also have an estcnsive error checking 
routine executed at all stages of data entry. 
When an error is dctccted, thc GUI will 
prompt the user to re-enter the data. 

TREETOPS Modelin? Featurcs to be 
Verified via Laboratorv Espcriments 

Several aspects of the flexible multibody 
modeling problem will be examined in the 
MMVC program. The primary focus will 
be on the evaluation of the assumed modes 
method when applied to multibody systems. 
In this technique, the structural flcsibility of 
each body is modclcd as a lincar 
combination of spatial shclpc functions and 
generalized time coordinatcs. Through 
proper selcction of the coniponcnt shape 
functions or Ritz vcctors, the system 

dynamic characteristics may be recovered. 
Scvcral points will be addressed concerning 
the sclection of the ktz vectors. First, the 
type of Ritz vectors that should be used for 
various classes of multibody systems will be 
asscsscd. These vectors may be normal 
modes, Lanczos modes, block Krylov 
modes, and shape fimctions from 
substructure coupling techniques. Next, the 
sets of shape functions to be retained for 
each body will be determined as will the 
boundary conditions to be used in computing 
these shape hnctions. These points will be 
addressed through a series of increasingly 
complex experiments to be conducted in the 
MMVC laboratory. The experiments will 
be designed such that the flexible effects of 
the components dominate the time response 
of the system. 

Espcriments will also be designed to 
examine other aspects of multibody systems. 
Modeling techniques will be evaluated which 
account for geometric stiffening of systems 
described through the assumed modes 
method. These techniques account for 
changes in structural stiiffiess induced by 
motion and grhity. In particular, 
experiments will be performed to measure 
the time response of systems undergoing 
buckling loads and large angular velocities. 
These results will be compared to analytical 
predictions which account for the changes in 
stiffness. Additional studies will be 
performed to evaluate modeling techniques 
in the areas of joint friction, joint flexibility, 
kinematic and closed-loop constraints. 

Assumcd Modes Validation Plan 

The MMVC validation plan consists of 
verification of the assumed modes 
hypothesis for a multibody structure and 
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will provide insight as to how the multibody 
structures should be modclcd. The current 
procedure consists of three steps; I )  model 
development, 2) data collection, 3) post test 
analysis. The overall plan is illustrated in 
Figures 2, 3, and 4. 

' Two control objectives will be used in 
virtually all configurations; pick-and-place 
control and trajectory control. The objective 
of pick-and-place is to move from one point 
to another without regard to the trajectory, 
while the second approach specifies the 
trajectory to be followed. 

MMVC EXPERIMENTS 
Ouen-Loop Topologies 

The proposed series of experiments for 
the MMVC program can be classified into 
three categories: 1) Open-loop topologies, 
2) Closed-loop topologies, and 3) Space 
structures. Each of these Categories have 
specific issues associated with them. For 
example, the open-loop topologies have one 
actuator for each joint while the closed 
topologies have fewer actuators than joints. 
Furthermore, in closed-loop topologies the 
component flexible links can be modeled 
indepcndcntly, but the system imposes 
interdcpendcncies bctwccn the componcnt 
modes through closcd-loop constraints. 
Space structures can belong to any of thc 
above categories but elaborate modcling 
may be required and the control objcctivcs 
may also differ significantly from those in 
the first two categories. 

A set of experiments has been devised to 
address the modeling issues identified in the 
MMVC program. The first group of 
experiments considers open-loop topologies, 
the second set is for closed-loops, and the 
last set focuses on a representative space 
structure. The experiments are previewed in 
the following sections and the specific issues 
of each experiment are addressed. The 
experiments are ordered according to 
complexity. Each configuration will be used 
to address several niodcling and dynamics 
issues and incorporate several control 
objectives. 

The experiments designed for this class 
of problems are composed of single and two 
link systems connected through active and 
passive joints to a moving base. The base 
may be held fixed or actively controlled. 
The experiment configurations are based on 
a building block approach using 
interchangeable components. The designer 
may select from a wide variety of links with 
varying dynamic characteristics. There are 
aluniinuni and steel beams of varying cross 
sections and Icngths, as well as more 
complex "geodesic" and "ladder" beams. 
Each of the beams has been modeled in 
NASTRAN and its component 
characteristics documented. There are 
standard mechanical interfaces to attach the 
beams to passive and active joints as well as 
tip masses and counter weights. The active 
joints are driven by DC torque motors and 
may be configured for planer or three 
dimensional experiments. Figures 5 ,  6,  7, 
and 8 are typical open-loop topology 
experiments. The objectives of the open- 
loop experiments are: 

1) To demonstrate the coupling between 
rigid body and elastic motion of 
systems. 

2) To address the issue of modal selection 
and types of shape fimctions used in the 
modcling process. 
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3) To investigate motion induced stiffness 
changes 

The control objcctivcs are: 

1) Pick and place control. 
2) Pointing control. 
3) Pendulum mode control. 

Closed-Loop Topolo3ies 

This class of csperiments consists of 
combinations of rigid and flesible links 
forming a closed-loop mechanism as shown 
in Figure 9. Typically, the number of active 
joints in the system is greater than the 
number of passive joints. These 
experiments are designed to validate use of 
kinematic and closed-loop constraints 
equations in multibody codes. 

Space Stnicturcs 

The previous bcaiii cxpcrinicnts were 
designed to address scvcral aspects of 
multibody dynamics and control through 
increasing lcvcls of complexity. The Very 
Elastic Rotating NASA Experiment 
(VERNE) will incorporate the experience 
gained thus far into the modeling and control 
of a complex spacccraft. VERNE, shown in 
Figure 10, is composed of a moderately 
flexible core body, flexible pointing unit, 
two flexible solar arrays, and a pair of whip 
antennas with end masses. A rigid beam 
attaches the core body to the linear motion 
system of the facility through a ball joint. 
The experiment will inherently have two 
pendulum modcs, which arc rotations about 
the X and Y ascs, and a roll mode about the 
Z axis. VERNE was designed such that the 
bending modcs of the solar arrays and 
antcnna arc highly coupled with the 

pendulum modes. The pointing unit is 
connected to the core body through three 
linear electromechanical actuators, forming 
a closed-loop topology. The pointing unit 
has a range of motion off  30 degrees about 
the local X and Y axes. The linear actuators 
can generate a peak force of 200 pounds and 
have a throw of 18 inches. The pointing 
resolution of the unit computed fiom the 
accuracy of the incremental encoders on the 
lead screws of the actuators is -002 degrees. 
The point unit is two feet tall and is 
composed of three triangular plates 
connected by longerons. A generic housing 
was fabricated with the triangular plates to 
hold assorted laser or optical sensors. 

The flexible solar panels are 8 feet long 
and 1 foot wide. The panels consist of thin 
aluminum struts bolted in a truss like 
fashion. The solar panels have 360 degrees 
of travel about the X asis and are powered 
by a direct drive D.C. motor. The drive 
shafts are instrumcnted with incremental 
encoders and tachometers. The encoder 
resolution is .35 degrees. The peak torque 
available from the motors’is 1 1  foot-poun 

The core body is composed of aluminum 
angle. The whip antenna are rigidly 
connected to the core body. Three 
orthogonal reaction wheels are mounted to 
the core body along the body axes. Each 
reaction wheel is driven by a D.C. torque 
motor equipped with a tachometer. The core 
body is also instrumented with a three axis 
rate gyro system. 

The preliminary system modal 
characteristics are shown in Table I .  The 
first two bending modes at .263 and .275 
Hertz are torsion modes of the sclar panels 
about the drivc shafts Thc ncxt mode is a 
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system pendulum mode at .366 Hertz about 
the Y axis. The bending modc at .484 Hertz 
is a combination pcndulum modc about X 
and solar panel torsion. These modes may 
be shifted through the use of counter weights 
and adjustments to the solar panels and 
antenna. 

Table 1. Preliminary System Modal 
Characteristics 

Mode Frequency Description 

(Hz) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

,263 

.275 

.366 

,484 

1.577 

1.640 

1.718 

1.795 

5.164 

Rigid Body 
Rotation About 2 

Solar Panel 
Rotation in Phase 

Solar Panel 
Rotat ion 

Pcndulum About 
Y 

Pcnduluni About 
X / Solar Panel 
Torsi on 

Antenna 1st 
Bending About X 
in Phase 

Antenna 1st 
Bending About X 

Antcnna 1st 
Bcnding About 2 

Antenna 1st 
Bcnding About 2 

Solar Panel 1st 
Bending 

VERNE Exueriments 

The objectives of the experiments 
proposed for VERNE are divided into 
dynamics and controls. The objectives of 
the dynamic open-loop tests are: 

1) to test the validity of the generalization of 
modal selection issues from earlier 
experiments. 

2) to study the pendulum modes in a multi- 
body context. 

3) to study motion coupling through various 
prescribed open-loop maneuvers. 

The control objectives are: 

1) pointing control in the presence' of base 

2) pointing control in the presence of solar 

3) pointing control in the presence of 

excitation. 

panel maneuvers. 

pendulum modes. 

Three open-loop experiments have been 
proposed. First, the translational degree of 
freedom of the linear motion system will be 
locked and the solar panels will be driven 
through various slew maneuvers. Next, the 
solar panels will be held fixed and the 
system will be driven through base 
excitation. Finally, the solar panels will 
again be driven, but this time in the presence 
of base excitation. The effect of solar array 
motion and base excitation on the system 
pendulum modes will be studied using 
sensor time histories and compared to 
analytical results. 

The controls experiments consist of 
accurately pointing the . lower unit in the 
presence of solar panel motion and base 
excitation. The control system designer will 
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have access to line of sight error from a light 
source on the lower unit illuminating a quad 
detector on the ground. The dcsigncr will 
also havc information from the rate gyros, 
solar panel drive shaft position and rate, and 
relative angle between the corc body and 
lower pointing unit. The engincer must 
design the loops generating torque/force 
commands for the reaction wheels, solar 
panel drives, and linear actuators from the 
feedback of the various sensors. 

THE MMVC LABORATORY 
FACILITY 

The MMVC project consist of multibody 
modeling, verification, and control. 
Currently dynamic multibody systems with 
flexible members and large rotations and 
translations at the joints are modeled using 
TREETOPS. Infomiation on the flexible 
modes is input to the code from NASTRAN 
models of the bodies. There are many opcn 
questions as to which modes should bc input 
to TREETOPS - that will be addressed in 

the modeling cxpcrimcnts. TREETOPS has 
been widcly used for many ycars, but its 
results have never been experimentally 
confirmed. This issue will be addressed in 
the verification section. Finally, new 
methods for control of the structures will be 
investigated in the control section 

Platform and Linear Motion System Desisn 

The MMVC facility will be located in 
the west high bay area of building 4619 at 
MSFC. This facility is joincd with the 
Flexible Space Structures (FSS) ground test 
facilities and is accessed via the control 

-- room. The two primarp requirements for 
MMVC facility are experiment work volunie 
and support structure stiffiicss Thc desired 

work volume is 20' by 20' by 20'. This will 
allow room for large translations and 
rotations of the experiments, as well as for 
larger tcst articles needed for low frequency 
modes. The experiment support structure 
must withstand the static and dynamic loads 
from the test articles. The structure should 
also isolate the experiments from unwanted 
disturbances. lsolation will be accomplished 
by moving the support structure natural 
frequencies to a range outside of those under 
study. Other factors considered in designing 
the facility were: facility enclosure, power, 
lighting, ventilation, access, safety, and cost. 

Currently, outside of the FSS control 
room in Building 4619, there is a balcony 
off the third floor in the high bay. Three 
locations for the facility were considered. 
First, the experiments could be hung from 
the existing balcony. Second, the 
experiments could be enclosed in a stand- 
alone structure below the existing balcony 
on the first floor. Finally, the test articles 
could be suspended from a fixture above the 
csisting balcony. The last alternative was 
chosen because of severat advantages. The 
primary advantage is that the real-time 
computer controlling the experiments will be 
located in the existing FSS control room. 
Also, test articles will be highly visible from 
the control room and the current platform or 
balcony. This location will have a high 
work volume and require no external 
lighting or ventilation. The system bending 
modes computed from finite element 
analysis are shown in Table 2. These modes 
were calculated assuming an 800 pound 
experiment located in the center of the front 
edge of the new platform. As expected, this 
is a diving board mode of the new structure 
at 19.7 Hertz. The frequency is well above 
those of interest of the experiments. 
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Table 2. MMVC Facility 

Mode Frcquencv Dcscripf ion 
1 19.702 Hz Platform 

Bending 
2 22.381 Hz Localized 

Torsion 
3 23.540 Hz Localized 

Bending 
4 25.550 Hz Localized 

Torsion 
5 27.872 Hz Localized 

Bending 

A linear motion system will be installed 
along the front edge of the new balcony 
The motion system has a range of travel of 6 
feet with a sensor resolution of .003 inchcs. 
It is a ball screw systcni drivcn by a 
brushless DC motor with a pcak force 
capability of 430 pounds and can withstand 
loads well above 800 pounds. 

MMVC Real-Time Control Svstcm 

The uscr interface is through the Silicon 
Graphics Personal Iris 4D-25TG console 
The real-time functions will be 
predominantly executed on four Mercury 
Computer Systems MC860VB-4 single 
board computers running MC/OS Version 
2.0. A SPARC Engine 1E single board 
computer serves as a host for the 
MC860VBs. The host interfaces the 
Mercury boards to a SCSI bus and Ethemct. 

The VO boards consist of a Xycom 
XVME-203 CounterlTimcr Board, a VME 
Microsystems Intcmational VM IVM E-252 8 
128-bit Digital I/O Board, four Datcl 
DVME-611F 14-bit Analog Input Boards. 
and four VME Microsystcms International 
VMIVME-4 100 Analog Output Boards 

The MMVC Closed-Loop Controller will be 
used to provide digital control of the test 
articles in the MMVC Lab. The controller 
will be interfaced to the experiment of 
sensors, compute control outputs, and apply 
the outputs to the experiment of actuators. 
The closed-loop control laws will require a 
large amount of computational power, and 
must be executed at rates as high as 250 Hz. 

MMVC CONTROLLER METHODS 

Many control schemes have been 
evaluated that would not only provide 
adequate tracking, but also provide vibration 
suppression. The major problem with these 
linear design techniques is that the structure 
(plant) is a highly nonlinear system. Control 
design studies have showed that a linear 
controller, designed for the MMVC 
experiments may result in unstable systems 
for largc-anglc slew commands. This is 
because of the interactions between the 
control system and the nonlinear centrihgal 
stiffening, softening, and Coriolis effects. In 
the following paragraphs ,are presented three 
control schemes that may provide acceptable 
controllability and performance while the 
system is undergoing these nonlinear 
interactions 

Inverse Dynamics Controller 

One approach to compensate for 
nonlinear forces is to use a technique 
referred to as inverse dynamics control.[2] 
131 The way the inverse dynamics control 
law works is illustrated by considering the 
following equation 
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where q is thc n-dimensional vector of 
generalized coordinates, M(q) is the n x n 
mass matrix, u is the a-dirncnsional vector 
including the effect of centripetal, Coriolis, 
and gravity tcmis as wcll as all otlier 
stifmess and damping tcrms, r is the external 
torque (or force) vcctor of dimension m, and 
B(q) is the n x m torque distribution matrix. 

The idea of inverse dynamics control is to 
seek a nonlinear control logic expression 

which, when substituted into equation (l), 
results in a linear closed-loop system. Here, 
we assume that the state vector, q, is 
available. 

In this papcr, we consider the general 
case where thc number of external torques 
can be less than the number of the 
generalized coordinates describing the 
equation of motion (1). Several control 
logic expressions and their computational 
steps are devclopcd to apply the inverse 
dynamics control to this case. 

TREETOPS subroutine facilities are 
used to perform this computation. The 
state vector, q, is defined to be the set of the 
hinge angles and translations and the modal 
coordinates of flex modes. The non-actuator 
forces, i.e., forces due to gravity, stiffness, 
damping, etc. are summed with the inertial 
forces. Also, the torque distribution matrix 
B(q) is not directly computed. 

Model Reference Adaptive Control 

Another control design option for the 
MMVC experimcnts is a spin-off from the 

model reference adaptive control (MRAC) 
methodology referred to as Direct 
Multivariable Model Reference Adaptive 
Control (DMMRAC). The primary 
advantage DMMRAC possesses over 
conventional MRAC and other control 
techniques is that it is completely model 
independent. DMMRAC is a nonlinear 
adaptive control methodology driven only by 
the accumulated error between the reference 
model and plant outputs. The nonlinear part 
of the filter results from the adapting law 
being a function of the square of the 
reference model states. Unlike classical 
MRAC, DMMRAC does not require any 
knowledge of the plant. Therefore, the order 
of the reference model is strictly up to the 
designer. Conventional MRAC methods 
require the order of a reference model to be 
at least equal to that of the plant. This is a 
major drawback for these other methods 
because predicting the order of a complex 
nonlinear plant is essentially impossible. 

Fuzzv Control 

The MMVC team is currently searching 
for new and innovative control methods for 
large space structures. Fuzzy logic control 
holds much promise in this application.[4] 
[ 5 ]  [6] Fuzzy logic is a rule-based control 
methodology based on linguistic phrases and 
provides control the way a human operator 
would. It is especially suited for the 
nonlinear, time varying, and illdefined 
systems such as large flexible structures. 
Another key feature to fuzzy logic is that it 
is completely model independent. Typical 
hzzy rules are of the form: 

If X 1 is Ai, 1 and X2 is Ai,2 
then U is B; (3) 
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where Xi and X2 are the inputs to the 
controller, U is the output, A's and B's are 
membership fbnctions, and the subscript i 
denotes the rule number. For example, a 
rule for line-of-sight error control may state 
"If the Line Of Sight (LOS) error is negative 
small and the change in the LOS error is 
positive big, then torque is positive small". 
Given input values of X1 and X2, the DOF 
of rule "i" is given by the minimum of the 
degrees of satisfaction of the individual 
antecedent clauses i.e., 

The output value is computed by 

N 

c( DOF, ) ~f 
i = l  

u =  
N 

where BY is called the defuzzified value of 
the membership hnction Bi and n is the 
number of rules. The defkzzified value of a 
membership hnction is the single value that 
best represents the controls linguistic 
description. If a rule is active for the 
present conditions such that its output is 
"increased moderately", the defizzified 
value is the centroidal value about the 
abscissa. In this case the defuzzificd value 
is 3.0, 

For control of highly nonlinear, time 
varying, and hard-to-define dynamics of 
large flexible structures, fuzzy logic with its 

model independence properties may prove to 
be a very practical method of control. 

CURRENT EXPERIMENT 
ACTIVITIES 

In order to develop analytical models of 
the system configurations, it is essential to 
accurately model all of the components that 
comprise the system. Figures 2 and 4 
conceptually describe this process. In order 
to increase the fidelity of the system 
components, the first phase of 
experimentation involves component testing. 
Component testing involves beamelement 
modal tests, jointelement dynamic and 
static testing, and frequency response testing 
of the sensors and actuators. 

Free-free modal tests were performed on 
the beam specimens in order to validate 
component mode shapes and frequencies 
predicted by NASTRAN, and to identify the 
damping ratio of each component mode. As 
expected, the free-free NASTRAN 
predictions match well with the free-free test 
results, within about five percent. Table 3 
shows the results of the free-free modal test 
for one particular beam. 

The next phase in the component testing 
plan is clamped-free modal tests. These tests 
will attempt to validate the clamped-free 
modes predicted by NASTRAN. The 
clamped-free and free-free component modes 
can then be used in assembling models. 
Next, system-level experiments will be 
performed. At this point, modal analysis will 
be carried out to determine which type of 
modes to use and what type of substructure 
coupling method best predicts the results. 
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Table 3. Free-Free Modal Test Results: 
First Four Modes of DYN30- 
254 

Frequency Damping 
Mode 0 (%) 

First 3.24 3.5 

Second 8.59 1.4 

Third 17.23 0.9 

Fourth 30.67 0.5 

Bending 

Bending 

Bending 

Bending 

SUMMARY 

The MMVC program has been 
established at MSFC to experimentally 
validate multibody modeling codes and to 
improve the coniputational efficiency of 
such codes. Experiments have been 
designed to emphasize modeling features 
that are to be verified and validated in the 
effort. A laboratory facility has been 
designed and is under development The 
RTCS is in place and has been functionally 
verified. Preliminary experiments that do 
not require the test volume to be provided 
when construction of the MMVC laboratory 
is completed are under way. Enhancements 
to the TREETOPS code are initiated and 
ongoing. This paper has presented a top- 
level overview of the MMVC program and 
its goals and methods. 
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