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Riassunto

I principali obiettivi di questo lavoro sono la descrizione, lo studio e la simulazione numerica
del problema di interazione fluido—struttura (FSI) applicato all’emodinamica (dinamica del
sangue) nelle arterie. Lo studio numerico dell’emodinamica nel sistema cardiovascolare é un
soggetto di ricerca molto attivo, in quanto permetterebbe, una volta validato, di predire ’'in-
sorgere di patologie, di scegliere la terapia piu’ opportuna o di comprendere meglio 'influenza
di fattori (come lo sforzo di taglio a parete o wall shear stress, WSS) notoriamente legati alla
nascita di disturbi (come ’ateroscerosi).

Questo lavoro é suddiviso in tre parti, formate da due capitoli ciascuna. Nella prima
parte vengono ricavate le equazioni differenziali che costituiscono il problema accoppiato: le
equazioni di Navier—Stokes in un dominio mobile per il fluido (sangue), viscoso e incom-
primibile, I’equazione dell’elasticitd per la struttura (parete arteriosa). In particolare viene
descritta in dettaglio la rappresentazione delle equazioni del fluido in un sistema di riferi-
mento Lagrangiano—Euleriano arbitrario (ALE), una scelta frequente in ambito FSI che verra
adottata nei capitoli successivi. In seguito vengono introdotte le condizioni di accoppiamen-
to, ovvero le continuitd della velocitd e degli sforzi all'interfaccia tra fluido e struttura (la
superficie endoteliale della parete arteriosa). Nella prima parte vengono discusse anche la
discretizzazione spaziale in elementi finiti (FE) e temporale del sistema FSI. Questa discretiz-
zazione permette di rappresentare il sistema di equazioni in uno spazio di dimensione finita,
dando luogo ad un sistema discreto la cui soluzione é unica. La scelta della discretizzazione
temporale coinvolge due aspetti: la discretizzazione in tempo dei due problemi (fluido e strut-
tura) e quella delle condizioni di accoppiamento (continuita delle velocita e degli sforzi). Per
entrambi gli aspetti la scelta pud influire sulla stabilitd del sistema discreto. Alla fine della
prima parte di questa tesi viene riportata una descrizione dello stato dell’arte, focalizzata
suilla stabilita del sistema.

Il sistema di equazioni discretizzato é nonlineare. In particolare la dipendenza del domimio
fluido dallo spostamento della struttura e la formulazione ALE scelta per il fluido introducono
una forte nonlinearita, il cui trattamento costituisce uno dei due principali argomenti della
seconda parte della tesi. In letteratura la nonlinearita del sistema FSI viene frequentemente
risolta per mezzo del metodo di punto fisso, che ha come vantaggi robustezza ed implementa-
zione relativamente immediata, ma anche, nella sua implementazione classica, lo svantaggio di
essere inefficiente in alcune circostanze (tipicamente per esempio nel caso dell’emodinamica).
Un algoritmo piu efficace, che viene utilizzato in questo lavoro, é quello di Newton. La mag-
giore difficolta di questo approccio consiste nel calcolo della matrice Jacobiana, che richiede
la valutazione delle derivate dei termini nonlineari. In particolare la nonlinearitda dovuta alla
dipendenza del dominio fluido dallo spostamento della struttura fa intervenire delle derivate
di forma nello Jacobiano del sistema. Il calcolo analitico e ’assemblaggio di queste derivate
nella matrice Jacobiana non sono banali (questi termini sono spesso trascurati o approssimati



numericamente in letteratura), e vengono descritti nel terzo capitolo. Considerazioni orienta-
te all’implementazione di questa parte in un codice ad elementi finiti sono riportate alla fine
del capitolo e costituiscono un contributo originale di questo lavoro.

La seconda parte prosegue, nel quarto capitolo, con lo studio dei metodi di risoluzione
del sistema lineare (Jacobiano). Un metodo efficace solitamente adottato per questo tipo
di sistemi (grandi, sparsi e non simmetrici) é GMRES, un metodo di Krylov matriz—free,
che richiede soltanto delle moltiplicazioni matrice—vettore per la soluzione del sistema. So-
litamente questo metodo é utilizzabile in applicazioni pratiche soltanto se precondizionato.
Dopo una rassegna sui metodi comunemente usati in F'SI per risolvere il sistema linearizzato
viene proposto un nuovo tipo di precondizionatori, che permette di trattare separatamente
i blocchi corrispondenti ai diversi problemi (fluido e struttura). Un’analisi di questo tipo
di precondizionatori, proposta alla fine della seconda parte, mostra che il condizionamento
del sistema globale precondizionato dipende in gran parte dal condizionamento dei singoli
problemi disaccoppiati.

Nella terza parte i metodi descritti nei capitoli precedenti vengono applicati a dei casi
clinici. Sono simulati diversi battiti cardiaci in un arco aortico ed in un bypass femorale.
Viene calcolato il WSS, vengono messi a confronto diversi metodi (modelli 1D, con parete
rigida ed FSI) e diverse discretizzazioni spaziali e temporali. Infine, nell’ultimo capitolo,
sono presentati risultati di scalabilita forte e debole su diverse griglie, utilizzando diverse
discretizzazioni temporali. Le simulazioni di questo capitolo sono state lanciate su piattaforme
parallele ad alta performance (Cray XT5, Cray XT6, Blue Gene/P).
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Résumé

Les objectifs de ce travail sont la description, I’étude et la simulation numérique du
probleme d’interaction fluide—structure (FSI) appliqué a la dynamique du sang (hémodynamique)
dans les arteres. L’étude numérique du systeme cardiovasculaire d’un point de vue hémodynamique
est un sujet de recherche tres actif, permettant, une fois validé, de prédire le développement
de pathologies (par example I’athérosclérose), de mieux comprendre l'influence de facteurs
(comme le wall shear stress, WSS) qu’y sont associés et de 'appliquer a la pratique clinique.

Ce travail est divisé en trois parties, chacune formée de deux chapitres. Dans la premiere
partie les équations différentielles qui constituent le probléeme couplé sont introduites : les
équations de Navier—Stokes dans un domaine déformable pour le fluide (sang), visqueux
et incompressible, I’équation de I’élasticité pour la structure (paroi artérielle). En particu-
lier on décrit en détail la représentation des équations du fluide dans un repere arbitraire
Lagrangien-Eulerien (ALE), un choix fréquent en FSI qui sera adopté durant cette these. En-
suite on décrit les conditions de couplage : continuité des vitesses et des contraintes a l'interface
fluide—structure. On introduit également dans la premiere partie les discrétisations spatiale,
en éléments finis, et temporelle du systeme FSI. Ces discrétisations permettent de représenter
le systeme d’équations dans un espace de dimension finie, ce qui meéne & un probléme discret
dont la solution est unique. Le choix de la discrétisation temporelle influence deux aspects :
la discrétisation en temps des deux problemes (fluide et structure) et celle des conditions
de couplage (continuité des vitesses et des contraintes). Pour les deux aspects le choix peut
affecter la stabilité du systeme discret. Une description concernant en particulier la stabilité
du systeme se trouve a la fin de la premiere partie de ce travail.

Le systeme d’équations discrétisé n’est pas linéaire, le fait que le domaine du fluide dépende
du déplacement de la structure, ainsi que la formulation ALE pour le fluide, introduisent une
forte nonlinéarité dont le traitement est un des deux arguments principaux de la deuxieme
partie de cette these. Il est souvent proposé dans la littérature de résoudre la nonlinéarité du
systeme FSI en appliquant la méthode du point fixe. Elle a pour avantages d’étre robuste et
d’avoir une implémentation assez simple. Par contre, dans sa forme classique, cette méthode
présente le désavantage de ne pas étre efficace dans tous les cas, notamment ’hémodynamique.
Un algorithme plus performant, qui est utilisé dans ce cas, est celui de Newton. La difficulté
principale de cette méthode vient du calcul de la matrice Jacobienne, qui requiert I’évaluation
des dérivées des termes nonlinéaires. En particulier, la nonlinéarité due a la dépendance du
domaine fluide du déplacement de la la structure fait intervenir des dérivées de forme dans le
Jacobien du systeme. Le calcul analytique et ’assemblage de ces dérivées ne sont pas triviaux
(ces termes sont souvent négligés ou approximés dans la littérature), et sont décrits dans le
troisieme chapitre. A la fin de ce chapitre on décrit 'implémentation de cette partie dans un
code aux éléments finis, ce qui constitue une contribution originale de ce travail.

Dans le quatrieéme chapitre on étudie des méthodes de résolution du systeéme linéaire (Ja-



cobien). Une méthode efficace normalement utilisée pour ce type de systemes (grands, creux
et nonlinéaires) est GMRES. Cette méthode est utilisée normalement dans les cas pratiques
avec un préconditionneur. Apres avoir résumé des méthodes utilisées en FSI pour résoudre
le systeme linéairisé, un nouveau type de préconditionneurs est proposé. Ces precondition-
nerus permettent de traiter séparément les blocs qui correspondent aux problemes différents
(comme fluide et structure). Une analyse proposée pour ce type de préconditionneurs montre
que le conditionnement du systeme global préconditionné ne dépend que du conditionnement
des problemes découplés.

Dans la troisieme partie, les méthodes décrites dans les chapitres précédents sont ap-
pliquées a des cas cliniques. Plusieurs battements cardiaques consécutifs sont simulé dans le
cas de I'aorte thoracique d’un sujet sain, ainsi que dans le cas d’un pontage fémoro—poplité.
Le WSS est calculé et différentes méthodes sont comparées (modele 1D, paroi rigide, FSI),
ainsi que différentes discrétisations spatiales et temporelles. Enfin dans le dernier chapitre, les
résultats de scalabilité forte et faible sont montrés, sur des maillages différents, avec différentes
méthodes. Les simulations de ce chapitre ont été réalisées sur des clusters a haute performance
(Cray XT5, Cray XT6, Blue Gene/P).

Mots clé : Interaction fluide-structure, préconditionneurs paralléles, hémodynamique,
éléments finis
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Abstract

In this work we aim at the description, study and numerical investigation of the fluid—structure
interaction (FSI) problem applied to hemodynamics. The FSI model considered consists of
the Navier—Stokes equations on moving domains modeling blood as a viscous incompressible
fluid and the elasticity equation modeling the arterial wall. The fluid equations are derived
in an arbitrary Lagrangian—FEulerian (ALE) frame of reference. Several existing formulations
and discretizations are discussed, providing a state of the art on the subject. The main new
contributions and advancements consist of:

e A description of the Newton method for FSI-ALE, with details on the implementation
of the shape derivatives block assembling, considerations about parallel performance,
the analytic derivation of the derivative terms for different formulations (conservative
or not) and for different types of boundary conditions.

e The implementation and analysis of a new category of preconditioners for FSI (appli-
cable also to more general coupled problems). The framework set up is general and
extensible. The proposed preconditioners allow, in particular, a separate treatment of
each field, using a different preconditioning strategy in each case. An estimate for the
condition number of the preconditioned system is proposed, showing how precondition-
ers of this type depend on the coupling, and explaining the good performance they
exhibit when increasing the number of processors.

e The improvement of the free (distributed under LGPL licence) parallel finite elements
library LifeV. Most of the methods described have been implemented within this library
during the period of this PhD and all the numerical tests reported were run using this
framework.

e The simulation of clinical cases with patient—specific data and geometry, the compari-
son on simulations of physiological interest between different models (rigid, FSI, 1D),
discretizations and methods to solve the nonlinear system.

A methodology to obtain patient—specific FSI simulations starting from the raw medical
data and using a set of free software tools is described. This pipeline from imaging to simu-
lation can help medical doctors in diagnosis and decision making, and in understanding the
implication of indicators such as the wall shear stress in the pathogenesis.

Keywords: Fluid-structure interaction, parallel preconditioners, hemodynamic, finite
elements
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Introduction

The modeling of the cardiovascular system is receiving increasing attention from both the
medical and mathematical environments because of, from the one hand, the great influence of
hemodynamics on cardiovascular diseases and, from the other hand, its challenging complexity
that keeps open the debate about the setting up of appropriate models and algorithms. A
wide variety of approaches can be found in literature, dealing with different formulations of
the problem and solution strategies.

Below we give an overview of some of the most popular methodologies to solve numerically
the system of equations arising from the hemodynamic model. We briefly introduce the
coupled Fluid-Structure Interaction (FSI) problem, listing many of the different approaches
commonly adopted to tackle it. We also report an outline of the thesis, which is concerned
with the development of algorithms for the solution of the FSI problem and their application
to blood flow in situations of clinical relevance.

The equations considered in the present work consist of those describing the flow field
variables (blood velocity and pressure) and those that govern the mechanical deformation of
the “structure” (the vessel walls). The first distinction between the different methodologies
comes from the formulation of the problem.

A common choice in the FSI context is to describe the fluid equations using an Arbitrary
Lagrangian-Eulerian (ALE) frame of reference (see e.g. [Nob01, SHO7], cf. Chapter 1). The
advantage with respect to an Eulerian description is that the coupling can be satisfied exactly
on the fluid-structure interface. However the introduction of a new equation for the fluid
domain motion is required, and its dependence on the solution of the FSI problem introduces
a further nonlinearity.

A different approach consists of using a space-time formulation within an Eulerian frame-
work. Usually, the latter involves a discretization of the computational domain in time slabs,
and each solution in a time slab is computed sequentially (see [TSS06, HWDO04], or [BCHZ0S|
for a description of this formulation).

Other approaches are based on a standard Eulerian formulation [CMMO08, WCLBO0S,
MPGW10]. With the latter approach the computation of the fluid domain displacement
is avoided, however a method to keep track of the fluid-structure interface must be employed.

Also the Lagrangian meshless finite elements methods [IOP03, OnO11] have been coupled
with structure equations in order to model FSI problems. The dynamic of the fluid is mod-
eled in a Lagrangian frame of reference, which has the advantage that the convective term
disappears and the disadvantage that at each time step the domain discretization needs to be
recomputed.

The lattice Boltzmann method, quite popular in computational fluid dynamics, has re-
cently been used also for FSI. The coupling with a finite elements method for the struc-
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ture mechanics is investigated e.g. in [Kwo08], while the immersed boundary method is used
in [CZ10] to identify the fluid-structure interface.

Once the system of equations describing the physical problem is set up, a further optional
step consists of splitting the global system into subdomain problems, one domain being that
of the fluid, the other that of the solid, within standard domain decomposition (DD) ap-
proaches. In this context, Dirichlet-Neumann schemes are the most popular ones adopted
in FSI (see e.g. [BQQO08a, KW08b, DDFQ07, MNS06, FMO05]). Robin-Neumann and Robin-
Robin schemes are applied in [BNV08, GGNV10] to the FSI context, while other standard
domain decomposition strategies (e.g. Neumann-Neumann, FETI) are described for a general
problem e.g. in [TWO05]. Another similar option consists of reformulating the problem on the
fluid-structure interface through the Steklov—Poincaré operators, see e.g. [DDQ06, DDFQO6].

All these strategies correspond to a particular choice of the subdomains and of the interface
conditions assigned in the course of the subdomain iterations. Following the definitions given
in [CKO02] all these formulations of the problem can be qualified as nonlinear preconditioners
(see Section §3.2). These domain decomposition schemes are particularly suited to the case
when separate (and independent) solvers for the subdomain problems are available, because
the solution of the global system can be obtained through repeated solutions of the subdomain
problems (this property is often referred to as modularity).

The choice of the time discretization introduces further distinctions among the meth-
ods. The fully coupled nonlinear problem can be discretized in time by considering all the
terms in the equations implicitly, which leads to a Fully Implicit (FI) method [BCHZO0S,
TSS06, HHB08, KGFT09, BC10a, DP07]. This is the most stable but also most expensive
choice. A large variety of alternative time discretizations can be devised. For instance a
Geometry-Convective Explicit (GCE) discretization is proposed in [BQQO08a], where the mov-
ing geometry is taken at the previous time step and the convective term is treated partly
explicitly (see Section §2.7 for details). Even in the space-time framework the fluid domain
in a time slab can be extrapolated using the informations relative to previous time slabs,
e.g. [TSS06, HWDO4]. In this thesis (cf. Chapter 5) we compare the FI and GCE methods,
together with two other intermediate options, obtained by varying the time discretization of
the convective term.

A natural way to handle the nonlinearity is based on the use of the Aitken accelerated
fixed point algorithm in all its variants, see e.g. [KWO08b, BQQ08a, DDFQO06]. In this way
each fixed point iteration requires one residual evaluation.

Otherwise the time discretized problem can be linearized via the Newton method, either
considering the full Jacobian matrix, as in [BCHZ08, HHB08, FM05, TSS06, GKW10], or
neglecting some of its contributions, as in [BC10a, GV03, DBV09, Hei04, Dep04]. In the
Newton method the full Jacobian matrix is often available only as matrix-vector multiplication
(this is the case in [FMO05] and in [GKW10]). In these cases a matrix—free method must be
employed to solve exactly the Jacobian system. Each iteration of this method requires a
solve of the linearized subproblems. Thus the cost of each nonlinear iteration corresponds
to the cost of one residual evaluation plus a variable number of solutions of the linearized
subproblems. A detailed explanation of this kind of algorithms is provided in Chapter 3.

A further distinction between the different methods comes from the way the coupling
conditions are advanced in time. We can devise three main different coupling strategies:
strong coupling, weak coupling, fractional step schemes, see Section §2.8.3. This choice has
an impact on both the stability and the order of accuracy of the overall scheme.

For what concerns the fully coupled discretized equations where no domain decomposi-
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Time Discr. | System Formulation Solution Algorithm Preconditioner
FI/CE Newton GMRES/diI‘eCt Pas, Pgs, PAS(PGS)
inexact Newton GMRES/direct Pas, Pas, Pas(Pas) ...
DD Newton out. GMRES/Rich. | inn. GMRES/dir. Psup
DD inexact N. out. GMRES/Rich. | inn. GMRES/dir. P
DD Fixed Point inn. GMRES/dir. Poup
GCE Linear System GMRES/direct Pas, Pgs, Pas(Pas) ...
out. GMRES/Rich. [ inn. GMRES/dir. Psub

Table 1: Methodologies for the solution of fluid-structure interaction problems (“Rich” stands
for Richardson, “dir” for direct, “out” and “inn” for outer, respectively inner, iterations).

tion is employed, the key aspect that characterizes the different methodologies is the choice
of the preconditioner. In fact by choosing block preconditioners such as block Jacobi or
block Gauss—Seidel, the preconditioned system can be solved in a modular fashion. These
strategies represent the algebraic version of the domain decomposition algorithms cited above.
Approximating the Schur complements in a block LU factorization is a strategy proposed in
[BQQO8D]| for a fractional step scheme; this method corresponds to an algebraic splitting of
the FSI linear system.

A similar strategy adopted in [PS09] in a different context uses the approximation of the
block LU factorization as a preconditioner for GMRES within a strongly coupled scheme, a
choice supported by the analysis of the condition number of the preconditioned system carried
out in [Axe94].

We remark that in literature for the sake of classification the terms monolithic and par-
titioned are used to split the different approaches in two categories. However, as we pointed
out in [CDFQ11], since we did not find an unambiguous definition we prefer to refrain from
using these notations.

A picture representing some of the methodologies listed above is given in Table 1. Here
the symbol Pag is used to denote the algebraic additive Schwarz preconditioner, while Pgg
indicates a generic block Gauss—Seidel preconditioner. The preconditioner Pk, refers to the
linear system on the subdomains (or sub-blocks in the algebraic case).

All the methodologies represented in Table 1 are implemented in the C++ parallel finite
elements library LifeV and many of them were implemented as part of my PhD project.

This thesis is divided in three parts. In the first part the equations at the basis of the FSI
problem are derived, an overview of some of the possible models for fluid and structure are
discussed, the FSI problem is introduced with particular attention to some of the different
coupling strategies proposed in literature.

The fluid problem in a moving domain is described using an ALE frame. This introduces
further nonlinearities and stability conditions (the so called discrete geometric conservation
law). On the other hand the coupling of the fluid with an elastic structure can also generate
instabilities in some cases (mainly due to the importance of the added mass effect, when the
mass density of the fluid is close to the one of the structure).

The second part contains the main original contributions of the present work in terms of
solvers and preconditioners for the FSI problem. The Newton algorithm for FSI is described,
a unified notation is introduced to present the various algorithms studied in literature and in
particular those implemented in the finite element library LifeV. The same notation is then
used also to represent the Newton algorithm applied to the geometrical multiscale framework
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(i.e., the coupling of 3D FSI models with 1D models for arteries). Special attention is devoted
to the derivation of the full Jacobian matrix of the whole FSI problem. This Jacobian includes
a block containing cross derivatives of the fluid equations with respect to the domain motion.
These (shape) derivatives have a non-trivial expression whose derivation is usually omitted
for the sake of simplicity. We report here in Section §3.4 all the calculations leading to the
expression of these derivatives together with implementation-oriented observations, which
enhance the scalability and efficiency of the current approach.

The preconditioning techniques for FSI are discussed and an overview of the classical pre-
conditioning strategies used in this field is provided. A preconditioning strategy is introduced
which consists in a combination of block Gauss—Seidel and domain decomposition precondi-
tioners. This technique allows to split the preconditioner in as many factors as the number
of sub problems considered and for this reason it is well suited for multiphysics problems.
The preconditioner is obtained as the product of the preconditioners built for each factor.
Each one of these factors may then, in their turn, exploit a preconditioning strategy tuned
for the specific problem, and if a factor does not change during the whole simulation the
corresponding preconditioner can be reused, saving computational time. An estimate for the
condition number of the preconditioned system is derived, showing that it depends on the
quality of the preconditioners for each single factor in the aforementioned factorization and
on the maximum singular value of a specific matrix, whose form depends on one of the cou-
pling blocks (cf. Section §4.3.4). We remark that this maximum singular value plays a role
similar to the CBS constant (see [KMO09, AK10, Axe94], cf. Chapter 4), but it is not tied to
symmetric positive definite matrices.

The third part of this thesis contains the numerical simulations as well as a comparison
in terms of computational efficiency and accuracy of the results obtained using different
solvers and preconditioners here proposed. The application domain is the hemodynamic
in large arteries. Our simulations concern the blood dynamics in a compliant aortic arch
under physiological conditions and in a femoropopliteal bypass, equipped with boundary
conditions taken from clinical measurements. The results show that the values of relevant
hemodynamic factors such as the wall shear stress (WSS), an important indicator for several
diseases, depend quite substantially from the model and the discretization used. In particular
in the case of the aorta a comparison between FSI, rigid walls and 1D model is carried out,
showing significant differences in the WSS magnitude. A considerable difference, especially
with a “large” timestep, is observed also between different time discretizations of the FSI
problem (in particular between the GCE and FI time discretizations), this because of the
large displacements in the aortic arch (more than 20% of the diameter) which induce a large
nonlinearity. We also report WSS comparisons on different space discretizations (using meshes
with different characteristic sizes) for the simulation of blood flow in a femoropopliteal bypass.
The results obtained allow us to conclude that, if the mesh is not fine enough and no boundary-
layer meshes are used, the WSS is severely underestimated.

A comparison on the aorta simulation shows that in some cases taking into account the
shape derivatives block in the Jacobian greatly improves the efficiency of the algorithm during
systole with respect to an inexact Newton method where shape derivatives are neglected.
Furthermore we show that, using a special preconditioner, P4g_pn, obtained by means of
a triple factorization and by computing an additive Schwarz preconditioner for each factor,
and an efficient implementation of the shape derivatives assembly, the nonlinear iterations
performed using exact or inexact Newton methods have almost the same computational cost
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(neither the Jacobian assembling nor the GMRES iterations are influenced by the shape
derivatives computation).

The weak and strong scalability of the algorithms are tested using different precondi-
tioners and different time discretizations on benchmark and physiological geometries. The
preconditioning techniques that are used for comparison are a classical algebraic additive
Schwarz preconditioner, computed on the matrix of the whole coupled system, and the com-
position of block Gauss Seidel preconditioning strategies, which lead to a representation of
the preconditioners as a product of several factors, with the same algebraic additive Schwarz
preconditioner. The preconditioners obtained by composition are more efficient than the
classical algebraic additive Schwarz both in terms of number of iterations and computational
time. The computation of the preconditioners introduced shows to be scalable, while there
is room for improvement concerning the solution of the linear system. However, thanks to
the condition number estimate derived in Section §4.3.4, the improvements can be achieved
by choosing more suitable parallel preconditioning strategies for the different factors in the
preconditioners (e.g. multilevel preconditioners like algebraic multigrid and multilevel domain
decomposition preconditioners [KM09, TWO05], or specific to each single field, like the pressure
correction preconditioners for the fluid field [ESWO05]).

We end this introduction by listing the parallel supercomputers used to run the algorithms
proposed in this thesis.

e (Callisto) The Callisto cluster at EPFL, composed of blades with two 4-cores processors
Intel Harptown (3.0 Ghz) each. The blades are interconnected through InfiniBand.

e (Cray XT4) The Cray XT4 supercomputer in the UK National Supercomputing Ser-
vice HECToR!, composed by blades containing 4 quad-core (AMD 2.3 GHz) nodes each.
The nodes are connected in a 3D torus topology with Seastar communication chips on
each node running Portals communication protocol.

e (Cray XT5) The Cray XT5 supercomputer Rosa of the Swiss National Supercomputing
Center?. A Cray XT5 node is composed by two AMD 2.4GHz “Istambul” Opteron
processors with six cores each. The nodes are connected in a 3D torus topology with
Seastar+ communication chips on each node.

e (Cray XT6) The Cray XT6 supercomputer in the UK National Supercomputing Ser-
vice HECToR. Each node on the Cray XT6 supercomputer is composed by two 12-cores
64-bit AMD Opteron “Magny—Corus” (2.5 GHz) processors. The nodes are connected
in a 3D torus topology with Seastar24 communication chips on each node.

e (Blue Gene/P) The IBM Blue Gene/P supercomputer of the center for advanced
modeling science (CADMOS). Each node in a Blue Gene/P is composed of compute
chips which integrate four IBM PowerPC 450 32-bit processor cores. A dual-pipeline
floating-point unit is attached to each core. The nodes are connected with a 3D torus
topology with Serdes communication chips, see [[BM0S|.

"http://www.hector.ac.uk
Zhttp://www.cscs.ch






Part 1

Physics of the Problem






Derivation of the Equations for
Fluid and Structure

In this chapter we derive the equations describing the fluid and solid problems, we introduce
the formalism which is adopted throughout this work, and we give a brief overview of some
of the possible approaches to model fluid and structure in the context of hemodynamics.

The structure of this chapter is divided into two main parts. The first (represented by
Sections §1.1 §1.2 and §1.3) recalls some basis of continuous mechanics, while in the second
(Sections §1.4 and §1.5) the models describing the fluid and the solid dynamics are respectively
derived.

1.1 The Kinematics of Continuous Media

We recall in this part some standard mathematical concepts which are used to describe the
continuous media. We refer mainly to Fernandez, Formaggia, Gerbeau, Quarteroni [FQV09,
Ch.3] and Scovazzi, Hughes [SHO7] for what concerns the modeling part and the derivation
of the basic equations.

Let us define a bounded open reference domain Oc R3, which represents the body in
its original undeformed configuration, with boundary 5. Most of the quantities defined in
this chapter in the reference configuration can be ported to a deformed one (which will be
introduced later) by means of a change of variables. Some quantities are represented only on
either one or the other configuration. When there is ambiguity we distinguish between the
two different representations by adding a hat " if the quantity is represented in the reference
domain. In order to derive some important relations which are at the basis of continuum
mechanics we introduce some concepts from differential geometry, which will be useful also
in Section §3.4. We refrain though from reporting all the definitions necessary for a rigorous
derivation, since the latter would be beyond the scope of the current discussion. We refer to
e.g. [Fla89] for an introduction to differential forms and exterior algebra. This detour may
be skipped for the moment for those readers who are not interested in the derivations of all
the formulas.

We introduce a set of local coordinates of the domain following [SZ92] (see Figure 1.1).
We suppose that there are m overlapping sets O; C R? that cover Q. Given

B={¢=(&,6,8&) eR3:|¢]| <1},

and

BO — {6 = (51752763) € B : 63 = O}a
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Figure 1.1: Sketch of a mapping defining local coordinates on 0.

we define m one-to-one functions ¢; : O; — B C R? of class C* and invertible, with inverse of
class C*, such that
Ci(OimQ) :{56336320} (111)
c¢i(0;N7) ={{€ By} o

Then we define the coordinate functions h; : B — O; such that h;(c;(x)) = x for x € O;N7.
A point z in the overlap O; N O; N7 can be represented using both coordinate functions h;
and h;.

Suppose to fix x € O; N5. The Jacobian of the coordinate functions is a 3 x 3 matrix
which will be noted (omitting the partition index i) V¢h. We can define the metric tensor
G = (V¢h)TVeh, which is a 3 x 3 matrix.

{e1, es, e3} is the canonical orthonormal basis in R?. Considering the usual scalar product
in R3 the tangent space on the point z = h(€) on 7 is spanned by the vectors t; = (V¢h)e;
for i = 1,2. The vector t3 = (V¢h)es is not necessarily orthogonal to t; and tp. The normal
vector can be defined as t,, = (VghT)_leg. If we call hj, for j = 1,2,3, the new set of local
coordinates, we can define the vector dr = tidhi + tadhs + t3dhs. Then the metric tensor
satisfies dz’ Gdx = d¢T d¢.

The relation between the differentials in the two different coordinate systems (according
to the definition of contravariant vector [Fla89, Ch.5.4]) reads

> (Veh)idé; = dhy. (1.1.2)

)

Lemma 1.1.1. The volume measure in ) is given by the determinant of V¢h,
/ dh = / det(Veh)dg. (1.1.3)
Q B
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1.1. THE KINEMATICS OF CONTINUOUS MEDIA

The proof follows from the relation between the differentials (1.1.2) and the definition of

determinant ([Fla89, Ch.2.2]).
The norm of the vector t,, in general is different from one. Let us call

ty
n=_"_ (1.1.4)
[

the normalized vector orthogonal to the plane spanned by t; and to. Then a surface element
can be represented by Sp, = ||t; X t2|| = n- (t1 X t2). The change of measure on the boundary
7~ is retrieved in the following proposition.

Proposition 1.1.2 (Nanson’s formula). With the previous notations, the measure on the
manifold 7 is represented by

Jcof (Veh)es|| = || det(Veh)(Veh™) s, (1.15)

where cof (Veh) = |Veh|(VehT) ™! is the cofactor matrix of Veh. This implies that

/Adh—/ lcof (Veh)es||de.

Y

Proof. We derive this formula for the unit surface element S¢ = ||(e; x e2)|| = (e1 x e2) - es.
We want to find how S¢ transforms when changing the frame of coordinates. We can represent
with the help of (1.1.3) the unit volume element with the triple product Ve = (e1 x e2) - e,
which coincides with Ve = ||(e1 x e2)||||e3|| because of the orthogonality of the canonical basis.
Then using the parametrization formerly introduced, due to Lemma 1.1.1, we have that the
volume V}, can be expressed as

t3 . (tl X tg) = det(Vgh)e:g . (e1 X e2)
(Vgh)eg . (tl X tg) = det(Vgh)Hel X GQH
e3(Veh)T - (t1 x ta) = det(Veh)Se. (1.1.6)
On the other hand we have that, if 6 is the angle between t3 and n,
Sh”tg” cosf = ts - (tl X tg) = Vh-

Since cosf = (”:—g” -n) and S, = (t; x t2) - n, the previous equation can be equivalently
rewritten as follows

ts ts
(7-11)(131 th)'l’l:(tl th)-i
[t3 [t
Vé‘he?, . (Vgh)fTe;; 1

WehesI(Veh) Tesl ™~ " [Vehesl
Being V¢hes - (Vgh)*Teg = 1, reordering the previous expression we obtain
Sh = (t1 X t2) -0 = [|(Veh) T es| Vi
Thus, substituting (1.1.6) we obtain
Sh = [[(Veh) " es|| det(Veh)Se,

which yields the expected result. O
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For the standard derivation of the continuum mechanics equations there is no need to
introduce a local coordinate system. We therefore use for the rest of this chapter the Cartesian
coordinates of R3. The differential form d{) = dz1AdToNdT3, represents the element of volume
in the reference configuration, and we call dT the vector dz = dZie; + dTses + dTzes.

We summarize in this paragraph the main basic concepts needed for the description of
the equations governing the continuum mechanics. The interested reader can find a more
extensive description in [FQV09, Ch.3].

We define a bounded open deformed domain Q; C R? which represents the body in the
deformed configuration at fixed time t € T' C R. A deformation is a one-to-one regular map
ol :Aﬁ — . To each deformation it is possible to associate the displacement vector field
d: Q — R3, such that d(Z) = ¢+(Z) — 7. The deformation gradient F(Z) = Vz¢:(7) is one
of the fundamental bricks used to describe the mechanics of continuous media. We can now
introduce the right Cauchy-Green strain tensor, C = FTF. Its definition is analogous to
that of a metric tensor G. Indeed the Cauchy—Green strain tensor represents the change of
metric due to the deformation: the distance & between two points P and @ in the reference
configuration becomes in the deformed configuration

6e(®)[| = | V2| pd]| + o([[8]]) = 1/ (8)TETES + o(|[3])).

If x = ¢(Z) € €, this expression in differential form reads
|ldz|| = VdZTFTFdz.

Exploiting the relation between the differentials one can obtain

/ th:/dethﬁ, (1.1.7)
Qt Q

which represents the volume of the domain in the current configuration. Thus the determinant
of the deformation gradient J = det F has the same role played in Lemma 1.1.1 by det(V¢h),
i.e., it measures the change of volume in the transformation.

A key element in the context of continuum mechanics is the following definition.

Definition 1.1.1 (Piola transform). Given a sufficiently regular second order tensor field o
defined in Q, we define its Piola transform as IT : Q — R3*3 such that

(z) = P(o(z)) = J(@)F ' (Z)o(2). (1.1.8)
We can notice the analogy of the Piola transform with the surface measure previously

introduced by means of the cofactor matrix cof (F'). The following result comes from a direct
calculation

Proposition 1.1.3 (Piola identity).
Vs (JF 1) =o. (1.1.9)

Proof. A possible proof makes use of Nanson’s formula applied to the transformation ¢; and
Gauss’s divergence theorem: given a constant nonzero field f and an arbitrary subset @ of €,

we have
Oz/Vx~fth:/ f-nd'y:/ JFF T .ndy=
w Ow 0w
:/ Vo (JEFT) dQ = f/ Vi (JET) d.
The thesis follows from the fact that & is arbitrary and f is different from zero. O
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Proposition 1.1.4. The following property of the Piola transform holds
VIl = JV,0. (1.1.10)

Proof. We recall that the operator Vz = FV, transforms like a covariant vector. Then we
can write, using the Piola identity Vz-(JF~T) = 0,

Vi =Vs(oJF 1) =Vs0JF T =V, 0l
O

This proposition sheds light on the meaning of the Piola transform in relation with the
definition of measure given in Proposition 1.1.2. In fact using the divergence theorem

IIn d3 = / Vo I1d0 = / JVyo dy = / on dy.
ow w w Ow

Thus the quantity J||F~T 1| is a measure of the change of surface induced by the deformation

bt

1.2 Lagrangian, Eulerian and ALE Formulations

The motion is a smooth function ¢ : Q x RT — €; C R3 such that ¢(Z,t) = ¢;(Z) represents
a deformation evolving in time.

The invertibility of the deformation ¢, allows us to write the equations either in the
reference domain or in the deformed one. The image of a point T € Q in the reference
configuration through the function ¢, ¢¢(Z) € Q, is the representation of the material point
7 in its deformed configuration. The description of the mechanics of continuous media with
respect to the material points 7 is called Lagrangian description, or material description. A
scalar or vector field V' is called Lagrangian if it is defined in Q.

Another possible description of the dynamics, usually adopted in fluid mechanics, is the
FEulerian, or spatial, description. A scalar or vector field is called Fulerian if it is defined
in . An Eulerian vector field V(z,t) is written in Lagrangian form when it depends on
the coordinates Z (which are constant in time) of the reference domain () and on time:
V(oe(Z),t) = ‘7(:’1'5, t). The Eulerian description involves the definition of a fixed control
volume V¢ in the deformed configuration, such that it remains contained in the deformed
configuration for all the time interval considered, Vo C Q; Vt € T C R. The Eulerian
counterpart of the vector field V' is V(x,t) for € Vo C €. Notice that Vo C I'myg, (Q) vt e
T and we can define the counter image of the control volume, {70 ={z e 0:7= ¢y Hx),x €
V¢t In the Eulerian formulation the vector fields are written with respect to the variable x
which is in the current configuration, and thus it depends on time.

The Eulerian or spatial time derivative of an Eulerian vector field is the partial derivative
with respect to time, which reads 0;V (x,t) = %‘t/ (x,t). Since the point z = ¢(7,t) depends
on time, however, to express the total derivative we need to use the chain rule

% AV 9 YD

DV (x,t) = —-(@,t) = 55 (¢ Y(x),t) 5

(1.2.1)
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The total derivative is also called material or Lagrangian derivative. The total time derivative
in the Lagrangian formulation coincides with the partial derivative, since the material points
in the reference domain 7 are fixed

dV(z,t) OV (Z,t)

dt ot

A particularly important vector field is the welocity of the material points u, which is
defined as the partial time derivative of the displacement:

e Lagrangian velocity U = D;¢(Z,t)
e Bulerian velocity u = 9;¢(¢~1(x,1),1).

In general the Lagrangian frame of reference is used in solid mechanics, while the Eulerian
one is preferred in fluid mechanics. This is due to the following main reasons:

1. The constitutive relations of the solids in general involve the displacement, thus the
deformation function is actually used to compute the solid stresses and the computation
of the deformation gradient cannot be avoided. On the other hand in fluid mechanics
the stresses depend in general on the gradient of the velocity vector. So they do not
depend on the history of the material displacement and the solution can be found using
only quantities on the current domain.

2. In solid mechanics it is usually necessary to impose boundary conditions on the material
boundary, which is moving with the particles. In fluid mechanics it is more common
to impose boundary conditions on fixed boundaries, which are crossed by the material
fluid particles.

In some applications (e.g. fluid—structure interaction, free surface problems) the goal is
to solve the equations for the fluid dynamics in a moving domain and the physical boundary
conditions should be imposed on the moving (material) boundary. In these cases we cannot
define a fixed control volume, because this prevents the imposition of the boundary conditions
on the true boundary. However the point one above is still valid. Thus in order to account for
the displacement of the fluid domain it is possible to modify the Eulerian frame of reference
so that the control volume is no longer constant, but it follows the material particles on the
moving boundary. Note that this constraint on the displacement of the fluid domain involves
only the boundary, thus the domain displacement is arbitrary in the domain interior. This
idea is at the basis of the Arbitrary Lagrangian Eulerian (ALE) description.

To implement it we need to define a reference control volume ) 4 C R? and an arbitrary
map A : Qg x RT — Q4 C € that for any time ¢t maps the reference control volume to the
arbitrary domain 4 in the deformed configuration. Let us write the equality of the partial
derivatives of the Eulerian and ALE representations of a vector field V. If T € Q 4, x € Q4
and 7 € (), having that o(z,t) = x = Az, t),

V(p(@,1),t) = V(A®G, 1), 1). (1.2.2)

The corresponding partial derivatives read

ov ov

o 0 0(@1) = T 0 A1), (1.2.3)
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Q

0N .
Q Vo
-

.At QA

C

Figure 1.2: Sketch representing a possible choice for the different descriptions. From top to
bottom we have the Lagrangian description, the Eulerian, and an ALE one.

This equality allows us in the next section to derive the conservation equations in ALE form.
We can define the ALFE derivative as the total derivative of the ALE field, i.e.

ov ~ ov 0A, . OV
n g(.A(ae,t),t) = E(m,t) + E(w,t)a—gc(x,t). (1.2.4)

In the following we denote with w the domain velocity in the deformed configuration €4,
w = 0; A0 A~!, and with 3 the relative velocity 8 = u — w of the particles.
Notice that by substituting in (1.2.1) and using (1.2.3) we can obtain an expression for
the material derivative of an ALE field:
dav. oV

E_ EE‘F,@sz

In the practical applications the most suitable reference volume O 4 often consists of a part
of the undeformed reference domain Q. A sketch of possible domains used in the different
formulations is provided in Figure 1.2.

We remark that the Eulerian and Lagrangian descriptions can be found by choosing as
ALE map the identity map A = I (which gives w = 0) or A = ¢ (which leads to w = u),
respectively.

The following property holds for the total time derivative of the Jacobian determinant .J

DyJ = JV . (1.2.5)

The proof of this formula is postponed to Section §3.4 (equation (3.4.7)) where the derivatives
of domain functionals are discussed.

Let us define the arbitrary domains w C Vo and wa C Q4. Using (1.2.5) we can derive
the Reynolds transport theorem.
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Theorem 1.2.1 (Reynolds transport theorem). With the previous notations, let a(z,t) be a
scalar field in the Eulerian frame of reference. Then

Dt/a(:r,t) th—/aaéﬁ’t) th—i—/ a(z,t)u-ndy. (1.2.6)
w w ow

Proof. We recall a proof reported e.g. in [SHO7]. It is sufficient to recast the integrals to the
reference configuration and then to exploit the fact that € is fixed in time:

D / oz, 1) dYy = D, / Jol(z, 1) dO = / (Dy(J)a(z,t) + JDy(a(z, )] dO,
using the definition of material derivative (1.2.1) and the formula (1.2.5) the total derivative
becomes

/AJ [a(z, t)Vzu+ W + Vya(z,t) - u] de.

w

Eventually, changing again frame of reference and using the divergence theorem,

Dt/wa(x,t) th:/w [a(x,t)vx-u+a(a(;;’m—I—an(:v,t)-u] i, =

:/&l(x’t)dﬂt+/ alz,t)u-n dy.
w ot Ow

The ALE counterpart of this theorem is the following

Theorem 1.2.2 (Leibnitz transport theorem). With the previous notations, let a(x,t) be an
ALE scalar field in the FEulerian frame of reference. Then

Dt/ a(z,t) dy = / dafz,t) dsd —i—/ a(z,t)w - n dy. (1.2.7)
wA wA ot Ow A

The proof of this result is very similar to the previous one, the interested reader may refer
to [SHO7]. Also in Section §3.4.1 these results are derived directly from the differentiation of
a shape functional. These theorems clearly hold true also for vector fields.

It is worth to point out that using the ALE formulation, as stressed in [BCHZ08], the
time derivatives are taken in the reference space-time domain, while the spatial derivatives
are taken in the deformed one. The difference is that in the ALE case the time derivative is
made by keeping the point z € Q 4 fixed, while in the Eulerian case the point x € €); is kept
fixed.

1.3 The Equations of Continuum Mechanics

In this section we derive the general form of scalar or vectorial conservation laws in the
Eulerian and ALE frames of reference.

Let us denote a(x,t) and a(x,t) a scalar and a vectorial field on €, respectively. The
conservation law in Eulerian form for a scalar field « reads

Dt/ az,t) dQy = O(x,t) -ndy+ / b(x,t) d, (1.3.1)

ow w
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where the quantity faw d(z,t) - n dy is the flux of o across the boundary dw, while § is an
Eulerian vector field defined in €2; determining the flux, and the scalar function b is the
source/sink term. The vectorial counterpart is

Dt/ a(z,t) dy = O(z,t) -ndy+ / b(x,t) d, (1.3.2)

Ow w
where © is a second order tensor field and b is a vector field. We omit in the following the
dependence on (z,t).

Assuming the smoothness of the displacement map &, using the Reynolds transport the-
orem 1.2.1, we can re-write the conservation equations in another form:

/got‘dfztz/ (Jau)-ndv+/bd9t7 (1.3.3)
w ow

w

/aadﬂt:/ (@—a@u)-nd'y—l—/bdﬁt.
wat Ow

w

Using the divergence theorem we can write (e.g. for the scalar field)

aa?: th = / V$(5 — Oéll) th + / b th
Using the localization argument, due to the arbitrariness of the domain w,
0 0
8—? =V, (d —au)+binw, ??:Vx-(@—a@@u)—l—bin w. (1.3.4)

The same considerations are valid if we consider the scalar and vector fields in an ALE
representation. To retrieve the ALE counterpart of the conservation laws we first consider
the scalar field.

Reordering the Leibnitz formula (1.2.7) on the volume w4 we have

a—a dQ; = Dt/ o d€y — / aw - n dy. (1.3.5)
wA ot wA Ow A

Proceeding like in the proof of Theorem 1.2.1, i.e., recasting to the reference configuration to
pass the time derivative under the integral sign, we obtain

oJe 0J 4
— dQ = / Ju 1 dQy, — / aw - n dy. (1.3.6)
wA 875 wA at T 8(4)_,4
Substituting in the conservation law (1.3.3) (on the domain w 4 instead of w and using (1.2.3))
yields
0J
/ Ju ! A sy = / (6 —aB) ndy+ b dSY. (1.3.7)
wA ot z Owa wA

This form is hybrid, since the integrals are taken in the domain w4 which is in the current
configuration, while the integrands still depend on the quantity J4. However equation (1.3.7)
can be further manipulated by computing the derivative on the left hand side and using the
divergence theorem on the right hand side:

dJ 0
/ JA_lAa—FJA_lJAa‘ dQ =/ V(6 — aB) + b dy,
wA dt at T wA
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CHAPTER 1. DERIVATION OF THE EQUATIONS FOR FLUID AND STRUCTURE

then, using a formula analogous to (1.2.5) with J4 and w instead of J and u

/ Vewa + 80" A = | V(8 — aB) +bd.
", ot |

wA

Eventually, recalling the definition of 3 = u — w, we obtain

/ a—a dQy = V(6 —au) +w- Ve + b dQy. (1.3.8)

wa Ot |3 wa

In an analogous way, for a vectorial field,

[
wa Ot |z

This equation is valid on any domain wy C €24, thus for the localization argument it holds
pointwise

wA

da
ot |+
The last equation leads to the non-conservative form of the fluid momentum conservation

law, as discussed in Section §1.4. Notice that to write this equation we used the Reynolds
transport formula (1.2.6) and the Euler formula (1.2.5).

=V,0O©—-—a®u)+ (w-V,)a+b.

As for the Eulerian representation, the time derivatives can be brought out of the integral
sign by substituting directly (1.3.5) on the conservation law (1.3.3) (on w4), which gives

Dt/ ath—/ (5—045)-nd’y+/ b d, (1.3.10)
wA Jw wA

and

wA Ow A wA

These equations lead in Section §1.4 to define the conservative form of the fluid momentum
equation.

Notations: we denote the general ALE reference domain QA considered so far as the
fluid reference domain Qf , which represents the portion of space occupied by the fluid in the
reference configuration. The quantities referring to the fluid domain will be marked with the
f label. In the same way we introduce the solid reference domain SAZS, which represents the
portion of space occupied by the solid in the reference configuration. All the solid quantities
will have the label s.

The variables considered in the FST model will be: the fluid velocity u, the fluid pressure p,
the fluid domain dzsplacement df (introduced because of the ALE representation of the ﬂuzd)
the solid displacement d u and p are taken in the current configuration, while df and d
are taken in the reference one.

In the following sections we write the conservation equations that are used in our FSI
formulation. For the momentum conservation equations we need to introduce the Cauchy
stress tensor. This tensor derives from the Cauchy’s theorem stating that the traction vector
t on a surface S, such that the force exerted on S reads |, gt dv, is a linear function of the
normal n to the surface S. This theorem implies that there exists a unique tensor o called
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1.4. THE EQUATIONS FOR A FLUID

Cauchy stress tensor, such that t = on. Its symmetry can be easily shown (see e.g. [Cur04,
Ch.3.8]).

Notations: We denote by oy and o, the Cauchy stress tensors for the fluid and the solid
respectively in the deformed configuration. Their counterparts represented in the reference
configuration (called Piola-Kirchhof stress tensors) are denoted oy and II respectively.

1.4 The Equations for a Fluid

In this section we report the conservation equations for mass and momentum on moving
domains written in the Eulerian and ALE frames. For an incompressible Newtonian fluid
these conservation laws describe the Navier—Stokes equations.

We start by considering some conservation equations for a generic fluid in Eulerian and
ALE form. The mass conservation equation is obtained by taking the density of the continuum
medium as the scalar field a of the previous section. The flux and the source/sink terms
corresponding to § and b are in this case zero. Thus we have, substituting in (1.3.3),

0
P 40, = / —V.(psu) doy. (1.4.1)

If the fluid is incompressible, then the density p; is constant and the left hand side
vanishes. Thus (1.4.1) becomes the classical mass conservation equation appearing in the

Navier—Stokes equations
Veu=0in Q, (1.4.2)

where we used the localization argument.
Expression (1.4.1), which is written now in Eulerian representation, can be written in
ALE form substituting in (1.3.8):

/6ﬂf
oy O

To write the momentum conservation equation we consider as vector field in (1.3.3) psu,
while the flux vector oy - n/ is expressed as function of the fluid velocity u in a constitutive
relation. The source/sink term f; represents the momentum generated by the volume forces
acting on the fluid. We write here the momentum equation directly in ALE form, substituting
the definitions of &, ©, and b in (1.3.9):

<y = / —Va(pru) +w - Vypr dSd. (1.4.3)
z WA

0
/ (glzu)’ dQy, :/ Vae(of —pru@u) +w-Vy(pru) + £ dy. (1.4.4)
wA T wA

This equation represents the non-conservative form of the momentum balance. It can be
simplified using standard algebra

apf ou
/wA ot ot
and by reordering,

) 5
/pf“ th:/ Vx~0'fpf(uw)-vxu+ffd9t+/ u[
oot » » ot

dQ, :/ Vo=V (pru)u—pr(a-Vy)u+(w-Vy)prutwprVoutfy dQy,
wA

z z

— V- (pru) + wVypp| d€y.
’ (1.4.5)
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CHAPTER 1. DERIVATION OF THE EQUATIONS FOR FLUID AND STRUCTURE

Due to (1.4.3) the term in brackets vanishes. Using the localization argument, from the
arbitrariness of the domain w4, the momentum conservation equation can be written in the
form

ou

pfa = Vx-df - pf(u — W) -Veu+ ff. (1.4.6)

T

This is the non conservative form of the momenum equation. Writing the conservation of the
momentum in conservative form is accomplished by simply substituting the definitions of a,
©, and b into (1.3.11)

Dt/ psu th—/ (of —pru®PB) -n’f d7+/ £ dSy. (1.4.7)
wA v/ waA
Then applying the divergence theorem we obtain

wA wA

In fluid dynamics, as previously mentioned, the stress tensor usually depends on the
velocity u through a constitutive relation. The constitutive law to be such has to satisfy a
number of principles, like the principle of frame indifference stating that the constitutive law
must be independent of the observer. Newtonian fluids correspond to a particular choice for
the constitutive equation, when the stress tensor depends linearly on the symmetric part of
the velocity gradient

or = pup(Veu+ (Vo)) —pl. (1.4.9)

Here p denotes the pressure. This constitutive law models incompressible Newtonian viscous
fluids. Although these assumptions are usually accepted for a macroscopic description of blood
flow in large arteries, the model becomes inappropriate for modeling the hemodynamics in
other locations. One of the main limitations of Newtonian fluids in this sense is the constant
viscosity. In fact when the velocity decreases the red blood cells tend to interact, increasing
the viscosity of blood. This phenomenon is called shear thinning, and depends also on the
density of red blood cells (hematocrit). However taking into account these kind of phenomena
on one side introduces further nonlinearities to the model, on the other side it requires the
knowledge of more parameters (such as the relation between viscosity and shear rate). See
A. Robertson, A. Sequeira, G. Owens [FQV09, Ch.6] and references therein for a deeper
discussion about non-Newtonian fluids.

In our model we consider blood as a Newtonian fluid and thus it is reliable only for large
arteries. However most of the methods presented in this work do not depend on the type of
constitutive equation chosen.

Substituting the constitutive law (1.4.9) in (1.4.6) we have

/ p ou
Jedn
wa Ot

Under the hypotheses of constant viscosity and incompressibility (i.e.,V,-u = 0) this equation
can be rewritten as

L5
wy Lot

A% = | Ve (up(Veu+ (Vou)')) = Viop — pr(u—w) - Vou + £ dQy. (1.4.10)

z wA

thz/ prAgu = Vop — pr(a—w) - Vyu + ff dy. (1.4.11)
z wA
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1.5. THE EQUATIONS FOR A SOLID

The corresponding conservative form for the momentum conservation is trivially obtained
performing the same substitutions done in (1.4.10) and (1.4.11) on equation (1.4.8). Again the
momentum conservation equation can be written pointwise using the localization argument
as

u
= | = mrdau—Vop —pr(u—w) - Vou+fy.

1.5 The Equations for a Solid

In our application we consider a Lagrangian frame of reference to describe the solid deforma-
tion. Since the coordinates Z are fixed, the conservation equations have a simpler form. The
conservation of mass simply reads, Vo C 2° and being ps = Jps the solid density,

0J ps 0ps

0=D s dQ° = a0’ = dQ’,
t/ S 5 Ot 5 Ot
which using the localization argument becomes
0ps
=0. 1.5.1
5 — 0 (1.5.1)

The momentum conservation can be obtained from (1.3.2) by recasting all the integrals
3 -1
back to the reference configuration. The quantity conserved is p5% while the flux is
given by os-n®, where the stress tensor o, as in the case of the fluid, is given by a constitutive

law. The momentum conservation reads

ods  ~ . _
Dt/lJpsa;dQS——/iJong(ﬁf::/[J& aQ’. (1.5.2)
w w w

Using (1.5.1), the localization argument and the fact that the domain @ is fixed we obtain

_ 9%,

However this form is still hybrid, since the divergence is taken with respect to x. Using the
Piola transform (1.1.10) we obtain

9%d,

T VoI = £, (1.5.4)

Ps

where IT = JF 1o, is the first Piola-Kirchhof tensor.
II is non-symmetric. To write the constitutive relation with respect to a symmetric tensor
we introduce the second Piola—Kirchhof tensor

> =F L (1.5.5)

Instead of using the Cauchy—Green strain tensor in the constitutive relation we rather use
the Green—Lagrange strain tensor

E:%@—D. (1.5.6)
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This tensor is null when there is no deformation, and from the properties of the tensor C we
have

%(Hda:|]2 — ||dz||?) = dZEdz.

A large variety of materials can be chosen to model the arterial wall. The latter is pre-
stressed, i.e., even when the structure is not loaded, the stress is different from zero (this can
be seen when the artery at rest is cut longitudinally or transversally: in the former case it
tends to open, in the latter case it tends to shrink [VV87]). The mechanical response of the
large arteries wall to a given strain is mainly due to the elastin and collagen components. The
former one is responsible for the elastic response in physiological conditions, while the latter
activates when the strains reach a certain critical value and it is much stiffer. Furthermore the
collagen component is made of fibers, which inhibit the elongation along the fiber direction.
The arterial tissue is composed mainly by three layers which behave differently: these are,
from the vessel lumen to the external wall, intima, media and adventitia. The intima is a thin
layer in contact with blood, its mechanical properties can be neglected but it is responsible of
the wall reaction (e.g. stiffening) to the blood flow (in terms of response to stresses or chemicals
coming from the fluid). Media and adventitia are involved in the mechanical response. To
accurately predict the mechanisms of the arterial wall one should take into account these
characteristics in a constitutive law. Furthermore, as almost all biological tissues, the arterial
wall is incompressible, which introduces another constraint. In literature accurate models for
the arterial wall can be found in [HGO00, HSSB02] and more recently in [ZFDR08, RRDHO08]
We refer to [HO06, Bal06] for an overview of the mechanical properties and models.

Although some arteries show visco-elastic effects, they are usually negligible [Bal06], thus
most of the times the arterial wall is modeled as an elastic material. If there exists a scalar
valued strain energy function W depending on the strain tensor E and such that

ow
75
then the material is called hyperelastic.

A constitutive law must be written in terms of objective quantities, in order to satisfy the
frame indifference (or objectivity) principle. Let us consider a change of reference defined by
the rotation R € SO(3) (the group of orthogonal matrices with determinant equal to one).
A vector v is objective if in the new frame has the form RTv. A matrix M is objective if in
the new frame of reference it reads RT M R.

Let M and v be an objective matrix and vector respectively. A scalar function f(M,v) is
called isotropic if it is invariant with respect to rotations, i.e., if f(M,v) = f(RTMR, R™v).
A vector function f(M,v) is isotropic if Rf(M,v) = f(RT M RT, Rv), while a matrix function
F(M,v) is isotropic if RTF(M,v)R = F(RT MR, RTv).

If we neglect the collagen fiber orientation, then it is possible to describe the elasticity
strain energy using an isotropic function. This has the advantage that thanks to the repre-
sentation theorem (see e.g. [Kor90]) every isotropic function can be expressed in terms of the
scalar invariants of the argument tensors.

We can consider a generic strain energy function W(E) which depends on the Green—
Lagrange strain tensor. Then equation (1.5.7) can be rewritten, exploiting the representation
theorem, as

E) = 3(E), (1.5.7)

_OWOL oW L 0W Ol
9 OE = 0I, OE  9I3 OE’
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1.5. THE EQUATIONS FOR A SOLID

where the invariants are I = tr(E), I = w

compute explicitly the derivative of the invariants:

and I3 = |E|. It is possible to

e The derivative of the fist invariant, since the trace is a linear operator, gives % =

e The derivative of the second invariant gives, from direct calculation,
0ls
— =tr(E)] — E.
3B r(E)

e The derivative of the third invariant comes from the Jacobi’s formula for the derivative

of a determinant (see e.g. [MN99])

I _
TE?’ = det(E)(E)~! = cof (E),

where cof (E) is the cofactor matrix of E.

It is now possible to write explicitly the form of the second Piola—Kirchhof tensor for hyper-
elastic isotropic materials

Y=—+—tr(E) — —E+ ——cof (E). (1.5.8)

A popular isotropic strain energy function is the one defining the Saint Venant—Kirchhof
model:

W(E) = %(trE)Q + Lotr(E?), (1.5.9)

where L1 and Ls are the Lamé coefficients defining the characteristics of the material. Taking
the derivative we obtain

Being expression (1.5.10) linear, it can be written in the more general form
>=H:E,

where H is a fourth-order tensor.

The St. Venant—Kirchhof materials are often characterized by the Young modulus € and
the Poisson coefficient v instead of the Lamé coefficients. The following relations hold between
the two sets of coefficients:

3L1 + 2L 1 Ly
6_L2 ; Vv=r_ ;
L1+ Lo 2L1+ Lo

(9% €
L= ; Ly= —;
T a2+ 2T 2(14v)

Note that the constitutive equation for the St. Venant—Kirchhof material is nonlinear
in the displacement 83, because both the tensors E and ¥ are nonlinear in F. A further
simplification of the St. Venant—Kirchhof constitutive equation, which consists in neglecting
the terms of order higher than one in the definitions of E and 3, leads to the linear elasticity
equation. In particular, if we consider small deformations,

. V’m\as + (V’z‘as)T + V’jas(vi‘\as)T ~ vi‘\as + (vi’fas)T _ D

E
2 2
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CHAPTER 1. DERIVATION OF THE EQUATIONS FOR FLUID AND STRUCTURE

which is the symmetric part of the displacement gradient, and
Li(I)I42L,E=X =F 'II ~ II.

With these simplifications the Venant—Kirchhof constitutive equation is also called isotropic
generalized Hooke’s law.

The equation of linear elasticity, substituting in (1.5.4), reads
_ 9%d,

This equation is close to the nonlinear model under the hypothesis of small deformations.
We consider this model in the applications reported in Part III. The implementation of more
general materials is currently under development.
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Modeling Fluid—Structure
Interaction Problems

After setting up the continuum mechanics models in the previous chapter, we can introduce
the Fluid—Structure Interaction (FSI) coupling. We describe some of the common approaches
to couple and discretize, in both time and space, the physical problems introduced in Sec-
tions §1.4 and §1.5. Theoretical considerations about the properties of the coupled problem
are discussed in Section §2.8. In Section §2.9 we give an overview of the geometrical multiscale
and reduced order models, the coupling between 3D, 1D and 0D models for arteries.

2.1 Coupling Conditions

Notations: we distinguish in the following between the Fluid—Structure (FS) interface T,
which is the internal boundary separating the fluid from the solid, and the boundaries, which
consist of the external boundaries of each (fluid or structure) physical domain. Since we focus
on hemodynamic problems, we name the fluid boundaries according to the direction of the
blood flow: we call Fz}" the inlet boundaries and I"Jﬁ“t the outlet boundaries. Concerning the
structure we call T and T9% the termination rings corresponding respectively to F}” and
94t while we call Tt the external wall in contact with the tissue surrounding the artery. A
schematic picture showing the notations is provided in Figure 2.1. We keep the same notations
introduced in the previous chapter, so that all the quantities with the hat” are intended in the
reference configuration while those without hat are taken in the current configuration (and
therefore depend also on time). Furthermore we introduce the variable uy = (u,p) grouping
the fluid velocity and pressure.

We represent the FSI problem in an Arbitrary Lagrangian Eulerian (ALE) frame (cf.
Section §1.2). The construction of the ALE map is clarified in the next section.

fgzt /‘A\ ngt
- -
i TV

pin re

in

Figure 2.1: Notation for the boundaries and FS interface.



CHAPTER 2. MODELING FLUID-STRUCTURE INTERACTION PROBLEMS

On the FS interface I' the coupling is expressed through:

e the continuity of the velocity;

e the continuity of the stresses;

e the continuity of the domain displacement (geometric adherence).

The last coupling condition is at a certain extent artificial, since it is introduced by the ALE
formulation of the fluid equation. It expresses the constraint on the fluid domain to follow the
material particles of the solid on the interface I'. The system of equations with the coupling
conditions reads:

pf((;;l E—V@uaf—i-pf(u—w)-vxu:ff in Qf
Veu=0 in Qf
ﬁsc’);gs — VI =f, in

8(;18 =uo A, on T (2.1.1)

o/ + 0 =0 on T (2.1.2)

aif —wo A on T, (2.1.3)

where often the body forces fy and f; are set to zero in hemodynamic applications (they
could account e.g. for the gravity force). We recall that from the Piola transform (1.1.10) we
have o = JF 1o The last three equations (2.1.1), (2.1.2), and (2.1.3) represent the three
coupling conditions. The last one, as anticipated, is the geometric adherence constraint on
the ALE map stating that the fluid domain must follow the material F'S interface.

2.2 Three Fields Formulation

At every time ¢ > 0 the coupled FSI problem can be refounded as being made of three coupled
sub-problems. A fluid problem

F(Uf,as,af) =0, (2.2.1)

describing the physics of the fluid through the equations introduced in Section §1.4. This
problem consists in finding the fluid velocity and pressure uy = (u,p) 3 given the solid dis-
placement d, (or traction vector IIn®, or a combination of both) and the domain displacement
d;. We do not bind the notation for the fluid problem F to a specific interface condition,
neither to a specific form (conservative or not) of the momentum conservation equation.
When needed we distinguish the cases of Dirichlet, Neumann, or Robin coupling conditions
by calling the fluid problem Fp, Fy, or Fr respectively.
A solid problem

~

S(uy,d,) =0, (2.2.2)

3to light the notation in the following pages we group the fluid velocity and pressure fields
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representing the structure equation introduced in Section §1.5. This problem consists in
finding the solid displacement ds given the fluid velocity u (or traction vector Ufnf , or a
combination of both). The solid problem, as the fluid one, is not bound to a specific interface
condition (which anyway has to be different from the one chosen for the fluid problem, in order
for the coupled problem to be properly defined). Also in this case we distinguish the three
possible coupling conditions, Dirichlet, Neumann and Robin, with appropriate notations, Sp,
Sy and Spg respectively.

A geometry problem

~

G(ds,d;) = 0, (2.2.3)

defining the ALE map A;, and thus the fluid computational domain. This problem is coupled
to the solid problem through the geometric adherence condition (2.1.3), that we can write
equivalently as

~

df =d, onT. (2.2.4)

The arbitrariness of the ALE approach also reflects in the arbitrary choice of the geometry
problem. Our choice, ‘which is quite common in this context, consists in describing the fluid
domain displacement dy as a harmonic extension of the solid displacement d;|p from the F'S

interface T to the interior of the fluid reference domain Qf C R3:

—Aaf =0 in Qf
d; =d; on T (2.2.5)
Vazds-n/ =0 on QS \ T

The ALE mapping is then defined as

A of Q{
T - A@) =7+d(2),

so that the current domain Q{ is defined as Qf: = A(Q).

In literature many other approaches to update the mesh displacement have been proposed
(see e.g. [DGH82, STB03]). The goal of these methods is to be computationally cheap and
to keep bounded the mesh elements aspect ratio even under large displacements.

In this work we frequently group the fluid and geometry problems, in which case we note
the Fluid—Geometry problem FG:

~

FG(U.f, ds) =0.

Notations: we call Fg and T'}, the Dirichlet boundaries (without the interface I') of
Q{ and Q° respectively, while the Neumann boundaries are noted F{\, and I'y;. Furthermore
the Dirichlet boundary of Qf with respect to the mesh motion equation (2.2.5), which is the
fluid boundary where the domain motion is prescribed (e.g. when a portion of the fluid domain
boundary is fized), will be noted F;‘ized' The conditions imposed on the boundaries are problem
dependent. We denote with g]j? : I’{) — R3, gl r; — R3, gD Fé‘ixed — R3 the Dirichlet
boundary data for the fluid, solid and geometry problems respectively, while gﬁc\] : F{V — R3 and
gl e ry — R3 represent the Neumann boundary data for the fluid and the solid problems.
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2.3 Time Discretization for the Structure Problem

The structure model is described by a PDE which is second order in time. Suitable and
popular methods available in literature for the time discretization of such problem are the
mid point scheme, Newmark (see [Nob01, Ch.4.8]) or the generalized-a scheme [RSFW09,
DPO0O7, BCHZ08|. The latter is a generalization of the Newmark scheme, while the mid point
scheme can be viewed as a Newmark scheme with a particular choice of the coefficients
[Nob01, Ch.4.8]. We report here the mid point scheme for a generic second-order ODE which
can represent e.g. the momentum conservation for the solid problem (1.5.4)

2/\ d ~
M (a d, od, ds> = 0. (2.3.1)

o2’ o’
The mid point scheme reads

drtl —dr drtl g dr

o8 2

= A SN ~ 2.3.2

" (dg+1—dg drt! +dr dg+1+dg> 0 (232)
6t 2 2 B

These are two equations in the unknowns a?H and agﬂ to be solved at each time step.
We report below a discretization of (2.3.1) with the generalized-a method:

0 — M(é?mm’a?af’agﬂf)
A" = d} tapdt - dy)
A" = dy +ap(dtt - dy)
diT = A" 4 ap(dPt — d?)
an+1 aqn Sn (6t)2 n ;\nJrl
Ayt = dy +otdy + 2o | (1 - 28)dY + 26d] (2.3.3)
Ayt = dy+ot[(1 - y)dy +4di Y, (2.3.4)

where oy, am,, (3, v, are arbitrary real parameters defining the method, while 6t is the time

step. It is a system of 6 equations in the unknowns HQH, (Ai?“, a’;‘“, drres s artes,
With af = ay, = 1 we have the Newmark scheme, and if also v = % and (0 = i we obtain the
mid point scheme.

Remark 2.3.1. To obtain the mid point scheme from the generalized-a it is sufficient to
substitute the coefficients oy, o, B, and v in (2.3.4)

1= 1= A A
ot {2d2 + 2d?+1] =d;t —dy,

then substituting in (2.3.3) we obtain directly

dytt —dy _ dpt'+dy
ot 2 ’
which is the first equation in (2.3.2).
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Chung and Hulbert [CH93] showed that second order accuracy is attained if

1
’725—0[f+01m,

and 1
f= 1(1 —ag+am)”.

The scheme is unconditionally stable if oy, > af > 1. Furthermore in [CH93] optimal choices
for the parameters oy and «,, are retrieved:

c 2_p00

m 1+poo7
a% = 1

f 1+p007

where the parameter ps is the limit spectral radius of the amplification matrix for infinite
time steps. If poo = 1 then ay = ay, = % and there is no damping of the high frequency
components.

A similar set of coefficients was devised by Jansen et al. in [JWHO0] for the first order
equations. We report for completeness the corresponding values of ay and a, in this case

aczl?)_poo

214 po’
1

af = )

T 1+ poo

Notice that in [DP07, BCHZO08] the generalized-av scheme is used for both the fluid and
structure fields.

Also the structure equation can be nonlinear, the only nonlinearity coming from the
constitutive law relating the stress and the strain tensors. As in the fluid—geometry case
there is the option of considering part (or all) of the nonlinear term explicitly, or to linearize
using Newton or fixed-point. The discussion about the last two strategies is reported in the
next chapter.

The time advancing scheme used in Part I1I for the numerical simulations is the mid point
rule (2.3.2).

2.4 Time Discretization for the Fluid—Geometry Problem

A large variety of time discretizations of the incompressible Navier—Stokes equations on mov-
ing domains can be found in literature, depending on the targeted application. However using
the ALE formulation imposes some constraints. In fact the choice of the time discretization
of the convective term (3 - V,)u plays a fundamental role in determining the order of the
time advancing scheme and its stability properties (through the Geometric Conservation Law,
cf. Section §2.8). For instance one may chose a time advancing scheme of second order and
obtain only a first order approximation in time, see e.g. [FvdZG06]. The stability issue is
discussed more in detail in Section §2.8, while here we just describe some of the possible
choices adopted in literature.
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The approaches more frequently used in hemodynamics are one-step implicit methods
like the implicit Euler scheme (first order accurate), the generalized alpha scheme (first or
second order accurate), Crank-Nicholson (second order accurate) or sometimes multistep
BDF schemes (see [QSS00]).

The implicit Euler scheme consists in considering all the quantities at the current time
step. For instance the discretization of the generic non conservative form of an ALE field
reported in equation (1.3.9), i.e.,

0
a*‘: = V(0 —a®u)+ (W-Vy)a+b,
reads:
an+1 n+1 n+1 n+1 * n+1 a” n+1

where a and O are a vectorial and tensorial quantities introduced in (1.3.9).

The approximation of the domain velocity w* is independent of the time approximation
chosen for the equation, indeed it defines how the coupling between the problems F and G
is handled. If these two problems are not strongly coupled the approximation of the fluid
domain velocity w* affects the order of the time discretization.

The generalized-« scheme was first introduced for structural dynamic applications in [CH93]
for second order ODEs. It was then adapted to first order ODEs in [JWHO00]. In FSI
context the generalized-a has been used e.g. in [DP07, BCHZ08]. The Crank—Nicholson
scheme applied to the fluid problem in FSI has been used in e.g. [HT06, Nob01], while
in [RSFW09, FvdZG06] the BDF2 scheme is used. All these choices can lead to a globally
second order in time F'SI scheme, when the structure solver and coupling conditions are also
second order accurate. The first order time discretizations (e.g. implicit Euler) for the FG
problem are more common, however we anticipate that using the conservative formulation
of the momentum equation, implicit Euler time discretization and choosing w* = w"*! an
important condition (the DGCL condition, cf. Section §2.8) is not fulfilled, which can lead to
the instability of the scheme [Nob01, Ch.4.7].

We remark also that the applications can dictate constraints on the timestep (e.g. when
simulating turbulent fluids through DNS), in these cases an explicit time discretization can
be employed for the fluid problem (see e.g. [BA09, FL0O0)).

With the aim of keeping a general notation that applies to every time discretization, as
well as to every form of the conservation equations and interface conditions, in what follows
we denote the time-discretized fluid and solid problems by F™ and S™ respectively.

The coupled fluid—structure problem has several levels of nonlinearities, some of them
being related to the fact that we chose to write the equations in ALE form:

e the convective term of the Navier—Stokes equations in fixed domains

(u-Va)u; (2.4.2)

e the advection term introduced by the ALE formulation

(W Va)u; (2.4.3)
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e the dependence of the fluid domain displacement d ¢ on the displacement of the struc-
ture.

At every time step they can be solved by using a Newton or fixed point algorithm, as it is
discussed in the next chapter. By properly choosing the time discretization the FSI problem
at each time step may result to be linear.

We call Fully Implicit (FI) time discretization (see e.g. [BCHZ08, TSS06, HHB08, KGF 109,
BC10a, DP07, Hro01, MNS06, GV03, LM01, KWO08b]) the implicit treatment of all the non-
linearities introduced above as well as of the coupling with the solid problem. It leads in
general to a more accurate and robust time discretization, but it is also the most expensive
approach among those discussed here, since the solution of the nonlinearities needs extra
computational efforts.

Different approaches can be obtained by modifying the way the nonlinear terms are dis-
cretized in the FI approach. For instance being n + 1 the current time step, the nonlinear-
ity (2.4.2) can be discretized in time, given an extrapolation u* of the fluid velocity from the
previous time steps, in the following way

(u* - Vy)u" (2.4.4)

With this choice the term (2.4.4) becomes linear. This is a suitable choice when the char-
acteristic Reynolds number of the fluid flow is not very high, and thus the nonlinearity of
the convective term is not predominant (condition usually fulfilled in hemodynamics). The
simplest approximation corresponds to choosing u* = u’. It introduces an error of the
first order in time and can be easily modified if a time advancing scheme of higher or-
der is used. This approximation for the convective term of the fluid problem is used e.g.
in [FM05, DDFQO06, Nob01, BQQO08b, Dep04].
Also the nonlinearity (2.4.3) can be discretized in time as

(W* - V)u" (2.4.5)

where w* is an explicit extrapolation of the fluid domain velocity. Together with the term (2.4.4)
it leads to a linearized convective term [CDFQ11].

The nonlinearity due to the moving domain is the most difficult to handle implicitly (cf.
Chapter 3). Considering the fluid domain at the previous time step is a suitable approximation
when the displacements are not very large. Its explicit treatment, combined with (2.4.4)
and (2.4.5), leads to the Geometry—Convective Ezplicit (GCE) time discretization (see e.g.
[CDFQ11, BQQO8a]), in which the fluid problem is linear. In Tezduyar et al., see e.g. [TSS06],
some different coupling strategies are also investigated. In particular the quasi—direct coupling
in their convention corresponds to a fully coupled scheme where the geometry is considered
explicitly, while the direct coupling corresponds to the fully implicit discretization introduced
above.

Besides the time discretization of the nonlinear terms, frequently the methods differ with
respect to the time discretization of the coupling between fluid and structure. However, since
this subject has been extensively studied and since it is critical for the stability of the method,
we chose to leave it for Section §2.8, where the stability issue is addressed.
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2.5 Fully Implicit and Convective Explicit Schemes

Using the fully implicit approach for the fluid—geometry problem, the coupled time-discrete
system of equations at the time level t = ¢,,4.1 reads

Fr(u dott dptt) =0
S (u; ) =0 (2.5.1)

G'(dyt dt) =0
We denote the first order discrete time derivative for the fluid problem as §;, while the
discretization of the second derivative in time of the structure equation is represented by dy.

The whole system of equations in strong form, considering the fluid momentum conservation
equation in non-conservative form, reads

pfétu”'H +py ((u”‘*‘1 — W"'H) . VI) ut — Vx-af"'H — ffm'1 =0 in Qf

t n41
Veu" =0 in Q{n-i-l
Pl dl Tt — Vot — £ = 0 in Q°
—Adjt =0 @/ (252)
a8 +6™ 8/ =0 onT
u"od,  — (54?[?“ =0 on T
&3}“ - 8’;“ =0 onT

+conditions on the external boundaries.

The solution of the geometry problem defines the ALE map Ay, ., and the fluid domain at
time tp11, Q{ a1 = At, (). Given (at least) d’}“ and d} the fluid domain velocity can

be computed as

n+l _ ¢ An+l -1
W = 5tdf o Athrl'

(2.5.3)
When the convective term in the fluid momentum equation is discretized using both (2.4.4)
and (2.4.5), while the fluid geometry is still considered implicitly, we call the corresponding

time discretization of the fluid-geometry problem Convective Explicit (CE).

2.6 Geometry—Convective Explicit Scheme

In the Geometry—Convective Explicit (GCE) time discretization the nonlinear term (2.4.3) is
linearized using (2.4.5) and the coupling of the fluid and the geometry problems is explicit.
The GCE counterpart of (2.5.1) reads

Fn(ufn—i-l? a?—&—l’ a}l+1)
Sn(ufn+l an+1)
Y S

G"(dg,d}™)

0
0 (2.6.1)
0.

Although the convective term is linearized using an explicit extrapolation of the fluid velocity
u*, with an abuse of notation we use the same symbol for the fluid problem F" as in the fully
implicit case.
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We write explicitly below the time discretized equations in strong form defining the GCE
scheme. The geometry equation, R
Gn(dz, dyt) =0,
is solved separately once per time step and the fluid domain velocity w”*! is computed
using (2.5.3).

The time discrete fluid—structure problem reads (the fluid momentum equation being
written in non-conservative form):

prou™tt 4 pp ((u™ - w”“) SV u' ! = Vo = £ in Q{nH, (2.6.2)
Vsutl =0 in Qz{n-i-l’
Py dl Tt — V- (IT)"H! = £, in 0F,
u"+1 ©) Atn+1 - (5ta?+1 =0 on f,
" 5° + (6,)"* -6l =0 on T,

+conditions on the external boundaries.

As already mentioned this problem has the advantage of being linear when the structure
equation is linear, at any given time step. In applications, as shown in Sections §5.4 and §6.2,
this time discretization also leads to a stable and robust FSI solver and can be efficiently
implemented in parallel.

2.7 Space Discretization

In this section we write the weak form and describe the space finite elements discretization
of the FSI system. We refer to [LMO01, Nob01] for details.

Recalling the notations introduced in Section §2.2 we can define the following functional
spaces

Ul ={v=vod '|veH (),

UP = {q=qo A g€ LX(Q)},

Ut = 1@,

Us = H'(Q)?,

Ut — HY2(T)3,

VIi—{v=vod, e H )P v=00n 'L},
Ve ={ve H(O*)’|v=0onT3l,

Vi={ve H (@)Plv=0onT], 1}

If Q{ and Qf are bounded and with Lipschitz continuous boundary, A; € W1°°(Q/)3 and
Al e Wl"’o(Q{)?’, then US = Hl(Q{):s. Furthermore, if also A € HY(T C R; W1>(Q/)?)
holds, then, for i € HY(T; H'(Q/)3), u = o A~! € HY(T;U/) = HY(T; H'(2])3) [Nob01,
Ch.1.3)].

We report hereafter the weak formulation of the FSI system in non-conservative and
conservative form. We first introduce the way in which the stress continuity coupling condition
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is enforced (in a weak sense), and show that enforcing this coupling condition amounts to
choosing matching test functions across the interface.

While the velocity continuity coupling condition is usually imposed in its strong form, the
continuity of stresses through the interface can be imposed in a weak way by equating the
variational residuals of the two momentum conservation equations restricted to the interface.
In fact if we write the variational formulation of the fluid momentum equation, considering
an arbitrary vy € VI, we have

- /Ff ng “trp (vy) dy = /Fafnf trp (vy) dy. (2.7.1)
N

The same can be done for the structure equation for vy € V*, leading to

0%d ~s
5— 5 v. — (V~II _f —
/@ S (ps 5 Ve — (Ve IDv, 5v5> 0 /F

We introduce now the two linear continuous lift operators

gh. trg (vs) dy = /Aﬂﬁs “trg (vs) d7.
T
(2.7.2)

s
N

Ly Uf — Vf,
L.: UV — Vs,

Expressing the stress tensors in the reference configuration, we can write the stress con-
tinuity equation on the interface in a weak form,

/AHﬁS A+ /Aafﬁf W di=0 Ve UL, (2.7.3)
I T

as
~ ans ~ . ~ N
/ﬁs <psat2 '58(1@) dQJF/AS (IL: V3Ls(¥) — £s - Ls(¥)) dQ—/F?V g - Ls(v) dy
Juo -1
+/§ <pfua;4t L) (wo ATt —wo 4T - Va)uo A Lp(y)+

+af:v5-£f(¢)—@.cf(¢)) dﬁ—/rf gV L) dy=0 vpeU. (27.4)

Thus the weak imposition of the stress continuity can be achieved by simply choosing test
functions vy € VI and v, € V* which are matching on the FS interface. The weak imposition
of the stresses leads sometimes to more stable numerical results [FLT98, LMO1].

Following [LMO01] and [Nob01] we consider a global weak formulation of the FSI problem.
To this end we define the space W = {(vy,vs) € VI x V¥|trz (vy o A;) = trz (vs)}. Imposing
the weak stress continuity coupling condition, as previously stated, is obtained automatically
by choosing the test functions in this space, i.e, supposing that the test functions restricted
to the interface are matching.
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We recall the notation for the Dirichlet boundary data for the three problems: g? : I‘fD —

R2, gP:T% — R% gl Fémed — R2. The weak form of the equations (1.4.6), (1.4.2), (1.5.4)
and (2.2.5) reads: for almost every t € T find u: T — U/ such that ¢ — u(t) and u = gj’? on

I‘g ,p: T — UP such that t — p(?) , d, : T — U* such that t — as(t) and d, = gl on ),
ds: T — UY such that ¢ — ds(¢) and dy = gL on r 4 satisfying

Fize
[ o2

2a S S
—i—/ ﬁ5&~v5+ﬂzvmv5 dQ) —/ f, v, dQ —/ g v, dy+
Qs 8t2 Os T

'Vf+(Pf(u—W)'V$)u'Vf+gf : Vfo thf—l—

z

?V
+/ fr-vy thf—/ gjcv-vf dry, V(vy,vs) €W,

of rf,
(2.7.5)
/ u-V.q d%/ =0 Vg € UP,

of
/A V;;af : Vavm dﬁf =0 Vv, € V9.
Qr

d, .
uoA; = 8815 on T
dy =d; on T.

To write the conservative form it is sufficient to replace the fluid momentum contribution

in (2.7.5) with
Dt/ pfu-vfth-i-/ [(O'f—pfu@,@):VIVf—ff'Vf] thf—/ Ufnf.vfd’y:O.
af af i
(2.7.6)

The Dirichlet boundary conditions are usually enforced strongly, i.e., discretizing directly
equation (2.1.1), while the Neumann boundary conditions are usually imposed weakly, i.e.,
given the boundary data gjcv € (H%(F{V))?’ and gV € (H%(Ff\,))?’ enforcing the Neumann
boundary conditions is obtained by substituting the boundary terms in (2.7.5).

Remark 2.7.1. If the geometric adherence coupling condition holds, then, on the FS in-
terface, the ALE map equals the deformation map ¢, and the fluid domain velocity equals
the fluid velocity w = u. Since the description of the boundary for both the fluid and solid
problems is Lagrangian no interpolation is required when enforcing the coupling (if the finite
elements are conforming across the interface).

Remark 2.7.2. The test functions in VI are piecewise constant in time, so that

ovy

5| =0vvre V7 (2.7.7)

z

Due to (2.7.7) the test functions vy can always be taken out of the ALE derivatives. In
particular this implies the following equality

0
Dt/ u-vy thf:/ u vit+u(Vew) - vy df. (2.7.8)
of of Otz
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The Finite Element (FE) space discretization is obtained from the variational formulation
by approximating the functional spaces previously defined using finite dimensional spaces,
that we denote with the label ,, spanned by a basis of shape functions (see e.g. [QV94])
defined in the reference domain, that we note {t;}1<i<n, where N is the dimension of the
space U ,{ . For instance the fluid velocity u in the moving domain Q{ is approximated as

N
u(z,t) & up(z,t) = Y wi(t)i(An " (2)). (2.7.9)
=1

We remark that due to the linear combination above, the accuracy in space of the discrete
solution of the fluid problem depends on the degree n of the approximation in space, the
degree k of the FE parametric map and the degree [ of the ALE approximation. To avoid
a loss of accuracy the correct order for the ALE map should be the same as for the FE
parametric map (see [Nob01, Ch.1.5] for a broader discussion). The differential problem for
the ALE map should then be discretized with isoparametric finite elements of order k. In our
case isoparametric linear finite elements are used for the discretization of all the equations,
while for instance Bazilevs et al. [BCHZ08] use isoparametric NURBS (Non Uniform Rational
B-Splines) shape functions for all the fields, which allows to describe the domain, the solution,
and the ALE map as NURBS, and leads in principle to arbitrary order approximation in space
and spectral convergence when increasing the degree of the rational polynomials and when
the solution is analytic. A drawback of high order in space is that the polynomial order
of (2.7.9) is the sum of the order of the shape functions v; plus the order of the ALE map,
which can lead to a large number of quadrature points necessary to integrate exactly the
discrete solution. To avoid this waste of computational time in [PP10, PPQ10] a high order
polynomial for the ALE map is used only for the elements touching the boundary, while a
linear approximation is used on the other elements.

Notations: we distinguish in the algebraic system between the degrees of freedom lying
on the F'S interface (adding the label v to the variables) and those which are internal to the
domains Q{ and QF (for which we keep the same names as for the continuous case). The
right-hand sides including the terms generated by the time discretization of the fluid and solid
momentum conservation equations are denoted ry and rs respectively.

We report hereafter the fully discrete nonlinear system in matrix form. Supposing that we
chose a suitable FE discretization space for the three fields we can write the discrete system
in a 4 x 4 block matrix form. Delimiting the blocks using straight lines the nonlinear system
can be written in matrix form as

Crr(0) Crr(e)| 0 o o]l o0 o ug (o)
Cr(0) Crr(o)| 0 0 I 0 o0 usp 4 (o)
0 0 | Ns(o) Na(o)| O] 0 0 dgt! p7F1
0 0 | Nrs(e) Npp(o) | —=I| 0 0 diit | = rit! :
0 I 0 —I/6t | 0| 0 0 At —1/6td,
0 0 0 0 0 | Hpp Hyr dpt! 0
0 0 0 -1 o] o0 I dit! 0
(2.7.10)

where the nonlinearity is expressed in the matrix entries with the symbol (¢) (it expresses
the dependence of the blocks on the solution variables). The (1,1) block represents the

36



2.7. SPACE DISCRETIZATION

discrete fluid problem equations, the block (2,2) represents the discrete solid problem, while
block (4,4) represents the discretization of the geometry problem. The off-diagonal entries
enforce the coupling conditions between the three fields. In this discrete formulation we have
supposed a first order time discretization of the velocity continuity coupling condition. The
right hand sides r}lﬂ and r”t! are composed by the volume forces and the terms of the
time discretization which depend on the previous time steps. The multiplier A is introduced
to enforce the coupling conditions across the FS interface. When the coupling is enforced
introducing a new variable we say that the linear system is written in augmented form. In
fact from (2.7.4) we can write the weak stress continuity as

CFfIIf + Crruf + Npgds + Nprdgr = 0.
We can rewrite the previous equation as

Cpfllf + CFFUf =\, (2.7.11)
Nrsas + Nrrasp +A=0.

Thus the third block-column of the matrix in (2.7.10) enforces the stress continuity coupling,
while the third block-row represents the velocity continuity.

Note that we defined the multiplier A at the algebraic level, which means that it consists
of a vector with the dimension of the degrees of freedom sitting on the FS interface. However
due to (2.7.11) it can be interpreted as the FE discretization of the integral of the surface
traction on the interface: fF afnf dry.

The weak form of the GCE system discretized in space leads to the following linear systems:
the mesh motion equation can be solved separately because in the geometry—explicit time
discretization the fluid domain and the mesh velocity are extrapolated from the interface
displacement of the previous time step. We have

) () (8)
an+1 - Jn :
0 I dﬂf .

The new domain Q{ at time ¢, is then recovered by means of the nodes of the mesh
following d?“. The integrals relative to the FE discretization of the fluid are computed with
respect to the new mesh, yielding the following linear system:

Cff CfF 0 0 0 ufn+1 I.n-l—l

Cpf Crr 0 0 1 uf?—i_l I'?Fl
0 0| N, Ngo |0 artt | = il . (2.7.12)
0 0 |Nrs Npr | -1 drtt !
0 I 0 -—I/6t| O St —I/6tdT.

Since the GCE problem is linear, the symbol (¢) is removed from the blocks in (2.7.10).

The general Jacobian system for CE or FI is reported in the next chapter, while the parallel
solution and preconditioning of the various Jacobian systems is addressed in Chapter 4 in
which the blocks structure of the matrix is exploited.

Notations: in the following chapters we distinguish between three Jacobian matrices
coming from three different choices for the time discretization: we call Jpy the Jacobian
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matriz of the system (2.7.10), Jog the Jacobian of (2.7.10) when the convective term is
linearized using (2.4.4) and (2.4.5) (but considering implicitly the geometric nonlinearity)
and Jocg the matriz in (2.7.12).

2.7.1 Interior Penalty Stabilization

For our simulations we discretize the Navier—Stokes equations by P1-P1 elements stabilized
by interior penalty (IP) [BF07, BFH04, PBO05].

The TP stabilization consists of adding to the Galerkin discrete formulation of the fluid
problem some consistent terms that penalize the jumps of given quantities across the bound-
ary I'. of each element. We denote with [-] the jumps across the element boundaries; the
penalization terms added to the fluid momentum equation are the following, for v; € v

. 2 .

o jg(u,vy) = fl“e ygnll_hm[[(u —w) - Vyu][(u—w) - Vyve] dvy, where v3 is a constant
to be chosen. This term penalizes the jump of the convective term across the interface
of the finite elements, and it is used to stabilize convection dominated flows.

o jain(u,vy) = fFe Yaivh?|[u — w| oo [V2u] [V2v ] dy, where v4;, is a constant. This term
penalizes the jumps of the velocity gradient.

Another term to stabilize the pressure is added to the continuity equation in weak form.
This penalization term allows to circumvent the inf-sup condition and to use equal order
finite elements for velocity and pressure fields. For ¢ € U, and a constant parameter -,

h3
max{h|u — w|| e, us

Jp(pa) = /F v }[[Vmp]] [Vaq] dy.-
This term penalizes the jump of the pressure gradient across the elements and may lead to
an inconsistency when the exact solution features a discontinuous pressure gradient.

Note that although these terms are converging to zero with the grid size h, and they are
identically null in the continuous case, they are in general different from zero when discretized
in space. This implies in particular that the discrete continuity equation is not satisfied
exactly.

2.8 Analysis of the Coupled Problem

In this section we report results about the well posedness of the FSI problem and we discuss the
stability of some of the different time discretization schemes introduced above. We introduce
the concept of geometric conservation laws and the associated conditions for a numerical
scheme. To conclude the section the stability of the coupling between the fluid—geometry and
structure problems is investigated.

2.8.1 Analysis of Simplified Coupled Models

We refer in this section mainly to Y. Maday [FQV09, Ch.8|, where it is reported an overview
of recent results and methodologies to prove the well posedness of the FSI system.

In the usual definitions of stability, a system is stable when its energy is bounded by a
constant which depends on the forcing terms and on the boundary conditions. A priori energy
estimates are fundamental to prove the stability of a differential problem, just as they are
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important for the stability of a numerical method. A classical Faedo—Galerkin approach used
e.g. in [Lio69] allows to prove the existence of a weak solution in the FSI context when the
fluid domain motion is neglected and the structure is visco-elastic. The solution is proved to
be unique in the 2D case (see [Lio69, FQV09] for the proofs).

Starting from the variational formulation, the Faedo—Galerkin technique consists in defin-
ing a sequence of finite dimensional test spaces converging to the original infinite dimensional
space. Then the existence and uniqueness of the solution for the finite dimensional problems
is proved. Thanks to proper a priori estimates for all the terms in the variational formulation,
there exists a subsequence for each term which converges weakly in the infinite dimensional
space. For the FSI case considered in [Lio69] a compactness theorem is needed for the non-
linear convective term to pass to the limit.

An analysis by Chambolle et al. [CDEGO05, FQV09] generalizes the previous strategy to
FSI with moving fluid domain. The fact that the domain motion depends on the solution
adds a nonlinearity which is a major complication for the analysis. In that work the solid is
modeled as a visco-elastic plate. We give here an idea of the method used for the analysis.

Definition 2.8.1 (Compact operator). Let X and Y be two Banach spaces, and T : X —Y
an operator. T is compact iff

e it is continuous;
e it maps bounded sets into relatively compact sets.

The Schauder Fized point theorem which can be found e.g. in [Zei91], is used to complete
the proof of the existence.

Theorem 2.8.1 (Schauder Fixed-Point theorem). Let M be a nonempty, closed, bounded,
convex subset of a Banach space X, and suppose that T : M — M is a compact operator.
Then T has a fized point.

This theorem is frequently used to prove the existence of solutions for nonlinear equations
in a Banach space. The proof of the existence of a weak solution for the FSI problem follows
the main steps listed below.

The fluid and solid problems are substituted by two regularized problems, such that the
solution is defined on a regularized current domain depending on a parameter e.

The equations are linearized through fixed point, considering known the fluid domain
displacement and the fluid velocity in the convective term. Given the solution (u°,ds°), we
call S(u®,d,°) the solution of the linearized system.

The linearized equations are recast back to the original configuration. A basis of eigen-
functions for the Stokes problem is then used to generate a sequence of finite dimensional test
spaces, and the Faedo—Galerkin technique is used, with steps analogous to those in [Lio69]
recalled above. Using the a-priori estimates it is possible to conclude that the linearized
continuous problem has a unique solution. ~

Let us consider the image of the solver operator S of the linearized problem. Due to
the estimates and to classical theorems (Aubin’s lemma), this operator is relatively compact.
Thus the Schauder’s theorem guarantees the existence of a fixed point for S (i.e., the solution
of the nonlinear regularized problem).

Eventually it is proved that the limit for ¢ — 0 converges to a solution of the original
problem.
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Beirao da Veiga [BdV04, FQV09] provides a proof for the existence of a strong solution in
2D, where the structure is modeled through a 1D generalized string model [FQV09, Ch.3.4].
As in the previous analysis, the problem is formulated as a fixed point problem and the
Schauder’s theorem is employed to show the existence. However the equations are written
on an ALE reference domain, and the a priori estimates are performed there. The final
requirements on the regularity of the solution in this case are more restrictive than in the
previous case.

Finally the existence of a strong solution for a 3D FSI problem is derived by Cheng et al.
in [ACCS06]. The structure is modeled by a nonlinear Koiter shell model without the inertial
term. As in the previous work the analysis is performed in the reference configuration. In this
analysis a uniqueness result is obtained under appropriate compatibility conditions between
initial and boundary data.

2.8.2 Stability and Geometric Conservation Law

The stability of the numerical schemes for FSI in ALE form is currently subject of research.
As mentioned in Section §2.4 the unconditional stability on fixed domains does not imply
that the same method used on moving domain is unconditionally stable as well. Usually to
guarantee stability of a method it is necessary to find a bound for the energy of the discretized
system. This is achieved by means of a-priori error estimates (see [Nob01]). However this
approach is not always possible (or easy), thus other types of stability can be devised [FGGO1].

A well established condition that a discretization method should satisfy is the Discrete
Geometric Conservation Law (DGCL). A numerical scheme is said to satisfy the DGCL if it is
capable of reproducing constant (in space and time) solutions in the absence of forcing terms
and with proper boundary conditions. This is not always true for problems in moving domains
adopting an ALE frame, and it depends on the time discretization chosen. The role of DGCL
in the stability of numerical schemes for problems in moving domains was investigated in the
last years, in particular in Nobile [Nob01] it leads to an unconditional stability result for the
implicit Euler scheme, which will be recalled below, while in Farhat et al. [FGG01] DGCL in
some cases is found to be equivalent to a discrete maximum principle.

The fulfillment of DGCL is automatic for any time discretization if the equations are
written in non-conservative form. In fact, taking (2.7.1) and substituting a constant solution
we obtain an identity independently of the time discretization employed.

On the other hand rewriting the conservative form (2.7.6) for a constant solution and
without forcing term, we end up with the following equation

Dt/ pru-vy th—/ (pyu-Vew) vy d/, (2.8.1)
wA wA

which is the weak form of the Leibnitz transport formula (1.2.7) for a constant solution.
Integrated in time it gives

/ L Prae vy dsd / pra-vy d§l = INTEZ“ [/ (ppu-Vew) - vedSy|, (2.8.2)
wp™ wA™ wA

where the term ZA Ti:“ denotes a chosen numerical integration in time from ¢, to t,11.
While condition (2.8.1) is referred to as Geometric Conservation Law (GCL) condition and
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it is a conservation equation, (2.8.2) is the discrete geometric conservation law and its form
depends on the choice of the time integrator.

Thus the DGCL condition consists in choosing a time integration scheme which allows to
satisfy exactly (1.2.7) for a constant solution. It can also be interpreted as a discretization of
Jacobi’s formula(1.2.5): if DGCL holds then the discrete counterpart of (1.2.5) holds exactly.
We see from this relation that the choice of the integration rule for the part of the convective
term related to the ALE description determines whether the scheme satisfies or not the DGCL.
A different time integration can be chosen for the term u - V,w than for the other terms,
leading to a scheme satisfying the DGCL. A rule to choose the time integration in order to
satisfy (2.8.1) consists in taking an integration scheme of order d-s—1, where d is the number
of spatial dimensions and s is the polynomial order of the nodal displacement. A proof is
given in [Nob01, Ch.1.8].

An a-priori error estimate for an FSI scheme, for which unconditional stability is proved,
is derived in [Nob01, Ch.4.7]. The equations are discretized in time using an implicit Euler
scheme satisfying the DGCL (i.e., using a mid point scheme to discretize the fluid domain
velocity) for the fluid and BDF1 for the structure. A piecewise linear in time ALE map is
used. In the energy estimates the DGCL comes into play when the term

tn+1 1
/ / uZ+ Vew* dt
tn of

has to be bounded. In fact due to (2.8.2) (taking u as test function) the following equation
holds:

INT! / |2V ew Q) = / ! / P def. (2.83)
af of" f"

Substituting in the energy equation this identity allows to devise estimates which are indepen-

dent of the mesh velocity w. Such results have not been found in case of the non-conservative

formulation, for which only conditional stability results have been proven.

In [FGGO1] the importance of DGCL in the stability of numerical methods for nonlinear
equations in moving domains is investigated. The analysis is applied to finite volumes schemes.
The stability is defined in the sense of a discrete maximum principle, stating that there exist
two constants M and m such that the space average @' of the numerical solution in a cell has
to satisfy m < @' < M Vn. The DGCL is shown to be necessary and sufficient condition in
order to satisfy this maximum principle in the case of theta-methods.

Also in [BG04] the influence of DGCL is addressed. The result found is that satisfy DGCL
is neither necessary nor sufficient to guarantee the stability (in a sense specified in [BG04])
of a numerical scheme. In fact a condition on the time step is derived for which an implicit
Euler scheme that does not satisfy DGCL is stable. However also in [BG04] the importance
of using a scheme which satisfies DGCL is stressed, since e.g. the implicit Euler satisfying
DGCL is unconditionally stable, as discussed above.

In [LMO1] it is also shown that not satisfying DGCL introduces for a conservative scheme
an error in the energy conservation which depends on the time discretization for the fluid
employed. Furthermore it is shown that using the non conservative formulation the error
introduced in the energy balance is proportional to V,-3. Thus choosing ALE maps which
satisfy V,-w = 0 can reduce the energy dissipation in non conservative schemes.
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2.8.3 Strong versus Weak Coupling

The choice of the time discretization introduces further distinctions among the methods.
Besides the characterization of the methods as Fully Implicit, Geometry—Convective Explicit,
etc., another classification concerns the way in which the coupling conditions are discretized
in time. We can devise three main classes of methods regarding the coupling strategies:

e Strongly (implicitly) coupled schemes. The coupling condition is enforced exactly at
each time-step (e.g. by means of an extra loop). As a result they can require a vari-
able amount of coupling iterations, depending on the algorithm used and on physical
parameters [KW08b, MNS06, BNV08, BQQO08a].

e Fractional step (semi-implicit coupling) schemes®. They involve a splitting of the system
in two problems, a solution of both and a successive correction of the fluid velocity.
These schemes require in general a time step restriction to converge [FGG07, ACF09,

QQO07, BQQOSh).

e Weakly (explicitly) coupled, or staggered, schemes. These methods are very cheap since
they require just one solution of each subproblem per time step. In some cases they
are proved to be unconditionally unstable (due to the added mass effect, as explained
below), however recent studies show that this instability can be overcome, at the expense
of introducing suitable dissipation terms [BF09]. Weakly coupled schemes were recently
addressed also in e.g. [GGCC09, BRvdV09, JGLJ11].

Added Mass Effect

In this section we report the analysis performed in Causin et al. [CGNO05], where the source of
instability for a weakly coupled 2D simplified FSI models is identified. The model considered
for the fluid is linear, incompressible, and inviscid. The fluid domain Q{ consists in a rectangle,
with Neumann boundary conditions imposed on the lateral edges T/ , Dirichlet slip conditions

on the bottom edge I‘é and the velocity continuity coupling condition on the top edge, which
represents the FS-interface I'. The domain can be interpreted as the surface generating a 3D
pipe by rotating around the bottom axis, although 3D axisymmetry is indeed neglected. The
fluid domain is kept fixed and the Eulerian frame is used. To be consistent with the previous
chapter we keep the same notations, although everything in this case is two dimensional. The
equations for the fluid read: find the fluid velocity u and the pressure p such that

pfi;:—i-vxp =0 in Q{,
Veu =0 inQf
p =p on I‘{V, (2.8.4)
u-n =0 on I‘fD,
u-n =w onl,

4The splitting that occurs in these methods is usually not obtained through domain decomposition because
the solid displacement is strongly coupled with the fluid pressure (as it will be clarified at the end of the
section)
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where p and w are given functions on I'. Taking the divergence of the first equation of
system (2.8.4) we obtain after some substitutions

—Ayp = 0 in Q{,
p= D on T}, (2.8.5)
Vzp -n= 0 on Fg,
Vep-n= —pf%—"f on I.

The structure equation is modeled by a one dimensional generalized string model. Calling
ds the scalar solid displacement, hg the thickness of the wall and b the stiffness, we have

2 2
SaTcés“‘ds _b%;i; =
where a is a parameter related to the constitutive equation and to the characteristic dimen-
sions of the wall.

We refrain here from discussing the variational formulation and the functional settings of
the problem. We just recall that the solution p of the fluid problem is in the space H 1(Q{ ),
that the ALE map is the identity I since the fluid domain is fixed, and that the solid solution
is in UT, as well as w. Then it is possible to define a linear operator R : UL — UP, such that

R satisfies

psh (2.8.6)

—A,RT = 0 in Q{,
Rr= 0 on F{V, (2.8.7)
V.R7T-n= 0 on FfD,
VeRr-n= —pyr onl.

The added mass operator M 4 is the trace of R on I} i.e.,

ot~ Ut
—  trr (R7).

My :

T

Exploiting the linearity, we can rewrite the system (2.8.5) as sum of two contributions,

0%ds

one coming from (2.8.7) (considering 7 = ), and the other given by

ot?
—Ap" =0 in Q{,
p* =p onTy, (2.8.8)
Vep*n =0 on FfD,
Vep* nm =0 onT,
so that 52
d
p=p"—piR 52 0 af.
Restricting to the FS-interface we get
2 S
pr = trr (p*) — prAW on I'. (289)
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9%ds
at2

Substituting then into the structure equation (2.8.6) we can see that the quantity pyM 4
plays the role of an extra mass.

The eigenvalues of the added mass operator M 4 for this simplified problem can be found
explicitly as functions of the characteristic dimensions of the wall (radius, thickness, and
length).

In [CGNO5] explicit and implicit coupling algorithms are analyzed in the case of null
stiffness coefficient b = 0 and using an implicit Euler and Leap-Frog time discretization for
the fluid and structure respectively.

The strong form of the explicitly coupled scheme reads

pfun_dzlnl—i-vzp”: 0 in Qf,
Veu" = 0 in Q{,
Pt = P on I'Y, (2.8.10)
u"-n= 0 on I‘fD,
".on= 7adsngfsn_l on I,
pshs 4" 2" 4 A ads™ = " onT. (2.8.11)

at?
Equation (2.8.11) after the substitution of M 4 reads

dsn+1 o 2dsn + dsnfl dsn o stnfl + dsn72
M
5t2 TorMa 5t

where pl', = trp (p*). Computing the spectral radius of this scheme gives a condition for
the instability: the scheme is unconditionally unstable if

pshs + ads™ = ply, (2.8.12)

pshs
P fHUmaz

<1,

where fimqz 1S the maximum eigenvalue of the added mass operator.
This instability is seen in hemodynamic applications, for which py ~ p,, while e.g. in
aerodynamics usually py < ps and the explicit coupling is stable.

An extension to this analysis is derived in Forster et al. [FWRO07], where an approximation
of the added mass operator is obtained at the algebraic level for a three dimensional explicitly
coupled FSI problem. Different time discretizations are compared and stability conditions
are derived. All the schemes tested showed instabilities for a critical mass density ratio.
Interestingly by decreasing the time-step or increasing the order of the scheme (i.e., reducing
the numerical dissipation) does increase the instability.

The algebraic expression for the added mass operator is found by considering a linearized
version of the fluid equation in which both the dependence of the domain on the solid dis-
placement and the convective term are neglected. Furthermore the stiffness matrix is also
neglected, since when considering very small time steps the main contribution is given by
the mass term, which dominates the others. The algebraic system is written with respect
to the acceleration (i.e., taking the time derivative of the fluid momentum equation) and it
is reduced formally to the interface by means of a Schur complement. Then substituting in
the solid equation it is shown that the fluid force contribution on the interface corresponds
entirely to an added mass.
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In [BA09] the added mass effect is investigated numerically on a benchmark 3D geometry.
The FSI problem is explicitly coupled using an energy conserving scheme. The structure
equation is discretized in time using the generalized-a scheme, while the fluid is solved ex-
plicitly. A smaller timestep is used for the fluid field with respect to the solid. The limiting
mass ratio for stability is found to depend on the number of sub-cycles performed by the fluid
solver: increasing the number of sub-cycles the instability increases. This result confirms the
fact that reducing the energy dissipation the system instability increases.

Fractional-Step and Explicit Couplings

An option to avoid the implicit coupling consists in the fractional-step (semi-implicit) coupling
algorithms. In these schemes only the equation for the fluid pressure is strongly coupled with
the structure dynamic. Indeed these methods introduce a splitting which is not the traditional
one between the fluid and the solid variables.

A fractional step algorithm for FSI is introduced in the original paper by Fernandez et
al. [FGGO7]. There the differential Chorin-Temam method is extended to the FSI system. It
consists, for each time level, in solving part of the fluid equation, obtaining an approximated
velocity which is not divergence free, and then in solving the solid equations strongly coupled
with the remaining part of the fluid equations, linearized using the approximated velocity
previously computed (projection step).

In [FGGO7] the analysis on a simplified problem allows to devise a conditional stability
result for the implicit Euler time discretization for both fluid and structure (where the fluid
momentum equation is written in non conservative form). It is interesting to observe that
the stability condition found still depends on the added mass effect through the mass density
ratio.

In Quaini et al. [QQO07] a similar approach is represented at the algebraic level as an
inexact factorization of the system. In particular the Yosida method is generalized to the
algebraic FSI system. Three equations are solved sequentially at each time step:

e the fluid momentum and the geometry equations are solved, using an extrapolation for
the solid displacement and for the fluid pressure;

e the pressure-solid Schur complement equation is solved (projection step), approximating
the Schur complement using the zeroth order term of the Neumann expansion of the
fluid momentum equation’s matrix;

e the velocity is corrected solving again the momentum equation, using the pressure found
in the step above.

This method (Fluid-Structure Yosida, FSY) can be interpreted as an inexact block LU fac-
torization of the system matrix A ~ LU. In this approach the upper block triangular factor
U in the inexact factorization is not approximated.

In Badia et al. [BQQO8b] another method is proposed in which both the factors are
approximated in the inexact factorization. This method is called Pressure-Interface Correction
(PIC). The FSY and PIC schemes are conditionally stable, while the splitting error is of order
one in time. The two algebraic inexact factorization methods (FSY and PIC) are detailed
in [Qua09], where the differences with the method introduced in [FGGO07] are highlighted.

Another modification of the original algorithm reported in [FGGO07] is introduced in As-
torino et al. [ACF(09]. There the Dirichlet and Neumann coupling conditions assigned to the
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sub-problems are replaced with Robin-type boundary conditions derived from the Nitsche’s
interface method [Han05, BF09]. With this modification it has been possible to prove a con-
ditional stability result, which is independent of the mass density ratio (and thus of the added
mass effect).

In Burman et al. [BF09] the coupling between the fluid and solid problems is also enforced
through Nitsche’s interface conditions, which allow to impose weakly the essential boundary
conditions (in our case the velocity continuity). The scheme proposed in [BF09] can be seen
as a Dirichlet—Robin explicitly coupled scheme, since the splitting in a fluid and structure sub-
problems associates a (weak) Dirichlet coupling condition to the fluid problem and a Robin
coupling to the structure. We remark that in [BF09] neither the velocities nor the test func-
tions are constrained to match at the F'S interface. However as stated in [BF09] the Nitsche’s
coupling is not sufficient alone to overcome the instability due to the added mass effect, and
to recover an energy estimate independent of the mass density ratio (and thus of the added
mass effect, as shown above). Thus a consistent penalization term is introduced, that reduces
the order of convergence in time (which should be one for the chosen time discretization)
to %, but allows to obtain for a simplified problem a CFL-like condition independent of the
added mass. A strategy is also proposed to recover the first order convergence by means of a
correction step.

2.9 Geometrical Multiscale

The computational cost of the full FSI simulations is sometimes prohibitive, e.g. when we aim
at the simulation of an entire arterial tree. Furthermore the inlet-outlet boundary conditions
for the arterial segment of interest are not always available, and the arterial network can
influence these values (e.g. through backward travelling pressure waves). For these reasons
reduced models for the cardiovascular network have been devised, which allow a fast and
reliable simulation of some macroscopic quantities (like pressure, flux, area of a transversal
section). In particular one and zero dimensional models have been studied.

In this section we illustrate an implicit algorithm to couple a 3D FSI model with a reduced
order model. Since we are more focused on the coupling we do not describe the details and
the derivation of the reduced order model, but we just retrieve the model and the assumptions
which are at the basis of the approximation.

A classical 1D model for the arteries is the one described in T. J. R. Hughes [HL73,
Hug74]. Recently in [RMPT09] a similar model, accounting for the whole cardiovascular
system through a network of more than 100 different branches, was validated against in-vivo
measurements. All the models that we recall here, plus other more complicated reduced order
models, are described more extensively in J. Peird, A. Veneziani [FQV09, Chap 10].

The 1D models used in [HL73, Hug74] can be obtained by integrating and averaging the
fluid momentum and mass conservation equations in moving domains, under the hypothesis
of a straight vessel. We call x the axial coordinate. The averaged quantities considered in
the model are the flux over a radial section Q(z), the area of the section A(x) and the mean
pressure over the section p(z). The effect of the structure is taken into account through
an algebraic pressure-area relationship in the simplest case, or through an ordinary differ-
ential equation (0D model) which relates pressure and mean radial displacement and can
account also for visco-elastic or inertial effects. The 1D model relies on some assumptions
(like the straightness of the vessel) which are often not fulfilled in real geometries. Taking
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the space average on the section S of the term representing the viscous stress (in 3D prAzu
for incompressible Newtonian fluids) proportional to the fluid mean axial velocity, so that
% J g Vazop dS = —% + %Q, leads to the following hyperbolic equation representing the
fluid momentum conservation

oQ 0 Q? A Op Q
This coupled with the mass conservation equation
0A
— = 2.9.2
5 T2:Q=0, (2.9.2)

and the structure model, represented by
p=2(4,4,A), (2.9.3)

gives the 1D system for an artery segment in the variables A, p, @ (where either p or A is
usually eliminated using (2.9.3)). The eigenvalues of this system are usually real and have
different signs for hemodynamic applications, thus the system is (nonlinear) hyperbolic and
subcritical. It is possible to diagonalize the differential system by a change of variables. The
new variables obtained are the characteristic variables

Wy = Q/A + 4A1, | B (2.9.4)
2py

1 [ B
[/[/ = A — 4A4 _— 29.5

where 3 > 0 is a coefficient related to the mechanical properties of the vessel wall. Using the
characteristic variables is particularly useful when we want to impose an absorbing boundary
condition (i.e., a condition which avoids numerical reflections).

This 1D model can be improved to handle the pressure loss when a bifurcation occurs,
accounting for the bifurcation angle. Other 1D models accounting for curved vessels are
described in [GN93, GNS93], where the equations are recast to a local frame of reference and
the metric change is taken into account.

The absorbing boundary condition at the termination of the 1D segment models the
continuation of the branch as if the segment length was infinite. Other boundary conditions
can model the presence of valves, smaller arterial trees and so on. In particular they consist
in zero dimensional models coupled with the 1D artery. The absorbing boundary conditions
are first order ordinary differential equations which under some assumptions (in particular
the convective term is neglected and the area A is fixed) can be considered linear. In the
latter case they have the same form as the equations for electric circuits, where () represents
the current, p the voltage. The inertia of blood is modeled by an inductance, the capacity is
related to the compliance of the artery (represented by A or p). The resistance is related to
the blood viscosity coefficient yi¢, i.e., to the coefficient K in (2.9.1). There are many options
to model the effect of the peripheral circulation on the termination of an artery by means of
0D model. Usually a Windkessel model is used. It consists in expressing the transfer function
((w) (in the frequency domain) as a function of the chosen values for the resistance, capacity
and inductance. 0D models of the valves are the analogue of diodes in electrical circuits.

47



CHAPTER 2. MODELING FLUID-STRUCTURE INTERACTION PROBLEMS

Many different 0D models have been devised for the heart, see e.g. [KVCFT09], which usually
depend on an elastance function E, that has to be tuned, expressing the relationship between
the pressure and the volume of the ventricle.

Coupling these reduced order dynamics with a 3D model can be achieved in several ways.
The values of pressure, area or flux coming from the reduced model can be assigned to the
3D model pointwise or in a defective fashion. The first methodology consists in either assum-
ing a constant value of the coupling variable on the 3D boundary section (strategy usually
adopted for the pressure), or to assign a 1-parameter family of possible profiles (the velocity
is usually imposed assuming a parabolic or Womersley profile). The second methodology
consists in assigning the integral of the coupling variable over the boundary section by means
of a Lagrange multiplier, see e.g. [FGNQ02a, Ver10]. For instance imposing the flux @ on a
boundary v, of a 3D FSI model is achieved by enforcing the constraint

/ udy=0Q. (2.9.6)
Yflux

We call this boundary condition of defective flux type. Imposing (2.9.6) through Lagrange
multipliers adds one line and one column to the matrix in (2.7.10), thus it constrains only
one degree of freedom on the boundary v;,,, while no profile is imposed.

The stability of the coupling between one and three dimensional FSI models was inves-
tigated e.g. in [FGNQO1]. The coupling conditions assigned on the interface between the
different models may be:

1. the continuity of the area,
2. the continuity of the flux,
3. the continuity of the mean pressure,

4. the continuity of the characteristic variable (expressed as a function of @) and A becomes
a nonlinear Robin type condition, see [NVO08]).

There are several algorithms that allow to enforce the coupling. The easiest are probably
explicit of Gauss—Seidel type. More robust algorithms are implicit and require nonlinear
iterations (see e.g. [MBDQ11] and Section §3.3). In Section §3.3 we define the tangent problem
which is used in this situation.

Remark 2.9.1. Because of the subcritical hyperbolic nature of the 1D model only one bound-
ary condition per termination is required. The average value coming from the 1D can be
coupled with either the fluid or the solid (or geometry) problems in 3D. However since both
these 3D problems require a condition on the 3D-1D interface it is possible to assign to the 3D
problem uncoupled with the 1D model a condition devised from the 1D solution. For instance,
if the coupling condition is the flux continuity, we can take the value of the area from the 1D
to assign the structure displacement on the 3D-1D interface. This choice has been considered
e.g. in [FGNQO1].

In our simulations we do not use this strateqy, mainly because it would be not trivial to
implement it for arbitrary geometries, and because we did not observe spurious reflections by
simply taking a Neumann homogeneous boundary condition for the terminations of the vessels
structure.
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Solution Strategies for the FSI
problem






Nonlinearities and Newton Method

In this chapter we focus on some different formulations of the nonlinear problem (2.7.10)
arising from the discretization of the FSI system in time and space (in fully implicit form).
We present some of the most popular methodologies usually adopted in literature to solve the
various nonlinearities. Throughout this chapter we omit the time-step index n. Furthermore
we abbreviate the total and partial derivatives of a functional F'(X) with respect to a vector
field X with Dx(-) or 0x(-) respectively and we denote with |x the evaluation of a function
at the point X.

In the first two sections we recall the formulation of the Newton method, we describe
different fixed point formulations of the FSI problem, and we discuss the Newton method
applied to the fixed point problems introduced. In the third section we explain how to compute
the derivatives of the fluid problem with respect to the domain motion. Those derivatives
have a non trivial form and are often neglected, they can be viewed as shape derivatives. In
the fourth section we describe the Newton method adopted to solve the geometrical multiscale
coupled system introduced in Section §2.9. In particular we express the coupled problems by
exploiting the notations and the framework introduced in Section §3.2.

3.1 Newton Method

For a generic nonlinear problem M (X) = 0, the Newton—Rhapson method can be represented
by the following steps. Given the initial solution X° (and starting with & = 0):

e Compute the residual M (Xk) and check the stopping criterium. The latter is usually
based on the residual and have the following form

M(X*) < max{e"||M(X)], e},
where €",¢* € R are the relative and absolute tolerances respectively.

e Compute the (possibly approximated) Jacobian matrix J(X*) = DxM (X)|xx, and
solve the Jacobian system
J(XF)6X = —M(XP).

e Update the solution X¥*! = X* 4 w§X, where w is a relaxation parameter (often w = 1)
and increase k.

e Proceed to the next iteration.

Advantages and disadvantages of this approach are often discussed in the FSI liter-
ature. The quadratic convergence of the Newton method is an appealing feature, how-
ever acceleration (Aitken) techniques can be devised in order to improve the convergence
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of the fixed point algorithms as well [KW08b, MW01, MWRO01, DBHV08, Dep04]|. Fur-
thermore the computation of the Jacobian is expensive both in terms of coding and com-
putational time. The Newton algorithm is often sensible to the initial guess for the so-
lution, thus the fixed point method can be used for the first nonlinear iterations, or a
coarse nonlinear problem can be solved, to obtain a better initial solution at every time
iteration [BC10b]. The Jacobian matrix is often approximated e.g. by neglecting some or
all of the shape derivatives terms [MS03, Tez04, Hei04, BC09, BCHZ08], by using simpli-
fied models [GV03] or using techniques based on extrapolation from the previous nonlin-
ear iterations [KGF109, DBV09, DAV10]. These inexact Newton strategies are often cou-

pled with a linesearch technique which is meant to select an optimal relaxation parameter
w [KWO08b, KGF109].

Several ways to compute the complete Jacobian for the Newton scheme in FSI are reviewed
in literature. In particular if a matrix—free method like GMRES is used to solve the Jacobian
system there is no need to build explicitly the Jacobian matrix J, it is sufficient the Jacobian—
vector product. This product (or a part of it) can be approximated e.g. by finite differences
(see e.g. [TSS06, KGF109)):

Jox - MX+eX) = M(X) 311)

€

for a suitable (small enough) e. However such approximation is costly, since it requires an
evaluation of the nonlinear problem operator M (X + ¢JX) at each Jacobian—vector product.
Furthermore it is not evident how to choose a proper value for the parameter e. Another
method to compute the Jacobian is used in Hron [Hro01]. The idea consists of approximating
a column j of the Jacobian matrix as finite difference, substituting to the vector X in (3.1.1)
the vector e; of the canonical basis and computing the finite difference for all the degrees of
freedom. The form of the analytic Jacobian—vector product for a particular formulation (cf.
Section §3.2) is described in detail in [FMO05] while the complete Jacobian matrix is assembled
analytically in e.g. [CDFQ11, BC10a](cf. Section §3.4). R R

Let us consider the full system (2.7.10). Being X = (uy, d,, d;)T and 6X = (uy, dds, 58f)T,
the iteration (k + 1) of the Newton scheme reads:

DufF D F Dd F 5Ef F(uf ,dk dk)
Dy, S DdSS Dg,S 6ds, | =—| S(ufk,dk, d’f) , (3.1.2)
0 D5 G DgG ody G(us*,d, d’“)

XM =X 4 6X.

3.2 Fixed Point Formulations

We introduce here the concept of nonlinear Schwarz preconditioners (see e.g. Cai and
Keyes [CKO02]), which is not directly related to the linear preconditioner one. We call §2
a generic domain where the differential problem is defined and take a possibly overlapping
partition {€2;}1<i<n of the domain €. Let us consider the problem M (X) = 0 written in weak
form (following the notation used in e.g. [FMO05]). We call U the functional space where the
global solution X is defined, chosen accordingly with the differential problem to be solved,
while V' represents the space of the test functions. We call U;(€2;) some functional spaces
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where the local solutions X|q, are searched, and V;(£2;) the corresponding test space. With
the aim of representing the weak form in a compact way we introduce the notation < -, - > for
the usual inner product in L?. We introduce the nonlinear problem operator M(-) : U — V'
such that < M (X),y >=0Vy € V.
We define the restriction R; : U — U; and prolongation R;; : U; — U operators such that
R;(X) = X]q, and
X(z) itz e,
T _ (2]
Ri(X) = { 0 otherwise.
For simplicity we use the same notation also for the restriction-prolongation operators acting

on the test functions.
We define the subdomain problem operators T; : U — (V;)" such that

< Ty(X), v > =< M(X), RF'p; > Vi € V. (3.2.1)

The operators T; are well defined if the subproblems are well posed.

From now on the equalities must be interpreted in weak sense (in (V;)" or (V)), though
we refrain from writing it explicitly to light the notation.

We define the solver operators 7; : U — U; such that T;(X) = R;(X — RI'T;(X)).

The nonlinear additive Schwarz preconditioned system reads

N
M (X) =" RI(T(X)) =0. (3.2.2)
i=1

The analogy with the linear additive Schwarz preconditioners is evident (see [CK02]) and
partially explains why the term preconditioners is used also in the nonlinear case. In [CK02] it
is proved the equivalence of the nonlinear additive Schwarz preconditioned formulation (3.2.2)
with the original one M (X) = 0.

The multiplicative counterpart MA¥(X) of (3.2.2) can be defined as

N-1
MM (X) = RyX =Ty o Y MM (X) =0, (3.2.3)
=1

where the quantities /\/lfw S are defined recursively by

{ MP(X) =X — RITi(X),
MM (X) = RTT; 0 Y212 MM(X).

The additive and multiplicative nonlinear Schwarz preconditioners thus define a set of
nonlinear sub-problems which have to be solved in order to obtain the solution of the global
problem. A fixed point method applied to these problem formulations can lead to the classical
Schwarz methods, which are particular cases of Domain Decomposition (DD) methods [TW05,
QV99].

In the FSI context many algorithms have been devised which take advantage of the mul-
tiphysics nature of the problem by splitting the domain into the fluid and solid parts, or into
fluid, solid and FS interface parts. These algorithms usually start from a formulation of the
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problem which can be described by means of the nonlinear multiplicative Schwarz precon-
ditioners with no overlap. The popular algorithms in FSI just cover a small fraction of the
possibilities, which leaves room for further investigations.

A natural way to linearize expressions (3.2.3) and (3.2.2) is by means of fixed point
iterations, or, if the derivatives of the operators T; are available, Newton iterations. In [CK02]
a method to compute the derivatives of T; as functions of the Jacobian of the full problem
M (X)) is provided, and the Newton method applied to problem (3.2.2) is described.

Here to be consistent with the previous notations, and since the methods that we are going
to describe deal with a non overlapping partition of the domain into a fluid and a solid part,
we discard the more general concept of nonlinear Schwarz preconditioner, though keeping in
mind that all the formulations that we are going to describe could be reinterpreted in such
framework.

3.2.1 Dirichlet—Neumann Formulation

The fluid—geometry and solid problem operators of the fully coupled system (2.5.1) (omitting
the time level index and grouping the fluid and geometry problems) read

FG(uy,d,) =0,
S(uy,ds) = 0. (3.2.4)
This leads to the definition of the fluid—geometry solver operator
F.U* — U/ xUP
as = uy,
such that FG(F(d,),ds) = 0. Similarly we define the solid solver operator
S: U/ xvr — U*
u; — d,
such that S(uy, S(uy)) = 0.
The system written as in (3.2.3) reads
d, — S(F(dy)) =0. (3.2.5)

A fixed point strategy applied to this formulation reads
ditt = S(F(dY)).

When the fluid problem is endowed with Dirichlet coupling condition (the velocity con-
tinuity) and the solid problem is endowed with a Neumann one (the stress continuity), this
strategy corresponds to the classical Dirichlet-Neumann (DN) approach. It can be viewed as
a nonlinear block Gauss—Seidel iterative method, or as an undamped nonlinear Richardson
method. In practice a relaxation is used to improve the stability and convergence of the
method. A relaxed DN iteration reads

dF = wS(F (@) + (1 — w)d”. (3.2.6)
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Methods to automatically adapt the relaxation parameter (such as the Aitken acceleration
technique [KW08b, MW01, MWRO01, DBHVO08, Dep04]) can be used. The DN scheme depends
heavily on the added mass effect, see Section §2.8.3. In particular as the mass density ratio
5—; decreases the fixed point iterations required to reach a given tolerance increase and the
algorithm can become very inefficient. In the case of hemodynamic the mass density ratio is
almost one and this fixed point method requires a large number of iterations to satisfy the
strong coupling between the two problems.

Other choices for the coupling conditions assigned to each subproblem have been in-
vestigated in literature to avoid this issue. The same scheme (3.2.6) when the Neumann
coupling condition is assigned to the fluid and the Dirichlet one to the structure is called
Neumann—Dirichlet (ND) method. The convergence properties of this method are investi-
gated numerically in e.g. Causin et al. [CGNO05], where the behavior is found to be worse
than the DN’s one. One possible option which solves the problem of the added mass effect
is to replace the fluid Dirichlet condition of the DN scheme with a Robin condition (a linear
combination between the two coupling conditions). This choice leads to the definition of the
Robin-Neumann (RN) scheme. The behavior of this scheme is influenced by the choice of
the coefficient introduced in the linear combination, thus in Badia et al. [BNV08] a method
to obtain this coefficient from a simplified model is devised. Recent advances regarding this
topic have been achieved in Gerardo Giorda et al. [GGNV10]; substituting also the Neumann
condition on the structure with a Robin one leads to the Robin-Robin (RR) scheme and
brings in another coefficient to be estimated.

Since fixed point iterations often feature slow convergence, it is preferable to adopt a
Newton method (see e.g. [FM05, KGFT09, BC10a, GV03]) for the systems (2.7.10) or (3.2.5).

The derivatives of the fluid equations with respect to the fluid domain displacement are
non trivial and will be addressed in the next section. Implementing the Newton scheme for the
system (2.7.10), besides the difficulties of computing the aforementioned derivatives, does not
immediately allow the reuse of existing codes which can already solve the sub-problems. In
Fernandez and Moubachir [FMO05] the authors applied the Newton method to (3.2.5), which
leads to the following Newton iterations (see also e.g. [DDQ06, KGF109, DAV10])

I = Du;S|pge Da, Far| 0ds = =t + S(F(d})), (3.2.7)

dkt = at y d,

To implement this method we need to evaluate the derivatives of the solver operators in
the points uy* = F(d¥) and d¥. This is achieved in [FMO5] by taking the derivatives of the
equations

FG(F(d}).d) =0,
S(us*, S(us*) =0.
Defining 6, = (F(d¥),d*) and 0r = (ug”, S(us*)), we have the two linear systems

Ou,FGlo, 05 Flg.0ds + 05 FGlg,0d, =0, (3.2.8)
aasS|9f8ufS|ufk5uf+8ufS|9f<5uf =0, (3.2.9)
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where the unknown variables are 03 F |a,;583 and Oy, S, se0uy. Formally inverting these

problems we obtain a representation of the Newton method (3.2.7) in terms of the Jacobians
of the fluid and solid problems (instead of the solver operators):

—1 _ ~ ~ ~
[I+<33SS|gf) Ou;Slo, (9, FGlo,) " 05 FGlo, | 6d, = —dk + S(F(d)). (3.2.10)

This Jacobian is available if the Jacobians of the subproblems S and FG are.

Remark 3.2.1. The residual evaluation involves the evaluation of the fluid and solid solver
operators (which are used also for the computation of the derivatives 8A S and Oy, FG in 0y and
0s). This means that each monlinear subdomain problem needs to be “solved at each Newton
iteration. In our case however for the fluid problem the domain is fized (since it depends
only on the structure displacement), thus the only nonlinearity for the fluid comes from the
convective term, which can be treated e.g. using (2.4.4) for Reynolds numbers which are not too
large. The structure equation can be linear or not, depending on the constitutive law chosen.
We remark also that if a nested Newton method is used, then the derivative terms computed
at the last iteration can be reused in the computation of the Jacobian problem (3.2.10).

Remark 3.2.2. We can notice that the shape derivatives are embedded in the cross derivatives
04 FGlo, and du;Slo, of (3.2.8) and (3.2.9), thus they go to the right hand side when solving
these linear problems. This is not the case when dealing with (3.1.2).

3.2.2 Steklov—Poincaré Formulation

Another possible fixed point formulation is discussed in the remaining part of this section.
Since now we consider the interface displacement separately, for convenience we express the
dependence of the problems on the variables uy,n,ds, where n = dgr is the FS interface
displacement.

We suppose to apply a Dirichlet interface condition, uo A; = 7 and 6tas = 7 to both
the FG and S problems respectively, and denote them FGp and Sp. To close the system the
stress continuity (2.1.2) equation is expressed by a further interface problem that we call N.
We have the following system of equations

FGD(U-fﬂ?) = O?
Sp(ds,n) =0, (3.2.11)
N(uy, as,n) =0.

The variable 7 introduced corresponds to the interface displacement, however we prefer not
to denote it with asp or d T, indeed it represents a Lagrange multiplier to enforce the stress
continuity constraint.

We can define the three following solver operators

F. UL — U/,
S: U" — US,
N: Ufxvus — UL,
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such that
FGp(F(n),n) =0, (3.2.12)
Sp(8(n),n) =0, (3.2.13)
N(us,dg, V(uy,dy)) = 0 (3.2.14)

As in the previous case, these operators are well defined if the three problems are individually
well-posed.
From (3.2.12), (3.2.13) and (3.2.14) we obtain the equations

uy — F(n) =0
ds — S(n) = 0 . (3.2.15)
n—N(uysds) =0
The equation
n—N(F(n),S(n)) =0, (3.2.16)

is yet another fixed point formulation of the problem (3.2.4). The advantage of this formula-
tion is that the solutions of the FGp and Sp problems can be computed in parallel. As the
previous formulation (3.2.16) can be solved by means of relaxed fixed point iterations,

N = N (F0*), S(*) + (1 - w)n®. (3.2.17)

An alternative to the fixed point algorithm to solve the nonlinear problem (3.2.16) can be
Newton method, as it will be discussed next.

It is possible to rewrite equation (3.2.16) in an equivalent form separating the contributions
from the fluid and solid problems as

N(F(n),S(n),n) = Xf(n) + Xs(n) =0, (3.2.18)

where the operators ¥ and 3 are the Steklov—Poincaré operators [DDQO6]

£ UT - Uff
. Jf :’ U[J;‘% (3.2.19)
n +— IIn®.
Notice that by formally applying ¥,~! to equation (3.2.18) we have
N+ (S(n) =0, (3.2.20)
which subtracted to (3.2.16) gives
5,71 ) = N (F (), Sn). (3.2.21)

This equation establishes the relation between the Steklov—Poincaré operators and the solver
operators.

This formulation is extensively described in Deparis et al. [DDQO6] for FSI applica-
tions, where many choices for the preconditioner of the linearized system are proposed, while
in [DDFQO06] numerical simulations and comparisons are presented.
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The same considerations made for the Dirichlet—Neumann scheme apply in this case:
one could think of substituting the Dirichlet condition on the problems FGp and Sp with
Neumann ones (FGy, Sy). In this case the Lagrange multiplier A would have a similar
meaning as in (2.7.10) (i.e., it would represent the traction vector A = 5;a/ = —IIn®).

Remark 3.2.3. In this section we used the fluid—geometry problem operator FG instead of F,
thus the development is independent of the use of an ALE formulation for the fluid problem.
Notice also that the implementation of the fized point methods presented allows the use of
fluid and solid solvers as black boxes. This feature is called modularity.

We concentrate now on the Newton method applied to (3.2.18). In particular we report a
derivation for the Jacobian of (3.2.16) obtained by generalizing the steps performed in [FMO05]
(and reported in the previous subsection).

We proceed in the derivation above by replacing (3.2.5) by (3.2.16). The essential dif-
ference is the nature of the variable considered in the two fixed point problems; as lives in
Q* while 7 lives on the interface I'. We take the derivatives of equation (3.2.14). Given the

starting solution Or € UT we define = (F(0r),S(0r),0r) € U/ x U® x UT We have
Dqu|95uf = 8qu‘95U.f + 877N|9(8uf./\/“(}-(gr)yg(gr))(suf) =0,

D38N|95d5 - 8&8N6d5 + anN|9F (885N|(]:‘0F7S(0F))6d8) = 0

We can then write formally the derivatives of the solver operator A in terms of the derivatives
of the problem operator N:

O N(Floy, Slop) S0F = (OyN]g) ™" (=0, N|o) duy,
aasNV(fler,swr)éas = (OyN]g)~" <—8aSN|9> 5d,.

Notice that the partial derivatives of the problem operator N are usually easy to compute in
closed form. They consist in the derivatives of the stress continuity coupling condition.

Remark 3.2.4. As pointed out in remark 3.2.1, also here the evaluation of the operator N
(and of its derivatives) in 0 = (F(6r),S(0r),0r) is crucial. As in the previous case we can
have two nested Newton iterations if the fluid and solid equations are nonlinear. However
again the geometrical nonlinearity of the fluid equation is not accounted for by the fluid prob-
lem FGp, in fact in the fluid solver operator F(0r) the geometry is fized by the interface
Dirichlet condition for the domain displacement afp =0r.

We can express the Jacobian system of (3.2.16) at Or as
Ilor0n = (I = Ou; Ny, 516 OnF lor — Og N (Flop.S1o) OnSlor ), (3.2.22)
J)op 01 = dn — (9,N]g) ™" (faasmgansmr) on — (OyNlg) ™" (=0u,N|gdyFlo) on.  (3.2.23)

Notice that now the Jacobian is split in two parts containing the Jacobian of the two

physical problems. To simplify this expression we can apply on both sides the linear operator
9,Nlg

9yN|gJ o017 = 0, N|odn — (—833N198n8|gr) 51— (=B, N|pdyFlay ) 1. (3.2.24)
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This expression still contains the derivatives of the solver operators S and F. To rewrite
it only in terms of problem operators some further manipulation is required. Recalling the
equations for the solver operators we can express their derivatives (as done in the previous
case) in terms of the Jacobians of the problem operators FGp, Sp and N. In fact, the derivative
with respect to 7, e.g. of (3.2.12), reads

(0u;FGplo) 0y Flor6n = —0,FGplodn, (3.2.25)

which is a linear system in the unknown 0, F|g.0n. The same expression can be written for
the solid operator. Thus the evaluation of the solver operator derivatives involves the solution
of two linear systems. We write formally

0, Flor = — (9u;FGpls) " 0,FGplo, (3.2.26)

—1
Sl = — (83,50l0)  OaSplo- (3.2.27)

One eventually obtains substituting in (3.2.24)

—1
9,97 |g- 61 =0,N|gdn — 93 Nly ((8335139) ansD|9) o+
— O, NJg ((auf FGpls) ™" 8nFGD|9) o, (3.2.28)

Remark 3.2.5. Also in this case the shape derivatives are taken into account in the term
O0nFGplg of (3.2.26), thus they go to the right hand side of this linear system.

Remark 3.2.6. Notice that this derivation is formally the same if we assign the stress conti-
nuity condition to both the fluid and solid problems and solve separately the velocity continuity
equation. In this way we obtain two Neumann problems FGy and Sy for the fluid and for the
structure.

For the considerations made in Section §2.7 we can write the variational form of the
equation (3.2.18) as

< Ef(n),Vf >Uf + < Zs(n),Vf >Uf: 0 VVf S UF,
where < -, > represents the usual inner product in L?. This can be rewritten as
<Ry, Lyvy >pr + < Rs, Lsvp >ys=0 Vvp € UF,

where R and R are the residuals of the momentum equations of the fluid and the solid prob-
lems, while £ and L, are the continuous lift operators introduced in Section §2.7. Thus we
can define the Steklov—Poincaré operators as the trace of the residuals of the two momentum
equations

Ef: Uf - UF

N = g (Rel @) (3.2.29)
Y [N Ut

n = trp (Rslsmm)-
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The Jacobian reads, by the chain rule and using the expression for the derivatives of the
solver operators (3.2.26) and (3.2.27),

Toron = | DaSilg | on+ | Dyl | on =

—1
_ trf (anRs‘(S(Gr)ﬂr)) — tl"f <0&SR5|(8(91“)79F) (aass> 87]S>:| on+

_tl"f (677Rf‘(~7:(9r)79r)) — trf <8uf72f\(f(9r),9r) (8uf FG)i1 GUFG>] on. (3.2.30)

Recalling that in weak (formal) sense N = trs (Ry + Rs) = ¥ + Xy, we see that the right-
hand side of equation (3.2.30) is the same as that in (3.2.28). Thus the following relation
holds

Jor = NloJ gy

3.3 Newton Method for Geometrical Multiscale

In this section we introduce a framework to describe the coupling between 3D FSI and re-
duced order models (cf. Section §2.9). The method used to describe the coupled system is a
generalization of the one used in Section §3.2 and the representation of the Newton algorithm
can be derived in a similar way.

We assume in the following without loss of generality that the flux continuity is assigned
to the 3D problem, while the mean pressure continuity is assigned to the 1D. We can then
define the solver operators for the 3D and 1D problems (in a similar way as for the fluid and
structure solver operators used in Section §3.2)

Fsp: R — R
Q — p

Fip: R — R (3:3.1)
p = Q,

where p and @) are respectively the mean pressure and the flux over the 3D-1D interface. These
operators are such that F3p(Q) involves the solution of the 3D FSI model with defective flux
boundary condition on the boundary coupled with the 1D model, while F;p(p) involves the
solution of the 1D model with pressure p imposed on the same boundary. These operators
are well defined for both the 1D and 3D models as far as the relative problems with the
corresponding boundary condition are well posed.

The values () and p at the coupling interface are the solution of the system

Q—Fip(p) =0 3.
p—F3p(Q) = 0. (3.3.3)

The Newton method can be used to solve this system. It consists in several iterations of

the type
( k+1 > ( : ) < >
Pk+1 Pk op
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where the vector (4@, 5p)T is the solution of the Jacobian system

( 1 OpF1D(Pk) ) ( 0Q ) _ < Qr — Fip(pr) > (3.3.4)
9qF3p(Qr) 1 op e — Fap(Qr) ) o

As in Section §3.2 the derivatives in (3.3.4) can be computed as functions of the derivatives
of the problem operators, which in this case are the full 3D FSI operator and the 1D model
operator. Since Remark 3.2.4 applies also to this case we need to solve the nonlinearity on
the two problems separately, then we can use the last Jacobian matrix computed for both the
problems to assemble the Jacobian of (3.3.4).

For each Newton iteration we need thus a solution of the two problems only to obtain
the residual, and then the solution of the Jacobian linear system. However, how it is shown
in the previous sections, the evaluation of the derivative of each solver operator implies the
solution of the linear Jacobian system for each one of the subproblems. This as previously
mentioned can be done in a relatively cheap way by reusing the last Jacobian matrix (and
preconditioner) calculated during the residual evaluation. The generalization of the previous

derivation to several subdomains is straightforward, details can be found e.g. in Malossi et
al. [MBDQ11].

Remark 3.3.1. Notice that if the time discretization for both the 1D and 3D models is such
that the space discretized systems are linear, then equations (3.3.2) are linear too, and the
only iterations required are those to solve the 2 x 2 system (3.3.4).

Remark 3.3.2. We remark also that a Newton scheme could be devised, in a similar way as
in the previous sections, for a fized point formulation of the problem like

Q — Fip(F3p(Q)) = 0. (3.3.5)

The newton kth iteration reads, taking pk = ng(Qk),
(1— apf1D|pk8Qf3D|Qk)5Q =-Q"+ le(fSD(Qk))-

The derivatives of the solver operators can be computed as in the previous case. This for-
mulation has the advantage that the dimension of the Jacobian system is reduced to one,
however the disadvantage is that the two solutions needed for the residual evaluation cannot
be computed in parallel.

3.4 Computing the Exact Jacobian Matrix

We devote this section to the derivation of the Jacobian matrix for the Newton method
in FSI. We describe in detail the form of the derivatives, with particular attention to the
shape derivatives, i.e., the cross derivatives of the fluid problem with respect to the domain
motion. Often in literature this derivation is omitted because it is quite technical, for this
reason we felt the need to describe the steps leading to the Jacobian representation more in
detail than other parts of the dissertation, for which detailed explanations can be found in
literature. Furthermore, the derivation of the Jacobian terms are quite different, depending
on the authors. We refer here mainly to the approach followed in [FM05, FFT00]; other
references are e.g. [BC10a, BCHZ08].
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We do not discuss in this chapter the Fréchet derivatives of the structure equation. In
fact, although they can be more or less complex depending on the constitutive law, their
derivation is rather standard thanks to the Lagrangian formulation.

The derivative of the convective term in the fluid momentum conservation equation with
respect to the fluid velocity is straightforward, namely

Du/ p—f((u—w)‘vx)u‘vf dy’ | du =

—/ p—f[((u—w)-Vm)du-Vf—i—((Su-Vm)u-Vf] sy’
As anticipated the geometrical nonlinearity is more difficult to handle. In the next sub-

section we illustrate some technical tools that are necessary in the derivation described in
Section §3.4.2.

3.4.1 Shape Derivatives of Domain Functionals

In this subsection we introduce an expression for the shape derivatives of generic integral
functions. The derivatives in this form are used in Ferndndez and Moubachir [FMO05] in
the FSI context. A similar derivation is reported in Fanion et al. [FFT00], where the fluid
equations in ALE form are linearized under the hypothesis of steady state and they are
solved on a fixed grid, coupled with the structure through transpiration conditions. We
follow Sokolowski and Zolesio [SZ92], adapting the notations to the framework introduced in
the previous chapters.

Given an open set D C R? with d = 2,3, and two open sets (A),Qt C D we can define
a diffeomorphism A : OxT — )y as done in Section §1.2 between the two domains. The
parameter ¢ can represent time or any other scalar parameter the domain §2; depends on. For
simplicity and consistency with the previous chapters we consider it to be the time, while the
map A represents the ALE map or the motion map.

We recall the definition of the domain velocity w (written in the Lagrangian frame)

BA(L,7) = W(t,7) = w(t, At, D). (3.4.1)

In this section for the sake of notations we express explicitly the dependence of the domain
velocity on time. In the following we abbreviate the spatial derivatives with respect to the
referential coordinates 6%%- with ;.

We suppose that the admissible deformations A of the domain ; = A(t, Q) satisfy the
conditions A(t,Q) € CY(T; C*(Q)), A~L(t,) € CH(T;C*(€)), where k is the regularity of
the coordinate functions describing the parametrization of the reference domain (see (1.1.1)).
We recall from Lemma 1.1.1 that the change of measure for the volume in {); involves the
Jacobian determinant J4 = det(VzA).

Let us consider first an infinitesimal transformation A(e,-) and d = 2, so that A(e,-) =
(Ai(e,-), Aa(e,-))T. Then the Jacobian determinant may be written as

Ja(e, ) = O1Ai (e, D)o As(e, B) — O As(e, B)n i (e, 7),
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and its derivative with respect to t reads
Ot al0z) = O (0rA1(0,5))02A2(0, ) + 01(A1(0,7))92(0r A2 0.7))+
— 01(0pA2(0,2))02A1(0,7) — 01A2(0,2)02(0rA1]0,3))-  (3-4.2)
Using (3.4.1) we get
Ot Al (0,5 = 01W1(0)92.A2(0, ) +01.A1 (0, 7)9aW2(0) — 01W2(0)02.A1 (0, ) — 01.A2(0, )02 W1 (0).

The two last terms are infinitesimal because for (e — 0) also A(e,-) — I(-) and thus
01Az(€,-) — 010 = 0 while e.g. 01 41(¢e,-) — 0171 = 1. Thus

9T 4(0,7) = V2 w(0). (3.4.3)

This result extends easily to d = 3.
We introduce the domain at time ¢ 4 €

Qe = At +€,Q),
and the map A! : Q; — Q4 such that
AL(A(L,Z)) = At + ¢, 7).
The Lagrangian derivative of Ay, reads
DA(t +¢,7) = V. Al (x)DA(t, T), (3.4.4)

where © = A(t,Z). The Lagrangian “time” derivative of the Jacobian matrix evaluated in
t =t becomes, using the definition of derivative, the chain rule, and (3.4.1),

DNMM@=Q£W%W%ﬁ%V%@@—mH«VN()M@®FWA@W=

e—0 €

= lim — (v Al(z) — VA1, 7) = Vow(0)VzA(F, 7). (3.4.5)

E—)
Also, with the same computation, using the chain rule and (3.4.3) we get the determinant
derivative formula (1.2.5): we have, using Binet’s theorem

DiJal g = lim = (det(V A+ 6,7)) — det (VA T))) =

= lim - (det(v AL(2)VzA(L, 7)) — det(VzA(£, 7)) =

e—0 6

— Jim 2 (det (Vo dl (2)) — 1) det (Vo A(E 7). (3.4.6)

e—0 €

Now, remembering (3.4.3) we have
DiJalgz) = lin% Op(det(VoAL(2)))Ja(t, Z) = Vairw(0)J 4(E, 7). (3.4.7)

Using the formulas derived up to now we are able to compute the Lagrangian derivative
of a domain functional:

FdSy = Dr / Fado = /Q DefTa+ FDuTa] d8 = / Dof + FVa-(w)] dS2,

Qt Qt

63



CHAPTER 3. NONLINEARITIES AND NEWTON METHOD

which corresponds to the Reynolds or Leibnitz Theorems 1.2.1 and 1.2.2.

We show now how to compute the derivative of an integral on the boundary v of the
domain €2;. Recalling the local coordinate system introduced in Section §1.1, using the co-
factor matrix cof (V¢h) = det(Veh)(Veh) ™ we can write, from Nanson’s formula derived in
Proposition 1.1.2,

/ fdy= / f o hllcof (Veh)es||de.
/’}7 BoCRn_l

Analogously we have in this case that

/f dy = /Af o A¢||cof (Vz A )n|| d7.
g

Y

Let us look for simplicity at time ¢ = 0 (the case t = ¢ is analogous). We define w =
cof (Vz AN = J4(t)(VzA;) "1, We aim at computing the derivative of the surface measure
lw|. From the definition of the Euclidean norm in R?® we easily express this derivative in
terms of Dy||wl|?:

1
Difloll = 5

—— Dy ||w]|?. (3.4.8)
lwll ™

Then we have, from the previous definitions,

Dy||wl* = Dy J4*(VaA) TR - (VaA) ~Ta] =
= 24D 4(V3A) T (VaA) 8- 0+ Ja°Di[(VaA)~H(VaA) 0 n).

Remembering that for ¢t — 0 from (3.4.5) D;VzA — Vzw(0),
2w Dyw = 2J 4D Ja(V3A) " (VaA) " 00— J4*(Vadi) ?Vaw(0)(Vad) 00
— T2 (V2 A) T (VA 2Vaw(0) 0 - 1,
and since VzA; — [ for t — 0,
2w - Dyw = 2J 4Dy J 40 - 0 — J42(V,w(0) + V,w(0)1) 6 - n.
Then always taking the limit, as J4 — 1 (and w — J4n), using (3.4.3)
2Dyw -1 = 2VzW(0)i - i — [Vaw(0) + (Vzw(0))T]a - n.

Substituting in (3.4.8) we obtain

D _ 9o(0) — L[Vaw(0) + (Vs (0))7]5 - &

1
Dy|wl|| = =2

——D
]

Fixing ¢ = ¢ and performing similar substitutions, considering (3.4.5) and (3.4.7), perform-
ing the derivatives in the reference configuration and then recasting the integral in the current
one, yields to the following expression for the derivative of a boundary shape functional

[V.w(0) 4 (V,w(0))T]n - n} dy. (3.4.9)

Dy /Wf dy = /szfw(()) +f {Vm-(w(O)) _%
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3.4. COMPUTING THE EXACT JACOBIAN MATRIX

3.4.2 Shape derivatives in FSI-ALE

Given the function f € W21(R3) (i.e., with first and second derivatives in L!(R?)), we consider
the following functional

Q¢

In the previous section we have shown how to compute the “time” derivative of a domain
functional, i.e., using the chain rule, D; (J o A) = DA JIDiA = Dy j w. However to imple-
ment the Newton method we need the derivative of the domain functlonal with respect to the
deformation df of the domain. Given the increment &d 7 we need the derivative Dy j od f-

These derivatives (due to the chain rule) can be computed using the formulae derlved in the
previous section, just substituting w with éd;.

Now we can use the expressions derived above to compute all the derivatives of the vari-
ational formulation of the fluid problem equations with respect to the fluid domain displace-
ment dy. We consider here the case in which the fluid momentum equation is written in
conservative formulation. The fluid equations are discretized in time with implicit Euler (FI
scheme). As for the rest of this chapter we omit the index referring to time to light the no-
tation. However all the variables explicitly appearing at the right hand side in the equations
are intended at a time ¢,,11. The variational formulation for the fluid problem consists of the
following integrals (cf. Section §2.7):

1
5 /Q{ pru-vy d7 (3.4.10a)
—&-/fpfvm'[u@(u—w)] vy (3.4.10b)
&
+/f of:Vgvy do,’ (3.4.10c¢)
Q

t

- / . £/ vy dQ/ (3.4.10d)
Qt

+/ afnf-vfd'y:—/ g}V-Vfd'y—i—/ fr-vy oy’ VVfEVf
i ry of
(3.4.10e)
/f Vzug=0 Vg € UP. (3.4.10f)
Qt

The shape derivative in the 6d s direction of the first term (3.4.10a) is simple to compute.
In fact just using the identity (3.4.7) we get

5af:/A HLa:D; Jadd, dﬁf:/A Gy 4V -0, a0’
Qf Qf

Pf
Daf [ 5tu vy th

_/Qf gfu vV-ody d,S.

We then consider the term (3.4.10f). Rewriting the integral in the reference configuration,
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CHAPTER 3. NONLINEARITIES AND NEWTON METHOD

recalling that (using Einstein’s notations)

out ol 0Ty Oul [ 9z \ .
T Om - = Vzu: (F 411
Vel = Dus T 0y 0w 0y (é@) Veu: (1), (3.4.11)

5d; = Dy, UA qVza:F T, dﬁf] sd; =
Of
— /A GV : DafF_TéafJA + ¢V : F_TDafJAcSaf a9’ (3.4.12)
Of
Now we use the identities derived in the previous section, namely
DiJg=Vwdy,

and

DF T = —(F ")PDF = —(F TP(DF)" = -F ) (V,wF) = —F T (V,w)".

(3.4.13)
Replacing w with dd; and substituting into (3.4.12) we obtain
/A Vst FT(V,0d )T+ qVat: FTJ4V,0d, dO =
ar
:/A Vst BT [—(V,0d,)T + IV,-0d,) 0y df.
os
Following the notation introduced in [FMO05, FFTO00] we call n = [—(Vx(saf)T + IVx-éaf].

Then passing to the current configuration we obtain, using a relation analogous to (3.4.11),
D4 / qVeu d = / qVzu:n do,’ . (3.4.14)
oy of

With the same strategy we compute the derivative of the convective term (3.4.10b). We
have

2
= /\ prQ(ﬁ(XJ (ﬁ — ﬁ’)) : FfTT] . GfJ_A dﬁf —I—/ gfv (u® (—(5af)) SV thf.
Qf

The second term corresponds to a standard derivative, coming form the fact that we consider
implicitly the domain velocity w in the convective term (3.4.10b). We notice here the ap-
pearance of a third order tensor Vz(u® (0 —w)), whose double dot product with F produces
a vector.

The first integral rewritten in the deformed domain simplifies to

/ 'OfV Ru—-w)):n-vy oy’
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3.4. COMPUTING THE EXACT JACOBIAN MATRIX

For the numerical computation this integral can be split into different parts, exploiting the
product differentiation rule.

For what concerns the stiffness integral (3.4.10c), considering that in our case oy =
pr(Vzu+ (V$u>T) — pI, we get

Dy, [/Qf o Vv dl | 0dy =

- Daf [/f 1223 (qu + (Vmu)T) :Vevy doy’ 5af+ (3.4.15a)
Qi

~Dg, [/fp]:vxvf dQ,’ | éd;. (3.4.15b)
Qt

First following the same steps as in (3.4.14) we can compute the term (3.4.15b) as

/Q L (nVavy) doy” . (3.4.16)

t

We consider then the integral (3.4.15a). Rewriting it in the reference configuration we get

o SN .
/ﬁ Dy, (VAF T+ (VaaF DT ody: F1U4Vv, dQ + (3.4.17a)
+ [ VAR T 4 (VaF ) s D [FT]6d, TV a0’ + (3.4.17D)
Qf
+ [ VaaF T 4 (VaF ) BT Dy 4] 0d, V5, e’ (3.4.17¢)
Qf

and using (3.4.13) in (3.4.17a) and (3.4.17b)

—/A [VgﬁF_T(deaf)T—i-(V@ﬁF_T(Vm(Saf)T)T CF T Vav, dO +
Q

| VaAF T+ (VaaF T FT(V,8d,)T IaVav, d0 +
Qf
+ | VAFT 4+ (VaaF ) F TV, 6d, 4V, dO.
Qf

Writing the integrals back to the deformed configuration and exploiting (3.4.16) we have
Dy, [/f of: Vavy thf] e /f Vou(V,0d,)T + (Vou(Vaedd) ") Vv, d/+
Qy Q;

+/ o nVyvy dy.
of

t

The derivative of the term (3.4.10d) has to be added as well to the Jacobian if volume forces
are present (and evaluated implicitly with respect to the domain displacement). However this
contribute is treated in the same way as (3.4.10a), since the volume force does not depend on
the domain displacement:

Dy, [/fo.vfdgt

t

5d; :/ f-vV,-0d; d.
of

t
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Also the derivative of the term (3.4.10e) has to be taken into account if the Neumann
boundary F{V is not fixed. Thus using (3.4.9)

- . d; =
Ddf [/F{VO'fn Vfd’}/]édf

= /Ff Vx(O'fIlf ~Vf)5af—|— (anf ~Vf) {Vz(éaf)
N

1 ~ ~
= 5[ Vaddy + (Viody)Tn? - nf} dy.

(3.4.18)
We denote 77 = {Vm-(5af) — %[Vxéaf + (Vméaf)T]nf . nf} to light the notations.

Remark 3.4.1. Notice that the choice of the conservative form for the momentum conser-
vation law instead of the non-conservative one introduces some differences in the terms to be
computed. In particular in the non-conservative case the derivative

- Pran.
Ddf [/Q{ &u vy d€)

needs to be computed as well, while for the convective term the derivative,

ods = —~u”. z0dr dQ
¥ /Q{ &u vV p Y

Daf [/fpf((u—w)-vx)u-v]c doy” 58f
Qt

is needed. This derivative can be computed splitting the integral in two parts and using the
same methods described for the other terms.

Remark 3.4.2. Notice that the imposition of flux as defective boundary condition (cf. Sec-
tion §2.9) on a fluid outlet involves a surface integral. Thus if the outlet is not clamped and the
surface is changing in time an additional shape derivative term is required. The same holds
for Robin boundary conditions or generalized Robin conditions, like the absorbing boundary
conditions reported in [NVOS] (if they are discretized implicitly in time).

For instance we can express the derivative of the defective flux condition, which is made
of two contributions (see e.g. [FGNQO2b]). The first one is the constraint, which reads, given
the flux Q(t) : T — R and the surface Sy depending on time,

/ u~nfd7:Q.
St

Its derivative can be computed using (3.4.18)

Daf {/ u-n' d’y} 5af:/ Vx(u‘n)éaf—i-u'nﬁdy.
St St

The second is a penalization term added to the momentum conservation equation,

/ \Z Ilf .
St
Its shape derivative trivially consists of

Da/vf‘nféaf:/vf-nﬁd’y.
f St St
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The final form of the shape derivatives for the fluid problem reads

Dy Fluy,d,) = ’;fu v Ve-dd; d0/+  (3.4.19a)

/ pfv (U@ (u—w)):n-vy ther/ pfv (u® (=8dy)) vy dS+  (3.4.19b)
— / fvxu(vmadf) + (Vou(Vaedd ) Vv, d/+
Qt

+/faf:vxvfn '+ (3.4.19¢)
Qt

— /f f. vam-daf d+ (3.4.19(1)
Q

t

+/ Vx(afnf-Vf)éaf+ (omf -vp)ndy+  (3.4.19)
r

f
N
+ / RAZLRY doy’  (3.4.19f)
Qt
Vv e VI vge UP.

Remark 3.4.3. Also the IP stabilization terms reported in Section §2.7.1 feature integrals
over the elements faces, thus on a moving domain. This geometric nonlinearity would lead
to other terms in the Jacobian matriz. To avoid this computation, and to save computational
time, in all our discretizations we compute the stabilization terms on the domain at the
previus time level. Bazilevs et al. [BCHZ08] use equal order finite elements, which do not
fulfill the inf-sup condition, and a residual-based variational multiscale stabilization technique.
The stabilization terms in that case are computed considering the geometry implicitly, the
derivatives of these terms are detailed but some of them are neglected in the Jacobian matriz.

The computation of the complete Jacobian of the FSI problem has been tackled in [BC10a],
where the 2D case is considered. The approach followed there is similar to the one we
described. It consists in restricting all the integrals to a single finite element, mapping the
integrals to the reference configuration and passing the derivatives under the integral sign.
The momentum equation is discretized there in its non-conservative form, and the Crank-
Nicholson scheme is adopted to advance in time.

Also in [BCHZO08] it is reported a method to compute analytically the shape derivatives
terms. The scheme is the same: the integrals on the current finite element are recast back
to the original configuration, where the derivatives are taken. The form of the momentum
conservation is also the non-conservative one, while the time advancing scheme chosen is the
generalized-ov method (cf. Section §2.3).

It is worth pointing out that the derivatives are computed on the time discrete system,
thus they depend on the time discretization chosen. In particular they depend on the way
the momentum conservation is written (either in conservative or non-conservative form).

3.4.3 Implementation

Particular attention should be devoted to the implementation of the terms described above
in a Finite Elements code. In fact computing the shape derivatives in an ineflicient way
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CHAPTER 3. NONLINEARITIES AND NEWTON METHOD

can result in an unnecessary waste of time which may lead to a slow numerical scheme. We
explain in this section briefly how this implementation is handled in the free finite element
library LifeV® and how it may affect the efficiency of the algorithm. All the contributions in
terms of coding of the present work were implemented inside this library.

We consider as an example the term

/ LaVaui dy/, (3.4.20)
Qt

which is particularly representative. The term 7 is a second order tensor. However to construct
it we need the increment ddy, and 7 depends linearly on éd;. Thus calling ©dd; = 7 and
exploiting this linearity we can write the integrand in (3.4.20) in Einstein notation as

q@uj@;-kéafk. (3.4.21)

At elementary level, introducing the indices [, p and m ranging from 1 to the number N
of degrees of freedom of the element, restricting the variables ¢, u and dd; to the element
e (3.4.21) becomes

| (@7 ) k
(@1)0pi(up)? O (6d g, )" (3.4.22)
We can either choose to compute this quantity every time we perform a multiplication of
the Jacobian matrix times a vector ddy, or alternatively we can write the term (3.4.22) as

(Mim)i(8dy,, ).

In this case on every element we have to assemble explicitly the third order tensor M &
RNexNex3 once per Newton iteration. For a term like e.g. (3.4.19¢) the tensor would have
been of fourth order M € R3*NexNex3 gince the test function in that case is a vector too.

The first approach corresponds to assembling directly the Jacobian-vector product, while
the second corresponds to assembling explicitly the Jacobian matrix. In case of a matrix-
free solver both approaches can be used, however the first one slows down considerably the
computation, since at every solver iteration the shape derivatives vector needs to be re-
assembled.

In some cases (see Section §3.2, Remarks 3.2.2 and 3.2.5) the shape derivative terms are
anyway assembled in a vector and summed to the right hand side of a linear system. However
also in this case it is much more convenient to express the vector as a matrix-vector product,
so that the matrix part is assembled just once during the solution of the Jacobian system.

This consideration becomes particularly important when dealing with parallel solvers. In
fact usually the number of linear iterations increases when increasing the number of processors,
so that the overhead generated by the shape derivative vector assembling would be multiplied
times the number of linear iterations. Thus choosing the second approach can benefit to the
algorithm parallel performance as well.

Another observation on the implementation is that many tensor quantities (e.g. Vméa for
1 Vz-da ¢) appearing in the shape derivatives assembling are similar and shared between the
different terms. Thus to save CPU-time one single loop over the elements should be done to
evaluate all the integrals.

These considerations represent an original contribution of this work concerning the Newton
algorithm for FSI, and they are taken into account for the implementation in the FE library
LifeV. Numerical results on this subject are reported in Section §5.4.

Swww lifev.org
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Solution of the Algebraic Linear
System

In this chapter we address some solution strategies for the algebraic Jacobian system (3.1.2)
arising from the linearization of (2.5.1) after time and space discretizations. We show how the
block structure of the problem can be exploited leading to modular schemes where the three
fields are considered separately. We show in particular that a domain decomposition method
(e.g. the Dirichlet—Neumann method) can be recovered at algebraic level with a proper choice
of the preconditioner for the linear system.

This chapter contains an original contribution to the field of preconditioners for FSI. Most
of the preconditioners discussed are implemented in the open source library LifeV.

For the time discretization considered in this work, the FSI Jacobian system (3.1.2) is
non-symmetric indefinite. Efficient methods for solving these kind of problems are either
iterative (GMRES, Bi-CGSTAB, see [VdVO03]) or direct (unsymmetric multifrontal, paral-
lel QR factorization methods, see [Dav06]). We chose to use the preconditioned GMRES
iterative method because it is flexible and robust enough for our problems. The precondi-
tioner computation plays a fundamental role in improving the efficiency of GMRES. Since we
deal with a multiphysics problem it is natural to look for block diagonal or block triangular
preconditioners which allow to exploit the different physics of the subproblems described.

In Section §4.1 some well known methodologies to build block triangular preconditioners
are revised. In particular we focus on preconditioners obtained from block LU factorizations
and on block Gauss—Seidel (GS) preconditioners. In Section §4.2 a block GS preconditioning
is applied to the FSI system, several factorizations are proposed which allow a separate
treatment of the different fields. In Section §4.3 we describe a methodology to build parallel
preconditioners which are suited for F'SI applications and we study the combination of classical
domain decomposition preconditioners with a block triangular preconditioning strategy. The
latter is the strategy that applied to all the time discretizations presented (GCE, FI, and
other variants) results the most effective in the numerical simulations (cf. Part IIT).

4.1 Block Triangular Preconditioners

As previously mentioned, block triangular and block diagonal preconditioners are particularly
well-suited for multiphysics problems, since they allow to treat separately each field, and
exploit the characteristics of the different physical problems (see e.g. [Axe94, Kla98, Sim04,
BGLO05, TWO05, Krz10, AK10] and references therein).
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4.1.1 Schur Complement Preconditioners

As already mentioned, the inexact factorization methods described in Section §2.8 can be
used to build preconditioners for the FSI system. These methods rely on an inexact block LU
factorization obtained approximating the Schur complement. The preconditioners obtained
in this way are indeed very common in other application fields. Examples can be found for
instance in [RVS10, EHST06] and references therein, where preconditioners for Stokes and
Navier-Stokes equations are described, or in [PS09] where a block preconditioner for the
bidomain system modeling the electromechanics of the heart is devised. We refer to [Axe94,
BGL05, ESWO05, Krz10, AK10] for a general description of the theoretical properties of these
preconditioners.
Let us consider a 2 x 2 generic block system

AX = b, (4.1.1)

such that p M
A= a2l ) 4.1.2
( Ap A ( )

is non singular and the block Aj; is invertible. In GMRES and many other iterative methods,
the preconditioner may be applied on the right or on the left, i.e., respectively just before
or just after the computation of the residual. When using a right preconditioner the linear
system can be rewritten as

AP7'Y =b; X =P7lY.
When using a left preconditioner the equivalent problem is
P'AX =P 'b.

Computing a block LU factorization of A yields

A11 AQl 1 0 All A21
A= = _ _ = LU. 4.1.3
< Ap Ao ) ( ApAp I ) ( 0 Ay — ApAn 1Ay > ( )

By taking the second factor of (4.1.3) as right preconditioner for A the right-preconditioned
matrix reads

_ A Ay Ayt A Ay 8T 1 0
AU = = 4.1.4
v < Ap Az > ( 0 St A12A11_1 1)’ ( )

and GMRES converges in 3 iterations (see e.g. [Sim04]). Frequently, a preconditioning strat-
egy is obtained by approximating the Schur complement S = A9y — Aqjg A 1 Asy.

Notice that the same conclusion is obtained for a left preconditioner: if we consider the
factorization A = LU such that

Ay Ay > < Aqq 0 > < I Ay > -~
A— — B _ = LU, 4.1.5
( A1g Ag A1pAir ™t Ay — A1 Ay Ao 0 I ( )
and use the lower factor L as left preconditioner we have
(L) 'A=(L)"'LU =1,
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which has similar spectral properties as (4.1.4). It is easy to compute the block inverse of L,
as done for U, in terms of S~ and A;; 7 .
Alternatively the reduced system

SXy = by — A1pA1; by, (4.1.6)

X2
equivalent to the original one, and also in this case choosing a good preconditioner for (4.1.6)
amounts to devising an approximation for the Schur complement matrix .S.
An indicator for the quality of a preconditioner is the conditioning of the preconditioned
system. If we solve the linear system (4.1.1) with Krylov iterations and left preconditioner
P, then the conditioning can be represented by the condition number of P~1A

where X = [ X } and b = [ El ], can be considered instead of (4.1.1). This system is
2

max o (P71 A)

—1 _
K(P—A) = mino(P~1A)’

(4.1.7)
where o(A) denotes the set of singular values of a matrix A (see e.g. [QSS00]).

The theoretical estimates for the condition number of block-preconditioned systems often
rely on the hypothesis that the system is positive (semi)definite. Let us consider the sets of
indexes Vi, Vo, and W =V} x Va. In case matrix (4.1.2) is partitioned accordingly with V3
and Vs, if the system is symmetric positive semidefinite and the block A1; is positive definite,
then the condition number estimates for the system preconditioned using a Schur complement
preconditioner depends on the Cauchy—Bunyakowski-Schwarz (CBS) constant

wi Awy

v = sup (4.1.8)

1
w1 EW1,waoeWs {W?AWl VV%jAAVVQ}5

where

le{v:[‘g]ewwle‘ﬁ} WQZ{VZ[‘? :|€W|V2€V2}.
2

In [Axe94, Ch.9.3] and [AK10] the condition number of the system (4.1.6) preconditioned
with P = As is shown to satisfy the following (sharp) bound: K (P~1S) < 1_172. For instance
in the numerical FE approximation of a 2D diffusion problem, if the two blocks refer to two
different subdomain problems, the CBS constant is ¥ = 1—O(h), where h is the characteristic
dimension of the triangulation. Thus the condition number behaves like O(h~1).

The same estimate holds if we build a preconditioner for the matrix in (4.1.3) by taking
the U factor and replacing the Schur complement S with Ass, which leads to a block GS
preconditioner.

We refer to [Axe94, Ch.9], [AK10, KMO09] for these and other examples of Schur comple-

ments preconditioners and their condition number estimates depending on .

In the case of two subdomains, we consider the Steklov—Poincaré approach, described
in Section §3.2 for the nonlinear case and which will also be discussed in Section §4.2. The
matrix A of a linear diffusion problem can be divided in three subproblems, one per subdomain
problem plus an interface problem. Reducing the problem to the interface by means of the
Schur complements one can write the algebraic equivalent of (3.2.18) (notice that the algebraic
counterparts of the Steklov—Poincaré operators are the Schur complements). Preconditioning
this system with one of the local Schur complements, as done for the nonlinear continuous
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case in (3.2.20) using a Steklov—Poincaré operator, leads to a system where the condition
number is constant, and in particular is independent of h. We say in these cases that the
preconditioner is optimal. A proof of this result can be found in [TWO05].

4.1.2 Block Gauss—Seidel Preconditioners

Another classical strategy to build block triangular preconditioners leads to the block GS
preconditioners (which can be seen as a particular case of the block preconditioners discussed
above, where the Schur complement is approximated with a diagonal block). As for the Schur
complements preconditioners, also the block GS preconditioners exploit the block structure
nature of multiphysics problems.

Applied to matrix (4.1.2), a block GS preconditioner reads

All 0 I 0 AH 0
Prc — _ B , 41.9
Gs ( Ap A > < ApApt T > < 0 A ) ( )
thus

p-1_ All_l 0 - I 0 All_l 0
GS T\ —AgplApAn ™t Apt ) T\ —Axnp A T 0 At )

The corresponding left-preconditioned system then reads

- A=t 0 A A
chA:< 1(1) Ay )( 011 321 > (4.1.10)

The robustness of these preconditioners have been tested for instance in [Hei04] for the FSI
system.

4.2 Applications to the FSI system

In this section we report some popular solution methods discussed e.g. in [BQQ08a, DDFQO06,
BNV08, GGNV10] with a different formalism (similar to the one used in Gee at al. [GKW10]).

We describe some common choices for the preconditioners in the FSI context. In particular
we focus on the block GS preconditioners, and we show how classical domain decomposition
methods (like most of the so called partitioned procedures in FSI) can be seen, when applied
to a linearized system, as block GS preconditioned Richardson methods.

We have already seen how to interpret classical domain decomposition methods as fixed
point strategies (cf. Section §3.2). Without using a DD strategy at the continuous level,
it is possible to work on the algebraic system and recover modularity using a block GS
preconditioner.

To clarify the ideas we present first a block GS preconditioner in the case of the GCE
discrete algebraic system, and we extend the strategy to the Jacobian system of the nonlinear
case in a second step. We remark that the matrix in (2.7.12) has the same form as the
fluid-structure blocks in (2.7.10), thus the preconditioning strategies devised for GCE can
be easily employed also in the other cases, by applying them to the fluid—structure part of
the matrix. The specific way this is done is detailed in Section §4.2.4. Recalling the GCE
algebraic system (2.7.12) we can write a block GS iteration as follows
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Cff Cfp 0 0 0 ufk—H rtl

Crf Crr 0 0 0 uflli+1 I‘frn'H — Nk
0 0 | Ns Ng | O dk+t | = r" : (4.2.1)
0 0 | Nrs Npr | —1 a’;;l ror" !
0 1 0 —I/ot| O AT —(I/6t)d2n

where k represents the block GS iteration index and n + 1 is the current time level.
Writing equation (2.7.12) as AX = b and calling Pyp the matrix in (4.2.1) we can rewrite
the system (4.2.1) as
PNDXk+1 = (PND — A)Xk + b,

which is the Richardson method preconditioned with Pyp (with acceleration parameter set
to 1)
XF = X* 4 Pyp 1 (—AXF +b). (4.2.2)

The block GS preconditioner Pyp is also called Neumann—Dirichlet preconditioner, be-
cause the Richardson method (4.2.2) corresponds to the Neumann—Dirichlet algorithm when
the problem is linear (see [QV99]).

To simplify the notations in the following part of this section we condense the fluid and

the solid blocks
C C N, N
c_( Crr Cpr > N < s Nor ) '
( Crf CFF NFs NFF

Furthermore we call O and Z the null and identity matrices respectively, regardless of the
numbers of block rows/columns, so that the GCE matrix in system (2.7.12) reads with the
new notations

0
C @) T

A= o N _0[ (4.2.3)
0 1|0 —I/6t | 0

It is possible to write the Dirichlet—-Neumann method as a preconditioned Richardson
method as well. In our implementation we test the following two forms of Dirichlet-Neumann
preconditioners:

0
C o ;
1
P = o N 0 (4.2.4)
0
0 1 |0 —I/6t |0
and
0
C o 7
2
—I
07]00] 0

In both cases the Neumann solid problem is decoupled from the other equations, while the
last block row represents the Dirichlet coupling condition for the fluid problem.
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An efficient and easy way to improve the Dirichlet—Neumann algorithm for the GCE
system (equivalent to the relaxed Richardson method) is to use GMRES preconditioned with
Pg}v or P1(72])\/- We call these methods DN-Richardson and DN-GMRES. They were both
investigated and compared in [BQQO08a] applied to the GCE system.

The reason why Pg ]1, and Pg])v are called Dirichlet—Neumann preconditioners is that for

i € {1,2} one application of (ng\,)_1 implies the solution of a Dirichlet problem in the fluid

subdomain and of a Neumann problem in the structure subdomain, as it is shown below
in (4.2.6) and (4.2.7), where the block factorizations are reported. As a consequence these
preconditioners suffer of the same dilemma of the Dirichlet—Neumann scheme when imposing
Dirichlet conditions everywhere on the fluid boundary, as described in [KW08a]. In fact this
case the pressure is up to a constant, which means that there is a null eigenvalue. There
are several ways to overcome this problem. The most naive is to use a Neumann—Dirichlet
preconditioner instead of a Dirichlet—Neumann one. This can be achieved by using a different
block GS preconditioner, as shown above. Another possibility is to substitute the last block
row in (2.7.12) with a linear combination Rs — a1 R5 + aa(R2 + Ry) (and to apply the same
transformation to the right hand side of the system), with properly tuned parameters «; and
a2, which leads to the following matrix

0

C ) I

0
0 N Y

OéQCrf asCrr + o1 a9 Npg OCQNFF—OQI/5t 0

Then by neglecting the —I block we obtain a Robin—-Neumann preconditioner, where the fluid
problem is endowed with an interface Robin condition.

We remark that the construction of both the preconditioners P[(}J)V and Pg])\,, as well as of

Pnp, is modular, in the sense that these preconditioners can be represented as the product of
two matrices containing the solid and the fluid blocks respectively. We report here explicitly
the factorization of Pl()lj)v and Pg])\, which is considered in our numerical tests (cf. Section §6.2):

0
. C o 7
1
Pox=| o N 0
0
0 1|0 —I/6t |0
0 0
T o |, C O ’
= 0 0o |, (4.2.6)
0 Ny O 7 0
00]00]1I 0 1 |0 —I/6t |0
1 S
e i

76



4.2. APPLICATIONS TO THE FSI SYSTEM

while for Pg])v:

0
. C @) 7
2

Ppy = O N 0
—TI
0 I 00 0

0 0

C @) 7 A @) 0

= 0 0 (4.2.7)
o A 0 @) N 7
0 I 0 0 0 0 0 0 0 I
", "

)

We have shown that the application of the inverse preconditioner P~! amounts to inverting
the fluid and structure factors separately. In practice for a vector X the computation of

e.g. PIE?%X and PS(?Q)X is performed by means of an LU factorization of the matrices P1(721)

and ng, or by GMRES (or CQG) iterations. The former strategy is appealing because the
factorizations computed can be reused throughout the solution of the global linear system,
however memory issues may limit the size of the problem considered. The latter consists in
using e.g. preconditioned GMRES iterations for the fluid problem and preconditioned CG for
the structure one. However this strategy introduces inner iterations to solve the subproblems.
Since the number of inner iterations usually increases when the number of processors grows,
even though the outer iterations remain constant, the total number of iterations (which is
the product of the two) grows too fast. A possible remedy could be the use of a flexible
GMRES with a fixed number of inner iterations. This has been done in [EHS108, EHST03]
for the Navier—Stokes equations. Our solution is explained in the next section and consists in
substituting the factors with preconditioners computed with classical strategies (e.g. domain
decomposition) tailored on the problem.

We describe in the three following subsections some other block preconditioners for the
GCE system (2.6.2). Most of these preconditioning techniques are implemented in the FE
library LifeV. We anticipate that the strategies devised for the GCE approach can be employed
as well in the other cases for the first two blocks (corresponding to the fluid and structure
equations), as shown in Section §4.2.4.

4.2.1 Robin—Robin Preconditioners

A generalization of the Dirichlet—~Neumann approach is the Robin-Robin one [BNV0S], as
discussed in Section §3.2. Substituting, in the GCE time-discretized equation (2.6.2) in strong
form, the Neumann and Dirichlet coupling conditions with Robin transmission conditions
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leads to the following

pfdtu"H + pr(u” — w”+1) SV utt - Vm-af"H = ff”Jrl in Q{n—i—l
V,u"tt =0 inQf .,

ap("tto 4 — 5,drtt) + 53T S+ IR0 =0 onT  (4.28)
Pebpd ! — VoIt = £,0 ] in O
as(u o A — 6,d0 ) + 5}““1 4/ IR0 =0 onT

+conditions on the external boundaries.

The algebraic system deriving from (4.2.8) reads

Cff Cfp 0 0 ufn+1
Crf Crr + afl | Nrs  Npr — osz/(st lan+1 o
0 0 N, Nir artt [
Cry Crr+oasl | Ny Nrr — agl /ot d’;lfl
rf
n+1 n+1 _ an
ror"T e . aydg /ot (4.2.9)

I‘SrnJrl + I.an+1 — Ozsagp/(st
Here we chose not to introduce the multiplier A\ for the sake of clarity, however the system
can be easily rewritten in the augmented form (2.7.12).

As done in the previous case, we can write a block GS iteration for this system discretized
in space and time.

Cff Cfr 0 0 ufk+1
Cpf Crr + Oéf[ 0 0 1/1\Fk+1 .
0 0 N, Ny dk+t [
Cry Crr+asl | Nrs Nrr — ol /6t dkit
I.fn+1
Nrsd? + (ayI/t — Npp)d + rop™ ™ 4 vt — apd?y /6t (4.2.10)
rg

rsp"H + I'fpn+1 — asagr/ét

With a method analogous to that used in the Dirichlet—Neumann case it is possible to
show that the Robin—Robin method can be rewritten as system (2.7.12) preconditioned with

I 1O 0 10 Cyy Cr 0 0
0 o= 0 =1 Cry Crr+apl| 0 0
— Qf—Qs As—Qf Ff I'T f
Prr 0 0 7 0 0 0 N, No . (4.2.11)
0 asoisaf 0 afa—fas Cpf Crr + asl | Nrg NFF—OJSI/(St
In fact defining
I 0 00
1 0 apl O I
Q= 0 0 I 0|’
0 asl 0 I
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and
Cyr Cyr 0 0
p_ Cry Crr+oapl 0 0
- 0 0 Ns NSF ’

Crf Crr +asl Nrs Npr— asf/5t
if AX = b represents equation (2.7.12), we can write the system (4.2.9) as
PXF = (P - QA)X* + Qb,

and thus
Q—IPXk-i-l — Q—lpxk _ Axk + b,
which is the Richardson method preconditioned with Prp = Q' P.

4.2.2 Dirichlet—Dirichlet Preconditioners

The preconditioning strategy that we are going to describe is reported here formally, but it
is not tested in the numerical applications part since it is not implemented yet in LifeV.

Let us recall the definition of the Steklov—Poincaré operators for the fluid and structure
subdomains (3.2.19). Each application of one of these operators implies the solution of a
subproblem with Dirichlet coupling conditions on the interface. The equation

2 ;(der) + Ss(der) =0 on T (4.2.12)

represents the Steklov—Poincaré formulation of the FSI problem, and expresses the weak stress
continuity across the interface. The solution of equation (4.2.12), as shown in Section §3.2, can
be viewed as the result of a further partition of the original problem, where we solve separately
an equation for the fluid and solid internal domains and an equation for the interface domain
which is coupled with both. We consider again the GCE time discretization, and we recall that
the discrete Steklov—Poincaré operators are the Schur complements on the interface degrees
of freedom of the matrix in (2.7.12).

As done in Section §3.2 we introduce the multiplier "+ = ag; ! representing the interface
displacement. The system in strong form discretized in time reads

prou™tt 4 pp(u” — W) v u - V0 = £ in Q{n—f—l
Veutt =0 inQf
umtt — gttt =0 onT
Pslydl Tt — Vo (IT)"H! = £, in °
(Aigli“l: vt on I'y (4.2.13)
o6 + G)" 6l =0 on T

+conditions on the external boundaries.

The resulting linear system is naturally written in augmented form as

Cff Cfr 0 0 0 ufnJrl I'fn'H
0 I |0 0 |—I/t up”™t! —n" /6t
0 0| N, Ngo| 0 drtt | = r ot S (42.14)
0O 0|0 1| -I dntt 0

Cry Crr|Nrs Nrr| O ntt rop" 4 et
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Notice that all the entries in the fourth and the last columns can be interchanged, because of
the condition 7"+ = d?llF ! The algebraic counterpart of the Stéklov—Poincaré formulation
recalled here could be obtained by computing the Schur complements of the fluid and structure
blocks, in order to eliminate the variables u;"*!, up™*!, agﬂ,ayl in (4.2.14), obtaining a
linear system in 7"*!. However in this section, as done for the Dirichlet-Neumann case,
we describe a preconditioner for the whole FSI problem (without restricting to a subset of
variables) whose computation involves the same type of problems encountered when solving
a Richardson iteration for the Schur complements system (i.e., two Dirichlet problems for the
fluid and structure).

System (4.2.14) can be solved with block GS iterations, or a block GS preconditioner can
be used for GMRES iterations on the system (4.2.14).

We call Dirichlet-Dirichlet preconditioner the following:

Cir Cyr| O 0

0 I 0 0
Ppp = 0 0 Ns  Nyr
0 0 0 I
Cry Crr | Nrs 0O | Npr

S OO O

Instead of considering Dirichlet problems Fp and Sp in the fluid and solid blocks we can
take Neumann ones (Fy and Sy, see remark 3.2.6). Then stressing the velocity continuity
coupling condition is obtained by imposing the equality between the inverse of the Steklov—
Poincaré operators (which are Neumann to Dirichlet maps). We obtain (with the same steps
retrieved for the previous case) the following linear system

0 u n+1 r n+1
C (@) 7 ul}:n—‘,—l rf];n-s-l
0 drtt | = rott | (4.2.15)
O N ~5
—1 dn—"_1 ran+1
T =
0 1|0 —I/ot | 0 NGs —d. /8t

This time the multiplier is denoted with A"*! and it represents the residual of the two equa-
tions on the interface.

Sometimes in practical implementations the usage of preconditioners like Ppy in (4.2.4)
or (4.2.5) causes problems because of the zero diagonal block in the lower-right corner. To
avoid this problem we can perform a change of variables in (4.2.1) derived from the fourth
row of the system (2.7.12):

agrﬂ — NF—FI(_NFSa?H AL ),

This change of variable in the last equation of (4.2.15) leads to the following system

0 ufn+1 r n+1
C 0 I upt! rffp”“
0 an+1 = r n+1
(@) N 7 alej-l I.:Fn+1
S o~
0 Nrr | Nrs/ét 0 | —1/6t Antl — Nprd?y /6t — rop /6,

(4.2.16)
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A block GS iteration reads

0 Ufk+l rfn+1
C @ 0 uAFkH r = \k
0 d§+1 = rsn""l
(@) N 0 (Ai’;fl AI‘anH 1Ak
0 Nrr  Nrg/ot 0 | —I/ot A\k+1 — Nppd®. /6t — rop /6t

(4.2.17)
The corresponding block GS preconditioner involves two Neumann subproblems, thus we call
it Pyn.

Remark 4.2.1. In the classical domain decomposition nomenclature this preconditioner cor-
responds indeed to a Neumann—Neumann preconditioner, while Ppp corresponds to a FETI
(Finite Elements Tearing and Interconnecting) preconditioner [TWO05].

4.2.3 Other Additive Preconditioners

Another possibility concerning the preconditioning strategies for the system (2.7.12) is to
rewrite the matrix in (4.2.15) as sum of two matrices A = A(;) + A(3) and then approximate
its inverse with A~! ~ A(_I%—i—A(_Q%. We call these types of preconditioners additive (see [AK10]).

To further simplify the notations here we introduce the following convention I = < 0 > and

I
=(0 I).
We have
C 0 I
A= 0 N -1 |=
m —17/st 0
iIc 0o 1 3C 0 0
= 0 N =3I |+ © N =31 | =An + Ap).
o0 1T —1T/5t 0

A block factorization for these two matrices can easily be computed, in fact

i 0 1 I 0 0
Ap=| 0 I 0 0 3N —3I |,
i’ o 0 0 I
while
3¢ 00 I 0 0
A= 0 1 0 0 N i
oo I 0 —17/5t

Notice that in the factorization of the matrix A(;) we added an identity block (the boxed
blocks highlighted above) to avoid that some factors have null diagonal blocks. The matrix
A(1) involves two decoupled problems. Without the identity block added on the lower-right
corner these problems would have been of Dirichlet type on the fluid and of Neumann type on
the solid. However the introduction of the identity block mixes the two coupling conditions in
the first factor generating a Robin fluid problem. The same consideration holds for the block
factorization of the matrix A(;): without the highlighted identity block its inversion would
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imply the solution of a Neumann problem for the fluid and a Dirichlet one for the solid, while
when the identity block is added the solid problem becomes of Robin type.
Another possible splitting of the matrix A would be

i i 3¢ 0 1 3¢ 0 0
A:A(l)-i-A(g): 0 %N -I |+ 0 %J\/ 0
0 0 I I —1/6t —I
with the following factorizations:
i 3¢ 01 I 0 0
Apy=1{ 0 I 0 0 3N —I ],
0 01 0 0 I
and
i 3¢ 00 I 0 0
Agpy=| 0 I 0 0 N 0
I 0 [ 0 —I/6t —I

The inversion of these two blocks implies again two Neumann and two Dirichlet solutions of
the subdomain problems.

Remark 4.2.2. We notice that for a splitting like A = Ay + A2y, the situation in which
Ay =Ap) = %A would lead to the exact factorization of A, thus a situation in which Ay is
closer to A(g) 1s preferable.

4.2.4 Extension to Other Time Discretizations

The considerations made for the GCE time discretization hold true also for the other variants,
in particular we show here a block GS preconditioner for the Jacobian matrix of the fully
implicit system Jpy.

The Jacobian matrix in (3.1.2) reads

Dquf DuFCf 0 0 0 Dafo DafFCf
Dy,Cr Dy.Cr| 0 0 I | D3 Cr Dy Cr
0 0 DaSNS DaerS 0 0 0
Jrr = 0 0 |DgNv Dy Nr 0 0 (4218
0 I 0 I/t [0 ] 0 0
0 0 0 0 0 | Hy  Hyr
0 0 0 I 0] 0 I

where the block rows correspond, from top to bottom, to the linearized fluid problem, the
solid problem, the condition on the velocity continuity at the interface, and the geometry
problem. We used the abridged notations DxCy = DxC;+DxCyr, DxCr = DxCry+DxCrr,
DxNy = DxNys + DxN 5, and DxNg = Dy N+ DxNzg, for any variable x. For x = d; and
x=d T, Dx represents the shape derivatives introduced in Section §3.4.
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As done for the GCE system in (4.2.3) we express also the Jacobian matrix Jp; in a more
compact form, using the following notations

buc-

Dy, Cj

Du.C
DUfCF

DUFCF

-

Dg,C; Dy, Cy
Dg,Cr Dy, Cr

Hyy Hyr
o I )

)

By neglecting the shape derivatives, it is possible to devise a GS preconditioner of Jr; as

follows

0
Dy,C 0 . |o
0 Di N 0 1o
Pon = d, -1
0 1|0 —1/6t | 0 |O
0 O 0
O 0o -1 0 H

The label QN stands for Quasi Newton. Indeed what we call Quasi Newton method consists
of an inexact Newton method where the Jacobian Jpy is replaced with Pgy, see e.g. [FMO05,

Tez04, Dep04).

A factorization for Pgy reads

0
Dy, C 0 ;o
0 D. N 0 1o
010 —I/st| 0 |O
0 O 0
0 0 —1I o |
0 0
Dy,C 0 .o 7 o |0
O D= N 0 (@) @) A 0 O
d, iy 0
0 1|0 —I/6t| 0 |O 00| 00 |1 |O
0 0 0 |0
0 0 i N I
Prs1 Py o

(4.2.19)

Prg 1 has a structure similar to the GCE matrix in (2.6.2). One can still split this factor
using the same approximations as for the GCE matrix, however a better preconditioner can
be devised by neglecting the highlighted term —I in (4.2.18). In this way we find a triple
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block factorization Ppy for the matrix Jpj.

0
Dy,C 0 | | pac
0
pono| O | DaN g0 |
0 1|0 —I/ot 0] O
0 O 0
O 0 —1I 0 H
0 0
A () 0 O 7 @) 0 @)
0 0
o | DgN| O 0 T |, 0
0 0 0 0 I |0 0 0 0 0 I O
0 0 O 0
o | o |, |1 o |, ], "
Ps 1 Py o
0
Dy,C 0 .| pac
o 7 01 o
0 (4.2.20)
0 1|0 —I/5t | 0| O
0
@) @) 0 A
Pr3

We can thus construct the preconditioner in a modular way, separating the FS block from
the harmonic extension problem, or also separating all the three fields.

The last preconditioner (4.2.20) is used in many occasions in Part III, where the numerical
results are retrieved. In particular its computational efficiency comes from the fact that on
one hand the cost of its computation corresponds to the cost of computing a preconditioner
for the fluid problem (if the solid problem is linear the factors corresponding to solid and
to the geometry problems are constants for all the time levels). On the other hand the
approximation of the full Jacobian matrix (4.2.18) is the same as the one used in (4.2.6) to
obtain sz)w thus the number of iterations performed is also close to the preconditioned GCE
case.

4.3 Parallel Preconditioners for FSI

The preconditioners devised in the previous section can be used for FSI applications directly
as we introduced them. However in practice their exact factorization is usually not computed
explicitly. Indeed, when using a linear iterative solver, at each iteration we need to solve
the system P~'X. This product can be computed in the cases discussed by means of one
(or more) solve per subdomain problem, which are usually performed using another nested
iterative solver. This is mainly due to the fact that the common direct solvers are either serial,
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and thus require too much memory and time resources on large problems, or are not scalable
in parallel, which produces a bottleneck in the simulation. To avoid these nested iterative
solutions one possibility is to approximate the subdomain blocks with other blocks whose
factorization requires neither subiterations nor parallel direct solutions. These approximations
are scalable preconditioners for the subproblems, which need to be computed in parallel and
which should not increase much the conditioning of the global preconditioned system. The
factorizations described above are used in this section to build the parallel preconditioners
implemented in our code (some of them are reported also in [CDFQ11]).

4.3.1 State of the Art

The research in the field of parallel preconditioning strategies is both challenging and neces-
sary for most of the applications in numerical analysis. Theoretical important results have
been achieved during the past decades, providing bounds for the condition number of the
preconditioned systems. However the problem is still open, e.g. for indefinite problems the
theory is not so developed as for symmetric positive definite (s.p.d.) problems. In this sec-
tion all the estimates reported indeed refer to the case of a s.p.d. matrix coming from the
discretization of a linear second order elliptic problem in 3D.

On the applications side there have been many recent advances as well. The availabil-
ity of massively parallel architectures have pushed the software towards the development
of highly scalable libraries for linear algebra computations. Domain decomposition and
multigrid techniques have become standard approaches to handle parallelism, heuristic al-
gorithms and coloring techniques have been devised for the domain partition in order to
achieve an effective load balance between the processors and to minimize the communica-
tion [CP08, SKK02, CBD"07]. Domain decomposition and multigrid preconditioners have
been tested on a large variety of applications and they have shown to be effective for many
FE computations (see e.g. [BCAT10, LSST09, Sal06, KR10, TF01, PW11] and references
therein). Many software packages allow to build these preconditioners from the system ma-
trix, without using geometrical informations. The preconditioners built in this way are called
algebraic (while the classical ones are geometrical), and are the most used in practical appli-
cations, especially when the geometry does not allow a structured partition in subdomains.
Most of these preconditioners rely on a solution of one or more coarse problems, which can
also be built using only informations at the algebraic level e.g. through smoothed aggregation
techniques, see e.g. [TW05, Ch.3.10] [VMB96].

In this subsection we report theoretical estimates for the condition number of some of the
most popular preconditioners used in parallel solvers for FSI. We focus in particular on domain
decomposition preconditioners referring to [TW05, QV99] for a more detailed description.

Domain decomposition methods can be roughly divided into overlapping and iterative
substructuring. The formers (e.g. Schwarz methods) imply a partition in overlapping subdo-
mains which covers the original domain, while the latter (e.g. Dirichlet—Neumann, Neumann—
Neumann, FETI, BDDC) involve the partition in non-overlapping subdomains, and the re-
striction of the subproblems defined on each subdomain to their boundary through Schur
complements. A domain decomposition method is called one level when no coarse grid com-
ponent is present, i.e., there is no information exchange between non neighboring subdomains.
It is unavoidable that the condition number of a one level preconditioner Pj; is subject to
a bound like K (P;; 1A) < O (ﬁ) (one—level additive Schwarz preconditioners applied to
a Poisson problem), where A is the finite elements system matrix, § is the thickness of the

85



CHAPTER 4. SOLUTION OF THE ALGEBRAIC LINEAR SYSTEM

overlap and H is the maximum diameter of the subdomains. The coefficient % is due to the
fact that there is no exchange of information between two subdomains which are not adja-
cent, and it is related to the fact that we consider a second order elliptic differential operator.
This is similar to the condition number of the stiffness matrix in finite elements, where the
dependence on % can be seen as a consequence of a scaling argument [TWO05].

To avoid this dependence on # it is sufficient to add a coarse problem component to the
preconditioner, subject to a set of assumptions. This and similar ideas were devised at the
end of the eighties, among others by Bramble, Pasciak, Dryja, Wildlund. The bound for the

condition number becomes
H\2
K(Py™t4) <0 <1 + <10g h) ) ,

where Py is an iterative substructuring preconditioner without overlap like FETI, Neumann—
Neumann, BDDC. For the two-levels additive overlapping Schwarz preconditioners the esti-
mate becomes

K(Py t4)<0 (1 + I;) .

Since the coarse problem is usually solved by a direct method, and since due to its limited
size its solution is generally fast, in many parallel implementations every processor solves the
coarse problem independently, which avoids the inter-processors communication. However
sometimes in massively parallel computations also the coarse problem is too large to be solved
serially on every processor. In these cases the partitioning can be performed recursively on
the coarse problems, generating a multilevel preconditioner in which only the coarsest level
is solved directly on each core.

A very popular choice consists in the algebraic domain decomposition preconditioners.
In this case the coarse problem is computed through an algebraic interpolation-restriction
operator which has to be defined for each level. A well known algorithm to generate the coarse
space is the smoothed aggregation technique developed by Vanék, Brenzina and coauthors at
the end of the nineties [VMB96]. For these methods, applied to the multilevel overlapping
Schwarz preconditioner, the same bound for the condition number holds as in the case of
geometrical coarse problem [Sar(2].

An “alternative” preconditioning strategy which is very common and effective consists in
using multigrid preconditioners. As for the Schwarz strategy, the multigrid method can usu-
ally be interpreted as a preconditioned Richardson method, and the multigrid preconditioner
can be used in other iterative schemes such as GMRES. It consists of a multilevel strategy, in
which each level is solved inexactly, and a prescribed number of iterations of a chosen iterative
method (smoother) is performed at each level. In the coarsest level the problem is usually
solved exactly with a direct method. The multigrid strategy is usually tuned for the specific
application, featuring V or W cycles, pre or post smoothing, different smoothers and aggre-
gation techniques. We refrain from discussing all the possibilities, and we refer to [KMO09] for
a survey on this subject and for an overview of a similar preconditioning technique (Algebraic
Multilevel Iteration, AMLI, first introduced by Axelsson and Vassilevski [AV89]), which can
be seen as a generalization of the algebraic multigrid (AMG) preconditioner.

The algebraic multigrid method has been popularized by Ruge and Stiiben in 1987 [RS87],
while an algebraic multigrid preconditioner was used recently in e.g. [PS09, LSS109], see also
[Not10] and references therein for a spectral analysis.

86



4.3. PARALLEL PRECONDITIONERS FOR FSI

In [BC10b] a 2D FSI solution obtained using an additive Schwarz preconditioner with and
without the coarse problem is compared. There the presence of a coarse problem seems to
greatly improve the condition number of the FSI system. In that case the weak scalability
is tested: the size of the problem is increased with the number of processors by refining the
mesh.

A multigrid preconditioner for FSI problems is described in [GKW10]. There the conver-
gence rate is tested with respect to the space discretization, showing independence of h for
the preconditioner considered.

Remark 4.3.1. Although domain decomposition and multigrid preconditioners have a dif-
ferent origin, the difference between them is small. Indeed if a software implementation is
general enough it can embed both the strategies within the same code (see e.g. the ML package
in TrilinosS ).

The preconditioners that we use in the next chapter are based on the algebraic additive
Schwarz preconditioner (AAS) that we briefly overview here, referring to the aforementioned
literature for the details. We consider the generic linear system AX = b (e.g. the discretization
of system (3.1.2)). We call V' C R" the discrete space in which the solution of the linear system
is defined. Following the notations used in [CKO02|, we introduce the set of indexes S =
{1...n} representing the degrees of freedom of the system. Given an overlapping partition
of S in I subsets, {S;}1<i<s, we define the subspaces V; C V as V; = {X = (v1,...v,)T €
R™|vp = 0 if k& ¢ S;} of dimension n;. Next we introduce the restriction matrix R; € R™*"
such that (R;);j0;x = 0w, [ € S;, k,j € S and § is the Kronecker symbol. The prolongation
matrix Rf € R™ ™ transforms a short vector of n; components into one with n components
by keeping the original components and setting to zero the new ones. In this framework we
define the one level AAS preconditioner associated to A as

I
Pas(A)"' =Y R (RiAR])™'R;. (4.3.1)
=1

As mentioned above it is possible to add a coarse component (corresponding to ¢ = 0) to
improve the condition number when the number of subdomains increases. The parallel struc-
ture of our code” includes a mesh partitioner based on the library ParMETIS, AAS and AMG
preconditioners handled by the IFPACK and ML packages embedded in the Trilinos library.

4.3.2 Composed Preconditioners for Geometry—Convective Explicit FSI

In this section we develop the block-representation of the preconditioners for the matrix A
in (2.7.12). This section links the study of the block preconditioner carried out in Section §4.2
to the classical domain decomposition preconditioners described above. The composition of
the two strategies leads to the parallel preconditioners that we developed and that are tested
and applied in the third part of this work.

The approach that we advocate consists in substituting the fluid and solid factors with
suitable preconditioners, whose factorization can be computed in parallel. For example, with

the notations (4.2.6), instead of ng)\, = Péll) PS% or P1(72])V = P}?ng, we use, respectively,

Shttp://trilinos.sandia.gov
"LifeV, http://www.lifev.org
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PAS—DNI = PAs(Pé,,ll))PAS(PJg;) or PAS_DNQ = PAS(Pé‘?%)PAS(Pé’?Q)) According to the do-
main decomposition terminology this choice corresponds to employ inexact solvers for the
solid and fluid subdomains. A spectral analysis for a similar kind of block triangular pre-
conditioners for stabilized saddle point problems, with symmetric positive definite diagonal
blocks, is carried out e.g. in [Kla98, Sim04], while in [GKW10] a similar strategy is used in
FSI context, where the blocks corresponding to all three fields are substituted with AMG
preconditioners. With this approach we avoid the inner iterations, since we can solve the
local inexact problems by LU factorization.

A numerical comparison of the following preconditioning techniques is presented in Sec-
tion §6.2 for the GCE time discretized system:

1. one-level AAS preconditioner built using the matrix A in (2.7.12): Pag(A) ;

2. one-level AAS preconditioner built using an approximation of the type (4.2.4), obtained
by neglecting the block —I in matrix (2.7.12): P4s—_pni1;

3. one-level AAS preconditioner built using a different block GS approximation (4.2.5),
obtained neglecting the term —1/4t in (2.7.12): Pas—pna.

The preconditioners Pas_pn1 and Pag—_pna, besides preserving the modularity in their
construction, have similar or better behavior than Psg(A) when increasing the number of
processors. Furthermore, their factorization is cheaper in terms of computational time and
memory usage than building the factorization of the whole matrix A. In our framework, one
can choose different preconditioning techniques for the different sub-blocks, which is appealing
for multiphysics systems, since physics-specific preconditioners can be used.

4.3.3 Composed Preconditioners for Geometry Implicit FSI

For what concerns the fully implicit system, we consider in the following four different pre-
conditioners:

® Pus(Jr1);

e Pys_gn = Pas(Pon);

o Pas—_gs = Pas(Prs1)Pas(Pr2) where the factorization is the one reported in (4.2.19);
o Pys_pN = Pas(Ps1)Pas(Pu2)Pas(Pr3), with the factorization reported in (4.2.20).

By using a linear form for the convective term, i.e., choosing the convective explicit time
discretization, we can isolate the geometrical nonlinearity and investigate its effect on the
precision and stability of the system. Furthermore in our applications we have observed
that the behavior of the same preconditioner in the CE and FI cases is not very different.
As discussed extensively in the previous chapter the geometrical nonlinearity can be solved
e.g. with fixed—point iterations, inexact or exact Newton. The latter approach involves the
computation of the shape derivatives which are reported in Section §3.4.1. We remark that
in case of linear elasticity for the solid problem building Psas_py is as cheap as one fluid
preconditioner computation, since the factors related to the harmonic extension problem and
to the solid problem are constant throughout the whole simulation and thus can be reused at
every time step.
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4.3.4 Spectral Analysis

Let us address the general framework of a 4-blocks matrix

App A >
A= : 4.3.2
( A1g As ( )

where the block lines correspond to different coupled problems, the coupling being expressed
by the matrices A12 and As;. The only a-priori assumption on the matrices A, A1 and Ao
is that they are invertible, therefore the following analysis holds true for any linear system
whose matrix has a 4-blocks structure like (4.3.2) with nonsingular diagonal blocks.

The idea is to replace the diagonal blocks A1 and Agy of the preconditioner Pgg (4.1.9)
by suitable preconditioners P; and P,. In the following we estimate the influence of this
approximation on the conditioning of the system. To this end we suppose that we have

an estimate for the condition number of the two preconditioned blocks. Calling o}** =
maxq(o(A)) and o' = ming(c(A)) respectively the maximum and the minimum singular

values for the matrix A, then for i € {1,2}

6 = K(P'Ay) = op " Jomn a (4.3.3)

We introduce a preconditioner of the form

(P 0
P = < Ay aP, ) (4.3.4)

where « is an arbitrary positive scalar. In order to bound the condition number of the matrix
P~1A we compute explicitly P~! as follows

P Cl )
—aB tApPt IRt )T

Then the preconditioned system can be factored as

_ I 0 P70 A A
PlA:<Z I><6 1P2_1>< 011 §1> (4.3.5)

where ¥ = 1Pyt A (AP - 1).

An upper bound of the condition number for the preconditioned system can be obtained
using the inequality K(AB) < K(A)K(B). We first find the singular values of the block
lower triangular factor (that we note L).

Proposition 4.3.1. The mazimum and minimum singular values of L satisfy

s \/ | B+ T AP

= 4.3.
g 9 ) ( 36)
and
. max\2 __ max \4 4 (gmax 2
o = \/1 1 ) \/(Ug ik G- (4.3.7)
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Proof. By the definition of the singular values we have
(o) = max(eigs(L7 L)),
where

by 0

Let us consider the matrix on the right: its null eigenvalues correspond to unitary eigenvalues
of L. Tts nonzero eigenvalues can be written in function of the eigenvalues of £T¥. As a
matter of fact, from the definition of eigenvalue,

(575 ) ()= ()

by formally substituting vs, we obtain the following relation

LTL—I+<ETE ET)

1
(1 + /\) ETE’Ul = Avq,

that gives

= )\ETE + \/)\%ZTZ) + 4A(ETE) B (0_2)2 + (0.2)4 + 4(0-2)2

2 2

op = \/1 4 (o) (022)4 +4(os)?

The functions fi(z) = 2 4+ x + V22 4 4x are positive for x > 0, in fact we can estimate

Eventually we get

14 o) - (022)4 +4low)? G \/(02)24 tAlon)?+4 _ (ox)? = (09)* =2

f+ is increasing and f_ is decreasing; moreover fi(z) > f_(y) for all z,y in R*. This
implies the two identities (4.3.6) and (4.3.7).
O

The value 0’7" behaves asymptotically as % when (o5, — oc), while clearly (o* — 1)

when (0x — 0). To show that the limit for (o5, — 00) behaves as v/2(ox) ™! it is sufficient to
develop the term under squared root in Mc. Laurin expansion for (é — 0):

(02)2(1 — /1 + i)

2

1+ ~1+

(0x)*(1— (1 + %(02)2 - (02)4)) 2
2

we can thus assert that the minimum value of oy, is obtained for oy = o§?.

Using some standard algebra we can write

o.gax)4+4(o.r2nax)2

gmax)2
iy (S

ap® 1+ G T e
2
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+ (o) 4 o /GERP T _
( max) max\/w
(2 +( max) +0'I§)1ax (O.glax)2 +4)2 B
(2 + (08%)2)2 — (08™)2((on™)2 +-4)

2
<2+( max) +0.g1ax (Uglax)2+4>

2

Thus the condition number of the factor L can be expressed as:

onax 2 + ( max + max + 4( max)Q
K(L)="Le = VQ = r(o%™),
oL

which means that the condition number of L only depends on the maximum singular value of
Y= éPQ_IAlg(Al_lPl — I). Note that good conditioning of L strongly depends on how well
Al_lPl approaches the identity.

We now rewrite the block diagonal and upper triangular factors in (4.3.5) as

P Ay, 0 Ayt 0 A Ao ) _ Pt Ay 0 poia
0 éPQ_lAQQ 0 A2271 0 S 0 éP{lAQQ GS

whose condition number is bounded by
max lo.max
P1_1A117 (62 P2_1A22

min 1 _min }

_ o __
Py 1A, @ P, L Ao

max{o

oas, (4.3.8)

min{o
where dgg is the condition number of the preconditioned matrix (4.1.10)
das = K(PSLA). (4.3.9)

As a result we obtain a bound for the condition number of the preconditioned linear
system

max{amax , Lom }

K(P'A) < k(o) e 7P s (4.3.10a)
mln{amlnl , Lot }
Py A’ @ Py Agg

max

If the maximum singular values of the preconditioned sub-blocks (UP,1 AL and oM )
1

P{lAgg
are available, we can improve this estimate by appropriately defining the scalar .. In particu-

lar, if a = amax 2/02‘3’1‘1411 then (4.3.8) simplifies to max{dy, d2}dcs, where d; and d2 are de-
1

fined by (4.3.3). Note that the maximum singular value r(c2%) of ¥ = L Py 1A (AT' P 1)

depends on «; therefore the rescaling is useful if either v > 1 (i.e., o3 Aoy > mil m ), or if
2

the gain in bounding the factor (4.3.8) justifies the loss in x(o%™).

The rescaling by a obviously does not affect the quantities é; and ds, thus the final

condition number estimate reads
K(P7'A) < k(o) max{d1, 52 }dgs. (4.3.10b)

Estimate (4.3.10b) shows that we have to choose the preconditioners for the diagonal blocks

according to the following criteria:
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e P and P, are well suited preconditioners for the matrices Ay, Ago;

max

e Ay~ !'P; is near the identity, such that K(o$*) is small;

and that we should define a as an approximate ratio of the maximum singular values of the
preconditioned sub-systems. The same estimate also suggests that in some circumstances the
roles of A11 and Ags should be interchanged.

Apparently, from the form of o we would expect that a large o would improve the con-

ditioning of the system. However, we can note that for « larger than agﬁ’f Ags ;‘}?’f A and
2 1
min min
than 0'P2_1A22/JP1_1A11, (4.3.10b) becomes
O_rnin
K P—IA < max P2_1A22 S
( ) < K(og )70“11“ Q0Gs- (4.3.10ac)
Pl AL

Therefore for large « the condition number get worse.

Thanks to this analysis, we are able to build parallel preconditioners of the coupled prob-
lem based only on the subproblems. Of utmost importance, the scalability of our problem

max

depends on the coupling only through o3"**. Thus if we find a block GS preconditioner
for which o¢/%* is bounded the scalability will not depend on the coupling, but only on the
scalability properties of the sub-problems.

To apply Proposition 4.3.1 to the FSI block matrix of the previous section we need the

following proposition.

Remark 4.3.2. We assume here that the restriction—prolongation matrices R; and RZ»T are
built in such way that in the nodes lying in the overlapping region the sum is weighted by the
number of overlapping subdomains in that point. In this way the matrices having only one
nonzero element per row are invariant under Pag.

A Ay

Proposition 4.3.2. Consider the matrix A =
Ag A

) , and the preconditioner P =

A 0 . o
< AH A > , where A1s is a rectangular matriz with at most one nonzero element per row.
12 A2

If we call Pag the AAS operator (4.5.1), then

ro (i 7)) (0 i )= (750 mai ) 080

Proof. Let us first recall the way in which the overlap in the AAS preconditioner is computed.
The neighbors of a d.o.f. ¢ are the d.o.f. corresponding to the columns j for which the matrix
elements (i, j) are different from zero.

We consider the first factor in (4.3.11) (being the second factor block-diagonal), that we
denote Pyg(P;). Using the notation introduced for the description of AAS preconditioners
we get

—1 n
A 0 _ T/ p p pTy-1p.
<PAS < Ay >> —;Ri (R;PLR")'R;. (4.3.12)
The local matrix RiPleT has the form
(A O
b= < Arg; I > ‘
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We can formally write its inverse

_ At 0 At oo 0 0 0 0
P. 1 = 111 == 1lz .
: ( —Angi Ayt I ) < 0 0o)7" —A12;A11;1 0 o I;

Thus we can rewrite (4.3.12) as

—1
A11 0 B
(ras(2 7)) -
A 0 - 0 0 - 0
T Hz . T : T
ZR < O>RZ+;R1 <_A12iA11i1 O>RZ+Z;RZ <0 L

Notice that due to the fact that Ao has at most one nonzero per row

T 0 o L 0 0 7 0 0 o
ZR ( A121A11 0 RZ_;Ri —A12; 0 Rl { Ayt Bi=
w 0 0\, ,r[/0 0 ‘
2 (o)W (0 ) ®
This leads eventually to

(PAS<A11 o)>1:< Pii(An) 0): Pas(An) 0\
A T —A1pPd(An) 1 Aro I )

From the last identity we have that

rel( 1)) = (7 1)

Substituting in (4.3.11) we obtain the thesis.

- [a)
N———
=
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Applications to Hemodynamics

In this chapter we focus on the main application driving our development of the FSI solvers
described in the previous chapters and developed in the C++ finite element library LifeV8.
Our aim is to simulate blood flow in large compliant arteries under both physiological and
pathological conditions.

In Section §5.1 we give a brief description of the circulation and of the most common car-
diovascular diseases with their possible treatments. In Section §5.2 we give some motivations
and references for the study of FSI in arterial networks and we describe the pipeline used
to obtain FSI simulations from medical raw data. In Section §5.3 we illustrate different ap-
proaches to obtain a high quality mesh, we emphasize the importance of building a boundary
layer mesh to obtain accurate values for the wall shear stress even with coarse meshes, and
we report a simulation of blood flow in a femoropopliteal bypass. In Section §5.4 we describe
a physiological FSI simulation of blood flow in the aortic arch. The choice of appropriate
boundary conditions and the effect of modelling the compliance of the arterial wall are dis-
cussed. Different methods to solve the nonlinearity and different kinds of time discretizations
described in Part II are compared in Section §5.5.

5.1 Applications and Motivation

The goal of this PhD work is the simulation of blood flow in large arteries. For reader’s
convenience, in this section we briefly summarize the basic elements of blood circulation and
the principal pathologies related to it. We also give a short account on the mathematical
modeling and the associated results that could be obtained by means of our simulations.

In this description of the human circulatory system, cardiovascular diseases and their
treatment, we mainly refer to Thiriet [FQV09, Ch.1] and Olufsen et al. [OOL04, Ch.2].

5.1.1 Circulation

The cardiovascular system consists of two parallel circulations: the systemic and pulmonary
ones. The systemic arteries transport the oxygenated blood and nutrients toward all the
body, the blood exchanges the oxygen through the capillary networks and returns to the
right atrium through the venous system. The pulmonary arteries transport the deoxygenated
blood from the right ventricle to the lungs, there the blood exchanges carbon dioxide with
oxygen and returns back to the left atrium through the pulmonary veins. A schematic picture
representing systemic and pulmonary circulations is reported in Figure 5.19. The arterial walls

Shttp://www.lifev.org
9Image from http://www.tutorvista.com/biology/systemic-circulation-diagram.
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of the pulmonary arteries and veins are much thinner than in the systemic circulation, due
to the lower pressure in the pulmonary circulation. In the following description we focus on
the systemic circulation.

The arteries are in general classified into three categories, although this distinction is
sometimes not evident. The first category is the one of large arteries, from approximatively
2.5 cm of diameter down to 0.1 cm. These arteries are characterized by an elastic behaviour
of the wall, whose thickness to diameter ratio is approximately constant and whose Young
modulus slightly increases when moving distally. The large arteries wall is composed by three
layers: intima, a layer containing the endothelial cells which sense and react to the normal and
shear stress coming from the fluid; media, a thick elastic layer composed mainly of elastin and
collagen fibers and of a variable amount of smooth muscle cells; adventitia, a loose external
layer of variable thickness which does not contribute much to the compliance of the wall.
Often the boundary between the adventitia and the tissue surrounding the artery is not well
defined.

The second category is the one of arterioles, which play a fundamental role in the cardio-
vascular regulation. In this case although the thickness of the wall decreases with the artery
diameter, the thickness to diameter ratio is not constant any more, but it increases when ves-
sels become smaller. The walls of the arterioles is almost rigid and it contains smooth muscle
cells. The presence of these muscle cells allows the arterioles to regulate the intraluminal
pressure and radius, in order to meet the needs of the tissue.

The third category of arteries consists of the capillaries. These arteries are very small (few
pum), their wall is composed only by an endothelial cells layer, so that nutrient, oxygen and
carbon dioxide can be exchanged with the interstitial fluid of the tissue cells. The blood flow
at the capillary level is not pulsatile any more: the compliance of the arterial wall has the
effect of damping the pulsation of the heart. While the large arteries and arterioles always
bifurcate in two, the capillaries can have complicated patterns and bifurcations, also featuring
closed rings.

The flow in the veins is not pulsatile, the pressure is lower than in both systemic and
pulmonary circulations. The venous wall is thinner than the arterial one, and valves may be
present, in order to prevent the flow to go in the wrong direction when the vessel is compressed
by a muscle contraction.

Blood is composed mainly by red blood cells (erythrocytes, whose concentration, or hema-
tocrit, ranges from 40 to 45%) and plasma (composed for the 98% of water). The red blood
cells have an elastic behaviour, thanks to a cytoskeleton, and can deform when passing through
the capillaries'?. The behaviour of blood is found to be non Newtonian, since the viscosity
depends on the shear. The reason is this that when the shear is low the red blood cells tend
to interact, increasing the macroscopic viscosity of blood (the shear thinning effect). For high
shear (higher than about 1s7!) there is no interaction and the viscosity of blood in large ar-
teries is approximately constant (around 0.03 8/(cm-s) and 0.04 g/(cm-s)). However, also for high
shear, the viscosity is found experimentally to drop when the radius of the vessel is smaller
than 0.1 cm.

For these and other reasons the macroscopic modeling of blood flow as a Newtonian fluid
and of the arterial wall as an elastic structure is justified only for large arteries, while the
circulation on arterioles and capillaries should be simulated using other models, accounting

Othe study of the deformations of the single red blood cells has many medical applications and is subject
of research in microfiuidics.
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Figure 5.2: Atherosclerosis.

for the aforementioned effects. The circulation in the arterioles and capillaries is often called
peripheral circulation, and a proper model describing it in detail should take into account
the meso and micro scales. If the main focus is on the large arteries simulation, then the
peripheral circulation can be accounted for using reduced order models, cf. Section §2.9.

5.1.2 Cardiovascular Diseases

We resume in the following the main cardiovascular diseases with their possible treatment, in
order to show how numerical simulations of such pathological situations can potentially help
medical doctors in the decision making process. The main cardiovascular diseases affecting
large arteries are the following:

e Congenital defects, such as bi-leaflet aortic valve, heart septal defects, pulmonary or
tricuspid atresia. These defects often require surgical intervention (e.g. the Fontan
procedure for pulmonary or tricuspid atresia [FB71]), in this case numerical simulations
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Figure 5.3: Saccular and fusiform aneurysms.

can give a prediction of the hemodynamic features (pressure, flow rate, etc.) pre and
post intervention.

Atherosclerosis, i.e., the accumulation of fatty materials, fibrous elements and calcium
on the inner surface of the arterial wall, see Figure 5.2'1. The formation of atheroscle-
rotic plaques generates a stenosis, and at a late stage can provoke a total stenosis of the
artery. Furthermore thrombi can detach from the plaque and lead to infarctions and
strokes. Stenosed arteries are in general treated by grafting or stenting, or by removing
the plaque. The first method consists in substituting (or bypassing) the stenosed artery
using another vessel and creating artificial anastomoses. The second method consists in
dilating the arterial wall using a balloon and in inserting a device (stent) which supports
the vessel walls, preserving the original lumen. The main problem of this approach is
the potential restenosis, which can be limited adopting drug eluting stents inhibiting the
cells proliferation in the stented region. Experimental evidence suggests that the wall
shear stress is involved in the formation of atherosclerotic plaques. Thus a numerical
simulation and a wall shear stress evaluation can help in identifying which locations are
more at risk or to choose an optimal strategy for the surgical interventions.

Aneurysms, i.e., a dilation of an arterial segment. The vessel wall of an aneurysm is
much thinner and stiffer than in the physiological case, the collagene fibers being main
responsible of the mechanic response. The aneurism rupture causes possibly lethal
haemorrages. The aneurysms can be either fusiform or saccular (see Figure 5.3'2).
The main strategies for the treatment of saccular aneurysms are cutting them with a
surgical intervention (clipping), or filling them with thin metallic coils, so that most
of the aneurysmal cavity is excluded from the circulation. Fusiform aneurysms are
usually treated by grafting, or by using external or internal stents. All these treatments
could largely benefit from numerical simulations, whose prediction can avoid issues like
recanalisation.

Hmage from A.D.A.M., Inc.
2Image from http://www.daviddarling.info/encyclopedia/A/aneurysm.html.
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Figure 5.4: Ventricular assisted device.

e Heart failure. Implantation of ventricular assisted devices is a reliable treatment for
patients with terminal heart failure. These devices are used as a bridge to transplan-
tation, bridge to recovery or destination therapy (for patients who are not eligible for
heart transplantation). It consists of an extracorporeal circulation device used to by-
pass the left ventricle and to pump the oxygenated blood directly into the aorta see
Figure 5.4'3. Frequently the hemodynamic modifications due to this treatment lead to
complications that can be investigated using numerical simulations.

5.2 Problem Description

Blood flow dynamics and arterial wall mechanics are thought to be an important factor
in the pathogenesis and treatment of cardiovascular diseases. Indeed more and more data
become available in clinical routine and, at the same time, numerical methods are also more
efficient and capable of reproducing in silico complex phenomena. A number of specific
hemodynamic and vascular mechanic factors — notably wall shear stress (WSS), pressure and
mural stress, flow rate, and residence time — are implicated in aneurysm growth and rupture
[BT96, SD00] or in the pathogenesis of atherosclerosis [KWO'97]. Judicious control of these
hemodynamic factors may also govern the outcomes of vascular therapies [GCF94, GSP92].
Computational fluid dynamics and computational fluid structure interaction provide a viable
option for understanding the complex nature of blood flow and arterial wall mechanics and for
obtaining those relevant quantities. A better understanding of the hemodynamics could thus
improve the prediction and diagnosis in both healthy and pathological situations [FQV09,
Chap. 1]. A simulation with rigid walls fails to predict some essential characteristics of the
blood flow (such as pressure wave propagation). Thus it cannot be considered reliable in many
situations (e.g. when the vessels undergo relatively large displacements). However considering
the full 3D FSI problem increases the computational cost, thus it is of utmost importance to
develop and implement parallel and scalable computational algorithms.

3Image from Wikipedia http://en.wikipedia.org/wiki/Ventricular_assist_device.
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Modeling the fluid—structure interaction between the blood and the arterial wall is a
challenging task. The research in this field is developing fast concerning both the modeling
aspects and computational efficiency. Taking into account the compliance of the vessels can be
achieved by introducing a 3D or 2D elastic structure, using a Lagrangian (see e.g. [IOP03]),
Eulerian (e.g. [CMMO08]), or Arbitrary Lagrangian Eulerian formulation (e.g. [SHO7], cf.
Chapter 1, in [PR95] this approach was pioneered for hemodynamic applications). The struc-
ture model should take into account the nonlinearity due to the collagen activation and the
presence of surrounding tissue inducing a static pressure and a dynamic response to the wall
displacement. While in many contexts the rheological properties of blood flow have a great
influence on its dynamics, the flow in large healthy arteries is known to have an almost
Newtonian behavior [FQV09, OOL04].

Alternative options that avoid the introduction of a structure model for the external wall
are transpiration techniques (e.g. [FFT00, DFF03]), the coupled momentum method, used
e.g. by Kim et al. [KVCF109], or other similar approaches (e.g Nobile et al. [NV08]). These
methods consist of dropping the non-slip Dirichlet condition at the fluid—structure interface,
and substituting it with a proper condition that emulates the presence of a surrounding struc-
ture. In particular the coupled momentum method shows good results in many physiological
situations, and it has the advantage of being computationally cheap because the mesh is
fixed. However, although it is well suited for small displacements, this method can be inap-
propriate when the displacements become large [FVCJ106]. Furthermore, as the fixed control
volume where the fluid equations are solved allows the fluid to pass through the interface, the
quantities computed at the boundary, such as the wall shear stress, are subject to a further
approximation.

Thus numerical simulations can help to predict the WSS distribution in a specific geometry
of the vessel, improving diagnosis and prevention. A reliable numerical tool that carries out
all the process from the patient-specific segmentation to the simulation could help a medical
doctor, e.g. to identify the regions at risk for pathologies such as atherosclerosis, infarction or
aneurisms development [FQV09, Ch. 1]. Furthermore, if the model is validated, a simulation
of the WSS distribution can help to solve the inverse problem, i.e., to identify the role that
WSS plays in the development of pathologies such as atherosclerosis.

The numerical computations require meshes describing the patient-specific three-dimensional
cardiovascular geometry. This geometry needs to be reconstructed from medical images, as
explained in the next section.

5.2.1 From DICOM Images to Numerical Simulations

We describe here the set of tools used to build a complete pipeline from raw medical images
to FSI simulations. A standard file format for medical images data from e.g. CT scans or
MRI is the DICOM format. These images can be handled by many open source softwares
for visualization (see e.g. OsiriX!4) or segmentation (see 3D Slicer'® or vmtk!®). Although
some of these softwares provide advanced tools to detect, extract and smoothen the surfaces
of the different organs visible in the raw image, the segmentation step cannot be completely
automatic due to the noise present in the images which often produces artifacts that have to
be manually removed.

Yhttp://www.osirix-viewer.com/AboutOsiriX.html
Yhttp://www.slicer.org
Yhttp://www.vmtk. org
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While the arterial lumen, which is the part of the vessel occupied by the fluid, is usually
easy to detect from the medical images, it is much more difficult to accurately extract the
vessel wall. For this reason often the geometry of the vessel wall is obtained using empirical
algebraic relations available from literature (see e.g. Langewouters et al. [Lan82], cf. Sec-
tion §5.4) relating the lumen diameter and the vessel wall thickness. However this approach
requires the definition and computation of the vessel radius, and thus of a vessel centerline,
which is not trivial for an arbitrary, possibly branching, artery. Some software, like vmtk,
can handle this (see e.g. [Ant02] for an explanation of the methodology).

Once the vessel wall geometry is available, the finite elements discretization requires the
generation of a mesh for both fluid and solid domains. The surface mesh extracted from the
raw medical images however is frequently not suitable for FE applications. In these cases a
surface remeshing step is required, cf. Section §5.3. Both these steps can be performed using
open-source softwares, such as Gmsh'7.

Once we have built a tetrahedral mesh conforming at the fluid—structure interface we
can use the LifeV library to run the FSI simulation on the patient specific geometry. LifeV
is a free C++ parallel finite elements library distributed under LGPL licence, developed at
EPFL in Lausanne, at Politecnico di Milano, at Emory University in Atlanta and at INRIA in
Paris. Most of the preconditioning strategies and the different algorithms for the FSI problem
described in this work have been implemented in the LifeV library as part of this research
project.

We make below some general comments, which are valid for all the simulations of this
section. LifeV is based on Trilinos'®, a parallel library written in C++ which among other
features implements some standard preconditioning strategies, iterative and direct solvers
and it acts as interface for the linear algebra packages (BLAS, Lapack, UMFPACK). The
parallelization is achieved by partitioning the mesh using the ParMETIS library'?, so that each
processor holds a mesh partition and all the vectors and matrices are distributed accordingly.
The parallelization is based on the MPI API. For FSI the fluid and solid geometries are
partitioned independently, and each processor holds one fluid and one solid partition.

In most of the simulations performed the fluid problem is discretized in space using P1-
P1 finite elements stabilized with the interior penalty technique described in [PB05]. The
stabilization parameters chosen, cf. Section §2.7.1, are v3 = 1, 74, = 0.2 and v, = 0.05.
The solid and the geometry problems are discretized in space with P1 finite elements. The
discretization in time is based on the implicit Euler method for the fluid (in its non conser-
vative formulation, cf. Chapter 2) and a mid-point second order scheme for the structure (see
Chapter 2 or [Nob01, Chap. 4]).

In all of the simulations presented in this chapter, besides the standard Dirichlet or Neu-
mann boundary conditions, less standard defective flur conditions are employed. The impo-
sition of flux defective boundary conditions is addressed e.g. in [FGNQ02a, FVV08, VV05],
see also Section §2.9; in the rigid walls case. It consists of imposing the mean velocity on a
given surface through Lagrange multipliers. The extension to the compliant case is straight-
forward, the only difference being the fact that in this case the section where the conditions
are imposed can change in time. A review and an extension of these methods may be found
in Vergara [Verl0).

"http://geuz.org/gmsh
Bhttp://trilinos.sandia.gov
Yhttp://glaros.dtc.umn. edu/gkhome/metis/parmetis/overview
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5.2.2 Unsteady Blood Flow in a Compliant Iliac Artery

Here we give a concrete example of the pipeline used in our applications for running patient—
specific simulations starting from raw medical data. This process involves several softwares
that are distributed under a public license, and are constantly updated and improved. The
many different steps can be resumed in the following list:

1.

The manual segmentation, i.e., the extraction of the surface of the vessel lumen from
the medical data (often in DICOM format). This step is perhaps the most critical, since
it cannot be completely automated. Many tools can help to carry out the segmentation
step, such as vmtk and 3D Slicer. In the current example this step is avoided, since the
geometry of the lumen of an iliac artery was already available from the Simtk website?°.

. The 3D surface extracted is usually composed of triangles. At this stage the meth-

ods described in Section §5.3 (see [MCG™11]) can be used to automatically optimize
the surface mesh. In the current example the harmonic map algorithm illustrated in
Section §5.3 is employed.

The centerlines of the lumen are computed using vmtk. This allows to compute the
thickness proportional to the intraluminal radius. The extrusion of the vessel wall mesh
can present some critical aspects. In fact an extrusion in the normal outward direction
may generate inconsistent triangles in proximity of a bifurcation. This issue becomes
even more critical when the surface mesh is refined. This situation at present is not
detected or solved automatically by most of the softwares, developers of the libraries
cited above (vmtk, Gmsh) are currently working to overcome this issue.

A grid for the fluid and solid volumes can be generated using Gmsh, optionally adding
a boundary layer in the fluid domain (in this particular case the boundary layer is not
present).

. Eventually the FSI simulation can be run using LifeV, with all the possibilities con-

cerning boundary conditions and problem formulations discussed so far. The boundary
conditions imposed in this case are defective fluxes on all the inlet and outlets, while a
Robin condition is applied on the external wall to simulate the effect of a surrounding
tissue (see Equation (5.4.1)).

A picture showing the solution at ¢t = 0.2 s is reported in Figure 5.5. The inlet flux imposed
was obtained from a previous simulation of an aortic arch, while the outlet fluxes correspond to
the inlet value weighted accordingly with the area of each outlet surface (without accounting
for the delay due to the travelling pressure wave). This set of boundary conditions is not
meant to be physiological, and this subsection should be intended as a proof of concept,
while we leave for the rest of the chapter the discussion about cases of physiological interest,
comparisons and validation of the code.

2Ohttps://simtk.org
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Figure 5.5: Snapshot of the FSI simulation on the iliac artery (at the time instant ¢ = 0.2s).
The represented streamlines are colored by the fluid velocity.

5.3 Quality Mesh Generation for Cardiovascular Flow Simu-
lations

In this section we give a brief overview of some algorithms investigated in literature to
build high quality meshes for FSI simulations. We focus mainly on two aspects of the
mesh generation techniques: the necessity to keep bounded the aspect ratio of the mesh
tetrahedra and the importance of simulating the fluid boundary layer. The former im-
proves the algorithm in terms of both the discretization error [BA76] and the condition
number [Fri72]. The latter allows the accurate computation of physiological quantities of
clinical interest on the FS interface, such as the Wall Shear Stress (WSS). The influence of
the mesh quality on the efficiency and accuracy of the numerical methods has been investi-
gated in e.g. [MCG™11, SMS07, BFOG97].
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Figure 5.6: Map £ in case of an iliac artery. In this case a portion of the 3D surface is mapped
into a 2D disk to be remeshed.

5.3.1 Surface Remeshing Techniques

From 3D medical images it is usually possible to extract a triangulation of the surface of the
vessel. However this surface mesh is often of low quality, oversampled, and featuring very
distorted triangles. A remeshing technique is required for simulation purposes. Furthermore
many algorithms to build meshes in 3D (e.g. Delaunay, Frontal) keep the original surface
mesh on the interface, thus the poor quality of such mesh affects also the quality of the mesh
inside the 3D domain. The main tools to handle the surface remeshing are

e mesh adaptation strategies [IN02, BCT02, WHMWO07],
e meshing techniques that rely on a suitable surface parametrization [BLGO00, LBO03].

We concentrate here on the second category, referring to [MCG™11] and references therein for
further details. The idea of the parametrization technique is to optimize a 3D surface mesh
using algorithms for the 2D meshes. This is achieved by defining a local frame of reference
on the surface (e.g. as done in Section §1.1), and thus a parametrization &():

: / 2
£ SCR - ScR (5.3.1)
P &)
that transforms continuously a 3D surface S into a surface S’ embedded in R2.

The map &£ is used to pass from the 3D surface to the 2D plane, the remeshing step is
carried out there using a 2D triangulation algorithm and then the mesh is mapped back to
the surface embedded in R? by means of the inverse of the map &. The crucial point of this
strategy is of course the definition of such a map.

Since our goal is to produce triangular elements as close as possible to equilateral triangles
it is desirable for the map & to be conformal, so that the triangles with a good aspect ratio
in the 2D mesh are mapped to similar triangles in the surface mesh.

We overview here two methods to build this map which are implemented on the free
software Gmsh. One method computes & by solving two Laplace equations on the original
surface triangulation, the other one is based on a least square conformal parametrization of
the given triangulated surface S.

As shown by Remacle et al. in [RGCM10] and by Marchandise et al. in [MCdWV 10|, both
these parameterizations exist if the two surfaces S and S’ have he same topology, e.g. if they

106



5.3. QUALITY MESH GENERATION FOR CARDIOVASCULAR FLOW
SIMULATIONS

have zero genus and have at least one boundary. Moreover in order to prevent the numerical
issue of indistinguishable coordinates the geometrical aspect ratio should be moderate, which
is often not the case for vascular geometries. In case the topology is wrong and/or if the
aspect ratio is too high it can be necessary to call a partitioning algorithm to create different
patches of correct topology and moderate aspect ratio [MCW™10]. Those patches are then
subsequently remeshed with a finite elements harmonic or least square conformal map.

Harmonic Mapping

We briefly summarize here a method proposed by Remacle et al. [RGCM10] to remesh a
surface using harmonic maps. The standard finite elements basis on the surface triangulation
is introduced using barycentric coordinates. Two Poisson equations (with proper boundary
conditions) are discretized and solved on the surface mesh for the two coordinate functions
uw and v. This allows to build the map £ in (5.3.1). The map created in this way is the one
minimizing with respect to v and v the quantities

EMW=;LW%MW¢% &m0=;@WﬁM2M- (5.3.2)

The remeshing then takes place in 2D using a standard algorithm. The information about the
metric change is taken into account in the remeshing step by the metric tensor G (see Sec-

U

tion §1.1) associated to the local frame of reference: given that & = v ), G = (Vg{)TV5£

is also the first fundamental form associated to the surface, see [GASO06].

Conformal Mapping
The least square conformal map as introduced by Levy at al. [LPRMO02] requires the parametriza-
tion £ = Z > to be such that the gradient of u and the gradient of v are as orthogonal as

possible and have the same norm. For a piecewise linear mapping, the least square conformal
map can be obtained by minimizing the conformal energy:

1
Busou(®) = [ 51 Vsut = VzulPds, (5.3.3)
S

where + denotes a counterclockwise 90° rotation in S. For a 3D surface with normal vector
n, the counterclockwise rotation of the gradient can be written as: Vzu' =n x Vu.

The form of (5.3.3) is further manipulated and the quadratic minimization problem is
solved numerically with finite elements, see [MCG™'11] for the details.

5.3.2 High Quality Meshes

Figure 5.7 shows two different steps in the parametrization-based remeshing algorithm of the
initial triangulation of an iliac artery bifurcation. First the initial mesh is cut into different
patches using the multiscale Laplacian partitioning method described in [MCdWV'10] (Fig-
ure 5.7a). Next, each mesh partition (orange and green) is parameterized onto a surface in
R? with a specific mapping algorithm (Figure 5.7bc). We show two different mappings: the
Laplacian harmonic map onto a unit disk (Figure 5.7b) and the conformal map with open
boundaries (Figure 5.7c).
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Figure 5.7: Remeshing of an iliac bifurcation. The initial mesh is first split into two parts
using the multiscale Laplacian partitioning method (a). Each part is then mapped in the
parametric space by computing a Laplacian harmonic map onto a unit disk (c¢) and the
conformal map with open boundaries (b).
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After the mapping has been computed, the parameterized surface is remeshed using a 2D
mesh generation algorithm and the new triangulation is then mapped back to the original
surface. Figure 5.8 shows part of the remeshed iliac bifurcation for both the harmonic mapping

and the conformal map.
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Figure 5.8: Remeshing of an iliac bifurcation: a) part of the initial STL triangulation,
b) remeshed geometry with the harmonic mapping using the MeshAdapt meshing algorithm,
c¢) remeshed geometry with the conformal mapping using a frontal 2D meshing algorithm.
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Figure 5.9: Segmentation of the arteries of the left lower limb of a patient with a venous graft
that bypasses the occluded femoral artery. We have focused on the geometry of the distal
anastomosis. Two different type of meshes are considered for the lumen volume (in red):
b) meshes with a viscous boundary layer (BL meshes) and c) fully unstructured tetrahedral
meshes (U meshes). The mesh of the vascular wall is colored in white. The presented meshes
are of intermediate mesh size (see Table 5.2).

5.3.3 Unsteady Blood Flow in a Compliant Femoropopliteal Bypass

We compare in this subsection the FSI simulation on different meshes of blood flow in a
pathological situation. The geometrical model of the distal anastomosis of a femoropopliteal
bypass is obtained through a 3T MRI scanner of the left lower limb of a patient. The lumen
geometry is subsequently reconstructed in 3D from the raw medical images using the open
source software 3D Slicer?! (see Figure 5.9). The vascular wall is obtained by extruding the
lumen surface in the outward normal direction with a wall thickness corresponding to a tenth
of the vessel radius. This extruded volume is then composed of 4 layers (the white volume in
Figures 5.9b and 5.9¢).

For the meshing of the lumen volume (see red volume in Figure 5.9b), we have considered
different tetrahedral meshes: three fully unstructured meshes and three meshes with a viscous
boundary layer. The size of these meshes is resumed in Table 5.2.

21The bypass geometry was provided by the group of Prof. E. Marchandise, iMCC-MEMA (Université
catholique de Louvain (UCL)).
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U Mesh Fine Intermediate Coarse
# Nodes 154’732 36’490 8’508
BL Mesh

# Nodes 212’633 57’318 23’697

Table 5.2: Different fluid meshes considered for the numerical simulation: the boundary layer
meshes (BL mesh) such as in Figure 5.9b and the fully unstructured meshes (U mesh) such
as in Figure 5.9c with three different mesh sizes heenter: fine, intermediate and coarse. For
the BL meshes, the ratio heenter/huwai is taken to be 10.

The boundary conditions imposed at the inlet-outlet of the vessel are patient-specific
measured fluxes (Figure 5.9b), while an homogeneous Dirichlet condition is imposed on the
occluded branch. The fluxes are imposed through a Lagrange multiplier as defective boundary
conditions. The Young modulus and Poisson coefficient characterizing the elastic material
modeling the arterial wall are respectively E = 4-10° dyn/em? and v = 0.45. The fluid dynamic
viscosity is u = 0.0358/(cms?). The densities for blood and arterial wall are respectively
pf = 18/em? and p; = 1.2¢/em?. Timings and validation for the FSI solver used are discussed
in Section §5.4, and are reported also in [CRD'11], while in Chapter 6 and in [CDFQ11] the
scalability issue is addressed. The simulations reported in this section were run on the Cray
XT6 supercomputer in the HECToR.

The FSI simulations presented in this section are run in parallel. As an example, the
intermediate meshes are run on 48 cores, using 24 MPI processes per node and the simulation
takes about 8 hours to perform one heartbeat. Due to the computational cost and since
we are interested in the comparison of the WSS for the different meshes we did not run the
simulation for several heartbeats, which would be necessary to reach periodicity and to obtain
physiological results. We just ran for one heartbeat starting from a zero initial condition and
we compared systolic hemodynamic values.

Figure 5.10 shows the results obtained with the boundary layer mesh of intermediate
size. The streamlines clearly show the secondary flows which are in agreement with the WSS
values. The flow impinging on the bed of the junction creates a region of high wall shear
stress. Moreover, the blood flow is accelerated in the outlet popliteal artery since the graft
is sewed on an artery of smaller diameter. This mismatch in diameter creates also a region
of high wall shear stress near the outlet. The observed flow behavior in such an end-to-side
bypass do not occur naturally in arteries and is widely implicated in the initiation of the
disease formation processes [NSP99, GZG93].

Figure 5.11 shows the WSS distribution at peak systole obtained for the six different
meshes. WSS shows to be higher in the simulations with boundary layer. Although we
do not ensure that the WSS convergence is reached with the finest mesh, we already see a
significant difference in the order of magnitude of the WSS. Considering as reference solution
the one obtained using the finest mesh with boundary layer we conclude that the WSS is
quantitatively better evaluated on the meshes with boundary layer, while even the finest
mesh without boundary layer shows a substantial underestimation of the WSS with respect
to all the meshes with boundary layer.
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Figure 5.10: Bypass simulation. Streamlines, wall displacement magnitude and distribution
of WSS at end systole (t = 0.3s) obtained with the boundary layer mesh of intermediate size.

5.4 Blood Flow in the Aorta

The interaction between the blood flow and the arterial wall deformation has to be taken into
account to correctly predict the behavior of the arterial flow, especially where the pressure
impulse induces large deformations of the domain, as in the aortic arch. In this section we
show the results of a simulation of the hemodynamics in the aorta, taking into account the
interaction between the blood flow and the arterial wall, modeling blood as a Newtonian fluid
and the aortic wall as a linear elastic structure.

The FSI simulation of blood flow in the aortic arch was performed in [GWMO06] on a
simplified geometry without branching and using a three-layer nonlinear model for the struc-
ture. In [GWMO6] the FSI system is formulated in an ALE frame and solved with a standard
Dirichlet—-Neumann method imposing an inlet flux and homogeneous Neumann condition on
the outlet. An FSI simulation in a patient-specific aorta using the ALE formulation can be
found in Bazilevs et al. [BGH"09], where a pathological case was considered. The phys-
iological boundary conditions used were taken from a previous reduced model simulation,
and particular attention is devoted to the fluid flow pattern, wall shear stress and oscillatory
shear index. In our work, besides reporting the quantities that influence the genesis of several
pathologies (e.g. the wall shear stress) we highlight some characteristics that are peculiar to
the compliant wall simulations and validate the FSI model, such as the pulse wave velocity
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WSS (dyn/cmA2)
0

Figure 5.11: Comparison of the WSS pattern for six meshes at peak systole (¢ = 0.2s). On
the first row are the meshes with boundary layer, referring to Table 5.2, from left to right:
fine, intermediate, coarse. On the second row are the meshes without boundary layer. From
left to right: fine, intermediate, coarse.

(PWYV) and the radius change. In the next section we report the settings of our case study, se-
lection and motivation of boundary conditions and a clear motivation for taking into account
the compliance of the walls in aorta simulations. As a matter of fact, we show that some
physiological patterns are captured only by the FSI simulations while they are not reproduced
by a rigid walls simulation. We also summarize a quantitative analysis of the results from a
bio-engineering point of view, referring to [RCDT11] for the details.

Patient-specific proximal aorta and main arterial branches geometry is acquired using
angiography MRI. The lumen geometry is obtained after segmentation and the arterial wall
geometry is created with a variable thickness. The boundary conditions for the fluid domain at
the ascending aorta root are either pressure or fluxes. Fluxes are imposed for each outlet. The
waveforms are obtained using phase contrast MRI for blood velocity or, when not available
at a specific location, completed by results from a 1D model. This 1D model was validated
quantitatively on the same patient. To mimic the mechanical effects of surrounding tissues, a
linear stress-displacement constitutive relation is applied on the outer surface of the arterial
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wall. This is imposed as a Robin condition, as explained in the next subsection.

5.4.1 Boundary Conditions

When dealing with sectors of vascular districts, the boundary conditions for the numerical
simulation play an important role. For instance they allow to take into account the global
circulation and the presence of surrounding tissue. The former mainly affects the fluid flow,
the latter the structure displacement.

A crucial issue concerning the imposition of boundary conditions on the arterial wall is
the choice of the conditions for the terminations of the arterial branches. On the fluid outlets
fluxes obtained by a 1D tree simulation are imposed by Lagrange multipliers as described
in [Verl0, FGNQO2a]. At the inlet, i.e., at the aortic valve location, we impose either the
flux measured on the patient or a pressure obtained from the 1D simulation. Here we do not
account for the coupling between the 3D simulation and the 1D one.

Another possibility currently under development is to model the interaction between the
segment of aorta considered and the rest of the circulation through the geometrical multiscale
framework introduced in Section §2.9. In this way the morphology of the arterial tree and the
peripheral circulation can be taken into account. Another simpler option which models the
continuation of the artery segments at their boundary, and account for the resistance to the
flow due to an hydrostatic pressure, consists in absorbing boundary conditions (a particular
type of 0D models), also recalled in Section §2.9. However such conditions on the fluid outlets
inhibit the imposition of other physiological quantities such as velocity or stress and emulates
the continuation of the vessel with an infinite long cylinder.

In literature many strategies to impose absorbing boundary conditions on the fluid outlets

have been devised. These allow in FSI to avoid the non physiological pressure wave reflections
[Nob01, FQV09, KVCF109], cf. Section §2.9.

The 1D tree model and the simulation used to impose these boundary conditions are
detailed in [RBP10]. Each piece of the tree is a one-dimensional reduction of the FSI
problem (cf. Section §2.9). The main systemic arteries as well as a detailed description of the
cerebral circulation are represented. The constitutive law for the arterial wall is non-linear
and viscoelastic.

This has been validated qualitatively and quantitatively on the same person [RBP*10].
Pressure was measured with applanation tonometry?? and cerebral blood flow velocities with
transcranial ultrasound and phase contrast MRI. Pressure and fluxes were computed at each
segment of the arterial tree. The mean fluxes at each inlet and outlets are summarized in
Table 5.3, and the history of the fluxes is shown in Figure 5.12.

Concerning the structure, at the best of our knowledge absorbing boundary conditions for
FSI have not been implemented yet, thus we chose in our simulations to clamp the vessel wall
at the aortic valve and to impose a Neumann homogeneous condition on the structure outflow
terminations. With this choice we did not observe spurious reflection waves. A possible (more
physiological) option would be to adopt the same strategy as for the fluid, that is to impose
the displacement obtained from the previous 1D simulation (cf. Remark 2.9.1).

The simulation of a vessel subject to a high load, as it is the case in the thoracic aorta,
undergoes large deformations concerning both the luminal radius and the vessel displacement.

22 A non-invasive technique for assessing cardiovascular function. Applanation tonometry is frequently used
to measure pulse wave velocity and to perform pulse wave analysis pulse wave analysis[TYO01]

114



5.4. BLOOD FLOW IN THE AORTA

Left vertebral Left common carotid Right vertebral
3 20 I\ 5
25 15 4
;
E 2 I 10 \ %3 I \
S, S, S,
%15 X5 x2
S B WAV AN ==\ £ \.
T / V — 0 v 1 ™ \
— \/ ~ \
0.5 5
0 0.1 02 03 04 05 06 07 Q8 0 010203 04 05060708 0071 02 05 04 05 06 07 08
time [s] time [s] time [s]
Left subclavian / Right common carotid
30 25
25 N . l'\\\\\\“\\“‘\gl / \
_20 . = [ \
& 15 a2 ) \
E 0 | \ £ 10
H / R | \
x
£ o~ — 2 o~ e
0 \~
5 \. 5
-1 -
% 0.1 02 03 0.4 05 06 07 08 % 07 02 03 04 05 06 07 08
time [s] time [s]
Right subclavian
2
20 A
Qg
o 15
S,
%10 | .
[y
5
— .\

0 01 02 03 04 05 06 0.7 0.8

A time [s]
Aortid valve
400
350 N\ \
[\
,GBOO \
250
©200
3150
*100 \
sol ] \

00 0.1 02 0.3 04 05 0.6 0.7 0.8
time [s]

Thoracic aorta
250 \

200 h\

2 /
©2150 I
S,
%100
= )
J

0 0.1 02 03 04 05 06 0.7 0.8
time [s]

Figure 5.12: 3D representation of the lumen of the aortic arch and its principal branches.
It consists of 1 inlet (ascending aorta root) and 7 outlets (vertebral, subclavian and carotid
arteries, and thoracic aorta). The fluxes imposed as boundary conditions are represented for
each inlet-outlet and are the result of a 1D tree simulation.

In particular, in a curved vessel, when imposing a free stress condition on the external wall,
the movement of the domain turns out to be overestimated, as the surrounding tissue around
the solid wall is not taken into account in the model.

The importance of considering the surrounding tissue effects is often neglected, although
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’ ‘ Mean fluxes (ml/s) ‘

Ascending aorta 100.78
Thoracic aorta 76.60
RCCA 5.58
RVA 1.23
R subclavian 5.47
LCCA 5.18
LVA 1.14
L subclavian 5.57

Table 5.3: Mean flow rate over a heart cycle at inlet and outlets of the 3D domain.

in some cases it is shown to significantly change the hemodynamics (see e.g. [LDGT08]). Fur-
thermore the limit of the external layer (adventitia) of the arterial wall is sometimes arbitrarily
chosen, since the transition from adventitia to the surrounding tissue is often gradual [OOL04].
In absence of a constitutive law for the heterogeneous tissues surrounding the aorta, and to
obtain a simple model for the external response, we assume a linear algebraic stress displace-
ment constitutive relation on the external wall. This choice is arbitrary, but leads to good
agreement with literature [NOHM98, Fun97|, when we properly tune the coefficients in the
constitutive law.

The influence of the surrounding tissue on the arterial hemodynamics was recently inves-
tigated in-vivo and in-vitro on swines [LDG"08]. In this work experiments with and without
taking into account the surrounding tissue were performed. When the latter is taken into ac-
count, under the physiological range for pressure and displacement, the intraluminal pressure
was shown to be proportional to the radius of the lumen. This suggests indeed a pressure-
displacement linear constitutive relation. More precisely, this is modeled in our case as a
Robin condition on the external wall:

pon® + I - n® + ad, =0 on reet, (5.4.1)

where IT is the structure Piola stress tensor, p, is a static pressure and n® is the outward
normal to I'**. This model was adopted in [RCDT11, CRD*11] and a similar approach is
proposed also in [MXA*11].

Tuning the parameter o in (5.4.1) is rather difficult. We empirically found that a value
of o ~ 104% leads to physiological displacements.

In the present simulations we chose a parameter o varying in space, in particular in-
creasing when the arterial wall becomes thin. This roughly reproduces the stiffening effects
predicted by the Moens-Korteweg relation (cf. Section §5.4.2, Equation (5.4.3)), which are
not otherwise considered in the current simulations. In fact, as the wall thickness varies
according to the intraluminal radius (as described in Section §5.4.2), using a constant coef-
ficient « we observed a non physiological dilatation in the small branches when subject to
a high intraluminal pressure. A more accurate possibility to overcome this problem consists
in adopting a nonlinear structure model where the effects of collagen are taken into account,
and/or in considering a variable Young modulus, related to the wall thickness through the
Moens-Korteweg relation reported in Section §5.4.2.
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5.4.2 Geometrical Model

The segmentation and the reconstruction of the arterial wall geometry for the present simula-
tion was carried out by Dr. P. Reymond and collaborators (LHTC, EPFL) and it is described
with more details in [RCD"11]. To obtain a 3D representation of the arterial lumen (inter-
face between arterial wall and blood), MRI Time of Flight acquisition on a 3T MRI scanner
(Siemens Trio-Tim 3T System) were performed. Details on the sequences utilized are men-
tioned in [RBP*10].

The arterial tree geometry was reconstructed in 3D from the raw DICOM medical images
(ITK Snap). After pre-processing of the DICOM images, using gradient diffusion, a growing
region based on contrast threshold was obtained. This served as a starting surface for an
improved segmentation using an edge detection method based on intensity gradients.

First a geometrical surface of the lumen was created from the extracted surface (that
was previously segmented) using ICEM CFD 1123, The lumen extracted surface of the aorta
was obtained by MRI, however the thickness of the arterial wall was not retrieved with this
technique. To build the geometry of the solid region in a physiological manner it has been
based on human ex-vivo measurements carried out by Langewouters et al. [Lan82]. Based
on ex-vivo samples, they performed thickness (h) and outer diameter (D.) measurements on
human thoracic aortas and reported thickness to arterial diameter ratio as a function of age
and location:

h
D—e:a—l—b-age:Const.

The thickness varies spatially and is proportional to the local lumen diameter. The reported
value of this ratio is ¢ = 0.054 for the thoracic aorta and ¢ = 0.07 for the abdominal aorta
for a 30years old male. We use the mean value of these two aortic locations for the whole
computational domain (i.e., we assume that ratio constant). Therefore the thickness to lumen
diameter that we assumed for the whole aorta in the model is

h _c
Dlumen 1—-2¢c

~ 0.071 (5.4.2)

The lumen diameter (Djymen) was deduced from the local distance between vessel centerline
and arterial lumen mesh elements. The thickness was set locally in the normal direction, it
varies spatially and decreases when moving downstream.

The centerline of the arterial tree was computed using the Aneufuse software developed by
the EU Project @neurIST. An unstructured tetrahedral mesh, conforming at the F'S interface,
was then generated for the fluid region using Gambit?*.

Although the procedure for extracting the vessel wall thickness is not arbitrary, a certain
variability is expected, due e.g. to the difference between the ezx-vivo and the in-vivo measures.
Furthermore the following components that describe the geometry and the stiffness of the
arterial wall are function of the location:

e the elastic modulus of the arterial wall increases when moving distally (constituents of
the arterial wall, elastin/collagen repartition is different)

e the arterial diameter to thickness ratio increases as well when moving distally.

23 ANSYS Inc., Canonsburg, PA
24 ANSYS Inc., Canonsburg, PA
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Figure 5.13: Arterial wall cut representation. The mesh has a variable thickness, proportional
to the local lumen diameter of the vessel. In this example, the mesh contains 3 layers of
prismatic elements, which are later replaced by tetrahedral elements in order to be compatible
with the LifeV solver.

The contribution of these two components increases the pulse wave velocity, a clinical parame-
ter of importance, which has been shown, in-vivo, to increase as well when moving distally. In
fact according to the adapted Moens-Korteweg equation, the relationship between the elastic
modulus € and the pulse wave velocity PWV [NOO5] is given by:

eh
P =4 —=—F 4.
wv vD(1 —v2)’ (5:4.3)

where v is the Poisson coefficient of the arterial wall (v = 0.45). We obtained a PWYV that is
approximatively 5m/s. It corresponds to physiological data for a young person aorta.

The arterial wall constitutive relation in our case is linear elastic and isotropic. This
is quite a restrictive assumption and the generalization to nonlinear elasticity is subject of
ongoing work. However for a simulation of non-pathological range of intra arterial pressures
it leads to results in the physiological range of values; as we will show (cf. Section §5.5),
these results by far improve those obtained using the rigid walls assumption. In this study we
assume also that the thickness to arterial lumen diameter ratio h/D and the elastic modulus
(e = 0.4 MPa) for the whole geometry of the arterial wall are constant. In a similar study, by
Kim et al. [KVCF*09], a constant value of ¢ = 0.6 MPa was used. Due to the observations
above the assumption of constant Young modulus becomes less physiologically accurate when
considering an extended region of the cardiovascular system.

The increase in the coefficient « in (5.4.1) contributes to stiffen the arterial wall when
moving distally, which mimics the effects described above.

5.4.3 Timings and Validation for FSI (GCE)

The FSI simulations are run for three heartbeats, Figure 5.14 reports the pressure and dis-
placement for fixed time steps. There are no significant differences in the time history of
pressures and fluxes between the second and the third heartbeat (Figures 5.16 and 5.17),
which suggests that the solution reached a substantial periodicity.

These simulations are performed using the GCE time discretization, cf. Section §2.6. Other
time discretizations are explored in Section §5.5, which are more reliable but more computa-
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Figure 5.14: Pressure and displacement distribution at different times. Figure (a) represents
the pressure at the end of the second heartbeat (at ¢ = 1.6s). The pictures (b), (c), (d)
are taken at intervals of 0.2s. We remark that the pressure reaches the maximum value in
proximity of the systole, at ¢ ~ 1.8s. The (e) and (f) figures represent the displacement
magnitude at ¢ = 1.8s and ¢ = 2.2s. The location of the maximum displacement during
systole in the aortic arch is probably due to the curved and branching shape of the geometry
inducing a variation of the eccentricity of the lumen.

tionally expensive. In that section also other comparisons (with a rigid walls simulation and
with a 1D model simulation) are carried out, while in the rest of this section we focus on the
description of the results of the simulations obtained, in terms of computational efficiency
and of clinical interest of the output.

The results of this subsection are obtained using the Cray XT4 supercomputer in HEC-
ToR. These simulations are run on 16 nodes for a total of 64 MPI processes, and the mesh
considered is the one represented in Figure 5.18. For the domain partitioning we used the
ParMETIS? library (Figure 5.18 shows the partition of the artery in 32 subdomains). The
partition of the fluid and solid meshes is performed independently, and each processor holds
both a fluid and a solid partition.

At every time-step most of the time is spent in the preconditioner computation, in the

Zhttp:/ /glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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Figure 5.15: Sections in which the mean values of pressure and velocity are computed.
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Figure 5.16: FSI simulation with inlet flux imposed. History of the mean pressures (in mmHg)
at Sp, So, S3 and Sy in Figure 5.15 (starting from the left with the S; section, until the Sy
section on the right).
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Figure 5.17: FSI simulation with inlet flux imposed. Mean velocities computed in the sections
S1, S9, S3 and Sy represented in Figure 5.15.

solution of the linear system, and in the assembly of the matrix block corresponding to the
fluid equations. The average time for these tasks is 16.6s, 11.5s and 8.1s respectively (the
assembly of the stabilization part at every time iteration takes 7.1s, while the assembly of
the rest of the block takes about 1s).
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The preconditioner considered is Pag—pn1 (cf. Section §4.3.2), where a one-level algebraic
additive Schwarz (AAS) preconditioner with two layers overlap (see [QV99]) is employed for
each factor. The LU factorization of the sub-blocks in the AAS preconditioner is achieved
through the unsymmetric multifrontal method implemented in the package UMFPACK?S.
The linear system is solved with preconditioned GMRES iterations and the average number
of iterations is about 25 to reach a tolerance of 1077,

The time-step chosen is §t = 1073, so that one heartbeat (0.8s) consisted of 800 time
levels. Summing the timings for the solution of the linear system, the preconditioner compu-
tation and the assembly of the fluid block we obtain a global timing per heartbeat of about
8 hours. We remark that the assembly of the fluid block scales when increasing the number
of processors since it requires few inter-processor communications (the ghost nodes of each
partition are repeated on all the processors), while the preconditioner computation, and in
particular the GMRES solution, are less scalable operations. We refer to [CDFQ11] and to
Chapter 6 for considerations on the scalability of the FSI system and for a discussion on
suitable preconditioners for coupled problems.

Figure 5.18: Aorta mesh partitioned with 32 processors using ParMETIS. The mesh is com-
posed of 380690 tetrahedra, i.e., 486’749 dofs.. On the right: the fluid mesh partitioned; on
the left: both fluid and solid mesh partitioned.

In order to compare the time spent for one iteration of rigid walls with that spent for an
iteration with FSI GCE we run another cycle of 200 time steps for both rigid walls and FSI

Z6http:/ /www.cise.ufl.edu/research /sparse/umfpack
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problems with pressure imposed at inlet. In these simulations we use the block preconditioner
Pys_pn1 for FSI discussed in Section §4.3, see also [CDFQ11], which allows a separate
treatment for the fluid and the solid blocks, while in the rigid walls case we use the same
preconditioning strategy used for the fluid block in FSI.

These simulations are carried out on the Cray XT6 supercomputer in HECToR. The
tolerance for solving the linear system is set to 10~7 in both cases. We use 4 MPI processes
per node; the rigid walls problem is parallelized on 64 processors, while in the FSI case we
use 128 processors. In both cases the overall time spent per time-step is of about 30 seconds.

The velocity of the pressure wave is measured by evaluating the foot of pressure in two
sections of the descending aorta, at 5 cm distance from each other. The phase shift observed is
0.009s, which corresponds to a velocity of 5.5 m/s. This value corresponds to the physiological
PWV (around 5m/s, see [NOHMO98, Fun97]). However this is closely related to the Young
modulus chosen in the solid model, which depends on the specific case and is influenced by
many factors. For patient specific simulations these parameters should be accurately tuned.

Furthermore, frequently the Young modulus for in-vivo arteries is devised from the PWV
using empirical formulas, or from measurements of pressure versus luminal area, thus already
taking into account the effect of the surrounding tissue [LDG'08].

To test the influence of the flux boundary condition imposed at the inlet and also to have
another comparison with the rigid walls simulation, we run for several heartbeats an FSI
simulation imposing the pressure at the inlet obtained from the 1D model simulation. With
this choice we do not guarantee that the inlet flux is zero when the aortic valve is closed.
We observe indeed a reflux in the diastolic phase, which can be interpreted as the back
flow inducing the closure of the aortic valve. This phenomenon is physiologically observed
and cannot be simulated without taking into account the compliance of the wall. However
imposing a stress condition at the inlet introduces another parameter to be tuned. In fact
the outer static pressure p,, that we set to zero in (5.4.1), in this case is no longer arbitrary.
The value chosen is p, = 115’000 dyn ~ 86 mmHg, which is slightly larger than the diastolic
inlet pressure.

The time histories of the mean pressure and normal velocity computed on the sections
represented in Figure 5.15 are reported in Figures 5.19 and 5.20, where only the second
heartbeat is represented. Note that in the figures the zero value corresponds to p, ~ 86 mmHg.

When imposing inlet pressure in the compliant case less physiological pressure waveforms
are obtained at distal (for instance section S4) thoracic regions. This is due to a not appro-
priate pressure wave reflection at the outlet boundary. The backflow amplitude is sensitive
to the pressure waveform and to the modeling of the aortic valve in the 1D. Considering
that, it seems more preferable to impose the flux at the inlet. In addition, blood flow rate is
measurable in-vivo non invasively.

Figures 5.21 and 5.22 show the time histories of the radius at the different sections of
the aorta So — Sy (see Figure 5.15). The radius change (around 1 or 2mm) matches the
experimental results reported in [vPVS'09]. Figure 5.23 represents a section of the lumen
boundary in the middle of the aortic arch at different times, showing in particular the change
in eccentricity of the lumen. Patient-specific informations about the radius and eccentricity
change in the aorta can be very useful for endovascular aortic repairs. Endografts should
be designed in order to dynamically adapt to the changes in aortic shape. Furthermore non
uniform deformation and strain may very well contribute to the localization and development
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of wascular pathology [vVPVST09].
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Figure 5.19: FSI simulation with inlet pressure imposed. History of the mean pressures (in
mmHg) over the sections S1, Sa, S3 and Sy represented in Figure 5.15. The zero value of the
pressure correspond to p, ~ 86 mmHg.
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Figure 5.20: FSI simulation with inlet pressure imposed. History of the mean normal velocities
(in em/s) over the sections Si, Sa, S3 and Sy represented in Figure 5.15. In the plot for the
S section (left) we show the pressure curve over the same section with a dashed line, to
highlight the dependence of the reverse flow on the steep pressure decrease after the systole.
Notice that at regime in the abdominal aorta no more backward flow is observed.
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Figure 5.21: FSI simulation with inlet flux imposed. History of the mean radius over the
sections Sz, S3 and Sy represented in Figure 5.15 (third heartbeat).
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Figure 5.22: FSI simulation with inlet pressure imposed. History of the mean radius over the
sections Sz, S3 and Sy represented in Figure 5.15 (third heartbeat).
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Figure 5.23: Several snapshots of a section of the lumen located in the middle of the aortic
arch (shown on the left) during the third heartbeat of the inlet flux FSI simulation.

5.4.4 Numerical Assessment

In order to check the validity of our results we performed the same FSI simulation with inlet
pressure imposed on a finer mesh for about 200 time levels. In particular the new mesh
considered has 1'118'517 elements for the fluid, 483/469 for the structure, the overall number
of degrees of freedom for the FSI problem is 2'044'263 (see Figure 5.24). The simulations
carried out to compare the results on the two meshes were run on two different clusters. for
the finer problem we used the Cray XT5 supercomputer Rosa. The job was parallelized on
512 cores (using 6 cores per computing node). The overall time spent per time-step was about
150 seconds. For details on preconditioner and scalability we refer to Chapters 4 and 6 or
to [CDFQ11]. The coarser problem was re-run on the Cray XT6 supercomputer in HECToR.
The simulation was run in parallel on 128 cores, while the CPU time per time-step was about
30 seconds.

In Figure 5.25 we compare the WSS distribution for both meshes. The results obtained
with both the simulations do not show substantial differences. The regions of low and high
WSS can thus be qualitatively identified solving the coarser problem as well as the WSS
magnitude. Since the computation for the large mesh is demanding larger computational
resources we could not run it over several heartbeats.

5.4.5 Wall Shear Stress

The arterial wall tissue reacts to both the normal and shear stresses [FQV09, Ch. 1]. In
particular, the wall shear stress is involved with the formation of atherosclerosis, which is a
pathology characterized by a narrowing of the arterial lumen due to the accumulation of fatty
material. However wall shear stress is difficult to measure in vivo with a sufficient spatial
resolution.

The shear stress is defined as the tangential component of the traction vector ofﬁf . Thus
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Figure 5.24: The coarse (left) and the fine (right) meshes.
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Figure 5.25: The WSS distribution for the coarse mesh (left) and the fine one (right) at time
t=0.12 s.
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in Newtonian fluids it is

7 = o — (o0 - nN)nd = 4y (Veu + Vound — i {[(Veu + Veu?) - nf] - nf o/
(5.4.4)

where pi5 is the dynamic viscosity. This equation corresponds to
T = ps[(Veu+ Veul) — (Veu+ Veul) s (nf @ nf)jn/.
If u = (u, uo,u3)’, writing the last equation in Einstein notations we obtain
75 = puf[(Oyuy + Oju;) — (Opuy + Opug) (nang)dij]n;.

Fixing a point on the fluid—structure interface we can write all the quantities with respect
to the associated local frame of reference (t1, to,n), where t; and to are orthonormal vectors
on the tangent plane and n is the normal vector. We denote the local coordinate system
associated with this frame (hy, ho, h3). The previous expression reads

(ahzuhs + ahsufm)
T = Uf (8h1 Upy + ah:suhl) ,
0

where now uy, = (uhl,uhQ,uhg)T denotes the velocity field written with respect to the local
coodinate system. We notice here that if the fluid wall is fixed every tangential derivative is
zero, Op, up, = 0, Op,up, = 0. This leads to a straightforward relation between the magnitude
of the wall shear stress and of the vorticity vector w = V x u. In fact we have that

OhyUhy — OngUn, —OhyUhy
W = 8h3uh1 — 8h1uh3 = 8h3uh1
Oh, Uhy — OnyUn,y 0

and thus py|w|2 = [|7]|2-

When the wall is moving this relation is no longer valid. We compute thus in the compliant
case the WSS from relation (5.4.4). However most of the time we do not observe a significant
difference when computing the WSS magnitude through the vorticity vector even in the
compliant walls case. This is perhaps due to the fact that the velocity gradient due to
the boundary layer (the normal derivatives of the tangential velocity) dominates the other
components of the velocity gradient. We refer to [WMZ06] for details and discussions about
shear stress and vorticity relations.

As an example Figure 5.26 shows the wall shear stress (WSS) magnitude in the compliant
and rigid walls simulations right after the systole of the second heartbeat. The period of
one heartbeat is T = 0.8s, so that ¢t = 1s corresponds approximately to the systolic peak.
The WSS distribution is similar at systole with compliant and rigid walls, although it is
slightly larger in the latter case. Then at t = 1.1s and t = 1.2s the WSS magnitude is
larger in the rigid walls case. In particular the WSS in the rigid walls simulation seems to be
overestimated. The systolic WSS are in the physiological range, especially in the compliant
case, if compared with measurements obtained in [BLS10] for the control patients. We do not
observe remarkable differences between the two FSI simulations corresponding to different
inlet boundary conditions.
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The comparison between the rigid-wall simulation and FSI is only qualitatively addressed
in Figure 5.26, where we show that accounting for the compliance of the vessel wall leads to
clear differences in the WSS distribution. For a quantification of these differences we refer to
Table 5.4 and to [RCD*11].

WSS (dyne/cmA2)

Time: 1.100

Figure 5.26: The wall shear stress distribution at t = 1.1s for the compliant walls simulation
with the inlet flux imposed (left), inlet pressure imposed (right) and rigid walls (center).

128



5.5. COMPARISONS

ey (|

- \\

Figure 5.27: In black are highlighted the regions A and B where the averages of the WSS are
computed.

5.5 Comparisons

5.5.1 GCE versus FI

We analyze the influence of some choices for the time discretization method, in particular
how the implicit coupling of the geometry problem and the time discretization of the convec-
tive term influence the evaluation of quantities of physiological interest like WSS, pressure,
displacement and velocity fields. We would like to quantify the error committed with the
geometry—convective explicit (GCE) time discretization and other geometry—implicit variants
with respect to the Fully Implicit (FI) version of the algorithm. We look for an optimal
compromise between accuracy and computational cost of the simulation.

To this aim we prepare an initial condition by running a GCE simulation of an heartbeat
on the same aorta geometry with a large time step (6¢ = 8-1073), and we start the second
heartbeat varying the method and the time step. We report the simulation until the end of the
systole (¢ ~ 0.3 s, while the systolic peak is observed at t ~ 0.2s). In the simulations performed
we consider four schemes: besides the fully implicit and geometry—convective explicit schemes
we call Convective Explicit (CE) the case in which both the fluid velocity and domain velocity
are extrapolated using (2.4.4) and (2.4.5), and Geometry Implicit (GI) the case in which only
the fluid velocity in the convective term is discretized using (2.4.4), while the fluid domain
and its velocity are considered implicitly.

We report in Figure 5.28 the WSS obtained with the FI scheme, in both the regions A
and B represented in Figure 5.27. The time steps considered are dt = 0.0005s, t = 0.001s,
0t = 0.002s, 6t = 0.004s. This picture shows that for the FI scheme the position of the peaks
remains almost unchanged when increasing the time step, but the pattern followed by the
WSS histories changes substantially for the largest time step considered.

The same plot for the GCE time discretization is reported in Figure 5.29. In the latter
case we see that the choice of the time step leads to a shift of the position of the peaks in the
WSS. The FI solution will be our reference for the comparisons reported below.

Figure 5.30 represents the history of the WSS averaged in the region A, which is rep-
resented in Figure 5.27. The simulation for the smallest time step, i.e., 6t = 5-107%s is
performed only for GCE and FI time discretizations, since these are the extreme cases. We
did not experience stability issues when increasing the time step, however from these graphs
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it is clear that the largest time step fails in predicting the correct value for the averaged WSS,
even in the FT case.

Furthermore these graphics show that, for a time step lower then §t = 1073, in the
simulation of the aortic arch a GCE time discretization provides an approximation of the WSS
which can be satisfactory, since it qualitatively follows the one obtained with the geometry—
implicit variants.

Another interesting result is the difference between the fully implicit simulation and the
GI and CE ones. This suggests that considering implicitly the part of the convective term
nonlinear in u (2.4.2) brings non negligible changes. On the other hand from the similarity
between CE and GI we conclude that treating implicitly the nonlinearity in w (2.4.3) in the
convective term does not influence much the WSS in the location considered.

Since the number of Newton iterations in all the geometry implicit variants does not vary
substantially we can conclude that among those the most performant and reliable method is
the FI one. Concerning the GCE time discretization, it is considerably faster than all the
other methods for a fixed time step and due to the dissipative behavior it shows to be stable
also for large time steps, thus it can provide a fast, not always reliable, prediction of the
hemodynamic, or a periodic initial condition for the other methods (as done for the current
simulations).

In Figure 5.31 the same comparisons are performed on a different location (location B in
Figure 5.27). The WSS is well approximated by the GCE especially before the systolic peak
and for small time steps (below 1ms), while it smooths most of the oscillations for larger
time steps. As in the previous case the difference when considering the nonlinear term in u
is important, while considering explicitly the domain velocity w in the convective term does
not lead to substantial changes.

We report in Figure 5.34 and Figure 5.32 also the pressure and displacement in the region
A obtained with the different time steps and discretization schemes. The same comparison
for region B is shown in Figures 5.35 and 5.33. We notice from these pictures that the GCE
time discretization, though being stable for all the time steps tested, fails in reproducing the
time history of pressure and displacement of the FI for large time steps. The time step should
thus be tuned according to the output of interest and to the precision requested.

Eventually we report in Figure 5.36 a comparison of the mean velocities and pressures
computed with the various schemes for a fixed timestep of 6t = 1073. The quantities rep-
resented are the averages on a section of the lumen in the descending aortic arch. We see
from this plot that the difference between pressure and flux on a section of the lumen is small
compared to the difference observed on the regions A and B of the arterial wall (Figure 5.27).

A picture of the reference solution (the FI simulation with time step 6¢ = 0.0005s) is
represented in Figure 5.37 together with the WSS distribution at the end-systole. The de-
creasing of the inlet flux originates vortices in the ascending aorta, while the streamlines show
the presence of secondary flows in the descending part of the aortic arch. This behavior is
typical for blood flow in a curved vessel (see e.g. Doorly and Sherwin [FQV09, Ch. 5.3]). The
simulations were run on the Cray XT4 cluster in HECToR, using 64 MPI processes (4 per
node).
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Figure 5.28: WSS (dyn/em?) for different time steps, FI discretization on the locations A (a)
and B (b).
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WSS magnitude
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Figure 5.29: WSS (dyn/em?) for different time steps, GCE discretization on the locations A
(a) and B (b).
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WSS magnitude
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Figure 5.30: Time history of the WSS magnitude (in dyn/cm?) averaged on the location A of
Figure 5.27.
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Figure 5.31: Time history of the WSS magnitude (in dyn/cm?) averaged on the location B of
Figure 5.27.
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Figure 5.32: Time history of the displacement magnitude (in cm) averaged on the location A
of Figure 5.27.
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Figure 5.33: Time history of the displacement magnitude (in cm) averaged on the location B
of Figure 5.27.

140



5.5. COMPARISONS

pressure magnitude

g
>
()]
0
g
o
10 \ \ \ \ \
0 0.05 0.1 0.15 0.2 0.25 0.3
time [s]
(a) st =5-10"*s
pressure magnitude

g
>
()]
0
g
o

10 | | | | |

0 0.05 0.1 0.15 0.2 0.25 0.3
time [s]
(b) 6t =10"3s

141



CHAPTER 5. APPLICATIONS TO HEMODYNAMICS

pressure magnitude

g
>
0
(%]
Q
o
10 \ \ \ \ \
0 0.05 0.1 0.15 0.2 0.25 0.3
time [s]
(c) 6t =2-10"3s
pressure magnitude

g
>
2]
(%]
o
o

0 0.05 0.1 0.15 0.2 0.25 0.3
time [s]

(d) st =4-10"%s

Figure 5.34: Time history of the pressure (in mmHg) averaged on the location A of Figure 5.27.
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Figure 5.35: Time history of the pressure (in mmHg) averaged on the location B of Figure 5.27.
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Figure 5.36: Values of the mean pressure (in mmHg) and mean velocity (in ¢m/s) on a section
of the descending aortic arch, for the different time discretizations and with a fixed time step
of 6t =1073.
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Figure 5.37: Aorta simulation. Streamlines and WSS at the end of the systolic phase in the
second heartbeat.
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5.5.2 Exact versus Inexact Newton Method

In the cases where the geometry is handled implicitly a Newton method is employed. The
number of Newton iterations as expected varies depending on the time step chosen and on
the phase of the heartbeat considered. In particular in proximity of the systolic peak, due
to the large displacements and velocities, the nonlinearities due to both convective term and
geometry become important, and the number of Newton iterations increases. Due to the fact
that the convergence of Newton is not assured when the initial guess is far from the solution,
for large time steps in some cases we experienced convergence problems in proximity of the
systolic peak. Since the first order methods have usually a larger convergence ball then the
Newton method (see e.g. [ESWO05, Ch. 7]), a fixed point or inexact Newton method could
be employed to reach a closer initial state for the Newton method??. Here we consider only
first order extrapolations and discretizations. Testing more accurate time discretizations is
currently under investigation.

We investigate in the simulation of the GI solution the effect of taking into account the
shape derivatives in the Jacobian of the FSI problem. The number of Newton iterations
performed during systole (i.e., from ¢ = 0.16s to ¢ = 2.4s) in both cases is reported in
Figure 5.38 for a time step of ¢ = 0.004s, the relative tolerance (see Section 3.1) is set
to €, = 107%. Using the exact Jacobian matrix in this case not only improves the solution
in terms of nonlinear iterations: also the performances in terms of CPU time are better.
We report the computational cost per time level in Figure 5.38. We recall that if a smart
implementation of the shape derivatives block assembly is exploited (see Section §3.4), then
increasing the number of processors the overhead becomes negligible with respect to e.g. the
matrix-vector multiplications required for the GMRES solution. At the first time iteration
considered, both exact and inexact Newton perform three iterations (Figure 5.38 on the left),
however the time spent in both cases (Figure 5.38 on the right) is almost the same. In
our algorithm the main extra computational cost for the construction of the Jacobian Jgr
with respect to the matrix of the system (computed to evaluate the residual) is in the shape
derivatives block computation. This block assembly performed once per Newton step has a
computational cost of about 0.8s for the simulation here presented, which is negligible with
respect to the total time (= 1% of the time per Newton iteration) and since it does not require
inter processors communication (like all the matrix assembling steps) it is almost perfectly
scalable.

We remark that for both the inexact and exact Newton schemes the preconditioner used
is Pas—pn (4.2.20), thus the shape derivatives block is not neglected in the preconditioner.
Using this preconditioner the number of iterations and the time needed for the solution of
the linear Jacobian system is not remarkably affected by the presence of the shape derivatives
block.

Remark 5.5.1. These results are somehow in disagreement with what is stated in Bazilevs
et al. [BGH' 09], where an inexact Newton is employed to solve the geometrical nonlinearity,
neglecting the shape derivative terms, for the simulation a Ventricular Assisted Device (VAD)

2"Many efficient ways to find an accurate initial state for Newton have been studied in literature. For instance
in [BC10b] a nonlinear coarse problem is solved at each time iteration just to initialize the nonlinear solver
(leading to the two levels Newton method), in [GK10, TDVO07] efficient extrapolation techniques based on POD
are used in order to accelerate the convergence of a linear or nonlinear solver by improving the initial guess.
In [KGFT09, KW09] a vector extrapolation technique allows to move gradually from fixed point iterations to
Newton.
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implanted in a thoracic aorta. There the authors do not find great advantages in considering
the shape derivatives terms in the Jacobian matriz. We conclude that the debate is still open
and so far there is no method which behaves better than the others in all the situations.

Remark 5.5.2. The Newton scheme used is not completely exact, because the flures are
prescribed as integrals on moving boundaries (the vessel terminations are not clamped), and
the shape derivatives of these terms (cf. Section §3.4.2) are not taken into account in our
Jacobian.

Newton iterations CPU time per time iteration
8 T 450
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QN —— QN ——
7
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Time iteration Time iteration

(a) (b)

time (s)
L
I

Newton iterations

{2

Figure 5.38: Aorta simulation: (a) number of Newton iterations and (b) CPU time per time
step. Exact Newton (N) is compared versus inexact Newton (QN) for an interval during the
systolic peak (from ¢t = 0.16s to ¢t = 0.24 s) for a GI simulation with time step 6t = 0.004's
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aortic arch Thoracic aorta
lower | middle | upper | interior | exterior
Rigid walls 2.4 3.7 2.6 3.7 4.3
Compliant walls | 2.7 2.2 1.9 3.5 3.3

Table 5.4: Time average of WSS (dyn/ecm?) at different regions of the aorta. Values are reported
for 3D compliant and rigid walls simulations.

5.5.3 FSI (GCE) versus Rigid Walls and 1D

In this subsection we complete the comparisons of Section §5.4.5 between two different of
FSI simulations and a rigid walls one. Below we compare the FSI simulation also with a 1D
simulation in terms of pressure and flux on different sections. Furthermore we provide a table
with the differences in WSS for the compliant and rigid walls cases.

In order to compare a compliant FSI simulation with a standard Navier-Stokes simulation
in a domain with rigid walls, we set up a problem with similar boundary conditions as those
described above. We impose the fluxes at all the outlets, and we substitute the inlet flux with
a time dependent uniform normal stress condition on the inlet section. Indeed due to the
mass conservation constraint in the rigid walls case we cannot impose arbitrary fluxes at all
the terminations, since the total flux must sum to zero at every time iteration. Figure 5.39
reports the history of the velocities for the rigid walls case at different locations of the artery.

For this comparison in the FSI simulation instead of the flux inlet boundary condition we
impose the normal stress, also obtained from the 1D simulation.

Note that the energy estimate for Navier-Stokes equations (in both Eulerian and ALE
formulation) holds just for Neumann boundary conditions in the outward direction [QV94].
However we do not observe instabilities in the simulations presented. We remark also
that these results were obtained with the GCE time discretization. Hence the qualitative
comparison may be affected by the dissipative behavior of this scheme.

velocity magnitude [cm/s] velocity magnitude [cm/s] velocity magnitude [cm/s] velocity magnitude [cm/s]
35.00 60.00 60.00 70.00

30.00 60.00

50.00 50.00

25.00 50.00
40.00 40.00

20.00 40.00
30.00 30.00
15.00 30.00
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10.00 20.00
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0.0/ X X 0
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Figure 5.39: Rigid walls Navier—-Stokes simulation. History of the mean velocity over the
sections S7, So, S3 and Sy represented in Figure 5.15. The imposition of an inlet normal
stress instead of a flux leads to a nonzero positive flux through the aortic valve (Section Si)
also when the valve is supposed to be closed.

Another comparison that is certainly quite interesting from a modeling point of view, is
between the 3D FSI and 1D wave propagation models. In Figure 5.40, pressure and flow
waveforms obtained at 2 locations are superimposed. The qualitative features of the pressure
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waveforms are in good agreement. The amplitude of the flow waveforms is slightly different,
mainly in systole, at both aortic cross and thoracic aorta.
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Flow (ml/s)

Figure 5.40: Pressure (top) and flow (bottom) waveforms computed by the FSI simulation
(continuous line) and the 1D model (dashed line). Locations are at the aortic arch (left) and
thoracic aorta (right). Fluxes are imposed at the inlet and all the outlets.
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Scalability and Parallel
Performances

6.1 Introduction

In this chapter we investigate the parallel performance of the FSI solver in LifeV. In the
previous chapter we already reported some results concerning CPU time and computational
cost. Here we complete these informations by studying the behavior of the solver when varying
the number of MPI processes and/or the problem size.

To organize the discussion we report first a definition of scalable algorithm. Indeed de-
pending on the field the concepts of weak and strong scalability may have slightly different
meanings. We report then weak and strong scalability results for some of the preconditioners
described in Section §4.3 on benchmark and physiological geometries.

6.2 Scalability and Results

In parallel computing a very important concept is the one of scalability, which is a measure
of the capability of an algorithm to perform when increasing workload and/or the number of
parallel processes.

Although the term scalability is widely used throughout literature in several application
fields, many different interpretations and operational definitions coexist. This issue is ad-
dressed e.g. in Keyes [Key98] where a general definition is given which makes abstraction
from the specific application considered. There the definition of scalability requires a perfor-
mance metric which is a function of several parameters m;. The performance function chosen
strongly influences the type of scalability considered, which is usually reached for a bounded
region in the parameters space.

The performance function that we consider is the parallel efficiency. It is usually measured
in floating point operations per seconds when the hardware scalability is investigated. In our
application we define the parallel efficiency of an operation as the inverse of the time spent
for such operation. We express the performance 7 in terms of two parameters: the workload
and the processors number. The workload in our case is the number of degrees of freedom of
the problem. Two types of scalability, listed below, are usually considered.

e Strong scalability: in a strongly scalable algorithm doubling the number of processors
(and keeping fixed the other parameters) the efficiency doubles as well. In practical
cases this type of scalability is never reached because of the hardware limitations: the
overall time is the sum of the time spent for the computations and the time spent
for the communications between the processors. While for the former operations the
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performance can actually double when doubling the number of processors, for the latter
this does not hold true (see also the considerations in [Key98], where the overall efficiency
is split into algorithmic and implementation efficiency).

o Weak scalability: in a weakly scalable model the efficiency is the same as long as the
ratio % is constant. The lack of weak scalability can be caused by either a
loss of performance of the computing part, performance that should not decrease when
increasing the number of processes, or by an increase of the latency time introduced by
the hardware communication; this time should ideally remain constant when increasing

the number of processors.

We remark that different definitions of performance lead to different types of scalability.
For instance in domain decomposition often the scalability is interpreted as the independence
of the convergence rate of an algorithm from the number of subdomains, or from the char-
acteristic mesh size h. In this case the performance quantity is related to the number of
iterations (instead of time), this type of scalability does not imply the scalability in the sense
that we just introduced.

In our simulations the number of subdomains in the domain decomposition framework
corresponds to the number of MPI processes. To measure the weak scalability it makes sense
to double the length of our computational domain (the vessel) when doubling the CPUs. In
this case the weak scalability measures the capability of the algorithm to increase the problem
physical size.

Another important indicator for the parallel efficiency is the speedup o, whose definition
is only related to the timing 7":
_ Tserial
= =5
where Tyeriqr is the time spent in the serial execution. We say that an algorithm is strongly
scalable if o = #processors.

6.2.1 Strong Scalability Tests

In this section we report the numerical behavior of the preconditioner choices presented so far.
In two of the cases considered, i.e., the GCE and the CE systems described in Chapter 4, our
preconditioning strategy shows to be effective in terms of computational time. As a general
comment, splitting the matrix into factors before building the operators Pag yields better
computational times and lower number of GMRES iterations (see Figures 6.2(a) to 6.7(b)).
The theoretical justification stems from the analysis in Section §4.3.4.

A one level AAS preconditioner is used in all the simulations (for the different factors or for
the whole matrix), it has a two layers overlap between the partitions (this choice is motivated
by empirical observations). The finite elements loop to assemble the system matrix is almost
perfectly scalable, in both weak and strong senses. The same holds true for the computation
of the AAS preconditioners, which involves the LU factorization of the local matrices. The
main lack of scalability is due to the increase of GMRES iterations when the processors
number grows. This can be probably avoided by employing multilevel domain decomposition
preconditioners for the factors (instead of one level AAS, cf. Section §4.3.1) and keeping the
same modular approach described here.

The behavior of our preconditioners is tested on unstructured 3D cylindrical meshes
with different characteristic lengths h, and on physiological 3D geometries as well, computed
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Figure 6.1: The cylindrical geometry used partitioned into 4 subdomains. One processor
holds one solid and one fluid subdomain. However, in general, the two are not matching
on the interface (despite the impression given by the picture) and the partitioning is done
independently for the two meshes.

through segmentation of medical images (e.g. CT scans or MRI). The finite elements chosen
are P1 — P1 tetrahedra for the fluid, stabilized using the interior penalty technique described
in [PB05], cf. Section §2.7.1, and P1 tetrahedra for the structure.

The tests reported in this section, unless otherwise specified, were performed on the cluster
Callisto at EPFL.

Strong Scalability for GCE

A benchmark geometry, similar to the one proposed in [GV03] (and used e.g. in [DDFQO6,
KGF109, FMO05]) consists of a straight cylinder of length 10 cm and with radius 0.5 cm rep-
resenting the fluid domain, surrounded by a structure of constant thickness 0.1 cm (see Fig-
ure 6.1). The inlet boundary condition on the fluid domain is a pressure step function, taking
the constant value p;, = 1.33 - 10*dyn/em? for ¢+ < 0.003s. The boundary conditions for the
outlet and for the external structure are of Neumann homogeneous type. The time step used
is 6t = 103 s while the parameters characterizing the model are fluid viscosity p 5 =0.03P,
the Young modulus € = 3 - 10 dyn/em?, the Poisson ratio v = 0.3 and the mass densities of
fluid and structure py = 1.08/em® and py = 1.28/cm®. Because of the GCE time discretization
adopted, the problem is linear. The tolerance for the GMRES solver is 1075. The values
reported in the following are the average over the first 30 time iterations.

The simulations run on the benchmark geometry show that the modular preconditioners
Pas_pn1 and Pas_pno (P(l) and P respectively in the figures) are more efficient than
AAS (a classical additive Schwarz preconditioner on the whole matrix) in terms of compu-
tational time and GMRES iterations. Furthermore the gap between these preconditioning
strategies increases with the processors number. This result is validated on two different
meshes composed by a total of 169'267 and 578594 tetrahedra, corresponding to respectively
216'441 and 630’468 degrees of freedom (in Figures 6.2(a) and 6.2(b)), and varying the ratio
between the mass densities r = % (in Figure 6.3).

We observe that in view of the analysis performed in Section §4.3.4 the mild growth of the
GMRES iterations in the modular cases can be explained with a boundedness of the singular
value o37**. We recall that the preconditioners P4s_pn1 and Pas_pn2 are split into factors,
and each factor contains either the fluid or the structure block. The lack of scalability, due
to the increasing number of GMRES iterations, is related to our choice of using the one level
AAS preconditioner for all the factors in the tests performed. Thanks to Proposition 4.3.1
the quality of the preconditioner is influenced mainly by the preconditioners chosen for the
different factors. Thus an improvement of the preconditioner can be achieved by improving
the preconditioners for the subproblems.
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(a) Simulations run on the coarser tube mesh.
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(b) Simulations run on the finer tube mesh.

Figure 6.2: GCE — Strong scalability. P() and P? correspond to Pas_pn1 and Pas—pno
respectively.

Other strong scalability results performed on different architectures, with different space
discretizations, are resumed in Figures 6.4(a), 6.4(b) and 6.4(c). These simulations are
run on a segment of thoracic aorta, and the linear system is preconditioned by Pas_pn1.
Figures 6.4(a) to 6.4(c) show the total CPU time per time step, the time to compute the
preconditioner, the time to solve the linear problem and the number of GMRES iterations at
each time step. The number of tetrahedra is 578'594.

Figures 6.4(a) and 6.4(b) refer to the same simulation on the Cray XT4 and on the Blue
Gene/P, where the finite elements used for the fluid subproblem are the stabilized P1-P1
elements. The total number of unknowns in this case is 630'468. With the same number
of processors, the simulation on an XT4 takes about 3.5 times less CPU time than on a
BlueGene/P (this is a consequence of the different CPU frequency); in contrast, the scalability
of the overall simulation is better on the BlueGene/P. Figure 6.4(c) represents the same type
of simulation with inf-sup stable P1Bubble-P1 (mini) finite elements for the fluid problem.
On BlueGene/P we notice an improvement of the scalability with 512 processors. The CPU
time is smaller than for P1-P1 since the stencil of the matrix is smaller.

We remark that in these simulations the number of GMRES iterations does not increase
when the number of processors increases.

Strong Scalability for CE

We run the same simulation as for the GCE on the straight cylinder. The tolerance of the
linear solver is set to 1075 while the relative tolerance for the Newton method is " = 107°.
The preconditioners compared in Figure 6.5(a) are Pas(Jor), Pas—gn (without splitting
into factors) and Pag_gs (two factors splitting) among those listed in Section §4.3.3. We
observe that the preconditioner P4s_gn is cheaper to compute than Pyg(Jcg), while it has
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Figure 6.3: GCE — Comparison on the coarser tube mesh between the results obtained for
different values of the ratio r = ps/ps.

the same behavior in terms of GMRES iterations. Although Psg_ g is cheaper to compute
than the other choices it worsen faster when increasing the number of processors. This can
be due to the growth of the singular value oy in the estimate (4.3.10a), when augmenting
the number of processors. Thus P4g_¢s seems not to be a choice well suited for a massively
parallel framework.
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Figure 6.5: CE — Strong scalability on a straight cylinder.

Among the preconditioners presented in Figures 6.5(b) and 6.5(a) the most convenient
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Figure 6.6: Blood pressure (in dyn/cm?) and the deformation of an aorta at ¢ = 0.015s,
t =0.03s, and t = 0.075s.

choice turns out to be Psys_gn. In Section §6.2.2 another preconditioner featuring a three
factor splitting is considered as well, and it is shown to improve the performances in terms of
both computational time and iterations number with respect to the preconditioners considered
up to now.

Physiological geometries

The preconditioners devised for the CE system are tested on physiological geometries (Fig-
ure 6.6), obtained through segmentation of medical images using VMTK?®, see [Bon09].
The physical parameters chosen for the models (1.4.9) and (1.5.11) are py = 0.35P,
e =4-100dyn/em?, v = 0.48, ps = 1.28/em® and py = 1.08/em?. Since the purpose of these
simulations is mainly to test the behavior of the preconditioners rather than to observe the
dynamic of the flow during an entire heartbeat we only consider the mean values over the
first 30 time steps (0.03s). The geometry considered in these simulations represents an aorta,

http: //www. vmtk. org
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Figure 6.7: CE — Simulations on the aorta on Figure 6.6.

starting from the aortic valve, including the aortic arch and the thoracic aorta. The inlet
pressure imposed at the aortic valve is taken from physiological measurements corresponding
to the beginning of an heartbeat cycle p;;, ~ 1.1 - 10°dyn/em?. The boundary conditions
imposed at the outflows and on the external wall are of Neumann homogeneous type. Since
no spurious reflection waves are originated in the first 30 time steps (see e.g. [Nob01]), there
is no need to impose absorbing boundary conditions at the outflows. The blood is considered
at rest at the beginning of the simulation. The simulations are performed on two different
meshes, with respectively 105810 and 380'690 tetrahedra for a total of 135’000 and 486’749
degrees of freedom. We keep the same time step ¢t = 1073 s used in the previous simulations.

We can notice that the number of iterations relative to Pss_qg worsens faster than the
others when the number of processors increases (Figures 6.7(a) and 6.7(b)). This phenomenon
was already observed in the previous benchmark tests.

The increase of the global computational time when passing from 32 to 64 processors in
the coarser case is partly due to the relatively small mesh size of the problem addressed and
partly to the communication time affecting both the GMRES solution and the preconditioner
computation.

6.2.2 Weak Scalability Test

We want to set up the same benchmark test with a similar geometry, the same physical param-
eters and boundary conditions as in the previous section, but keeping approximately constant

the ratio ##%. To this aim we build a series of meshes of the tube in Figure 6.8(a)
Processors

by varying its length. The new meshes are built with the free mesh generator Gmsh??. The
fluid part is generated by building a 2D Delaunay mesh of a circle and extruding it in the
axial direction. The structured solid mesh is generated extruding the lateral surface in the
normal direction. The solid is composed of four layers (see Figure 6.8(a)). We used for these
simulations the Cray XT5 supercomputer Rosa.

Pnttp://geuz.org/gmsh/
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(a) Benchmark mesh (b) Geometries

Figure 6.8: Mesh (a) and geometries (b) used for the weak scalability test. Deformation at
time ¢ = 0.01s.

The different geometries considered have a length varying from 0.5c¢m to 16 cm and are
represented in Figure 6.8(b). The smaller problem is solved using either 12 or 24 MPI pro-
cesses, then the number of processors is doubled every time the length of the tube doubles.

The finite elements matrices in this case are considerably worse conditioned than in the
case considered for the strong scalability, the characteristic element size being smaller. The di-
mensions for the fluid and the solid meshes considered are resumed in Tables 6.4(a) and 6.4(b)
respectively. The larger problem considered, corresponding to the 16 cm pipe in Figure 6.8(b),
features 3'517'839 degrees of freedom. The results plotted are the mean values over the first
10 time iterations.

(a) fluid meshes. (b) solid meshes.

Length | # Elements # Vertices Length | # Elements +# Vertices
0.5 cm 75’480 14’487 0.5 cm 27’840 6’380

1 cm 149’520 27’405 1 cm 55’680 127180

2 cm 301’920 53’997 2 cm 111’360 23’780

4 cm 603’840 106’677 4 cm 222’720 46’980

8 cm 1°207°680 212°037 8 cm 445440 93’380
16 cm 2415360 422757 16 cm 890’880 186’180

Table 6.5: Table resuming the characteristics of the meshes used for the weak scalability test,
represented in Figure 6.8(b).

Weak Scalability for GCE

In this case the number of linear iterations using the classical AAS preconditioner increases
much faster. The new preconditioning strategies proposed show to be more robust. We show

159



CHAPTER 6. SCALABILITY AND PARALLEL PERFORMANCES

GMRES iterations time per GMRES solution preconditioner computation cpu time per time step
300 —_my 5 - 64 — = 4%
il 250 + P(Z) ....... o e v ‘J 32 ; 20
S 200 - E @ 16 {1 g0
3 5 ® £ p = 100
& 150 | S E 8 s 5
5 = ©
#* 100 3 20 ‘ 4( g ?
50 10 2 -
24 48 96 192 384 768 24 48 96 192 384 768 24 48 96 192 384 768 24 48 96 192 384 768
number of processors number of processors number of processors number of processors

Figure 6.9: GCE — Weak scalability results for the number of processors ranging from 24 to
768.
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Figure 6.10: GCE — Strong scaling for the smallest geometry: even with few processors the
number of iterations increases very fast for Psg, which prevents scalability.

the behavior of the AAS preconditioner compared to Pas_pn1 on the smaller problem for a
number of processors ranging from 2 to 12 in Figure 6.10. We observe that the number of
iterations for the Pag, though it is smaller when considering 2 cores, dramatically increases
with the number of processors.

We can notice from the weak scalability plot of Figure 6.9 that the GMRES iterations
remain bounded up to 768 processors. The iteration number comparison also shows that
the performances of P4g_pn1 are slightly better than those of Pag_pn2, however the same
trend is observed in both cases. We notice also the difference of performance between the 24
processors case and the 48 processors one: the simulation does not scale in this step. This is
probably due on one hand to the fact that 24 processors fit in two nodes of the cluster, and
the communication between processors in the same node is faster. On the other hand on the
0.5 cm tube considered the pressure pulse imposed at the inlet exits the geometry during the
first time steps, i.e, the characteristics of the simulation are different than in the other cases.
We also remark that for the largest simulation the memory of one node is not sufficient when
all the 12 processors are used. For this reason in that case we use only 6 cores per node.
The loss of performance when reaching 768 processors is investigated more in detail in the
next paragraph. In conclusion from the “CPU time per time step” plot we see that up to
384 processors the code scalability is acceptable. Here we did not represent the scalability of
the assembling phase for the fluid block, of the solution of the harmonic extension equation
and of the HDF5 post processing. However the behavior of these steps is accounted for in the
“CPU time per time step” plot in Figure 6.9.

In Figure 6.11 we plot the results of three simulations obtained by varying the sizes of
the local problems. We call N; the ratio between the length of the geometry i among those
in Figure 6.8(b) and the length of the shortest pipe (0.5cm). These simulations have the
following specifics:

1. 12 - N; processors for the geometry 4, using 12 processors per node;
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Figure 6.11: GCE — Weak scalability for different sizes of the local problems. N varies
with the different geometries considered from 1 (corresponding to the shortest pipe) to 32
(corresponding to the longest one).

2. 24 - N; processors for the geometry i, also using 12 processors per node, except for the
largest simulation, for which 6 processors per node are used due to memory issues, as
already mentioned;

3. 48 - N; processors for the geometry i, with 6 processors per node (so that only one half
of the processors in each node is used).

We remark from the results obtained that the GMRES iterations increase with the num-
ber of processors, as expected. The preconditioner computation has the same unexpected
breakdown that has already been observed in Figure 6.9. This seems to be related to the
number of processors employed: passing from 386 to 768 processors the preconditioner com-
putation does not scale in any of the simulations performed, while it shows a nearly optimal
strong scalability up to 386 processors. This introduces a bottleneck that still needs to be
investigated. For the time being we conclude that on a Cray XT5 increasing the number of
processors there is a gain in performance only below 768 processors. Further investigations
are planned also on different platforms.
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Figure 6.12: CE — We compare two simulations with different inlet pressure imposed. The
first three plots represent the simulations run on the 0.5c¢m to 8 cm tubes in figure 6.8(b),
showing the GMRES iterations, preconditioner computation time, CPU time per time step.
The last figure shows the number of Newton iterations for the 4 cm tube case.

Weak scalability for CE

We carry out a weak scalability test for the CE time discretization similar to the one for the
GCE case. The tolerance for the linear system is set to 1077, while the relative tolerance
for Newton is €" = 107°. To estimate the influence of the geometric nonlinearity on the
algorithm we compare two simulations with two different values for the inlet stress condition:
of-n = 1.33-10*dyn/em? and oy -n = 1.33 - 10° dyn/em? (for the first 3ms, then zero). The
time step chosen is 6t = 5-10~*s. With this choice the Newton scheme converges for all the
test cases considered, while some convergence issue may appear when the initial state is far
from the initial solution (i.e., when the timestep is large).

The Pas—_gn preconditioner for CE, which shows a good behavior on the strong scalability
tests, in this case inherits the ill conditioning of the fluid-structure block, and a comparison
between Psys_gn and Pas_pn produces a similar plot as the one shown in Figure 6.10. For
this reason in the simulations presented here the preconditioner Pas_pn (cf. Section §4.3.3)
has been adopted.

In Figure 6.12 we compare the two different inlet stress conditions. The comparison is
made on the first five benchmark geometries of Figure 6.8(b). The last geometry is not used
because of the issue explained in the previous subsection, which affects the scalability from
the 8 cm to the 16 cm pipe. The comparisons of Figure 6.12 are obtained using the maximum
number of cores per nodes. The Newton iterations required to reach the specified tolerance
increase slightly when the value of the inlet condition increases 10 times, which means that
the method is robust. Furthermore we stress the fact that the computational time required
to build the preconditioner is the same as for the GCE case, even though the matrix is larger.
This thanks to the three factors splitting of the preconditioner.

Conclusion

In summary, we report the good behavior of the preconditioners obtained by composing a
block Gauss—Seidel preconditioning strategy with a classical domain decomposition one. The
factorization leading to such preconditioners is done at algebraic level, for both the GCE
system and the CE (or all the other geometry—implicit variants) time discretizations. In
particular for the CE system we show that a three factors splitting, which can be obtained by
neglecting only an identity block in the system matrix (see (4.2.20)), leads to the best results
in term of both time for the computation of the preconditioner and number of iterations for
the linear system. We use a classical one level algebraic additive Schwarz preconditioner for
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the local problems. This choice may affect the scalability of the preconditioner, while another
choice (e.g. multilevel preconditioners, c.f. Section §4.3), also in view of Proposition 4.3.1, can
improve further the spectral properties of the strategy proposed.
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Conclusions

We report here an outline of this thesis, highlighting the original contributions, the concluding
remarks and the limitations of the current approach.

This work is divided in three parts, containing two chapters each. The equations for the
fluid and structure models are derived in the first chapter, with particular focus on the fluid
equations in a moving domain and their ALE representation, which is the one adopted in this
context.

An overview of the state of the art concerning the FSI models, coupling strategies, stability
issues, time and space discretization, is provided in the second chapter. The description in
this chapter is focalized on the (time and space) discretization methods used in the current
work.

The original contributions of this thesis, detailed in the second and third parts, concern
mainly the following four aspects:

e The nonlinear solver implementation, in particular the detailed description of the deriva-
tion and assembling of the shape derivatives terms for different formulations, with ob-
servations on the implementation efficiency.

e The study of suitable parallel preconditioners, their implementation in a general frame-
work allowing to exploit already existing preconditioners which are specific for each field,
the analysis of the conditioning of the system when these preconditioners are employed.

e The FSI simulation of physiological and pathological situations, with quantification of
indicators of clinical interest, the comparisons on these physiological simulations be-
tween different space and time discretizations, different models and different algorithms
for handling the nonlinearities.

e The numerical study of the parallel performance for some of the preconditioners intro-
duced on high performance supercomputers.

Concerning the solution of the nonlinearity we cannot conclude that one method is better
than the others in all possible situations. We found that for the FSI simulations in the aortic
arch both the solution of the geometrical nonlinearity and of the convective term are key
points in order to obtain accurate results, in fact in proximity of the systolic peak, where
the all the nonlinearities are important and the deformations are large, the the fully-implicit
(FI) scheme produces significantly different results than the other cases for time steps larger
than 1 ms. We also remark that the computational cost of all the geometry—implicit variants
is approximately the same, thus the most efficient alternatives are, according to our tests,
the geometry—convective explicit scheme for a fast stable solution that can be inaccurate for
large time steps or when the nonlinearity is large, and the fully implicit one.
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We compared also an exact and an inexact variants of the Newton algorithm, finding
that the extra cost of considering the complete Jacobian can be negligible (if a proper imple-
mentation of the shape derivatives assembling and a proper preconditioner for the Jacobian
system are employed) and scalable when increasing the number of processors. On the other
hand in some cases (e.g. during systole in the aortic arch) we found the convergence for the
inexact Newton scheme to be considerably slower than for exact Newton. Our conclusion is
that using the exact Jacobian matrix is the best choice, provided that a method to obtain a
close enough initial state is available, in order for the Newton method to converge.

Concerning the parallel preconditioners for FSI we can conclude that the strategy intro-
duced, featuring the splitting into factors and the separation of the different fields, greatly
improves a more naive approach which does not account for the block structure of the system.
In particular we stress that the cost of computing one of the preconditioners proposed for
the FI system (Pas—pn) is the same as for computing a preconditioner of the fluid block
alone, and its parallel behaviour (also in view of Proposition 4.3.1) only depends on how
well the fluid and structure blocks are approximated, while the coupling does not influence
substantially the condition number of the preconditioned system.

Perspectives and Future Work

The present study has established a framework that can be used for further investigations,
and the development of a robust and general parallel FSI solver opens the way for more
complicated couplings, models, and for larger and more detailed geometries. In particular
the code is mature enough to move towards a geometrical multiscale framework, which would
allow the simulation of the arterial circulation for the entire body, focusing (i.e., simulating the
3D FSI) on the critical zones and using reduced models for the parts of the circulatory system
which are not object of interest. Another necessary improvement to the model is the extension
to nonlinear structures. This topic, as the previous one, is the subject of ongoing work, and
would allow eventually to simulate with better accuracy the cases in which the nonlinearity of
the structure, due to e.g. the activation of the collagen fibers, plays an important role (like in
the process of aneurysm growth). The nonlinearity of the structure is also important for the
mechanics of the heart (that features an anisotropic and nonlinear constitutive relation). In
this regard the coupling of the FSI solver described in this thesis and an electro-mechanical
model for the heart which is under development within the same library (LifeV) is one of
the end goals. Eventually we showed that improving the preconditioner quality returns in
improving the preconditioners for the single uncoupled problems. Thus the research (already
ongoing in LifeV) in the field of parallel preconditioners for the Navier-Stokes equations can
be easily plugged into the FSI framework, allowing eventually to efficiently move to massively
parallel high performance platforms.
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