
THE IMPERIAL COLLEGE OF SCIENCE,
TECHNOLOGY AND MEDICINE

DOCTORAL THESIS

Hybridizable compatible finite element
discretizations for numerical weather

prediction: implementation and analysis

Author:
Thomas H. GIBSON

Supervisors:
David A. HAM

Colin J. COTTER

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Applied Mathematics and Mathematical Physics Section
Department of Mathematics

https://www.imperial.ac.uk/
https://www.imperial.ac.uk/
https://www.imperial.ac.uk/people/t.gibson15
https://www.imperial.ac.uk/people/david.ham
https://www.imperial.ac.uk/people/colin.cotter
http://www.imperial.ac.uk/ammp
https://www.imperial.ac.uk/mathematics

ii

Declaration of Authorship
I declare that this dissertation titled, “Hybridizable compatible finite element dis-
cretizations for numerical weather prediction: implementation and analysis” and
the work presented in it are my own. I confirm that:

• This work was done wholly while in candidature for a research degree at Im-
perial College London.

• Where I have consulted the published work of others, this is always clearly
referenced.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this dissertation is entirely my own work.

• Any images or figures obtained from outside sources are clearly referenced,
along with the access dates. Any tables, figures, or diagrams without such a
reference are produced entirely by myself.

• I have acknowledged all main sources of help.

• Where the dissertation is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have contributed
myself.

Thomas H. GIBSON

iii

THE IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Abstract

Faculty of Natural Sciences

Department of Mathematics

Doctor of Philosophy

Hybridizable compatible finite element discretizations for numerical weather
prediction: implementation and analysis

by Thomas H. GIBSON

There is a current explosion of interest in new numerical methods for atmospheric
modeling. A driving force behind this is the need to be able to simulate, with high
efficiency, large-scale geophysical flows on increasingly more parallel computer sys-
tems. Many current operational models, including that of the UK Met Office, depend
on orthogonal meshes, such as the latitude–longitude grid. This facilitates the de-
velopment of finite difference discretizations with favorable numerical properties.
However, such methods suffer from the “pole problem," which prohibits the model
to make efficient use of a large number of computing processors due to excessive
concentration of grid-points at the poles.

Recently developed finite element discretizations, known as “compatible" finite el-
ements, avoid this issue while maintaining the key numerical properties essential
for accurate geophysical simulations. Moreover, these properties can be obtained on
arbitrary, non-orthogonal meshes. However, the efficient solution of the resulting
discrete systems depend on transforming the mixed velocity-pressure (or velocity-
pressure-buoyancy) system into an elliptic problem for the pressure. This is not
so straightforward within the compatible finite element framework due to inter-
element coupling.

This thesis supports the proposition that systems arising from compatible finite el-
ement discretizations can be solved efficiently using a technique known as “hy-
bridization." Hybridization removes inter-element coupling while maintaining the
desired numerical properties. This permits the construction of sparse, elliptic prob-
lems, for which fast solver algorithms are known, using localized algebra. We first
introduce the technique for compatible finite element discretizations of simplified
atmospheric models. We then develop a general software abstraction for the rapid
implementation and composition of hybridization methods, with an emphasis on
preconditioning. Finally, we extend the technique for a new compatible method for
the full, compressible atmospheric equations used in operational models.

HTTPS://WWW.IMPERIAL.AC.UK/
https://www.imperial.ac.uk/natural-sciences/
https://www.imperial.ac.uk/mathematics

iv

Acknowledgements
Before arriving at Imperial College London, I had the pleasure of meeting David
Ham at my undergraduate institution, Baylor University, in Waco, Texas. The meet-
ing was spontaneously arranged by one of my mentors, Dr. Robert C. Kirby. Both
David and I spoke in great detail about PhD opportunities in Europe, and I was
made aware of a new PhD program at Imperial College London supported by The
Engineering and Physical Sciences Research Council (EPSRC): The Centre for Doc-
toral Training in the Mathematics of Planet Earth (MPECDT). Having been interested
in weather and mathematics at a young age, I eagerly applied specifically to work
with David Ham.

Through David, I met Colin Cotter, and both agreed to take me on as a PhD student. I
am deeply grateful for their support throughout my studies. I feel that I have grown
as an individual and scientist due to their guidance. When self-doubt was an all time
high, their patience and enthusiasm for the work we do was incredibly motivating.
They are both a constant source of inspiration; for every new suggestion, a plethora
of new ideas emerge which unfortunately could not fit within the time-frame of my
PhD. However, they both have inspired my own research agenda. I hope to have
many opportunities for collaboration in the future.

While technically a student in the Mathematics Department, I spent a significant
portion of my PhD interacting with members from the Department of Computing.
I wish to thank my colleagues and friends from this time: Dr. Lawrence Mitchell
(now an Associate Professor at Durham University), Dr. Miklos Homolya (now in
seminary school), and Dr. Fabio Luporini (now a Research Associate at Imperial
College London in Earth Sciences). Each of them helped me develop as a rigorous
programmer and accelerated my understanding of software development.

I wish to also express my gratitude to fellow cohort members in the MPECDT and
PhD students at Imperial: Thomas Bendall, Goodwin “Goody" Gibbins, Matthew
Garrod, Tasmin Symons, Jemima Tabeart, Michael Haigh, Josephine “Josie" Park,
Darije Čustović, and Andreas Bock. We have endured the stresses of research to-
gether, and have developed a strong sense of camaraderie.

Lastly, I want to thank my family and fiancée, Fátima Millán Cañas, for their sup-
port from the very beginning. To my father (Dr. Thomas Michael Gibson), mother
(Melody Jane Gibson), sister (Janel Joy Gibson), and Fátima: I am grateful and dedi-
cate this work you all.

My funding was provided by The EPSRC Centre for Doctoral Training in the Mathematics
of Planet Earth (http://mpecdt.org/). Thank you, Prof. Dan Crisan, for pushing to secure
funding for me as an overseas student.

http://mpecdt.org/

v

Copyright Declaration
The copyright of this thesis rests with the author. Unless otherwise indicated, its
contents are licensed under a Creative Commons Attribution NoDerivatives 4.0 In-
ternational Licence (CC BY-ND).

Under this licence, you may copy and redistribute the material in any medium or
format for both commercial and non-commercial purposes. This on the condition
that; you credit the author and do not distribute modified versions of the work.

When reusing or sharing this work, ensure you make the licence terms clear to others
by naming the licence and linking to the licence text.

Please seek permission from the copyright holder for uses of this work that are not
included in this licence or permitted under UK Copyright Law.

vi

“I seek strength, not to be greater than my brother, but to fight my greatest enemy: Myself.”

A Sioux prayer: “The Great Spirit Prayer.”

vii

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

Copyright Declaration v

1 Introduction 2
1.1 Thesis statement . 4
1.2 Technical contributions . 4
1.3 Dissertation outline . 5
1.4 Dissemination . 6

2 Preliminaries 7
2.1 Hierarchy of geophysical models . 7

2.1.1 The compressible Euler system 7
2.1.2 Anelastic and Boussinesq approximations 11
2.1.3 Hydrostatic approximation . 13
2.1.4 Single-layer rotating shallow water system 14

Linearized shallow water equations 18
Shallow water waves on the f -plane 19
Shallow water waves on the β-plane 20

2.1.5 Numerical modeling of atmospheric flows 22
2.2 Background on the finite element method 26

2.2.1 The finite element . 27
2.2.2 Finite element spaces . 30

Sobolev spaces . 30
Weak formulations of PDEs . 32
H1 finite elements . 33
H(div) finite elements . 35
H(curl) finite elements . 39
L2 finite elements . 41

2.3 Finite element computations . 42
2.3.1 Evaluating finite element forms 43
2.3.2 Finite element computations on immersed manifolds 45

Differential operators on manifolds 46
Piola-mapped finite elements on manifolds 47

2.4 Compatible finite element methods . 50
2.4.1 L2 de-Rham complexes . 51
2.4.2 Compatible finite elements in two-dimensions 52
2.4.3 Tensor product elements . 53

Product cells and function spaces 54

viii

Nodes of a tensor product element 55
2.4.4 Compatible finite elements in three-dimensions 56
2.4.5 Finite element space for the potential temperature 61
2.4.6 Approximations of de-Rham complexes on hypersurfaces . . . 63

2.5 Chapter summary . 64

3 Hybridizable compatible finite element methods 66
3.1 The hybridizable mixed method . 66

3.1.1 Compatible discretization of a linear shallow water model . . . 66
3.1.2 A hybridizable discretization of a linear shallow water model . 71

Broken H(div) spaces . 71
Trace spaces . 72
Discrete hybridizable system . 74

3.2 Analysis of the hybridizable method . 78
3.2.1 Local solvers . 78
3.2.2 Solvability of the discrete hybridizable system 84
3.2.3 Characterization of the hybridizable solutions 87
3.2.4 The discrete variational problem for λh 90

Remark on the operator S . 91
3.3 Nonlinear method and numerical examples 92

3.3.1 Nonlinear shallow water equations 93
Quasi-Newton/Picard iteration scheme 95

3.3.2 Numerical experiments on the sphere 97
The computational domain . 99
Solid body rotation . 100
Isolated mountain test case . 102

3.4 Other hybridizable discretizations . 106
3.4.1 Hydrostatic pressure equation 107

A vertical discretization using compatible finite elements 107
A vertically-oriented hybridizable method 110

3.4.2 Linear gravity wave system . 113
Compatible finite element formulation 113
Hybridization of the velocity-pressure system 115

3.5 Chapter summary . 117

4 An automated framework for hybridization and static condensation 118
4.1 Introduction . 118

4.1.1 The Firedrake finite element library 119
A mixed Poisson example . 120
Formulating the problem in UFL 121
Code-generation and operator assembly 122
Solving the linear system and configuring PETSc 123
Extending Firedrake’s solver capabilities 125

4.2 Slate: a system for linear algebra on element tensors 125
4.2.1 An overview of Slate . 125

Terminal tensors . 128
Symbolic linear algebra . 129

4.3 Examples . 130
4.3.1 Hybridization of mixed methods 131
4.3.2 Hybridization of discontinuous Galerkin methods 135
4.3.3 Local post-processing . 137

ix

Post-processing of the scalar solution 137
Post-processing of the flux . 139

4.4 Static condensation as a preconditioner 139
4.4.1 Interfacing with PETSc via custom preconditioners 140
4.4.2 A general-purpose static condensation preconditioner 141
4.4.3 Preconditioning mixed methods via hybridization 143
4.4.4 Preconditioning the Lagrange multiplier system 147

A quick overview of algebraic multigrid (AMG) 147
AMG for the hybridizable mixed method 149
A remark on the HDG trace system 149

4.5 Numerical studies . 150
4.5.1 HDG method for a three-dimensional elliptic equation 150

Error versus execution time . 152
Break down of solver time . 153

4.5.2 Hybridizable mixed methods for the shallow water equations . 154
Profiling Williamson test case 5 155

4.5.3 Rotating linear gravity wave model 159
Implicit solver strategy . 159
Preconditioning the mixed velocity pressure system 161
Solving the non-symmetric trace system 162
Problem setup . 163
Time-step robustness with implicit Coriolis 164

4.6 Chapter summary . 167

5 A hybridizable method for the Euler equations 169
5.1 A compatible finite element method for the Euler equations 169

5.1.1 Tensor product finite element complex 170
5.1.2 Finite element space for the potential temperature 172
5.1.3 Semi-discrete formulation . 173

5.2 Fully-discrete nonlinear method . 175
5.2.1 Obtaining a predictive velocity 176
5.2.2 Obtaining the predictive density and temperature fields 178
5.2.3 Picard method for the corrective updates 178
5.2.4 An approximate Schur-complement preconditioner 180

5.3 A hybridizable method for the compressible equations 181
5.3.1 Discontinuous H(div) velocity fields 181
5.3.2 Lagrange multipliers and the pressure trace 182
5.3.3 Full solution procedure with hybridization 185

Initialization of the dynamical core 186
Semi-implicit procedure . 186

5.3.4 Static condensation procedure and iterative solver 187
5.4 Numerical results . 189

5.4.1 Non-hydrostatic gravity waves in a periodic channel 190
5.4.2 Hydrostatic and non-hydrostatic mountain waves 190
5.4.3 Density current . 192
5.4.4 Non-orographic gravity waves on a small planet 197

Robustness against implicit Courant number 198
5.5 Chapter summary . 202

6 Summary and outlook 203
6.1 Summary and conclusions . 203

x

6.2 Further work . 204

Bibliography 206

xi

List of Figures

2.1 A hierarchy of models illustrating a successive application of various
approximations to yield simplified models. 8

2.2 Examples of two horizontal grids: a quasi-uniform cubed sphere mesh
(left) and traditional latitude–longitude grid (right). The polar sin-
gularity in the latitude–longitude mesh is clearly visible. Both grids
were directly accessed from the UK Met Office 2019 blog post, “Next
generation atmospheric model development” (Met Office, 2019). 23

2.3 The “C-grid” proposed by Arakawa and Lamb (1977), which shows
the finite difference staggering of the velocity u = (u, v, w), the pres-
sure p, and fluid density ρ. The velocity components (u, v, w) are po-
sitioned in the center of cell faces, while the pressure/density are col-
located in the center of the cell. 24

2.4 Illustration of the change-of-coordinates to and from the reference el-
ement (right triangle with vertices (0, 0), (1, 0), and (1, 0)). While
the diagram shows FK for triangular cells, constructing FK for general
polygons is straightforward. 29

2.5 Linear and quadratic Lagrange finite elements on simplicial cells. The
filled discs denote point-wise evaluations on specified locations on
the cell. Black discs denote degrees of freedom which couple to ad-
jacent cells and impose continuity; gray discs denote degrees of free-
dom which are associated with the cell only. 34

2.6 Linear and quadratic Lagrange finite elements on quadrilateral and
cube cells. 35

2.7 The lowest-order and next-to-lowest-order H(div) elements on sim-
plicial cells. The outward pointing arrows denote normal component
evaluations and the large shaded circles denote interior moment eval-
uations. The numerical values near the shaded circles display the total
number of interior degrees of freedom. 36

2.8 The BDMq element for orders q = 1 (left) and q = 2 (right) on trian-
gular cells. 37

2.9 The lowest-order and next-to-lowest-order H(div) elements on quadri-
lateral cells. Normal component evaluations are denoted by outward
arrows, and interior moments by the shaded gray circle. 38

2.10 The lowest-order and next-to-lowest-order H(curl) elements on sim-
plicial cells. The arrows along cell edges denote tangential compo-
nent evaluations, crossed arrows on the faces (in three-dimensions)
denotes evaluating the tangential components on faces, and the large
shaded circles denote interior moment evaluations. The numerical
values near the shaded circles display the total number of interior de-
grees of freedom. 40

2.11 The lowest-order and next-to-lowest-order H(curl) elements on quadri-
lateral cells. 41

xii

2.12 Constant and linear discontinuous Lagrange finite elements on sim-
plicial cells. Gray discs denote degrees of freedom which are associ-
ated with the cell only. 42

2.13 Constant and linear discontinuous Lagrange finite elements on cuboid
cells. 42

2.14 Change-of-coordinates transformation FK from the reference triangle
to a physical triangle on the surface of a sphere. Coordinates in refer-
ence space are mapped to physical space via x = FK(x̂). 45

2.15 A shared edge between two adjacent elements. The + and − restric-
tions denote the different sides corresponding to the direction of the
outward pointing normal vectors on the edge e. 49

2.16 The result of taking the tensor product of a P1(4) triangular Lagrange
element with a P1(I) interval Lagrange element. 57

2.17 A lowest-order H(curl) element on a triangular prism (Fig. 2.17C).
Here, the horizontal element (Fig. 2.17A) is constructed from U1

h =
RT1(4), the lowest-order Raviart-Thomas-Nédélec H(div) element
(rotated 90 degrees), and V0

h = P1(I). The vertical element (Fig. 2.17B)
is formed from the tensor product of U0

h = P1(4) with V1
h = dP0(I). . 58

2.18 A lowest-order H(div) element on a triangular prism (Fig. 2.18C). The
horizontal element (Fig. 2.18A) is constructed from U1

h = RT1(4),
and V1

h = dP0(I). The vertical element (Fig. 2.18B) is formed from the
product of U2

h = dP0(4) with V1
h = P1(I). 59

2.19 The result of taking the tensor product of a dP0(4) discontinuous
Lagrange element with a dP0(I) interval (discontinuous) element. . . . 59

2.20 Two commonly used vertical grids ((x, z) vertical slice) in atmospheric
modeling. The Lorenz grid in (2.20B) collocates the temperature, θ,
with the pressure, Π, and density, ρ, while the Charney-Phillips grid
(2.20A) collocates θ with the vertical component of the velocity, w. . . . 61

2.21 The lowest order and next-to-lowest order spaces for the Wθ
h finite

element in three-dimensions. 63

3.1 Two-cell diagrams of H(div) finite element space and its discontin-
uous counterpart. Blue degrees of freedom are shared topologically
between adjacent cells. Gray degrees of freedom are associated with
the cell only. 71

3.2 Mass matrix global sparsity patterns for the U1
h and Û1

h operators.
Note that the Û1

h mass matrix is block-diagonal, similar to the mass
operator in U2

h . 72
3.3 Trace elements on triangular and quadrilateral cells of degree q = 0

and q = 1. All degrees of freedom are topologically associated with
each edge separately; there is no continuity across vertices. 73

3.4 A global discontinuous trace space of lowest-order (q = 0) on a trian-
gular mesh. 73

3.5 Global sparsity patterns for the original discretization and the corre-
sponding hybridizable system on mesh consisting of eight triangular
cells. The block-structure in 3.5B is a direct consequence of our choice
in finite element spaces (the global matrix has been reordered in such
a way that the degrees of freedom X are organized by cell). 77

3.6 A shared edge between two adjacent elements K+ and K−. The tan-
gential normal vectors on the edge e are constructed by rotating (90
degrees) the outward normal vectors on e. 94

xiii

3.7 Grid consisting of three regular refinements of an icosahedra, viewed
looking down on the North pole. The tessellation shown here is con-
structed from flat (linear degree) triangular cells. 99

3.8 A log-log plot of normalized L2 errors versus the average cell reso-
lution ∆x. As the resolution is refined, we approach second-order
convergence as expected. 102

3.9 The topography field in meters, with a peak centered at latitude φc =
π
6 and longitude λc = −π

2 . 103
3.10 Snapshots (view from the northern pole) from the isolated mountain

test case. The depth field (m) at days 5, 10, and 15. The snapshots
were generated on a mesh with 20, 480 simplicial cells, a BDM2 × dP1
discretization, and ∆t = 450 seconds. 104

3.11 Snapshots of the potential vorticity (with velocity fields outlined). The
magnitudes of the vorticity range between −3× 10−8 (blue) and 3×
10−8 (red). 105

3.12 An 8× 8× 8 cubed sphere grid (3.12A) and a uniformly extruded grid
with 5 vertical layers (3.12B). 106

3.13 An illustration of the degrees of freedom (d.o.f.) for w ∈ W2,vert.
h ,

θ ∈ Wθ
h , and Πh ∈ W3

h in a single column C with two levels. The
vertical element W2,vert.

h corresponds to the vertical component of a
Raviart-Thomas-Nédélec element of order q = 2. The element Wθ

h is
the scalar version of W2,vert.

h and W3
h is a dQ1 element. 109

3.14 A vertical velocity element is shown in 3.14A with normal compo-
nents on the horizontally-aligned facets belonging to Q1(e). The cor-
responding trace element on the horizontal facets is shown in 3.14B. . 111

4.1 The Firedrake tool-chain illustrating the composition of abstractions
and the separation of concerns that this creates. Interface layers are
represented in red, whereas tools adopted from the PETSc and FEn-
iCS projects are in green and blue respectively. PyOP2 objects for con-
trolling the movement of data on unstructured meshes are in brown.
Code-generation layers are in grey, and the execution platform on
computer hardware is shown in orange. This an updated diagram
based on Rathgeber et al. (2017, Figure 1). All frameworks in red,
grey, and brown are directly maintained by the Firedrake Project. The
frameworks in blue are maintained cooperatively by both the Fire-
drake and FEniCS projects. 120

4.2 The Slate language wraps UFL objects describing the finite element
system. The resulting Slate expressions are passed to a specialized
linear algebra compiler, which produces a single “macro" kernel as-
sembling the local contributions and executes the dense linear algebra
represented in Slate. The kernels are passed to the Firedrake’s PyOP2
interface, which wraps the Slate kernel in a mesh-iteration kernel. Par-
allel scheduling, code generation, and compilation occurs after the
PyOP2 layer. 130

4.3 Comparison of continuous Galerkin and LDG-H solvers for the model
three-dimensional positive-definite Helmholtz equation. 152

4.4 Break down of the CGk and HDGk−1 execution times on a 6 · 643 sim-
plicial mesh. 153

xiv

4.5 Buoyancy perturbation (y − z cross-section) after t = 3600 seconds
from a simple gravity wave test (∆t = 100 seconds). The equations
are discretized using the lowest-order RTCF1 method, with 24,576 tri-
angular cells in the horizontal and 64 extrusion levels. The velocity-
pressure system is solved using hybridization. 164

4.6 Number of Krylov iterations to invert the Helmholtz system using an

exact application of H̃
−1

as a preconditioner. While the lowest-order
methods grow slowly over the Courant number range, the higher-
order (by only one approximation order) methods quickly degrade
and diverge after the critical range λC = O(2)–O(10). At λC > 32,
the solvers take over 150 iterations. 166

4.7 Courant number parameter test run on a fully-loaded compute node.
Both figures display the hybridized solver for each discretization, de-
scribed in Table 4.6. The left figure (4.7A) displays total iteration count
(preconditioned GCR) to solve the trace system to a relative tolerance
of 10−5. The right figure (4.7B) displays the relative work of each
solver. Figure 4.7B takes into account not just the time-to-solution of
the trace solver, but also the time required to forward eliminate and
locally recover the velocity and pressure. 167

5.1 A diagram illustrating the decomposition of the boundary of a prod-
uct cell into horizontally- and vertically-aligned facets. The cell K is
the result of taking the product of a triangle 4 and an interval I. An
identical decomposition of facets can be made for any arbitrary prod-
uct cell. 173

5.2 Evolution of the potential temperature perturbation δθh for the non-
hydrostatic gravity wave test in a periodic channel. Counters are
shown in Figure 5.2B ranging from [−1.5× 10−3, 3.0×−3] in intervals
of 5× 10−4 K. 191

5.3 The vertical velocity perturbation for the hydrostatic mountain wave
test at t = 15000s (Figure 5.3A) and the vertical velocity perturbation
for the non-hydrostatic test case at t = 9000s (Figure 5.3B). Contours
in the hydrostatic vertical velocity range from [−4× 10−3, 4× 10−3]
m/s, with intervals of 5× 10−4 m/s centered around the 0 contour.
For the non-hydrostatic case, contours range from [−4.8× 10−3, 4.8×
10−3] in intervals of 6× 10−4 m/s . 193

5.4 The temperature perturbation at t = 0s (5.4A), and t = 900 s (5.4B). A
solid line is plotted at x = 25600m, the mid-point of the domain. The
solution remains symmetric about the origin throughout the simula-
tion (∆x = 50 m). 194

5.5 The velocity field at t = 900 s with a solid line plotted at x = 25600m
(∆x = 50 m). 195

5.6 The potential temperature perturbation (t = 900 s) at the coarser res-
olutions: ∆x = 800m and 400m. The vertical line denotes the front
location at the finest resolution: x = 40237m (14637 m from the cen-
ter). Contours range from −9 to −1 K in intervals of 1 K. 195

5.7 The potential temperature perturbation (t = 900 s) at the finest res-
olutions: ∆x = 200m, 100m, and 50m. The vertical line denotes the
front location at the finest resolution solution: x = 40237m (14637 m
from the center). Contours range from −9 to −1 K in intervals of 1 K. 196

xv

5.8 Plots of the potential temperature perturbation at t = 0 s and t = 3000
s for the non-orographic gravity wave test on a condensed planet. . . 197

5.9 Number of Krylov iterations to invert the trace system versus hori-
zontal Courant number for AMG(Kgmres(k)) (5.9A) and AMG(R(k))
(5.9B). Flexible GMRES is used as the outer solver for the trace system
and terminates when the residual is reduced by a factor of 106. 201

xvi

List of Tables

2.1 Scaling analysis of the terms in equation (2.98). The order 1 terms cor-
respond to the geostrophically balanced part of the flow. The remain-
ing terms are determined by orders of Ro and Ro2. Equation (2.99) is
obtained by neglecting the smallO(Ro2) terms and observing that the
order 1 terms cancel due to equation (2.91). 22

2.2 Summary of the construction of tensor product elements in three-
dimensions, using the finite element complexes (2.225) and (2.226).
This is a modification of Table 2 by McRae et al. (2016). The first two
columns denote the pairs of function spaces from which the tensor
product element is constructed. The modifiers HCurl and HDiv ensure
the resulting finite element has the appropriate shape (vector-valued)
and reference cell mapping (covariant/contravariant Piola transform).
Tensor product elements with no modifier and an “identity” mapping
are scalar-valued elements with pullbacks consisting of only a change-
of-coordinates transformation. 60

3.1 Summary of the hybridizable variants of well-known mixed finite el-
ement methods: the Raviart-Thomas method on simplices (RT), the
Brezzi-Douglas-Marini method on simplices (BDM), and the RT method
on quadrilaterals (RTCF). 75

3.2 Grid properties for the four grids used in the solid body convergence
test, including the number of degrees of freedom for the fluid velocity
uh and depth Dh, along with the time-step used. 101

3.3 Normalized L2 depth and velocity errors, and the estimated rates of
convergence are shown at day 5 for the solid body rotation test. 101

4.1 Breakdown of the raw timings for the HDGk−1 (τ = 1) and CGk meth-
ods, k = 2, 3, and 4. Each method corresponds to a mesh size N = 64
on a fully-loaded compute node. 154

4.2 The number of unknowns to be determined are summarized for each
compatible finite element method. Resolution is the same for both
methods. A time-step size ∆t = 100 seconds is prescribed for both
compatible finite element methods. 155

4.3 Preconditioner solve times for a 25-step run with ∆t = 100s. These are
cumulative times in each stage of the two preconditioners throughout
the entire profile run. We display the average iteration count (rounded
to the nearest integer) for both the outer and the inner Krylov solvers.
The significant speedup when using hybridization is a direct result of
eliminating the outer-most solver. 157

4.4 Breakdown of the cost (average) of a single application of the precon-
ditioned flexible GMRES algorithm and hybridization. Hybridization
takes approximately the same time per iteration. 157

xvii

4.5 Vertical and horizontal spaces for the three-dimensional compatible
finite element discretization of the linear Boussinesq model. The RTk
and BDFMk+1 methods are constructed on triangular prism elements,
while the RTCFk method is defined on extruded quadrilateral elements.160

4.6 Grid set up and discretizations for the acoustic Courant number study.
The total unknowns (velocity and pressure) and hybridized unknowns
(broken velocity, pressure, and trace) are shown in the last two columns
(millions). The vertical resolution is fixed across all discretizations. . . 165

5.1 Finite element spaces defining the vertical and horizontal complexes
outlined in this section. Separate degrees may be used in the hori-
zontal vertical spaces. This permits the use of higher-order vertical
discretizations, for example. 172

5.2 Model parameters used in Gusto for the vertical slice examples. The
identifiers are listed as the following: NHGW - Non-hydrostatic Grav-
ity Wave; NHMW - Non-hydrostatic Mountain Wave; HMW - Hydro-
static Mountain Wave; DC - Density Current. Resolution in x and
z directions are provided, along with the time-step size used, com-
putational domain, background state, surface temperature Tsurf., and
background velocity U. For all test cases, the surface pressure is fixed
at psurf. = 1000 hPa. 189

5.3 Maximum and minimum values of δθh after 900 seconds across vari-
ous resolutions. 194

5.4 Vertical and horizontal spaces for the semi-implicit hybridizable sys-
tem for the Euler equations, as well as total degree of freedom count
(broken velocity, density, and Lagrange multipliers). 198

2

1 Introduction

Computational science and engineering has emerged as a powerful tool for scien-
tific inquiry, industrial manufacturing, and predictive technologies. Often referred
to as “the third pillar” of the scientific method, the use of computer simulations of
complex physical systems has accelerated our understanding of natural phenomena
which would otherwise be impossible to directly reproduce in a laboratory setting.
Such examples include large-scale geophysical flows (atmosphere and ocean circula-
tion) and the rheology of the Earth’s interior (mantel convection). A driving force be-
hind the advancement in both computational power and robust numerical methods
is the need to efficiently simulate systems which contain a vast range of dynamics,
from the smallest scales (atomic and molecular) to the continuum level (solid-bodies
and fluids). What many of these physical systems share is their representation as
a system of tightly-coupled partial differential equations, derived from constitutive
relations and physical laws (conservation of mass, momentum, and energy).

For weather and climate in particular, the benefits of improving our existing com-
putational models translates across many facets of scientific research, governmental
policy development, and the private sector. Having more accurate forecasts and
climate projections in a timely-manner leads to a better understanding of the future-
state of our own planet; leaders in government can make informed policy decisions
driven by scientific-understanding; and business users from both insurers and the
energy-sector can quantify risks associated with natural disasters driven by weather
and climate.

Interest in simulating large-scale atmospheric dynamics on next-generation super-
computers has galvanized a massive effort around the globe to design new numer-
ical methods capable of producing more accurate forecasts under strict operational
time constraints. More accurate simulations (meaning more grid-points or degrees
of freedom) directly implies the use of more computational power in order to meet
scientific and industrial demands. For high-resolution (high-detail) models to be
run in the same wall-clock time (execution time on a computer) or less, the numer-
ics must be able to make efficient use of increasingly more parallel supercomputers.
This is due to the fact that recent trends in modern super-computing systems opt
for an increase in on-chip parallelism rather than processor speed. In other words,
processing power is obtained by increasing parallel efficiency.

The previous generation of numerics depends on structured, orthogonal meshes
(latitude-longitude) which suffer from the “pole problem”: as model resolution is
increased the resolution converges to a singularity at one or more special points on
the grid. This leads to a breakdown of parallel scalability as a result of increased
processor communication at the poles. The current dynamical core of the UK Met
Office, ENDGame (Wood et al., 2014; Thuburn, 2016), has managed to extend its
scalability on latitude-longitude grids by changing how variables are stored at the
poles. However, this is not sustainable in the long-term. Recognizing this, the Met

Chapter 1. Introduction 3

Office/NERC/STFC UK dynamical core project, codenamed “Gung-Ho,” was estab-
lished. The project was tasked with finding suitable numerical discretizations that
can be used on psuedo-uniform grids (avoiding the pole problem entirely) while
maintaining the desired numerical properties of ENDGame that made it one of the
most accurate numerical models in the world.

This effort has resulted in adopting the framework of “compatible” finite element
methods (Cotter and Shipton, 2012; Cotter and Thuburn, 2014; Natale, Shipton, and
Cotter, 2016; Shipton, Gibson, and Cotter, 2018). These special variations of tradi-
tional mixed finite element methods are grounded in a deep and rigorous mathe-
matical framework which generalizes the numerics of ENDGame to more general,
psuedo-uniform computational grids. The resulting new dynamical core in devel-
opment, known as “LFRic” (in honor of Lewis Fry Richardson), is the culmination of
extensive research through the Gung-Ho project and the application of compatible
finite elements to large-scale geophysical systems (Adams et al., 2019). With this in
mind, compatible finite element shows great promise.

Strong scalability (decrease in execution time per time-step as the number of pro-
cessors increases for a fixed-size problem) is promising. However, the overall time-
to-solution needs to be reduced dramatically to meet the operational constraints.
At each time-step, a mixed saddle-point system coupling the prognostic variables
(wind speed, density, temperature, and pressure) must be solved. For staggered
finite difference methods employed by the UK Met Office model ENDGame, the
saddle-point system is avoided by performing point-wise eliminations to arrive at an
elliptic pressure-correction equation for which efficient methods are known (Müller
and Scheichl, 2014). This is a challenge within finite element discretizations, as the
saddle-point system cannot be decoupled in this manner and requires computation-
ally expensive numerical algorithms to solve. This ultimately forms the computa-
tional bottleneck of the new dynamical core. Despite the elegant mathematics of
compatible finite elements, the search for better solution algorithms for the complex
discrete systems arising from such methods is far from over.

Fortunately, the problem of solving discrete systems arising from complex physi-
cal processes is nothing new. Engineers have been working on this problem for
decades, long before finite element methods became popular for computational fluid
dynamics. During the inception of the finite element method, previously known as
the “framework method,” (Hrennikoff, 1941) it was a numerical process for relating
stress and strain from constitutive laws in continuum mechanics and structural en-
gineering. The realization made by Courant (1943) brought the modern notion of a
“mesh”: a collection or cells or “elements” in which PDEs can be discretized over.

Throughout the 1950s and 1960s, the modern interpretation of the “finite element
method” was realized due to the contributions of Argyris (1955), Clough (1960), and
Zienkiewicz and Cheung (1965). As computers advanced, interest in more efficient
computational methods became more of a priority. This lead to the co-developments
of Guyan (1965) and Irons (1965), where they realized that certain discrete systems
arising from finite element discretizations can be algebraically manipulated to pro-
duce condensed systems. This procedure is now known as static condensation: the
process of eliminating unknowns to produce a smaller global linear system.

De Veubeke (1965) proposed the first application of static condensation to a mixed
system derived from an elasticity model. Due to the strong coupling between un-
knowns, he introduced Lagrange multipliers on cell interfaces which imposed the

4 Chapter 1. Introduction

coupling conditions independently. This de-coupled the original unknowns, al-
lowing for the static condensation of all but the variables lying on cell boundaries.
Considered an “implementation trick” at the time, the method was rediscovered
by Arnold and Brezzi (1985) for the mixed formulation of elliptic equations. They
showed that the solutions of the “hybrid” formulation with the Lagrange multi-
pliers coincides with the solutions of the original mixed problem. This reformula-
tion became what is known today as hybridization. Rigorized further by Cockburn
and Gopalakrishnan (2004) and Cockburn, Gopalakrishnan, and Lazarov (2009), the
hybridization technique can permit the transformation of indefinite saddle-point
systems into condensed elliptic equations on cell boundaries. The eliminated un-
knowns can then be recovered by solving small linear systems in each mesh cell.

In this dissertation, we investigate the application of hybridization techniques to
the compatible finite element discretizations of geophysical models. While we ap-
ply many of the same arguments and methods to derive hybridizable formulations,
we explore the use of hybridization as a method of preconditioning mixed equa-
tions, an alternative to standard solution methods for saddle-point systems like the
Schur-complement approach (Benzi, Golub, and Liesen, 2005). Ultimately, we aim to
develop a new hybridization method for the systems which appear in semi-implicit
linearizations of the compressible atmospheric equations.

1.1 Thesis statement

The hybridization of compatible finite element discretizations provides a promising
mechanism for the efficient solution of the saddle-point systems arising from atmo-
spheric models.

1.2 Technical contributions

The novel technical contributions presented in this dissertation includes:

• Analysis of the discrete system arising from the hybridization of a simplified
geophysical model: the linear rotating shallow water system. A characteriza-
tion theorem for the solution of the hybridizable mixed finite element method
is presented which reveals important properties of the discrete operator arising
from static condensation. The analysis mirrors standard arguments from Cock-
burn and Gopalakrishnan (2004) and Cockburn, Gopalakrishnan, and Lazarov
(2009), which has previously been applied to simplified elliptic systems.

• Two new hybridizable methods: one for the discretization of the hydrostatic
pressure equation, and another for a linear compressible model.

• A domain-specific language, known as “Slate,” for the symbolic representa-
tion of dense linear algebra on the element-wise systems appearing from finite
element discretizations.

• A domain-specific compiler for the Slate language which translate the sym-
bolic linear algebra operations into compiled C++ code.

• Implementations of preconditioners utilizing the Python-interface to PETSc
(Balay et al., 1997): petsc4py (Dalcin et al., 2011). These preconditioners use

1.3. Dissertation outline 5

the Slate language and its compiler to automate the hybridization and static
condensation of suitable finite element discretizations.

• Lastly, a new hybridization technique is presented for the linearized systems
appearing in semi-implicit discretizations of the compressible atmospheric us-
ing compatible finite elements.

1.3 Dissertation outline

This dissertation is structured as follows.

• Chapter 2 provides a range of background material for the topics covered in
subsequent chapters. This includes the following:

– An overview of geophysical fluid dynamics relevant for the atmospheric
dynamical core research. This will be presented as a hierarchy of mod-
els of varying complexity, starting from the full compressible atmosphere
model (rotating Euler equations) down to a simplified two-dimensional
shallow water system.

– A summary of desirable numerical properties for atmospheric dynamical
cores is presented to further motivate the use of “compatible” methods.

– Background on the finite element method. Specifically, various element
families are defined which are particularly relevant for the compatible
finite element framework.

– We end by summarizing compatible finite element discretizations for two-
and three-dimensional systems. Moreoever, we discuss the construction
of tensor-product finite element systems, which exploits the structure of
standard atmospheric meshes.

• In Chapter 3, we introduce the hybridization technique for simplified atmo-
spheric models, starting with the shallow water system. Analysis is provided
for the hybridizable formulation which characterizes both the derivation and
construction of the “hybridized” system. We also introduce the reader to a
quasi-Newton/Picard method for solving the nonlinear shallow water system
and how hybridization fits within that. We then apply the method to standard
test cases on the sphere. The chapter concludes by providing two new hy-
bridizable formulations of the hydrostatic pressure equation and a simplified
three-dimensional gravity wave system.

• Chapter 4 centers around the Firedrake Project (www.firedrakeproject.org), an
automatic code-generation library for finite element methods. We present an
original contribution in the form of software, which enables the rapid imple-
mentation of hybridization and static condensation solvers. This is accom-
plished through the use of domain-specific abstractions and compilers for au-
tomatic code-generation. We further argue that the hybridization of mixed
methods (and static condensation in general) can be interpreted as precondi-
tioners for solving certain linear systems. Preconditioner interfaces composing
with the PETSc solver library (Balay et al., 2016) are detailed as well. Nu-
merical examples are provided demonstrating composability, correctness, and
performance.

www.firedrakeproject.org

6 Chapter 1. Introduction

• In Chapter 5, we apply the methods of previous chapters to derive a new
hybridization method for the quasi-Newton/Picard linearization of the Euler
equations. We introduce Gusto (www.firedrakeproject.org/gusto/), a compat-
ible finite element dynamical core built on top of Firedrake, and summarize
how the hybridization method is used within a finite element dynamical core.
Standard test cases for atmospheric dynamical cores are presented for model
verification. We then conclude with remarks on iterative solvers for the result-
ing multiplier system and provide a three-dimensional test.

• Chapter 6 will summarize our results and discuss open questions and avenues
for future research.

1.4 Dissemination

The work that will be presented in this dissertation has already been disseminated
through journal publications, preprints, conference presentations, seminar talks, ex-
ternal collaboration (UK MET Office), a monograph with Springer-Verlag, and as an
implementation in open-source software through the Firedrake Project (Rathgeber
et al., 2017). Here, we summarize the various works that contribute to content of
this dissertation.

Two scientific papers (one published and one in-review) contribute to core content
in the dissertation:

• Shipton, Gibson, Cotter (2018), Higher-order compatible finite element schemes for
the nonlinear rotating shallow water equations on the sphere (Shipton, Gibson, and
Cotter, 2018).

• Gibson, Mitchell, Ham, Cotter (2019), Slate: extending Firedrake’s domain-specific
abstraction to hybridized solvers for geoscience and beyond (Gibson et al., 2019b).

The monograph, accepted for publication in the 2019 Springerbrief series in the
Mathematics of Planet Earth, is the culmination of several contributions based on
the research conducted in this dissertation:

• Gibson, McRae, Cotter, Mitchell, Ham (2019), Compatible finite element methods
for geophysical flows: automation and implementation using Firedrake (Gibson et al.,
2019a).

This Springerbrief is a pedagogical overview of simulating geophysical flows. The
book introduces concepts and key results for building compatible finite element dis-
cretizations of geophysical flow equations. An extensive portion of the book is de-
signed to demonstrate how to use Firedrake to design, build, and execute geophys-
ical models. Discussions on building efficient solvers and utilizing hybridization is
also included. Therefore, some of its content will provide some background and
examples for this dissertation.

7

2 Preliminaries

2.1 Hierarchy of geophysical models

The first computer weather forecast on the ENIAC (one of the world’s first digital
computers) by Charney, von Neumann and co-workers solved a single-layer quasi-
geostrophic model (Lynch, 2008).1 Subsequently, as computer power increased, it
became possible to move up the hierarchy, making fewer model approximations in
more numerically intensive calculations. Numerical weather predictions were made
with multilayer shallow water models, hydrostatic compressible Euler models, and
finally the non-hydrostatic compressible Euler models which represent the state of
the art today (Kalnay, 2002; Bauer, Thorpe, and Brunet, 2015; Staniforth and Wood,
2008). Model hierarchies are also very useful in the development of numerical mod-
els. One can move down the hierarchy to isolate specific aspects of the model to
examine their numerical treatment in a less computationally intensive setting, and
then move back up to use this insight. In the development of atmospheric dynam-
ical cores, it is very standard to start with the shallow water equations to focus on
horizontal discretisation aspects before moving up the hierarchy.

The hierarchy of models we will build up in this chapter is shown in Figure 2.1.
This is just one choice of hierarchy, since for example one can apply the hydrostatic
approximation directly to the compressible Euler equations without making Boussi-
nesq/anelastic approximations. Similarly, we do not consider quasi-geostrophic
models which are valid for rapidly rotating systems; these approximations can be
made at any step of our hierarchy.

2.1.1 The compressible Euler system

We start by presenting the compressible Euler equations, which have the fewest ap-
proximations within our hierarchy. Before we present the full equations of motion,
we introduce the notion of a material derivative. That is, the time rate of change of
some field following the motion of a fluid.

Given some velocity field u, we denote the material derivative by d
dt . For a field F,

dF
dt is given by the instantaneous time rate of change of F, plus a contribution from
the spatial variation of F as a result of being moved by u,

dF
dt

:=
∂F
∂t

+ (u · ∇) F. (2.1)

If the material derivative is zero, then the field is materially conserved following the
motion of the fluid.

1The quasi-geostrophic model is an approximation that filters out acoustic and internal gravity
waves, hence allowing a larger time-step. This made the computations feasible on the ENIAC.

8 Chapter 2. Preliminaries

Governing equations:
Full, three-dimensional compressible Euler system.

Boussinesq/anelastic:
Assumption: small variations in density.

Impact: no acoustic waves.

Hydrostatic:
Assumption: fluid is in a thin layer.

Impact: No vertical acceleration term, vertical veloc-
ity becomes diagnostic from the continuity equation.

Shallow water system
Assumption: columnar motion (horizon-

tal velocity is independent of height).
Impact: equations become two-dimensional, prognos-
tic variables are horizontal velocity and layer height.

FIGURE 2.1: A hierarchy of models illustrating a successive application of various approxi-
mations to yield simplified models.

For global atmospheric models, the choice of domain is typically a spherical annulus
in R3 with radius R = 6, 371 km and a uniform height ranging between 70− 100 km.
For regional or vertical slice simulations, the equations are defined in a Cartesian
box. We assume that the air is dry (no moisture), inviscid (no viscous forces), and
adiabatic (no sources or diffusion of temperature). The governing equations for a
dry, inviscid, adiabatic, compressible fluid in a rotating reference frame with angular
velocity Ω may be written in the form

du
dt

+ 2Ω× u = −1
ρ
∇p−∇Φ, (2.2)

∂ρ

∂t
+∇ · (uρ) = 0, (2.3)

dθ

dt
= 0, (2.4)

p = P(ρ, T), (2.5)

where u = (u, v, w) is the fluid velocity, ρ is the fluid density, p is the pressure, and
Φ is the geopotential comprising the gravitational and centrifugal potentials (often
neglected as it is small compared to the gravitational potential). For our purposes,
we will only consider the case for a geopotential of the form Φ = gz, where g is
the acceleration due to gravity. We use the potential temperature θ, defined as the
temperature an air parcel would attain if moved adiabatically to a reference pressure

2.1. Hierarchy of geophysical models 9

pR. The ideal gas laws allow us to compute this explicitly:

T
pκ

=
θ

pκ
R

=⇒ θ = T
(

pR

p

)κ

, (2.6)

where pR is a chosen reference pressure, and κ = R/cp is the ratio of the gas con-
stant R and the specific heat at constant pressure cp. The pay-off for this rather com-
plicated formulation is that the potential temperature is constant along Lagrangian
trajectories in the absence of diabatic processes.

Equation (2.5) closes the system of equations by relating pressure to the other ther-
modynamic variables. In the case of the atmosphere, the equation of state for an
ideal gas is typically used, i.e.,

P(ρ, T) = ρRT. (2.7)

It is fairly common to use an alternative formulation of the pressure gradient term

1
ρ
∇p = cpθ∇Π, (2.8)

where Π is the Exner pressure given by the equation of state

Π =

(
Rρθ

pr

) κ
1−κ

. (2.9)

One of the reasons for making this change is that it is then fairly simple to incor-
porate the thermodynamic effects of moisture into the pressure gradient term. The
situation is more complicated in the case of the ocean, where the equation of state ad-
ditionally depends on salinity. In this dissertation, we shall concentrate on the dry
adiabatic case, but the techniques developed here are directly extensible to model
the moist atmosphere.

These equations also need boundary conditions. As is the case for atmospheric dy-
namical cores, we shall mostly restrict ourselves to slip boundary conditions u · n =
0 where n is the vector normal to the boundary. These are typically imposed on
the upper and lower boundaries (top/bottom surfaces of the spherical annulus or
Cartesian box). Another important boundary condition is the free surface boundary
condition, p = pA (where pA is an external reference pressure). In this case, the
boundary surface must move with the velocity u at the boundary.

We note for later that (2.3) is an expression of local mass conservation; integration
over a control volume V leads to

d
dt

∫
V

ρ dx +
∫

∂V
u · n dS = 0, (2.10)

where d
dt is the usual time derivative (not to be confused with the material derivative

d
dt) and n is the outward pointing unit normal vector to the boundary ∂V of V. This
shows that the rate of change of total mass in V is balanced by fluxes through the
boundary ∂V.

10 Chapter 2. Preliminaries

At this point, it is worth discussing various approximations to the Coriolis term
2Ω× u. For a model on the sphere, Ω is aligned with the polar axis and has the form

Ω = (0, Ω cos φ, Ω sin φ) , (2.11)

where Ω ≈ 7.2921× 10−5 rad/s is the angular rotation rate of the Earth, and φ is the
latitude. A common approximation is the traditional approximation, under which the
vertical part of this force is neglected (since it is small compared to the gravitational
force). For a coordinate system whose origin is at the center of the sphere, we write
r̂ = x/|x| for the unit vector pointing away from the origin. Then the traditional
approximation replaces the Coriolis term with

2Ω× u ≈ f r̂× u, (2.12)

where f = 2Ω sin φ. Under this approximation, the Coriolis term vanishes at the
equator and is maximal at the poles. We call f the Coriolis parameter.

For both mathematical simplicity and in the study of various models, a patch of the
planetary surface can further be approximated by a Cartesian plane that is tangent
at some longitude and latitude, λ0 and φ0 respectively. The motion can then be
expressed in local (x, y, z) coordinates centered at λ0 and φ0, using the relation (see
Vallis (2017, §2.3)):

(x, y, z) ≈ (R (λ− λ0) cos φ, R (φ− φ0) , z) , (2.13)

where R is the planet radius. We consider two common treatments of the Coriolis
parameter here.

1. f -plane approximation: f = f0 = 2Ω sin φ0 is taken to be constant-valued at a
given latitude φ0. This approximation is used frequently in the case of highly
idealized flows. A notable consequence is that Rossby waves, which depend
on variations in f , do not occur in models using this approximation.

2. β-plane approximation: Since f depends on variations in latitude, an f -plane ap-
proximation may not be appropriate when considering flows over large length
scales. The β-plane approximation improves on this by considering linear vari-
ations via a Taylor expansion around a given latitude φ0:

f = 2Ω sin φ = 2Ω sin φ0 + 2Ω (φ− φ0) cos φ0 + · · ·
≈ f0 + βy, (2.14)

where f0 is the Coriolis parameter at φ0, y = R (φ− φ0) is the distance in the
meridional (north-south directions) from φ0, and β = 2Ω cos φ0

R = d f
dy |φ0 is the

Rossby parameter.

Under the f - or β-plane approximations, the momentum equation (2.2) becomes

du
dt
− f v = −1

ρ

∂p
∂x

, (2.15)

dv
dt

+ f u = −1
ρ

∂p
∂y

, (2.16)

dw
dt

= −1
ρ

∂p
∂z
− g. (2.17)

2.1. Hierarchy of geophysical models 11

2.1.2 Anelastic and Boussinesq approximations

The next level down in our model hierarchy is distinguished by the lack of acoustic
waves that are present in the compressible Euler model. The anelastic approxima-
tion was first introduced in Ogura and Phillips (1962) to filter out acoustic modes
without needing to assume hydrostatic balance. It has since been well-studied and
modified (Durran, 1989; Durran, 2008). The approximation is based upon the as-
sumption that there are only small variations in density relative to a reference field.
We begin by writing

ρ = ρ̃ + δρ(x, t), (2.18)

where ρ̃ is a reference density field that only depends on the height (i.e., the radial
direction on the sphere or the z direction in the plane).

After noticing that ∂ρ̃
∂t = 0, we rewrite (2.3) as

∂δρ

∂t
+∇ · (uρ̃) +∇ · (uδρ) = 0. (2.19)

Since δρ is much smaller than ρ̃, we neglect those terms to obtain the anelastic conti-
nuity equation

∇ · (ρ̃u) = 0. (2.20)

We now consider the pressure gradient term under this approximation:

p = p̃ + δp(x, t), (2.21)

where p̃ is chosen such that it is the hydrostatic pressure corresponding to ρ̃, i.e.,
satisfying the balance equation

k̂ · ∇ p̃ = −gρ̃, (2.22)

where k̂ is the unit vector in the upward direction (either r̂ for the sphere or ẑ for
a planar geometry). In other words, the effects due to gravity are balanced by the
pressure gradient. We will revisit this in Section 2.1.3 in more detail.

After this choice, the combination of the pressure gradient and the gravity force
becomes

−∇p− gk̂ρ = −∇δp− gδρk̂. (2.23)

The momentum equation (2.2) is then

du
dt

+ 2Ω× u = −1
ρ
∇δp− g

δρ

ρ
. (2.24)

The anelastic approximation first replaces ρ with ρ̃ everywhere while leaving δρ in
the gravity term, and we get

du
dt

+ 2Ω× u = −1
ρ̃
∇δp− g

δρ

ρ̃
. (2.25)

In the case where ρ̃ is constant, say ρ̃ ≡ ρ0, we obtain the Boussinesq equations.
This is particularly relevant for ocean modeling, since the density in the ocean does
not deviate far from a constant reference value ρ0. The complete set of Boussinesq

12 Chapter 2. Preliminaries

equations are

du
dt

+ 2Ω× u = −∇ p̄− bk̂, (2.26)

∇ · u = 0, (2.27)
dθ

dt
= 0, (2.28)

b = B(θ), (2.29)

where p̄ = δp/ρ0, and B is an equation of state either derived from (2.5), or more
frequently, a linear approximation B(θ) = B0 + αθ, where B0 and α are constants.

Another useful modification leads to the compressible Boussinesq equations, in which
(2.27) is replaced by

∂p
∂t

+ c2∇ · u = 0, (2.30)

where c is an acoustic wave speed. Taking the limit c → ∞ recovers the standard
Boussinesq equations. This modification allows the introduction of compressibility
effects without the full nonlinear pressure gradient term of the compressible Euler
equations. This is particularly useful for testing implicit solver approaches in a sim-
plified setting.

To complete the anelastic approximation for non-constant ρ̃, we turn our attention
to just the vertical part of (2.25). With z as the coordinate in the vertical direction, we
have

dw
dt

= −1
ρ̃

∂δp
∂z
− g

δρ

ρ̃
= − ∂

∂z

(
δp
ρ̃

)
− δp

ρ̃

∂ ln(ρ̃)
∂z

− g
δρ

ρ̃
, (2.31)

where the latter equality comes from the chain rule. Recalling the definition of po-
tential temperature in (2.6), it can be shown using the ideal gas law that

cp ln(θ) = cv ln(p)− cp ln(ρ)− ln(R)− R
cp

ln(pR), (2.32)

implying that
δθ

θ
≈ 1

γ

δp
p̃
− δρ

ρ̃
, (2.33)

where γ = cp/cv and δθ denotes variations in potential temperature (Vallis, 2017,
§2.5). We can now eliminate δρ in the gravitational term of (2.31), using (2.32) and
(2.33) to get

dw
dt
≈ g

(
δθ

θ
− 1

γ

δp
p̃

)
− ∂

∂z

(
δp
ρ̃

)
+

∂

∂z

(
ln(θ)− 1

γ
ln(p̃)

)
δp
ρ̃

= g
δθ

θ
− ∂

∂z

(
δp
ρ̃

)
+

∂ ln(θ)
∂z

δp
ρ̃

, (2.34)

where the final equality in (2.34) is derived by applying (2.22). We now make a final
observation by recognizing that the term ∂ ln(θ)/∂z = θ−1∂θ/∂z actually defines a
length scale in potential temperature. In the atmosphere, the vertical length scale
in potential temperature (roughly 100 km) is much larger than the density vertical
length scale (about 10 km), so the last term in (2.34) can be neglected under the

2.1. Hierarchy of geophysical models 13

anelastic approximation. This gives us a vertical momentum equation of the form

dw
dt

= ba −
∂ p̄
∂z

, (2.35)

where ba = gδθ/θ is the anelastic buoyancy and p̄ = δp/ρ̃. The horizontal momen-
tum equations simplify in a far more direct manner by simply neglecting density
variations. The complete set of anelastic equations are given by the system

du
dt

+ 2Ω× u = bak̂−∇ p̄, (2.36)

∇ · (ρ̃u) = 0, (2.37)
dba

dt
= 0. (2.38)

These equations are similar in presentation to that of Ogura and Phillips (1962) and
Vallis (2017). However, various forms of the equations exist (often referred to as
pseudo-incompressible or modified-anelastic sets) such as the set proposed by Dur-
ran (1989).

Both the Boussinesq equations for the ocean and the anelastic equations for the at-
mosphere (together with the local Cartesian approximation) provide another level
of models which approximate the more general Euler equations. They do not permit
acoustic modes, and both have been very productive in limited applications, such as
large-eddy or localized flow simulations. However, particularly for the atmosphere,
they are not generally sufficient for global-scale circulation modeling. A more in-
depth discussion of the relative merits of different approximations for global-scale
modeling can be found in Davies et al. (2003).

2.1.3 Hydrostatic approximation

The hydrostatic approximation is valid under the assumption of a thin layer of fluid,
i.e., the equations are being solved in a domain of horizontal scale L and vertical
scale H, with H � L.2 Under this approximation, acceleration of the fluid velocity
in the vertical direction is neglected. We briefly mentioned the notion of hydrostatic
balance in (2.22). Here, we describe the conditions under which this approximation
is acceptable. Revisiting the vertical component of the momentum equation (2.36),
the hydrostatic approximation yields

dw
dt

+
∂ p̄
∂z

=
1
ρ̃

∂δp
∂z

= ba, (2.39)

where dw
dt = 0 is a consequence of the hydrostatic approximation. Using the anelastic-

Boussinesq equations as our example, we now derive the condition under which dw
dt

can be neglected in terms of length-scales.

We assume that the vertical velocity has a typical scale W, the horizontal velocity
has a typical scale U, and the time-scale of fluid movement is of the order L/U. We

2 This is a primary characteristic of atmospheric motion, as the dynamics is dominated by large-
scale horizontal motion.

14 Chapter 2. Preliminaries

write the advection equation (2.38) in the form

dHba

dt
+ wN2 = 0, (2.40)

where dHba
dt = ∂ba

∂t + uH · ∇ba and uH is the horizontal component of the velocity, and
N2 = − ∂ba

∂z is the Brunt–Väisälä frequency. Performing scaling analysis on (2.40)
gives

baU
L
∼WN2 =⇒ W ∼ baU

N2L
. (2.41)

If dw
dt � ba, then we have from (2.41) that

WU
L
� LN2W

U
=⇒ U2

LN2 � 1. (2.42)

Introducing the aspect ratio of the domain ε = H/L and the Richardson number
Ri = N2H2/U2, (2.42) implies that

ε2

Ri
� 1. (2.43)

This means that we can neglect the vertical component of the acceleration du
dt if the

aspect ratio ε is small or the Richardson number Ri is large. We call this the hy-
drostatic approximation. Under this approximation, we simply neglect the vertical
acceleration in the governing equations:

duH

dt
+ 2Ω× u = bak̂−∇ p̄, (2.44)

∇ · (ρ̃u) = 0, (2.45)
dba

dt
= 0, (2.46)

where uH = (u, v, 0).

The small-aspect ratio condition is a primary characteristic of atmospheric models.
Therefore, the hydrostatic approximation is not limited to the Boussinesq equations
and can be applied to, for example, the compressible Euler system in Section 2.1.1.
The result is very much the same; motion in the vertical direction is dominated by
the balancing effects of gravity and the pressure gradient, resulting in the vertical
component of (2.2) reducing to:

1
ρ

∂p
∂z

= −g. (2.47)

2.1.4 Single-layer rotating shallow water system

Thus far, we have consider three-dimensional models. Since the domains we are in-
terested in geophysical modeling typically have small aspect ratios (the atmosphere
is tens of kilometers high, but thousands of kilometers across), significant insight
into large scale behaviour can be obtained by considering vertically-integrated mod-
els.

One of the simplest vertically-integrated models is the single-layer rotating shallow
water equations. It allows for the analysis of flows under rotational effects within

2.1. Hierarchy of geophysical models 15

a relatively simple framework. It can be described as the culmination of all pre-
vious approximations mentioned in this section. That is, it describes a thin layer
of constant density (akin to the Boussinesq/anelastic approximation) in hydrostatic
balance. Under the shallow water approximation, we assume that the horizontal
velocity is independent of depth, i.e., the fluid is moving as vertical columns. Thus,
the system is inherently a two-dimensional approximation. The shallow water equa-
tions consider the case where the upper surface of the fluid is free, so the pressure is
constant there, and the surface moves at the speed of the total velocity uH + (0, 0, w).

We start by summarizing the continuity equation of a fluid with horizontal velocity
uH and variable depth D = D(x, y, t). In line with common notation for shallow
water models, we write u in place of uH (in a slight abuse of notation). This can
be derived from three-dimensional mass conservation. Since the fluid has constant
density, it is therefore incompressible and, in components, we have

∂w
∂z

= −
(

∂u
∂x

+
∂v
∂y

)
= −∇ · u, (2.48)

where ∇ = (∂x, ∂y, 0) now denotes the horizontal gradient. If we consider a vertical
column of fluid with bottom depth z = ηb and top z = ηt, integrating the left-hand
side of (2.48), using the fact that u is independent of z, and applying the fundamental
theorem of calculus gives∫ ηt

ηb

∂w
∂z

dz = w(ηt)− w(ηb) = −D∇ · u, (2.49)

where D(x, y, t) = ηt(x, y, t) − ηb(x, y). We assume that no mass is lost at the free
surface ηt. That is, no fluid crosses the surface (which is analogous to the ocean).
Therefore, we have

dηt

dt
= w(ηt). (2.50)

Similarly, the motion of the fluid must follow the bottom topography:

dηb

dt
= w(ηb). (2.51)

Using (2.50) and (2.51), (2.49) becomes

d
dt

(ηt − ηb) ≡
dD
dt

= −D∇ · u, (2.52)

resulting in the continuity equation for the shallow water system,

dD
dt

+ D∇ · u ≡ ∂D
∂t

+∇ · (uD) = 0. (2.53)

This equation has the same form as (2.3), with a different (but related) interpretation.
Here it describes conservation of the total volume of fluid beneath the free surface.

Momentum balance can be derived directly from the hydrostatic balance equation,
as previously discussed in Section 2.1.3,

∂p
∂z

= −ρg, (2.54)

16 Chapter 2. Preliminaries

and since ρ is assumed to be constant, we may vertically integrate (2.54) to obtain

p(x, y, z, t) = −ρgz + p0. (2.55)

At the top surface z = ηt = D + ηb, the pressure is determined by the weight of the
fluid above, which is assumed to be negligible. Therefore we set p(x, y, ηt) = 0. The
pressure inside the fluid layer is then

p(x, y, z, t) = ρg(D(x, y, t) + ηb(x, y, t)− z). (2.56)

Consequently, the horizontal pressure gradient is z-independent, with∇p = ρg∇(D+
ηb). Using this relation, together with the traditional approximation for the Coriolis
force, the u-component of the momentum equation becomes

du
dt
− f v = −1

ρ

∂p
∂x

= −g
∂

∂x
(D + ηb) , (2.57)

where f is the Coriolis parameter. Similarly, the v-component of the momentum
equation becomes

dv
dt

+ f u = −g
∂

∂y
(D + ηb) . (2.58)

Therefore, the rotating single-layer shallow water equations are

du
dt

+ f u⊥ = −g∇ (D + ηb) , (2.59)

∂D
∂t

+∇ · (uD) = 0, (2.60)

where we have introduced the notation u⊥ = k̂×u, a rotation of the two-dimensional
velocity u in the plane. No additional thermodynamic equations are needed to close
this system of equations, as thermodynamic effects were eliminated in the various
assumptions that led to this model.

To gain some further insight into these equations, we perform some further manip-
ulations to (2.59)–(2.60). Introducing the relative vorticity as the (two-dimensional)
curl of the fluid velocity: ζ = ∇⊥ · u, where ∇⊥ = k̂×∇, we can rewrite the mo-
mentum equation in vector-invariant form:

∂u
∂t

+ (ζ + f)u⊥ +∇
(

g(D + ηb) +
1
2
|u|2

)
= 0. (2.61)

Taking the two-dimensional curl (also called rot) of (2.61) produces the following
equation for the relative vorticity:

∂ζ

∂t
+ (u · ∇) (ζ + f) + (ζ + f)∇ · u = 0, (2.62)

where we have used the vector calculus identities ∇⊥ · ∇ ≡ 0 and

∇⊥ ·
(

ab⊥
)
= ∇ · (ab) = (b · ∇) a + a∇ · b, (2.63)

2.1. Hierarchy of geophysical models 17

for suitable scalar field a and vector b. Since the Coriolis parameter f is independent
of time, we can rewrite (2.62) as

d (ζ + f)
dt

= − (ζ + f)∇ · u. (2.64)

Now, using the continuity equation (2.53), we multiply both sides of the expression
by ζ + f and rearrange to obtain

− (ζ + f)∇ · u =

(
ζ + f

D

)
dD
dt

. (2.65)

Comparing (2.64) with (2.65) gives the relation

d (ζ + f)
dt

=

(
ζ + f

D

)
dD
dt

. (2.66)

Defining the shallow water potential vorticity q = ζ+ f
D , (2.66) can be further rewrit-

ten using the quotient rule to arrive at a transport equation for q:

1
D

d (ζ + f)
dt

−
(

ζ + f
D2

)
dD
dt

=
d
dt

(
ζ + f

D

)
=

dq
dt

= 0, (2.67)

implying that q remains constant and is materially conserved moving with the fluid
velocity.

In a boundary-free domain (such as surface of the sphere) or one with a rigid bound-
ary (Cartesian box with slip boundary conditions u · n = 0), the shallow water equa-
tions have a conserved total energy E, and mass M:

dE
dt

=
1
2

∂

∂t

∫
Ω

D|u|2 + g((D + ηb)
2 − η2

b)dx = 0, (2.68)

dM
dt

=
∂

∂t

∫
Ω

D dx = 0. (2.69)

To show energy conservation, we perform a sequence of algebraic manipulations of
both the momentum and continuity equations. First, multiplying (2.59) by u pro-
duces

d
dt

(
|u|2

2

)
+ gu · ∇ (D + ηb) = 0. (2.70)

Now we multiply (2.70) by D to arrive at

∂

∂t

(
D
|u|2

2

)
+∇ ·

(
uD
|u|2

2

)
+ gu ·

(
∇D2

2
+ D∇ηb

)
= 0, (2.71)

where we used the continuity equation and the resulting identity

D
dΨ
dt

=
∂DΨ

∂t
+∇ · (DΨu) , (2.72)

for some scalar-field Ψ. Equation (2.71) describes the evolution of the kinetic energy:
KE = D |u|

2

2 . The potential energy PE of the fluid is obtained by vertically integrating

18 Chapter 2. Preliminaries

the geopotential:

PE =
∫ D+ηb

ηb

gzdz =
1
2

g[(D + ηb)
2 − η2

b]. (2.73)

To derive an expression for the evolution of potential energy, we first multiply the
continuity equation by gD and use (2.72) to get

∂

∂t

(
gD2

2

)
+∇ ·

(
u

gD2

2

)
+

gD2

2
∇ · u = 0. (2.74)

Multiplying the continuity equation by gηb and adding the result to (2.74), we obtain
an equation for the evolution of the potential energy:

∂

∂t

(
1
2

g[(D + ηb)
2 − η2

b]

)
+∇ ·

(
uD
|u|2

2

)
+

gD2

2
∇ · u + gηb∇ · (Du) = 0. (2.75)

Adding (2.71) and (2.75) yields an evolution equation for the total energy: PE +
KE = 1

2

(
D|u|2 + g((D + ηb)

2 − η2
b)
)
,

∂

∂t
(PE + KE) = −∇ ·

(u
2
[D|u|2 + gD2]

)
− g[Du · ∇ηb + ηb∇ · (Du)]−∇ ·

(
u

gD2

2

)
= −∇ ·

[u
2
(

D|u|2 + gD2 + gD2)]− g∇ · (Dηbu)

= −∇ ·
[u

2
(

D|u|2 + gD2 + g[(D + ηb)
2 − η2

b]
)]

, (2.76)

or equivalently:
∂

∂t
(PE + KE) +∇ · F = 0, (2.77)

where F = u
2

(
D|u|2 + gD2 + g[(D + ηb)

2 − η2
b]
)

is the energy flux. Then, using
(2.77), integrating over the domain, and applying the divergence theorem, we see
that

dE
dt

=
∂

∂t

∫
Ω

PE + KE dx =
1
2

∫
Ω

∂

∂t
(

D|u|2 + g((D + ηb)
2 − η2

b)
)

dx

= −
∫

Ω
∇ · F dx = 0, (2.78)

which holds for when the fluid is bounded by rigid walls, with u · n = 0. In the
case where Ω is the surface of a sphere, the domain is a manifold with no boundary
(∂Ω is the empty set) and the resulting surface integral arising from the divergence
theorem evaluates to zero. Conservation of total mass in (2.69) can be verified via
direct computation and applying the divergence theorem.

Linearized shallow water equations

Sometimes, it is useful to linearize the shallow water equations. In the absence of
topography ηb = 0, a steady-state solution is a constant layer depth H at rest (u = 0).
Then the nonlinear fields u and D can be expressed in terms of small perturbations

2.1. Hierarchy of geophysical models 19

δu and δD around this state:

u(x, y, t) = δu(x, y, t), (2.79)
D(x, y, t) = H + δD(x, y, t). (2.80)

Substituting (2.79) and (2.80) into (2.59) and (2.60), the momentum and continuity
equations then become:

∂δu
∂t

+ (δu · ∇) δu + f δu⊥ = −g∇δD, (2.81)

∂δD
∂t

+ (H + δD)∇ · δu + δu · ∇δD = 0. (2.82)

After neglecting the second-order terms, we arrive at the linear equations:

∂δu
∂t

+ f δu⊥ = −g∇δD, (2.83)

∂δD
∂t

+ H∇ · δu = 0. (2.84)

It is easy to see that these equations conserve the linearized energy,

E =
1
2

∫
Ω

H|δu|2 + gδD2 dx, (2.85)

by direct calculation:

dE
dt

=
∫

Ω
Hδu · ∂δu

∂t
+ gδD

∂δD
∂t

dx,

=
∫

Ω
Hδu ·

(
−g∇δD− f δu⊥

)
− gδDH∇ · δu dx,

=
∫

Ω
−gHδu · ∇δD− gHδD∇ · δu dx,

=
∫

Ω
−gH∇ · (δDδu)dx,

= 0, (2.86)

using the divergence theorem as previously done for the nonlinear equations. A
similar computation can be done to show conservation of mass. We will return to
the linear system (2.83)–(2.84) in Chapter 3, as it is an ideal toy model for the intro-
duction of the solution methods outlined in this dissertation.

Shallow water waves on the f -plane

These equations provide the simplest system that exhibits the slow-fast separation
in geophysical fluid dynamics. To see this split, consider the f -plane approximation
(f ≡ f0, constant) with periodic boundary conditions. Differentiating the linear
mass conservation equation (2.83) in time produces:

∂2δD
∂t2 − gH∇2δD + H f

(
∂δv
∂x
− ∂δu

∂y

)
= 0, (2.87)

20 Chapter 2. Preliminaries

where we have used the momentum equation (2.84) and δu and δv denote the hor-
izontal components of δu in the x- and y-direction respectively. Then taking the
time-derivative of (2.87) and using the δu/δv components of (2.84), we arrive at

∂

∂t

(
∂2δD
∂t2 +

(
f 2 − gH∇2) δD

)
= 0. (2.88)

Equation (2.88) supports two main types of wave solutions. To see this clearly, we
substitute the wave ansatz in (2.88):

δD = Re(δD0)ei(k·x−ωt), (2.89)

where Re(δD0) denotes the real-part of the complex wave amplitude δD0, i is the
imaginary unit, x = (x, y), k = (k, l) is the horizontal wave number, and ω is the
wave frequency. This leads to a characteristic polynomial in terms of ω to determine
the dispersion relation:

ω
(
ω2 − f 2 − c2 (k2 + l2)) = 0, (2.90)

where c =
√

gH is the wave speed. Immediately, we can see two possible solution
branches.

“Slow” solutions arise when ω = 0; this corresponds to time-independent flows
which are in a state of geostrophic balance. That is, flows which have velocity δug =
(δug, δvg) (often referred to as the geostrophic wind), satisfying

f δu⊥g = −g∇δD. (2.91)

Such flows are divergence-free, and can be expressed as the curl of the stream func-
tion ψ = gδD/ f (hence δug = ∇⊥ψ and ∇ · δug = 0). The set of “fast” solutions
correspond to the dispersion relation:

ω2 = f 2 + c2 (k2 + l2) , (2.92)

which are known as Poincaré waves. Note that in the special case when (k2 + l2) �
f 2/c2, then the dispersion relation can be approximated by ω = f . Such waves are
called inertial oscillations, which corresponds to flows satisfying

∂δu
∂t
− f δv = 0,

∂δv
∂t

+ f δu = 0. (2.93)

That is, internal oscillations are described by flow velocities which are spatially con-
stant, unrestrained by the pressure gradient force, and oscillate with frequency f .
For more information and in-depth discussion on the slow-fast separation of shal-
low water waves, we refer the reader to Vallis (2017, §3.7). The important point to
keep in mind is that it is critical for the numerical scheme to maintain this slow/fast
separation at the discrete level.

Shallow water waves on the β-plane

When f = f0 + βy, the spatial variation in the Coriolis parameter introduces an ad-
ditional mechanism that results in slowly propagating divergence-free solutions. To
aid our discussion, we make the following definitions. We denote the time, length,

2.1. Hierarchy of geophysical models 21

and velocity scales by T, L and U respectively. Then the Rossby number is defined
as the ratio between inertial forces and the Coriolis force:

Ro =
U
f0L

. (2.94)

Now, we make the quasi-geostrophic assumptions (Vallis, 2017, §5.3):

1. The Rossby number is small: Ro � 1, i.e. the flow is in near-geostrophic
balance. More precisely, the fluid velocity takes the form: δu = δug + δuag,
where δug is the geostrophic wind satisfying (2.91), and δuag is the ageostrophic
wind, where

|δuag|
|δug|

∼
Uag

U
∼ O(Ro), (2.95)

where Uag is a velocity scale for the ageostrophic wind.

2. The scale of motion is not significantly larger than the Rossby deformation
radius:

L2

L2
D
∼ O(1), (2.96)

where LD =
√

gH/ f0 is the Rossby deformation radius. In a single-layer shal-
low water model, this is equivalent to variations in the depth being small com-
pared to the mean depth: |δD| � H. Note that this has implicitly been as-
sumed since we shall start from the linearized equations.

3. Linear variations in the Coriolis term are small: |βy| ∼ |βL| � | f0|. More
precisely:

βL
f0
∼ O(Ro). (2.97)

4. Time scales advectively. That is, the scaling for time is given as T = L/U.

Revisiting the momentum equation (2.83), we rewrite using δu = δug + δuag and
f = f0 + βy:

∂δug

∂t
+

∂δuag

∂t
+ f0δu⊥g + f0δu⊥ag + βyδu⊥g + βyδu⊥ag = −g∇δD. (2.98)

Performing scaling analysis of (2.98) (summarized in Table 2.1), we consider only
terms of order O(Ro) (order 1 terms cancel due to the geostrophic balance relation),
which yields:

∂δug

∂t
+ f0δu⊥ag + βyδu⊥g = 0. (2.99)

We perform a similar substitution for the linear mass conservation equation (2.84) to
arrive at

∂δD
∂t

+ H∇ ·
(
δug + δuag

)
=

∂δD
∂t

+ H∇ · δuag = 0, (2.100)

where the final equality in (2.100) comes from the fact that the geostrophic wind is
a divergence-free velocity field. Now we introduce (again) the stream function ψ =
gδD/ f0, with δug = ∇⊥ψ, to rewrite equations (2.98) and (2.100) as the following

22 Chapter 2. Preliminaries

TABLE 2.1: Scaling analysis of the terms in equation (2.98). The order 1 terms correspond
to the geostrophically balanced part of the flow. The remaining terms are determined by
orders of Ro and Ro2. Equation (2.99) is obtained by neglecting the small O(Ro2) terms and
observing that the order 1 terms cancel due to equation (2.91).

∂δug
∂t

∂δuag
∂t f0δu⊥g f0δu⊥ag βyδu⊥g βyδu⊥ag −g∇δD

U
T

Uag
T f0U f0Uag βLU βLUag f0U

T = L
U

U2

L
UUag

L f0U f0Uag βLU βLUag f0U

Scale by 1
f0U

U
f0L

Uag
f0L 1 Uag

U β L
f0

β
LUag
f0U 1

(2.95), (2.97) O(Ro) O(Ro2) 1 O(Ro) O(Ro) O(Ro2) 1

linear system:

∂∇⊥ψ

∂t
+ f0δu⊥ag + βy∇ψ = 0, (2.101)

f0

g
∂ψ

∂t
+ H∇ · δuag = 0. (2.102)

To derive our desired equation, we first take the two-dimensional curl (∇⊥·) of
(2.101) in order to obtain:

∂

∂t
∇2ψ + β

∂ψ

∂x
+ f0∇ · δuag = 0. (2.103)

And finally, we can use (2.102) to obtain

∂

∂t

(
∇2 − 1

L2
D

)
ψ + β

∂ψ

∂x
= 0. (2.104)

A dispersion relation for (2.104) can again be derived by substituting the wave ansatz,
ψ = Re(ψ0)ei(k·x−ωt), which leads to a single branch of solutions with a dispersion
relation given by:

ω

(
k2 + l2 +

1
L2

D

)
+ βk = 0 =⇒ ω =

−βk(
k2 + l2 + 1

L2
D

) . (2.105)

These are known as Rossby waves, which are waves whose restoring force is the
conservation of linear vorticity under y-variations in f (corresponding to the linear
term βy). These are propagating divergence-free solutions that are slow compared
to the unbalanced Poincaré waves on the f -plane. See Vallis (2017, §5.7) for a more
general overview of Rossby waves and their dispersion relations for both linear and
nonlinear models.

2.1.5 Numerical modeling of atmospheric flows

The use of computational models based on the numerical solution of PDEs to simu-
late physical processes is a powerful tool which complements experimentation, ob-
servation and theory. As the dynamics governing large-scale weather, ocean, and

2.1. Hierarchy of geophysical models 23

FIGURE 2.2: Examples of two horizontal grids: a quasi-uniform cubed sphere mesh (left) and
traditional latitude–longitude grid (right). The polar singularity in the latitude–longitude
mesh is clearly visible. Both grids were directly accessed from the UK Met Office 2019 blog
post, “Next generation atmospheric model development” (Met Office, 2019).

climate processes cannot be replicated in a laboratory, numerical simulation is often
the only mode of scientific inquiry available to researchers aiming to test, build, and
improve existing models. Here, we summarize some important developments in the
computational models used in large-scale atmospheric flows.

Structured orthogonal grids, such as the latitude–longitude grid (see Figure 2.2), are
among the most widely-used grids in global forecast and ocean circulation models.
Due to the convergence of the meridians at the poles, the resolution at or near the
poles are vastly different than the rest of the mesh. For an explicit time-integration
method with an Eulerian advection scheme, the Courant–Friedrichs–Lewy (CFL)
condition (Courant, Friedrichs, and Lewy, 1928), which controls the maximum the
time-step size given a particular resolution, imposes unbearably small time-steps for
model convergence. To circumvent this, semi-implicit time-integration combined
with semi-Lagrangian advection schemes (Staniforth and Côté, 1991; Williamson,
2007) are used to remove the severe time-step restriction. However, semi-implicit
time-integrators require the solution of a globally-defined elliptic PDE at every time-
step. Significant data communication among the grid points at the poles is required
and presents an inescapable computational bottleneck, as processor communication
is slow and can leave other processors waiting for data (Staniforth and Thuburn,
2011).

In contrast to typical engineering applications, where viscous and dissipative effects
combined with outflow boundary conditions can alleviate the catastrophic accumu-
lation of grid-scale errors, large-scale atmospheric modeling requires that the bal-
anced forces of the continuous equations are exactly captured in the discrete model.
The accurate and stable representation of large-scale force balances in a finite differ-
ence model demands a staggered variable arrangement, with pressure and velocity
unknowns stored at different locations on the grid. The canonical taxonomy of vari-
able staggerings for finite difference models is given in Arakawa and Lamb (1977).
In that nomenclature, finite difference atmosphere models almost exclusively use C-
grid staggering, as visualized in Figure 2.3. In this case, the components of velocity

24 Chapter 2. Preliminaries

w

w

w

(p, ρ)

(p, ρ)

v

v v

v

u

u

u

u

FIGURE 2.3: The “C-grid” proposed by Arakawa and Lamb (1977), which shows the finite
difference staggering of the velocity u = (u, v, w), the pressure p, and fluid density ρ. The
velocity components (u, v, w) are positioned in the center of cell faces, while the pressure/-
density are collocated in the center of the cell.

(u, v, w) are positioned in the mid-point/center of cell boundaries (facets), and scalar
variables like the pressure are stored in center of each cell.

In the context of horizontal discretizations, Staniforth and Thuburn (2011) consid-
ered a number of essential and desirable properties for an atmospheric dynamical
core (the component of the full numerical model which solves the dynamical equa-
tions), which motivate the choice of compatible finite element discretizations dis-
cussed in this thesis. These properties are as follows:

1. Mass conservation of both active (dry air) and passive fields (trace species).
This is desirable, but not essential for short-term weather prediction. It is more
important when considering long-term climate simulations.

2. Accurate representation of flow close to hydrostatic and geostrophic balance
is crucial. Slowly evolving, balanced flows should be accurately represented
upon discretization; failure to do so results in a spontaneous loss of balance.

3. Computational modes should be absent, or at the very least well-controlled. As
we have seen with the shallow water system in Section 2.1.4, after linearization
around some reference profile, the continuous equations will support a spec-
trum of wave modes. This is also true for the discretized equations. There-
fore, it is reasonable that the discrete wave modes will approximate those of
the continuous equations. However, in some cases the discrete modes behave
“unphysically” (zero frequency modes); we refer to these as “computational
modes.”

4. Grid imprinting should be minimal. Any non-uniform meshes will contain
grid regions which are locally different to the vast majority of the mesh. This
can lead to different error patterns, which may influence the resolved solution
by coupling through nonlinear terms. For example, the latitude–longitude grid
has very different structure at the poles (see Figure 2.2).

2.1. Hierarchy of geophysical models 25

5. The geopotential term and pressure gradient should not produce unphysical
sources of vorticity.

6. Terms involving the pressure should be energy conserving.

7. The discretization of the Coriolis force should be energy conserving.

8. Rossby waves should not propagate unrealistically fast.

9. Axial angular momentum should be conserved.

Properties (5)–(9) all rely on the discretization being “mimetic” in the sense that the
discrete equations should mimic the basic geometric properties of the continuous
system. In particular, discrete analogues of the calculus identities need to hold:

• ∇× (∇ψ) = 0, for a scalar function ψ.

• ∇ · (∇×ω) = 0, for a vector field ω.

• For a scalar field ψ and vector ω, then ∇ · (ψω) = ω · ∇ψ + ψ∇ ·ω.

These properties are all achievable with a finite difference C-grid staggering of the
dynamic variables (Arakawa and Lamb, 1977), and hence this lays down the gaunt-
let for other discretizations. Hence, maintaining these mimetic properties will be a
primary motivator for the use of compatible finite element methods.

There are two strong reasons why the latitude–longitude grid is used with the C-
grid. The first is that the latitude–longitude grid is formed from quadrilaterals. This
means that, globally, there are twice as many horizontal velocity values as pressure
(each cell contains one pressure value, and four horizontal velocity values that are
each shared with a neighbouring cell, so there are effectively two horizontal velocity
values per cell). This mirrors the physical situation where each point has two hori-
zontal velocity values and one pressure value, and helps to avoid spurious branches
in the linear solution. Using a mesh constructed from other polygons alters the
global ratio of velocity and pressure values. One possibility is to use triangular grids,
which allow a pseudo-uniform coverage of the sphere from icosahedral triangula-
tion, as used in the ICON model (Zängl et al., 2014), for example. With triangular
cells, the shortage of velocity values (the ratio is 3:2 instead of 2:1) means that when
f = 0 there are two branches of solutions to the Poincaré wave equation, one phys-
ical branch and one spurious branch. When f 6= 0, the situation is worse, with the
two branches intertwined so that for some parts of the spectrum, one branch is the
physical one, and for different parts of the spectrum, the other branch is unphysi-
cal. This issue causes serious problems when modeling the shallow water equations,
and is also observed when modeling baroclinic flows in three dimensions (Danilov,
2010; Gassmann, 2011).

The second reason is that the latitude–longitude is used is that it is orthogonal. An
orthogonal grid is one where the line joining the centres of two cells that share an
edge crosses that edge at right-angles. This is a critical part of the classical C-grid
formulation and was extended to arbitrary polygonal meshes in Ringler et al. (2010).
The extension to non-orthogonal grids was provided in Thuburn and Cotter (2012).

To avoid the parallel scalability issues of the latitude–longitude grid, one possibility
is to find other grids that cover the sphere in a more uniform manner. For the C-
grid, a couple options include the icosahedral grid (triangles) and the cubed sphere
(quadrilaterals) made by tiling the faces of a cube and deforming to a sphere (see
Figure 2.2). The icosahedral grid has the spurious Poincaré waves mentioned above.

26 Chapter 2. Preliminaries

The orthogonal version of the cubed sphere grid has a slightly less severe version
of the problem of the latitude–longitude grid, in that the ratio of the largest and
smallest cell areas goes to infinity as the mesh is refined, with clustering of grid
points around the cube vertices (Putman and Lin, 2007). The non-orthogonal cubed
sphere version of the C-grid was also demonstrated to be inconsistent in Thuburn,
Cotter, and Dubos (2014). Due to this inconsistency, The C-grid finite difference
discretization is not being considered for the new atmospheric model of the UK Met
Office (Adams et al., 2019).

In contrast, compatible finite element methods present a way of simultaneously sat-
isfying the properties listed above and avoiding polar singularities in the problem
domain (Cotter and Shipton, 2012; Cotter and McRae, 2014; Gibson et al., 2019a).
The mimetic properties can be obtained without relying on an underlying orthog-
onal mesh structure. This allows for the use of far more general meshes, includ-
ing the refined icosahedral sphere (triangular) and non-orthogonal cubed sphere
(quadrilateral) meshes. Furthermore, the number of velocity and pressure degrees
of freedom is less tightly coupled to the connectivity of the underlying mesh, and
the finite element method presents a systematic mechanism for constructing higher
order discretizations. This dissertation with focus purely on aspects of compatible
finite elements. As a result, we first review basic terms and concepts relevant for the
development of finite element discretizations.

2.2 Background on the finite element method

The finite element method (FEM) is one particular method for finding numerical
solutions to PDEs. The method was first proposed by engineers within the context
of solving structural analysis problems on complex domains, and its origins can be
traced back to the work of Hrennikoff (1941). A couple years later, Courant de-
veloped the idea of the minimization of a functional using linear approximations
over sub-domains, with values being specified at discrete nodes (Courant, 1943).
In essence, this seminal paper provides the rigorous underpinning of finite element
analysis (FEA), where approximation techniques are applied to solve variational for-
mulations of PDEs. Subsequent papers by Argyris, Clough, Zienkiewicz and Che-
ung develop the theory associated with the matrices which arise from these approx-
imation techniques (Argyris, 1955; Clough, 1960; Zienkiewicz and Cheung, 1965).
Due to the contributions of numerous authors throughout the 20th Century, the fi-
nite element method is a well-established and mathematically rigorous framework
for generating discrete algorithms for computing solutions to well-posed boundary
value problems.

For the purpose of this section, we assume some basic familiarity with FEM. How-
ever, we shall quickly present basic terminology and some universally less well-
known concepts which provides fundamental information for the rest of this disser-
tation.

2.2. Background on the finite element method 27

2.2.1 The finite element

We first define the notion of a finite element and a finite element space, which is the
fundamental backbone of describing discretizations of PDEs based on FEM. Follow-
ing Ciarlet (2002), the finite element is defined as the triple, (K, V,N), where

• K is a non-empty domain with a Lipschitz continuous boundary ∂K;

• V = V(K) is a finite dimensional space on K, with dim V = N, consisting of
real-valued functions; and

• N is a space of linear functionals over P. More precisely,N = {ni}N
i=1 is a basis

for the dual of V, V ′.

The space V is often referred to as the space of local shape functions. For most finite
element applications, V is simply taken to be an appropriate polynomial space of
a specified degree, commonly denoted as Pk(K) (polynomials of degree ≤ k). This
applies to vector-valued quantities as well, using instead the d-vector polynomial
space [Pk(K)]d. The setN are often referred to as the nodes (or degrees of freedom) of
a finite element. The nodes ni can take many forms depending on the type of finite
element and are defined on some geometric entity of K (vertices, edges, faces, cell
interiors). The choice of ni heavily depends on the desired smoothness properties of
the global approximation. We summarize below some common examples:

• (Point evaluation): v(x), x ∈ K.

• (Evaluation of all first derivatives): ∂v(x)
∂xi

, i = 1, · · · , d.

• (Evaluation of the normal component): v(x) ·n, where n is the outward-pointing
normal vector on ∂K. The normal components are often evaluated through in-
tegration against polynomials defined on the facets.

• (Evaluation of the tangential component): v(x) · t, where t is the tangential
normal vector on ∂K. Similarly, these are typically evaluated by integrating
v(x) · t against polynomials defined on cell edges.

A finite element is said to be V-unisolvent if, for any scalars {ci}N
i=1 ⊂ R, there exists

a unique v ∈ V such that
ni(v) = ci. (2.106)

More simply put, a finite element being V-unisolvent is equivalent to the following
conditions being satisfied:

1. dim P = cardN = N;

2. There exists a set of function {φi}N
i=1 ⊂ V with

ni(φj) = δij =

{
1, if i = j
0 otherwise;

(2.107)

3. The functions {φi}N
i=1 form a basis for V; and

4. Given any v ∈ V, we can write

v =
N

∑
i=1

ni(v)φi. (2.108)

28 Chapter 2. Preliminaries

Note that this relation is a direct consequence of items (1)–(3). We call the basis
{φi}N

i=1 the nodal basis.

We now define the (local) interpolant for a particular finite element (K, V,N). Let
{φi}N

i=1 be the basis of V which is dual to N . In other words, {φi}N
i=1 is the basis

satisfying (2.107). If v is a function for which all ni ∈ N are well-defined, then we
define the local interpolant, IK, as the linear operator:

IKv =
N

∑
i=1

ni(v)φi. (2.109)

Note that (2.108) is precisely the result of interpolating v whenever v ∈ V (IK is the
identity operator in this case). Now that we have defined the local interpolant, it is
time to piece everything together.

Given some computational domain Ω ⊂ Rn, we wish to cover Ω with a finite num-
ber of elements in a way that varies with a resolution parameter h. To do this, we
make the following definitions. We say Th = {Ki} is a subdivision or mesh of Ω if:

• The interiors of each Ki are disjoint, i.e., Interior(Ki) ∩ Interior(Kj) = ∅ when-
ever i 6= j.

•
⋃

i Ki = Ω, where Ω denotes the closure of Ω. In our context, this can best be
understood as the union of Ω with its boundary.

In this case, we define the mesh-resolution parameter h as the maximal diameter of
K ∈ Th over all elements, h = maxK∈Th{diam(K)}. Throughout this dissertation,
we restrict ourselves to subdivisions/meshes without hanging nodes. That is, no
vertex lies on the interior edge-or-facet of any other cell. Unless stated otherwise, all
meshes Th should be interpreted in this way.

Having established the notion of a mesh, we now define the global interpolant. Let
Th be a mesh of elements K for the computational domain Ω, where each K are
equipped with a space of local shape functions V(K). Let r denote the highest integer
order of derivatives present in N . Then the global interpolant for functions v ∈
Cr(Ω) (the space of functions with continuous derivatives up to order r) is defined
via:

ITh v|K = IKv, ∀K ∈ Th. (2.110)

The global interpolant is said to be of continuity order m ≤ r if ITh v ∈ Cm(Ω) for
all v ∈ Cr(Ω). Following Brenner and Scott (2008), we can define a global Cm-finite
element space, Vh, as the image of the global interpolant:

Vh = {ITh v : v ∈ Cr(Ω)}. (2.111)

Note that when strong (Dirichlet) boundary conditions are present, (2.111) must be
modified accordingly. For example, if v must satisfy v = 0 on Γ ⊆ ∂Ω, then we
define the finite element space as: Vh,0 = {ITh v : v ∈ Cr(Ω), v|Γ = 0}.

The global basis {Φî} of Vh is defined in terms of the nodal basis on each cell K. First,
note that every node ni of a finite element (K, V,N), defined on some geometric
entity of K, there is a corresponding global enumeration over the geometric entities of
Th, say î. Then the global basis function Φî is defined via

Φî|K = φK
i , ∀K ∈ Th, (2.112)

2.2. Background on the finite element method 29

K̂

K
FK

F−1
K

(0, 0) (1, 0)

(0, 1)

FIGURE 2.4: Illustration of the change-of-coordinates to and from the reference element
(right triangle with vertices (0, 0), (1, 0), and (1, 0)). While the diagram shows FK for tri-
angular cells, constructing FK for general polygons is straightforward.

where φK
i is the local basis function of V(K) satisfying (2.107), and Φî|K = 0 if nî is

not a node associated with K.

In an implementation, it is common to construct a single reference finite element
(K̂, V̂, N̂) and a mapping from physical cell K to the reference cell K̂. The geom-
etry of K̂ is usually simpler, such as a right-triangle (or tetrahedra) for simplicial
meshes or a unit square (cube) for hexahedra meshes. Let FK : K̂ → K be an
affine change-of-coordinates map. Then the pullback associated with FK is defined
as F∗(v)(x̂) = v(FK(x̂)), for x̂ ∈ K̂, v ∈ V. For a node n̂ ∈ N̂ , the pushforward is de-
fined as F∗(n̂)(v) = n̂(F∗(v)(x̂)). We say the finite elements (K̂, V̂, N̂) and (K, V,N)
are affine equivalent if F∗(V) = V̂ and F∗(N̂) = N . See Figure 2.4 for an illustration
of the mapping from K̂ to K.

A direct consequence of affine equivalence is that only a single nodal basis is re-
quired; all computations are performed on the reference cell and mapped to each
physical cell in the mesh. We remark here that not all finite elements have an affine
equivalent construction. Fortunately, the families we consider in this section do sup-
port such a construction. For some vector-valued spaces we consider, slightly more
care is needed when applying pullbacks. We shall discuss this explicitly when the
relevant family is presented. For more information on the construction of finite el-
ements, we refer the interested reader to Brenner and Scott (2008) and Kirby et al.
(2012). For the cases when the change-of-coordinate mapping is not affine, more care
and details are needed. We elaborate on this further in Section 2.3.

Abstractly, solutions to PDEs belong to a particular Sobolev space. Finite element ap-
proximations are constructed by generating fields contained in a finite-dimensional
subspace of the relevant Sobolev space. The choice of N determines, for example,
whether or not taking gradients is mathematically well-posed. In this section, we
summarize some common and perhaps less-common finite element families for ap-
proximating fields in various function spaces.

30 Chapter 2. Preliminaries

2.2.2 Finite element spaces

Sobolev spaces

The notion of a Sobolev space is ubiquitous in functional analysis and the theory of
PDEs. Such spaces concisely characterize the smoothness of solutions to a PDE, or
system of PDEs. Here, we present a few relevant spaces that appear when analyzing
the equations of motion for geophysical systems.

We begin by defining the space of square-integrable functions. For some compact
domain Ω ⊂ Rd, we define the space L2(Ω) to be the set

L2(Ω) =

{
f : Ω→ R :

∫
Ω
| f |2dx < ∞

}
. (2.113)

When the domain is clear from the context, we abbreviate as simply L2. For any two
functions f , g ∈ L2, we have that the operation:

〈 f , g〉L2 =
∫

Ω
f gdx (2.114)

defines a inner-product on L2. Moreover, L2 is complete with respect to the induced
norm:

‖ f ‖L2 =
√
〈 f , f 〉L2 =

√∫
Ω
| f |2dx, (2.115)

making L2 a Hilbert space.

The notion of a “derivative” when dealing within the context of Sobolev spaces is
not defined in the classical sense. The traditional calculus definition of a derivative
involves evaluating the limit of a difference quotient: for a given function f , the
derivative of f with respect to x is given by

D f =
d f
dx

= lim
h→0

f (x + h)− f (x)
h

. (2.116)

This is a local definition of a derivative, involving information about f only within
a neighborhood of the points x. This is often called the strong derivative. Within our
contexts, we are interested in the global behavior of functions, therefore we require
extending the notion of a derivative in a more general setting.

We denote the differential operator in d-dimensions of order |α| to be Dα, where

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

=
∂|α|

∂α1
x1 . . . ∂αd

xd

, (2.117)

α = (α1, . . . , αd) is a multi-index, and |α| = ∑d
i=1 αi. Now, suppose we have a func-

tions f which is locally integrable on Ω (
∫

K | f |dx < ∞ for all bounded, open sets
K ⊂ Ω). Suppose also that there exists a function g which is locally integrable on Ω
with ∫

Ω
gv dx = (−1)|α|

∫
Ω

f Dαv dx, (2.118)

for all functions v which are infinitely differentiable with bounded support in Ω, i.e.,
v ∈ C∞

0 (Ω). Then when say g is the order |α| weak derivative of f , written as g = Dα
w f .

2.2. Background on the finite element method 31

Remark 1. (Notation for differential operators): Clearly if f is sufficiently smooth, say
f ∈ Cm(Ω), then the weak derivative Dα

w f of order |α| ≤ m coincides with its strong
derivative. For this reason, we simply write Dα to denote both strong and weak derivatives
(in a slight abuse of notation). Within our contexts, functions will typically be polynomial
expressions, which are sufficiently smooth for differentiation. Therefore it will be clear by the
context which notion of the derivative will be considered.

Having established a notion of a square-integrable function and weak derivatives,
we now define a particular class of Sobolev spaces with integer order. With Ω as
before and m ∈ N, we define the set Hm(Ω) as

Hm(Ω) = { f : Ω→ R : Dα f ∈ L2(Ω), ∀α with |α| ≤ m}, (2.119)

For all m, the spaces Hm(Ω) (henceforth abbreviated as Hm) are equipped with the
inner product:

〈 f , g〉Hm =
∫

Ω
f g + ∑

|α|≤m
Dα f Dαgdx. (2.120)

These spaces are also Hilbert, as they are complete under the induced norm ‖ f ‖Hm =√
〈 f , f 〉Hm . The case when m = 0 (H0 = L2) and m = 1 are particularly relevant.

The space
H1(Ω) = { f : Ω→ R : ∇ f ∈ L2(Ω)}, (2.121)

is fundamental in the analysis of the weak formulations of second-order elliptic
PDEs. Finite element subspaces of H1 are one of the best-known spaces used in
finite element modeling.

Given a vector field u, we could also say u ∈ [H1]d if all spatial components are
in H1. However, there are varying levels of smoothness for vector quantities. For
example, u may not be in [H1]d, but its divergence is square-integrable: ∇ · u ∈ L2.
In this case, we say that such vector fields belong to the Sobolev space

H(div; Ω) = {u : Ω→ Rd : ∇ · u ∈ L2(Ω)}. (2.122)

As before, H(div) is a complete inner-product space, with inner product:

〈u, w〉H(div) =
∫

Ω
u ·wdx +

∫
Ω
∇ · u∇ ·wdx. (2.123)

We can define a similar Sobolev space for vectors with square-integrable curl (or rot
in two-dimensions: ∇⊥· = − ∂

∂y +
∂

∂x)

H(rot; Ω) = {u : Ω→ R2 : ∇⊥ · u ∈ L2(Ω)}, (2.124)

H(curl; Ω) = {u : Ω→ R3 : ∇× u ∈ [L2(Ω)]3}, (2.125)

equipped with the inner products:

〈u, w〉H(rot) =
∫

Ω
u ·wdx +

∫
Ω
∇⊥ · u∇⊥ ·wdx, (2.126)

〈u, w〉H(curl) =
∫

Ω
u ·wdx +

∫
Ω
∇× u · ∇ ×wdx. (2.127)

For simplicity, we write H(curl) for both two- and three-dimensional cases.

32 Chapter 2. Preliminaries

Weak formulations of PDEs

The weak form of a PDE, also called the integral or variational formulation, is an al-
ternate form of the PDE in which solutions are no longer required to hold in a point-
wise sense. Instead, solutions are required to hold in an integral sense by means of
testing against so-called test functions and integrating over the domain. For example,
consider the model problem:

−∇2u + u = f , in Ω (2.128)
u = 0, on ∂ΩD, (2.129)

∇u · n = g, on ∂ΩN , (2.130)

with ∂ΩD ∪ ∂ΩN = ∂Ω. We shall assume that f ∈ L2(Ω) and g ∈ L2(∂Ω). Now,
introducing the Sobolev space

H1
0 = {v ∈ H1 : v|∂ΩD = 0}, (2.131)

the weak formulation reads as follows: find u ∈ H1
0 such that

a(u, v) :=
∫

Ω
∇u · ∇v dx +

∫
Ω

uv dx =
∫

Ω
f v dx +

∫
∂ΩN

gv ds := L(v), (2.132)

for all v ∈ H1
0 . All derivatives in (2.132) should be interpreted in the weak sense as

defined in (2.118). Here, a(u, v) is called a bilinear form and L(v) is a linear functional
(i.e. linear form). Applying the Lax-Milgram theorem (Lax and Milgram, 1955), the
existence and uniqueness of a solution to (2.132) can easily be shown. We call such a
solution the weak solution.

The weak form of the PDE is obtained after integrating by parts. The surface in-
tegral containing the directional derivative appears as a forcing term on the right-
hand side due to the Neumann condition (2.130). In this sense, the Neumann condi-
tion is automatically satisfied after obtaining the weak-solution (hence the common
nomenclature natural boundary condition). The Dirichlet condition (2.129), however,
is an explicit condition on the solution, which requires modifying the solution space
(2.131). For this reason, Dirichlet conditions are often referred to as essential boundary
conditions.

Notice that the strong form of the equation (2.128) requires at least C2-continuity
of the solution. In the weak form, we need only enough continuity to take a single
derivative. Since the equations are interpreted in an integral-sense, seeking solutions
in H1

0 is still meaningful. In fact, it can be shown that if u is a strong solution to
(2.128), then it is also a weak solution to (2.132). The converse, however, is not true
in general. Despite this, weak solutions are important since the vast majority of
PDEs describing real-world phenomena do not produce smooth solutions.

The finite element method approximates solutions to the weak formulation of a
given PDE. This is accomplished by constructing a finite-dimensional space Vh over
a mesh of Ω, from which a piecewise approximation can be assembled by satisfy-
ing the discretized weak form over each element. We will elaborate on how finite
element computations are performed in Section 2.3.

2.2. Background on the finite element method 33

H1 finite elements

Finite element subspaces of H1 (that is, an H1-finite element space) are typically the
first family of elements introduced to students and researchers using finite element
modeling. Among the most widely-used elements are the Lagrange family on sim-
plices and hexahedra. These elements are globally C0, with functions that are single-
valued on cell vertices, edges, and faces. For our application focus, the Lagrange
elements will be the element family with the most continuity requirements. Note
that there exist element families which produce subspaces of higher-order Sobolev
spaces, like the Argyris for H2 (Argyris, Fried, and Scharpf, 1968). There are also
other finite elements for H1, such as the one proposed by Morley (1971). However,
we will not be covering these families and instead focus on elements which are rele-
vant for our purposes.

The Lagrange elements on simplices. Let Th denote a mesh of cells K ⊂ Rd, where
K is a d-simplex (interval, triangle, or tetrahedron). Then the Lagrange element of
order q, Pq(K), is defined using V = Pq(K), the space of polynomials up to degree q
on K, and nodes:

ni(p) = v(xi), i ∈ {1, · · ·Nq}, p ∈ V. (2.133)

Here, xi are enumerated points on K such that points located on cell vertices, edges,
and faces ensure C0-continuity. There are a number of possible ways to generate
such a set of points. The simplest construction are set of points defined by:

{xi}Nq
i=1 =

i/q, 0 ≤ i ≤ q, for d = 1,
(i/q, j/q), 0 ≤ i + j ≤ q, for d = 2,
(i/q, j/q, k/q), 0 ≤ i + j + k ≤ q, for d = 3.

(2.134)

The integer Nq denotes the dimension of the function space Pq on the simplex el-
ement, which is Nq = q + 1 on intervals, Nq = 1

2 (q + 1)(q + 2) on triangles, and
Nq =

1
6 (q + 1)(q + 2)(q + 3) on tetrahedra.

When mapping from physical to reference cells, a simple affine change of coor-
dinates is sufficient. Let v̂(x̂) be a function defined on the reference cell K̂ and
FK : K̂ → K be the affine change-of-coordinate mapping as previously defined (illus-
trated in Figure 2.4). Then the function on the physical cell K is simply

v(x) = v(FK(x̂)) = v̂(x̂), (2.135)

which we denote as v = F (v̂). Linear and quadratic Lagrange finite elements are
illustrated in Figure 2.5.

The Lagrange elements on quadrilaterals and regular hexahedra. The Lagrange
elements on quadrilaterals and cubes follow a very similar construction; we use the
same continuity constraints as before, ensuring a globally C0 function space. The
key difference lies in the construction of a polynomial basis for Pq(K), which admits
a tensor product structure. As a result, these elements are often referred to as the
“continuous tensor product element” of order q, commonly abbreviated as Qq(K).

We first remark that a unit square can be interpreted as the region defined by the
bounded box of the Cartesian product: [0, 1]2 = [0, 1] × [0, 1]. Similarly for the

34 Chapter 2. Preliminaries

(A) P1 finite elements on intervals, triangles, and tetrahedra.

(B) P2 finite elements on intervals, triangles, and tetrahedra.

FIGURE 2.5: Linear and quadratic Lagrange finite elements on simplicial cells. The filled
discs denote point-wise evaluations on specified locations on the cell. Black discs denote
degrees of freedom which couple to adjacent cells and impose continuity; gray discs denote
degrees of freedom which are associated with the cell only.

unit cube, we have [0, 1]3 = [0, 1] × [0, 1] × [0, 1]. A function space defined on
K = [0, 1]d can be constructed by taking a polynomial space defined on the unit in-
terval, Pq([0, 1]) and taking the tensor product with itself to create a function space
of tensor product polynomial functions:

Pq1,··· ,qd(K) =
d⊗

i=1

Pqi([0, 1]) = Span{v1 · v2 · · · vd : vi ∈ Pqi([0, 1])}. (2.136)

Note that, in this definition, we allow the possibility for the qi to vary, meaning that
different polynomial degrees can be used in different spatial directions.

The finite element Qq(K) is therefore defined by taking V as in (2.136), with d = 2
or d = 3 in most circumstances, qi = q for all i, and defining N similarly to the
degrees of freedom for Pq; if Pq is a finite element defined on an interval, say [0, 1],
with nodes N , then the nodes of Qk on the unit square are:

NQq = {ni(v) · nj(v), with ni, nj ∈ N}. (2.137)

The construction of V and NQq on a unit cube follows similarly. Moreover, pulling
back to a reference element (typically the unit square or cube) follows similarly to
the Lagrange elements on simplices. However, the transformation FK is no longer
affine in this case. This will only affect how finite element integrals are evaluated
numerically, which we cover in Section 2.3.

In general, the dimension of Qq on Rd is (q + 1)d, which is a result of taking the
product of dimension of one-dimensional Pq finite element spaces. Therefore, Qq(K),
K = [0, 1]d ⊂ Rd is more concisely defined as

Qq(K) =
d⊗

i=1

Pq([0, 1]). (2.138)

2.2. Background on the finite element method 35

(A) Q1 finite elements on quadrilateral and cube cells.

(B) Q2 finite elements on quadrilateral and cube cells.

FIGURE 2.6: Linear and quadratic Lagrange finite elements on quadrilateral and cube cells.

Diagrams of the Qq family are presented in Figure 2.6.

We will return to the notion of taking the tensor product of finite elements in Sec-
tion 2.4. For a more general discussion, we refer the reader to Arnold, Boffi, and
Bonizzoni (2015) and McRae et al. (2016). Lastly, we remark here that to create a
vector-valued Lagrange element (simplices or cuboids) can be done by taking the
components to be elements of the scalar Lagrange family.

H(div) finite elements

As previously mentioned, the Sobolev space H(div) consists of vector fields whose
divergence is square-integrable. These elements consist of vector polynomials with
continuous normal components through element edges/faces. The tangential com-
ponents are not required to be continuous. They are particularly important for dis-
cretizing geophysical flow equations and will therefore be used extensively through-
out this dissertation.

The first H(div) finite element was presented by Raviart and Thomas (1977) on trian-
gular meshes for mixed formulations of second-order elliptic problems. It was later
extended by Nédélec (1980) to tetrahedra and cubical meshes. For this reason, these
elements are sometimes referred to as the Raviart-Thomas-Nédélec elements. More
commonly, they are simply referred to as the Raviart-Thomas elements in most of
the literature. Using notation inspired by the “Periodic Table of Finite Elements”
(Arnold and Logg, 2014), we will denote the two-dimensional family order q as RTq.
Similarly, the three-dimensional family will be written as N1 f

q .3

3 Some choose to enumerate the RTq and N1 f
q elements by the lowest-order polynomial space that

completely spans the element, resulting the in lowest-order elements being denoted as RT0 and N1 f
0 .

This was original convention by Raviart and Thomas (1977). However, we use the second convention
by enumerating RTq (and N1 f

q) by the highest-degree polynomial contained in the space, resulting in

the lowest-order element being labeled as RT1 and N1 f
1 . This is also the convention used by Nédélec

(1980).

36 Chapter 2. Preliminaries

2

(A) RT1 and RT2 finite elements on triangular cells.

3

(B) N1 f
1 and N1 f

2 finite elements on tetrahedral cells.

FIGURE 2.7: The lowest-order and next-to-lowest-order H(div) elements on simplicial cells.
The outward pointing arrows denote normal component evaluations and the large shaded
circles denote interior moment evaluations. The numerical values near the shaded circles
display the total number of interior degrees of freedom.

Lastly, we carefully mention that Nédélec presented a second construction of H(div)
(and H(curl)) elements on tetrahedra, referred to as Nédélec elements of the second
kind, denoted as N2 f

q (N2e
q for H(curl)) (Nédélec, 1980). We will not be presenting

these, but they are useful to be aware of. We will, however, define the family these el-
ements are derived from: the Brezzi-Douglas-Marini H(div) element in this section.
As before, we start by defining H(div) elements on simplicial cells.

The Raviart-Thomas-Nédélec H(div) elements on simplices. The finite elements
RTq(K) and N1 f

q (K) are defined by taking V to be the smallest subspace of [Pq(K)]d

for which the divergence operator ∇· maps surjectively to Pq−1(K). Construction of
such a V takes the form:

V = [Pq−1(K)]d + xPq−1(K), (2.139)

and the nodal degrees of freedom N are defined as

N =

{∫
f v · nψds, ∀ basis functions ψ ∈ Pq−1(f), ∀ f ∈ ∂K,∫
K v ·φdx, ∀ basis functions φ ∈ [Pq−2(K)]d, q ≥ 2.

(2.140)

The degrees of freedom on the faces (edges in two-dimensions) are normal component
evaluations, which are present in all orders of the RTq family. When q ≥ 2, additional
degrees of freedom are introduced in element interiors as interior moment evaluations.
The dimension of RTq and N1 f

q are given by q(q + 2) and 1
2 q(q + 1)(q + 3) respec-

tively. See Figure 2.7 for an illustration of the RTq and N1 f
q elements on simplex

cells.

The Brezzi-Douglas-Marini H(div) element on simplices. The element BDMq(K)
was first introduced in Brezzi, Douglas, and Marini (1985) as an alternative to the
Raviart-Thomas elements using a complete polynomial space. It was extended by

2.2. Background on the finite element method 37

3

FIGURE 2.8: The BDMq element for orders q = 1 (left) and q = 2 (right) on triangular cells.

Nédélec (1986) to tetrahedra, prisms, and cubes, giving rise to the Nédélec elements
of the second kind: N2 f

q and N2e
q. The definition we present here is based on the

construction by Nédélec (1986).

With K a triangle or tetrahedron, the BDMq(K) element is defined by taking V =

[Pq(K)]d and degrees of freedom:

N =

∫
f v · nψds, ∀ basis functions ψ ∈ Pq(f), ∀ f ∈ ∂K,∫
K v ·φdx, ∀ basis functions φ ∈ RTe

q−1(K), if d = 2,
∀ basis functions φ ∈ N1e

q−1(K), if d = 3,
q ≥ 2,

(2.141)

where RTe
q and N1e

q are the Raviart-Thomas edge elements and the Nédélec first kind
edge elements, defined later for H(curl) spaces. Figure 2.8 illustrates the degrees of
freedom on triangular cells. The dimension of BDMq is (q + 1)(q + 2) for triangles
and 1

2 (q + 1)(q + 2)(q + 3) for tetrahedra. These elements are presented for quadri-
laterals and cubes in more detail in (Brezzi et al., 1987a). Another variation of the
BDMq element is the so-called BDFMq family (Brezzi-Douglas-Fortin-Marini) on tri-
angles and quadrilaterals. The element was introduced on quadrilaterals (Brezzi et
al., 1987a) and later extended to triangular elements (Brezzi and Fortin, 1991). They
are not typically used on triangles due to the larger number of degrees of freedom
compared with BDMq or RTq of the same order.

The Raviart-Thomas-Nédélec H(div) elements on cuboids. The Raviart-Thomas
family was extended to cuboids by Nédélec (1980), and follows a similar construc-
tion. As we have done for the H(div) elements, we will distinguish between two-
and three-dimensional families. Similarly with the Qq elements, the choice of V will
consist of tensor product polynomials. Henceforth abbreviated as RTC f

q and NC f
q

for two- and three-dimensions respectively, the H(div) elements are constructed by
taking V defined as

V =

{
Pq,q−1(K)×Pq−1,q(K) for quadrilaterals,
Pq,q−1,q−1(K)×Pq−1,q,q−1(K)×Pq−1,q−1,q(K) for cubes,

(2.142)

where the spaces Pq,r (and its three-dimensional variants) are as defined in (2.136).
Similar to the construction of RTq, the space V is constructed such that ∇· maps
surjectively to Pq−1,q−1 (or Pq−1,q−1,q−1 in three-dimensions). In two-dimensions,

the degrees of freedom for the RTC f
q element is nearly identical to RTq. Setting

Ψq(K) =

{
Pq−1,q(K)×Pq,q−1(K), d = 2,
Pq−1,q,q(K)×Pq,q−1,q(K)×Pq,q,q−1(K), d = 3,

(2.143)

38 Chapter 2. Preliminaries

4

(A) RTC f
1 and RTC f

2 finite elements on quadrilateral cells.

12

(B) NC f
1 and NC f

2 finite elements on cube cells.

FIGURE 2.9: The lowest-order and next-to-lowest-order H(div) elements on quadrilateral
cells. Normal component evaluations are denoted by outward arrows, and interior moments
by the shaded gray circle.

we define N as the set of functionals:

N
RTC f

q
=

{∫
f v · nψds, ∀ basis functions ψ ∈ Pq−1(e), ∀ edges e,∫
K v ·φdx, ∀ basis functions φ ∈ Ψq−2(K), q ≥ 2,

(2.144)

for the RTC f
q element. The NC f

q element follows similarly:

N
NC f

q
=

{∫
f v · nψds, ∀ basis functions ψ ∈ Pq−1,q−1(f), ∀ faces f ,∫
K v ·φdx, ∀ basis functions φ ∈ Ψq−2(K), q ≥ 2.

(2.145)

The dimensions of RTC f
q and NC f

q are given by 2(q + 1)(q + 2) and 3(q + 1)2(q + 2)
respectively. See Figure 2.9 for element diagrams showing the layout of the degrees
of freedom.

The contravariant Piola transform. When mapping from reference to physical cell,
it is imperative to preserve the orientation of normal components. Otherwise, we are
not guaranteed to preserve the continuity of normal components after mapping to
the physical cell. The standard pullback defined previously for H1 elements is not
sufficient.

Let x = (x1, · · · , xd) denote the physical coordinates and x̂ = (x̂1, · · · , x̂d) be the
coordinates on the reference cell. With J denoting the Jacobian of the change-of-
coordinates mapping FK : K̂ → K, i.e. JK = DFK(x̂) = ∂FK(x̂)

∂x̂ , we define the con-
travariant Piola transform of a vector function v(x) : K → Rd to be

v(x) =
JK

|JK|
v(FK(x̂)) =

JK

|JK|
v̂(x̂) =: Fdiv(v̂), (2.146)

2.2. Background on the finite element method 39

where v̂(x̂) : K̂ → Rd is a vector function defined on the reference cell K̂, and |JK| is
the Jacobian determinant. This mapping is applied as the appropriate pullback for
the H(div) finite elements presented here.

H(curl) finite elements

The Sobolev space H(curl) frequently appears in electromagnetism applications and
fluid dynamics problems (especially when using vorticity-velocity formulations of
fluid flow motion). One variant of an H(curl) finite element was first presented by
Nédélec (1980) and a second family was constructed in (Nédélec, 1986; Brezzi et al.,
1987a). They are often referred to as edge elements due to the fact that the elements
involve degrees of freedom along cell edges. By construction, the tangential compo-
nents must be continuous along cell edges, while normal components are free to be
discontinuous.

We remark here that, while this dissertation will not use these elements extensively,
they are useful to mention as they help construct a complete set of finite element
families which are useful for approximating solutions to the geophysical flow equa-
tions discussed throughout later chapters. We will summarize this in Section 2.4.
Lastly, we primarily discuss the elements known as RTe

q/N1e
q and RTCe

q/NCe
q: the

Nédélec H(curl) elements of the first kind on simplices and cuboids respectively.
Construction for the elements of the second kind will be mentioned and references
where appropriate.

The Raviart-Thomas-Nédélec H(curl) elements on simplices. To define the Nédélec
elements of the first kind on simplices, denoted as RTe

q and N1e
q on triangles/tetra-

hedra respectively, we first define the set

Sq(K) = {s ∈ [Pq(K)]d : s · x = 0, ∀x ∈ K}. (2.147)

Then, for d = 2 and d = 3, we take V to be

V = [Pq(K)]d + Sq(K). (2.148)

The nodal degrees of freedom for RTe
q in two-dimensions are given as the set

NRTe
q
=

{∫
e v · tψds, ∀ basis functions ψ ∈ Pq−1(e), ∀ edges e,∫
K v ·φdx, ∀ basis functions φ ∈ [Pq−2(K)]2, q ≥ 2,

(2.149)

and in three-dimensions for N1e
q:

NN1e
q
=

∫
e v · tψdl, ∀ basis functions ψ ∈ Pq−1(e), ∀ edges e,∫
f (v× n) ·ψds, ∀ basis functions ψ ∈ [Pq−2(K)]2, ∀ faces f ,

q ≥ 2,∫
K v ·φdx, ∀ basis functions φ ∈ [Pq−2(K)]3, q ≥ 3.

(2.150)

Here, t denotes the vector which is tangent to each edge e of K. Lowest- and next-
to-lowest order elements are illustrated in Figure 2.10. These are also interpreted
as rotated (by 90◦ along edges/faces) Raviart-Thomas elements. The dimension of
RTe

q/N1e
q are q (q + 2) and 1

2 q (q + 2) (q + 3) respectively.

40 Chapter 2. Preliminaries

2

(A) RTe
1 and RTe

2 finite elements on triangular cells.

(B) N1e
1 and N1e

2 finite elements on tetrahedral cells.

FIGURE 2.10: The lowest-order and next-to-lowest-order H(curl) elements on simplicial
cells. The arrows along cell edges denote tangential component evaluations, crossed arrows
on the faces (in three-dimensions) denotes evaluating the tangential components on faces,
and the large shaded circles denote interior moment evaluations. The numerical values near
the shaded circles display the total number of interior degrees of freedom.

We remark here that the construction of the Nédélec elements of the second kind
are constructed by rotating BDMq finite elements. As a result, there is also a two-
dimensional H(curl) element derived from BDMq, written as BDMe

q. The construc-
tion for both simplex and quadrilateral/cube cells are presented in (Nédélec, 1980;
Nédélec, 1986; Brezzi et al., 1987a).

The Raviart-Thomas-Nédélec H(curl) elements on cuboids. The construction of
H(curl) on quadrilaterals and cubes, written as RTCe

q and NCe
q respectively, follows

similarly to the construction of the RTC f
q and NC f

q families. The function space V on
K is as defined in (2.142). The main difference lies in the construction of the degrees
of freedom, where tangential components are used in place of normal components.
In two-dimensions, we have

NRTCe
q
=

{∫
e v · tψds, ∀ basis functions ψ ∈ Pq−1(e), ∀ edges e,∫
K v ·φdx, ∀ basis functions φ ∈ RTC f

q−2(K), q ≥ 2,
(2.151)

and in three-dimensions:

NNCe
q
=

∫
e v · tψdl, ∀ basis functions ψ ∈ Pq−1(e), ∀ edges e,∫
f (v× n) ·ψds, ∀ basis functions ψ ∈ RTC f

q−2(f), ∀ faces f ,

q ≥ 2,∫
K v ·φdx, ∀ basis functions φ ∈ NC f

q−2(K), q ≥ 2.

(2.152)

Dimensions of the finite elements are 2(q + 1)(q + 2) and 3q(q + 1)2 respectively.
Element diagrams are provided in Figure 2.11.

The covariant Piola transform. As with the H(div) case, the pullback derived only
from the change-of-coordinates map FK is not sufficient to preserve tangential com-
ponents when mapping between reference and physical cells. The covariant Piola

2.2. Background on the finite element method 41

4

(A) RTCe
1 and RTCe

2 elements on quadrilaterals.

6

(B) NCe
1 and NCe

2 elements on cubes.

FIGURE 2.11: The lowest-order and next-to-lowest-order H(curl) elements on quadrilateral
cells.

transform is used instead. With JK = DFK denoting the Jacobian, we define the co-
variant Piola transform of v(x) from a field v̂(x̂) on the reference cell to be

v(x) = J−T
K v(FK(x̂)) = J−T

K v̂(x̂) =: Fcurl(v̂). (2.153)

More information on Piola transformations and pullbacks for H(div) and H(curl)
can be found in (Boffi, Brezzi, and Fortin, 2013; Rognes, Kirby, and Logg, 2009).

L2 finite elements

By an L2-finite element, we mean a finite element space of functions which are not
globally C0-continuous. This commonly appears in mixed formulations of ellip-
tic PDEs, as well as within our context of simulating geophysical flows. Histori-
cally, L2 elements are used in Galerkin methods where continuity is imposed weakly
(typically through numerical flux terms appearing on element boundaries) instead
of directly via the finite element space. A canonical example is the discontinuous
Galerkin (DG) method for elliptic equations (Arnold, 1982; Arnold et al., 2002).

Discontinuous Lagrange elements on simplices and cuboids. Here, we present
the discontinuous variants of the Lagrange elements Pq and Qq as defined earlier.
Often called the discontinuous Lagrange element, dPq, the construction is identical
to its continuous counterpart. The same holds for the discontinuous quadrilater-
al/cube element: dQq. The main difference is that all degrees of freedom (as defined
in (2.133) and (2.137)) are topologically associated with the cell (see Figure 2.12 for
illustrations of dPq and Figure 2.13 for dQq); there are no constraints for the local
polynomial functions to be continuous on cell vertices, edges, or faces. Additionally,
the same pullback definition in (2.135) applies to the dPq and dQq elements.

42 Chapter 2. Preliminaries

(A) dP0 finite elements on intervals, triangles, and tetrahedra.

(B) dP1 finite elements on intervals, triangles, and tetrahedra.

FIGURE 2.12: Constant and linear discontinuous Lagrange finite elements on simplicial cells.
Gray discs denote degrees of freedom which are associated with the cell only.

(A) dQ0 finite elements on quadrilateral and cube cells.

(B) dQ1 finite elements on quadrilateral and cube cells.

FIGURE 2.13: Constant and linear discontinuous Lagrange finite elements on cuboid cells.

2.3 Finite element computations

Having defined various classes of finite elements, it will be useful to quickly go over
how finite element computations are performed within numerical code. As we have
previously mentioned in Section 2.2.1, computations for finite elements need only an
appropriate pullback to a reference cell K̂. For affine-equivalent elements, a single
reference finite element (K̂, V̂, N̂) is all we require. The same applies for the Piola-
mapped H(div)/H(curl) elements as well (Rognes, Kirby, and Logg, 2009). An
analogous result of affine-equivalence for isoparametric finite elements (elements
defined on curved domains) is presented by Brenner and Scott (2008, §4.7). A more
general theory for mapping finite elements, which includes affine and non-affine
transformations, to reference elements is discussed by Kirby (2018). At any rate, the
theory presented thus far still applies for more generally mapped finite elements.

Suppose we have a computational domain Ω and a mesh Th of Ω consisting of cells

2.3. Finite element computations 43

K. Using the weak formulation from Section 2.2.1 as our example (see equation
(2.132)), let us take Vh,0 ⊂ H1

0 to be the continuous Lagrange finite element space of
order q satisfying the homogenous Dirichlet condition uh = 0 on ΓD = {∂K : K ∈
Th} ∩ ∂ΩD. Then the discrete finite element problem reads as follows: find uh ∈ Vh,0
such that

ah(uh, v) :=
∫
Th

∇huh · ∇hv + uhv dx =
∫
Th

f v dx +
∫

ΓN

gv ds := Lh(v), (2.154)

for all v ∈ Vh,0, where ΓN = {∂K : K ∈ Th} ∩ ∂ΩN and ∇h denotes the cell-wise
gradient: ∇h|K = ∇|K. Note that since Vh,0 ⊂ H1

0 , the integral containing gradients
of the trial function uh and test function v is legal. Equation (2.154) can best be un-
derstood as a Galerkin projection from H1

0 onto the finite-dimensional space Vh,0. For
this reason, methods which involve testing the equation with functions in the same
space as the solution variable are often called Galerkin methods.

Then, expanding uh = ∑i uiΦi into its global finite element basis representation,
taking v = Φj, and using the fact that ah(uh, v) is linear in the solution variable uh,
we arrive at a discrete N × N (where N = dim Vh,0) matrix system for the nodal
coefficients ui:

KU = F, (2.155)

where U = (u1, · · · , uN), and

Kij = ah(Φi, Φj) =
∫
Th

∇hΦi · ∇hΦj + ΦiΦj dx

= ∑
K∈Th

∫
K
∇Φi · ∇Φj + ΦiΦj dx, (2.156)

F j = Lh(Φj) =
∫
Th

f Φj dx = ∑
K∈Th

∫
K

f Φj dx. (2.157)

2.3.1 Evaluating finite element forms

To evaluate K and F, we first map the element-wise contributions of (2.156) and
(2.157) to the reference element K̂. Let JK be the Jacobian of the change-of-coordinates
transformation FK, with x = FK(x̂). With Φ̂ denoting scalar functions defined on K̂,
we can summarize the relationship between functions in physical space and func-
tions on K̂ via:

Φi(x) = Φi(FK(x̂)) = Φ̂i(x̂) =: F (Φ̂i). (2.158)

Applying (2.158) and the chain-rule, we can easily show that:

∇Φi(x) = J−T
K ∇̂Φ̂i(x̂), (2.159)

where ∇̂ denotes the gradient with respect to the reference coordinates x̂ and J−T
K =(

J−1
K

)T
. Putting everything together and applying the usual change-of-coordinates

rules for integration, we can write the element-wise contribution of K as:

KK,ij :=
∫

K
∇Φi · ∇Φj + ΦiΦj dx =

∫
K̂

(
J−T
K ∇̂Φ̂i · J−T

K ∇̂Φ̂j + Φ̂iΦ̂j

)
|JK|dx̂. (2.160)

44 Chapter 2. Preliminaries

Similarly, the local contribution of F is

FK,j :=
∫

K
f Φj dx =

∫
K̂

f (FK(x̂))Φ̂j|JK|dx̂. (2.161)

Remark 2. (The cell Jacobian JK): For an affine mapping FK, the Jacobian will be constant
over each cell K. However, for non-affine transformations, such as the case for isoparametric
or tensor product finite elements, then JK will vary as a function of x̂. In either case, the
discussion here still applies. A non-affine FK only affects our numerical evaluation of the
finite element forms, which may result in integrating non-polynomial expressions.

Evaluating the local contributions of finite elements forms on the reference cell K̂ is
the bread and butter of finite element codes. In order to evaluate (2.160) and (2.161)
numerically, we require a suitable quadrature method. For integrating some function,
say f (x̂), over K̂, an n-point quadrature method has the form∫

K̂
f (x̂)dx̂ ≈

n

∑
q=1

f (x̂q)wq (2.162)

where {x̂q}n
q=1 are quadrature points with associated quadrature weights {wq}n

q=1. A
scheme comprised of a set of quadrature points and weights is called a quadrature
rule. Typically Guassian quadrature rules are employed in finite element codes, as
well as its variations such as the Gauss-Lobatto (GL) or Gauss-Lobatto-Legendre
(GLL) methods (Davis and Rabinowitz, 1984).

It is easy to show that, if f is polynomial in x̂ with degree q ≤ n− 2, then using an
n-point Gaussian quadrature rule is exact (Süli and Mayers, 2003). We say a quadra-
ture rule is a q-degree quadrature method if it integrates polynomials of degree ≤ q
exactly. Since finite element methods frequently involve integrating polynomial ex-
pressions, most integrals could be evaluated exactly by using an appropriate quadra-
ture method.

Remark 3. (Exact vs inexact quadrature): Typically, higher degree quadrature rules have
more quadrature points, hence requiring more function evaluations than lower degree meth-
ods. This results in a trade-off between the accuracy of the quadrature scheme and the com-
putational cost of an integration using that rule. Exact quadrature results in lower errors,
but if the error due to inexact quadrature is small compared with other errors (such as dis-
cretization error), then inexact quadrature may be advantageous. This must be handled with
care, as inexact quadrature can result in a general loss of stability as well. Analysis of this
falls into the category of “variational crimes” (Strang, 1973).

After applying a quadrature method, (2.160) and (2.161) become:

KK,ij u ∑
q

(
JK(x̂q)

−T∇̂Φ̂i(x̂q) · JK(x̂q)
−T∇̂Φ̂j + Φ̂i(x̂q)Φ̂j(x̂q)

)
|JK(x̂q)|wq, (2.163)

FK,j u ∑
q

f (FK(x̂q))Φ̂j(x̂q)|JK(x̂q)|wq. (2.164)

Note that different degree quadrature rules can be used on different integral forms.
Some finite element packages, like Firedrake (Rathgeber et al., 2017), employ sophis-
ticated compiler technology which determines an appropriate quadrature rule using
encoded information about the finite element space. Within the context of Firedrake,
a more in-depth discussion on determining optimal order quadrature methods is

2.3. Finite element computations 45

K̂

K

FK
x

x̂

(0, 0) (1, 0)

(0, 1)

FIGURE 2.14: Change-of-coordinates transformation FK from the reference triangle to a
physical triangle on the surface of a sphere. Coordinates in reference space are mapped
to physical space via x = FK(x̂).

presented by Homolya et al. (2018) and Homolya, Kirby, and Ham (2017). More
information on Firedrake is provided in Chapter 4.

2.3.2 Finite element computations on immersed manifolds

In this section, we discuss the special case where we want to approximate a PDE on
a smooth m-dimensional manifoldM embedded in Rn, 1 ≤ m < n. This is partic-
ularly relevant for this dissertation, as we will be solving geophysical equations on
the surface of a sphere, a two-dimensional surface embedded in three-dimensions.
Therefore, we must introduce relevant material for how such finite element compu-
tations are performed. We proceed using a similar presentation to that of Rognes
et al. (2013).

We first let x = (x1, · · · , xn) be the coordinates in the physical or geometric dimension,
and x̂ = (x̂1, · · · , x̂m) be coordinates in the manifold or topological dimension. We
approximate the manifoldM by some tessellation of cells Th = {K}. That is, each
cell K will have topological dimension m and geometric dimension n. We define a
fixed reference cell K̂ and assume there exists a transformation FK : Rm → Rn with
K = FK(K̂), as illustrated (for triangles) in Figure 2.14. Then the cell Jacobian of the
mapping FK is the n×m matrix:

JK =
∂FK(x̂)

∂x̂
=

∂x
∂x̂

=

∂x1
∂x̂1

∂x1
∂x̂2

· · · ∂x1
∂x̂m

∂x2
∂x̂1

∂x2
∂x̂2

· · · ∂x2
∂x̂m

...
...

. . .
...

∂xn
∂x̂1

∂xn
∂x̂2

· · · ∂xn
∂x̂m

 . (2.165)

Remark 4. (A variational crime): In our previous definition of a mesh from Section 2.2.1,
we stated the condition that

⋃
i Ki = Ω, for some domain Ω. In the case of an arbitrary

manifold, this condition is not always satisfied. For example, consider the case where M
is the surface of a sphere embedded in R3. Then a piecewise linear tessellation of triangles
Th = {K} breaks this condition: ⋃

i

Ki 6=M. (2.166)

In this case,
⋃

i Ki is simply an approximation of M. Then, if V = H1(M) and Vh(Th)
is a continuous Lagrange space, we are in a situation where Vh 6⊂ V. If we are trying to

46 Chapter 2. Preliminaries

solve some weak formulation onM using an H1 finite element method, we have just broken
a crucial rule of traditional Galerkin methods.

This is known as a “variational crime,” since functions in V are being approximated by
functions in Vh, defined on a different domain. Strang (1973) coined the term “variational
crime,” and quantified the errors introduced by these “crimes.” Brenner and Scott (2008,
§10) and Holst and Stern (2012) are useful resources on this topic. In real-world applica-
tions, committing these variational crimes are often deemed a practical necessity (due to a
finite amount of computational resources).

The pseudo-determinant of JK represents the transformation of a differential volume
element on the manifold. For one-dimensional manifolds, JK = [J1] and its pseudo-
determinant is simply the length of the single column vector J1 in the Euclidean
2-norm: |JK| = ‖J1‖2. In general, we define the pseudo-determinant to be

|JK| :=
√
|G|, (2.167)

where G = JT
K JK is the Gram matrix (Horn and Johnson, 2012, §7.2), and |G| is the

determinant of G. In differential geometry, (2.167) defines the volume of an m-
dimensional parallelepiped, embedded in n-dimensions, spanned by the columns
of the Jacobian JK. Notice that when m = n, then (2.167) reduces to the standard
determinant.

Most of the rules for pulling back finite element forms to the reference cell, as dis-
cussed in Section 2.3.1, still applies. For example, we have for scalar functions Φi,
Φj: ∫

K
Φi(x)Φj(x)dx =

∫
K̂

Φ̂i(x̂)Φ̂j(x̂)|JK|dx̂, (2.168)

where Φi(x) = F (Φ̂i) from (2.158), and |JK| from (2.167). Note that this can be
extended to vector-valued functions on the manifold (whose function space is the
Cartesian product of scalar-valued finite element spaces) by applying the standard
change-of-variables to each scalar component of the vector.

Differential operators on manifolds

Most finite element integrals will involve derivatives of basis functions defined over
the cells K. Therefore, we must be able to evaluate derivatives of functions defined
on the manifold. Now, suppose we have a function Φ(x) defined the cell K ⊂ Rn

with pullback Φ̂(x̂) defined on K̂ ⊂ Rm. The gradient ∇̂ of Φ̂ in the reference space
is simply

[∇̂Φ̂(x̂)]i =
∂Φ̂(x̂)

∂x̂i
, i = 1, · · · , m. (2.169)

We define the tangent space T(K) of K to be the image of JK. Thus, for any v ∈ T(K),
we have v = JKv̂, where v̂ is some vector defined in the reference space. Then for
any v ∈ T(K), the gradient of Φ(x) in the direction of v can be defined through the
usual Gâteux derivative:

∇Φ(x) · v = lim
ε→0

Φ(x + εv)−Φ(x)
ε

. (2.170)

2.3. Finite element computations 47

Assuming that the transformation FK is non-degenerate, such that the columns of JK
are linearly independent, we have for any v ∈ T(K):

∇Φ(x) · v = lim
ε→0

Φ(x + εv)−Φ(x)
ε

= lim
ε→0

Φ(FK(x̂ + εv̂))−Φ(FK(x̂))
ε

= lim
ε→0

Φ̂(x̂ + εv̂)− Φ̂(x̂)
ε

= ∇̂Φ̂(x̂) · v̂. (2.171)

Next, we introduce the (left) pseudo-inverse of the cell Jacobian JK, as defined by
Penrose (1955):

J+K =
(

JT
K JK

)−1
JT
K . (2.172)

Then for v = JKv̂, we can easily see that J+K v = v̂ by direct computation:

J+K v = J+K JKv̂ =
(

JT
K JK

)−1 (
JT
K JK

)
v̂ = v̂. (2.173)

After substituting (2.173) into (2.171), we see that

∇Φ(x) · v = ∇̂Φ̂(x̂) · J+K v =
(

J+K
)T ∇̂Φ̂(x̂) · v. (2.174)

Notice that Φ(x) is an n-vector in the same physical space where the manifold is
immersed. Moreover,

(
J+K
)T

= JK
(

JT
K JK
)−T

= JK
(

JT
K JK
)−1 maps to the tangent space

T(K). So from this we can clearly see that∇Φ(x) is in the tangent space, as we would
expect. Since (2.174) holds for all v ∈ T(K), we obtain the following relation:

∇Φ(x) =
(

J+K
)T ∇̂Φ̂(x̂). (2.175)

Putting everything together, we can now pullback finite element forms like the weak
Laplacian operator: ∫

K
∇Φi · ∇Φj dx, (2.176)

where Φi and Φj are a pair of finite element basis functions defined in the cell K.
Applying (2.175) and the standard rules for changing variables gives:∫

K
∇Φi · ∇Φj dx =

∫
K̂

(
J+K
)T ∇̂Φ̂i ·

(
J+K
)T ∇̂Φ̂j|JK|dx̂. (2.177)

Piola-mapped finite elements on manifolds

Formally, the definition of ∇· and ∇× on a manifoldM is summarized as the limit
of flux and circulation integrals:

∇ · u(x) = lim
ε→0

1
|C(ε)|

∮
C(ε)

u · n ds, (2.178)

(∇× u(x)) · n = lim
ε→0

1
|C(ε)|

∮
C(ε)

u · ds, (2.179)

48 Chapter 2. Preliminaries

where C(ε) is an close loop centered at a point x approaching radius ε as ε → 0,
n is the outward normal along the boundary of C(ε), and |C(ε)| is the area on M
enclosed by C(ε). For notational purposes, we denote the divergence and curl in
reference space as ∇̂ · û and ∇̂ × û respectively, where ∇̂ denotes the m-vector of
partial derivatives in x̂.

As previously discussed in Section 2.2.2, H(div) finite element spaces (such as the
Raviart-Thomas-Nédélec or Brezzi-Douglas-Marini spaces) consist of vector fields u
whose pullbacks are defined via the contraviarant Piola transform. On the manifold,
the definition remains largely unchanged. Letting Ψ̂ be a vector function defined on
the reference cell K̂, we define Ψ on the physical cell K as

Ψ(x) = Fdiv(Ψ̂) =
1

|JK(x̂)| JKΨ̂(x̂), (2.180)

where |JK| is the Jacobian pseudo-determinate. Under the transformation (2.180),
the divergence operator is pulled back via the relation:

∇ ·Ψ(x) =
1

|JK(x̂)| ∇̂ · Ψ̂(x̂). (2.181)

In general, Ψ̂ is a vector field with m components and Fdiv(Ψ̂) is a vector with n
components. Moreover, Fdiv(Ψ̂) ∈ T(K) by construction: JKΨ̂ ∈ T(K). The sign
of |JK| is positive if K has the same orientation as the manifold M and negative
otherwise. IfM is non-orientable, then (2.180) is not well-defined and thus the Piola
transform cannot be applied. Fortunately, this will not be the case for us. For the
implementation details of manifold orientation, we refer the reader to Rognes et al.
(2013, §3.3.2).

A particularly useful property of the contravariant Piola transform is revealed when
mapping between physical and reference cells. Integrals involving Piola-mapped
quantities often result in Jacobian cancellations, which greatly simplifies integral eval-
uations. We summarize this with the following lemma from Boffi, Brezzi, and Fortin
(2013, §2.1.3).

Lemma 1. (Properties of the contravariant Piola transformation): For any (contravariant)
Piola-mapped vector field Ψ = Fdiv(Ψ̂), Ψ ∈ H(div; K), and scalar function Φ = F (Φ̂),
Φ ∈ H1(K), the following relations hold:∫

K
∇Φ ·Ψ dx =

∫
K̂
∇̂Φ̂ · Ψ̂dx̂, (2.182)∫

K
Φ∇ ·Ψ dx =

∫
K̂

Φ̂∇̂ · Ψ̂dx̂, (2.183)∫
∂K

ΦΨ · n ds =
∫

∂K̂
Φ̂Ψ̂ · n̂dŝ. (2.184)

This well-known result is proven for affine FK and extended to non-affine (curved
elements) by Thomas (1976). While the identities (2.182)–(2.184) can be shown by
direct calculation (similarly for immersed manifolds), albeit through tedious vector
calculus computations, the result is more elegantly summarized within the frame-
work of finite element exterior calculus (FEEC). We refer the interested reader to
Arnold, Falk, and Winther (2006, §2.1), Arnold, Falk, and Winther (2010, §4), Arnold
(2013) and Arnold, Boffi, and Bonizzoni (2015).

2.3. Finite element computations 49

K+ K−
e

n+|e

n−|e

FIGURE 2.15: A shared edge between two adjacent elements. The + and − restrictions
denote the different sides corresponding to the direction of the outward pointing normal
vectors on the edge e.

The usefulness of the identities (2.183)–(2.184) come into play when considering
H(div) × L2 mixed finite element discretizations on M. A commonly occurring
integral for simulating geophysical flows is the pressure gradient term:∫

Th

Ψ · ∇hΦ dx, (2.185)

where Ψ and Φ are some vector and scalar fields respectively. Now, taking Ψ ∈ Uh,
and Φ ∈ Vh, where Uh × Vh is an H(div)× L2 pairing of finite element spaces (for
example, Raviart-Thomas and discontinuous Lagrange spaces), we can integrate by
parts (Green’s formula) to obtain:∫

Th

Ψ · ∇hΦ dx = −
∫
Th

Φ∇h ·Ψ dx +
∫
E ∂

h

ΦΨ · n ds +
∫
E◦h

ΦJΨK dS︸ ︷︷ ︸
=0

= −
∫
Th

Φ∇h ·Ψ dx +
∫
E ∂

h

ΦΨ · n ds, (2.186)

where E ∂
h is the set of exterior facets (empty if the manifold is closed), E◦h is the set of

interior facets, and JΨK is the jump of Ψ · n, defined as follows. On any shared facet
e by two elements K+ and K−, the jump on e is defined as

JΨK = Ψ|K+ · n+|e + Ψ|K− · n−|e, (2.187)

where n± denotes the outward-pointing normal on ∂K±, as shown in Figure 2.15.
Since Ψ comes from an H(div) finite element space, the normal components are
continuous across all interior facets, hence the vanishing surface term over E◦h .

Then, for Ψ = Fdiv(Ψ̂) and Φ = F (Φ̂), and using (2.183)–(2.184), we can write the
cellwise contribution of (2.186) as:

−
∫

K
Φ∇ ·Ψ dx +

∫
∂K

ΦΨ · n ds = −
∫

K̂
Φ̂∇̂ · Ψ̂dx̂ +

∫
∂K̂

Φ̂Ψ̂ · n̂dŝ. (2.188)

Equation (2.188) requires no cell Jacobian evaluations due to the cancellation proper-
ties of Fdiv. This is particularly nice, since otherwise integrals over curved domains
will contain non-polynomial expressions after being pulled back to K̂ (terms with
1/|JK(x̂)|). This will make exact quadrature very difficult in this case. Moreover,
failure to evaluate the expression (2.186) exactly can cause the discrete model to ex-
hibit spurious computational modes (Cotter and Shipton, 2012). If this occurs, then a

50 Chapter 2. Preliminaries

solution with balanced initial condition oscillates rapidly. This is catastrophic when
the nonlinear terms are introduced since the solution is polluted by rapid oscillations
before the slow balanced state has had time to evolve; this renders a discretization
for large-scale atmospheric modeling useless (Staniforth and Thuburn, 2011; Stani-
forth, Melvin, and Cotter, 2013).

Some integrals do not have such cancellation properties. For example, the mass term
of two Piola-mapped vector fields on K becomes:

∫
K

Ψi ·Ψj dx =
∫

K̂

JKΨ̂i

|JK(x̂)| ·
JKΨ̂j

|JK(x̂)| |JK(x̂)|dx̂ =
∫

K̂

JKΨ̂i · JKΨ̂j

|JK(x̂)| dx̂, (2.189)

which is non-polynomial whenever |JK(x̂)| varies as a function of x̂. This makes ex-
act integration for expressions like (2.189) very difficult. Fortunately, as mentioned
by Cotter and Thuburn (2014), the key properties we desire in a geophysical fluid
simulations (the basic energy conservation, balance, and wave propogation proper-
ties listed in Section 2.1.5), all rely on exactly integrating the following terms over a
cell K (or facet e):∫

K
gw · u⊥ dx,

∫
K
∇g · u dx,

∫
K

g∇ ·w dx,
∫

e
gu · n dS, (2.190)

where u, w are Piola-mapped vectors and g is some arbitrary scalar function. All in-
tegrands in (2.190) were shown to have cancellations of Jacobian determinants when
pulled back to the reference cell (or reference facet in the case of surface integrals). So
while terms like (2.189) may appear in a discrete finite element formulation, select-
ing a quadrature rule of a suitable degree such that all terms in (2.190) are integrated
exactly will be sufficient to maintain our desired properties. Direct calculations and
analysis within a FEEC framework are provided by Cotter and Thuburn (2014).

Finally, we conclude this section by briefly mentioning how H(curl) finite element
functions are handled on manifolds. Similarly with pulling back H(div) functions,
the covariant Piola transform (see (2.153)) remains unchanged except for the inclu-
sion of the Jacobian pseudo-inverse:

ξ(x) = Fcurl(ξ̂) =
(

J+K
)T

ξ̂(x̂), (2.191)

where ξ and ξ̂ are vector fields defined on K and K̂ respectively. Under the transfor-
mation (2.191), we have the following relation for the curl operator:

∇× ξ(x) =
JK

|JK(x̂)| ∇̂ × ξ̂(x̂). (2.192)

It is worth noting that similar Jacobian cancellations occur for H(curl) vector func-
tions. However, since we do not make use of them in this dissertation, we omit the
details and instead refer the interested reader to Boffi, Brezzi, and Fortin (2013, §2,
Lemma 2.1.9), Nédélec (1980) and Nédélec (1986).

2.4 Compatible finite element methods

Over the past decade, finite element discretizations of the governing equations for
atmospheric motion have become increasing popular. A majority of the focus has

2.4. Compatible finite element methods 51

been centered on high-order continuous Galerkin (CG), spectral element, and dis-
continuous Galerkin (DG) methods. For an overview, see Fournier, Taylor, and Trib-
bia (2004), Thomas and Loft (2005), Dennis et al. (2011), Kelly and Giraldo (2012), Gi-
raldo, Kelly, and Constantinescu (2013), Bao, Klöfkorn, and Nair (2015), and Marras
et al. (2015). More recently, a theory of mixed-finite element discretizations, known
as mimetic or compatible finite element methods (Cotter and Shipton, 2012; Stani-
forth, Melvin, and Cotter, 2013; Cotter and Thuburn, 2014; McRae and Cotter, 2014;
Natale, Shipton, and Cotter, 2016), has been developed within the context of simu-
lating geophysical fluid dynamics.

Compatible finite element elements are built from discrete spaces that satisfy an L2

de-Rham co-homology in which differential operators map from one space to an-
other (Arnold, Falk, and Winther, 2006; Arnold, Falk, and Winther, 2010; Arnold
and Awanou, 2014). Discretizations arising from this framework have a long history
in both numerical analysis and applications ranging from structural mechanics to
porous media flows. See Boffi et al. (2008) and Boffi, Brezzi, and Fortin (2013) for a
summary of contributions.

The realization made by Cotter and Shipton (2012) that compatible finite element
methods respect essential geostrophic balance relations for steady-state solutions
of the rotating shallow water equations, combined with other properties making
them analogous to the Arakawa C-grid (Thuburn, Cotter, and Dubos, 2014), has
galvanized an effort to develop similar techniques for numerical weather prediction.
In this section, we introduce key concepts which build the framework of compatible
finite element methods for both two- and three-dimensional formulations.

2.4.1 L2 de-Rham complexes

Let Ω be a bounded domain in Rn. By a de-Rham complex, we mean a sequence of
spaces with:

0→ V0(Ω)
d0

→ V1(Ω)
d1

→ · · · dn−1

→ Vn(Ω)→ 0, (2.193)

where Vk are function spaces on Rn and dk are mappings between them satisfying
dk ◦ dk−1 = 0. As soon as the function spaces Vk are defined explicitly, the operators
dk take the form of familiar differential operators from vector calculus.

For k = 0, n, the spaces Vk consist of scalar-valued functions, and vector-valued for
k = 1, · · · , n− 1. If the Vk are Hilbert spaces, then (2.193) can be identified with an
L2 de-Rham complex. In R3, the de-Rham complex takes the form:

0→ H1 ∇−→ H(curl) ∇×−−→ H(div) ∇·−→ L2 → 0. (2.194)

Note that the well-known vector calculus identities∇× (∇ f) = 0, for a scalar func-
tion, and ∇ · (∇× v) = 0 for a vector field are encoded in the de-Rham complex
via dk ◦ dk−1 = 0. In R2, there are two identifications one can make which re-
sults in two valid L2 de-Rham complexes. We refer the reader to Arnold, Falk, and
Winther (2010) for a discussion on how this identification is made.4 For brevity, we

4 This identification branches into finite element exterior calculus, which establishes the relationship
between spaces of differential forms and finite element spaces. The two complexes in R2 are a result
of selecting an identification of 1-forms with C∞(R2). This is summarized in Table 10 of Arnold, Falk,
and Winther (2010).

52 Chapter 2. Preliminaries

just present both complexes below. The first complex in R2 is:

0→ H1 ∇⊥−→ H(div) ∇·−→ L2 → 0, (2.195)

and the second:
0→ H1 ∇−→ H(curl) ∇

⊥·−−→ L2 → 0. (2.196)

In one-dimension, there is only the single complex:

0→ H1
d

dx−→ L2 → 0. (2.197)

For each L2 complex in Rn, n ≤ 3, we can identify a discrete complex consisting of
finite element subspaces Vk

h ⊂ Vk. Abstractly, a critical requirement of “compatibil-
ity” in our context is that the following diagram commutes:

V0 V1 · · · Vn−1 Vn

V0
h V1

h · · · Vn−1
h Vn

h

d0

π0

d1

π1

dn−1 dn−1

πn−1 πn

d0 d1 dn−1 dn−1

(2.198)

where Vk
h ⊂ Vk are finite element subspaces, and πk, k = 1, · · · , n are bounded

projection operators between Vk and Vk
h . We remark here that the property Vk

h ⊂ Vk

is not strictly necessary to construct a useful discrete complex; Holst and Stern (2012)
handled the more general setting. We shall elaborate in Section 2.4.6.

2.4.2 Compatible finite elements in two-dimensions

We begin with a formal definition for what it means for a two-dimensional finite
element discretization to be “compatible.” Let Th be a mesh of a bounded domain Ω
in R2. Now suppose we have the following L2 de-Rham complex

0→ H1 ∇⊥−→ H(div) ∇·−→ L2 → 0. (2.199)

Now let Vk
h (Th) be finite element subspaces of Vk. The spaces Vk

h are compatible if the
following conditions are met:

1. ∇⊥ψ ∈ V1
h , for all functions ψ ∈ V0

h ;

2. ∇ · v ∈ V2
h , for all functions v ∈ V1

h ; and

3. There exists bounded projections π0, π1, and π2 such that the following dia-
gram commutes:

H1 H(div) L2

V0
h V1

h V2
h

∇⊥

π0

∇·

π1 π2

∇⊥ ∇·

(2.200)

The use of these commuting diagrams is used to demonstrate stability and conver-
gence of the finite element method, as discussed by Boffi, Brezzi, and Fortin (2013).
The fact that it makes sense to act on functions in Vk

h via the differential operator dk is

2.4. Compatible finite element methods 53

a direct result of Vk
h ⊂ Vk. Within the context of finite exterior calculus (Arnold, Falk,

and Winther, 2006; Arnold, Falk, and Winther, 2010; Arnold and Awanou, 2014), this
framework is translated into the language of differential forms, where proofs of the
existence of the projections πk are derived from. For clarity, we choose to stay within
the context of vector calculus as much as possible.

If the domain Ω has a boundary ∂Ω, then we define H̊1 and V̊0
h as subspaces of H1

and V0
h with vanishing trace on ∂Ω, respectively. Similarly, we define H̊(div) and V̊1

h
as the subspaces of H(div) and V1

h where the normal components of functions vanish
on ∂Ω. Then, the above commutative diagram (2.200) still holds with subspaces
appropriately substituted (Natale, Shipton, and Cotter, 2016).

A nearly identical definition can be made for the two-dimensional complex in (2.196).
For our purposes, we will only be working with compatible finite element spaces in
(2.199). For completion, however, we give some explicit examples of compatible
finite element spaces for both de-Rham complexes below.

For the first complex in (2.199), the following finite element spaces form a compatible
complex for q ≥ 1:

Pq
∇⊥−→ RTq

∇·−→ dPq−1, (2.201)

Pq+1
∇⊥−→ BDMq

∇·−→ dPq−1, (2.202)

Qq
∇⊥−→ RTC f

q
∇·−→ dQq−1. (2.203)

Another useful finite element complex relevant for numerical weather prediction
was detailed by Cotter and Shipton (2012) on triangles:

P2 ⊕ B3
∇⊥−→ BDFM2

∇·−→ dP1, (2.204)

where P2⊕ B3 is the space of quadratic functions enriched by a cubic “bubble” func-
tion (a cubic function vanishing on cell boundaries).

For the second complex (2.196), we have for q ≥ 1:

Pq
∇−→ RTe

q
∇⊥·−−→ dPq−1, (2.205)

Pq+1
∇−→ BDMe

q
∇⊥·−−→ dPq−1, (2.206)

Qq
∇−→ RTCe

q
∇⊥·−−→ dQq−1, (2.207)

where RTe
q, BDMe

q, and RTCe
q are the “rotated” versions of RTq, BDMq, and RTC f

q
respectively for H(curl). These are presented by Brezzi, Douglas, and Marini (1985)
and Nédélec (1980) for simplices and Nédélec (1986) and Brezzi et al. (1987a) for
quadrilaterals.

2.4.3 Tensor product elements

In preparation for building a three-dimensional finite element complex, it will be
helpful to provide constructions of what are known as tensor product elements. In
fact, we have already encountered one such element explicitly: the Qq(K) family. It
is the simplest tensor product element by construction, but other elements for the

54 Chapter 2. Preliminaries

various Sobolev spaces are indeed possible. Using tensor product elements, we can
construct finite elements on more general polytopes, like triangular prisms.

Product cells and function spaces

Let KA ⊂ Rn and KB ⊂ Rm be two polygonal cells. We define the product of KA and
KB, denoted as KA × KB, to simply be the set:

KA × KB = {(x1, · · · , xn+m) ∈ Rn+m :
(x1, · · · , xn) ∈ KA and (xn+1, · · · xn+m) ∈ KB}. (2.208)

This construction can be applied to the product of an arbitrary number of cells Ki ⊂
Rni , i = 1, · · · , k:

k

×
i=1

Ki = {(x1, · · · , x∑k
i=1 ni

) ∈ R∑k
i=1 ni :

(x1, · · · , xn1) ∈ Rn1 ,
(xn1+1, · · · , xn1+n2) ∈ Rn2 ,

...
(x1+∑k−1

i=1 ni
, · · · , x∑k

i=1 ni
) ∈ Rnk}. (2.209)

This definition follows naturally, as one could take the product of cells where some
of the component cells are tensor product cells themselves, such as cube/box cells.

Let K =×k
i=1 Ki be a product cell. Then the tensor product function space on K is

simply
k⊗

i=1

Vi(Ki) = Span{v1 · v2 · · · vk : vi ∈ Vi(Ki)}, (2.210)

where

(v1 · v2 · · · vk)
(

x1, · · · , x∑k
i=1 ni

)
=

v1(x1, · · · , xn1) · v2(xn1+1, · · · xn1+n2) · · · vk

(
x1+∑k−1

i=1 ni
, · · · , x∑k

i=1 ni

)
. (2.211)

In our context, we typically construct product cells and tensor product spaces con-
sisting of two cells (hence two function spaces). Namely, K = KA × KB and the
resulting product space consists of functions of the form:

(vA · vB)(x1, · · · , xn+m) = vA(x1, · · · , xn) · vB(xn+1, · · · , xn+m), (2.212)

where vA ∈ VA(KA) and vB ∈ VB(KB). Note that in nearly all cases, at least one of
the function spaces will consist of scalar-valued functions, meaning that the product
vA · vB is unambiguous. Lastly, if {φi}N

i=1 and {ψi}M
i=1 are bases for VA and VB respec-

tively, then a basis for VA ⊗VB is given by {Ψij}1≤i≤N, 1≤j≤M, where Ψij = φi · ψj.

Focusing on product cells of the form: K = KA × KB, where KA ⊂ Rn and KB ⊂ Rm,
the topological entities of K correspond to the product of topological entities of both
KA and KB. Following the convention outlined by McRae et al. (2016), we label the
entities of a cell (say, in Rn) by their dimension (0 for vertices, 1 for edges, · · · , n− 1

2.4. Compatible finite element methods 55

for facets, and n for the cell). Then the topological entities of KA × KB are labeled as
follows:

• (0, 0): vertices of KA × KB; the product of a vertex of KA with a vertex of KB.

• (0, 1): edges of KA × KB; the product of a vertex of KA with an edge of KB.

• (1, 0): edges of KA × KB; the product of an edge of KA with a vertex of KB.

...

• (n− 1, m): facets of KA × KB; the product of a facet of KA with the cell of KB.

• (n, m− 1): facets of KA × KB; the product of the cell of KA with a facet of KB.

• (n, m): cell of KA × KB; the product of the cell of KA with the cell of KB.

Using the notation of McRae et al. (2016), we can clearly distinguish between dif-
ferent types of entities, especially those with the same geometric dimension. For
example, if KA is a triangle and KB an interval, then the product cell KA × KB is a tri-
angular prism in R3 with triangular facets labeled as (2, 0) and quadrilateral facets
(1, 1). This labeling convention allows software to exploit the geometric structure
of product cells, resulting in efficient code-generation techniques for iterating data
structures attached to meshes with tensor product cells (Bercea et al., 2016).

Nodes of a tensor product element

Now suppose we have two finite elements FEA and FEB defined by the Ciarlet
triples (KA, VA,NA) (KB, VB,NB) respectively. The tensor product elementFEA⊗FEB
is defined as the Ciarlet triple (K, V,N), where

K = KA × KB, (2.213)
V = VA ⊗VB, (2.214)

and the nodes are given by:

N = {ni,j = n(A)
i ? n(B)

j : n(A)
i ∈ NA, n(B)

j ∈ NB}. (2.215)

The operator ? in (2.215) denotes the “product” of nodes from the dual bases NA
and NB. Within our context, both NA and NB will be nodal in the Kronecker delta
sense (2.107), thus we can explicitly define n(A)

i ? n(B)
j as the functional(

n(A)
i ? n(B)

j

)
(vA · vB) = n(A)

i (vA) · n(B)
j (vB). (2.216)

Given a node ni,j ∈ N and a basis function Ψk,l ∈ V, then

ni,j(Ψk,l) = n(A)
i (φk) · n

(B)
j (ψl) = δikδjl . (2.217)

Setting α = (i, j) and β = (k, l) to be multi-indices associated with the nodes and
basis functions defining the product element respectively, we have

nα(Ψβ) = δαβ. (2.218)

56 Chapter 2. Preliminaries

The set N is a basis for V ′ and characterizes the degrees of freedom for FEA ⊗
FEB. A similar construction holds for the tensor product of arbitrarily many finite
elements. For more information on the construction of tensor product elements, we
refer the reader to McRae et al. (2016).

2.4.4 Compatible finite elements in three-dimensions

Since there is only a single de-Rham complex in R3 based on the construction in
Section 2.4.1, we can focus solely on the follow L2 complex over Ωh:

0→ H1 ∇−→ H(curl) ∇×−−→ H(div) ∇·−→ L2 → 0. (2.219)

Let V0
h ⊂ H1, V1

h ⊂ H(curl), V2
h ⊂ H(div) and V3

h ⊂ L2 be finite element spaces.
Then we say that the spaces Vk

h are compatible if:

1. ∇ψ ∈ V1
h for all functions ψ ∈ V0

h ;

2. ∇×w ∈ V2
h for all vectors w ∈ V1

h ;

3. ∇ · v ∈ V3
h for all vectors v ∈ V2

h ; and lastly,

4. There exists bounded projections π0, π1, π2, and π3 such that the diagram
commutes:

H1 H(curl) H(div) L2

V0
h V1

h V2
h V3

h

∇

π0

∇×

π1

∇×

π2 π3

∇ ∇× ∇·

(2.220)

This is a natural extension of the two-dimensional case in Section 2.4.2. The three-
dimensional complex is summarized more abstractly (for simplicial, cubical, and
curvilinear meshes) by Arnold, Falk, and Winther (2010), Arnold and Awanou (2014),
and Arnold, Boffi, and Bonizzoni (2015).

As before, a three-dimensional compatible sequence can be constructed from the
elements previously defined. The following finite elements form a compatible set of
spaces for the L2 complex in (2.220) for q ≥ 1:

Pq
∇−→ N1e

q
∇×−−→ N1 f

q
∇·−→ dPq−1, (2.221)

Qq
∇−→ NCe

q
∇×−−→ NC f

q
∇·−→ dQq−1. (2.222)

The first complex (2.221) is a standard sequence of elements defined on tetrahedral
cells. The second complex, however, can be constructed in a different manner. In
fact, (2.222) is the first tensor product complex we have introduced.

Tensor product complex. In one-dimension, we have the complex defined on an
interval I:

0→ H1(I)
d

dx−→ L2(I)→ 0. (2.223)

2.4. Compatible finite element methods 57

The obvious choice of finite elements to form the discrete complex are the continuous
and discontinuous Lagrange elements respectively:

Pq(I)
d

dx−→ dPq−1(I). (2.224)

We can form a compatible finite element complex in three-dimensions by taking the
tensor product of elements in (2.224) with elements of a two-dimensional complex.
In general, if we have the one- and two-dimensional finite element complexes:

V0
h (I)

d
dx−→ V1

h (I), (2.225)

U0
h(K)

∇⊥−→U1
h(K)

∇·−→ U2
h(K), (2.226)

a three-dimensional compatible tensor product complex is formed on K× I:

W0
h
∇−→W1

h
∇×−−→W2

h
∇·−→W3

h , (2.227)

where

W0
h = U0

h ⊗V0
h , (2.228)

W1
h = HCurl(U1

h ⊗V0
h)︸ ︷︷ ︸

W1,horiz.
h

⊕ HCurl(U0
h ⊗V1

h)︸ ︷︷ ︸
W1,vert.

h

, (2.229)

W2
h = HDiv(U1

h ⊗V1
h)︸ ︷︷ ︸

W2,horiz.
h

⊕ HDiv(U2
h ⊗V0

h)︸ ︷︷ ︸
W2,vert.

h

, (2.230)

W3
h = U2

h ⊗V1
h . (2.231)

The operators HCurl/HDiv are modifiers applying appropriate transformations to
product elements. They are a consequence of implementation, as summarized in
McRae et al. (2016, §2.4.5). We elaborate further on the construction of each W i

h.
For the purpose of presentation, we take the two-dimensional cell to be a triangle,
K = 4. However, the discussion here is equally valid for quadrilateral cells.

W0
h : To form the H1 element, the component elements must have nodes associated

with the vertices of the product cell. As we previously discussed, these vertices are
formed by taking the product of vertices of K and I. The constituent finite elements
must therefore be H1 elements, U0

h and V0
h respectively. For u ∈ U0

h , v ∈ V0
h , functions

in W0
h = U0

h ⊗V0
h take the form of the scalar product: uv. An illustration for a lowest-

order element is illustrated in Figure 2.16.

FIGURE 2.16: The result of taking the tensor product of a P1(4) triangular Lagrange element
with a P1(I) interval Lagrange element.

58 Chapter 2. Preliminaries

(A) W1,horiz.
h

(B) W1,vert.
h (C) W1,horiz.

h ⊕W1,vert.
h

FIGURE 2.17: A lowest-order H(curl) element on a triangular prism (Fig. 2.17C). Here, the
horizontal element (Fig. 2.17A) is constructed from U1

h = RT1(4), the lowest-order Raviart-
Thomas-Nédélec H(div) element (rotated 90 degrees), and V0

h = P1(I). The vertical element
(Fig. 2.17B) is formed from the tensor product of U0

h = P1(4) with V1
h = dP0(I).

W1
h : For the H(curl) element in (2.229), we must have nodes associated with cell

edges to enforce tangential continuity. The construction of W1
h , in our case, is de-

scribed as the direct sum of a “horizontal” and ”vertical” element, W1,horiz.
h and

W1,vert.
h respectively. One way to construct the horizontal component is by taking

the tensor product of a two-dimensional H(div) finite element, U1
h , with a one-

dimensional H1 element, V0
h . This produces a vector-valued element with nodes

on the (1, 0)-edges. For u ∈ U1
h , v ∈ V0

h , elements of U1
h ⊗V0

h are vectors of the form:
u× v =

{
vux vuy

}
.

The product naturally takes values in R2, however, the H(curl) element must take
values in R3. Using the modifier HCurl, we translate the two-dimensional vector into
a three-dimensional vector with x and y components rotated by 90 degrees (identi-
cal to the construction of the two-dimensional edge elements presented in Section
2.2.2). The resulting three-dimensional vector becomes

{
−vuy vux 0

}
. More-

over, the covariant Piola transform must be employed when mapping from ref-
erence cell to physical cell. We write the resulting horizontal H(curl) element as
W1,horiz.

h = HCurl(U1
h ⊗V0

h) (see Figure 2.17A).

Remark 5. Alternatively, one may construct W1,horiz.
h by taking the tensor product of a two-

dimensional H(curl) element with an H1 one-dimensional element. In this case, it is enough
to interpret

{
vux vuy

}
to be the first two components of the vector in R3.

Finally, we construct the vertical component, W1,vert.
h , by taking the tensor product

of an H1 two-dimensional element with an L2 one-dimensional element. This pro-
duces a scalar-valued element with nodes on the (0, 1)-edges. We transform the
product into a vector-valued quantity in R3 by simply scaling by the unit vector
ez =

{
0, 0, 1

}
, which produces a vector whose tangential components are continu-

ous on all vertical edges/faces. Since we need to preserve tangential components,
the covariant Piola transform must be used to map functions from reference to phys-
ical space. We write the resulting vertical element as W1,vert.

h = HCurl(U0
h ⊗V1

h). See
Figure 2.17 for a complete illustration of a lowest-order H(curl) element.

W2
h : The H(div) element follows a similar construction to that of the H(curl) el-

ement. We require that W2
h must have nodes associated with cell facets to ensure

continuity of normal components. The element W2
h can be constructed as the direct

sum of a “horizontal” element, W2,horiz.
h , and a “vertical” element, W2,vert.

h . To con-
struct W2,horiz.

h , we take the tensor product of a two-dimensional H(div) element U1
h

2.4. Compatible finite element methods 59

(A) W2,horiz.
h (B) W2,vert.

h (C) W2,horiz.
h ⊕W2,vert.

h

FIGURE 2.18: A lowest-order H(div) element on a triangular prism (Fig. 2.18C). The hori-
zontal element (Fig. 2.18A) is constructed from U1

h = RT1(4), and V1
h = dP0(I). The vertical

element (Fig. 2.18B) is formed from the product of U2
h = dP0(4) with V1

h = P1(I).

with an L2 one-dimensional element V1
h . Again, the product naturally takes values

in R2. Since U1
h is in H(div), it is sufficient to interpret the product as the first two

components of a vector in R3 whose third component vanishes. Lastly, we require
the contravariant Piola transform as our method of pullback. The resulting element
is W2,horiz.

h = HDiv(U1
h ⊗ V1

h), where the modifier HDiv applies the necessary trans-
formations to the U1

h ⊗V1
h vector-valued element (Figure 2.18A).

Remark 6. Similarly with the construction of the horizontal H(curl) element, if U1
h is a

two-dimensional H(curl), then the product U1
h ⊗V1

h must be rotated by 90 degrees.

The vertical element W2,vert.
h is constructed from taking the product of an L2 two-

dimensional element U2
h with a one-dimensional H1 element V0

h . This produces a
scalar-valued element with nodes on the (2, 0)-facets of the product cell. Scaling the
result by the unit vector ez produces the desired finite element (Figure 2.18B).

W3
h : Finally, the L2 element must only have nodes associated with cell interiors.

Therefore, both constituent finite elements must be in L2. The result is illustrated
for the lowest-order elements in Figure 2.19. An overview of the tensor product
elements mentioned here is presented in Table 2.2.

Having the notion of product cells and tensor product spaces is particularly advan-
tageous in atmospheric modeling. Typically, atmospheric meshes consist of an un-
structured horizontal “base” mesh (of a sphere, for example) which is uniformly
extruded in the vertical. The structured vertical grid is used to facilitate staggering of
thermodynamic variables, which are common for standard finite difference or finite
volume methods used in atmospheric dynamical cores (Wood et al., 2014; Staniforth
and Wood, 2008; Staniforth, Melvin, and Cotter, 2013).

FIGURE 2.19: The result of taking the tensor product of a dP0(4) discontinuous Lagrange
element with a dP0(I) interval (discontinuous) element.

60 Chapter 2. Preliminaries

T
A

B
L

E
2.2:

Sum
m

ary
of

the
construction

of
tensor

productelem
ents

in
three-dim

ensions,using
the

finite
elem

entcom
plexes

(2.225)
and

(2.226).
This

is
a

m
odification

of
Table

2
by

M
cR

ae
et

al.(2016).
The

first
tw

o
colum

ns
denote

the
pairs

of
function

spaces
from

w
hich

the
tensor

product
elem

ent
is

constructed.
The

m
odifiers

HCurl
and

HDiv
ensure

the
resulting

finite
elem

ent
has

the
appropriate

shape
(vector-valued)and

reference
cellm

apping
(covariant/contravariantPiola

transform
).

Tensor
productelem

ents
w

ith
no

m
odifier

and
an

“identity”
m

apping
are

scalar-valued
elem

ents
w

ith
pullbacks

consisting
ofonly

a
change-of-coordinates

transform
ation.

Product(2D
×

1D
)

Elem
ent (U

ih ⊗
V

jh)
C

om
ponents

M
odifier

Shape
R

esult
M

apping

H
1×

H
1

U
0h ⊗

V
0h

u
×

v
–

scalar
uv

identity
H

1×
L

2
U

0h ⊗
V

1h
u
×

v
–

scalar
uv

identity
H

1×
L

2
U

0h ⊗
V

1h
u
×

v
HCurl

vector
(R

3)
{0

0
uv }

covariantPiola

H
(div

)×
H

1
U

1h ⊗
V

0h

{u
x

u
y }
×

v
–

vector
(R

2)
{vu

x
vu

y }
†

–
H
(div

)×
H

1
U

1h ⊗
V

0h

{u
x

u
y }
×

v
HCurl

vector
(R

3) {−
vu

y
vu

x
0 }

covariantPiola

H
(div

)×
L

2
U

1h ⊗
V

1h

{u
x

u
y }
×

v
–

vector
(R

2)
{vu

x
vu

y }
†

–
H
(div

)×
L

2
U

1h ⊗
V

1h

{u
x

u
y }
×

v
HDiv

vector
(R

3) {vu
x

vu
y

0 }
contravariantPiola

L
2×

H
1

U
2h ⊗

V
0h

u
×

v
–

scalar
uv

identity
L

2×
H

1
U

2h ⊗
V

0h
u
×

v
HDiv

vector
(R

3)
{0

0
uv }

contravariantPiola
L

2×
L

2
U

2h ⊗
V

1h
u
×

v
–

scalar
uv

identity

Entries
m

arked
w

ith
†

have
little

practical
use

for
our

application;
they

are
tw

o-dim
ensional

vectors
defined

over
three-

dim
ensionalcells.N

o
m

appings
have

been
given

for
these

productelem
ents,as

the
Piola

transform
on

three-dim
ensionalcells

requires
allthree

spatialcom
ponents

to
be

explicitly
defined.

2.4. Compatible finite element methods 61

2.4.5 Finite element space for the potential temperature

In Section 2.1.5, we summarized desirable numerical properties for atmospheric
models. Most of those properties depend on the choice of horizontal grid and vari-
able staggering. Within the context of finite difference methods, the Arakawa C-grid
(recall Figure 2.3) is primarily used due to its favorable numerical properties. In
three-dimensions, vertical grids are equally important for maintaining discrete bal-
ance relations in the vertical direction, most notably the hydrostatic balance relation
(in Exner pressure formulation):

gk̂ = −cpθ
∂Π
∂z

, (2.232)

where k̂ is the upward-pointing normal, cp is the specific heat at constant pressure, θ
is the potential temperature (previously defined in (2.6)), and Π is the Exner pressure
(defined in (2.9)). It is critically important that flows initially in hydrostatic balance
do not deviate far from this state over time. A spontaneous loss of balance will
render numerical models useless for weather prediction purposes (Staniforth and
Wood, 2008).

For the vertical discretization, a structured grid is typically employed which allows
for column-wise staggering of the thermodynamic variables, like θ. The two most
popular choices in atmospheric modeling are the Lorenz grid (Lorenz, 1960), where
the temperature is collocated with the pressure variable in a C-grid staggering, and
the Charney-Phillips grid (Charney and Phillips, 1953), where temperature is posi-
tioned with the vertical component of the velocity. Figure 2.20 provides a visualiza-
tion of the two grids in a vertical-slice (x, z) geometry.

The Lorenz grid is ideal for point-wise physics parameterization in atmospheric
models, since all thermodynamic variables (pressure, density, and temperature) are

w

w

w

θ

θ

θ

(Π, ρ)

(Π, ρ)

(A) The Charney-Phillips staggered grid.

w

w

w

(Π, ρ)

(Π, ρ)

θ

θ

(B) The Lorenz staggered grid.

FIGURE 2.20: Two commonly used vertical grids ((x, z) vertical slice) in atmospheric mod-
eling. The Lorenz grid in (2.20B) collocates the temperature, θ, with the pressure, Π, and
density, ρ, while the Charney-Phillips grid (2.20A) collocates θ with the vertical component
of the velocity, w.

62 Chapter 2. Preliminaries

easily available and local to cell centers. However, it is well-known that the Lorenz
grid supports the formation of an unphysical (zero-frequency) computational mode,
which degrades numerical solutions over time near hydrostatic balance (Schneider,
1987; Arakawa and Konor, 1996). The Charney-Phillips grid avoids this problem
entirely. However, extrapolation of temperature to cell centers is required (often
through vertical averaging) in physics parameterization schemes. For a more de-
tailed comparison of the two vertical grids, we refer the reader to the detailed stud-
ies performed by Holdaway, Thuburn, and Wood (2012a) and Holdaway, Thuburn,
and Wood (2012b).

In a compatible finite element discretization, the horizontal C-grid staggering of
variables is analogous to choosing the velocity to be in an H(div)-finite element
space, and pressure/density to be in an L2-finite element space. A three-dimensional
discretization, with a structured vertical grid, is achieved by constructing a tensor
product complex; that is, taking the product of a horizontal two-dimensional com-
plex with a structured one-dimension complex in the vertical (see the constructions
presented in (2.228)–(2.231)). Due to the vertical structure of a tensor product com-
plex, a number of options for vertical staggering become available.

To emulate the Lorenz grid in a compatible finite element discretization, we can
simply construct θ, the potential temperature, in the L2 space, W3

h (the same finite
element space for pressure/density). However, as we have previously stated, this
particular grid can produce unphysical phenomena which rapidly degrades solu-
tions near hydrostatic balance. Indeed the same numerical phenomena of the Lorenz
grid can be observed when using this approach, as demonstrated by Melvin et al.
(2018). Instead, we can construct a new finite element which mirrors the Charney-
Phillips grid. To accomplish this, we create a tensor product element with nodes
corresponding to the locations of nodes in the vertical component of the H(div) ve-
locity element, W2

h . We call this space Wθ
h .

Wθ
h : We introduce a new finite element space Wθ

h which is constructed from a hori-
zontally discontinuous element, but continuous in the vertical: Wθ

h = U2
h ⊗V1

h . This
is, in fact, a scalar-version of the vertical velocity element W2,vert.

h (without the HDiv
modifier summarized in Table 2.2). Meaning that the finite element defining Wθ

h has
the same number of nodes as W2,vert.

h , but differ in how they are pulled back to the
reference element. The pullback in this case is simply the standard one for scalar
functions. See Figure 2.21 for an illustration of the degrees of freedom for this par-
ticular element on triangular prisms and cubes.

This constructs the compatible finite element extension of the Charney-Phillips stag-
gered grid. It was shown by Natale, Shipton, and Cotter (2016) that this choice of
finite element space leads to an injective mapping between the pressure and θ in
(2.232). Therefore, spurious hydrostatic pressure modes are avoided. A compari-
son of various tensor product finite element spaces for the temperature, including
the Wθ

h element shown here, was presented by Melvin et al. (2018). They showed,
for a simplified compressible (gravity wave) model, that using the space Wθ

h for the
temperature variable produced the most consistent results and agreed with analytic
dispersion relations for gravity waves. As a result, we shall exclusively use the space
Wθ

h for the temperature in our compressible models throughout this dissertation.

2.4. Compatible finite element methods 63

(A) Wθ
h element on triangular prisms.

(B) Wθ
h element on cubes.

FIGURE 2.21: The lowest order and next-to-lowest order spaces for the Wθ
h finite element in

three-dimensions.

2.4.6 Approximations of de-Rham complexes on hypersurfaces

It is worth taking a moment to discuss de-Rham complexes within a more general
setting. Consider the following complex:

· · · W i W i+1 · · ·di
(2.233)

where W i are Hilbert spaces and di : W i → W i+1 are closed linear maps, possibly
unbounded, satisfying di ◦ di−1 = 0 for each i. When we say di are closed, we mean
specifically that image of diW i is closed in W i+1 for each i. Now suppose we have
another de-Rham complex consisting of Hilbert spaces W i

h, along with close linear
maps di

h:

· · · W i
h W i+1

h · · ·
di

h (2.234)

with di
h ◦ di−1

h = 0 and W i
h are finite-dimensional. The observant reader will notice

that, in our definitions of the compatible finite element complexes (2.200) and (2.220),
we restricted ourselves to the case when W i

h ⊂ W i. In this situation, we say (2.234)
is a subcomplex of (2.233). This is also the main setting of the theory presented by
Arnold, Falk, and Winther (2010). A natural question arises when we consider the
commutative diagrams in Sections 2.4.2 and 2.4.4: what happens if W i

h 6⊂W i?

As discussed in Section 2.3.2, finite element discretizations on hypersurfaces (em-
bedded manifolds) puts us in the more complicated situation where our discrete
spaces are no longer subspaces of the continuous solution spaces. This is the afore-
mentioned variational crime we alluded to in Remark 4. Fortunately, all is not lost. In
particular, the compatible finite element de-Rham complex can be extended to han-
dle this exact situation, as shown by Holst and Stern (2012) and Natale, Shipton, and
Cotter (2016). We shall quickly summarize here to put the reader at ease.

64 Chapter 2. Preliminaries

Consider the following extended diagram:

· · · W i W i+1 · · ·

· · · W i
h W i+1

h · · ·

di

πi πi+1

di
h

ιi ιi+1 (2.235)

where πi : W i → W i
h is a projection and ιi : W i

h ↪→ W i is an inclusion mapping such
that πi ◦ ιi is the identity map on W i

h. In the analysis of Arnold, Falk, and Winther
(2010) where W i

h ⊂ W i, ιi is an isometry. Therefore, W i
h can be identified with the

subcomplex ιiW i
h ⊂W i since:

〈ιiu, ιiv〉W i = 〈u, v〉W i = 〈u, v〉W i
h
, ∀u, v ∈W i

h, (2.236)

where 〈·, ·〉X denotes an inner product on a Hilbert space X. If a weak formulation
is posed on the complex W i, then the well-posedness of a Galerkin method on W i

h
relies on one critical assumption: πk exists. Indeed, for the class of finite element
spaces we consider, such a projection does exist (Arnold, Falk, and Winther, 2006;
Arnold, Falk, and Winther, 2010; Arnold, 2013; Arnold and Awanou, 2014) This
means a Galerkin problem may be posed on the subcomplex W i

h, and standard error
estimates follow per usual finite element theory.

Holst and Stern (2012) extended the diagram (2.235) to the case where W i
h 6⊂ W i;

that is, where ιi do not satisfy (2.236). The only requirement is that ιi must at least
be an injective morphism (structure-preserving map) of Hilbert complexes with the
property that πi ◦ ιi is the identity. The existence of such projections πi follows from
Theorem 3.7 of Holst and Stern (2012).

As a result, a complex on W i
h is an approximation to a true subcomplex of W i, and

each W i
h can still be identified with the subspaces ιiW i

h ⊂ W i using the modified
inner product:

〈ιiu, ιiv〉Wi = 〈ιi∗ιiu, v〉W i
h
, ∀u, v ∈W i

h, (2.237)

where ιi∗ is the adjoint of ιi (Holst and Stern, 2012, Theorem 3.8). Notice that when
W i

h ⊂ W i, then ιi is an isometry and (2.237) reduces to the original identification in
(2.236) since ιi∗ιi becomes the identity operator on W i

h.

It was also shown by Holst and Stern (2012, §4) that if the computational mesh is
a piece-wise polynomial approximation of a smooth embedded manifold (using
isoparametric finite elements), then functions can still be approximated at the op-
timal rate. These results were extended by Natale, Shipton, and Cotter (2016) to
piece-wise polynomial meshes of a spherical annulus within the context of tensor
product compatible finite elements. Therefore, everything discussed thus far can be
addressed without relying on subcomplex inclusion.

2.5 Chapter summary

In this chapter, we established the equations sets of interest for simulating atmo-
spheric flows. This includes all relevant definitions of PDE systems ranging in com-
plexity through the hierarchy of models. In doing so, we present core ideas that are
particularly relevant for modeling the atmosphere. This includes: the effects due

2.5. Chapter summary 65

to planetary rotation (Coriolis), Boussinesq and hydrostatic approximations, geo-
physical balance relations (hydrostatic and geostrophic balanced flows), and wave
solutions of shallow water systems. Moreover, we highlight desirable properties of
numerical models for operational dynamical cores, which motivates our choice of
numerics throughout the rest of the dissertation.

Next, we give a rigorous definition of the finite element, followed by constructions
of various finite element families which are relevant for our application. The ele-
ments presented are commonly used throughout many different application areas,
but have only relatively recently been considered before for use in simulating geo-
physical flows. We also present some less well-known concepts concerning finite
element discretization on immersed manifolds.

The rest of the chapter is dedicated to summarizing the notion of a compatible finite
element discretization. The framework of compatible finite elements is intimately
connected with the discipline of finite element exterior calculus (FEEC) (Arnold,
Falk, and Winther, 2006; Arnold, Falk, and Winther, 2010; Arnold and Awanou,
2014), and is the core reason compatible finite elements possesses the key numerical
properties which makes them appealing for atmospheric application. Specifically,
we discuss the construction of elements with tensor product structure, allowing the
resulting compatible finite element discretization to facilitate variable staggering of
thermodynamic quantities. Having formally introduced all relevant topics, the rest
of this dissertation will focus on deriving compatible finite element discretizations
of the various equation sets and their hybridizable formulations.

66

3 Hybridizable compatible finite
element methods

3.1 The hybridizable mixed method

The first hybridization of a finite element method was proposed by De Veubeke
(1965) as an implementation technique for solving linear elasticity problems. The
idea was to relax the continuity between elements and enforce the lost information
through a Lagrange multiplier. The global matrix equation is then algebraically re-
duced to a symmetric system for the multiplier. Static condensation, a widely known
algebraic technique at the time for reducing the size of an already assembled sys-
tem of equations (Irons, 1965; Guyan, 1965), was largely indistinguishable from hy-
bridization methods. However, Arnold and Brezzi in 1985 proved that hybridization
was more than just an implementation trick. They showed that the new unknown
λ, the Lagrange multiplier enforcing a continuity condition on the approximate flux
variable, contains extra information about the exact solution (Arnold and Brezzi,
1985). This information is then used to enhance the accuracy of the finite element
solution through local post-processing.

The hybridizable mixed method is well-established for the mixed formulations of
second-order elliptic equations (Cockburn and Gopalakrishnan, 2004; Cockburn,
Gopalakrishnan, and Lazarov, 2009; Brezzi and Fortin, 1991). In this section, we
outline the construction of a hybridizable method for equation sets relevant for geo-
physical flows. We start with deriving the method for a linear shallow water model,
as this equation set mirrors many aspects of standard mixed formulations of the
positive-definite Helmholtz equation. We provide some new analysis which builds
on previous characterization results for simplified mixed systems.

3.1.1 Compatible discretization of a linear shallow water model

Consider the following linearized shallow water model defined on a periodic do-
main Ω ⊂ R2:

∂u
∂t

+ f u⊥ + g∇D = 0, (3.1)

∂D
∂t

+ H∇ · u = 0, (3.2)

where u is the fluid velocity, D the fluid depth, f is the Coriolis parameter, g is the
acceleration due to gravity, and H is a mean depth coefficient. Equations (3.1)–(3.2)
is a linearization of the nonlinear shallow water model presented in (2.59)–(2.60),
and primarily serves as a toy-model of barotropic waves in the atmosphere. We note
that u and D here are actually linear perturbations around a steady-state with mean

3.1. The hybridizable mixed method 67

depth H (previously written as δu and δD in equations (2.83)–(2.84)). In a slight
abuse of notation, we neglect δ in our terms for simplicity.

Now consider the two-dimensional discrete de-Rham complex defined on a mesh Th
of Ω1, consisting of polygonal cells K:

U0
h
∇⊥−→ U1

h
∇·−→ U2

h . (3.3)

The finite element spaces Ui
h, i = 0, 1, 2, are defined as:

U0
h = {ψ ∈ H1 : ψ|K ∈ U0(K), ∀K ∈ Th}, (3.4)

U1
h = {w ∈ H(div) : w|K ∈ U1(K), ∀K ∈ Th}, (3.5)

U2
h = {φ ∈ L2 : φ|K ∈ U2(K), ∀K ∈ Th}, (3.6)

where U0(K), U1(K), and U2(K) are appropriate polynomial spaces for their respec-
tive finite element families. For example, if U0

h = Pq, U1
h = RTq, and U2

h = dPq−1,
then U0(K) = Pq(K), U1(K) = [Pq(K)]d + xPq−1(K), and U2(K) = Pq−1(K).

Proceeding using the method of Rothe (1930), we first discretize in time using the
implicit-midpoint rule2 to obtain the following semi-discrete PDE system for the
fields at time-step n:

un +
∆t
2

f (un)⊥ +
g∆t

2
∇Dn = r1(un−1, Dn−1), (3.7)

Dn +
H∆t

2
∇ · un = r2(un−1, Dn−1), (3.8)

where

r1(un−1, Dn−1) = un−1 − ∆t
2

(
un−1

)⊥
− g∆t

2
∇Dn−1, (3.9)

r2(un−1, Dn−1) = Dn−1 − H∆t
2
∇ · un−1. (3.10)

Multiplying equation (3.7) by a test function w ∈ U1
h and (3.8) by φ ∈ U2

h , we inte-
grate by parts to obtain the fully discrete weak formulation of the linear model: find
uh ∈ U1

h and Dh ∈ U2
h such that∫

Th

w · un
h dx +

∆t
2

∫
Th

w · f (un
h)
⊥ dx− g∆t

2

∫
Th

Dn
h∇h ·w dx = Rn−1

u [w], (3.11)∫
Th

φDn
h dx +

H∆t
2

∫
Th

φ∇h · un
h dx = Rn−1

D [φ], (3.12)

for all w ∈ U1
h and φ ∈ U2

h , where ∇h· is defined cell-wise via:

(∇h ·w) |K = ∇|K ·w, ∀K ∈ Th. (3.13)

Note that we have made the implicit assumption that g is not spatially varying, but
the discussion in this section still follows similarly. Here, the residuals of the linear

1If Ω is the surface of a sphere, then Th is assumed to be a mesh constructed from a piece-wise
polynomial approximation of Ω, as described in the framework of Holst and Stern (2012) and Natale,
Shipton, and Cotter (2016).

2 Also equivalent to the Crank-Nicolson method when the PDE is linear.

68 Chapter 3. Hybridizable compatible finite element methods

system Rn−1
u [w] and Rn−1

D [φ] are the functionals (covectors) given by:

Rn−1
u [w] =

∫
Th

w · un−1
h dx− ∆t

2

∫
Th

w · f
(

un−1
h

)⊥
dx

+
g∆t

2

∫
Th

Dn−1
h ∇h ·w dx, (3.14)

Rn−1
D [φ] =

∫
Th

φDn−1
h dx− H∆t

2

∫
Th

φ∇h · un−1
h dx. (3.15)

The residual covectors can be further rewritten as

Rn−1
u [w] =

∫
Th

w · rh
1(u

n−1
h , Dn−1

h)dx, (3.16)

Rn−1
D [φ] =

∫
Th

φrh
2(u

n−1
h , Dn−1

h)dx, (3.17)

where

rh
1(u

n−1
h , Dn−1

h) = un−1
h − ∆t

2

(
un−1

h

)⊥
− g∆t

2
∇̃hDn−1

h , (3.18)

rh
2(u

n−1
h , Dn−1

h) = Dn−1
h − H∆t

2
∇h · un−1

h . (3.19)

In (3.18), ∇̃h should be interpreted as the operator which is dual to ∇h· through
integration by parts; this allows us to approximate gradients of functions in L2. More
concretely, we define ∇̃h p, for some p ∈ U2

h , via∫
Th

w · ∇̃h p dx = −
∫
Th

p∇h ·w dx, (3.20)

for all w ∈ U1
h .

Remark 7. Since we must solve the same linear system (3.11)–(3.12) with different right-
hand sides (determined from initial conditions or fields from previous time-steps), we drop
the superscript “n” in our notation for brevity. Hence, the residual functions rh

1 and rh
2

should always be interpreted as expressions of fields which are already known at any given
time-step.

The semi-discrete compatible finite element (spatial) discretization of (3.1)–(3.2) was
shown by Cotter and Shipton (2012) to be both energy- and mass-conserving. This
will also be preserved in the full discrete system, assuming a structure-preserving
(symplectic) time-integrator is used, such as the implicit midpoint method (see Wim-
mer, Cotter, and Bauer (2019)).

Additionally, it was shown that the spatial discretization is free of spurious pressure
modes, a critical requirement for atmospheric dynamical cores (see the discussion
in Section 2.1.5). Within our context, this means there exists a constant c > 0, inde-
pendent of the mesh resolution h, such that for all φh ∈ U2

h , there exists a nonzero
uh ∈ U1

h satisfying ∫
Th

φh∇h · uh dx ≥ c‖φh‖L2‖uh‖H(div). (3.21)

Moreover, the fact that the compatible finite element discretization supports steady
geostrophic modes, and avoids spurious computational modes in the discrete wave

3.1. The hybridizable mixed method 69

equations (see (2.88) and (2.104)) for f - and β-plane approximations, is discussed in
detail by Cotter and Shipton (2012, §2.5–2.8).

Let {Ψ}p
i=1 and {Φ}q

i=1 denote the global finite element bases for U1
h and U2

h respec-
tively. Then in typical finite element fashion, the linear system of equations for the
velocity and depth unknowns is obtained by first expanding uh and Dh as the linear
combinations:

uh =
p

∑
i=1

uiΨi, (3.22)

Dh =
q

∑
i=1

DiΦi, (3.23)

where the coefficients ui and Di must be determined at each time-step. Following
the standard Galerkin approach, we take w = Ψj and φ = Φj in (3.11)–(3.12), which
produces the (p + q)× (p + q) matrix system:

Ax =

[
M1 +

∆t
2 C − g∆t

2 BT

H∆t
2 B M2

]{
U
D

}
=

{
F
G

}
= b, (3.24)

where U =
{

u1 · · · up
}T and D =

{
D1 · · · Dq

}T are the coefficient vectors, the
matrix operators are

(M1)ij =
∫
Th

Ψi ·Ψj dx = ∑
K∈Th

∫
K

Ψi ·Ψj dx, (3.25)

(C)ij =
∫
Th

Ψi · f Ψ⊥j dx = ∑
K∈Th

∫
K

Ψi · f Ψ⊥j dx, (3.26)

(B)ij =
∫
Th

Φj∇h ·Ψi dx = ∑
K∈Th

∫
K

Φj∇ ·Ψi dx, (3.27)

(M2)ij =
∫
Th

ΦiΦj dx = ∑
K∈Th

∫
K

ΦiΦj dx, (3.28)

and the right-hand sides are given by: (F)j = Rn−1
u [Ψj], (G)j = Rn−1

h [Φj].

The system in (3.24) must be inverted at each time-step to determine the coefficients
U and D. While one could invert A directly (for example, via an LU factorization),
this quickly becomes impractical for big problems due to large memory require-
ments. Instead, iterative methods like Krylov subspace methods are often the only
practical option.

Krylov subspace methods are a class of iterative methods for solving linear systems
of equations. They are widely used in practice for problems in engineering and the
physical sciences. Commonly used Krylov methods include (but are not limited to):

• The conjugate gradient method (CG) for symmetric positive-definite systems;

• The conjugate residual method (CR) for symmetric systems;

• The minimal residual (MINRES) method for symmetric indefinite systems; and

• The generalized minimal residual (GMRES) and conjugate residual (GCR) meth-
ods for invertible matrices which are not necessarily symmetric or positive-
definite.

70 Chapter 3. Hybridizable compatible finite element methods

The convergence of Krylov methods are dependent on the condition number of the
matrix. In many scientific applications, matrices arising from discretized PDEs of-
ten have very large condition numbers, meaning Krylov methods will take longer to
converge. For this reason, preconditioners are used to accelerate the convergence of a
Krylov method. We will discuss this in more detail in Chapter 4. For a comprehen-
sive overview of Krylov methods, we refer the interested reader to Saad (2003).

The matrix A is a saddle-point operator, where standard iterative solvers for ellip-
tic equations (such as the CG method) are ineffective. This is due to the fact that
A is non-symmetric and indefinite.3 Instead, solvers designed around the inverse
of the Schur-complement factorization of A are typically used (Benzi, Golub, and
Liesen, 2005). Alternatively, one can use H(div)-multigrid methods (Arnold, Falk,
and Winther, 2000), requiring complex overlapping smoothers, or auxiliary space
multigrid (Hiptmair and Xu, 2007).

In exact arithmetic, the inverse of the Schur-complement factorization of A is

A−1 =

[
I g∆t

2 M̃
−1
1 BT

0 I

] [
M̃
−1
1 0

0 S−1

] [
I 0

−H∆t
2 BM̃

−1
1 I

]
, (3.29)

where M̃1 = M1 +
∆t
2 C, and S is the Schur-complement operator

S = M2 +
∆t2

4
gHBM̃

−1
1 BT. (3.30)

Inverting S directly is often impractical due to the fact that the matrix M̃1, while
sparse, has a globally dense inverse. This is due to the fact that elements are coupled
through the continuity of normal components of fields in U1

h . The main challenge in
constructing an efficient preconditioner for numerically inverting S is finding good

sparse approximations of M̃
−1
1 . Since we require an approximation of S, the precon-

ditioner is inexact and therefore requires an outer nonsymmetric Krylov method,
like GMRES or GCR, to reduce the problem residual.

We remark here that treatment of the Coriolis term can be handled in a couple of dif-
ferent ways. One approach is to treat the term explicitly, meaning the contribution

only contributes to the right-hand side residuals. This means that M̃
−1
1 = M−1

1 and
the operator becomes symmetric positive-definite. Moreover, diagonal approxima-
tions of M1 (either through mass-lumping or just extracting the diagonal) have been
shown to give fairly good sparse approximations to S (Mitchell and Müller, 2016).
Another option is for a purely implicit formulation of the Coriolis term (as written
in this section). This results in a non-symmetric operator due to the asymmetry of
the Coriolis matrix: CT = −C. However, diagonal approximations of M̃1 become
less effective, especially when increasing the time-step size ∆t. We shall elaborate
further on this in later experiments featured in Chapter 4.

The hybridization technique can overcome this by producing discrete systems that
can be algebraically transformed efficiently (and exactly) into a reduced elliptic equa-
tion for unknowns lying on element boundaries. Using the model problem (3.11)–
(3.12), we derive the hybridizable equations and present some important results for
the resulting condensed system.

3 In other words, A does not induce a discrete inner-product 〈x, y〉A = xTAy and therefore the
conjugate gradient method is not guaranteed to converge.

3.1. The hybridizable mixed method 71

4 4

(A) Two-cell diagram of a global RTC f
2 H(div) space on quadrilaterals.

4 4

(B) Two-cell diagram of a global broken RTC f
2 space.

FIGURE 3.1: Two-cell diagrams of H(div) finite element space and its discontinuous counter-
part. Blue degrees of freedom are shared topologically between adjacent cells. Gray degrees
of freedom are associated with the cell only.

3.1.2 A hybridizable discretization of a linear shallow water model

Broken H(div) spaces

The main complication in forming (3.30) is directly related to the inter-elemental
coupling induced by functions in U1

h . To remove this coupling, we introduce a broken
variant of U1

h from which we shall construct a new approximation of the velocity
field. With Ω ⊂ Rd as our domain and Th denoting a mesh of Ω, let U1

h ⊂ H(div) be
as defined in (3.5). We define the broken space as the set:

Û1
h = {w ∈ [L2(Ω)]d : w|K ∈ U1(K), ∀K ∈ Th}. (3.31)

The space Û1
h is a subspace of [L2(Ω)]d with local shape functions from the H(div)

finite element space U1
h . The key distinction between the two space are that the

topological association with the finite element nodes are always restricted to the cell;
there is no continuity of normal components between cell edges/faces. Notice that
U1

h is actually a subspace of Û1
h with the additional requirement that all functions are

in H(div):

U1
h = Û1

h ∩ {w ∈ [L2(Ω)]d : JwKe = 0, ∀e ∈ Eh} (3.32)

≡ Û1
h ∩ H(div; Ω), (3.33)

where Eh is the skeleton of the mesh:

Eh = {e ⊂ ∂K, ∀K ∈ Th}, (3.34)

and J·Ke is the jump of the normal components of w as defined in (2.187).

For each of the H(div) finite elements presented in Section 2.2.2, we can form a
discontinuous variant to form the global space Û1

h . This is done by topologically
disassociating degrees of freedom on shared edges/faces and restricting them to the
cell only. See Figure 3.1 for an illustration of a Raviart-Thomas-Nédélec space on
quadrilaterals and the corresponding broken variant.

72 Chapter 3. Hybridizable compatible finite element methods

(A) Mass matrix in U1
h (B) Mass matrix in Û1

h

FIGURE 3.2: Mass matrix global sparsity patterns for the U1
h and Û1

h operators. Note that the
Û1

h mass matrix is block-diagonal, similar to the mass operator in U2
h .

A direct consequence by testing in Û1
h , rather than U1

h , is that the mass operator cou-
pling velocity degrees of freedom is rendered block-diagonal; there is no coupling
between cell interfaces. This makes global inversion of the new operator a purely lo-
cal operation since the inverse can be computed by inverting each block separately.
More importantly, the resulting global inverse is now sparse. See Figure 3.2 for a
comparison of two mass operators corresponding to RT2 elements on a triangular
mesh consisting of eight cells. Since degrees of freedom are no longer shared be-
tween facets, the global size of the mass operator is larger than the original matrix;
degrees of freedom on interior faces are counted twice.

Trace spaces

Now, we introduce an auxiliary finite element space defined only on the d− 1 topo-
logical entities of Th. The finite element space on the mesh skeleton, Eh, is defined as
the set:

Utr
h = {γ ∈ L2(Eh) : γ|e ∈ M(e), ∀e ∈ Eh}, (3.35)

where M(e) is a function space on the facet e, typically taken to be a polynomial
space M(e) = Pq(e). We refer to the space Utr

h as the trace space. The trace space
consists of scalar-valued functions which are discontinuous across vertices in two-
dimensions, and edges/vertices in three-dimensions. By construction, all functions
in Utr

h are not defined in the interior of cells. Trace spaces on quadrilateral and tri-
angular cells are illustrated in Figure 3.3. Three-dimensional generalizations follows
an identical construction. See Figure 3.4 for a diagram illustrating the corresponding
global trace space using constant polynomials on cell edges.

Just as with previous finite element constructions, evaluating a surface integral with
arguments in Utr

h is performed via a change-of-coordinates. This is accomplished by
mapping from the facet in physical space to the corresponding facet of the reference
cell K̂, ê ⊂ ∂K̂ (edges in two-dimensions and faces in three-dimensions). The local
shape functions of the trace element on ê correspond to the basis functions of the
polynomial space Pq(ê).

Now let U1
h be as previous defined in (3.5), where the local shape functions in U1(K)

are vector-polynomials of degree ≤ q (specific constructions of U1(K) are shown for

3.1. The hybridizable mixed method 73

(A) Trace elements on triangular cells for q = 0, 1.

(B) Trace elements on quadrilateral cells for q = 0, 1.

FIGURE 3.3: Trace elements on triangular and quadrilateral cells of degree q = 0 and q = 1.
All degrees of freedom are topologically associated with each edge separately; there is no
continuity across vertices.

FIGURE 3.4: A global discontinuous trace space of lowest-order (q = 0) on a triangular mesh.

H(div) elements in Section 2.2.2). Then for w ∈ U1
h , we have that w · n|e ∈ Pq(e),

for all e ∈ Eh. With Utr
h as defined in (3.35) and taking M(e) = Pq(e), the following

lemma is a direct consequence of the definition (3.33) (see Arnold and Brezzi (1985,
Lemma 1.2)):

Lemma 2. Suppose that ŵ ∈ Û1
h . Then ŵ ∈ U1

h if and only if

∑
e∈Eh

∫
e

γJŵK dS = 0, (3.36)

for all γ ∈ Utr
h .

74 Chapter 3. Hybridizable compatible finite element methods

Proof. If ŵ ∈ U1
h , then (3.36) holds trivially since, by definition, JŵK = 0 over the

entire mesh skeleton. To show (3.36) implies ŵ ∈ U1
h , we remark that ŵ · n|e ∈ Pq(e)

for each facet e. Therefore, JŵKe = pe is some polynomial on e of degree ≤ q. Since
(3.36) is true for all γ, choosing a γ with γ|e = pe implies that pe ≡ 0. Hence, we
have JŵKe = 0 for all e, i.e., ŵ ∈ U1

h .

Additionally, we also have the following result from Boffi, Brezzi, and Fortin (2013,
Lemma 7.2.2).

Lemma 3. If λ ∈ Utr
h satisfies

∑
e∈Eh

∫
e

λJŵK dS = 0 (3.37)

for all ŵ ∈ Û1
h , then λ = 0.

Proof. Let e∗ ∈ Eh denote an edge on the boundary of an element K∗, i.e., e∗ ⊂ ∂K∗,
where K∗ ∈ Th is some cell of the mesh. Now we construct a vector ŵ∗ ∈ Û1

h that
vanishes on all cells except for K∗:

ŵ∗|K = 0, ∀K 6= K∗, (3.38)

and define the normal components of ŵ∗ on K∗ by

ŵ∗|K∗ · ne =

{
1 if e = e∗

0 otherwise.
(3.39)

Then we have

∑
e∈Eh

∫
e

λJŵ∗K dS =
∫

e∗
λ dS. (3.40)

Thus, (3.37) implies λ = 0, since the choice of e∗ was arbitrary.

Now let us piece everything together and derive a hybridizable formulation of the
compatible finite element discretization (3.11)–(3.12).

Discrete hybridizable system

Proceeding from (3.7), We spatially discretize the linear momentum equation within
a single cell K by testing with functions w ∈ U1(K), and integrating by parts. We
obtain the discrete equation with ûh ∈ U1(K) and Dh ∈ U2(K):∫

K
ŵ · ûh dx +

∆t
2

∫
K

ŵ · f û⊥h dx

− g∆t
2

(∫
K

Dh∇h · ŵ dx +
∫

∂K
λhŵ · n dS

)
=
∫

K
ŵ · rh

1 dx, (3.41)

for all ŵ ∈ U1(K). Here, the boundary integral should be interpreted as the sum of
integrals over each facet of ∂K:

∫
∂K ≡ ∑e⊂∂K

∫
e. The new unknown λh|e ∈ M(e) is

the Lagrange multiplier appearing in the boundary term after integrating by parts.

3.1. The hybridizable mixed method 75

Equation (3.41) reveals a physical interpretation of the multiplier; λh is an approxi-
mation to the fluid depth on cell facets. The discrete equation for linear mass con-
servation (3.12) remains unchanged.

After summing over all K ∈ Th, consider the extended discrete finite element prob-
lem: find ûh ∈ Û1

h , Dh ∈ U2
h , and λh ∈ Utr

h such that∫
Th

ŵ · ûh dx +
∆t
2

∫
Th

ŵ · f û⊥h dx

− g∆t
2

∫
Th

Dh∇h · ŵ dx +
∫
Eh

λhJŵK dS =
∫
Th

ŵ · rh
1 dx, (3.42)∫

Th

φDh dx +
H∆t

2

∫
Th

φ∇h · ûh dx =
∫
Th

φrh
2 dx, (3.43)∫

Eh

γJûhK dS = 0, (3.44)

for all ŵ ∈ Û1
h , φ ∈ U2

h , and γ ∈ Utr
h . We call (3.42)–(3.44) the hybridizable formu-

lation of the compatible finite element discretization (3.11)–(3.12). We denote the
hybridization of standard mixed methods, such as the Raviart-Thomas method (RT)
(Raviart and Thomas, 1977) or the Brezzi-Douglas-Marini (BDM) method (Brezzi,
Douglas, and Marini, 1985), as H-RT and H-BDM respectively. Table 3.1 summarizes
our nomenclature and provides explicit constructions of the relevant finite element
spaces.

The Lagrange multiplier λh approximates the (continuous) variable g∆t
2 D on the

mesh skeleton Eh (the approximation properties of λh was shown within the con-
text of mixed formulations of second-order elliptic equations by Arnold and Brezzi
(1985)). The third equation (3.44), which we call the jump condition, is an applica-
tion of Lemma 2; using functions γ ∈ Utr

h , we can weakly enforce the continuity of
ûh · n|e across all facets. This ensures that, despite being constructed in a discontin-
uous finite element space, ûh ∈ U1

h . In fact, we can show that the solutions ûh and
Dh coincide with the solutions of the original compatible finite element formulation
(3.11)–(3.12).4 We shall explicitly show this in Section 3.2.

4We mean specifically that the nodal values of both ûh and uh are in exact agreement. Clearly the
corresponding coefficient vectors in a computer implementation will not be equal (they are of different
dimensions).

TABLE 3.1: Summary of the hybridizable variants of well-known mixed finite element
methods: the Raviart-Thomas method on simplices (RT), the Brezzi-Douglas-Marini
method on simplices (BDM), and the RT method on quadrilaterals (RTCF).

Method U1(K) U2(K) M(e)

H-RT [Pq−1(K)]d + xPq−1(K) Pq−1(K) Pq−1(e)
H-BDM [Pq(K)]d Pq−1(K) Pq(e)

H-RTCF† Pq,q−1(K)×Pq−1,q(K) Qq−1(K) Pq−1(e)
Pq,q−1,q−1(K)×Pq−1,q,q−1(K)×Pq−1,q−1,q(K)

†: Constructions for V(K) of the H-RTCF method are shown for two- and three-
dimensions.

76 Chapter 3. Hybridizable compatible finite element methods

At a first glance, the system (3.42)–(3.44) appears to not be any improvement over
the original system. Indeed, the total number of unknowns greatly exceeds that of
the original mixed system (3.11)–(3.12). However, the discrete matrix equations are
far more amenable to work with.

Let Û, D, and Λ be the coefficient vectors for the finite element expansions of ûh ∈
Û1

h , Dh ∈ U2
h and λh ∈ Utr

h respectively. Then the discrete matrix equations have the
form: ̂̃M1 − g∆t

2 B̂
T

KT

H∆t
2 B̂ M2 0
K 0 0

Û

D
Λ

 =

 F̂
G
0

 , (3.45)

where ·̂ denotes matrices/vectors tested against discontinuous functions in Û1
h . The

operator K is the matrix associated with the trace variables. If {ξ j} is a basis for Utr
1 ,

then
(K)ij = ∑

e∈Eh

∫
e

ξ jJΨ̂iK dS, (3.46)

where {Ψ̂i} is a basis for Û1
h .

Treating the velocity-depth component as a separate 2× 2 block, with mixed opera-
tor Â, we rewrite (3.45) as [

Â KT

K 0

]{
X
Λ

}
=

{
R
0

}
, (3.47)

where K =
[
K 0

]
, X =

{
Û D

}T
, and R =

{
F̂ G

}T
. Then the inverse of the

Schur-complement factorization of the left-hand side matrix in (3.47) is:[
Â KT

K 0

]−1

=

[
I −Â−1KT

0 I

] [
Â−1

0
0 S−1

] [
I 0

−KÂ−1
I

]
, (3.48)

where S = −KÂ−1KT is the Schur-complement operator of the hybridizable sys-
tem. It can be shown that S is a positive-definite operator, and symmetric positive-
definite when the Coriolis parameter is zero (see Section 3.2).

The term hybridizable in our context is a specific characterization of the discrete equa-
tions. By our choice of function spaces, the coupling of velocity and depth are purely
cell-local. That is, Â is block-diagonal. The introduction of the Lagrange multiplier Λ

permits the local elimination of X to construct the global problem for Λ. In other
words, the system

SΛ = −KÂ−1
R, (3.49)

which we refer to as the equation associated with the hybridized problem, is the only
globally coupled system requiring iterative inversion. The velocity and depth un-
knowns can be recovered locally by solving the system in each cell:

X = Â−1 (
R +KTΛ

)
. (3.50)

The fact that we can perform these local procedures is more clearly realized by in-
specting the resulting sparsity patterns of the original mixed and hybridizable sys-
tems, shown in Figure 3.5.

3.1. The hybridizable mixed method 77

(A) Original matrix system

(B) Hybridizable matrix system

FIGURE 3.5: Global sparsity patterns for the original discretization and the corresponding
hybridizable system on mesh consisting of eight triangular cells. The block-structure in 3.5B
is a direct consequence of our choice in finite element spaces (the global matrix has been
reordered in such a way that the degrees of freedom X are organized by cell).

78 Chapter 3. Hybridizable compatible finite element methods

Analysis was done for the hybridization of first-order mixed systems of elliptic
equations by Cockburn, Gopalakrishnan, and Lazarov (2009) and Cockburn and
Gopalakrishnan (2004), which showed that the operator S defines a positive-definite
equation for the hybridized system, expressed as the variational problem: find λh ∈
Utr

h such that
sh(λh, γ) = rh(γ), ∀γ ∈ Utr

h . (3.51)

At the time of this work, no such analysis exists for the systems we consider. The
simplest relevant system to examine is precisely the shallow water model (3.1)–(3.2).
Therefore, we shall extend the analysis of Cockburn, Gopalakrishnan, and Lazarov
(2009) to the model equation considered in this section.

3.2 Analysis of the hybridizable method

In this section, we analyze the discrete hybridizable system for the linear shallow
water model on a boundary-free domain Ω (such as on the surface of a sphere or
a periodic box), following similar arguments from Cockburn, Gopalakrishnan, and
Lazarov (2009), Cockburn and Gopalakrishnan (2004), and Arnold and Brezzi (1985),
but tailored for the system we are considering. The main motivation here is to reveal
important properties about the system in (3.42)–(3.44), and give a characterization
result for the Lagrange multiplier λh. More specifically, we shall show the following:

• The so-called local solvers, which are the cell-wise local problems for the hy-
bridizable variables ûh and Dh, are well-posed.

• The discrete system (3.42)–(3.44) admits a unique solution triplet (ûh, Dh, λh).

– Moreover, if (ūh, D̄h) are solution to (3.11)–(3.12), then (ūh, D̄h, λh) is the
unique solution to (3.42)–(3.44).

• The Lagrange multiplier λh is the unique solution to a variational problem of
the form (3.51).

• The matrix operator S in (3.49) is positive-definite and symmetric (without
Coriolis).

The last point is particularly important when considering solver strategies for in-
verting S . Hence why we take the time to perform this analysis.

3.2.1 Local solvers

Just like before, we drop superscripts denoting time-steps n. To simplify our nota-
tion further, we also treat time-stepping coefficients as the constant β = 1

2 ∆t. Coeffi-
cients like g, H are treated as just arbitrary positive constants. The Coriolis term will
be denoted as previously: f , which, may vary in space.

3.2. Analysis of the hybridizable method 79

Before we begin, we establish some additional notation to aid us in our discussion.
With Ω denoting our computational domain and Th = {K}, a mesh of Ω with skele-
ton Eh, we define the bilinear forms:

ah(u, w) = ∑
K∈Th

aK(u, w), u, w ∈ Û1
h (3.52)

bh(w, D) = ∑
K∈Th

bK(w, D), w ∈ Û1
h , D ∈ U2

h , (3.53)

ch(D, φ) = ∑
K∈Th

cK(D, φ), D, φ ∈ U2
h , (3.54)

(3.55)

where

aK(u, w) =
∫

K
w · u dx + β

∫
K

w · f u⊥ dx, (3.56)

bK(w, D) =
∫

K
D∇ ·w dx, (3.57)

cK(D, φ) =
∫

K
φD dx. (3.58)

To characterize the solution of the hybridizable problem, we start by defining a lift-
ing operator associated with functions on the skeleton Eh and maps to functions on
the interior of cells K ∈ Th. By way of a slight abuse of notation, we shall denote the
set of all square-integrable functions on Eh as L2(Eh). We define operators Q∂ and
U ∂, which associates a function m ∈ L2(Eh) to functions in Û1

h and U2
h respectively.

The operators are defined by requiring that:

ah(Q∂m, ŵ)− Cgbh(ŵ,U ∂m) = − ∑
K∈Th

∫
∂K

mŵ · n dS, (3.59)

CHbh(Q∂m, φ) + ch(U ∂m, φ) = 0, (3.60)

for all ŵ ∈ Û1
h , φ ∈ U2

h , where Cg = βg and CH = βH.

In a similar fashion, we define another set of local operators Q◦1 and U ◦1 , this time
associating a vector function α1 ∈ [L2(Ω)]d with functions in Û1

h and U2
h . These

operators satisfy the local equations

ah(Q◦1α1, ŵ)− Cgbh(ŵ,U ◦1 α1) = ∑
K∈Th

∫
K

α1 · ŵ dx, (3.61)

CHbh(Q◦1α1, φ) + ch(U ◦1 α1, φ) = 0, (3.62)

for all ŵ ∈ Û1
h and φ ∈ U2

h . Additionally, we have another pair of operators Q◦2
and U ◦2 which associates a function α2 ∈ L2(Ω) with the functions Q◦2α2 ∈ Û1

h and
U ◦2 α2 ∈ U2

h satisfying

ah(Q◦2α2, ŵ)− Cgbh(ŵ,U ◦2 α2) = 0, (3.63)

CHbh(Q◦2α2, φ) + ch(U ◦2 α2, φ) = ∑
K∈Th

∫
K

α2φ dx (3.64)

for all ŵ ∈ Û1
h and φ ∈ U2

h .

80 Chapter 3. Hybridizable compatible finite element methods

The linear systems (3.59)–(3.60), (3.61)–(3.62), and (3.63)–(3.64) can be evaluated in
an element-by-element fashion, which is a direct consequence of the choice of func-
tion spaces and using the surjectivity of the (broken) divergence operator∇h· : Û1

h →
U2

h when restricted to a single cell K. We call these the local solvers for the hybridiz-
able compatible finite element discretization (3.42)–(3.44).

The solutions (Q∂m,U ∂m) are best interpreted as the functions whose restriction to
a cell are the finite element approximations of the solutions (Q∂m, U ∂m) to the local
boundary value problem:

Q∂m+ βQ∂m⊥ + Cg∇U ∂m = 0, in K, (3.65)

U ∂m+ CH∇ ·Q∂m = 0, in K, (3.66)

CgU
∂m = m, on ∂K, (3.67)

for m ∈ L2(∂K). Similarly for (Q◦1α1,U ◦1 α1) and (Q◦2α2,U ◦2 α2), the two solution pairs
are finite element approximates of (Q◦1α1, U ◦

1 α1) and (Q◦2α2, U ◦
2 α2), the solutions to

the local Dirichlet problems:

Q◦1α1 + βQ◦1α⊥1 + Cg∇U ◦
1 α1 = α1, in K, (3.68)

U ◦
1 α1 + CH∇ ·Q◦1α1 = 0, in K, (3.69)

U ◦
1 α1 = 0, on ∂K. (3.70)

and

Q◦2α2 + βQ◦2α⊥2 + Cg∇U ◦
2 α2 = 0, in K, (3.71)

U ◦
2 α2 + CH∇ ·Q◦2α2 = α2, in K, (3.72)

U ◦
2 α2 = 0, on ∂K. (3.73)

The discrete local solvers are arrived at by discretizing (3.65)–(3.73) in each cell us-
ing the local spaces of shape functions: U1(K), U2(K). Summing over all elements
produces the discrete systems (3.59)–(3.64).5 The fact that the linear systems (3.59)–
(3.60), (3.61)–(3.62), and (3.63)–(3.64) are uniquely solvable is a direct consequence
of the solvability of the underlying mixed finite element discretization in each cell.
We summarize this in following proposition.

Proposition 1. (Existence and uniqueness of the local solvers). For all cells K ∈ Th and
every trace function m ∈ L2(Eh), there is a unique set of local functions (Q∂m,U ∂m) solving
(3.59)–(3.60). Furthermore, for a pair of functions (α1, α2) ∈ [L2(Ω)]d × L2(Ω), there
exists corresponding unique pairs (Q◦1α1,U ◦1 α1) solving (3.61)–(3.62), and (Q◦2α2,U ◦2 α2)
solving (3.63)–(3.64).

Proof. The fact that the local systems are well defined can be established by realizing
that they are exactly the compatible finite element discretization of (3.65)–(3.73) in
each cell. For example, in our context, the compatible method corresponds to the
well-known Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) mixed methods
(Raviart and Thomas, 1977; Brezzi, Douglas, and Marini, 1985; Brezzi et al., 1987a).
Since the local solvers involve inverting the same element-wise system with different
right-hand sides, it is sufficient to consider the mixed method summarized here.

5 Note that the “broken” space Û1
h of the hybridizable method and U1

h from the original compatible
mixed method consist of the same local spaces in each cell by construction.

3.2. Analysis of the hybridizable method 81

We shall proceed by showing both the continuous and discrete formulations on K
are well-posed. For simplicity, we assume each K is a “flat” (linear) cell. The case
where K is a curved approximation to a patch of a hypersurface will be discussed
shortly afterwards.

As a concrete example, suppose K is an arbitrary simplex and we discretize by way
of the RT method. Then resulting mixed method seeks solutions in the spaces:

U1(K) = {τh ∈ H(div; K) : τh ∈ [Pq−1(K)]d + xPq−1(K)}, (3.74)

U2(K) = {qh ∈ L2(K) : qh ∈ Pq−1(K)}. (3.75)

The local solvers within a single cell K is the following finite element problem: find
(vh, wh) ∈ U1 ×U2 satisfying

aK(vh, τh)− CgbK(τh, wh) = F(τh), (3.76)
CHbK(vh, qh) + cK(wh, qh) = G(qh), (3.77)

for all (τh, qh) ∈ U1 × U2, where F(τh) and G(qh) are linear forms containing the
right-hand side data, and aK, bK, and cK are as defined in (3.56)–(3.58). The system
(3.76)–(3.77) defines the local solvers for the hybridizable RT (H-RT) method.

The discrete problem in (3.76)–(3.77), closely resembles a standard perturbed saddle-
point system. And so, determining the solvability of the local solvers fits within the
standard theory of mixed methods (Boffi, Brezzi, and Fortin, 2013, §4.3.1 and 5.5.1).
There is only one primary difference, which is the inclusion of the skew-symmetric
Coriolis term in aK. Fortunately, we can show that (3.76)–(3.77) is uniquely solvable
by just verifying the following conditions:

1. The bilinear form on U1 ×U1:

aK(vh, τh) =
∫

K
τh · vh dx + β

∫
K

τh · f v⊥h dx, β > 0, (3.78)

is continuous on U1 ×U1, i.e., there exists a C1 > 0 such that

|aK(vh, τh)| ≤ C1‖vh‖H(div)‖τh‖H(div), (3.79)

for all vh, τh ∈ U1. Additionally, we require aK to satisfy the coercivity condi-
tion:

aK(τh, τh) ≥ C2‖τh‖2
H(div), C2 > 0, (3.80)

for all τh ∈ Qh, where

Qh :=
{

τh ∈ U1 : bK(τh, qh) =
∫

K
qh∇ · τh dx = 0, ∀qh ∈ U2

}
(3.81)

(that is: τh is in the kernel of the divergence operator).

2. The bilinear form bK is continuous on U1 ×U2 and satisfies the discrete ana-
logue of the well-known Ladyzhenskaya-Babus̆ka-Brezzi (LBB) condition:

sup
τh∈U1,τh 6=0

bK(τh, qh)

‖τh‖H(div)
≥ C3‖qh‖L2 , C3 > 0, ∀qh ∈ U2. (3.82)

82 Chapter 3. Hybridizable compatible finite element methods

To show aK satisfies item (1), we first demonstrate that aK is continuous on H(div; K)×
H(div; K). First note that we have the following relation for τ ∈ H(div; K):

‖ f τ⊥‖L2 ≤ ‖ f ‖∞‖τ⊥‖L2 = ‖ f ‖∞‖τ‖L2 , (3.83)

where ‖ f ‖∞ = inf{supx∈K |g(x)| : g(x) = f (x) a. e. on K}6 is the essential supre-
mum of f . Showing that the “perp” operator (·)⊥ preserves ‖·‖L2 is immediate when
realizing that τ⊥ · τ⊥ = |τ|2. Thus, for any v, τ ∈ H(div; K), we have

|aK(v, τ)| =
∣∣∣∣∫K

τ · v dx + β
∫

K
τ · f v⊥ dx

∣∣∣∣
≤
∣∣∣∣∫K

τ · v dx
∣∣∣∣+ β

∣∣∣∣∫K
τ · f v⊥ dx

∣∣∣∣
≤ ‖τ‖L2‖v‖L2 + β‖τ‖L2‖ f ‖∞‖v‖L2

≤ (1 + β‖ f ‖∞)‖τ‖H(div)‖v‖H(div), (3.84)

where the last inequality comes from two applications of the Cauchy-Schwarz in-
equality, (3.83), and using the fact that ‖·‖H(div) bounds the L2-norm. Equation (3.84)
implies a continuity constant C1 = (1 + β‖ f ‖∞), which therefore implies aK is con-
tinuous on H(div; K) for bounded ‖ f ‖∞. Indeed, the Coriolis parameter in geophys-
ical settings is always bounded (see (2.12)). Since U1 ⊂ H(div; K), we can conclude
that the bilinear form aK satisfies (3.79).

To show (3.80), let us start by defining the operator B mapping H(div; K) into the
dual space L2(K)′ (space of linear functionals on L2(K)). The mapping B is defined
in the usual way: 〈Bv, w〉L2(K)′×L2(K) := bK(v, w) for all (v, w) ∈ H(div; K)× L2(K).
Then the divergence-free subspace of H(div; K) can be written compactly as:

Q = ker B. (3.85)

Observe that, for all w ∈ H(div; K), we have

aK(w, w) =
∫

K
w ·w dx + β

∫
K

w · f w⊥ dx︸ ︷︷ ︸
=0

=
∫

K
|w|2 dx = ‖w‖2

L2 . (3.86)

And so, for all w ∈ Q:

‖w‖2
H(div) = ‖w‖

2
L2 + ‖∇ ·w‖2

L2︸ ︷︷ ︸
=0

= ‖w‖2
L2 . (3.87)

Hence, (3.87) and (3.86) implies aK is coercive on Q, with coercivity constant C2 = 1.

Now, let us restrict our attention to the discrete setting. We denote the discrete
version of B as Bh : U1 → U′2, defined via 〈Bhvh, wh〉U′2×U2

:= bK(vh, wh) for all
(vh, wh) ∈ U1 ×U2. Then, as before, we can write (3.81) as:

Qh = ker Bh. (3.88)

6 The concept of a property holding “almost everywhere” (written as “a.e.” or “p.p.” for the French
phrase: presque partout) is ubiquitous in measure theory. In a technical sense, a property is said to hold
a.e. if the set where the property does not hold has zero measure. In our context, the measure in question
is the Lebesgue measure. The curious reader may consult any standard textbook on measure theory or
real analysis for more details.

3.2. Analysis of the hybridizable method 83

Note that, in general, Qh ⊂ Q is not necessarily true. However, by virtue of the
compatible finite element de-Rham complex (2.198), we have the following property
for the RT method:

∇ ·Vh = Wh =⇒ Bh = B|Vh . (3.89)

That is: Bh is the restriction of the divergence operator to the finite-dimensional
space Vh (Raviart and Thomas, 1977). Hence, we have the particularly interesting
case where

Qh = ker Bh ⊆ ker B = Q. (3.90)

While (3.90) is not strictly necessary to ensure solvability of the mixed method, it is
an incredibly desirable property. In particular, (3.90) implies immediately that aK is
coercive on Qh.

For item (2): the bilinear form bK(v, w), for v ∈ H(div; K) and w ∈ L2(K) is well-
understood. It is clearly continuous on H(div; K)× L2(K):

|bK(v, w)| =
∣∣∣∣∫K

w∇ · v dx
∣∣∣∣ ≤ ‖∇ · v‖L2‖w‖L2 ≤ ‖v‖H(div)‖w‖L2 . (3.91)

The result follows for the discrete setting. We also have that bK(v, w) satisfies the
continuous analogue of the LBB condtion. Namely, there exists a constant ξ > 0
satisfying for all w ∈ L2(K):

sup
v∈H(div;K),v 6=0

bK(v, w)

‖v‖H(div)
≥ ξ‖w‖L2 . (3.92)

This is a direct application of Corollary 4.1.1 of Boffi, Brezzi, and Fortin (2013). Given
that the continuous analogue of bK satisfies the LBB condition, we quickly show this
is true in the discrete setting precisely due to the compatible finite element frame-
work.

Recall from (2.198) that we have the existence of a bounded projection operator πU1 :
H(div; K) → U1, with ‖πU1 v‖H(div) ≤ Cπ‖v‖H(div), v ∈ H(div; K). Or equivalently,
for any v ∈ H(div; K):

‖v‖H(div) ≥
1

Cπ
‖πU1 v‖H(div) =

1
Cπ
‖vh‖H(div). (3.93)

For the RT method, the operator πU1 is defined through the equations on K:∫
K
(πU1 v− v) · τh dx = 0, ∀τh ∈ [Pq−1(K)]d, (3.94)∫

e
(πU1 v− v) · nγh dS = 0, ∀γh ∈ Pq(e), (3.95)

for all facets e of K. Together with the commuting diagram property (2.198), πU1

satisfies the following property (Boffi, Brezzi, and Fortin, 2013, Proposition 5.1.2):

bK(v− πU1 v, wh) = 0, ∀wh ∈ U2, (3.96)

84 Chapter 3. Hybridizable compatible finite element methods

which can be easily verified by direct calculation:∫
K

wh∇ · πU1 v dx =
∫

∂K
whπU1 v · n dS−

∫
K
∇whπU1 v dx

=
∫

∂K
whv · n dS−

∫
K
∇whv dx =

∫
K

wh∇ · v dx, (3.97)

for all wh ∈ Pq(K).

Therefore, for wh ∈ U2 arbitrary but fixed, (3.92), (3.93), and (3.96) implies:

ξ‖wh‖L2 ≤ sup
v∈H(div;K),v 6=0

bK(v, wh)

‖v‖H(div)
= sup

v∈H(div;K),v 6=0

bK(πU1 v, wh)

‖v‖H(div)

≤ Cπ sup
v∈H(div;K),v 6=0

bK(πU1 v, wh)

‖πU1 v‖H(div)
≤ Cπ sup

vh∈U1,vh 6=0

bK(vh, wh)

‖vh‖H(div)
, (3.98)

hence,

sup
vh∈U1,vh 6=0

bK(vh, wh)

‖vh‖H(div)
≥ ξ

Cπ
‖wh‖L2 . (3.99)

We can now conclude that the mixed system (3.76)–(3.77) is well-posed.

The discussion here for the RT method can be applied to any compatible finite el-
ement formulation. In particular, the proof here relies on the commuting diagram
property (2.198). Methods that fall within this category include the BDM method
(Brezzi, Douglas, and Marini, 1985; Brezzi et al., 1987a) and the RT method on
quadrilateral cells (RTCF). Thus, we can conclude that the local solvers of the hy-
bridizable mixed methods (H-RT, H-BDM, and H-RTCF) for (3.42)–(3.44) are well-
defined.

The proof of Proposition 1 only considered the case where the cells K defining the

local finite element complex H1(K) ∇
⊥
−→ H(div; K) ∇·−→ L2(K) is flat. In Section 2.4.6,

we summarized the framework of Holst and Stern (2012) which allows us to extend
our results to mixed formulations on isoparametric cells (see also Natale, Shipton,
and Cotter (2016)). In particular, the well-posedness of the mixed problem (3.76)–
(3.77), where K is a curved approximation to a patch of a smooth embedded man-
ifold (via a piece-wise polynomial representation) is a direct consequence of Theo-
rems 3.5 and 3.9 of Holst and Stern (2012). Therefore, everything discussed thus far
can be applied in this more general context. For the rest of this section, we require no
explicit assumptions on K or the mesh Th beyond shape-regularity (that is, all facets
of the cells K have an area bounded away from zero).

Having established the solvability of the local solvers, we now turn our attention to
the full discrete system arising from the hybridization of a compatible finite element
discretization.

3.2.2 Solvability of the discrete hybridizable system

We now demonstrate that the linear system (3.45) is uniquely solvable.

Proposition 2. There exists unique solutions (ûh, Dh, λh) ∈ Û1
h ×U2

h ×Utr
h satisfying the

discrete formulation (3.42)–(3.44).

3.2. Analysis of the hybridizable method 85

Proof. Since we are in a finite-dimensional setting, it is sufficient to prove unique
solvability by a standard Fredholm argument. Namely, when the right-hand side
data is zero, this implies the solutions are the trivial ones: ûh = 0, Dh = 0, λh = 0.
The homogenous system is summarized by the equations: find (ûh, Dh, λh) ∈ Û1

h ×
U2

h ×Utr
h satisfying

ah(ûh, ŵ)− Cgbh(ŵ, Dh) + ∑
K∈Th

∫
∂K

λhŵ · n dS = 0, (3.100)

CHbh(ûh, φ) + ch(Dh, φ) = 0, (3.101)

∑
K∈Th

∫
∂K

γûh · n dS = 0, (3.102)

for all (ŵ, φ, γ) ∈ Û1
h ×U2

h ×Utr
h .

Since (3.100)–(3.102) is true for all test functions, choosing ŵ = Hûh, φ = gDh, and
adding the first two equations gives:

Hah(ûh, ûh) + gch(Dh, Dh) + H ∑
K∈Th

∫
∂K

λhûh · n dS = 0. (3.103)

Since the jump condition (3.102) is true for all γ ∈ Utr
h (in particular, γ = λh), we can

rewrite (3.103) as:

ah(ûh, ûh) +
g
H

ch(Dh, Dh) = 0. (3.104)

Using the definition of ah and noting that ûh · û⊥h = 0, we have

ah(ûh, ûh) +
g
H

ch(Dh, Dh) = ∑
K∈Th

∫
K
|ûh|2 dx +

g
H ∑

K∈Th

∫
K
|Dh|2 dx = 0, (3.105)

or equivalently:

‖ûh‖2
Û1

h
+

g
H
‖Dh‖2

U2
h
= 0 =⇒ ‖ûh‖2

Û1
h
= − g

H
‖Dh‖2

U2
h
, (3.106)

where ‖·‖Û1
h

and ‖·‖U2
h

denote the usual “broken” L2-norms on Û1
h and U2

h respec-
tively:

‖ûh‖Û1
h

:=

(
∑

K∈Th

‖ûh‖2
L2(K)d

)1/2

, ‖Dh‖U2
h

:=

(
∑

K∈Th

‖Dh‖2
L2(K)

)1/2

. (3.107)

Thus, we can conclude that ûh = 0 and Dh = 0. Finally, after substituting the trivial
solutions ûh and Dh into (3.100), we get

∑
K∈Th

∫
∂K

λhŵ · n dS = 0, (3.108)

for all ŵ ∈ Û1
h . Lemma 3 allows us to conclude that λh must also be zero.

We now state a key result which establishes the connection between the solutions
of the hybridizable system (3.42)–(3.44) with the solutions of the original compatible
finite element discretization (3.11)–(3.12).

86 Chapter 3. Hybridizable compatible finite element methods

Proposition 3. (Equivalence of solutions): Let (uh, Dh) ∈ U1
h ×U2

h be the unique solution
pair of the compatible finite element discretization:

ah(uh, w)− Cgbh(w, Dh) = Ru[w], (3.109)
CHbh(uh, φ) + ch(Dh, φ) = RD[φ], (3.110)

for all (w, φ) ∈ U1
h ×U2

h , where Ru and RD are as defined in (3.16)–(3.17).

Then the solution triple (uh, Dh, λh) is the unique solution to the hybridizable problem: find
(uh, Dh, λh) ∈ Û1

h ×U2
h ×Utr

h

ah(uh, ŵ)− Cgbh(ŵ, Dh) + ∑
K∈Th

∫
∂K

λhŵ · n dS = Ru[ŵ], (3.111)

CHbh(uh, φ) + ch(Dh, φ) = RD[φ], (3.112)

∑
K∈Th

∫
∂K

γuh · n dS = 0, (3.113)

for all (ŵ, φ, γ) ∈ Û1 ×U2 ×Utr
1 .

Proof. From Proposition 2, we know the hybridizable problem has a unique solution
triple. Let (ûh, D̂h, λh) ∈ Û1

h ×U2
h ×Utr

h denote the solution triple for (3.111)–(3.113).
Since U1

h ⊂ Û1
h , set ŵ = w ∈ U1

h . Then clearly (3.111) still holds for all such test
functions. Moreover, the normal components of w are continuous over the entire
mesh skeleton Eh, i.e., for all λh ∈ Utr

h and w ∈ U1
h :

∑
K∈Th

∫
∂K

λhw · n dS = ∑
e∈Eh

∫
e

λhJwK dS = 0. (3.114)

As a result, (3.111) simplifies to

ah(ûh, w)− Cgbh(w, D̂h) = Ru[w], ∀w ∈ U1
h . (3.115)

Now, using the jump condition (3.113), we can conclude from Lemma 2 that ûh ∈ U1
h .

Thus, we have that (ûh, D̂h) ∈ U1
h ×U2

h solves the compatible finite element problem:

ah(ûh, w)− Cgbh(w, D̂h) = Ru[w], (3.116)

CHbh(ûh, φ) + ch(φ, D̂h) = RD[φ], (3.117)

for all (w, φ) ∈ U1
h × U2

h . By uniqueness of the original mixed method, we can
conclude that ûh = uh and D̂h = Dh.

By virtue of Proposition 3, the hybridizable formulation (3.111)–(3.113) can be in-
terpreted as a “reformulation” of (3.109)–(3.110). We henceforth drop the ·̂ in our
notation for the velocity and depth fields. As we have previously stated in Section
3.1.2, using a hybridizable method has significant computational advantages.

In a hybridizable discretization, we can employ local static condensation procedures
to eliminate uh and Dh from the global equations and assemble a sparse equation for
the Lagrange multiplier. Local elimination is not possible in the original compatible
finite element formulation, which requires extensive (often expensive) precondition-
ing to iteratively invert the resulting global matrix system. The trade-off, when using
hybridization, is avoiding the inversion of globally dense operators at the expense

3.2. Analysis of the hybridizable method 87

of doing local inversions of dense matrix systems. Fortunately, these local linear sys-
tems are quite small. The dimension reduction of the global problem to a condensed
system for the Lagrange multiplier is significant. We shall elaborate further on the
implementation aspects in Chapter 4.

The new computational bottleneck in the solution procedure for solving (3.111)–
(3.113) is now the global inversion of the Lagrange multiplier system. Therefore, it
will be useful to develop a characterization of the unknown λh which reveals some
innate structure of the new discrete system. Specifically, we shall show that λh is
actually the solution to a discrete variational problem.

3.2.3 Characterization of the hybridizable solutions

Before we state the main result, we shall proceed by establishing key identities and
relations in a similar manner to Cockburn, Gopalakrishnan, and Lazarov (2009). Us-
ing the local solvers: (3.59)–(3.60), (3.61)–(3.62), and (3.63)–(3.64), we start with the
following lemma.

Lemma 4. For any m, γ ∈ L2(Eh), α1 ∈ [L2(Ω)]d, and α2 ∈ L2(Ω), the following identities
hold:

(i) −
∫
Eh

γJQ∂mK dS =
∫
Th

Q∂γ ·Q∂mdx− β
∫
Th

Q∂γ · fQ∂m⊥ dx

+
g
H

∫
Th

U ∂γU ∂mdx,

(ii) −
∫
Eh

γJQ◦1α1K dS =
∫
Th

Q∂γ · α1 dx− 2β
∫
Th

Q∂γ · fQ◦1α⊥1 dx,

(iii) −
∫
Eh

γJQ◦2α2K dS = − g
H

∫
Th

U ∂γα2 dx− 2β
∫
Th

Q∂γ · fQ◦2α⊥2 dx.

Proof. We prove each identity sequentially. To show (i), the calculation is straight-
forward. First, we take m = γ and ŵ = HQ∂m in (3.59). This gives

Hah(Q∂γ,Q∂m)− HCgbh(Q∂m,U ∂γ) = −H
∫
Eh

γJQ∂mK dS. (3.118)

Now take φ = gU ∂γ in (3.60) to get the second relation:

gCHbh(Q∂m,U ∂γ) + gch(U ∂m,U ∂γ) = 0. (3.119)

Adding the two equations gives identity (i).

To show (ii), take m = γ and φ = gU ◦1 α1 in (3.60), ŵ = HQ∂γ in (3.61), and add the
two results together to get:

Hah(Q◦1α1,Q∂γ) + gch(U ∂γ,U ◦1 α1) = H
∫
Th

Q∂γ · α2 dx. (3.120)

Next, set m = γ and ŵ = HQ◦1α1 in (3.59), φ = gU ∂γ in (3.62), and add the two
expressions. This produces:

Hah(Q∂γ,Q◦1α1) + gch(U ◦1 α1,U ∂γ) = −H
∫
Eh

γJQ◦1α1K dS. (3.121)

88 Chapter 3. Hybridizable compatible finite element methods

Then, to get (ii), subtract (3.120) from (3.121) and use the fact that the Coriolis term
is skew-symmetric:

ah(Q∂γ,Q◦1α1)− ah(Q◦1α1,Q∂γ) = β
∫
Th

Q◦1α1 · fQ∂γ⊥ dx

− β
∫
Th

Q∂γ · fQ◦1α⊥1 dx

= −2β
∫
Th

Q∂γ · fQ◦1α⊥1 dx. (3.122)

Finally, we prove the last identity (iii). Performing similar algebraic manipulations,
we take m = γ and φ = gU ◦2 α2 in (3.60), ŵ = HQ∂γ in (3.63), then sum the expres-
sions:

Hah(Q◦2α2,Q∂γ) + gch(U ∂γ,U ◦2 α2) = 0. (3.123)

With m = γ and ŵ = Q◦2α2 in (3.59), φ = gU ∂γ in (3.64), add the equations together
to obtain:

Hah(Q∂γ,Q◦2α2) + gch(U ◦2 α2,U ∂γ) = −H
∫
Eh

γJQ◦2α2K dS

+ g
∫
Th

U ∂γα2 dx. (3.124)

Thus, (iii) is obtained by simply subtracting (3.123) from (3.124) and using the skew-
symmetry property of the Coriolis term in the definition of ah.

Having established the identities in Lemma 4, we now state the main result of this
section.

Theorem 1. (Characterization of uh, Dh, and λh): Let (uh, Dh, λh) ∈ Û1
h ×U2

h ×Utr
h be the

unique solution triple for the hybridizable compatible finite element method (3.111)–(3.113).
Let rh

1 and rh
2 denote the residual functions in (3.18)–(3.19). Then,

uh = Q∂λh +Q◦1rh
1 +Q◦2rh

2 , (3.125)

Dh = U ∂λh + U ◦1 rh
1 + U ◦2 rh

2 , (3.126)

with the Lagrange multiplier λh being the unique solution to the discrete variational problem:
find λh ∈ Utr

h satisfying
sh(λh, γ) = rh(γ), ∀γ ∈ Utr

h , (3.127)

where

sh(λh, γ) :=
∫
Th

Q∂γ ·
(
Q∂λh − β fQ∂λ⊥h

)
dx +

g
H

∫
Th

U ∂γU ∂λh dx, (3.128)

rh(γ) :=
∫
Th

Q∂γ ·
(

2β f
(
Q◦1rh

1 +Q◦2rh
2

)⊥
− rh

1

)
dx

+
g
H

∫
Th

U ∂γrh
2 dx. (3.129)

Proof. To show (3.125)–(3.126), we simply use linearity of the problem and the def-
inition of the local solvers: (3.59)–(3.60), (3.61)–(3.62), and (3.63)–(3.64). Combining

3.2. Analysis of the hybridizable method 89

all three systems and setting m = λh in (3.59)–(3.60), we obtain the following system:

ah(ũh, ŵ)− Cgbh(ŵ, D̃h) = Ru[ŵ]− ∑
e∈Eh

∫
e

λhJŵK dS, (3.130)

CHbh(ũh, φ) + ch(D̃h, φ) = RD[φ], (3.131)

for all (ŵ, φ) ∈ Û1
h ×U2

h , where

(ũh, D̃h) = (Q∂λh,U ∂λh) + (Q◦1rh
1,U ◦1 rh

1) + (Q◦2rh
2 ,U ◦2 rh

2). (3.132)

Since (3.130)–(3.130) holds for all (ŵ, φ) ∈ Û1
h × U2

h , it also holds for all (w, φ) ∈
U1

h ×U2
h , where U1

h ⊂ Û1
h is the H(div) subspace of Û1

h . Then (ũh, D̃h) are solutions
to the compatible finite element discretization. By Proposition 3, (ũh, D̃h) are also
solutions to the extended problem (3.111)–(3.113), with∫

Eh

γJũhK dS =
∫
Eh

γJQ∂λh +Q◦1rh
1 +Q◦2rh

2K dS = 0, ∀γ ∈ Utr
h . (3.133)

Then (ũh, D̃h, λh) satisfy all equations of the hybridizable method. By virtue of
Proposition 2, the solution triple of the equations (3.111)–(3.113) is unique and we
may write: ũh = uh and D̃h = Dh.

To show (3.127), we use Lemma 4. Take α1 = rh
1, α2 = rh

2 , and sum the identities
(i)–(iii) to get an equation for any m ∈ Utr

h :

−
∫
Eh

γJQ∂m+Q◦1rh
1 +Q◦2rh

2K dS =
∫
Th

Q∂γ ·Q∂mdx− β
∫
Th

Q∂γ · fQ∂m⊥ dx

+
g
H

∫
Th

U ∂γU ∂mdx− g
H

∫
Th

U ∂γrh
2 dx

+
∫
Th

Q∂γ · rh
1 dx

− 2β
∫
Th

Q∂γ · f
(
Q◦1rh

1 +Q◦2rh
2

)⊥
dx, (3.134)

for all γ ∈ Utr
h . Taking m = λh asserts that equation (3.134) is equal to zero via the

jump condition (3.133). Therefore, we have λh satisfying∫
Th

Q∂γ ·Q∂λh dx− β
∫
Th

Q∂γ · fQ∂λ⊥h dx

+
g
H

∫
Th

U ∂γU ∂λh dx =
g
H

∫
Th

U ∂γrh
2 dx

+ 2β
∫
Th

Q∂γ · f
(
Q◦1rh

1 +Q◦2rh
2

)⊥
dx

−
∫
Th

Q∂γ · rh
1 dx, (3.135)

for all γ ∈ Utr
h . The fact that λh is the unique trace function satisfying (3.135) is a

direct consequence of Proposition 2. From the definition of sh(λh, γ) and rh(γ) in
(3.128) and (3.129), the result follows.

Theorem 1 is a variation of a similar result, presented by Cockburn, Gopalakrishnan,
and Lazarov (2009, Theorem 2.1), which establishes a characterization of λh for the

90 Chapter 3. Hybridizable compatible finite element methods

hybridization of mixed methods for second-order elliptic equations. Indeed, when
no Coriolis is present (f = 0), the linear shallow water system (3.1)–(3.2) closely re-
sembles a mixed formulation of a typical scalar elliptic equation. In this case, sh and
rh in (3.127) reduces to nearly identical constructions presented by Cockburn and
Gopalakrishnan (2004) and Cockburn, Gopalakrishnan, and Lazarov (2009). Hav-
ing established the main result, let us now inspect the discrete problem (3.127) more
closely.

3.2.4 The discrete variational problem for λh

Now we provide an important result, which helps reveal that the equation for the
Lagrange multiplier defines a positive-definite system. This motivates our choice of
iterative solvers and preconditioning strategies for (4.47), which will be discussed
in Chapter 4. It also motivates directions of future work for studying the properties
of linear systems arising from other hybridizable discretizations, such as the ones
shown later on in Section 3.4.

Proposition 4. The bilinear form sh in (3.128) is positive-definite on Utr
h ×Utr

h in the sense
that:

sh(γ, γ) > 0, ∀γ ∈ Utr
h with γ 6= 0. (3.136)

When f = 0, sh is symmetric and positive-definite.

Proof. We can immediately see that sh(λh, γ) = sh(γ, λh) defines a symmetric bilin-
ear form whenever f = 0. Therefore, we only need to verify positive-definiteness
for general f .

Observe that, for all γ ∈ Utr
h :

sh(γ, γ) =
∫
Th

Q∂γ ·
(
Q∂γ− β fQ∂γ⊥

)
dx +

g
H

∫
Th

U ∂γU ∂γ dx

=
∫
Th

|Q∂γ|2 dx +
g
H

∫
Th

|U ∂γ|2 dx

= ‖Q∂γ‖2
Û1

h
+

g
H
‖U ∂γ‖2

U2
h
≥ 0, (3.137)

Note that g/H > 0 is strictly positive. This immediately gives a positive semi-
definite result. Observe that whenever (3.137) is equal to zero, then this implies
Q∂γ = 0 and U ∂γ = 0. Using the definition of (Q∂,U ∂) in (3.59)–(3.60), we have
that γ = 0 by a similar argument made in the proof of Proposition 2. Hence, we
have positive-definiteness on Utr

h ×Utr
h .

Now let Btr = {ξi} be any finite element basis for Utr
h and Λ =

{
λi, · · · λr

}T be
the vector of coefficients for the finite element expansion of λh ∈ Utr

h :

λh =
r

∑
i=1

λiξi. (3.138)

Then the corresponding discrete matrix system has the form

SΛ = R, (3.139)

3.2. Analysis of the hybridizable method 91

with

(S)ij = ∑
K∈Th

(∫
K
Q∂ξ j ·

(
Q∂ξi − β fQ∂ξ⊥i

)
dx +

g
H

∫
K
U ∂ξ jU ∂ξi dx

)
(3.140)

(R)j = ∑
K∈Th

∫
K
Q∂ξ j ·

(
2β f

(
Q◦1rh

1 +Q◦2rh
2

)⊥
− rh

1

)
dx

+ ∑
K∈Th

g
H

∫
K
U ∂ξ jr2

h dx. (3.141)

Using Lemma 4, we can rewrite the system more compactly as:

(S)ij = − ∑
K∈Th

∫
∂K

ξ jQ∂ξi · n dS (3.142)

(R)j = ∑
K∈Th

∫
∂K

ξ j

(
Q◦1rh

1 +Q◦2rh
2

)
· n dS. (3.143)

Then we can immediately deduce the following properties of (3.139).

1. S is a positive-definite matrix in Rr×r.

2. If the support of ξ j (the smallest subset of Eh where ξ j is non-zero) does not
intersect on ∂K, then

(R)j |K =
∫

∂K
ξ j

(
Q◦1rh

1 +Q◦2rh
2

)
· n dS = 0. (3.144)

3. If the support of either ξi or ξ j does not intersect ∂K, we have

(S)ij |K =
∫

∂K
ξ jQ∂ξi · n dS = 0. (3.145)

Recall that the entire point of using a hybridizable method is that inversion of a
globally dense Schur-complement is avoided. The latter two points are merely a
confirmation on the sparsity of the matrix system for Λ. Clearly if the support of
ξ j ∈ Btr in (3.144) or (3.145) doesn’t intersect with ∂K, the resulting expressions are
zero. Now take ξi in (3.145) and suppose its support does not intersect ∂K. Then we
have by Proposition 1 that

(
Q∂ξi

)
|K · nK = 0, where nK is the normal vector on ∂K.

Thus (3) follows. Item (1) is a direct consequence of Proposition 4.

Remark on the operator S

Our analysis has led us to the results of Theorem 1. In doing so, we have established
the relationship between the Lagrange multiplier λh and the variational problem
which characterizes it. As we have previously alluded to, the linear system for λh
is a positive-definite equation. For the hybridization of mixed methods for scalar-
elliptic PDEs, Gopalakrishnan (2003) first showed that the system for the Lagrange
multipliers is spectrally equivalent to an elliptic operator. This motivated the ex-
tension of standard elliptic solvers and preconditioners to the discrete system for
the multipliers (Gopalakrishnan and Tan, 2009; Cockburn et al., 2013). In particular:
the application of multigrid methods as robust preconditioners for inverting the trace
system.

92 Chapter 3. Hybridizable compatible finite element methods

The hybridizable method we presented in this section has not be formally analyzed
in the literature. However, we can say quite a lot about the system when f = 0.
In this case, the variational problem in (3.127) reduces to an identical system shown
by Cockburn and Gopalakrishnan (2004, Equation (2.13)). Cockburn and Gopalakr-
ishnan (2005) extended the results of Gopalakrishnan (2003) and showed that the
“energy” norm |||·||| :=

√
sh(·, ·) is equivalent to an “H1-like” norm on Utr

h with mesh
independent constants (see Theorem 3.6 of Cockburn and Gopalakrishnan (2005)).
This motivates the use of preconditioning strategies for H1 elliptic equations directly
on the trace problem, as described by Dobrev et al. (2019).

This inspired the choice of solver algorithms featured in later chapters. We shall
elaborate later on when the performance of iterative solvers becomes a central topic
in Chapters 4 and 5. While there is no formal proof yet on the spectral properties
of S in (3.139), we show strong numerical evidence that the non-symmetric systems
arising from the hybridization methods presented in this dissertation respond well
to multigrid preconditioning. Extending the analysis of Gopalakrishnan (2003) to
(3.127) is a subject for future investigations.

3.3 Nonlinear method and numerical examples

Having established the hybridization method for the linear shallow water model,
we now describe how this fits together within a numerical method for the nonlinear
shallow water equations. The nonlinear method we shall present here is inspired
by the approach used in ENDGame, the operational dynamical core of the UK Met
Office (Thuburn, 2016). We briefly summarize our approach.

Let qn denote the vector of state variables at time-step n that we want to determine.
An approximation to qn is computed by means of a Picard fixed-point iteration of
the form:

J (q̄)δqk = R(qn,k−1), (3.146)

where and R is the nonlinear residual, and the linear increment at the k-th Picard
iteration δqk is defined via

qn,k = qn,k−1 + δqk, (3.147)

with qn,k denoting the Picard iterates approximating qn. The iterates are initialized
by using some initial guess: qn,0 = q∗. We call this component of the nonlinear
method the Picard cycle.

In (3.146), J (q̄) denotes the linearization of the nonlinear operator about some ref-
erence profile q̄. It is more commonly referred to as the approximate Jacobian of
the nonlinear PDE.7 Since J is not a true Jacobian, where J is constructed from
the linearization about the known state qn−1, such an approach is typically called
“quasi-Newton.” For real-world atmospheric simulations, a background profile is
used to compute J in order to save computational costs (Melvin et al., 2010; Wood
et al., 2014; Melvin et al., 2019).

More formally, the stopping criteria of the Picard cycle is determined by some toler-
ance 0 < ε � 1, where the cycle terminates whenever the relative change in the
solution is small:

‖qn,k − qn,k−1‖ = ‖δqk‖ ≤ ε‖qn,0‖. (3.148)

7Not to be confused with the Jacobian of a coordinate transformation!

3.3. Nonlinear method and numerical examples 93

After termination, at say Nk iterations, the state variable is moved forward in time:
qn ← qNk and the next Picard cycle begins. In operational settings, Nk is typically
determined heuristically. For example, the Picard method for the UK Met Office’s
full compressible model uses between 2–4 Picard iterations, which were experimen-
tally determined to be “good enough” for generating accurate forecasts (Wood et al.,
2014; Adams et al., 2019).

Since the Picard method approach is currently being used by the experimental (com-
patible finite element) dynamical core: LFRic (Adams et al., 2019), we choose to solve
our nonlinear equations in a similar manner. In Chapter 5, another Picard method is
presented for the full compressible Euler equations, which more closely mirrors the
one used by (Melvin et al., 2019). First, we start by presenting a compatible finite
element discretization of the nonlinear shallow water system.

3.3.1 Nonlinear shallow water equations

The nonlinear shallow water equations in a rotating frame were presented in (2.59)–
(2.60). We use the form of the momentum equation given in (2.61):

∂u
∂t

+ (∇⊥ · u + f)u⊥ +∇
(

g(D + ηb) +
1
2
|u|2

)
= 0, (3.149)

∂D
∂t

+∇ · (uD) = 0. (3.150)

Here, we have included a bathymetry term ηb. Our approach extends the compatible
finite element discretization of the linear shallow water equations in Section 3.1.1.
It is also closely related to the discretization of the incompressible Euler equations
described by Natale and Cotter (2017). Like with the linear model, we discretize
(3.149)–(3.150) using an H(div) × L2 compatible finite element method. That is, u
and D are approximated by uh ∈ U1

h ⊂ H(div) and Dh ∈ U2
h ⊂ L2 respectively.

Here, we shall start by discretizing in space.

Since Dh is sought in the discontinuous finite element space U2
h , we use an upwinded

discontinuous Galerkin method for the continuity equation (3.150), as detailed in
Gibson et al. (2019a, §2.2). Multiplying (3.150) by a test function φ ∈ U2

h and inte-
grating by parts yields:∫

Th

φ
∂Dh

∂t
dx−

∫
Th

∇hφ · (uhDh) dx +
∫
Eh

JuhφKD̃h dx = 0, (3.151)

where J·K denotes the jump of φuh · n8 on the skeleton Eh and ∇h is the “broken”
gradient in L2:

∇h|Kφ = ∇|Kφ, (3.152)

and D̃h indicates the value of Dh take from the upwind direction, i.e., the side where
uh · n is negative.

In the momentum equation (3.149), the main difficulty is in representing the nonlin-
ear term (∇⊥ · uh)u⊥h in an H(div)× L2 mixed method. There is insufficient continu-
ity in uh to meaningfully evaluate the (two-dimensional) curl ∇⊥· since tangential
components of uh can have discontinuities. Thus, we take the inner product with a

8While indeed JuhK = 0 since uh ∈ U1
h , this does not imply that JuhφK = 0; φ in general can take

different values on either side of two connected elements.

94 Chapter 3. Hybridizable compatible finite element methods

K+ K−
e

t+|e

t−|e

FIGURE 3.6: A shared edge between two adjacent elements K+ and K−. The tangential nor-
mal vectors on the edge e are constructed by rotating (90 degrees) the outward normal vec-
tors on e.

test function w ∈ U2
h and integrate by parts, choosing the upwind value of uh on the

cell boundaries:∫
Th

w · (∇⊥ · uh)u⊥h dx = −
∫
Th

uh · ∇⊥h (u⊥h ·w)dx +
∫
Eh

{u⊥h ·w} · ũh dS. (3.153)

In the surface term, ũh denotes the upwind value of uh on each facet. The operator
∇⊥h is a (rotated) broken gradient, defined similarly to (3.152). Additionally, we
introduce a vector-valued “jump” operator in the tangential directions:

{Ψ}e = Ψ|K+t+|e + Ψ|K−t−|e, (3.154)

where Ψ is some scalar function and t±|e := (n±|e)⊥ is the tangential unit vector on
the facet e ⊂ ∂K± (see Figure 3.6). Note that the surface term in (3.153) appears due
to uh having discontinuous tangential components.

Our semi-discrete finite element formulation reads as follows: find uh ∈ U1
h , Dh ∈ U2

h
such that∫

Th

w · ∂uh

∂t
dx−

∫
Th

uh · ∇⊥h (u⊥h ·w)dx +
∫
Eh

{u⊥h ·w} · ũh dS

+
∫
Th

w · (f u⊥h)dx−
∫
Th

∇h ·w
(

g(Dh + ηb) +
1
2
|uh|2

)
dx = 0, (3.155)∫

Th

φ
∂Dh

∂t
dx−

∫
Th

∇hφ · (uhDh) dx +
∫
Eh

JuhφKD̃h dx = 0, (3.156)

for all test functions w ∈ U1
h , φ ∈ U2

h . This scheme has no particular conservation
properties beyond local and global mass conservation.

For the interested reader, an energy-conserving formulation can be obtained by in-
troducing a mass-flux: Fh ≈ uD, defined as the L2-projection of uD onto U1

h . One
then replaces uh by Fh/Dh in (3.155), and uses the continuity equation ∂Dh

∂t +∇h ·
Fh = 0. A scheme that conserves mass, energy, and potential enstrophy was given
in McRae and Cotter (2014); this introduced extra variables representing mass-flux
and potential vorticity. Other sophisticated energy-conserving discretizations can be
found in Shipton, Gibson, and Cotter (2018) and Bauer and Cotter (2018).

3.3. Nonlinear method and numerical examples 95

Quasi-Newton/Picard iteration scheme

The nonlinear method described in this section is as presented by Gibson et al.
(2019a) and Gibson et al. (2019b). This method mirrors the solution strategy em-
ployed by the UK Met Office’s new finite element dynamical core, as presented by
Melvin et al. (2019) and Adams et al. (2019). We start by discretizing the nonlinear
equations in time and employ a Picard method.

We discretize (3.155) and (3.156) using the implicit midpoint rule. This implies that
the nonlinear residuals Ru[w; un

h , Dn
h] and RD[φ; un

h , Dn
h] should satisfy

Ru[w; un
h , Dn

h] = 0, (3.157)
RD[φ; un

h , Dn
h] = 0, (3.158)

for all w ∈ U1
h and φ ∈ U2

h , where

Ru[w; un
h , Dn

h] =
∫
Th

w ·
un

h − un−1
h

∆t
dx +

∫
Th

w · f
(

un− 1
2

h

)⊥
dx

−
∫
Th

un− 1
2

h · ∇⊥h

((
un− 1

2
h

)⊥
·w
)

dx

+
∫
Eh

{(
un− 1

2
h

)⊥
·w
}
·
˜
un− 1

2
h dS

−
∫
Th

∇h ·w
(

g
(

Dn− 1
2

h + ηb

)
+

1
2

∣∣∣∣un− 1
2

h

∣∣∣∣2
)

dx, (3.159)

and

RD[φ; un
h , Dn

h] =
∫
Th

φ
Dn

h − Dn−1
h

∆t
dx

−
∫
Th

∇hφ · un− 1
2

h Dn− 1
2

h +
∫
Eh

s
φun− 1

2
h

{ ˜
Dn− 1

2
h dS, (3.160)

with
un− 1

2
h =

1
2
(un

h + un−1
h), Dn− 1

2
h =

1
2
(Dn

h + Dn−1
h) (3.161)

denoting the midpoint fields. This time discretization is unconditionally stable in
the sense that solutions do not grow arbitrarily large in time. More specifically, the
implicit midpoint scheme is an implicit Runga-Kutta (RK) method, which is well-
known for ensuring that solutions are well-controlled in time (Hairer and Wanner,
1996, §4.3).

However, solving (3.157)–(3.158) requires the solution of a nonlinear coupled system
of equations for un

h and Dn
h . One could use Newton’s method directly, but this has

a disadvantage: the Jacobian must be reassembled each nonlinear iteration. If a
Krylov method is used to solve the linear system, the preconditioner must be rebuilt;
if a direct method is used instead, the factorization must be recalculated during each
iteration. Therefore, an approximate Jacobian is used in practice, which is obtained
by linearizing around a fixed background profile. The resulting Jacobian is then
state-independent and allows reuse of a sparse preconditioner.

96 Chapter 3. Hybridizable compatible finite element methods

To control the reduction of the nonlinear residual, we apply a fixed number of Picard
iterations, say Nk iterations, towards the solution of the implicit midpoint system. As
long as this approximate Jacobian is not too far from the true Jacobian, the nonlinear
residuals Ru and RD can still be made arbitrarily small. In practice, this works well
since flows on a global scale do not deviate far from the background profile (average
wind speeds, pressure, etc.) of the atmosphere. The Picard cycle for (3.157)–(3.158)
is summarized as follows.

As we have mentioned at the start of this section, the Picard method generates a
sequence of approximations un,0

h , un,1
h , un,2

h , . . . , un,Nk
h , and Dn,0

h , Dn,1
h , Dn,2

h , . . . , Dn,Nk
h to

un
h and Dn

h respectively. To start the Picard iteration, a simple approach would be to
initialize the Picard iterates using values from the previous time-step: un,0

h = un−1
h

and Dn,0
h = Dn−1

h . Then, we define the linear increments at the k-th Picard iteration,
δuk

h and δDk
h, via

un,k
h = un,k−1

h + δuk
h, Dn,k

h = Dn,k−1
h + δDk

h. (3.162)

These increments are chosen to satisfy the approximate Jacobian system of the form:∫
Th

w · δuk
h dx +

∆t
2

∫
Th

w · f
(

δuk
h

)⊥
dx

− g∆t
2

∫
Th

δDk
h∇h ·w dx = −∆tRu[w; un,k−1

h , Dn,k−1
h], (3.163)

H∆t
2

∫
Th

φ∇h · δuk
h dx +

∫
Th

φδDk
h dx = −∆tRD[φ; un,k−1

h , Dn,k−1
h], (3.164)

for all w ∈ U1
h and φ ∈ U2

h , where the residual functionals Ru and Rh are the non-
linear residuals. The Jacobian system above is obtained by linearizing the shallow
water equations about a state of rest with a mean layer depth H and no bathymetry,
as discussed in Section 2.1.4.

The choice to take un,0
h = un−1

h and Dn,0
h = Dn−1

h is a fairly simple approach, but
there is a caveat. While the actual time-integrator is unconditionally stable for large
∆t, this doesn’t necessarily mean the the Picard method will converge. The Picard
cycle defined by successive inversion of the system in (3.163)–(3.164) will converge
or diverge depending on whether δuk

h and δDk
h can be made sufficiently small. For

large ∆t, the Picard method may converge very slowly (requiring several Picard
iterations) or not at all.

To accelerate the convergence of the Picard method (hence extend the stable time-
step of the nonlinear method), we make one further modification. We now replace
Ru and RD by equivalent functionals (i.e. functionals that also vanish when the
implicit midpoint rule equations are satisfied). To do this, we set

uk−1
h =

1
2

(
un,k−1

h + un−1
h

)
, Dk−1

h =
1
2

(
Dn,k−1

h + Dn−1
h

)
(3.165)

at the k-th Picard iteration, with un,0
h = un−1

h and Dn,0
h = Dn−1

h as before. Now we
introduce the candidate solutions: ûk

h, D̂k
h, and the implicit midpoint quantities:

ûk− 1
2

h =
1
2

(
ûk

h + un−1
h

)
, D̂k− 1

2
h =

1
2

(
D̂k

h + Dn−1
h

)
. (3.166)

3.3. Nonlinear method and numerical examples 97

Now we solve the implicit equations (3.159)–(3.160) using uk−1
h as the advecting ve-

locity. That is, we solve for the candidates ûk
h ∈ U1

h and D̂k
h ∈ U2

h satisfying the linear
equations:

∫
Th

w ·
ûk

h − un−1
h

∆t
dx +

∫
Th

w · f
(

ûk− 1
2

h

)⊥
dx

−
∫
Th

ûk− 1
2

h · ∇⊥h
((

uk−1
h

)⊥
·w
)

dx

+
∫
Eh

{(
uk−1

h

)⊥
·w
}
·
˜
ûk− 1

2
h dS

+
∫
Th

∇h ·w
(

g
(

Dk−1
h + ηb

)
+

1
2

∣∣∣uk−1
h

∣∣∣2) dx = 0, ∀w ∈ U1
h , (3.167)

and ∫
Th

φ
D̂k

h − Dn−1
h

∆t
dx−

∫
Th

∇hφ ·
(

uk−1
h D̂k− 1

2
h

)
dx

+
∫
Eh

r
φuk−1

h

z ˜̂
Dk− 1

2
h dS = 0, ∀φ ∈ U2

h . (3.168)

The equations (3.167) and (3.168) are linear in the arguments ûk
h, D̂k

h. Furthermore,
they can be solved separately since there is no coupling between them.

This procedure can be thought of as iteratively solving for the average velocity and
depth that satisfies the implicit midpoint rule discretization. Once (3.167) and (3.168)
are solved, the candidate fields ûk

h, D̂k
h are then used to define the new residuals for

the Picard system:

R̂u[w; un,k−1
h , Dn,k−1

h] =
∫
Th

w ·
(

un,k−1
h − ûk

h

)
dx, (3.169)

R̂h[φ; un,k−1
h , Dn,k−1

h] =
∫
Th

φ
(

Dn,k−1
h − D̂k

h

)
dx, (3.170)

which replace Ru and Rh in (3.163) and (3.164). Algorithm 1 summarizes the entire
nonlinear method for solving (3.157)–(3.158).

Remark 8. At the time of this work, no formal analysis has been done for the Picard meth-
ods employed throughout this dissertation (including the ones used by Wood et al. (2014),
Melvin et al. (2019), and Adams et al. (2019)). However, such methods used in operational
settings work quite well and give sufficiently accurate forecasts. It would be interesting
future work to analyze these methods in more detail and give concrete convergence results.

3.3.2 Numerical experiments on the sphere

Having established our nonlinear method, we see that we must invert the linear sys-
tem (3.163)–(3.164) a total of Nk-times per time-step. The linear system has the exact
form of the linear equations presented for the hybridizable method in Sections 3.1
and 3.2. As a proof-of-concept, we will employ Algorithm 1 using a hybridizable for-
mulation of (3.163)–(3.164), exactly as detailed in Section 3.1.2. For all experiments,
we use a fixed number of Nk = 4 Picard iterations. This was chosen heuristically, as
more Picard iterations did not appear to drastically change the solutions. A similar

98 Chapter 3. Hybridizable compatible finite element methods

Algorithm 1 Pseudocode for solving the nonlinear shallow water equations using
the implicit midpoint rule and Picard method.

1: tn = 0
2: un

h ← u(x, t = 0) . Initial condition for the velocity field
3: Dn

h ← D(x, t = 0) . Initial condition for the depth field
4: while t < tmax do
5: un,k

h = un
h . Initialize the Picard method

6: Dn,k
h = Dn

h
7: for k ∈ {1, · · · , Nk} do . Start Picard cycle
8: Solve (3.168) and (3.167) for the candidates D̂k

h and ûk
h.

9: Evaluate new residuals R̂k
u and R̂k

D:

R̂k
u =

∫
Th

w ·
(

un,k
h − ûk

h

)
dx

R̂k
D =

∫
Th

φ
(

Dn,k
h − D̂k

h

)
dx

10: Solve the linear system for δuk
h and δDk

h:[
M̃1 − g∆t

2 BT

H∆t
2 B M2

]{
δuk

h
δDk

h

}
= −∆t

{
R̂k

u
R̂k

h

}

11: un,k
h ← un,k

h + δuk
h . Linear update for velocity

12: Dn,k
h ← Dn,k

h + δDk
h . Linear update for depth

13: end for
14: tn ← tn + ∆t
15: un

h ← un,k
h . Update velocity for next time step

16: Dn
h ← Dn,k

h . Update depth for next time step
17: end while

phenomena was observed by Wimmer, Cotter, and Bauer (2019), where they com-
pared Nk = 4 versus Nk = 8. No further analysis was performed on how increasing
Nk impacts the overall convergence of the nonlinear method.

Note that mixed finite element methods for the nonlinear equations has already been
studied in great detail (Cotter and Shipton, 2012; McRae and Cotter, 2014; Shipton,
Gibson, and Cotter, 2018). Unlike the previous cases, we employ hybridization as
a new solution technique within our nonlinear method. We demonstrate, using
standard test cases on the sphere, that using a hybridizable method produces the
expected numerical results when compared with existing studies of the same exper-
iments.

We consider two well-known test cases in this section, taken directly from the shal-
low water test-suite by Williamson et al. (1992). All test cases are implemented using
the Firedrake finite element library (Rathgeber et al., 2017). Local static condensa-
tion and recovery for the hybridization method uses the framework developed in
Chapter 4 of this dissertation. We shall go into more detail on the computational
aspects, performance, and iterative solver strategies related to hybridization later
on. For the purpose of these examples, we simply use direct methods (LU via the
MUMPS package (Amestoy, Duff, and L’Excellent, 2000)) for all linear solves.

3.3. Nonlinear method and numerical examples 99

FIGURE 3.7: Grid consisting of three regular refinements of an icosahedra, viewed looking
down on the North pole. The tessellation shown here is constructed from flat (linear degree)
triangular cells.

The computational domain

For both examples considered here, the governing equations (3.149)–(3.150) will be
defined on the two-dimensional surface of a sphere. The sphere has uniform radius
R = 6.3712× 106m, with a surface M embedded in R3. We previously discussed
problems of this type in Section 2.3.2, where we outlined the necessary machinery to
evaluate finite element integrals on immersed manifolds. All computations on the
sphere performed in Firedrake use the framework developed by Rognes et al. (2013).
When convenient, we will use the Firedrake-convention of formulating problems in
Cartesian (x, y, z) coordinates with the origin (0, 0, 0) at the center of the sphere.

For our computational domain, we use a mesh Th = {K} consisting of refined icosa-
hedra (triangles) using a piece-wise cubic polynomial approximation of the surface
(see Figure 3.7 for a piece-wise linear example), which places us in the framework of
Holst and Stern (2012) for mixed methods on immersed manifolds. In other words,
we are using isoparametric cells K to approximate the curvature of the sphere. There
are two direct implications of this, as discussed in Section 2.3.2.

1. Our computational domain
⋃

i Ki is an approximation of M, i.e,
⋃

i Ki ≈ M
and

⋃
i Ki 6⊆ M.9

2. The coordinate mapping to the reference cell K̂ is, in general, no longer affine.10

As a consequence of 2, the cell Jacobian of the coordinate mapping FK : R2 → R3,
JK = ∂FK

∂x̂ , is non-square and its determinant is polynomial in the reference coordi-
nate x̂ ∈ R2. This may lead to non-polynomial expressions in the integrands after
mapping to K̂ (see (2.189) for a concrete example).

Fortunately, by virtue of Lemma 1, all terms which are critical for the conservation
properties we desire (Coriolis, divergence and pressure gradient terms) can still be
integrated exactly with relative ease (including the surface terms arising from hy-
bridization). This is due to the cancellation of cell Jacobian determinants in the in-
tegrals when mapping to the reference cell K̂ (Cotter and Thuburn, 2014). For the
numerical experiments presented in this section, all critical terms in (3.163)–(3.164)
are integrated using exact quadrature.

9 See Remark 4 in Section 2.3.2 and its mathematical implications in Section 2.4.6.
10When using flat triangular elements, the cell Jacobian is still constant.

100 Chapter 3. Hybridizable compatible finite element methods

Solid body rotation

The first example we consider is known as a “solid body” rotation test (Williamson
et al., 1992, Test case 2). This test case consists of a steady state solution to the non-
linear equations on the sphere. The zonal (eastward) flow is initialize in a state of
geostrophic balance. That is, the flow in its initial state satisfies the balance relation:

f u⊥ = −g∇D, (3.171)

where g = 9.81ms−2 is the acceleration due to gravity, u is the flow velocity, and D
is the fluid depth, and f is the Coriolis parameter given as a function of the vertical
coordinate z:

f = 2Ωr
z
R

, (3.172)

where Ωr = 7.292× 10−5s−1 is the angular rotation rate of the Earth, and R is the
planetary radius. Note the the definition of f in (3.172) is nothing more than the f -
plane approximation in Cartesian coordinates; while f varies with z on the surface, it
is constant in the zonal directions and achieves its maximal amplitude at the north/-
south poles. Along the equator (z = 0), f vanishes. There are no topographically-
driven (ηb = 0) or other external forces acting on the fluid. Therefore, as the flow
evolves in time, it should remain in geostrophic balance.

For the spatial discretization, we use the following finite element complex in two-
dimensions:

P3
∇⊥−→ BDM2

∇·−→ dP1. (3.173)

That is, our computed velocity will be constructed in BDM2 and the depth in dP1.
This implies that the hybridizable method for the linear updates in (3.163)–(3.164)
will be an H-BDM method. We use the “broken” version of BDM2 to construct the
velocity updates. Since, for any ψ ∈ BDM2

ψ · n|e ∈ P2(e), ∀e ∈ Eh, (3.174)

a trace space Utr
h consisting of quadratic polynomial functions on each facet is used

for the Lagrange multipliers.

The initial conditions for the solid body rotation test are the fields satisfying (3.171),
defined as the functions:

u(x, 0) =
u0

R
{
−y x 0

}T , D(x, 0) = H0 −
(

RΩru0 +
1
2

u2
0

)
z2

gR2 , (3.175)

where u0 = 2πR
12days ≈ 38.6ms−1, and H0 = 2.94× 104m2s−2/g ≈ 2998m. Since the

flow is steady, we are able to compare our computed solutions with the analytic
result given in (3.175).

The icosahedral grids used in our convergence tests consist of regular refinements
of a coarse icosahedral mesh, depicted previously in Figure 3.7. Grid details, in-
cluding degree of freedom count and time-step information is presented in Table
3.2. The time-step was chosen such that the Courant number u0∆t/∆x is approx-
imately 0.2 across all mesh resolutions. The Picard system (3.163)–(3.164) was ob-
tained by linearizing around a state of rest, with a domain-averaged depth given by
H =

∫
Th

D(x, 0)dx/Vol(Th), where Vol(Th) is the mesh volume.

3.3. Nonlinear method and numerical examples 101

TABLE 3.2: Grid properties for the four grids used in the solid body convergence test, in-
cluding the number of degrees of freedom for the fluid velocity uh and depth Dh, along with
the time-step used.

Grid properties Degrees of freedom
cells ∆xmax (km) ∆xmin (km) uh Dh ∆t (s)
1280 1054 720 9600 3840 3000
5120 527 348 38400 15360 1500

20480 263 171 153600 61440 750
81920 132 85 614400 245760 375

The discretization parameters shown in Table 3.2 are the same ones used in the solid
body test by Shipton, Gibson, and Cotter (2018). As was done by Williamson et al.
(1992), we compute normalized L2 errors for the prognostic variables at day 5:

L2
err(Ψ) =

√∫
Th
|Ψh −Ψa|2 dx√∫
Th
|Ψa|2 dx

, (3.176)

where Ψa is the analytic result, and Ψh is the computed solution at day 5. Since the
implicit midpoint method is a second-order time-integrator, we expect the solutions
to convergence in time proportional to ∆x2. The estimated rates of convergence are
computed in the traditional way using the standard L2-norm:

Rate(Ψ) =
log
(‖Ψh1

−Ψa‖L2

‖Ψh2−Ψa‖L2

)
log
(

∆xh1
∆xh2

) , (3.177)

where h1 and h2 are two different (fine) mesh spacings. The computed errors and
convergence rates are displayed in Table 3.3 and visualized in Figure 3.8.

We remark here that this test case was also discussed in Shipton, Gibson, and Cot-
ter (2018), but with a different discretization approach for the nonlinear equations.
In that study, a Taylor-Galerkin (Donea, 1984) method is used to discretize the mo-
mentum equation expressed as a transport equation for the potential vorticity (see
(2.67)). A similar upwind discontinuous Galerkin method is used for the mass trans-
port equation (3.151). The main advantage of using the Taylor-Galerkin approach is
that conservation of potential vorticity is achieved for both steady and unsteady
flow regimes. While the discretization is different from the one presented in this
section, the overall nonlinear method follows the same approach as discussed in
Section 3.3.1. In particular, the Jacobian for the linear updates is the same one used in
Algorithm 1. The same hybridizable mixed method is applied and produces similar
results as here.

TABLE 3.3: Normalized L2 depth and velocity errors, and the estimated rates of convergence
are shown at day 5 for the solid body rotation test.

cells L2
err(u) L2

err(D) Rate (u) Rate (D)
1280 3.027× 10−3 2.610× 10−4 — —
5120 2.914× 10−4 6.188× 10−5 3.376 2.077

20480 6.398× 10−5 1.623× 10−5 2.187 1.930
81920 1.716× 10−5 4.050× 10−6 1.898 2.003

102 Chapter 3. Hybridizable compatible finite element methods

105 106

10 5

10 4

10 3

N
or

m
al

iz
ed

 L
2

er
ro

r

Average mesh size x

L2
err(D) L2

err(u) x2

FIGURE 3.8: A log-log plot of normalized L2 errors versus the average cell resolution ∆x. As
the resolution is refined, we approach second-order convergence as expected.

Isolated mountain test case

The last example for the shallow water equations we present is based on test case 5
of Williamson et al. (1992). The flow is initialized as in the solid body rotation test
(3.175), but with H0 = 5960m and u0 = 20ms−1. However, unlike the solid body
test, the flow is now impinging against an isolated conical mountain located in the
northern hemisphere. This will cause the flow to become unsteady and develop fine-
scale turbulent features as the simulation progresses. There is no analytic solution
for this test case, but it is well-documented within the geophysical community. For
example, see the more recent studies conducted on this test case by Thuburn, Cot-
ter, and Dubos (2014), Cotter and McRae (2014), and Kang, Giraldo, and Bui-Thanh
(2019).

The isolated mountain is added as a topographic feature to the equations via the
bathymetry term ηb. Notwithstanding a momentary break in convention, it is more
convenient to express the mountain profile in geographic coordinates, with (φ, λ) de-
noting latitude and longitude respectively. They are related to the Cartesian coordi-
nates by the relations:

φ = arcsin

(
z√

x2 + y2 + z2

)
, (3.178)

λ = arctan
(y

x

)
, (3.179)

where arctan must be suitably defined, taking into account the correct quadrant
(x, y) are located in.11 For the degenerate case when x = 0, λ = −π

2 if y < 0,
λ = π

2 if y > 0, and is undefined otherwise. The mountain profile is then defined as
the function:

ηb = Dpeak

(
1− R

R0

)
, (3.180)

11See the standard Fortran convention: https://gcc.gnu.org/onlinedocs/gfortran/ATAN2.html

https://gcc.gnu.org/onlinedocs/gfortran/ATAN2.html

3.3. Nonlinear method and numerical examples 103

FIGURE 3.9: The topography field in meters, with a peak centered at latitude φc = π
6 and

longitude λc = −π
2 .

with a peak height Dpeak = 2000m, R0 = π
9 , and R2 = min{R2

0, (φ − φc)2 + (λ −
λc)2} with its center in the upper hemisphere at latitude φc = π

6 and longitude
λc = −π

2 . See Figure 3.9 for a visualization of the topography field.

As before, we discretize using the mixed finite element pair BDM2 × dP1 for the
velocity/depth, and employ an H-BDM discretization of the linear system for the
Picard updates. However, this time we run the test at a fixed-resolution of ∆x ≈ 210
km (20,480 triangular cells) and a prescribed time-step size of ∆t = 450 seconds. The
model was run for a total of 50 simulation days in order to allow the flow to develop
strong nonlinearities.

As the flow interacts with the mountain, waves are produced which travel around
the globe. Figure 3.10 displays the depth field for days 0, 5, 10, and 15. During this
portion of the simulation, the flow is only weakly nonlinear; the deformation of the
depth field is apparent, but it remains smooth. The results for days 5, 10, and 15 are
comparable to the corresponding results of Nair, Thomas, and Loft (2005), Ullrich,
Jablonowski, and Leer (2010), and Kang, Giraldo, and Bui-Thanh (2019).

While a convergence study using the approach outlined in Algorithm 1 was not con-
ducted here, a convergence study for this test case was presented by Shipton, Gib-
son, and Cotter (2018, Figure 4). Errors in the depth field (at day 15) were compute
using a high-resolution finite volume code provided by Prof. John Thuburn at the
University of Exeter. In that study, we demonstrated second-order convergence us-
ing the same time-integrator described in (3.3.1) for the energy-conserving method
detailed in Shipton, Gibson, and Cotter (2018, §2.3). The hybridization method pre-
sented in Section 3.1.2 was also used in that convergence study.

As was performed by Thuburn, Cotter, and Dubos (2014), we continue the simula-
tion up to day 50 and measure the potential vorticity q. Recall from Section 2.1.4 the
definition:

q =
∇⊥ · u + f

D
. (3.181)

As we can see, q is proportional to the curl of the velocity field. The absolute vorticity
∇⊥ · u + f denotes the tendency for the flow to locally circulate due to rotational
effects, and hence q is just the absolute vorticity normalized by the fluid depth.

In our setup, q is diagnostic; that is, we can determine q using computed solutions
for u and D. To accomplish this within the compatible finite element framework,
recall the de-Rham complex in (3.173). Since q contains the curl of u, we require
(in two-dimensions) the H1 finite element subspace: P3. To arrive at a diagnostic

104 Chapter 3. Hybridizable compatible finite element methods

(A) Initial condition (day 0) (B) Day 5

(C) Day 10 (D) Day 15

FIGURE 3.10: Snapshots (view from the northern pole) from the isolated mountain test case.
The depth field (m) at days 5, 10, and 15. The snapshots were generated on a mesh with
20, 480 simplicial cells, a BDM2 × dP1 discretization, and ∆t = 450 seconds.

equation for q at time-step n, we rewrite (3.181) and discretize in the usual finite
element manner.

After discretizing (3.181), we obtain the following finite element problem: find qn
h ∈

P3 such that∫
Th

qn
h Dn

h ψ dx = −
∫
Th

∇⊥h ψ · un
h dx +

∫
Th

ψ f dx, ∀ψ ∈ P3, (3.182)

where un
h and Dn

h are known fields computed during each nonlinear iteration. No
surface terms appear due to the continuity of ψ and the fact the we are discretizing
on the surface of the sphere (hence no boundary). Since ψ ∈ P3, evaluating the
skew-gradient ∇⊥ψ in an integral-sense is well-defined.

After solving for un
h and Dn

h during each time-step, we diagnose qn
h by solving the

finite element problem (3.182). This is accomplished by a direct factorization (LU)
on the resulting matrix system for qn

h . The resulting potential vorticity field at day
20, 30, 40 and 50 are shown in Figure 3.11.

After day 30, the flow becomes more nonlinear due to interactions with the moun-
tain. By day 50, fine scale structures have been generated and are very discernable.
The potential vorticity field develops sharp gradients and filaments that stretch out
and roll in on themselves. Qualitatively, our potential vorticity results match closely
to the experiments performed by Rognes et al. (2013), Cotter and McRae (2014), and
Shipton, Gibson, and Cotter (2018). This same test case will be revisited again in
Chapter 4, where we demonstrate the computational advantage of using a hybridiz-
able method over a standard compatible finite element discretization for the Picard
solver.

3.3. Nonlinear method and numerical examples 105

(A) Day 20 (north pole) (B) Day 20 (south pole)

(C) Day 30 (north pole) (D) Day 30 (south pole)

(E) Day 40 (north pole) (F) Day 40 (south pole)

(G) Day 50 (north pole) (H) Day 50 (south pole)

FIGURE 3.11: Snapshots of the potential vorticity (with velocity fields outlined). The magni-
tudes of the vorticity range between −3× 10−8 (blue) and 3× 10−8 (red).

106 Chapter 3. Hybridizable compatible finite element methods

(A) Horizontal base mesh. (B) Vertically extruded mesh.

FIGURE 3.12: An 8× 8× 8 cubed sphere grid (3.12A) and a uniformly extruded grid with 5
vertical layers (3.12B).

3.4 Other hybridizable discretizations

In preparation for later chapters, we turn our focus to applications which are partic-
ularly relevant for fully three-dimensional models. While most of the discussion in
this section also applies to two-dimensional applications (such as vertical-slice mod-
els), we emphasize problems defined on so-called atmospheric-shaped meshes. Such a
mesh Th consists of polygonal cells K, where each K = Khoriz. × Kvert. is the product
of some horizontal cell Khoriz. with a vertical cell Kvert.. By constructing mesh cells
in this way, we can obtain a global mesh suitable for vertical staggering. See Section
2.4.3 for a detailed discussion on how these product cells are defined in general.

For the rest of this section and a majority of Chapter 5, the domain will be a spher-
ical annulus with uniform radius R and height H. The domain can therefore be
expressed as the product: S(R)× [0, H], where S(R) denotes the surface of a sphere
with radius R. Constructing a mesh Th will then consist of an unstructured hori-
zontal “base“ mesh for S(R), which is vertically extruded using a structured one-
dimensional mesh of [0, H]. See Figure 3.12 for an example of such a mesh. Note
that it is possible within our framework to have varying resolution in the vertical.
However, we shall restrict our discussion to the uniform resolution case.

To construct the compatible finite element spaces, we use the tensor product con-
structions presented in Section 2.4.4. That is, we build discretizations from the de-
Rham complex in three-dimensions:

W0
h
∇−→W1

h
∇×−−→W2

h
∇·−→W3

h . (3.183)

Each finite element space is obtained by taking the tensor product of finite elements
in the one- and two-dimensional complexes:

V0
h

d
dx−→ V1

h , U0
h
∇⊥−→ U1

h
∇·−→ U2

h , (3.184)

3.4. Other hybridizable discretizations 107

where the spaces Vi
h consist of finite elements defined on intervals, and Ui

h are de-
fined on two-dimensional polygons making up the horizontal mesh. The resulting
tensor product spaces are defined on prismatic cells and have the form:

W0
h = U0

h ⊗V0
h , (3.185)

W1
h = HCurl(U1

h ⊗V0
h)︸ ︷︷ ︸

W1,horiz.
h

⊕ HCurl(U0
h ⊗V1

h)︸ ︷︷ ︸
W1,vert.

h

, (3.186)

W2
h = HDiv(U1

h ⊗V1
h)︸ ︷︷ ︸

W2,horiz.
h

⊕ HDiv(U2
h ⊗V0

h)︸ ︷︷ ︸
W2,vert.

h

, (3.187)

W3
h = U2

h ⊗V1
h . (3.188)

We refer the reader to Section 2.4.4 for a complete discussion on the construction of
each W i

h. For the rest of this section, we describe two new hybridization methods
which follow from similar arguments made in the development of the hybridizable
method for the shallow water equations.

3.4.1 Hydrostatic pressure equation

A very standard thing to do in geophysical simulations is to solve for a hydrostatic
pressure with a vertical component of the pressure gradient that balances the grav-
itational force, given a pressure boundary condition at the top of the domain and a
slip boundary condition for the velocity at the bottom of the domain (u · n = 0 on
the bottom portion of the domain). The basic pressure structure of the atmosphere
is determined by the hydrostatic balance relation:

cpθ∇Π = −gk̂, (3.189)

where cp is the specific heat at constant pressure, θ is the potential termperature, Π
is the Exner pressure, and k̂ is the upward-pointing normal vector. For this reason, it
is standard practice to initialize atmospheric simulations using a balanced pressure
field. See, for example, Jablonowski and Williamson (2006) and Ullrich et al. (2013).

In a staggered finite difference formulation, this is quite simple, as the pressure val-
ues can be solved in each column from the top down to the bottom by comput-
ing discrete differences (see Figure 2.20 for the finite difference vertical staggering
schemes). In a compatible finite element formulation, this is more complicated, be-
cause it requires the solution of a system with different test and trial spaces (hence
the resulting discrete system is non-square). In this section, we will describe how
this can be dealt with; it will result in a set of decoupled column-wise systems that
can also be reduced using a hybridization procedure.

A vertical discretization using compatible finite elements

In the compressible Euler model, the velocity equation takes the form

∂u
∂t

+ (u · ∇)u + 2Ω× u = −cpθ∇Π− gk̂, (3.190)

108 Chapter 3. Hybridizable compatible finite element methods

where Ω is Coriolis vector (see (2.12)). When in hydrostatic balance, all terms in-
volving u vanish and we are left with (3.189).12 Now let Ω be the computational
domain with boundary ∂Ω = ∂Ωt ∪ ∂Ωb, mesh Th, and skeleton Eh. We define W̊2

h
to be the subspace of W2

h with vanishing normal components on ∂Ωb, the bottom
of the domain. We now discretize in space by multiplying (3.189) by w ∈ W̊2

h and
integrating by parts:

0 =
∫
Th

cp∇h · (θw)Πh dx−
∫
E◦h

cpJθwK{{Πh}}dS

−
∫

∂Ωt

cpθw · nΠ0 dS−
∫
Th

gw · k̂ dx, ∀w ∈ W̊2
h , (3.191)

where Π0 is the required value of Πh on the upper boundary ∂Ωt, Πh ∈ W3
h is the

pressure variable to be determined, and θ is a known potential temperature field
constructed in the space Wθ

h = U2
h ⊗ V0

h (see Section 2.4.5). We also introduce the
averaging operator for scalar functions as the single-valued function on the interior
skeleton E◦h = Eh \ ∂Ω:

{{ψ}} = 1
2
(ψ|K+ + ψ|K−) , (3.192)

where ψ|K± denotes the restriction of ψ to the K±-side of a facet e ∈ E◦h . The operator
J·K is the usual jump operator for the normal components of vector fields as defined
in previous discussions.

The facet term JθwK{{Πh}} on E◦h does not vanish because we take θ ∈ Wθ
h and

Πh ∈ W3
h ; θ is therefore not continuous in the horizontal direction and Πh is com-

pletely discontinuous across elements. However, the jump term JθwK vanishes on
horizontal interfaces (top/bottom facets of the cells) within a column. This is due to
the fact that θ is constructed in a vertically-continuous finite element space.

We can use the continuity of θ to our advantage. Observe that the velocity space
in (3.187) admits the following decomposition: W2

h = W2,horiz.
h ⊕W2,vert.

h . Since the
balance relation (3.189) is purely vertical, we may consider only test functions in
W2,vert.

h .

Now let C ⊂ Th denote a vertical column of cells. We write W2,vert.
h (C), Wθ

h (C) and
W3

h (C) to denote the restrictions of the finite element spaces to the column C. Now
we multiply (3.189) by w ∈ W̊2,vert.

h (C). After integrating by parts within a column,
we obtain the following finite element problem: find Πh ∈W3

h (C) such that∫
C

cp∇h · (θw)Πh dx = −
∫

∂Ct

cpθw · nΠ0 dS

−
∫
C

gw · k̂ dx, ∀w ∈ W̊2,vert.
h (C), (3.193)

where W̊2,vert.
h (C) ⊂ W2,vert.

h is the subspace with vanishing normal components on
∂Cb. There is no coupling between adjacent columns since all arguments are dis-
continuous in the horizontal direction. Coupling only occurs in the vertical due to
the continuity of w · n and θ through the top/bottom facets in C. An illustration is
provided in Figure 3.13.

12 We are not considering the effects of the centrifugal force, Ω ×
(

Ω× k̂
)

, since it is measurably
small compared to all other terms. For this reason, it is typically neglected in atmospheric models.

3.4. Other hybridizable discretizations 109

∂Cb

∂Ct

C

Wθ
h d.o.f.

W2,vert.
h d.o.f.

W3
h d.o.f.

FIGURE 3.13: An illustration of the degrees of freedom (d.o.f.) for w ∈ W2,vert.
h , θ ∈ Wθ

h , and
Πh ∈ W3

h in a single column C with two levels. The vertical element W2,vert.
h corresponds to

the vertical component of a Raviart-Thomas-Nédélec element of order q = 2. The element
Wθ

h is the scalar version of W2,vert.
h and W3

h is a dQ1 element.

Currently, (3.193) is a system with different test and trial functions. As noted by
Natale, Shipton, and Cotter (2016), observe that if ∇h · (θvh) = 0, for some vh ∈
W̊2,vert.

h (C), then we have vh = 0 since the potential temperature θ is strictly positive
and vh · n = 0 on ∂Cb. This means we can add a term involving vh without changing
the solution for Πh.

We can therefore convert (3.193) into an equivalent mixed system for (vh, Πh) ∈
W̊2,vert.

h (C)×W3
h (C) satisfying∫

C

(
w · vh − cp∇h · (θw)Πh

)
dx = −

∫
∂Ct

θw · nΠ0 dS−
∫
C

gw · k̂ dx, (3.194)∫
C

cpφ∇h · (θvh) dx = 0, (3.195)

for all w ∈ W̊2,vert.
h (C) and φ ∈ W3. This defines a mixed finite element problem in

each vertical column; it is similar to the mixed formulation of the Poisson equation
with the modified divergence operator vh 7→ ∇h · (θvh). Natale, Shipton, and Cot-
ter (2016) gave a uniqueness proof for (vh, Πh), demonstrating that (3.194)–(3.195) is
well-posed and that Πh solves (3.193). The advantage of using (3.194)–(3.195) over
(3.191) is that we now have a well-posed square system, which is column-wise in-
dependent. It does, however, require the solution of a saddle-point system in each
column. We shall remedy this by introducing a new hybridizable method for the
mixed problem.

110 Chapter 3. Hybridizable compatible finite element methods

A vertically-oriented hybridizable method

We proceed in a similar fashion to the development of a hybridizable method for
the shallow water equation. First, let us summarize the global problem for (3.194)–
(3.195). We wish to develop a hybridizable method for the following mixed finite
element problem: find (vh, Πh) ∈ W̊2,vert.

h ×W3
h such that∫

Th

w · vh dx−
∫
Th

cp∇h · (θw)Πh dx = −
∫

∂Ωt

θw · nΠ0 dS

−
∫
Th

gw · k̂ dx, (3.196)∫
Th

cpφ∇h · (θvh) dx = 0, (3.197)

for all w ∈ W̊2,vert.
h and φ ∈W3. The global finite element spaces are defined as

W̊2,vert.
h = {w ∈ H(div; Ω) : w|K ∈Wv

2 (K), ∀K ∈ Th, w · n = 0 on ∂Ωb}, (3.198)

W3
h = {φ ∈ L2(Ω) : φ|K ∈W3(K), ∀K ∈ Th}, (3.199)

where the local spaces of shape functions have the form

Wv
2 (K) = [U2(Khoriz.)k̂]⊗V0(Kvert.), W3(K) = U2(Khoriz.)⊗V1(Kvert.). (3.200)

Here, we are using the definition of ⊗ for finite elements, as detailed in Section
2.4.3. The spaces Wv

2 (K) and W3(K) are defined on product cells of the form K =
Khoriz.×Kvert.. The cells Khoriz. and Kvert. denote the domains of the local polynomial
spaces Ui and Vj of Ui

h and V j
h respectively.

Since W2,vert.
h is an H(div) finite element, functions in W2,vert.

h are mapped to the
reference cell via the contravariant Piola transform. W3

h is mapped via the usual
change of coordinate mapping. Note that on product cells, the change of coordinates
is no longer affine (Natale, Shipton, and Cotter, 2016). We refer the interested reader
to McRae et al. (2016) for more details on the definition and implementation of the
tensor product spaces discussed here (see also Table 2.2 in Section 2.4.4 for a general
reference).

First, we introduce the discontinuous variant of W2,vert.
h , defined as the set

Ŵ2,vert.
h = {w ∈ [L2(Ω)]d : w|K ∈Wv

2 (K), ∀K ∈ Th}. (3.201)

Similar to the standard hybridization method in Section 3.1.2, functions in Ŵ2,vert.
h

are no longer required to have continuous normal components across the horizontal
facets of the mesh. With E v

h denoting the set of horizontally-aligned (top/bottom)
facets of all K ∈ Th, we define the space of approximate traces as the set

Wtr,vert.
h = {γ ∈ L2(E v

h) : γ|e ∈ M(e), ∀e ∈ E v
h }, (3.202)

where M(e) is a polynomial space on the facet e. The degree of M(e) is determined
by the polynomial degree of w · n|e, for w ∈ W2,vert.

h , as illustrated in Figure 3.14.
Functions in Wtr,vert.

h only have support on the horizontal facets between neighbour-
ing elements in the same column.

3.4. Other hybridizable discretizations 111

(A) The vertical velocity element: W2,vert.
h

(B) The vertical trace element: Wtr,vert.
h

FIGURE 3.14: A vertical velocity element is shown in 3.14A with normal components on
the horizontally-aligned facets belonging to Q1(e). The corresponding trace element on the
horizontal facets is shown in 3.14B.

Now we discretize using test functions in the broken H(div) space Ŵ2,vert.
h . With

E v(C) denoting the set of horizonally-aligned facets in a column C ⊂ Th, we have
the following extended finite element problem in C: find (vh, Πh, λh) ∈ Ŵ2,vert.

h (C)×
W3

h (C)×Wtr,vert.
h (E v(C)) such that∫

C
ŵ · vh dx−

∫
C

cp∇h · (θŵ)Πh dx

+
∫
E v(C)\∂Ct

cpλhJθŵK dS = −
∫

∂Ct

θŵ · nΠ0 dS

−
∫
C

gw · k̂ dx, (3.203)∫
C

cpφ∇h · (θvh) dx = 0, (3.204)∫
E v(C)\∂Ct

cpγJθvhK dS = 0, (3.205)

for all (ŵ, φ, γ) ∈ Ŵ2,vert.
h (C)×W3

h (C)×Wtr,vert.
h (E v(C)). The surface term now reap-

pears due to the fact that ŵ has discontinuous normal components. The Lagrange
multipler λh appears in the surface terms as an approximation to Π on the facets of
E v(C). Since cp, θ > 0, (3.205) is nothing more than the jump condition enforcing
the continuity of vh · n on E v(C). Note that (3.205) is also enforcing the boundary
condition vh · n = 0 on ∂Cb by construction:∫

E v(C)\∂Ct

cpγJθvhK dS =
∫
E v(C)\∂C

cpγJθvhK dS +
∫

∂Cb

cpγθvh · n dS = 0, (3.206)

for all γ ∈ Wtr,vert.
h (E v(C)). The system (3.203)–(3.205) is now not just column-wise

independent, it is cell-local by our choice of finite element spaces. We can therefore
use static condensation to eliminate (vh, Πh), producing a reduced system for λh in
each column.

It can be shown that the solutions (vh, Πh) of (3.203)–(3.205) also satisfy the origi-
nal compatible finite element discretization in (3.194)–(3.195). This follows from an
identical argument made in the proof of Proposition 3. Noting that W̊2,vert.

h ⊂ Ŵ2,vert.
h ,

112 Chapter 3. Hybridizable compatible finite element methods

taking ŵ = w ∈ W̊2,vert.
h in (3.203) reduces to (3.194) since JθwK = 0 on E v(C). By

Lemma 2, the jump condition implies that the solution vh to the hybridizable formu-
lation is actually in W2,vert.

h . Since the boundary condition is also satisfied through
(3.205), we have that vh belongs to W̊2,vert.

h as desired. So we have the hybridizable
solutions (vh, Πh) satisfying all equations of (3.194)–(3.195). The uniqueness of solu-
tions follows from Natale, Shipton, and Cotter (2016, Theorem 7.1).

The solution strategy for solving (3.203)–(3.205) is summarized as follow. The global
matrix system has the form:Mv

2 −BT KT

B 0 0
K 0 0

V
Π

Λ

 =

−F(g, Π0)

0
0

 , (3.207)

where V , Π, and Λ are the coefficient vectors for vh, Πh, and λh respectively. The
matrices and vectors are defined through the usual finite element manner. With B̂v

2 ,
B3 and Btr,v

2 denoting bases for Ŵ2,vert.
h , W3

h , and Wtr,vert.
h respectively, the operators

are defined via:

(Mv
2)ij =

∫
Th

Ψj ·Ψi dx, Ψi, Ψj ∈ B̂v
2 , (3.208)

(B)ij =
∫
Th

cpΦj∇h · (θΨi) dx, (Ψi, Φj) ∈ B̂v
2 ×B3, (3.209)

(K)ij =
∫
E v

h \∂Ωt

cpξ jJθΨiK dS, (Ψi, ξ j) ∈ B̂v
2 ×Btr,v

2 , (3.210)

(F(g, Π0))j =
∫
Th

gΨj · k̂ dx +
∫

∂Ωt

θΨj · nΠ0 dS, Ψj ∈ B̂v
2 . (3.211)

Since all prognostic variables are local to the cell, we can eliminate V and Π element-
wise to produce the condensed problem:

[
K 0

] [Mv
2 −BT

B 0

]−1 [
KT

0

]
Λ =

[
K 0

] [Mv
2 −BT

B 0

]−1{cF(g, Π0)
0

}
. (3.212)

Since the Lagrange multipliers are only coupled through vertical columns, (3.212)
can be inverted column-wise. Once Λ is determined, both V and Π can be recovered
element-by-element:{

V
Π

}
=

[
Mv

2 −BT

B 0

]−1 ({cF(g, Π0)
0

}
−
[

KT

0

]
Λ

)
. (3.213)

The hybridizable method shown in this section was first presented by Gibson et al.
(2019a) as an alternative to solving the mixed formulation in (3.194)–(3.195). It was
further extended for use within a compatible finite element model for a moist com-
pressible atmosphere by Bendall et al. (2019). All experiments agree with previous
studies on standard test cases by Skamarock and Klemp (1994), Bryan and Fritsch
(2002), and Ullrich, Reed, and Jablonowski (2015). We will feature the application of
this new hybridizable method in the numerical experiments of Chapter 5.

3.4. Other hybridizable discretizations 113

3.4.2 Linear gravity wave system

In this section, we consider a three-dimensional linear compressible Boussinesq model.
This simplified equation set exhibits non-hydrostatic and compressible effects while
avoiding the full complexity of the pressure gradient term, equation of state, and
nonlinearity of the full compressible Euler system. This model was used by Ska-
marock and Klemp (1994), for example, to explore aspects of time integration in a
simplified setting. This same system also provides an effective test case for the de-
velopment of implicit solvers, as shown by Mitchell and Müller (2016).

The full linear model is summarized as the following system of PDEs:

∂u
∂t

+ f k̂× u = −∇p + bk̂, (3.214)

∂p
∂t

= −c2∇ · u, (3.215)

∂b
∂t

= −N2u · k̂, (3.216)

where u is the velocity, p is the pressure, b is the buoyancy (how light a parcel of
fluid is compared to a reference value), f is the Coriolis parameter, k̂ is the upward
normal, c the speed of sound, and N the buoyancy frequency. We call these equa-
tions the linear gravity wave system. For simplicity we assume that both c and N are
constant, and enforce the slip boundary condition:

u · n = 0, (3.217)

at the upper and lower boundary of the atmosphere (∂Ωt and ∂Ωb respectively).

Compatible finite element formulation

Following similarly to our development of a hybridizable method for the shallow
water equations in Section 3.1, we start by discretizing (3.214)–(3.216) in time using
the implicit midpoint rule:

un − un−1

∆t
+ f k̂×

(
un + un−1

2

)
+∇

(
pn + pn−1

2

)
−
(

bn + bn−1

2

)
k̂ = 0, (3.218)

pn − pn−1

∆t
+ c2∇ ·

(
un + un−1

2

)
= 0, (3.219)

bn − bn−1

∆t
+ N2

(
un + un−1

2

)
· k̂ = 0. (3.220)

To simplify our notation, we introduce the definitions: δu := un − un−1, δp := pn −
pn−1, δb := bn − bn−1 and set u0 = un−1, p0 = pn−1, and b0 = bn−1. Then (3.218)–
(3.220) can be rewritten as the following semi-discrete system:

δu +
∆t
2

f k̂× δu +∇δp− δbk̂ = −∆t f k̂× u0 − ∆t∇p0 + ∆tb0k̂ =: ru (3.221)

δp +
∆t
2

c2∇ · δu = −∆tc2∇ · u0 =: rp, (3.222)

δb +
∆t
2

N2δu · k̂ = −∆tN2u0 · k̂ =: rb. (3.223)

114 Chapter 3. Hybridizable compatible finite element methods

As noted by Mitchell and Müller (2016), the semi-discrete equation:

δb +
∆t
2

N2δu · k̂ + ∆tN2u0 · k̂ = 0 (3.224)

holds even in the presence of orography. In this case, the upward-pointing normal
k̂ will need to follow the terrain along the domain boundary ∂Ωb. At any rate, we
devise a two-stage solution process for solving (3.218)–(3.220). This is based on the
approach taken by Mitchell and Müller (2016).

First, we eliminate the buoyancy variable δb from the semi-discrete equations (3.221)–
(3.223). This produces a system for δu and δp:

δu +
∆t
2

f k̂× δu +
∆t
2

N2k̂
(

δu · k̂
)
+∇δp = ru − ∆tN2k̂

(
u0 · k̂

)
= ru + rbk̂ =: r̃u, (3.225)

δp +
∆t
2

c2∇ · δu = rp. (3.226)

We now discretize in space over a mesh Th consisting of prismatic cells. The com-
patible finite element method seeks the velocity, pressure, and buoyancy updates in
the spaces:

δuh ∈ W̊2
h = W2,horiz.

h ⊕ W̊2,vert.
h , δph ∈W3

h , δbh ∈Wθ
h , (3.227)

as constructed in (3.187) and (3.188). W̊2
h denotes the subspace of W2

h with vanish-
ing normal components on ∂Ωt ∪ ∂Ωb. Starting with (3.225)–(3.226), the compatible
finite element discretization reads as follows: find (δuh, δph) ∈ W̊2

h ×W3
h satisfying∫

Th

w · δuh dx +
∆t
2

∫
Th

w · f
(

k̂× δuh

)
dx

+N2 ∆t2

4

∫
Th

k̂ ·wk̂ · δuh dx− ∆t
2

∫
Th

δph∇h ·w dx =
∫
Th

w · r̃h
u dx =: R̃u[w], (3.228)∫

Th

φδph dx +
∆t
2

c2
∫
Th

φ∇h · δuh dx =
∫
Th

φrh
p dx =: Rp[φ], (3.229)

for all (w, φ) ∈ W̊2
h ×W3

h . The discrete residual functions are defined as

r̃h
u = −∆t f k̂× u0

h + ∇̃hδp0
h + ∆tb0

hk̂− ∆tN2k̂
(

u0
h · k̂

)
(3.230)

rn
p = −∆tc2∇h · u0

h, (3.231)

where ∇̃h is the operator dual to ∇h· through integration by parts (see (3.20)).

Once (3.228)–(3.229) is solved, the buoyancy perturbation δbh can then be recovered
using δuh. To do this, we discretize (3.223) to produce the following finite element
problem: find δbh ∈Wθ

h such that∫
Th

µδbh dx = −∆tN2
∫
Th

µu0
h · k̂ dx− ∆t

2
N2
∫
Th

µδuh · k̂ dx, (3.232)

3.4. Other hybridizable discretizations 115

for all µ ∈ Wθ
h . Since the coupling of functions in Wθ

h is purely vertical, the ma-
trix system associated with (3.232) can be inverted column-wise. It is also well-
conditioned (independent of the grid resolution/time-step) and can be inverted with
a small number of conjugate gradient iterations.

The system (3.228)–(3.229) was first considered by Mitchell and Müller (2016) with-
out the Coriolis term (f = 0). It was presented as a simplified test case for the
development of linear solvers for atmospheric dynamical cores. Solving (3.228)–
(3.229) efficiently using a Schur-complement preconditioner requires a good sparse
approximation to the dense Schur-complement on the pressure space (similar in con-
struction to (3.30)).

In the study conducted by Mitchell and Müller (2016), a diagonal approximation of
the mass matrix coupling velocity degrees of freedom was used to construct a sparse
approximation to the pressure Schur-complement. A multigrid method was used to
invert the preconditioned pressure system within a non-symmetric Krylov method
(GMRES) operating on the velocity-pressure mixed system. They demonstrated ex-
cellent performance up to 6,144 compute cores, with both mesh- and ∆t-independent
solver convergence.

As we will see in Chapter 4, introducing the Coriolis term in the linearized equa-
tions causes significant problems for preconditioning. It was demonstrated by Gib-
son et al. (2019b) that the sparse preconditioner of Mitchell and Müller (2016) is no
longer parameter robust when f 6= 0. Instead, we develop a hybridizable method
for (3.228)–(3.229), which allows for easy incorporation of Coriolis effects. This is
due to the fact that we no longer require an approximation to a dense pressure oper-
ator; the hybridized system obtained after element-wise static condensation is sparse.
We can therefore focus our efforts on efficiently inverting the condensed system.

Hybridization of the velocity-pressure system

The hybridization of (3.228)–(3.229) was presented in Gibson et al. (2019a) and Gib-
son et al. (2019b). It is obtained by rendering the velocity updates discontinuous
and reinforcing continuity weakly through functions on cell facets. As we have seen
with the hybridization of the hydrostatic system (3.194)–(3.195), we shall also use
the trace functions to enforce the slip boundary conditions for δuh.

Proceeding similarly as before, we let Ŵ2
h denote the broken variant of the H(div)

finite element space W2
h . Next, we introduce the trace space on the skeleton Eh:

Wtr
h = {γ ∈ L2(Eh) : γ|e ∈ M(e), ∀e ∈ Eh}, (3.233)

with M(e) chosen to be the polynomial space of order q, where w · n|e ∈ Pq(e) for all
e ∈ Eh. The hybridizable system is then obtained in the usual way. After multiplying
(3.225) by a test function ŵ ∈ Ŵ2

h , integrating by parts yields:∫
Th

ŵ · δuh dx +
∆t
2

∫
Th

ŵ · f
(

k̂× δuh

)
dx

+N2 ∆t2

4

∫
Th

k̂ · ŵk̂ · δuh dx

−∆t
2

∫
Th

δph∇h · ŵ dx +
∫
Eh

λhJŵK dS = R̃u[ŵ], (3.234)

116 Chapter 3. Hybridizable compatible finite element methods

where the Lagrange multiplier λh ∈ Wtr
h is an approximation to ∆t

2 δp|Eh . Equation
(3.226) remains unchanged. Now, we need a jump condition to close the system. To
enforce continuity of the normal components of δuh ∈ Ŵ2

h , we use functions γ ∈Wtr
h

via the condition:∫
Eh

γJδuhK dS =
∫
Eh\∂Ω

γJδuhK dS +
∫

∂Ω
γδuh · n dS = 0, (3.235)

for all γ ∈ Wtr
h . In this way, we also have (3.235) enforcing the boundary condition

δuh · n = 0 on ∂Ω = ∂Ωt ∪ ∂Ωb.

The full hybridizable method is summarized as follows. Find (δun, δph, λh) ∈ Ŵ2
h ×

W3
h ×Wtr

h satisfying the equations∫
Th

ŵ · δuh dx +
∆t
2

∫
Th

ŵ · f
(

k̂× δuh

)
dx

+N2 ∆t2

4

∫
Th

k̂ · ŵk̂ · δuh dx

−∆t
2

∫
Th

δph∇h · ŵ dx +
∫
Eh

λhJŵK dS = R̃u[ŵ], (3.236)∫
Th

φδph dx +
∆t
2

c2
∫
Th

φ∇h · δuh dx = Rp[φ], (3.237)∫
Eh

γJδuhK dS = 0, (3.238)

for all (ŵ, φ, γ) ∈ Ŵ2
h ×W3

h ×Wtr
h . The corresponding matrix system for (3.236)–

(3.238) has the form: M̃2 −∆t
2 DT KT

∆tc2

2 D M3 0
K 0 0

δU
δP
Λ

 =

Ru
Rp
0

 . (3.239)

As we have seen in previous hybridization methods, all degrees of freedom are now
local to the cell. Therefore, it is easy to eliminate both δU and δP to obtain a sparse
system for Λ via static condensation:

[
K 0

] [M̃2 −∆t
2 DT

∆tc2

2 D M3

]−1 [
KT

0

]
Λ =

[
K 0

] [M̃2 −∆t
2 DT

∆tc2

2 D M3

]−1{
Ru
Rp

}
(3.240)

Both δU and δP are recovered locally as before once Λ is determined.

Neither the original system (3.228)–(3.229) or the hybridizable system (3.236)–(3.238)
has undergone rigorous analysis yet. It is, however, easily verifiable that the so-
lutions (δun, δph) ∈ Ŵ2

h ×W3
h of (3.236)–(3.238) also solve (3.228)–(3.229). The ar-

gument follows identically from the discussion on (3.203)–(3.204). A more detailed
analysis of the hybridizable equations and the corresponding matrix system for λh is
a subject of on-going work. Some preliminary studies have already been performed
in Section 4.5.3 of Chapter 4, which demonstrates numerical evidence that (3.240) can
be inverted effectively using multigrid approaches employed in numerical weather
prediction models (Fulton, Ciesielski, and Schubert, 1986). Additionally, hybridiza-
tion allows for the incorporation of Coriolis effects in the implicit equations without
relying on approximate Schur-complement factorizations.

3.5. Chapter summary 117

3.5 Chapter summary

In this chapter, we present hybridizable formulations of various compatible finite
element discretizations for simplified geophysical models. Emphasis is placed on
the formulation, discretization, and characterization of the methods. A complete
characterization result is proven for the linear shallow water model. The objective
behind that exercise is to better understand, using more familiar constructions, the
nature of the Lagrange multiplier and the resulting discrete system. In performing
the analysis of the multiplier for the shallow water system, we explicitly constructed
the local operators which permits the cell-wise reconstruction of prognostic variables
after performing local eliminations. Moreover, the results obtained provide a good
starting point for furthering the analysis of other hybridizable discretizations.

In Section 3.3, we showed how hybridization can be used within a nonlinear method.
The procedure we outlined mirrors the strategies employed by operational dynami-
cal cores, with a particular interest in the strategies used in the UK Met Office models
(Wood et al., 2014; Thuburn, 2016; Melvin et al., 2019; Adams et al., 2019). The results
obtained for the nonlinear shallow water tests agree with existing studies.

We purposefully omitted the technical details on the implementation aspects of hy-
bridization so as to not obfuscate the discussion and analysis. Therefore, the next
chapter will focus on the computational and performance aspects of these methods.
In particular, we present a new framework for automatically generating low-level
code for performing static condensation and local reconstructions. The abstraction
known as “Slate,” is the central topic of Chapter 4. It is sufficiently general to apply
to a wide range of problems outside of hybridization. Every hybridizable discretiza-
tion presented in this Chapter, and throughout the rest of this dissertation, can be
implemented rapidly and effectively using this new computational abstraction.

118

4 An automated framework for
hybridization and static
condensation

4.1 Introduction

The development of simulation software is an increasingly important aspect of mod-
ern scientific computing, in the geosciences in particular. Such software requires a
vast range of knowledge spanning several disciplines, ranging from applications ex-
pertise to mathematical analysis to high-performance computing and low-level code
optimization. Software projects developing automatic code generation systems have
become quite popular in recent years, as such systems help create a separation of
concerns which focuses on a particular complexity independent from the rest. This
allows for agile collaboration between computer scientists with hardware and soft-
ware expertise, computational scientists with numerical algorithm expertise, and
domain scientists such as meteorologists, oceanographers and climate scientists. Ex-
amples of such projects in the domain of finite element methods include FreeFEM++
(Hecht, 2012), Sundance (Long, Kirby, and Bloemen Waanders, 2010), the FEniCS
Project (Logg, Mardal, and Wells, 2012), Feel++ (Prud’homme et al., 2012), and Fire-
drake (Rathgeber et al., 2017).

The finite element method (FEM) is a mathematically robust framework for com-
puting numerical solutions of partial differential equations (PDEs) that has become
increasingly popular in fluids and solids models across the geosciences, with a for-
mulation that is highly amenable to code-generation techniques. A description of the
weak formulation of the PDEs, together with appropriate discrete function spaces,
is enough to characterize the finite element problem. Both the FEniCS and Firedrake
projects employ the Unified Form Language (UFL) (Alnæs et al., 2014) to specify the
finite element integral forms and discrete spaces necessary to properly define the
finite element problem. UFL is a highly expressive domain-specific language (DSL)
embedded in Python, which provides the necessary abstractions for code generation
systems.

In Chapter 3, we presented some hybridizable methods for mixed finite element
discretizations of equations relevant for atmospheric modeling. In Section 3.3, we
presented some numerical results with no mention of the software implementation.
The effective implementation of hybridization and static condensation requires in-
vasive intervention in standard finite element codes. In particular, we must inject
dense linear algebra routines during finite element assembly in order to perform
such operations. To do this in a general way, which can be effectively applied to a
wide array of problems, requires software composition using high-level abstractions
of the desired mathematics.

4.1. Introduction 119

In this chapter, we present a novel computational framework; we introduce a simple
yet effective high-level abstraction for localized dense linear algebra on systems de-
rived from finite element problems. Using embedded DSL technology, we provide
a means to enable the rapid development of hybridization and static condensation
techniques within an automatic code-generation framework. In other words, the
main contribution of this chapter is in solving the problem of automatically trans-
lating from the mathematics of static condensation and hybridization to compiled
code. This automated translation facilitates the separation of concerns between ap-
plications scientists and computational/computer scientists, and facilitates the au-
tomated optimization of compiled code. This work is implemented in the Firedrake
finite element library and the PETSc solver library (Balay et al., 1997; Balay et al.,
2016), accessed via the Python interface petsc4py (Dalcin et al., 2011).

4.1.1 The Firedrake finite element library

It will first be useful to put everything in context by describing the composition
of abstractions employed by Firedrake and how it is used in practice. The main
contribution of Firedrake, as a piece of mathematical software, is that it extends the
decomposition of the finite element method into automated abstractions further than
previous approaches. It is the unification of the following high-level frameworks:

1. A Python-embedded domain-specific language for the specification of PDE
weak formulations: UFL (Alnæs et al., 2014).

2. The efficient evaluation of finite element basis functions and numerical quadra-
ture: FIAT (Kirby, 2004) and FInAT (Homolya, Kirby, and Ham, 2017).

3. The automatic generation of local assembly code for evaluating finite element
integrals, i.e., the Firedrake compiler for variational forms: The Two-Stage Form
Compiler (TSFC) (Homolya et al., 2018).

4. A uniform abstraction for the specification of iterations over general meshes
and global finite element assembly: PyOP2 (Rathgeber et al., 2012).

5. Platform-specific optimizations of generated code specific for finite element
methods (COFFEE) (Luporini et al., 2015).1

6. An advanced solvers library for the solution of linear and nonlinear systems
of equations, PETSc (Balay et al., 1997; Balay et al., 2016), through its Python
interface: petsc4py (Dalcin et al., 2011). This includes the PETSc abstraction
known as DMPlex (Knepley and Karpeev, 2009), which allows Firedrake to
relate mesh entities to finite element degrees of freedom (nodes).

Firedrake provides a complete problem-solving environment in the form of a Python
module, which seamlessly interfaces with each of these frameworks. The benefit of
this composition of abstractions is that it enables a separation of concerns, allow-
ing for targeted development and relatively easy incorporation of new features and
code-generation technology. It also allows Firedrake to benefit directly from con-
tributions made in third party libraries, such as PETSc. Figure 4.1 illustrates the
complete Firedrake tool-chain.

1Currently in the process of being phased-out due to the migration of equivalent code-generation
technology to the form compiler: TSFC.

120 Chapter 4. An automated framework for hybridization and static condensation

Unified Form
Language

PyOP2
Interface

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

FEM problem
(weak form PDE)

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake/FEniCS
language

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

parallel
loop

parallel
loop

COFFEE
AST optimiser

data structures
(Set, Map, Dat)

Domain
specialist:
mathematical
model using
FEM

Numerical
analyst:
generation of
FEM kernels

Domain
specialist:
mathematical
model on un-
structured grid

Parallel
programming
expert:
hardware
architectures,
optimisation

Expert for each layer

FInAT

FIAT
TSFC

FIGURE 4.1: The Firedrake tool-chain illustrating the composition of abstractions and the
separation of concerns that this creates. Interface layers are represented in red, whereas
tools adopted from the PETSc and FEniCS projects are in green and blue respectively. PyOP2
objects for controlling the movement of data on unstructured meshes are in brown. Code-
generation layers are in grey, and the execution platform on computer hardware is shown in
orange. This an updated diagram based on Rathgeber et al. (2017, Figure 1). All frameworks
in red, grey, and brown are directly maintained by the Firedrake Project. The frameworks in
blue are maintained cooperatively by both the Firedrake and FEniCS projects.

A mixed Poisson example

As a simple demonstration of the high-level problem-solving environment provided
by Firedrake, consider the model Poisson problem:

−∇ · ∇p = f in Ω = [0, 1]2, p = 0 on ∂Ω, (4.1)

with a source function given as f (x, y) = 10 exp
{
−100

((
x− 1

2

)2
+
(
y− 1

2

)2
)}

.
Then the mixed formulation of (4.1) is obtained by introducing the negative flux
u = −∇p and substituting into the problem:

u +∇p = 0 in Ω, (4.2)
∇ · u = f in Ω, (4.3)

p = 0 on ∂Ω. (4.4)

Then given a mesh Th of Ω, the mixed finite element formulation of (4.2)–(4.4) seeks
approximations uh and ph in the finite element subspaces Uh × Vh ⊂ H(div; Ω) ×

4.1. Introduction 121

L2(Ω), defined by:

Uh = {w ∈ H(div; Ω) : w|K ∈ U(K), ∀K ∈ Th}, (4.5)

Vh = {φ ∈ L2(Ω) : φ|K ∈ V(K), ∀K ∈ Th}. (4.6)

The space Uh consists of H(div)-conforming piecewise vector polynomials, where
choices of U(K) typically include the Raviart-Thomas (RT), Brezzi-Douglas-Marini
(BDM), or Brezzi-Douglas-Fortin-Marini (BDFM) elements (Raviart and Thomas,
1977; Nédélec, 1980; Brezzi, Douglas, and Marini, 1985; Brezzi et al., 1987b). The
space Vh is the Lagrange family of discontinuous polynomials. These define the
same families of compatible finite element spaces discussed throughout Sections
2.4.2 and 2.4.4.

The discrete finite element problem is arrived at in the usual way. After multiplying
(4.2)–(4.3) by test functions and integrating by parts, we have the following discrete
problem: find (uh, ph) ∈ Uh ×Vh satisfying∫

Th

w · uh dx−
∫
Th

ph∇ ·w dx = 0, ∀w ∈ Uh, (4.7)∫
Th

φ∇ · uh dx =
∫
Th

φ f dx, ∀φ ∈ Vh. (4.8)

The matrix system is obtained by expanding the solutions in terms of the finite ele-
ment bases:

uh =
Nu

∑
i=1

UiΨi, ph =
Np

∑
i=1

Piξi, (4.9)

where {Ψi}Nu
i=1 and {ξi}

Np
i=1 are bases for Uh and Vh respectively. Here, Ui and Pi

are the coefficients to be determined. As per standard Galerkin-based finite element
methods, taking w = Ψj, j ∈ {1, · · · , Nu} and φ = ξ j, j ∈ {1, · · · , Np} in (4.7)–(4.8)
produces the saddle point system:

Ax =

[
A −BT

B 0

]{
U
P

}
=

{
0
F

}
= b. (4.10)

where U = {Ui}Nu
i=1, P = {Pi}

Np
i=1 are the coefficient vectors, and

(A)ij =
∫
Th

Ψi ·Ψj dx, (B)ij =
∫
Th

ξi∇ ·Ψj dx, (F)j =
∫
Th

ξ j f dx. (4.11)

The problem described here can be formulated, discretized, and solved in Firedrake
with only a few lines of Python code. Listing 4.1 displays a complete Firedrake pro-
gram for solving the model problem (4.2)–(4.4). We shall quickly break down the
program here.

Formulating the problem in UFL

A mesh is created in line 3 using one of several built-in utility meshes. This creates
a triangular mesh of the unit square by dividing each quadrilateral cell of a uniform
32× 32 grid into two triangles. The result is a structured mesh of 2048 triangular
cells. Firedrake is also capable of reading meshes generated by third-party libraries,

122 Chapter 4. An automated framework for hybridization and static condensation

LISTING 4.1: A complete Firedrake program for solving (4.7)–(4.8) using a Raviart-Thomas
mixed method.

1 from firedrake import *
2
3 mesh = UnitSquareMesh (32, 32)
4 U = FunctionSpace(mesh , "RT", degree =2)
5 V = FunctionSpace(mesh , "DG", degree =1)
6 W = U * V
7
8 u, p = TrialFunctions(W)
9 w, phi = TestFunctions(W)

10
11 x, y = SpatialCoordinate(mesh)
12 f = 10* exp (-100*((x - 0.5) **2 + (y - 0.5) **2))
13
14 a = dot(w, u)*dx - div(w)*p*dx + phi*div(u)*dx
15 L = phi*f*dx
16
17 w = Function(W, name="solution")
18 solve(a == L, w,
19 solver_parameters ={"ksp_type": "gmres",
20 "ksp_rtol": 1e-8,
21 "pc_type": "fieldsplit",
22 "pc_fieldsplit_type": "schur",
23 "pc_fieldsplit_schur_fact_type": "full",
24 "fieldsplit_0_ksp_type": "preonly",
25 "fieldsplit_0_pc_type": "lu",
26 "fieldsplit_1_ksp_type": "preonly",
27 "fieldsplit_1_pc_type": "lu"})

such as Gmsh (Geuzaine and Remacle, 2009), CGNS (Poirier et al., 1998), Triangle
(Shewchuk, 1996), and Exodus II (Schoof and Yarberry, 1994).

The following lines demonstrate how one can express finite element problems in
UFL. Lines 4–6 define the finite element spaces for a standard H(div) × L2 mixed
method using the Raviart-Thomas ("RT") and discontinuous Lagrange ("DG") spaces
on the given mesh. The degrees of the spaces are chosen based on the finite element
de-Rham complex (2.201) presented in Section 2.4.2. Test and trial functions are
defined in lines 8–9, and the source function is expressed in lines 11–12 as a function
of the spatial coordinates. The bilinear and linear forms for (4.38)–(4.39) are shown
in lines 14–15. A function is created to store the solution of the mixed problem in
line 17. The resemblance to the mathematical formulation is immediately apparent.

Code-generation and operator assembly

Up until this point, no code-generation has occurred; everything written is the pre-
vious lines are purely symbolic UFL expressions. Once solve is called in line 18, all
information contained in the UFL expressions gets translated into low-level C code
(kernels) by the form compiler: TSFC. The underlying UFL representation is able
to provide the form compiler with estimated quadrature rules2 (Ølgaard and Wells,

2This can also be prescribed manually by providing an appropriate quadrature degree to the UFL
measure, e.g., dx(degree=q).

4.1. Introduction 123

2010) along with information about the reference cell and its pullback. Pullbacks
are determined by the type of finite element space(s) the test and trial functions are
defined on. See Section 2.2.1 for details on the pullbacks of various finite element
families.

Using all information contained in the high-level UFL representation, TSFC is able
to inspect the UFl forms and generate a local assembly kernel for all the element
matrices/vectors in (4.11). During this process, TSFC uses FIAT (The FInite element
Automated Tabulator) to pre-compute evaluations of finite element basis functions
on the reference cell at quadrature point locations, and incorporates the result into
the generated assembly kernel. The code is further optimized by FInAT, which al-
lows Firedrake to produce assembly code with optimal order complexity, such as
using sum factorization for finite elements on cuboid cells. This is particularly im-
portant for high-order discretizations. More information on this is discussed in great
detail by Homolya, Kirby, and Ham (2017).

Once local assembly code is generated, the output result is then mapped into a PETSc
sparse data structure (Mat/Vec objects (Balay et al., 2016, §1.4)) via a generated ker-
nel iterated over the mesh by PyOP2. All generated code is compiled at runtime,
and stored (cached) to be reused if necessary (for example, in time-dependent sim-
ulations). It is worth noting here that PyOP2 actually has no concept of the mesh
topology; it works only with indirection maps between sets of mesh entities (cells,
faces/edges, vertices) and sets of degrees of freedom. Firedrake derives the required
indirection maps for a given mesh through PETSc’s DMPlex interface. This is dis-
cussed in more detail by Lange et al. (2016).

Solving the linear system and configuring PETSc

Solving (4.7)–(4.8) occurs in line 18, where an optional Python dictionary of solvers
options can be passed directly to PETSc. Since configuring the linear solver will be
a central topic in this chapter, we have provided an explicit example in lines 19–27.
We shall break these commands down for the purpose of exposition. Before we do
so, it is worth explaining the language PETSc uses to configure linear solvers.

PETSc Options: At first glance, lines 19–27 can be overwhelming. This therefore
warrants a more in depth explanation. All PETSc objects are configurable at run-
time, which allows for rapid experimentation of different solvers without drastically
changing the application code. The primary mechanism for controlling the behav-
ior of PETSc solvers is through the PETSc options database (Balay et al., 2016, §4).
The PETSc “programming language” used to control these options consists of two
operations:

1. Value assignment; and

2. string concatenation.

Each object has an associated options prefix, which can be used to distinguish it from
other solver objects. A linear solver object in PETSc is given the nomenclature “KSP”
(Krylov subspace method) and its options prefix is “ksp_”. A preconditioner is a ”PC”
object, with corresponding options prefix “pc_”. Looking now at lines 19–27, we can

124 Chapter 4. An automated framework for hybridization and static condensation

translate what is actually happening. The first three lines:

"ksp_type": "gmres",
"ksp_rtol": 1e-8,
"pc_type": "fieldsplit",

controls the type of KSP and PC objects for the full matrix system (4.10), as well as the
termination criterial for the KSP. The first line says: “Set the type of the KSP object to
GMRES,” while the second line tells PETSc to terminate the solver when the residual
b −Ax has been reduced by a factor of 108. The preconditioner wrapped in a PC
object is configured identically; the third line tells PETSc to set the preconditioner
for the KSP to be of type: “fieldsplit.”

A fieldsplit preconditioner (Brown et al., 2012) splits the operator at the global
level into blocks (corresponding to each field). The splitting type is controlled by
the options prefix “pc_fieldsplit_type.” In our example, we chose to use a full
Schur-complement factorization of the block matrix:

"pc_fieldsplit_type": "schur",
"pc_fieldsplit_schur_fact_type": "full",

where “pc_fieldsplit_schur_fact_type” configures the type of Schur-complement
factorization. Mathematically, this produces a preconditioning operator P of the
form:

P = A−1 =

[
I A−1BT

0 I

] [
A−1 0

0 S−1

] [
I 0

−BA−1 I

]
(4.12)

where S = BA−1BT. Schur-complement preconditioners require two global inver-
sions (solves): one for A, and another for the Schur-complement S. In PETSc, each
inversion is another solver object, with its own KSP and PC objects independent from
the main “outer” KSP.

Each solver for (4.12) are configured using the prefixes: “fieldsplit_0_” for invert-
ing A, and “fieldsplit_1_” for S. The last few lines do exactly just that:

"fieldsplit_0_ksp_type": "preonly",
"fieldsplit_0_pc_type": "lu",
"fieldsplit_1_ksp_type": "preonly",
"fieldsplit_1_pc_type": "lu".

When we set the “ksp_type” to “preonly”, we are specifically telling PETSc to not
use an iterative method; instead we just apply the preconditioner. In both cases, we
invert A and S using LU factorizations.

Each of these solvers can be configured exactly like any other PETSc solver. This en-
ables, quite literally, the arbitrary composition of linear solvers and preconditioners.
Although this system may appear cumbersome, it provides an extremely flexible
and precise environment for specifying linear solvers. More importantly, switching
out linear solvers requires no modification of the core Firedrake code itself (lines 1–18
do not change).

Since we inverting both A and S exactly, the options we have specified in Listing 4.1
are actually a direct method. In other words, GMRES will converge in one iteration

4.2. Slate: a system for linear algebra on element tensors 125

since the factorization (4.12) is evaluated exactly (up to rounding errors). However,
these are not the most prudent choices of solvers options. Recall from our previous
discussion on mixed methods that S is globally dense due to the dense inverse A−1.
Therefore, explicitly forming and inverting S becomes computationally impractical
for larger problems. However, this discussion serves as a nice introduction for pro-
gramming linear solvers in Firedrake. We will use this type of language frequently
throughout this chapter.

Extending Firedrake’s solver capabilities

Throughout this dissertation, we have been advocating the hybridization method
as an efficient alternative to solving compatibled (mixed) finite element problems.
While Firedrake provides access to a wide-range of options for solving PDEs, it un-
fortunately lacks support for the more invasive procedures required to statically con-
dense finite element systems. This is critical for the efficient solution of hybridizable
formulations of finite element discretizations. More specifically, prior to the work
presented in this chapter, Firedrake has no immediate mechanism for injecting new
code within the operator assembly process.

In order to perform static condensation and produce the desired condensed system,
we require Firedrake to be able to intervene in global operator assembly to generate
a new local expression for the statically condensed system. This now requires com-
putational kernels that not only assemble element-wise tensors, but also algebraically
manipulating them to form a new element tensor. This is precisely the scope of this
chapter. Here, we present a new abstraction framework for these types of proce-
dures: Slate.

4.2 Slate: a system for linear algebra on element tensors

The language, which we call Slate, provides typical mathematical operations per-
formed on matrices and vectors, hence the input syntax is comparable to high-level
linear algebra software such as MATLAB. The Slate language provides basic abstract
building blocks which can be used by a specialized compiler for linear algebra to
generate low-level code implementations.

Slate is heavily influenced by UFL (Alnæs et al., 2014; Logg, Mardal, and Wells,
2012), and is functionally designed to be compatible with any UFL form expressions.
As we have previously discussed, UFL forms can be compiled by a form compiler,
which translates UFL into low level code for the local assembly of a form over the
cells and facets of a mesh. In a similar manner, Slate expressions are compiled to low
level code that performs the requested linear algebra element-wise on a mesh.

4.2.1 An overview of Slate

We begin by establishing notation used throughout this chapter. Let Th denote a
tessellation of Ω ⊂ Rn, the computational domain, consisting of polygonal elements
K associated with a mesh size parameter h, exterior boundary ∂Ω, and Eh = {e ⊂
∂K for all K ∈ Th} the set of facets of Th. In a slight abuse of notation, we define
the set of facets interior to the domain by E◦h = Eh \ ∂Ω. Similarly, we denote the set

126 Chapter 4. An automated framework for hybridization and static condensation

of exterior facets as E ∂
h = Eh ∩ ∂Ω. If the domain boundary is decomposed into the

regions ∂Ω = ∂ΩD ∪ ∂ΩN , then we denote the subset of exterior facets lying on the
subdomains of the boundary as E ∂

h,D = E ∂
h ∩ ∂ΩD (similarly for E ∂

h,N).

To clarify conventions and the scope of Slate, we now introduce our notation for
a general finite element form following the convention of Alnæs et al. (2014). We
define a real-valued multi-linear form as an operator which maps a list of arguments
v = (v0, · · · , vα−1) ∈ V0 × · · · ×Vα−1 into R:

a : V0 × · · · ×Vα−1 → R, a 7→ a(v0, · · · , vα−1) = a(v), (4.13)

where a is linear in each argument vk. The arity of a form is α, an integer denoting
the total number of form arguments. In traditional finite element nomenclature (for
α ≤ 2), V0 is referred to as the space of test functions and V1 as the space of trial
functions. Each Vk are referred to as argument spaces. Forms with arity α = 0, 1 or
2 are best interpreted as the more familiar mathematical objects: scalars (0-forms),
linear forms or functionals (1-forms), and bilinear forms (2-forms) respectively.

If a given form a is parameterized by one or more coefficients, say c = (c0, · · · , cq) ∈
C0 × · · · × Cq where {Ck}

q
k=0 are coefficient spaces, then we write:

a : C0 × · · · × Cq ×V0 × · · · ×Vα−1 → R, (4.14)
a 7→ a(c0, · · · , cq; v0, · · · , vα−1) = a(c; v). (4.15)

From here on, we shall work exclusively with forms that are linear in v and possibly
non-linear in the coefficients c. This is reasonable since non-linear methods based
on Newton iterations produces linear problems via Gâteaux differentiation of a non-
linear form corresponding to a PDE (also known as the form Jacobian). We refer the
interested reader to Alnæs et al. (2014, §2.1.2) for more details. For clarity, we present
examples of multi-linear forms of arity α = 0, 1 and 2 that frequently appear in finite
element discretizations using our notation:

a(κ; v, u) := ∑
K∈Th

∫
K
∇v · (κ∇u) dx, α = 2, q = 1, (4.16)

a(f ; v) := ∑
K∈Th

∫
K

v f dx, α = 1, q = 1, (4.17)

a(f , g;) := ∑
K∈Th

∫
K
| f − g|2 dx, α = 0, q = 2, (4.18)

a(γ, σ) := ∑
e∈E◦h

∫
e

γ JσK dS + ∑
e∈E ∂

h

∫
e

γ σ · n dS, α = 2, q = 0. (4.19)

In general, a finite element form will consist of integrals over various geometric do-
mains: integration over cells Th, interior facets E◦h , and exterior facets E ∂

h . Therefore,
we express a general multi-linear form in terms of integrals over each set of geomet-
ric entities:

a(c; v) = ∑
K∈Th

∫
K
ITK (c; v)dx + ∑

e∈E◦h

∫
e
IE ,◦

e (c; v)dS + ∑
e∈E ∂

h

∫
e
IE ,∂

e (c; v)dS, (4.20)

where ITK denotes a cell integrand on K ∈ Th, IE ,◦
e is an integrand on the interior

facet e ∈ E◦h , and IE ,∂
e is an integrand defined on the exterior facet e ∈ E ∂

h . The form

4.2. Slate: a system for linear algebra on element tensors 127

a(c; v) describes a finite element form globally over the entire problem domain.

Here, we will consider the case where the interior facet integrands IE ,◦
e (c; v) can be

decomposed into two independent parts on each interior facet e: one for the positive
restriction (+) and the negative restriction (−). That is, for each e ∈ E◦h , we may
write: IE ,◦

e (c; v) = IE ,◦
e+ (c; v) + IE ,◦

e− (c; v). This allows us to express the integral over
an interior facet e connecting two adjacent elements, say K+ and K−, as the sum of
integrals:∫

e⊂∂K+∪∂K−
IE ,◦

e (c; v)dS =
∫

e⊂∂K+
IE ,◦

e+ (c; v)dS +
∫

e⊂∂K−
IE ,◦

e− (c; v)dS. (4.21)

Then the local contribution of (4.20) in each cell K, along with its associated facets
e ⊂ ∂K, is simply

aK(c; v) =
∫

K
ITK (c; v)dx + ∑

e⊂∂K\∂Ω

∫
e
IE ,◦

e (c; v)dS + ∑
e⊂∂K∩∂Ω

∫
e
IE ,∂

e (c; v)dS. (4.22)

We call (4.22) the cell-local contribution of a(c; v), with

a(c; v) = ∑
K∈Th

aK(c; v). (4.23)

To make matters concrete, let us suppose a(c; v) is a bilinear form with arguments
v = (v0, v1) ∈ V0 × V1. Now let {Φi}N

i=1 and {Ψi}M
i=1 denote bases for V0 and V1

respectively. Then the global N × M matrix A corresponding to a(c; v0, v1) has its
entries defined via

(A)ij = a
(
c; Φi, Ψj

)
= ∑

K∈Th

(AK)ij , (AK)ij = aK
(
c; Φi, Ψj

)
. (4.24)

By construction, (AK)ij 6= 0 if and only if Φi and Ψj take non-zero values in K. Now
we introduce the cell-node map i = e(K, î) as the mapping from the local node number
î in K to the global node number i. Suppose there are n and m nodes defining the
degrees of freedom for V0 and V1, respectively, in K. Then all non-zero entries of AK
arise from integrals involving basis functions with local indices corresponding to the
global indices i, j:(

AK
)

î ĵ
:= aK

(
c; Φe(K,î), Ψe(K, ĵ)

)
, î ∈ {1, · · · , n}, ĵ ∈ {1, · · · , m}. (4.25)

These local contributions are collected in the n×m dense matrix AK, which we call
the element tensor. Then the global matrix A is directly assembled from the collection
of element tensors:

(A)ij
e(K,·)←−−−

(
AK
)

î ĵ
, ∀K ∈ Th. (4.26)

For details on the general evaluation of finite element basis functions and multi-
linear forms, we refer the reader to Kirby (2004), Kirby and Logg (2006), Logg et al.
(2012), and Homolya et al. (2018). Further details on the global assembly of finite
element operators, with a particular focus on code-generation, are summarized in
the work of Logg and Wells (2010) and Markall et al. (2012).

In Firedrake, the element tensor is mapped entry-wise into a global sparse array
using the cell-node map e(K, ·). This operation is handled by PyOP2 (Rathgeber et

128 Chapter 4. An automated framework for hybridization and static condensation

al., 2012) and serves as the main user-facing abstraction for global finite element as-
sembly. However, to perform static condensation, we need to produce a new global
operator by algebraically manipulating different element tensors. This is relatively
invasive in numerical code, as it requires bypassing direct operator assembly in or-
der to produce the new tensor. This is precisely the scope of Slate.

Like UFL, Slate relies on the grammar of the host-language: Python. The entire Slate
language is implemented as a Python module which defines its types (classes) and
operations on said types. Together, this forms a high-level language for expressing
dense linear algebra on element tensors. The Slate language consists of two primary
abstractions for linear algebra:

1. terminal element tensors corresponding to multi-linear integral forms (matri-
ces, vectors, and scalars), or assembled data (for example, coefficient vectors
of a finite element function); and

2. expressions consisting of algebraic operations on terminal tensors.

The composition of binary and unary operations on terminal tensors produces a Slate
expression. Such expressions can be composed with other Slate objects in arbitrary
ways, resulting in concise representations of complex algebraic operations on locally
assembled arrays. We summarize all currently supported Slate abstractions here.

Terminal tensors

In Slate, one associates a tensor with data on a cell either by using a multi-linear
form, or assembled coefficient data:

• Tensor(a(c; v))
associates a form, expressed in UFL, with its local element tensor:

AK ← aK(c; v), for all K ∈ Th. (4.27)

The form arity α of aK(c; v) determines the rank of the corresponding Tensor,
i.e. scalars, vectors, and matrices are produced from scalars, linear forms, and
bilinear forms respectively.3 The shape of the element tensor is determined by
both the number of arguments, and total number of degrees of freedom local
to the cell.

• AssembledVector(f)
where f is some finite element function. The function f ∈ V is expressed in
terms of the finite element basis of V: f (x) = ∑N

i=1 fiΦi(x). The result is the
local coefficient vector of f on K:

FK
î =

{
fe(K,î)

}n

î=1
, (4.28)

where e(K, î) is the local node numbering and n is the number of nodes local
to the cell K.

3Similarly to UFL, Slate is capable of abstractly representing arbitrary rank tensors. However, only
rank ≤ 2 tensors are typically used in most finite element applications and therefore we currently only
generate code for those ranks.

4.2. Slate: a system for linear algebra on element tensors 129

Symbolic linear algebra

Slate supports typical binary and unary operations in linear algebra, with a high-
level syntax close to mathematics. At the time of this work, these include:

• A + B, the addition of two equal shaped tensors: AK + BK.

• A * B, a contraction over the last index of A and the first index of B. This is the
usual multiplicative operation on matrices, vectors, and scalars: AKBK.

• -A, the additive inverse (negation) of a tensor: −AK.

• A.T, the transpose of a tensor:
(

AK)T
.

• A.inv, the inverse of a square tensor:
(

AK)−1
.

• A.solve(B, decomposition="..."), the result, XK, of solving a local linear
system AKXK = BK, optionally specifying a factorization strategy.

• A.blocks[indices], where A is a tensor from a mixed finite element space.
This allows for the extraction of subblocks, which are indexed by field (slices
are allowed). For example, if a matrix A corresponds to the bilinear form a :
V ×W → R, where V = V0 × · · · × Vn and W = W0 × · · · ×Wm are product
spaces consisting of finite element spaces {Vi}n

i=0, {Wi}m
i=0, then the element

tensors have the form:

AK =

AK

00 AK
01 · · · AK

0m
AK

10 AK
11 · · · AK

1m
...

...
. . .

...
AK

n0 AK
n1 · · · AK

nm

 . (4.29)

The submatrix of (4.29) with block indices i = (p, q), p = {p1, · · · , pr}, q =
{q1, · · · , qc}, is

AK
pq =

AK
p1q1

· · · AK
p1qc

...
. . .

...
AK

prq1
· · · AK

prqc

 = AK.blocks[p, q], (4.30)

where p ⊆ {0, · · · , n}, q ⊆ {0, · · · , m}.

Each Tensor instantiated knowns all the information about the underlying UFL form
that defines it, such as form arguments, coefficients, and the underlying finite ele-
ment space(s) it operates on. This information is propagated through as unary or
binary transformations are applied. All unary and binary operations shown here
provides the necessary algebraic framework for a large class of problems, some of
which we present in this paper.

In Firedrake, Slate expressions are transformed into low-level parallelizable code by
a linear algebra compiler. The compiler interprets Slate expressions as a syntax tree,
where the tree is parsed to identify what local arrays need to be assembled and the
sequence of array operations. At the time of this work, our compiler generates C++
code, using the templated library Eigen (Guennebaud and Jacob, 2010) for dense
linear algebra. The translation from Slate to C++ is fairly straightforward, as all
operations supported by Slate have a one-to-one representation in Eigen.

130 Chapter 4. An automated framework for hybridization and static condensation

FIGURE 4.2: The Slate language wraps UFL objects describing the finite element system.
The resulting Slate expressions are passed to a specialized linear algebra compiler, which
produces a single “macro" kernel assembling the local contributions and executes the dense
linear algebra represented in Slate. The kernels are passed to the Firedrake’s PyOP2 in-
terface, which wraps the Slate kernel in a mesh-iteration kernel. Parallel scheduling, code
generation, and compilation occurs after the PyOP2 layer.

The compiler pass will generate a single “macro” kernel, which performs the dense
linear algebra operations represented in Slate. The resulting code will also include
(often multiple) function calls to local assembly kernels generated by TSFC (Ho-
molya et al., 2018) in order to assemble all necessary sub-blocks of an element tensor.
All code generated by the linear algebra compiler conforms to the application pro-
gramming interface (API) of the PyOP2 framework, as detailed by Rathgeber et al.
(2012, §3). Figure 4.2 provides an illustration of the complete tool-chain.

4.3 Examples

We now present a few examples and discuss solution methods which require element-
wise manipulations of finite element systems and their specification in Slate. We
stress here that Slate is not limited to these model problems; rather these examples
were chosen for clarity and to demonstrate key features of the Slate language. For
our discussion, we use a model elliptic equation defined in Ω, the computational
domain.

Consider the second-order elliptic PDE with Dirichlet and Neumann boundary con-
ditions:

−∇ · (κ∇p) + cp = f in Ω, p = p0 on ∂ΩD, −κ∇p · n = g on ∂ΩN , (4.31)

where ∂ΩD ∪ ∂ΩN = ∂Ω and κ, c : Ω → R+ are positive-valued coefficients. To
obtain a mixed formulation of (4.31), we introduce the auxiliary velocity variable

4.3. Examples 131

u = −κ∇p. Setting µ = κ−1, we then obtain the first-order system of PDEs:

µu +∇p = 0 in Ω, (4.32)
∇ · u + cp = f in Ω, (4.33)

p = p0 on ∂ΩD, (4.34)
u · n = g on ∂ΩN . (4.35)

4.3.1 Hybridization of mixed methods

Following the model Poisson equation from Section 4.1.1, the mixed method for
(4.32)–(4.35) follows identically. Methods of this type seek approximations (uh, ph)
in the finite-dimensional subspaces Uh ×Vh ⊂ H(div; Ω)× L2(Ω), defined by:

Uh = {w ∈ H(div; Ω) : w|K ∈ U(K), ∀K ∈ Th, w · n = g on ∂ΩN}, (4.36)

Vh = {φ ∈ L2(Ω) : φ|K ∈ V(K), ∀K ∈ Th}, (4.37)

where the Uh and Vh are the usual H(div)× L2-pairing of finite element spaces listed
in Sections 2.4.2 and 2.4.4. The resulting mixed finite element problem reads as fol-
lows: find (uh, ph) ∈ Uh ×Vh satisfying∫

Th

w · µuh dx−
∫
Th

ph∇h ·w dx = −
∫
E ∂

h,D

p0w · n dS, ∀w ∈ Uh,0, (4.38)∫
Th

φ∇h · uh dx +
∫
Th

φ cph dx =
∫
Th

φ f dx, ∀φ ∈ Vh, (4.39)

where Uh,0 is the subspace of Uh with functions whose normal components vanish
on ∂ΩN . The matrix equation is obtained in an identical fashion to (4.10) and has the
form: [

A −BT

B D

]{
U
P

}
=

{
F0
F1

}
. (4.40)

As we have stated at in Section 4.1.1, inverting (4.40) using a preconditioner based on
a Schur-complement factorization requires two global inversions: one for A and an-
other for the elliptic4 Schur-complement S = D + BA−1BT. Inverting A is typically
not a problem; the operator is symmetric, positive-definite, and sparse. However,
forming S explicitly is impractical due to the dense inverse A−1.

In this case, one typically uses a sparse approximation of S, say S̃. A common ap-
proach in fluid dynamics is to use a diagonal approximation of A when forming S̃
(for example, see Benzi, Golub, and Liesen (2005, §10.1.3)):

S̃ = D + BÃ
−1

BT, Ã = Diag(A). (4.41)

Since Ã is diagonal, its inverse is trivial to compute and S̃ becomes a sparse oper-
ator. However, the resulting Schur-complement is no longer exact. Therefore, an
outer Krylov method, such as GMRES, is required to control the reduction of the
problem residual. The rate at which GMRES converges will then depend on how
well S̃ approximates S (Siefert and Sturler, 2006).

4The Schur-complement is often called an elliptic operator since S here can be interpreted as the
discretization of the second-order operator: cp−∇ · (κ∇p) (Benzi, Golub, and Liesen, 2005, §10.1.3).

132 Chapter 4. An automated framework for hybridization and static condensation

As discussed in Chapter 3, the hybridization technique avoids handling globally
dense operators by replacing the original system (4.38)–(4.39) with a discontinuous
variant. This is done by replacing the discrete solution space for uh with the “bro-
ken” space Ûh. The approximation space for ph remains unchanged. Lagrange mul-
tipliers are then introduced as an auxiliary variable in the space Mh, defined only on
cell-interfaces:

Mh = {γ ∈ L2(Eh) : γ|e ∈ M(e), ∀e ∈ Eh}. (4.42)

The space M(e) is chosen to be a polynomial space on e of the same degree as uh ·
n|e. See Section 3.1.2 for a review of the function spaces for the hybridizable mixed
methods.

The resulting hybridizable formulation reads: find (ûh, ph, λh) ∈ Ûh × Vh × Mh,0
such that∫

Th

w · µûh dx−
∫
Th

ph∇h ·w dx +
∫
Eh\∂ΩD

λhJwK dS = −
∫
E ∂

h,D

p0w · n dS, (4.43)∫
Th

φ∇h · ûh dx +
∫
Th

φ cph dx =
∫
Th

φ f dx, (4.44)∫
Eh\∂ΩD

γJûhK dS =
∫
E ∂

h,N

γ g dS, (4.45)

for all (w, φ, γ) ∈ Ûh × Vh × Mh,0, where Mh,0 denotes the subspace of traces van-
ishing on ∂ΩD. The jump condition in (4.45) enforces both continuity of the normal
components of ûh across elemental boundaries, as well as the boundary condition
on ∂ΩN . As discussed in Section 3.1.2, the “broken” velocity ûh will coincide with
its H(div) counterpart uh ∈ Uh; the formulations (4.43)–(4.44) and (4.38)–(4.39) are
solving equivalent problems (Arnold and Brezzi, 1985).

Notwithstanding a minor break in convention from Section 3.2, we reintroduce our
previous notation for the broken velocity ûh. This is due to the fact that the dis-
crete coefficient vectors for ûh and uh in a computer implementation are of different
sizes. We therefore distinguish between the two fields to illustrate this fact in our
discussion throughout this chapter.

With Û, P, and Λ denoting the coefficient vectors for (ûh, ph, λh), the matrix system
arising from (4.43)–(4.45) has the general form:A00 A01 A02

A10 A11 A12
A20 A21 A22

Û
P
Λ

 =

F0
F1
F2

 , (4.46)

where the matrix system is produced by expanding test and trial functions in terms
of the finite element bases for Ûh, Vh, and Mh. Despite the dramatic increase in total
number of unknowns to determine, (4.46) has a considerable advantage over (4.40)
in the following ways:

1. Since both Ûh and Vh are discontinuous spaces, ûh and ph are coupled only
within the cell. This allows us to simultaneously eliminate both Û and P via
element-wise static condensation. This produces a significantly smaller global
problem for Λ (the hybridized problem):

SλΛ = E, (4.47)

4.3. Examples 133

where Sλ and E are assembled element-wise by computing the local element
tensors {SK

λ}K∈Th and {EK}K∈Th respectively:

SK
λ = AK

22 −
[
AK

20 AK
21
] [AK

00 AK
01

AK
10 AK

11

]−1 [
AK

02
AK

12

]
, (4.48)

EK = FK
2 −

[
AK

20 AK
21
] [AK

00 AK
01

AK
10 AK

11

]−1{
FK

0
FK

1

}
. (4.49)

2. The matrix Sλ is sparse, symmetric, positive-definite, and spectrally equiv-
alent to the dense Schur-complement S = D + BA−1BT from (4.40) of the
original mixed system (Gopalakrishnan, 2003; Cockburn, Gopalakrishnan, and
Lazarov, 2009).

3. Once Λ is computed, both Û and P can be recovered locally in each element.
This can be accomplished in a number of ways. For example, one can compute
PK by solving:(

AK
11 − AK

10

(
AK

00

)−1
AK

01

)
PK = FK

1 − AK
10

(
AK

00

)−1
FK

0

−
(

AK
12 − AK

10

(
AK

00

)−1
AK

02

)
ΛK, (4.50)

followed by solving for Û
K

:

AK
00Û

K
= FK

0 − AK
01PK − AK

02ΛK. (4.51)

Similarly, one could rearrange the order in which each variable is reconstructed.

4. Arnold and Brezzi (1985) showed that λh is actually an approximation to p on
the mesh skeleton. They further demonstrated that λh can be used to locally
post-process ph, yielding a new approximation p?h to p with superconvergent
properties. Local post-processing was studied further by Brezzi, Douglas, and
Marini (1985), Bramble and Xu (1989), Stenberg (1991), and Cockburn et al.
(2010). We highlight two post-processing methods for ûh and ph, respectively,
in Section 4.3.3.

The hybridization of (4.38)–(4.39) can be interpreted as a static-condensation-amenable
mixed method. As noted in early analysis on the cost of static condensation for hy-
bridizable mixed methods (Marini, 1985; Arbogast and Chen, 1995), the cost of local
static condensation is small compared to inverting (4.47). This is also reflected in
our numerical experiments in Section 4.5.2. Therefore, the efficiency of hybridizable
mixed methods relies on fast solution techniques for inverting Sλ.

Gopalakrishnan (2003) showed that Sλ is spectrally equivalent to an elliptic oper-
ator. As a result, this has galvanized investigations on applying algebraic multi-
grid (AMG) methods directly on the condensed operator (Brunner and Kolev, 2011;
Kalchev et al., 2016; Dobrev et al., 2019). This also inspired our choice of solver al-
gorithms for hybridized systems resulting in a nonsymmetric Sλ due to the implicit-
treatment of the Coriolis term in geophysical models.5 We shall elaborate further on
AMG strategies in Section 4.4, including potential avenues for future work.

5See, for example, the hybridizable mixed methods for the linear shallow water equations in Section
3.2 and the gravity wave system in Section 3.4.

134 Chapter 4. An automated framework for hybridization and static condensation

LISTING 4.2: Abridged Firedrake code for solving (4.46) via static condensation and local re-
covery. Arguments of the mixed space Ûh ×Vh ×Mh are indexed by 0, 1, and 2 respectively.
The mesh, degree, and function data mu, c, f, g, and p0 are assumed to have been defined.

1 U = FunctionSpace(mesh , "DRT", degree) # Broken RT space
2 V = FunctionSpace(mesh , "DG", degree - 1) # DG space
3 M = FunctionSpace(mesh , "DGT", degree - 1) # Trace space
4 W = U * V * M
5 [...] # User -defined data: µ, c, f , g, p0
6
7 u, p, lmbd = TrialFunctions(W)
8 w, phi , gmma = TestFunctions(W)
9 n = FacetNormal(mesh)

10
11 # Bilinear and linear forms for (4.43)–(4.45)
12 a = (dot(w,mu*u)*dx - div(w)*p*dx + lmbd(’+’)*jump(w,n=n)*dS
13 + lmbd*dot(w,n)*ds(neumann_ids)
14 + phi*div(u)*dx + phi*c*p*dx
15 + gmma(’+’)*jump(u,n=n)*dS + gmma*dot(u,n)*ds(neumann_ids))
16 L = (dot(w,n)*p0*ds(dirichlet_ids) + phi*f*dx
17 + gmma*g*ds(neumann_ids))
18
19 # Blocks of element tensors defining the local 3-by -3 system
20 A = Tensor(a).blocks
21 F = Tensor(L).blocks
22
23 # Slate expressions for (4.48) and (4.49)
24 Sexp = A[2, 2] - A[2, :2] * A[:2, :2]. inv * A[:2, 2]
25 Eexp = F[2] - A[2, :2] * A[:2, :2]. inv * F[:2]
26
27 S = assemble(Sexp , bcs =[...]) # Evaluate (4.48)
28 E = assemble(Eexp) # Evaluate (4.49)
29 lambda_h = Function(M) # Function for λh
30
31 # Solve (4.47)
32 solve(S, lambda_h , E,
33 solver_parameters ={"ksp_type":"preonly", "pc_type":"lu"})
34
35 p_h = Function(V) # Function for ph
36 u_h = Function(U) # Function for ûh
37 Lambda = AssembledVector(lambda_h) # Coefficient vector for λh
38 P = AssembledVector(p_h) # Coefficient vector for ph
39
40 # Intermediate expressions
41 Sd = A[1, 1] - A[1, 0] * A[0, 0].inv * A[0, 1]
42 Sl = A[1, 2] - A[1, 0] * A[0, 0].inv * A[0, 2]
43
44 # Slate expressions for (4.50) and (4.51)
45 p_expr = Sd.solve(F[1] - A[1, 0] * A[0, 0].inv * F[0]
46 - Sl * Lambda , decomposition="PartialPivLu")
47 u_expr = A[0, 0].solve(F[0] - A[0, 1] * P - A[0, 2] * Lambda ,
48 decomposition="PartialPivLu")
49
50 assemble(p_expr , p_h) # Evaluate (4.50)
51 assemble(u_expr , u_h) # Evaluate (4.51)

4.3. Examples 135

Listing 4.2 demonstrates how Slate can be used directly by a Firedrake user. Lines
1–3 define the spaces for the hybridizable RT method on a given mesh (whose defini-
tion is omitted for brevity). Test and trial functions for the finite element discretiza-
tion are defined in the usual way. Lines 12 and 16 demonstrate the capability of UFL
for expressing far more than just cell integrals (dx). In particular, surface terms now
appear on the interior facets (dS) due to the jump terms.6

The exterior facet terms (ds) appear on regions of the mesh boundary for the Dirich-
let and Neumann conditions. Every built-in Firedrake mesh contains a unique set
of boundary markers (typically a list of integers) denoting specific regions along the
boundary. Exterior facet integrals along the boundary containing Dirichlet data are
denoted by providing the exterior facet measure with a list of boundary markers:
ds(dirichlet_ids) (similarly for ds(neumann_ids)). If a mesh is provided from a
third-party library, the boundary markers must be specified in the corresponding
mesh-input file.7

Lines 20–51 contain Slate-specific Firedrake code. Symbolic expressions for (4.48)
and (4.49) are shown in lines 24 and 25 respectively. Similarly with the Firedrake
demonstration in Section 4.1.1, code-generation only occurs after attempting to nu-
merically evaluate the expression (in this case, calling “assemble” in lines 27–28).
Any vanishing conditions for the trace variables can be provided at the point of as-
sembly. A global linear solve for the Lagrange multiplier is performed in line 32.
Programming the linear solver is done by providing an appropriate Python dictio-
nary of PETSc options.

Lines 45 and 47 are symbolic expressions for (4.50) and (4.51). In this case, we have
provided the argument “decomposition” which instructs the linear algebra compiler
(illustrated in Figure 4.2) to insert an external function call to Eigen for performing
an LU decomposition. Inverses in lines 24 and 25 could also be replaced with sim-
ilar solve calls, allowing the user to specify directly how matrix inverses should be
computed (by default, “A.inverse()” performs an LU factorization).

Remark 9. The purpose of Listing 4.2 is to demonstrate the high-level syntax Slate provides;
it is not necessarily the most convenient way to solve a mixed method using hybridization.
In fact, Section 4.4 illustrates a far more compact and composable way to statically condense
finite element systems in the form of a PETSc “PC” object.

4.3.2 Hybridization of discontinuous Galerkin methods

The hybridizable discontinuous Galerkin (HDG) method is a natural extension of
discontinuous Galerkin (DG) discretizations. Similarly with hybridizable mixed
methods, and HDG method is a static-condensation-amenable DG method with nu-
merical fluxes expressed in terms of the numerical trace of the scalar variable. Here,
we consider a specific HDG discretization, namely the LDG-H method (Cockburn,

6For syntactical reasons, UFL requires all arguments defined on interior facets to have a facet re-
striction (’+’) or (’-’) (denoting two sides of any given facet). This is handled implicitly by the UFL
operator: jump. However, the trace functions must also be restricted. They have arbitrarily been given
the (’+’) restriction.

7A public demonstration on providing a Firedrake-compatible mesh using Gmsh (Geuzaine and
Remacle, 2009) can be found here: https://www.firedrakeproject.org/demos/immersed_fem.py.html
(Date accessed: November 9, 2019).

https://www.firedrakeproject.org/demos/immersed_fem.py.html

136 Chapter 4. An automated framework for hybridization and static condensation

Gopalakrishnan, and Sayas, 2010). Other forms of HDG that involve local lifting op-
erators can also be implemented in this software framework by the introduction of
additional local (i.e., discontinuous) variables in the definition of the local solvers.

Deriving the LDG-H formulation follows exactly from standard DG methods. All
prognostic variables are sought in the discontinuous spaces Uh × Vh ⊂ [L2(Ω)]n ×
L2(Ω), defined as:

Uh = {w ∈ [L2(Ω)]n : w|K ∈ U(K), ∀K ∈ Th}, (4.52)

Vh = {φ ∈ L2(Ω) : φ|K ∈ V(K), ∀K ∈ Th}, (4.53)

where U(K) and V(K) are vector and scalar polynomial spaces, respectively, of de-
gree k ≥ 0. Then the DG method can be formulated as the problem of finding
uh ∈ Uh and ph ∈ Vh such that for all K ∈ Th:∫

K
w · µuh dx−

∫
K

ph∇ ·w dx +
∫

∂K
p̂w · n dS = 0, (4.54)

−
∫

K
∇φ · uh dx +

∫
∂K

φû · n dS +
∫

K
φ cph dx =

∫
K

φ f dx, (4.55)

for all w ∈ U(K) and φ ∈ V(K), where p̂ and û are the scalar and vector numerical
fluxes approximating p and u = −κ∇p, respectively, on the boundary of K.

To construct an HDG discretization, we define the numerical fluxes to be functions
of the trial unknowns and a new independent unknown in the trace space Mh, the
space of trace functions whose restriction to a facet e is a polynomial of degree at
most k. For the LDG-H method, the fluxes take the form:

û(uh, ph, λh; τ) = uh + τ (ph − p̂) n, (4.56)
p̂(λh) = λh, (4.57)

where λh ∈ Mh is a function approximating the trace of p on Eh and τ is a posi-
tive stablization function that may vary on each facet e ∈ Eh. Following Cockburn,
Gopalakrishnan, and Sayas (2010), we enforce λh to satisfy the Dirichlet condition
on ∂ΩD in an L2-projection sense.

The full LDG-H formulation now reads as follows. Find (uh, ph, λh) ∈ Uh ×Vh ×Mh
such that∫

Th

w · µuh dx−
∫
Th

ph∇h ·w dx +
∫
Eh

λhJwK dS = 0, (4.58)

−
∫
Th

∇hφ · uh dx +
∫
Th

φ cph dx

+
∫
Eh

φ Juh + τ (ph − λh) nK dS =
∫
Th

φ f dx, (4.59)∫
Eh\∂ΩD

γ Juh + τ (ph − λh) nK dS =
∫
E ∂

h,N

γ g dS, (4.60)∫
E ∂

h,D

γ λh dS =
∫
E ∂

h,D

γ p0 dS, (4.61)

for all (w, φ, γ) ∈ Uh × Vh × Mh. Equation (4.60) is the jump condition, which en-
forces the continuity of û · n on Eh and (4.61) ensures λh satisfies the Dirichlet con-
dition. By virtue of the jump condition, the numerical flux is single-valued on the

4.3. Examples 137

facets. Hence, the LDG-H method defines a conservative DG method (Cockburn,
Gopalakrishnan, and Sayas, 2010). The discretization is well-posed and stable for all
τ > 0. The stability parameter τ does, however, have a significant influence on the
rates of convergence in the computed solutions. This is especially apparent during
local post-processing.

The LDG-H method retains the advantages of standard DG methods while also en-
abling the assembly of reduced linear systems through static condensation. The ma-
trix system arising from (4.58)–(4.61) has the same general form as the hybridized
mixed method in (4.46), except all sub-blocks are now populated with non-zero en-
tries due to the coupling of trace functions with both ph and uh. The Slate expressions
for the local elimination and reconstruction operations will be identical to those in
Listing 4.2. For the interested reader, a unified analysis of hybridization methods
(both mixed and DG) for second-order elliptic equations is presented in Cockburn,
Gopalakrishnan, and Lazarov (2009) and Cockburn (2016).

4.3.3 Local post-processing

For both mixed (Arnold and Brezzi, 1985; Brezzi, Douglas, and Marini, 1985; Bram-
ble and Xu, 1989; Stenberg, 1991) and DG methods (Cockburn, Gopalakrishnan,
and Sayas, 2010; Cockburn, Guzmán, and Wang, 2009), it is possible to locally post-
process solutions to obtain superconvergent approximations (gaining one order of
accuracy over the unprocessed solution). These methods can be expressed as local
solves on each element, and so this fits well within the scope of Slate. In this sec-
tion, we present two post-processing techniques: one for scalar fields, and another
for the vector unknown. The Slate code follows naturally from previous discussions
in Sections 4.3.1 and 4.3.2, using the standard set of operations on element tensors
summarized in Section 4.2.1.

Post-processing of the scalar solution

Our first example is a modified version of the procedure presented by Stenberg
(1991) for enhancing the accuracy of the scalar solution. This was also highlighted
within the context of hybridizing eigenproblems by Cockburn et al. (2010). This
post-processing technique can be used for both the hybridizable mixed and LDG-H
methods. We proceed by posing the finite element systems cell-wise.

Let Pk(K) denote a polynomial space of degree ≤ k on a cell K ∈ Th. Then for a
given pair of computed solutions uh, ph of the hybridizable methods, we define the
post-processed scalar p?h ∈ Pk+1(K) as the unique solution of the local problem:∫

K
∇w · ∇p?h dx = −

∫
K
∇w · κ−1uh dx (4.62)∫

K
v p?h dx =

∫
K

v ph dx, (4.63)

for all w ∈ P⊥,l
k+1(K) and v ∈ Pl(K), 0 ≤ l ≤ k. Here, the space P⊥,l

k+1(K) denotes the
L2-orthogonal complement of Pl(K). This post-processing method directly uses the
definition of the flux uh, the approximation of −κ∇p. In practice, the space P⊥,l

k+1(K)
may be constructed using an orthogonal hierarchical basis, and solving (4.62)–(4.63)
amounts to inverting a symmetric positive definite system in each cell of the mesh.

138 Chapter 4. An automated framework for hybridization and static condensation

LISTING 4.3: Example of local post-processing using Firedrake and Slate. Here, we locally
solve the mixed system defined in (4.62)–(4.63). The corresponding symbolic local tensors
are defined in lines 12 and 17. The Slate expression for directly inverting the local system is
written in line 20. In line 24, a Slate-generated kernel is produced which solves the resulting
linear system in each cell. Since we are not interested in the multiplier, we only return the
block corresponding to the post-processed scalar solution.

1 # Define spaces for the higher -order scalar approximation
2 # and Lagrange multipliers
3 DGk1 = FunctionSpace(mesh , "DG", degree + 1)
4 DG0 = FunctionSpace(mesh , "DG", 0)
5
6 # Test and trial functions
7 W = DGk1 * DG0
8 p, psi = TrialFunctions(W)
9 w, phi = TestFunctions(W)

10
11 # Create local Slate tensors for the post -processing system
12 K = Tensor ((inner(grad(p), grad(w)) + inner(psi , w)
13 + inner(p, phi))*dx)
14
15 # Use the computed pressure ph and flux uh
16 # in the right -hand side
17 F = Tensor((-inner(u_h , grad(w)) + inner(p_h , phi))*dx)
18
19 # Solve (4.64)–(4.65)
20 E = K.inv * F
21
22 # Function for the post -processed scalar p?h
23 p_star = Function(DGk1 , name="Post -processed scalar")
24 assemble(E.blocks [0], p_star) # Return only p?h

At the time of this work, Firedrake does not support the construction of such a fi-
nite element basis. However, we can introduce Lagrange multipliers to enforce the
orthogonality constraint. The resulting local problem then becomes the following
mixed system: find (p?h, Ψ) ∈ Pk+1(K)×Pl(K)∫

K
∇w · ∇p?h dx +

∫
K

w Ψ dx = −
∫

K
∇w · κ−1uh dx, (4.64)∫

K
φ p?h dx =

∫
K

φ p dx, (4.65)

for all w ∈ Pk+1(K) and φ ∈ Pl(K), 0 ≤ l ≤ k. The local problems (4.64)–(4.65) and
(4.62)–(4.63) are equivalent, with the Lagrange multiplier Ψ enforcing orthogonality
of test functions in Pk+1(K) with functions in Pl(K).

This post-processing method produces a new approximation which superconverges
at a rate of k + 2 for hybridized mixed methods (Stenberg, 1991; Cockburn et al.,
2010). For the LDG-H method, k + 2 superconvergence is achieved when τ = O(1)
and τ = O(h), but only k+ 1 convergence is achieved when τ = O(1/h) (Cockburn,
Guzmán, and Wang, 2009; Cockburn, Gopalakrishnan, and Sayas, 2010). We demon-
strate the increased accuracy in computed solutions in Section 4.5.1. An abridged
example using Firedrake and Slate to solve the local linear systems is provided in
Listing 4.3.

4.4. Static condensation as a preconditioner 139

Post-processing of the flux

Our second example illustrates a procedure that uses the numerical flux of an HDG
discretization for (4.32)–(4.35). Within the context of the LDG-H method, we can use
the numerical trace in (4.56) to produce a vector field that is in H(div). Specifically,
the new flux u?

h has continuous normal components on Eh. The technique we outline
here follows that of Cockburn, Guzmán, and Wang (2009).

Let Th be a mesh consisting of simplices. On each cell K ∈ Th, we define u?
h to be the

unique element of the local Raviart-Thomas space [Pk(K)]n + xPk(K) satisfying∫
K

r · u?
h dx =

∫
K

r · uh dx, (4.66)∫
e

µu?
h · n dS =

∫
e

µû · n dS, (4.67)

for all facets e on ∂K, where û is the numerical flux defined in (4.56). This local
problem produces a new velocity u?

h with the following properties:

1. u?
h converges at the same rate as uh for all choices of τ producing a solvable

system for (4.58)–(4.61). However,

2. u?
h ∈ H(div; Ω). That is, Ju?

hKe = 0, ∀e ∈ E◦h .

3. Additionally, the divergence of u?
h convergences at a rate of k + 1.

The Firedrake implementation using Slate is similar to the scalar post-processing
example (see Listing 4.3); the cell-wise linear systems (4.66)–(4.67) can be expressed
in UFL, and therefore the necessary Slate expressions to invert the local systems
follows naturally from the set of operations presented in Section 4.2.1. We use the
very sensitive parameter dependency in the post-processing methods to validate our
software implementation in Zenodo/Tabula-Rasa (2019, “Code-verification”).

4.4 Static condensation as a preconditioner

We have already demonstrated the flexible composition of solvers and precondi-
tioners PETSc provides in Section 4.1.1. Firedrake already relies heavily on PETSc
through its Python interface: petsc4py (Dalcin et al., 2011). In addition to having
access to a wide range of third-party libraries through PETSc (MUMPS (Amestoy,
Duff, and L’Excellent, 2000), UMFPACK (Davis, 2004), hypre (Baker et al., 2011),
and many more), Firedrake can provide operator-based preconditioners for solving lin-
ear systems as Python-implemented (through petsc4py) PC objects. These special-
ized preconditioners use the underlying UFL representation of the PDE in a Python
context accessible to PETSc. The result is a PC capable of accessing the PDE-level
information as needed.

Slate enables static condensation approaches to be expressed very concisely. Nonethe-
less, application of static condensation to different finite element systems using Slate
still requires a certain amount of code repetition; solving different PDE systems may
require re-deriving the necessary Slate expressions to condense the system and re-
cover unknowns. By formulating each form of static condensation as a precondi-
tioner, code can be written once and then applied to any mathematically suitable
problem. Rather than writing the static condensation by hand, in many cases, it is

140 Chapter 4. An automated framework for hybridization and static condensation

sufficient to just select the appropriate, Slate-based, preconditioner. Before we pro-
ceed, it will be useful to quickly explain our notation for linear solvers.

Suppose we wish to solve a linear system: Ax = b. We can think of (left) precondi-
tioning the system in residual form:

r = r(A, b) ≡ b− Ax = 0 (4.68)

by an operator P (PC), which may not necessarily be linear, as a transformation into
an equivalent system of the form

Pr = Pb−PAx = 0. (4.69)

Given a current iterate xi the residual at the i-th iteration is simply ri ≡ b− Axi, and
P acts on the residual to produce an approximation to the error εi ≡ x− xi. If P
is an application of an exact inverse, the residual is converted into an exact (up to
numerical round-off) error.

We will denote the application of a particular Krylov subspace method (KSP) for the
linear system (4.68) as Kx(r(A, b)). Upon preconditioning the system via P as in
(4.69), we write

Kx(Pr(A, b)). (4.70)

If (4.70) is solved directly via P = A−1, then Pr(A, b) = A−1b− x. So (4.70) then
becomes Kx(r(I, A−1b)), producing the exact solution of (4.68) in a single iteration
of K. Having established notation, we now present our implementation of static
condensation via Slate by defining the appropriate operator, P .

4.4.1 Interfacing with PETSc via custom preconditioners

The implementation of preconditioners in Firedrake requires manipulation not of
assembled matrices, but rather their symbolic representation. To do this, we use
the preconditioning infrastructure developed by Kirby and Mitchell (2018b), which
gives preconditioners written in Python access to the symbolic problem description.
In Firedrake, this means all derived preconditioners have direct access to the UFL
representation of the PDE system. From this mathematical specification, we ma-
nipulate this appropriately via Slate and provide operators assembled from Slate
expressions to PETSc for further algebraic preconditioning. Using this approach, we
have developed a static condensation interface for the hybridization of H(div)× L2

mixed problems, and a generic interface for statically condensing finite element sys-
tems. The advantage of writing even the latter as a preconditioner is the ability to
switch out the solution scheme for the system, even when nested inside a larger set
of coupled equations or non-linear solver (Newton-based methods) at runtime.

PETSc supports user-defined preconditioners through petc4py. To use a Python PC in
Firedrake, one only needs to set the appropriate solver options. Setting “pc_type”
to be of type “python” tells PETSc that a custom petsc4py preconditioner is being
provided. Then one needs to specify the type of Python preconditioner through
the solver option: “pc_python_type.” We shall provide explicit examples for the
preconditioners considered in this section.

4.4. Static condensation as a preconditioner 141

4.4.2 A general-purpose static condensation preconditioner

As discussed in Sections 4.3.1 and 4.3.2, one of the main advantages of using a hy-
bridizable variant of a DG or mixed method is that such systems permit the use of
cell-wise static condensation. To facilitate this, we provide a PETSc PC static conden-
sation interface: firedrake.SCPC. This preconditioner takes any static-condensation-
amenable system (such as (4.46)) and performs the local elimination and recovery
procedures. Slate expressions are generated from the underlying UFL problem de-
scription.

As an abstract example, suppose we have a block linear system of the form:

Ae1,e1 · · · Ae1,en Ae1,c1 · · · Ae1,cm
...

. . .
...

...
. . .

...
Aen,e1 · · · Aen,en Aen,c1 · · · Aen,cm

Ac1,e1 · · · Ac1,en Ac1,c1 · · · Ac1,cm
...

. . .
...

...
. . .

...
Acm,e1 · · · Acm,en Acm,c1 · · · Acm,cm

Xe1
...

Xen

Xc1
...

Xcm

=

Re1
...

Ren

Rc1
...

Rcm

, (4.71)

where Xei , Xcj are coefficient vectors for the fields with indices ei and cj, respectively,
and Rei , Rcj are the associated right-hand sides. More compactly, we can rewrite
(4.71) using block-matrix notation[

Ae,e Ae,c
Ac,e Ac,c

]{
Xe
Xc

}
=

{
Re
Rc

}
, (4.72)

where Xe, Xc, Re, and Rc are block-vectors. The system (4.72) is assumed to be
static-condensation-amenable in the sense that all fields with indices e1, · · · , en are
cell-local. This allows for a reordering of (4.71) such that the matrix associated with
the cell-local degrees of freedom Ae,e is rendered block-diagonal (cf. Figures 3.5A
and 3.5B in Section 3.1.2).

Mathematically, the firedrake.SCPC preconditioner can be interpreted as a Schur-
complement method for (4.72) of the form:

P =

[
I −A−1

e,e Ae,c
0 I

] [
A−1

e,e 0
0 S−1

c

] [
I 0

−Ac,e A−1
e,e I

]
, (4.73)

where Sc = Ac,c − Ac,e A−1
e,e Ae,c is the Schur-complement operator for the Xc system.

The distinction here from block preconditioners via the PETSc fieldsplit option,
described in Section 4.1.1, is that the application of P does not require two global
inversions. In fact, the global system (4.72) is not even required to be explicitly as-
sembled. By construction, A−1

e,e is sparse and can be evaluated cell-wise. As a result,
Sc is sparse and can be assembled exactly (up to numerical round-off) by computing
the element tensors SK:

SK
c = AK

c,c − AK
c,e

(
AK

e,e

)−1
AK

e,c. (4.74)

The only globally coupled system requiring iterative inversion is S:

KXc(P sr(Sc, Rs)), (4.75)

142 Chapter 4. An automated framework for hybridization and static condensation

Algorithm 2 : firedrake.SCPC

Require: Static-condensation-amenable finite element system:[
Ae,e Ae,c
Ac,e Ac,c

]{
Xe
Xc

}
=

{
Re
Rc

}
1: Evaluate S cell-wise: SK

c = AK
c,c − AK

c,e
(

AK
e,e
)−1

AK
e,c . Static condensation

2: Evaluate Rs cell-wise: RK
s = RK

c − AK
c,e
(

AK
e,e
)−1

RK
e . Forward elimination

3: Globally solve for Xc:
KXc(P sr(Sc, Rs))

4: Compute Xe cell-wise: XK
e =

(
AK

e,e
)−1 (

RK
c − AK

e,cXK
c
)

. Back-substitution

return X =
{

Xe Xc
}T

LISTING 4.4: Example invocation of the Firedrake preconditioner: firedrake.SCPC.

1 -pc_type python
2 -pc_python_type firedrake.SCPC
3 -pc_sc_eliminate_fields 0, 1
4 -condensed_field_ksp_type cg
5 -condensed_field_pc_type ilu

where Rs is the condensed right-hand side, evaluated locally via:

RK
s = RK

c − AK
c,e

(
AK

e,e

)−1
RK

e , (4.76)

and P s is a preconditioner for S. Once Xc is computed, Xe is recovered via back-
substitution. This is achieved by inverting the linear system element-by-element:

AK
e,eXK

e = RK
c − AK

e,cXK
c . (4.77)

All matrix inversions are computed using an LU factorization. Algorithm 2 de-
scribes the entire application procedure. Static condensation, forward elimination,
and back-substitution are all performed via Slate-generated kernels.

The solver option “pc_sc_eliminate_fields” controls which unknowns are locally
eliminated by providing a list of field indices. Eliminating the specified unknowns
cell-wise will produce a condensed system for the remaining unknowns. The linear
solver for the condensed system can be configured just like any PETSc solver object.
This can be programmed directly using the options prefix: “condensed_field.” For
example, suppose we have a three-field problem with indices 0, 1, and 2. Then to
configure this PC to eliminate fields “0,1” and solve the condensed problem using
a preconditioned conjugate gradient method (ILU), one might use options like in
Listing 4.4.

This preconditioner is suitable for both hybridized mixed and HDG discretizations.
It can also be used within other contexts, such as the static condensation of contin-
uous Galerkin discretizations (Guyan, 1965; Irons, 1965) or primal-hybrid methods
(Devloo et al., 2018). Optimal choices of P s for the condensed system will depend
heavily on the application. The advantage of using firedrake.SCPC is that it pro-
vides a flexible environment for rapid experimentation with different choices of P s.

4.4. Static condensation as a preconditioner 143

4.4.3 Preconditioning mixed methods via hybridization

The preconditioner firedrake.HybridizationPC expands on the previous one. This
time, we take an H(div)× L2 discretization of a mixed method for a scalar elliptic
equation and automatically form the hybridizable problem. This is accomplished
through manipulating the UFL objects representing the discretized PDE. This in-
cludes replacing argument spaces with their discontinuous counterparts, introduc-
ing test functions on an appropriate trace space, and providing operators assembled
from Slate expressions in a similar manner as described in Section 4.4.2.

As a concrete example, consider the mixed finite element problem in Section 4.3.1,
specifically equations (4.38)–(4.39). The problem we originally have (in matrix form)
is:

AX = R, A =

[
A −BT

B D

]
, X =

{
U
P

}
, R =

{
RU
RP

}
, (4.78)

where A is the matrix given in (4.40) and R is the right-hand side information. The
process of transforming (4.78) into its equivalent hybridizable form is mathemati-
cally straightforward.

Since all Firedrake Python preconditioners have direct access to the UFL representa-
tion of the PDE, we know precisely what function spaces are present. In particular,
the preconditioner knows about the mixed function spaces Uh × Vh ⊂ H(div)× L2

and the UFL forms describing the problem. From this information, the precondi-
tioner can perform the following:

1. Given Uh, we know the family of the H(div)-finite element, its degree, and
the mesh its defined on. Using this information, its broken version Ûh can
immediately be constructed.8

2. From the degree of the H(div)-finite element space, we can determine the de-
gree of the corresponding trace space Mh.

3. Given the UFL forms describing the mixed formulation, we can create a new
UFL expression by replacing its arguments with test/trial functions from Ûh.

4. The preconditioner has access to any strong boundary conditions imposed in
Uh and its associated boundary markers on the mesh. Using this information
together with the trace space Mh, the UFL form is extended by adding interior
and exterior facet integrals containing the Lagrange multiplier.

5. The jump condition enforcing normal-component continuity of the trial func-
tion in Ûh is added to the new UFL problem.

Items 1–5 require nothing more than targeted inspection and manipulation of UFL
objects. The allows the preconditioner to form the hybridizable system: Â −B̂

T
CT

B̂ D 0
C 0 0

Û
P
Λ

 =

R̂U
RP
Rg

 , (4.79)

where ·̂ denotes modified matrices and vectors corresponding to forms with re-
placed arguments in Ûh (D and RP are unchanged), Û is the coefficient vector for

8Every finite element space in UFL can be made discontinuous using built-in UFL functions that
topologically re-associates degrees of freedom with the cell only.

144 Chapter 4. An automated framework for hybridization and static condensation

the discontinuous flux, Λ is the coefficient vector for the Lagrange multiplier. The
last equation in (4.79) is the matrix-form of the jump condition in (4.45): CÛ = Rg,
where the vector Rg appears as a result of weakly incorporating strong boundary
conditions on the flux variable. Equation (4.79) can be written more compactly as
the block system: [

Â CT

C 0

]{
X̂
Λ

}
=

{
R̂
Rg

}
, (4.80)

with

Â =

[
Â −B̂

T

B̂ D

]
, C =

[
C 0

]
, X̂ =

{
Û
P

}
, R̂ =

{
R̂U
RP

}
. (4.81)

From this point, the application of firedrake.HybridizationPC follows identically
to firedrake.SCPC; its application can be interpreted as a Schur-complement reduc-
tion of (4.80):

P̂ =

[
I −Â−1CT

0 I

] [
Â−1

0
0 S−1

λ

] [
I 0

−CÂ−1
I

]
, (4.82)

where Sλ is the Schur-complement matrix: Sλ = −CÂ−1CT. The inversion of Â
does not require a global solver since Û and P are cell-local. Similarly, (4.80) never
needs to be explicitly assembled; only a single global problem for Λ is needed to
completely solve the hybridizable system. The recovery of Û and P happens in the
same manner as in firedrake.SCPC.

As first shown by Arnold and Brezzi (1985), the flux solutions uh for (4.78) and ûh
for (4.79) approximate the same field using mathematically equivalent formulations.
Since the input system provided to this preconditioner is the original mixed method
(4.78), we need to project the computed solution into Uh. This ensures that the coef-
ficient vector for the computed solution has the correct dimension.

To do this, we follow Arbogast and Chen (1995) and introduce an averaging operator
πavg : Ûh → Uh. Then for any ŵ ∈ Ûh, we define πavg(ŵ) as the function with:

πavg(ŵ)|K = ŵ|K, K ∈ Th, (4.83)

πavg(ŵ)|K · n|e =
1
2
(ŵ|K+ · n|e + ŵ|K− · n|e) , e = ∂K+ ∩ ∂K− ∈ E◦h , (4.84)

πavg(ŵ)|K · n|e = ŵ|K · n|e, e ∈ E ∂
h . (4.85)

A straightforward calculation verifies that πavg(ŵ) has continuous normal compo-
nents on E◦h , hence πavg(ŵ) ∈ Uh:

Jπavg(ŵ)Ke =
1
2
(
ŵ|K+ · n+|e + ŵ|K− · n+|e

)
+

1
2
(
ŵ|K− · n−|e + ŵ|K+ · n−|e

)
=

1
2
(ŵ|K+ + ŵ|K− − ŵ|K− − ŵ|K+) · n+|e = 0, (4.86)

for all e = ∂K+ ∩ ∂K−, K+, K− ∈ Th. In terms of implementation, evaluating πavg(ûh)

can be done by simply averaging the nodal values Û. The coefficient vector for (4.78)
is then updated via the matrix-vector product: U ← ΠavgÛ. More specifically, the

4.4. Static condensation as a preconditioner 145

operator Πavg is an averaging matrix in Rdim Uh×dim Ûh with entries:(
Πavg

)
ij = |ωi|−1χ(i; Ψ̂j), (4.87)

where |ωi| denotes the number of cells K sharing the global degree of freedom (node)
ni of Uh, and χ(i; Ψ̂j) is an indicator function taking a value of 0 if the basis function
Ψ̂j ∈ Ûh vanishes at ni and 1 otherwise.

Note that for any degree of freedom for Uh, there will be exactly one nodal basis func-
tion Ψi ∈ Uh taking a value of one at that node. However, if a degree of freedom is
associated with an interior facet, there will be two basis functions Ψ̂

+
i , Ψ̂

−
i ∈ Ûh tak-

ing values of one at that node (each contributing to the node from both sides of the
two cells sharing the facet). This due to the fact that Ûh is a globally discontinuous
finite element space.

It is also worth mentioning that Πavg is never explicitly assembled by this precon-
ditioner; instead its matrix-vector product is evaluated by directly averaging the
entries of Û. This process can be done cheaply and requires a negligible amount of
computational work.

With P̂ as in (4.82), applying firedrake.HybridizationPC on the original system
AX = R can be described mathematically as:

P = ΠP̂ΠT, Π =

[
Πavg 0 0

0 I 0

]
. (4.88)

It is worth noting here that assembly of the right-hand side for the Lagrange mul-
tiplier system requires slightly more attention. We specifically need to address the
co-vector RU in the H(div)-finite element space Uh.

The situation we are given is that we have RU = RU(w) for w ∈ Uh, but require
R̂U(ŵ) for ŵ ∈ Ûh. For consistency, we additionally require:

R̂U(w) = RU(w), ∀w ∈ Uh. (4.89)

We can construct such a R̂U in the following way. First, let ni denote a global degree
of freedom for Uh associated with a particular mesh entity (cell interiors or facets)
and its associated basis function Ψi ∈ Uh. Then by construction, we have:

Ψi =

Ψ̂i|e for ni associated with e ∈ E ∂

h ,

Ψ̂
+
i |e + Ψ̂

−
i |e for ni associated with e ∈ E◦h ,

Ψ̂i|K for ni associated with K ∈ Th,

(4.90)

where Ψ̂i, Ψ̂
±
i ∈ Ûh are basis functions whose evaluations at ni are non-zero. For de-

grees of freedom on interior facets, both Ψ̂
±
i contribute half of the total contribution

on a given interior facet. Therefore, we define our “broken” right-hand side as the
locally averaged expression:

R̂U(Ψ̂i)|K = |ωi|−1RU(Ψi)|K, K ∈ Th, (4.91)

where |ωi| is as defined previously: the total number of cells sharing the degree of
freedom ni.

146 Chapter 4. An automated framework for hybridization and static condensation

Algorithm 3 : firedrake.HybridizationPC

Require: Mixed formulation of a scalar elliptic equation: AX = R
1: Formulate the hybridizable system:[

Â CT

C 0

]{
X̂
Λ

}
=

{
R̂
Rg

}

2: Evaluate Sλ cell-wise: SK
λ = −CK

(
ÂK)−1 (

CK
)T

. Static condensation

3: Evaluate R→ R̂ . Transfer right-hand side

4: Evaluate Rs cell-wise: RK
s = RK

g − CK
(
ÂK)−1

R̂
K

. Forward elimination
5: Globally solve for Λ:

KΛ(P sr(Sλ, Rs))

6: Compute X̂ cell-wise: X̂
K
=
(
ÂK)−1

(
R̂

K −
(
CK
)T

ΛK
)

. Back-substitution

7: Evaluate X ← ΠX̂ . Project
return X =

{
U P

}T

LISTING 4.5: Example invocation of the preconditioner: firedrake.HybridizationPC.

1 -pc_type python
2 -pc_python_type firedrake.HybridizationPC
3 -hybridization_ksp_type cg
4 -hybridization_pc_type icc

Using (4.90), (4.91), and the fact that RU is linear in its argument, we can verify that
our construction of R̂U satisfies (4.89). Evaluating (4.91) can be performed similarly
to the averaging of the coefficient vector Û. We do this by just averaging the assem-
bled dual vector directly using Πavg, R̂U ← ΠT

avgRU .

Algorithm 3 describes the application of the firedrake.HybridizationPC solver ob-
ject. It can be applied to a wide array of mixed methods which permit direct hy-
bridization. The advantage of a preconditioner like this is that the actual hybridiza-
tion occurs automatically; therefore one does not need to modify their original prob-
lem description to use this PC. For example, the initial mixed Poisson demonstration
in Section 4.1.1 (Listing 4.1) can be solved using this preconditioner without actu-
ally having to write down the hybridizable formulation. Instead, this hybridization
procedure can be readily applied by specifying the necessary solver options.

Listing 4.5 demonstrates how one might invoke this preconditioner on a suitable
mixed discretization. The options prefix “hybridization_” is used to configure the
linear solver object for the Lagrange multipliers. In the example, we chose to use
a preconditioned conjugate gradient method using an incomplete Cholesky factor-
ization. Having presented our static condensation preconditioners, it will now be
useful to discuss preconditioning strategies for the Lagrange multipliers. Specifi-
cally, we argue that AMG-based preconditioning is effective, especially for the trace
systems arising out of hybridizable mixed methods.

4.4. Static condensation as a preconditioner 147

4.4.4 Preconditioning the Lagrange multiplier system

We shall focus now on the linear solver for the Lagrange multipliers:

KΛ(P sr(Sλ, Rs)), (4.92)

where Sλ is the statically condensed trace operator, Rs is the right-hand side, and P s
is the preconditioner. The choice of P s and K will be the main focus of this section.
We shall focus our discussion the case where (4.92) is the condensed system for the
hybridizable mixed method.

For the hybridization of the model mixed problem (4.38)–(4.39) from Section 4.3.1,
it was shown that Sλ is symmetric positive-definite and spectrally equivalent to a
second-order elliptic operator (Gopalakrishnan, 2003; Cockburn and Gopalakrish-
nan, 2005). As a result, the optimal choice of K is the conjugate gradient method.

It was shown by Brunner and Kolev (2011), both theoretically and demonstrated in
practice, that classical AMG (Ruge and Stüben, 1987; Stüben, 2001) (where coarsen-
ing is performed using subsets of degrees of freedom) gives mesh-independent con-
vergence for Schur-complement systems arising from mixed formulations of scalar
elliptic equations. This naturally leads to considering similar approaches for (4.92).

To further motivate us in this direction, we summarize a key result by Cockburn
and Gopalakrishnan (2005). Consider the following norm for the space of Lagrange
multipliers, Mh:

|||λ|||2 := ∑
K∈Th

1
|K| ‖λ−M (λ)‖2

L2(∂K), (4.93)

where M (λ) = 1
|∂K|
∫

∂K λ dS denotes the best-approximating constant to λ ∈ Mh.
Cockburn and Gopalakrishnan (2005, Theorem 3.6) showed that the energy-norm
induced by Sλ is equivalent to |||·||| with mesh-independent constants. Given the
definition of |||·|||, this also shows that Sλ has a near null-space (null-space of the oper-
ator without boundary conditions) consisting of only constant trace functions. Since
AMG methods know nothing about the geometry of the problem, they rely on the
properties of the near null-space to develop effective coarsening strategies. To illus-
trate our point, we first briefly describe a generic AMG method.

A quick overview of algebraic multigrid (AMG)

Recall that the two main principles of any multigrid method are (Stüben, 2001):

1. Relaxation (or smoothing) principle: A simple iterative method such as Jacobi,
Richardson, or successive over-relaxation (SOR)9 methods are well-known to
have strong smoothing properties. Therefore, a smooth error term can be pro-
duced with relative ease.

2. Coarse-grid correction principle: A smooth error term can be approximated
well on a coarser grid, thus saving a substantial amount of computational
work.

9Gauss-Seidel is a notable example of an SOR-type method.

148 Chapter 4. An automated framework for hybridization and static condensation

In linear algebra terms, the “grids” for AMG are represented simply as the vector
spaces Rn (fine-grid) and the lower-dimensional space (coarse) Rc. Prolongation (in-
terpolation) operators map data from coarse-grid to fine-grid as the full-rank n× c
matrix P c

n : Rc → Rn, and the associated restriction operator maps fine-grid data to
the coarse-grid: Rn

c = (P c
n)

T.10

Then a two-grid AMG method for solving the linear system Ax = b, where A ∈
Rn×n is symmetric positive-definite, can be summarized as the following steps:

1. (Pre-smoothing): Perform ν1 smoothing iterations x̃ = Smooth(x, A, b; ν1).

2. (Evaluate the residual): r = b− Ax̃ = Aε.

3. (Restrict the residual): rc = Rn
c r.

4. (Coarse-grid correction): εc = Solve(Ac, rc).

5. (Prolong correction): ˆ̃x = x̃ + P c
nεc.

6. (Post-smoothing): Perform ν2 smoothing iterations x = Smooth(ˆ̃x, A, b, ν2).

In practice, step 4 is solved recursively by applying steps 1–3 until the coarsest-
grid is reached. After the coarse-grid solve, the error is prolonged back to the fine-
grid, accompanied by post-smoothing after each transfer. This requires a hierarchy
of AMG “grids,” transfer operators, and coarse-grid matrices. Going straight from
fine-grid to coarse-grid in one-sweep is referred to as a “V-cycle.”

We refer to ε as the error in the exact solution at the current iterate: ε = A−1b− x̃.
In step 4, we solve (usually via a direct method) for the error on the coarsest-grid
εc, which is an approximation to the error on the fine-grid. The coarse operator
is defined using the Galerkin product: Ac = Rn

c AP c
n. Note that the choice of Rn

c
ensures that Ac remains symmetric:

(Ac)T = (Rn
c AP c

n)
T = (P c

n)
T AT

(
(P c

n)
T
)T

= Rn
c AP c

n = Ac. (4.94)

Arguably the most critical part of the AMG procedure is the choice of smoothing.
This is important due to the fact that error not eliminated by the initial smoother
must then be handled by the coarse-grid solver. The overall convergence of the AMG
method relies on the smoother removing highly-oscillatory error, leaving a so-called
smooth error which can be effectively approximated by the coarse-grid correction. If
the smoother fails to remove the oscillatory data, then the AMG procedure is not
guaranteed to converge (Fulton, Ciesielski, and Schubert, 1986; Ruge and Stüben,
1987; Stüben, 2001).

In general, smooth error corresponds to the eigenvectors of A whose eigenvalues
are small in magnitude (small eigenmodes). It is therefore the primary job of the
smoother to eliminate the error corresponding to large eigenvalues. That is, the
smaller the eigenmodes, the more effective the coarse-grid correction will be (Fal-
gout, 2006). The smallest of the eigenmodes are the elements of the near null-space,
and therefore knowing the near null-space properties of the operator is critically im-
portant in the design of an effective AMG procedure.

10This is not the only way to construct the restriction operator. It is, however, a popular choice since
it preserves symmetry of the coarse-grid operator.

4.4. Static condensation as a preconditioner 149

AMG for the hybridizable mixed method

Classical AMG of Ruge and Stüben (1987) and Falgout, Jones, and Yang (2006) is
based on the assumption that geometrically smooth functions (non-oscillatory) are
in the near null-space of the operator. Since constant functions are geometrically
smooth, the trace operator Sλ in (4.92) fits exactly within classical AMG heuristics.
This was verified experimentally by Dobrev et al. (2019), where hypre (Baker et al.,
2011), a widely-available classical AMG library, was applied on the trace system for
a hybridized mixed method of a scalar-valued second-order elliptic problem. There,
they showed that black-box AMG preconditioning for the Lagrange multipliers ex-
hibits good weak scaling (up to 1,536 processes).

Additionally, the smoothed aggregation (SA) method (Vaněk, Mandel, and Brezina,
1996) is another highly successful AMG procedure. SA methods differ from classical
AMG in that coarsening is defined by building aggregates of finer-level degrees of
freedom rather than subsets. The SA method relies on the near null-space compo-
nents to build the prolongation operators in way which preserves the components
upon interpolation. This exact interpolation of near null-space components is an
essential part of SA methods and is a necessary condition for mesh-independent
convergence (Vaněk, Brezina, and Mandel, 2001).

In most of the numerical experiments presented in the rest of this chapter and Chap-
ter 5, the SA multigrid approach is chosen to be preconditioner for the Lagrange mul-
tiplier systems. This was partly due to experimentation, as both the PETSc-native SA
multigrid preconditioner GAMG (Balay et al., 2016, §4.4.5) and Trilinos’ ML imple-
mentation of SA multigrid (Gee et al., 2006) consistently produce parameter-robust
solver convergence (even for non-symmetric Lagrange multiplier systems). These
will be discussed in more detail in Sections 4.5.3 and 5.4.4.

A remark on the HDG trace system

To conclude this section, it is worth mentioning possible strategies for the trace sys-
tem associated the LDG-H method in Section 4.3.2. The LDG-H trace system is prov-
ably symmetric and positive-definite (Cockburn, Gopalakrishnan, and Sayas, 2010).
Furthermore, it was shown by Cockburn et al. (2013, Theorem 3.3) that a spectrally
equivalent preconditioner for the hybridizable mixed method could also be used to
precondition the LDG-H trace system. However, strong non-diagonally dominant
matrix structure was observed in the LDG-H trace operator, rendering the perfor-
mance of direct AMG (on the trace space) unclear (Kronbichler and Wall, 2018). As
a result, point-based smoothing like Jacobi iterations perform poorly in a multigrid
method for the LDG-H trace system. Block-relaxation schemes like block-Jacobi or
block-Gauss-Seidel should be considered instead.

A more promising alternative to direct AMG is summarized by Cockburn et al.
(2013) and demonstrated in Kronbichler and Wall (2018). In that study, the trace sys-
tem is restricted to a spectrally equivalent operator in a continuous P1 finite element
space. The hierarchy continues by means of an GMG solver for P1-finite elements,
where optimal multigrid performance was demonstrated. However, the P1-nested
AMG solver for the HDG method still falls short of the monolithic multigrid-based
solvers for continuous Galerkin discretizations. Further investigations are needed to
completely determine the practicality of HDG methods for elliptic equations.

150 Chapter 4. An automated framework for hybridization and static condensation

4.5 Numerical studies

We now present results utilizing the Slate DSL and our static condensation precondi-
tioners for a set of test problems. Since we are using the interfaces outlined in Section
4.4, Slate is accessed indirectly and requires no manually-written solver code for hy-
bridization or static condensation/local recovery. All parallel results were obtained
on a single fully-loaded compute node of dual-socket Intel E5-2630v4 (Xeon) pro-
cessors with 2× 10 cores (2 threads per core) running at 2.2GHz. In order to avoid
potential memory effects due to the operating system migrating processes between
sockets, we pin MPI processes to cores.

Verification of the generated code is performed using parameter-sensitive conver-
gence tests. The study consists of running a variety of discretizations spanning the
methods outlined in Section 4.3. Details, Firedrake programs, and numerical results
are made public and can be viewed in Zenodo/Tabula-Rasa (2019). All results are in
full agreement with the theory.

4.5.1 HDG method for a three-dimensional elliptic equation

In this section, we take a closer look at the LDG-H method for the model elliptic
equation (sign-definite Helmholtz):

−∇ · ∇p + p = f , in Ω = [0, 1]3, p = g, on ∂Ω, (4.95)

where f and g are chosen such that the analytic solution is:

p(x, y, z) = exp{sin(πx) sin(πy) sin(πz)}. (4.96)

We use a regular mesh consisting 6 · N3 tetrahedral elements (N ∈ {4, 8, 16, 32, 64}).
First, we reformulate (4.95) as the first-order system:

u +∇p = 0, in Ω ∇ · u + p = f , in Ω p = g, on ∂Ω. (4.97)

We start with linear polynomial approximations, up to cubic, for the LDG-H dis-
cretization of (4.97). Additionally, we compute a post-processed scalar approxima-
tion p?h of the HDG solution. This raises the approximation order of the computed
solution by an additional degree. In all numerical studies here, we set the HDG pa-
rameter τ = 1. All results were computed in parallel, utilizing a single compute
node (described previously).

A continuous Galerkin (CG) discretization of the primal problem (4.95) serves as a
reference for this experiment. Due to the superconvergence in the post-processed
solution for the HDG method, we use CG discretizations of polynomial order 2, 3,
and 4. This takes into account the enhanced accuracy of the HDG solution, despite
being initially computed as a lower-order approximation. We therefore expect both
methods to produce equally accurate solutions to the model problem.

Our aim here is not to compare the performance of HDG and CG, which has been
investigated elsewhere (for example, see Kirby, Sherwin, and Cockburn (2011) and
Yakovlev et al. (2015)). Instead, we provide a reference that the reader might be
more familiar with in order to evaluate whether our software framework produces
a sufficiently performant HDG implementation relative to what might be expected.

4.5. Numerical studies 151

LISTING 4.6: Solver options for configuring the primal CG solver. The relative tolerance for
the Krylov solver is specified based on the mesh size.

1 -ksp_type cg
2 -ksp_rtol rtol # rtol changes with resolution
3 -pc_type hypre
4 -pc_hypre_type boomeramg
5 -pc_hypre_boomeramg_strong_threshold 0.75
6 -pc_hypre_boomeramg_agg_nl 2

LISTING 4.7: Solver options for configuring the primal HDG solver. The relative tolerance
for the trace Krylov solver is specified based on the mesh size.

1 -mat_type matfree
2 -ksp_type preonly
3 -pc_type python
4 -pc_python_type firedrake.SCPC
5 -pc_sc_eliminate_fields 0, 1
6
7 # solver for the condensed system
8 -condensed_field_ksp_type cg
9 -condensed_field_ksp_rtol rtol # rtol changes with resolution

10 -condensed_field_pc_type hypre
11 -condensed_field_pc_hypre_type boomeramg
12 -condensed_field_pc_hypre_boomeramg_strong_threshold 0.75
13 -condensed_field_pc_hypre_boomeramg_agg_nl 2

To invert the CG system, we use a preconditioned conjugate gradient solver with
hypre’s boomerAMG implementation of classical AMG as a preconditioner (Fal-
gout, Jones, and Yang, 2006). For the HDG method, we use the static condensation
preconditioner firedrake.SCPC described in Section 4.4.2. The statically condensed
system is solved using the same preconditioned conjugate gradient strategy as the
CG system. Based on the observations by Kronbichler and Wall (2018), the HDG
trace system not diagonally dominant. Therefore, we can expect point-smoothers
such as standard Jacobi or Gauss-Seidel to be largely ineffective. Instead, we use
boomerAMG’s “out of the box” modified block hybrid-Gauss-Seidel method as a
smoother, following Kolev and Vassilevski (2009). This particular smoother is con-
vergent for any symmetric positive-definite matrix (Baker et al., 2011). A full list of
solver options used in this experiment is shown in Listing 4.6 and 4.7.

To avoid over-solving, we iterate to a relative tolerance such that the discretization
error is minimal for a given mesh. In other words, the solvers are configured to
terminate when there is no further reduction in the L2-error of the computed solu-
tion compared with the analytic solution. This means we are not iterating to a fixed
solver tolerance across all mesh resolutions. Therefore, we can expect the total num-
ber of Krylov iterations (for both the CG and HDG methods) to increase as the mesh
resolution becomes finer. The rationale behind this approach is to directly compare
the execution time to solve for the best possible approximation to the solution given
a fixed resolution.

152 Chapter 4. An automated framework for hybridization and static condensation

10 2 10 1 100 101 102

10 9

10 7

10 5

10 3

L2
 e

rr
or

Execution time (s)

CG2(ph)
CG3(ph)
CG4(ph)

HDG1(ph)
HDG2(ph)
HDG3(ph)

(A) A log-log plot showing the error
against execution time for the CG and
HDG with post-processing (τ = 1) meth-
ods.

103 104 105 106 1070

10

20

30

40

50

60

K
ry

lo
v

ite
ra

tio
ns

CG2
HDG1
CG3
HDG2
CG4
HDG3

Number of cells

(B) A log-linear plot showing Krylov it-
erations of the AMG-preconditioned con-
jugate gradient algorithm (to reach dis-
cretization error) against number of cells.

FIGURE 4.3: Comparison of continuous Galerkin and LDG-H solvers for the model three-
dimensional positive-definite Helmholtz equation.

Error versus execution time

The total execution time is recorded for the CG and HDG solvers, which includes the
setup time for the AMG preconditioner, matrix assembly, and the time-to-solution
for the Krylov method. In the HDG case, we include all setup costs, the time spent
building the Schur-complement for the traces, local recovery of the scalar and flux
approximations, and post-processing. The L2-error against execution time is sum-
marized in Figure 4.3A.

The HDG method of order k− 1 (HDGk−1) with post-processing, as expected, pro-
duces a solution which is as accurate as the CG method of order k (CGk). While the
full HDG system is never explicitly assembled, the larger execution time is a result
of several factors. The primary factor is that the total number of trace unknowns for
the HDG1, HDG2, and HDG3 discretizations is roughly four, three, and two times
larger (resp.) than the corresponding number of CG unknowns. Therefore, each iter-
ation is more expensive. We also observe that the trace system requires more Krylov
iterations to reach discretization error (see Figure 4.3B), which improves relative to
the CG method as the approximation order increases. Further analysis on multi-
grid methods for HDG systems is required to draw further conclusions. The main
computational bottleneck in HDG methods is the global linear solver. We therefore
expect our implementation to be dominated by the cost associated with inverting the
trace operator. If one considers just the time-to-solution, the CG method is clearly
ahead of the HDG method. However, the superior scaling, local conservation, and
stabilization properties of the HDG method make it a particularly appealing choice
for fluid dynamics applications (Yakovlev et al., 2015; Kronbichler and Wall, 2018).
Therefore, the development of good preconditioning strategies for the HDG method
is critical for its competitive use.

4.5. Numerical studies 153

CG2 and HDG1
2146689 (9510912)

CG3 and HDG2
7189057 (19021824)

CG4 and HDG3
16974593 (31703040)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)
/ C

G
 to

ta
l t

im
e

(s
)

CG solve
CG AMG setup
CG assembly

HDG postprocessing
HDG back sub.
HDG trace solve
HDG forward elim.
HDG AMG setup
HDG static cond.

HDG postprocessing
HDG back sub.
HDG trace solve
HDG forward elim.
HDG AMG setup
HDG static cond.

CGk and HDGk 1
 CG dofs (HDG trace dofs)

FIGURE 4.4: Break down of the CGk and HDGk−1 execution times on a 6 · 643 simplicial
mesh.

Break down of solver time

The HDG method requires solving for many more degrees of freedom than CG or
primal DG methods. This is largely due to the fact that the HDG method simulta-
neously approximates the primal solution and its velocity. The global matrix for the
traces is significantly larger than the one for the CG system at low polynomial order.
The execution time for HDG is then compounded by a more expensive global solve.

Figure 4.4 displays a break down of total execution times on a simplicial mesh con-
sisting of 1.5 million elements. The execution times have been normalized by the CG
total time, showing that the HDG method is roughly 3 times more expensive than
the CG method. This is expected given the larger degree-of-freedom count and ex-
pensive global solve. The raw numerical breakdown of the HDG and CG solvers are
shown in Table 4.1. We isolate each component of the HDG method contributing to
the total execution time: preconditioner setup costs, static condensation (trace oper-
ator assembly), forward elimination (right-hand side assembly for the trace system),
backwards substitution, and local post-processing of the scalar solution. For all k,
our HDG implementation is solver-dominated as expected.

Both trace operator and right-hand side assembly are dominated by the costs of
inverting a local square mixed matrix coupling the scalar and velocity unknowns,
which is performed directly via an LU factorization. This is also the case for back-
wards substitution. They should all therefore be of the same magnitude in time
spent. We observe that this is the case across all degrees, with times ranging be-
tween approximately 6—10% of total execution time for assembling the condensed
system. Back-substitution takes roughly the same time as the static condensation
and forward elimination stages (approximately 12% of execution time on average).
The slight increase in time is due to splitting the local equations into two local solver

154 Chapter 4. An automated framework for hybridization and static condensation

TABLE 4.1: Breakdown of the raw timings for the HDGk−1 (τ = 1) and CGk methods,
k = 2, 3, and 4. Each method corresponds to a mesh size N = 64 on a fully-loaded
compute node.

Stage
HDG1 HDG2 HDG3

tstage (s) % ttotal tstage (s) % ttotal tstage (s) % ttotal
Static cond. 1.05 6.64 % 6.95 9.68 % 31.66 9.49 %
HDG AMG setup 1.79 11.34 % 5.00 6.95 % 25.21 7.56 %
Forward elim. 0.86 5.43 % 6.32 8.79 % 31.98 9.59 %
Trace solve 10.66 67.59 % 43.89 61.09 % 192.31 57.65 %
Back sub. 1.16 7.34 % 8.71 12.12 % 45.81 13.73 %
Post-process 0.26 1.65 % 0.98 1.36 % 6.62 1.98 %
HDG Total 15.77 71.85 333.58

CG2 CG3 CG4
tstage (s) % ttotal tstage (s) % ttotal tstage (s) % ttotal

Matrix assembly 0.50 9.32 % 2.91 10.19 % 26.37 22.81 %
CG AMG setup 1.19 22.43 % 3.02 10.55 % 6.21 5.38 %
Solve 3.63 68.25 % 22.67 79.26 % 82.99 71.81 %
CG Total 5.32 28.60 115.57

passes: one for ph and another for the velocity uh. Finally, the additional cost of post-
processing accrues negligible time (roughly 2% of execution time across all degrees).
This is a small pay-off for an increase in order of accuracy.

The setup times for the AMG preconditioner of both methods are displayed along
side the rest of the components contributing to the total execution time. The setup
time for the boomerAMG preconditioner grows steadily with the matrix size of the
HDG trace system, but takes approximately the same proportion of execution time.
Further investigations in the heuristics of classical and aggregation-type AMG meth-
ods for the HDG trace operator is required to make any concrete claims. Despite
the uncertainty of direct AMG for the HDG method, the overall results we have
shown here are quite similar to what has been observed in previous comparison
studies with CG and HDG discretizations (Yakovlev et al., 2015; Kirby, Sherwin,
and Cockburn, 2011; Kronbichler and Wall, 2018). However, geometric multigrid
approaches combined with a P1-nested multigrid method is already shown to be
promising (Cockburn et al., 2013; Fabien et al., 2019). As a result, further investiga-
tions of this type of multigrid approach for more general HDG discretizations is a
topic on on-going investigation.

We note that caching of local tensors does not occur. Each pass to perform the local
eliminations and backwards reconstructions rebuilds the local element tensors. It
is not clear at this time whether the performance gained from avoiding rebuilding
the local operators will offset the memory costs of storing the local matrices. More-
over, in time-dependent problems where the operators may contain state-dependent
variables, rebuilding local matrices will be necessary in each time-step regardless.

4.5.2 Hybridizable mixed methods for the shallow water equations

A primary motivator for our interest in hybridizable methods revolves around de-
veloping efficient solvers for problems in geophysical flows. In Section 3.3.1, we pre-
sented some results integrating the nonlinear shallow water equations on the sphere

4.5. Numerical studies 155

TABLE 4.2: The number of unknowns to be determined are summarized for each compatible
finite element method. Resolution is the same for both methods. A time-step size ∆t = 100
seconds is prescribed for both compatible finite element methods.

Discretization properties

Mixed method # cells ∆x Velocity Depth
Total (millions)

unknowns unknowns
RT1 × dP0 327,680 ≈ 43 km

491,520 327,680 0.8 M
BDM2 × dP1 2,457,600 983,040 3.4 M

using test case 5 (flow past a mountain) from Williamson et al. (1992). We now re-
visit the same example and discuss the implementation details here. In particular,
we demonstrate the advantage of using a hybridizable mixed method.

After discretizing in time and space using a semi-implicit scheme and Picard lin-
earization, following Natale and Cotter (2017), we must solve a sequence of saddle
point system at each time-step of the form:

Ax =

[
M1 +

∆t
2 C −∆t

2 gBT

∆t
2 HB M2

]{
δUk

δDk

}
=

{
Rk

u
Rk

h

}
, (4.98)

where (4.98) is the result of linearizing the nonlinear equations (3.157)–(3.158) in
Section 3.3.1 about a rest state with mean depth H. The linear updates δUk and δDk

are sought in the mixed finite element spaces Uh×Vh ⊂ H(div)× L2, and update the
nonlinear velocity and depth fields. Compatible pairings including the RT or BDM
spaces such as RTk × dPk−1 or BDMk × dPk−1 fall within the set of compatible mixed
spaces ideal for geophysical fluid simulations (see Section 2.4.2). In particular, the
lowest-order RT method (RTC f

1 × dQ0) on a structured quadrilateral grid (such as
the latitude-longitude grid used many operational dynamical cores) corresponds to
the Arakawa C-grid finite difference discretization (Cotter and Shipton, 2012).

In staggered finite difference models, the standard approach for solving (4.98) is
to neglect the Coriolis term C and eliminate the velocity unknown δUk to obtain a
discrete elliptic equation for δDk, where smoothers like Richardson iterations or re-
laxation methods are convergent. This is more problematic in the compatible finite
element framework, since M1 has a dense inverse. Instead, we use the precondi-
tioner described in Section 4.4.3 to form the equivalent hybridizable formulation,
where both δUk and δDk are eliminated locally to produce a sparse elliptic equation
for the Lagrange multipliers.

Profiling Williamson test case 5

The numerical procedure from Section 3.3.1 remains unchanged. Here, we focus on
the linear solver for (4.98). Specifically, we profile the linear solver using two pre-
conditioning strategies for a total of 25 time-steps, with a time-step size of ∆t = 100
seconds. For this experiment, we consider two compatible finite element discretiza-
tions on a simplicial mesh using a lowest-order pairing (RT1, dP0) and a higher-
order pairing (BDM2, dP1) for the velocity and depth spaces. The sphere mesh used
in this section is generated from 7 refinements of an icosahedron, resulting in a tri-
angulation consisting of 327,680 elements in total. The discretization information is
summarized in Table 4.2.

156 Chapter 4. An automated framework for hybridization and static condensation

At each time-step, we perform a fixed number of 4 Picard iterations as done by
Shipton, Gibson, and Cotter (2018) and Melvin et al. (2019). We compare the overall
simulation time using two different solver configurations for the implicit linear sys-
tem. First, we use a flexible variant of GMRES 11 acting on the outer system with an
approximate Schur complement preconditioner (via the fieldsplit option):

PSC =

[
I ∆t

2 gM̃
−1
1 BT

0 I

] [
M̃
−1
1 0

0 S̃
−1

] [
I 0

−∆t
2 HBM̃

−1
1 I

]
, (4.99)

where S̃ is a symmetric12 sparse operator, defined via a diagonal approximation to
the matrix on the velocity space Uh:

S̃ = M2 +
∆t2

4
gHBDiag(M̃1)

−1BT, M̃1 = M1 +
∆t
2

C. (4.100)

To control the reduction of the residual in the approximate Schur-complement sys-
tem, we use GMRES configured with a relative tolerance of 10−8. GMRES is ac-
celerated using PETSc’s native implementation of smoothed aggregation multigrid
(GAMG) (Balay et al., 2016, §4.4.5). Following Adams et al. (2003), we employ block
ILU-preconditioned Chebyshev iterations as the smoother in our AMG method. The

velocity operator M̃
−1
1 in (4.99) is computed approximately using an incomplete LU

factorization with zero in-fill (ILU(0)). Full solver configurations for this approach
are shown in Listing 4.8.

Our second solver will use the Python preconditioner: firedrake.HybridizationPC.
Rather than apply an outer Krylov method on the mixed system (4.98), we configure
PETSc to only apply the preconditioner. The hybridization procedure replaces (4.98)
with its hybridizable variant. The resulting three-field problem then has the form:[

Â CT

C 0

]{
δX̂

k

Λ

}
=

{
R̂

k
δX
0

}
, (4.101)

where Â is the discontinuous operator coupling δX̂
k
=
{

δÛ
k

δDk
}T

, C is the

matrix corresponding to the surface terms added after hybridization, and R̂
k
δX ={

R̂
k
u Rk

h

}T
are the problem residuals. An exact Schur-complement factorization is

performed on (4.101), using Slate to generate the local elimination kernels. We use
a similar set of solver options for the inversion of S̃ in (4.99) to invert the Lagrange

multiplier system. The increments δÛ
k

and δDk are recovered locally, using Slate-

generated kernels. Once recovery is complete, δÛ
k

is injected back into the H(div)

finite element space via δUk ← ΠavgδÛ
k
. Based on the discussion in Section 4.4.3,

we apply:

Phybrid = Π

([
I −Â−1CT

0 I

] [
Â−1

0
0 S−1

λ

] [
I 0

−CÂ−1
I

])
ΠT. (4.102)

11We use a flexible version of GMRES on the outer system since we use an additional Krylov solver
to iteratively invert the Schur-complement. This makes the application of the preconditioner variable
(or nonlinear).

12The Coriolis matrix C has only values of zero along the matrix diagonal. Upon diagonalization,
this gives Diag(M1 +

∆t
2 C) = Diag(M1), where M1 is the mass matrix on Uh.

4.5. Numerical studies 157

TABLE 4.3: Preconditioner solve times for a 25-step run with ∆t = 100s. These are cumu-
lative times in each stage of the two preconditioners throughout the entire profile run. We
display the average iteration count (rounded to the nearest integer) for both the outer and
the inner Krylov solvers. The significant speedup when using hybridization is a direct result
of eliminating the outer-most solver.

Preconditioner and solver details

Mixed method Preconditioner ttotal (s)
Avg. outer Avg. inner tSC

total

thybrid.
totalits. its.

RT1 × dP0
approx. Schur. 15.137 2 8

3.413
hybridization 4.434 None 2

BDM2 × dP1
approx. Schur. 300.101 4 9

5.556
hybridization 54.013 None 6

TABLE 4.4: Breakdown of the cost (average) of a single application of the preconditioned
flexible GMRES algorithm and hybridization. Hybridization takes approximately the same
time per iteration.

Preconditioner Stage
RT1 × dP0 BDM2 × dP1

tstage (s) % ttotal tstage (s) % ttotal

PSC

Schur solve 0.07592 91.28 % 0.78405 93.53 %
Invert: M̃1 0.00032 0.39 % 0.00678 0.81 %

Apply inverse: M̃
−1
1 0.00041 0.49 % 0.00703 0.84 %

gmres other 0.00652 7.84 % 0.04041 4.82 %
Total 0.08317 0.83827

Phybrid

Transfer: RδX → R̂
k
δX 0.00322 7.26 % 0.00597 1.10 %

Eval.: −CÂ−1
R̂

k
δX 0.00561 12.64 % 0.12308 22.79 %

Invert: Sλ 0.02289 51.63 % 0.28336 52.46 %
Back sub. 0.00986 22.23 % 0.12220 22.62 %

Projection: ΠavgδÛ
k

0.00264 5.96 % 0.00516 0.96 %
Total 0.04434 0.54013

To solve for the Lagrange multipliers, we invert Sλ using GMRES on the system due
to the asymmetry of the Coriolis term. We accelerate GMRES using smoothed aggre-
gation multigrid (GAMG) with ILU-preconditioned Richardson relaxation. Listing
4.9 shows the options configuration for the hybridization solver.

Table 4.3 displays a summary of our findings. The advantages of a hybridizable
method versus a mixed method are more clearly realized in this experiment. When
using hybridization, we observe a significant reduction in time spent in the implicit
solver compared to the approximate Schur-complement approach. This is primarily
because we have reduced the number of “outer” iterations to zero; the hybridization
preconditioner is performing an exact factorization of the global hybridizable sys-
tem. This is empirically supported when considering per-application solve times.
The values reported in Table 4.4 show the average cost of a single outer GMRES it-
eration (which includes the application of PSC) and a single application of Phybrid.
Hybridization and the approximate Schur complement preconditioner are compa-
rable in terms of average execution time, with hybridization being slightly faster.
This further demonstrates that the primary cause for the longer execution time of
the latter is directly related to the additional outer iterations induced from using an
approximate factorization. In terms of over all time-to-solution, the hybridizable

158 Chapter 4. An automated framework for hybridization and static condensation

LISTING 4.8: Solver options for the approximate Schur-complement preconditioner in the
rotating shallow water test case.

1 -ksp_type fgmres
2 -ksp_rtol 1e-8
3 -pc_type fieldsplit
4 -pc_fieldsplit_type full
5 -pc_fieldsplit_schur_precondition selfp
6
7 # velocity block solver
8 -fieldsplit_0_ksp_type preonly
9 -fieldsplit_0_pc_type bjacobi

10 -fieldsplit_0_sub_pc_type ilu
11
12 # Schur -complement block solver
13 -fieldsplit_1_ksp_type gmres
14 -fieldsplit_1_ksp_rtol 1e-8
15 -fieldsplit_1_pc_type gamg
16 -fieldsplit_1_pc_gamg_reuse_interpolation True
17 -fieldsplit_1_pc_gamg_sym_graph True
18 -fieldsplit_1_mg_levels_ksp_type chebyshev
19 -fieldsplit_1_mg_levels_ksp_max_it 2
20 -fieldsplit_1_mg_levels_pc_type bjacobi
21 -fieldsplit_1_mg_levels_sub_pc_type ilu

LISTING 4.9: Solver options for the hybridization preconditioner in the rotating shallow
water test case.

1 -ksp_type preonly
2 -mat_type matfree
3 -pc_type python
4 -pc_python_type firedrake.HybridizationPC
5
6 # solver for the Lagrange multipliers
7 -hybridization_ksp_type gmres
8 -hybridization_ksp_max_it 100
9 -hybridization_ksp_rtol 1e-8

10 -hybridization_pc_type gamg
11 -hybridization_pc_gamg_reuse_interpolation True
12 -hybridization_pc_gamg_sym_graph True
13 -hybridization_mg_levels_ksp_type richardson
14 -hybridization_mg_levels_ksp_max_it 2
15 -hybridization_mg_levels_pc_type bjacobi
16 -hybridization_mg_levels_sub_pc_type ilu

methods are clearly ahead of the original mixed methods.

We also measure the relative reductions in the problem residual of the linear system
(4.98). Our hybridization preconditioner reduces the residual by a factor of 108 on
average, which coincides with the specified relative tolerance for the Krylov method
on the trace system. In other words, the reduction in the residual for the trace system
translates to an overall reduction in the residual for the mixed system by the same
factor. We refer the reader to Shipton, Gibson, and Cotter (2018) and Wimmer, Cot-
ter, and Bauer (2019) for further demonstrations of shallow water test cases featuring
the use of the hybridization preconditioner described in Section 4.4.3.

4.5. Numerical studies 159

4.5.3 Rotating linear gravity wave model

As a final example, we consider the simplified atmospheric model obtained from
a linearization of the compressible Boussinesq equations in a rotating domain, as
previously detailed in Section 3.4.2:

∂u
∂t

+ f k̂× u = −∇p + bk̂, (4.103)

∂p
∂t

= −c2∇ · u, (4.104)

∂b
∂t

= −N2u · k̂, (4.105)

where u is the fluid velocity, p the pressure, b is the buoyancy, f the Coriolis pa-
rameter, c is the speed of sound (c ≈ 343ms−1), and N is the buoyancy frequency
(N ≈ 0.01s−1). Equations (4.103)–(4.105) permit fast-moving acoustic waves driven
by perturbations in b. We solve these equations subject to the rigid-lid condition
u · n = 0 on all boundaries.

Our domain Ω = S(R) × [0, HΩ] is a spherical annulus, with the mesh Th con-
structed from a horizontal “base" mesh of the surface of a sphere with radius R
(using a piece-wise cubic approximation of the surface), S(R), extruded upwards
by a height HΩ. The vertical discretization is a structured one-dimensional grid
with uniform height. We consider two kinds of meshes: one obtained by extruding
an icosahedral sphere mesh (triangulation), and another from a cubed sphere.

Since our mesh has a natural tensor-product structure, we construct suitable finite
element spaces constructed by taking the tensor product of a horizontal space with
a vertical space. To ensure our discretization is “compatible,” we use the one- and

two-dimensional de-Rham complexes: V0
h

∂z→ V1
h and U0

h
∇⊥→ U1

h
∇·→ U2

h . We can

then construct the three-dimensional complex: W0
h
∇→ W1

h
∇×→ W2

h
∇·→ W3

h , where the
resulting tensor product spaces are defined on prismatic cells:

W0
h = U0

h ⊗V0
h , (4.106)

W1
h = HCurl(U1

h ⊗V0
h)⊕ HCurl(U0

h ⊗V1
h), (4.107)

W2
h = HDiv(U1

h ⊗V1
h)⊕ HDiv(U2

h ⊗V0
h), (4.108)

W3
h = U2

h ⊗V1
h . (4.109)

Each discretization used in this section is constructed from more familiar finite ele-
ment families, shown in Table 4.5. See Section 2.4.4 for a detailed review on tensor
product compatible finite elements.

Implicit solver strategy

We now quickly summarize the solution strategy we outlined in Section 3.4.2 for
solving (4.103)–(4.105). The compatible finite element discretization seeks the linear
perturbation unknowns in the following spaces:

δuh ∈ W̊2
h , δph ∈W3

h , δbh ∈Wb
h := U2

h ⊗V0
h , (4.110)

160 Chapter 4. An automated framework for hybridization and static condensation

TABLE 4.5: Vertical and horizontal spaces for the three-dimensional compatible finite ele-
ment discretization of the linear Boussinesq model. The RTk and BDFMk+1 methods are
constructed on triangular prism elements, while the RTCFk method is defined on extruded
quadrilateral elements.

Compatible finite element spaces
Method V0

h V1
h U0

h U1
h U2

h
RTk Pk dPk−1 Pk(4) RTk(4) dPk−1(4)

BDFMk+1 Pk+1 dPk Pk+1(4) BDFMk+1(4) dPk(4)

RTCFk Pk dPk−1 Qk(�) RTC f
k (�) dQk−1(�)

where W̊2
h is the subspace of W2

h satisfying the no-slip condition on the boundary of
the domain ∂Ω, and the unknowns in (4.110) satisfy

un
h = un−1

h + δuh, pn
h = pn−1

h + δph, bn
h = bn−1

h + δbh, (4.111)

where the superscript n denotes fields at a given time-step n. Then we arrive at
a mixed problem for δuh and δph by discretizing (4.103)–(4.105) in time using the
implicit midpoint rule, eliminating the buoyancy, followed by discretizing in space:
find (δuh, δph) ∈ W̊2

h ×W3
h satisfying∫

Th

w · δuh dx +
∆t
2

∫
Th

w · f
(

k̂× δuh

)
dx

+N2 ∆t2

4

∫
Th

k̂ ·wk̂ · δuh dx− ∆t
2

∫
Th

δph∇h ·w dx = R̃u[w], (4.112)∫
Th

φδph dx +
∆t
2

c2
∫
Th

φ∇h · δuh dx = Rp[φ], (4.113)

for all (w, φ) ∈ W̊2
h ×W3

h , where R̃u[w] and Rp[φ] are as defined in (3.228)–(3.229).
Once (4.112)–(4.113) are solved, δbh is determined by solving the linear variational
problem: find δbh ∈Wb

h such that∫
Th

µδbh dx = −∆tN2
∫
Th

µun−1
h · k̂ dx︸ ︷︷ ︸

=:Rb[µ]

−∆t
2

N2
∫
Th

µδuh · k̂ dx, (4.114)

for all µ ∈Wb
h .

We arrive at two matrix equations by expanding the test and trial functions in terms
of their finite element bases. The problem in (4.112)–(4.113) becomes the saddle-
point system:

A
{

δU
δP

}
=

[
A −∆t

2 DT

∆t
2 c2D M3

]{
δU
δP

}
=

{
R̃u
Rp

}
, (4.115)

where δU and δP are coefficient vectors,

A = M2 +
∆t
2

C + N2 ∆t2

4
Mv

2, (M2)ij =
∫
Th

Ψj ·Ψi dx, (4.116)

(C)ij =
∫
Th

Ψj · f
(

k̂×Ψi

)
dx, (Mv

2)ij =
∫
Th

k̂ ·Ψjk̂ ·Ψi dx, (4.117)

(D)ij =
∫
Th

Φj∇h ·Ψi dx, (M3)ij =
∫
Th

Φj Φi dx, (4.118)

4.5. Numerical studies 161

and (R̃u)j = R̃u[Φj], (Rp)j = Rp[Φj], for basis functions (Ψi, Φj) ∈ W̊2
h ×W3

h .

Similarly, we have the linear system for the buoyancy coefficients δB

MbδB = Rb −
∆t
2

N2QδU, (4.119)

where (Mb)ij =
∫
Th

ηj ηi dx, (Q)ij =
∫
Th

ηjk̂ · Ψi dx, and (Rb)j = Rb[ηj] for basis
functions ηj ∈ Wb

h . The system (4.119) can be solved easily, since Mb is only cou-
pled within columns, with a condition number independent of the mesh resolution
and time-step. Therefore Mb can be swiftly inverted with a few ILU-preconditioned
conjugate gradient iterations.

Preconditioning the mixed velocity pressure system

The primary difficulty is in finding robust solvers for (4.115). This was studied by
Mitchell and Müller (2016) within the context of developing a robust preconditioner
to withstand fast-moving acoustic waves. This is critical, as the governing equations
support fast waves driven by perturbations to the buoyancy field. However, the
implicit treatment of the Coriolis term was not taken into account. We shall consider
two preconditioning strategies.

The first strategy follows from Mitchell and Müller (2016). As with the rotating
shallow water system in Section 4.5.2, we can construct a preconditioner based on
the Schur-complement factorization of A in (4.115):

A−1 =

[
I ∆t

2 A−1DT

0 I

] [
A−1 0

0 H−1

] [
I 0

−c2 ∆t
2 DA−1 I

]
, (4.120)

where H is the dense pressure Helmholtz operator. Because we have chosen to in-
clude the Coriolis term, the operator H is non-symmetric, and we require a sparse
approximation to

H = M3 + c2 ∆t2

4
D
(

M2 +
∆t
2

C + N2 ∆t2

4
Mv

2

)−1

DT. (4.121)

As ∆t increases, the contribution of C becomes more prominent in H, making sparse
approximations of H more challenging. We elaborate on this further as we present
the results of our second solver.

Our second strategy utilizes the firedrake.HybridizationPC preconditioner, which
directly forms the hybridizable problem as presented in Section 3.4.2 (equations
(3.236)–(3.238)). The space of traces is generated on the faces of triangular-prisms
and extruded quadrilaterals, with appropriate polynomial degrees such that every
trace function lies in the same polynomial space as the normal components of W2

h
velocity fields.

We locally eliminate δU and δP after hybridization, producing the condensed system
for the traces:

H∂Λ = E, H∂ = CÂ−1CT, E = CÂ−1
{

R̂u
Rp

}
, (4.122)

162 Chapter 4. An automated framework for hybridization and static condensation

where Â is the result of rendering the mixed operator A block-diagonal, C corre-
sponds to the surface terms added by the hybridization preconditioner, and H∂ is
the statically condensed trace operator to be inverted.

Solving the non-symmetric trace system

Our approach combines several ideas from both multigrid for non-symmetric oper-
ators and iterative methods employed by operational weather models. We first con-
sider the choice of Krylov subspace method. Since H∂ is non-symmetric, we employ
the generalized conjugate residual (GCR) method (Eisenstat, Elman, and Schultz,
1983), which is also the Krylov method of choice in Thomas et al. (2003). It is also
a flexible Krylov method, meaning that GCR allows for variable/non-linear precon-
ditioning (for example, having another Krylov method as part of a preconditioner).
We then precondition GCR using smoothed aggregation multigrid (GAMG).

Much of the convergence theory on multigrid relies on the symmetry of the oper-
ator. Some analysis has been done for non-symmetric and indefinite systems; see,
for example: Mandel (1986), Bramble, Pasciak, and Xu (1988), Bramble, Kwak, and
Pasciak (1994), and Elman, Ernst, and O’Leary (2001). In principle, an AMG precon-
ditioner can be applied to a general non-symmetric matrix, but it requires a careful
choice of smoother. In particular, a smoother needs to damp out the high-frequency
eigenmodes in order for the coarse-grid correction to be successful. For our choice of
smoother, we consider a variation of Polynomial-based smoothers, such as Cheby-
shev methods (Adams et al., 2003), using the GMRES algorithm.

GMRES smoothing: A Krylov method is generally not thought of as a smoother
due to the fact that they target the whole spectrum of eigenmodes. This will naturally
include some low-frequency modes that the coarse-grid correction would have han-
dled otherwise. However, they have been shown to work well for non-symmetric or
indefinite operators (Elman, Ernst, and O’Leary, 2001; Lin, Shadid, and Tsuji, 2019).

Given a matrix system Ax = b and a residual vector r0 = b− Ax0, where x0 is an
initial iterate for the GMRES algorithm, the Krylov subspace of order n is

Kn = Span
{

r0, Ar0, · · · , An−1r0
}

. (4.123)

By construction, we have K1 ⊂ K2 ⊂ · · · ⊂ Kn. For a fixed number of GMRES
iterations k, the GMRES iterate xk is the solution of the minimization problem:

min
x∈{x0}+Kk

‖b− Ax‖2, (4.124)

where ‖·‖2 is the Euclidean 2-norm. Then the GMRES iterate, by definition, has the
form

x = x0 +
k−1

∑
j=0

αj Ajr0 = x0 +
k−1

∑
j=0

αj Aj (b− Ax0) = k−1

∑
j=0

β j Ajb +
k

∑
j=0

β j Ajx0, (4.125)

for some coefficients αj, β j. Then we define the iteration matrix for the smoother as
Mgmres

k [A] = ∑k
j=0 β j Aj = Pgmres

k (A), where Pgmres
k (A) is a matrix-valued polyno-

mial of degree k generated by the GMRES algorithm (see also Saad (2003, §6.5)).

4.5. Numerical studies 163

LISTING 4.10: Solver options for the linear gravity wave hybridization preconditioner.

1 -ksp_type preonly
2 -mat_type matfree
3 -pmat_type matfree
4 -pc_type python
5 -pc_python_type firedrake.HybridizationPC
6
7 # solver for the Lagrange multipliers
8 -hybridization_ksp_type gcr
9 -hybridization_ksp_max_it 100

10 -hybridization_ksp_rtol 1e-5
11 -hybridization_pc_type gamg
12 -hybridization_pc_gamg_reuse_interpolation True
13 -hybridization_pc_gamg_sym_graph True
14 -hybridization_mg_levels_ksp_type gmres
15 -hybridization_mg_levels_ksp_max_it 5
16 -hybridization_mg_levels_pc_type bjacobi
17 -hybridization_mg_levels_sub_pc_type ilu

We can extend this further by considering a preconditioned GMRES procedure. Dis-
cretizations on thin-domains (small aspect ratio domains) require the use of line re-
laxation methods (Saad, 2003, §4.1.1) for their efficient solution (Börm and Hiptmair,
2001; Buckeridge and Scheichl, 2010; Müller and Scheichl, 2014; Dedner, Müller, and
Scheichl, 2015). In our context, we require line relaxation in the extrusion direction;
our problem is defined on a spherical annulus, therefore we require relaxation in the
directions of the vertical columns of the mesh. For the finest level, block ILU actu-
ally produces a line relaxation method for (4.122) when the trace variable nodes are
numbered column-wise (this is known as line-ILU (Shapira, 2008, §11.6)). This is the
case in our implementation, since Firedrake employs this numbering approach on
extruded meshes (Bercea et al., 2016). Therefore, we shall use block ILU to precon-
dition GMRES in our smoothing procedure. The resulting smoother is summarized
compactly as:

x̃ = Mgmres
k−1 [P̂−1A]b + Mgmres

k [P̂−1A]x, k ≥ 1, (4.126)

where x̃ is the smoothed result and P̂ is an block ILU factorization. This comes
directly from (4.125), with P̂−1A being used to build the Krylov subspace (4.123).

In practice, we only apply a few iterations (k = 5) of non-restarted preconditioned
GMRES. The outer GCR method is set to terminate when the residual for the trace
system is reduced by a factor of 105. Complete solver configurations for the pre-
conditioned GCR method and configuration of the AMG precondition are shown in
Listing 4.10.

Problem setup

Our setup closely resembles the gravity wave test of Skamarock and Klemp (1994)
extended to a spherical annulus. The domain is characterized by the planet ra-
dius R = 6371km, a scaling factor X, and the height of the atmospheric lid HΩ:
Ω = S(R/X) × [0, HΩ]. We initialize the velocity in a simple solid-body rotation:
u(x, 0) = u0

R

{
−y x 0

}T, where u0 = 20ms−1. A localized buoyancy anomaly is
added to a background buoyancy profile b(x, 0) = N2z + δb(x, 0) along the equator,

164 Chapter 4. An automated framework for hybridization and static condensation

FIGURE 4.5: Buoyancy perturbation (y − z cross-section) after t = 3600 seconds from a
simple gravity wave test (∆t = 100 seconds). The equations are discretized using the lowest-
order RTCF1 method, with 24,576 triangular cells in the horizontal and 64 extrusion levels.
The velocity-pressure system is solved using hybridization.

where:

δb(x, 0) =
d2

d2 + r2 sin
(

πz
HΩ

)
, (4.127)

d = 5000m is the width parameter for the perturbation, and HΩ is the height of the
atmospheric lid. The “great circle distance” r is defined via

r =
R
X

arccos (sin (φc) sin (φ) + cos (φc) cos (φ) cos (λ− λc)) , (4.128)

where φc = 0, λc = 2π/3 is the latitudal and longitudinal center-point of the per-
turbation respectively. Note that for convenience, we have chosen to express (4.128)
in geographic coordinates (as we have done for certain expressions in Section 3.3.2).
The actual Firedrake implementation uses a complete Cartesian formulation. The
pressure field is constant p(x, 0) = 0 and unperturbed.

A Coriolis term is introduced as a function of the Cartesian coordinate z, and is
constant along lines of latitude (f -plane): f = 2Ωr

z
R ẑ, with ẑ denoting the vertical

normal and Ωr = 7.292× 10−5s−1 is the angular rotation rate. A gravity wave test
using our solution strategy and hybridization preconditioner is illustrated in Figure
4.5 for a problem on a condensed Earth (radius scaled down by a factor of X =
125) and HΩ = 10km, as presented by (Ullrich et al., 2012). A complete Firedrake
implementation (without Coriolis) is also presented in Gibson et al. (2019a, §5.2.2)
using the same initialization conditions and problem domain.

Time-step robustness with implicit Coriolis

A desired property of the implicit linear solver is robustness with respect to the time-
step size. In particular, it is desirable for the execution time to remain constant across
a wide range of ∆t. As ∆t increases, the conditioning of the elliptic operator becomes
worse. Therefore, iterative solvers need to work much harder to reduce the residual
down to a specified tolerance.

We repeat a similar study to that presented in Mitchell and Müller (2016). We fix
the resolution of the problem and run the solver over a range of ∆t. We measure
this by adjusting the horizontal acoustic Courant number λC = c ∆t

∆x , where c is the

4.5. Numerical studies 165

TABLE 4.6: Grid set up and discretizations for the acoustic Courant number study. The total
unknowns (velocity and pressure) and hybridized unknowns (broken velocity, pressure, and
trace) are shown in the last two columns (millions). The vertical resolution is fixed across all
discretizations.

Discretizations and grid information
Method # horiz. cells # layers ∆x ∆z U-P dofs Hybrid. dofs

RT1 81,920 85 86 km 1 km 24.5 M 59.3 M
RT2 5,120 85 346 km 1 km 9.6 M 17.4 M

BDFM2 5,120 85 346 km 1 km 10.5 M 18.3 M
RTCF1 98,304 85 78 km 1 km 33.5 M 83.7 M
RTCF2 6,144 85 312 km 1 km 16.7 M 29.3 M

speed of sound and ∆x is the horizontal resolution. We remark that the range of
Courant numbers used in this paper exceeds what is typical in operational forecast
settings, where λC is typically between O(2)–O(10).13 The grid setup mirrors that
of actual global weather models; we extrude a spherical mesh of the Earth upwards
to a height HΩ = 85 km. We also set the scaling factor X = 1, which produces a
mesh of the entire global atmosphere for the Earth. The set up for the different dis-
cretizations, which includes the total number of degrees of freedom for the velocity-
pressure and hybridizable systems, are shown in Table 4.6.

Let us now direct our attention to the original system, where we have the Schur-
complement factorization given in (4.120). It was shown by Mitchell and Müller
(2016) that using a sparse approximation of the pressure Schur-complement of the
form:

H̃ = M3 + c2 ∆t2

4
DDiag(A)−1DT (4.129)

served as a good preconditioner, leading to a system that was amenable to multi-
grid methods and resulted in a solver with λC-independent convergence. However,
when the Coriolis term is included, this is no longer the case: the diagonal approxi-
mation Diag(A) becomes worse with increasing λC.

To demonstrate this, we solve the gravity wave system on a low-resolution grid
(10km lid, 10 vertical levels, maintaining the same cell aspect ratios as in Table 4.6)
using the Schur-complement factorization (4.120). LU factorizations are applied to

invert both A−1 and H̃
−1

. Inverting the Schur-complement H−1 is done using pre-
conditioned GMRES iterations, and a flexible GMRES algorithm is used on the full

velocity-pressure system. If H̃
−1

is a good approximation to H−1, then we should
see low iteration counts in the Schur-complement solve. Figure 4.6 shows the results
of this study for a range of Courant numbers.

For the lower-order methods, the number of iterations to invert H grow slowly but
remain under control. Increasing the approximation degree by one results in de-
graded performance. As ∆t increases, the number of Krylov iterations needed to
invert the system to a relative tolerance of 10−5 grows rapidly. It is clear that this
sparse approximation is not robust against Courant number. This can be explained
by the fact that diagonalizing the velocity operator fails to take into account the ef-
fects of the Coriolis term (which appear in off-diagonal positions in the operator).

13Confirmed in personal conversations with UK Met Office dynamical core developers.

166 Chapter 4. An automated framework for hybridization and static condensation

2 4 6 81012 16 24 32 640

20

40

60

80

100

K
ry

lo
v

ite
ra

tio
ns

 (
S

ch
ur

 c
om

pl
em

en
t)

Horizontal CFL number

RT1
RT2

RTCF1
RTCF2

BDFM2

FIGURE 4.6: Number of Krylov iterations to invert the Helmholtz system using an exact

application of H̃
−1

as a preconditioner. While the lowest-order methods grow slowly over
the Courant number range, the higher-order (by only one approximation order) methods
quickly degrade and diverge after the critical range λC = O(2)–O(10). At λC > 32, the
solvers take over 150 iterations.

Even if one were to use traditional mass-lumping (row-wise sums), the Coriolis ef-
fects are effectively cancelled out due to asymmetry.

Hybridization avoids this problem entirely: we always construct an exact Schur
complement, and only have to worry about solving the trace system (4.122). We
now show that this approach is much more robust against changes in ∆t (hence
against the horizontal Courant number). We use the same workstation as for the
three-dimensional CG/HDG problem in Section 4.5.1 (executed with a total of 40
MPI processes). Figure 4.7 shows the parameter test for all the discretizations de-
scribed in Table 4.6. We see that, in terms of total number of GCR iterations needed
to invert the trace system, hybridization is far more controlled as Courant number
increases. They largely remain constant throughout the entire parameter range, only
varying by an iteration or two. It is not until after λC > 32 that we begin to see a
larger jump in the number of GCR iterations. This is expected, since the Coriolis
operator causes the problem to become singular for very large Courant numbers.
However, unlike with the approximate Schur-complement solver, iteration counts
are still under control. In particular, each method (lowest and higher order) remains
constant throughout the critical range (shaded in gray in Figures 4.7A and 4.7B).

In Figure 4.7B, we display the ratio of execution time and the time-to-solution at the
lowest Courant number of two. We perform this normalization to better compare
the lower and higher order methods (and discretizations on triangular prisms vs
extruded quadrilaterals). The calculation of the ratios include the time needed to
eliminate and reconstruct the hybridized velocity/pressure variables. The fact that
the hybridization solver remains close to one demonstrates that the entire solution
procedure is largely λC-independent until around λC = 32. The overall trend is
largely the same as what is observed in Figure 4.7A. This is due to our hybridization
approach being solver dominated, with local operations like forward elimination
together with local recovery taking approximately 1/3 of the total execution time
for each method (similar to what is already presented in Section 4.5.1).

4.6. Chapter summary 167

2 4 6 81012 16 24 32 640

2

4

6

8

10

12

14

16

18

20

K
ry

lo
v

ite
ra

tio
ns

 (
T

ra
ce

 s
ys

te
m

)

Horizontal CFL number

RT1
RT2

RTCF1
RTCF2

BDFM2

(A) GCR iterations vs Courant number.

2 4 6 81012 16 24 32 64
0.8

1.0

1.2

1.4

1.6

1.8

2.0

E
xe

cu
tio

n
tim

e
[s

] /
 E

xe
cu

tio
n

tim
e

(C
F

L
2)

 [s
]

Horizontal CFL number

RT1
RT2

RTCF1
RTCF2

BDFM2

(B) Work vs Courant number.

FIGURE 4.7: Courant number parameter test run on a fully-loaded compute node. Both
figures display the hybridized solver for each discretization, described in Table 4.6. The left
figure (4.7A) displays total iteration count (preconditioned GCR) to solve the trace system to
a relative tolerance of 10−5. The right figure (4.7B) displays the relative work of each solver.
Figure 4.7B takes into account not just the time-to-solution of the trace solver, but also the
time required to forward eliminate and locally recover the velocity and pressure.

Implicitly treating the Coriolis term has been discussed for semi-implicit discretiza-
tions of large-scale geophysical flows (Temperton, 1997; Côté and Staniforth, 1988;
Cullen, 2001; Nechaev and Yaremchuk, 2004). Incorporating the Coriolis term in fi-
nite element discretizations is difficult, as this makes the challenge of find robust
sparse approximation of the resulting elliptic operator even more difficult. Hy-
bridization shows promise here, as we no longer require the inversion of a dense
elliptic system. Instead, hybridization allows for the assembly of an operator that
both captures the effects of rotation and results in a sparse linear system. In fact, the
hybridization process mimics standard staggered finite difference elimination pro-
cedures used in many global circulation models. In other words, hybridization is
the finite element analogue of point-wise elimination strategies in finite difference
codes. More rigorous analysis on the spectral properties of H∂ in (4.122) is a subject
of on-going interest.

4.6 Chapter summary

We have presented Slate, and shown how this language can be used to create con-
cise mathematical representations of localized linear algebra on the tensors corre-
sponding to finite element forms. We have shown how this DSL can be used in
tandem with UFL in Firedrake to implement solution approaches making use of au-
tomated code generation for static condensation, hybridization, and localized post-
processing. Setup and configuration is done at runtime, allowing one to switch in
different discretizations at will. In particular, this framework alleviates much of the
difficulty in implementing such methods within intricate numerical code, and paves
the way for future low-level optimizations. In this way, the framework in this paper

168 Chapter 4. An automated framework for hybridization and static condensation

can be used to help enable the rapid development and exploration of new hybridiza-
tion and static condensation techniques for a wide class of problems. We remark here
that the reduction of global matrices via element-wise algebraic static condensation,
as described in Guyan (1965) and Irons (1965) is also possible using Slate, including
other more general static condensation procedures outside the context of hybridiza-
tion. A recent example of this was Slate’s use for statically condensing a continuous
Galerkin discretization (Kirby and Mitchell, 2018a).

Our approach to preconditioner design revolves around its composable nature, in
that these Slate-based implementations can be seamlessly incorporated into compli-
cated solution schemes. In particular, there is current research in the design of dy-
namical cores for numerical weather prediction using implementations of hybridiza-
tion and static condensation with Slate (Bauer and Cotter, 2018; Shipton, Gibson,
and Cotter, 2018; Wimmer, Cotter, and Bauer, 2019; Gibson et al., 2019a). The perfor-
mance of such methods for geophysical flows are a subject of on-going investigation.

In this chapter, we have provided some examples of hybridization procedures for
compatible finite element discretizations of geophysical flows. These approaches
avoid the difficulty in constructing sparse approximations of dense elliptic opera-
tors. Static condensation arising from hybridizable formulations can best be inter-
preted as producing an exact Schur-complement factorization on the global hybridiz-
able system. This eliminates the need for outer iterations from a suitable Krylov
method to solve the full mixed system, and replaces the original global mixed equa-
tions with a condensed elliptic system. More extensive performance benchmarks,
which requires detailed analysis of the resulting operator systems arising from hy-
bridization, is a necessary next-step to determine whether hybridization provides a
scalable solution strategy for compatible finite elements in operational settings.

169

5 A hybridizable method for the
Euler equations

In this chapter, we derive and discuss a new hybridization method for a compat-
ible finite element discretization of the compressible Euler equations. We start by
following Staniforth and Wood (2008) and focus our attention on the compressible
equations for a dry atmosphere in a rotating frame of reference, as presented in Sec-
tion 2.1.1. A three-dimensional compatible finite element formulation for this system
is discussed by Natale, Shipton, and Cotter (2016). The most substantial contribu-
tion, however, is the analysis of approximation properties of some classes of tensor
product spaces that are compatible with the finite element exterior calculus (FEEC)
framework. As a result, these spaces have been proposed for the development of
global atmospheric dynamical cores (Melvin et al., 2019; Adams et al., 2019). Key ex-
amples include tensor product spaces derived from classical mixed methods such as
the Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) discretizations (Raviart
and Thomas, 1977; Brezzi, Douglas, and Marini, 1985).

As we have seen in previous chapters, a Newton-type semi-implicit discretization
leads to a saddle-point system that forms the computational bottleneck of atmo-
spheric codes. While the compatible finite element discretizations have several use-
ful properties for geophysical flow applications, the efficient implementation of solver
algorithms for the linearized equations poses a significant challenge. For reasons
which will become clear, the resulting finite element system presented by Natale,
Shipton, and Cotter (2016) is not hybridizable as formulated. To address this, we
develop a new hybridizable discretization of the linear perturbation equations. This
new approach permits the local elimination of prognostic variables to produce a
reduced system for the pressure. In many ways, this new hybridizable approach
mirrors the finite difference techniques used in the UK Met Office’s dynamical core
(Wood et al., 2014; Thuburn, 2016).

5.1 A compatible finite element method for the Euler equa-
tions

For context, it will be useful to first summarize the compatible finite element method
presented by Natale, Shipton, and Cotter (2016). In this section, we shall assume our
domain Ω is a spherical annulus, i.e., Ω = S(R)× [0, H], where S(R) is the surface
of a sphere with radius R and H is the height of the domain. Domains of this type for
geophysical flows are also characterized by their small aspect ratios, with R � H.
Our starting point is the full three-dimensional system of equations describing a

170 Chapter 5. A hybridizable method for the Euler equations

compressible dry-atmosphere in a rotating domain:

∂u
∂t

+ (u · ∇) u + 2Ω× u = −cpθ∇Π− gk̂, (5.1)

∂ρ

∂t
+∇ · (ρu) = 0, (5.2)

∂θ

∂t
+ u · ∇θ = 0, (5.3)

where u = (u, v, w) is the fluid velocity, ρ the density, cp is the specific heat capacity
at constant pressure, θ the potential temperature, Ω is the Coriolis vector, g is the ac-
celeration due to gravity, k̂ is the vertical normal vector, and Π is the Exner pressure
defined by:

Π =

(
Rdρθ

pref

) κ
1−κ

. (5.4)

Here, Rd is the gas constant of dry air, pref is a reference value for the pressure
(typically taken to be 100,000 Pa), and κ = Rd/cp. Equations (5.1)–(5.3) are also
subject to a rigid-lid condition on the upper and lower boundaries of the domain,
∂Ω = ∂Ωt ∪ ∂Ωb:

u · n = 0 on ∂Ω. (5.5)

The potential temperature is defined via the expression:

θ = T
(

pref

p

)κ

, (5.6)

where T is the temperature. This should be interpreted as the temperature a parcel
of air would obtain if moved adiabatically to a pressure of pref, with initial condi-
tions for pressure and temperature at p and T. Note that in this formulation, the
pressure can be diagnosed from the equation of state p = ρRdT together with (5.4)
and (5.6). A more complete atmospheric model will include source/sink terms in
the momentum equation (5.1) and thermodynamic equation (5.3), and include the
effects of moisture. The latter, in addition to necessitating a different continuity
equation, would require additional modifications to (5.3). For more details on the
incorporation of moisture and other physical parametrizations, see Bendall et al.
(2019).

5.1.1 Tensor product finite element complex

Building a compatible finite element discretization of (5.1)–(5.3) requires first con-
structing a suitable finite element complex of spaces defined on Ω. As we have
previously shown in Section 3.4, such meshes are generally unstructured in the hor-
izontal, but vertically structured to facilitate vertical staggering of the potential tem-
perature. The finite element spaces will have a tensor product structure as a result.
For context and to keep the material in this chapter relatively self-contained, we will
briefly summarize Section 2.4.4 here.

5.1. A compatible finite element method for the Euler equations 171

In order to develop a finite element complex on Ω, we require a one-dimensional
complex on [0, H]:

H1([0, H]) L2([0, H])

V0
h V1

h

d
dz

π
(1)
0 π

(1)
1

d
dz

(5.7)

where we use the notation for the one-dimensional differential operator d
dz to em-

phasize that (5.7) is associated with the vertical discretization. We also need the
two-dimensional complex:

H1 (S(R)) H (div; S(R)) L2 (S(R))

U0
h U1

h U2
h

∇⊥

π
(2)
0

∇·

π
(2)
1 π

(2)
2

∇⊥ ∇·

(5.8)

where∇⊥ = (−∂y, ∂x) denotes the skew-gradient. A three-dimensional tensor prod-
uct complex on Ω follows:

H1(Ω) H (curl; Ω) H (div; Ω) L2(Ω)

W0
h W1

h W2
h W3

h

∇

π
(3)
0

∇×

π
(3)
1

∇×

π
(3)
2 π

(3)
3

∇ ∇× ∇·

(5.9)

where W i
h, i = 0, · · · , 3, are tensor product finite element spaces defined as:

W0
h = U0

h ⊗V0
h , (5.10)

W1
h = HCurl(U0

h ⊗V1
h)⊕ HCurl(U1

h ⊗V0
h), (5.11)

W2
h = HDiv(U1

h ⊗V1
h)⊕ HDiv(U2

h ⊗V0
h), (5.12)

W3
h = U2

h ⊗V1
h . (5.13)

Detailed constructions of these spaces are provided in Section 2.4.4, which includes
the implementation details necessary to construct each W i

h. Further information

can be found in McRae et al. (2016). The existence of bounded projections π
(d)
i ,

d = 1, 2, 3, such that the diagrams (5.7)–(5.9) commute is discussed in detail by
Arnold, Falk, and Winther (2010), Arnold and Awanou (2014), and Arnold, Boffi,
and Bonizzoni (2015). This includes both affine and non-affine constructions. Holst
and Stern (2012) extended the diagrams for discretizations on embedded manifolds,
which is summarized in Section 2.4.6. Natale, Shipton, and Cotter (2016) extended
this to the tensor product complex (5.9) and quantified the errors introduced by us-
ing polynomial piece-wise approximations of manifold surfaces. We encourage the
interested reader to review these references for further details.

For three-dimension systems, the sequence of spaces W i
h form a discrete L2 de-Rham

complex of finite element spaces. An important property of choosing such spaces
is that, unlike mixed methods for Navier-Stokes based on the Taylor-Hood dis-
cretization (Taylor and Hood, 1973), discretizations based on compatible finite el-
ements exactly preserve the fundamental vector-calculus identities ∇× (∇Ψ) = 0
and ∇ · (∇×w) = 0 in the discretized equations.

172 Chapter 5. A hybridizable method for the Euler equations

TABLE 5.1: Finite element spaces defining the vertical and horizontal complexes outlined in
this section. Separate degrees may be used in the horizontal vertical spaces. This permits
the use of higher-order vertical discretizations, for example.

Family V0
h V1

h U0
h U1

h U2
h

RT Pk dPk−1 Pq RTq−1 dPq−1

RTCF Pk dPk−1 Qq RTC f
q−1 dQq−1

BDM Pk dPk−1 Pq BDMq−1 dPq−2

As we have seen previously in Chapter 3 and 4, the tensor product complex can
be obtained from classical mixed finite element spaces summarized in Section 2.2.2.
There is flexibility in varying the degree of each complex to facilitate high order
vertical staggering, while still maintaining the structure-preserving nature of the
tensor product complex (Natale, Shipton, and Cotter, 2016). For k ≥ 1, there is
only one choice for the one-dimensional complex: (Pk, dPk−1), where Pk and dPk−1
denote the usual spaces of continuous and discontinuous Lagrange elements. For
the two-dimensional horizontal complex, there are a variety of choices available.
Some familiar examples include:

• (Pq, RTq−1, dPq−1) for q ≥ 1, where RTq−1 denotes the space of Raviart-Thomas
elements of order q− 1. This complex can be constructed on triangular hori-
zontal mesh. In the FEEC framework, the triangular complex corresponds to
the family P−q Λr (Arnold, Falk, and Winther, 2010).

• (Qq, RTC f
q−1, dQq−1) is the quadrilateral complex using the Raviart-Thomas

family of spaces. This complex corresponds to Q−q Λr.

• (Pq, BDMq−1, dPq−2) for triangular meshes with q ≥ 2, where BDMq−1 denotes
the Brezzi-Douglas-Marini elements of order q− 1. This complex corresponds
to PqΛr.

For simplicity, we consider the cases where the horizontal and vertical degrees are
equal (k = q). See Table 5.1 for a summary of element choices for the one- and
two-dimensional complexes summarized above. The construction of such elements,
with appropriate pullbacks (including the necessary Piola transforms for H(curl)
and H(div) elements) is discussed by Natale, Shipton, and Cotter (2016). We refer
the reader to the work by Rognes, Kirby, and Logg (2009) for the implementation of
H(curl) and H(div) elements within a code-generating framework.

The compatible finite element method for solving (5.1)–(5.3) will seek a velocity uh ∈
W̊2

h , where W̊2
h is the subspace of W2

h such that uh · n vanishes on the upper and lower
boundaries of Ω, ∂Ω = ∂Ωt ∪ ∂Ωb. The pressure and density variables are sought
in the space W3

h . There is some flexibility in choosing an approximation space for
the potential temperature. However, one in particular is preferable for atmospheric
models.

5.1.2 Finite element space for the potential temperature

In Section 2.4.5, we discussed a coupled options for staggering the potential tem-
perature. Based on that discussion, we take θh ∈ Wθ

h , where Wθ
h = U2

h ⊗ V0
h is

the horizontally discontinuous, vertically continuous finite element space. This con-
structs the compatible finite element extension of the Charney-Phillips staggered

5.1. A compatible finite element method for the Euler equations 173

ev
1

ev
2

ev
3

eh
1

eh
2

∂K = ∂Khoriz. ∪ ∂Kvert.

∂Khoriz. = eh
1 ∪ eh

2K = 4× I

∂Kvert. = ev
1 ∪ ev

2 ∪ ev
3

FIGURE 5.1: A diagram illustrating the decomposition of the boundary of a product cell into
horizontally- and vertically-aligned facets. The cell K is the result of taking the product of
a triangle 4 and an interval I. An identical decomposition of facets can be made for any
arbitrary product cell.

grid (Charney and Phillips, 1953), which is does not support the unphysical compu-
tational modes introduced by a Lorenz grid (Lorenz, 1960).

It was shown by Natale, Shipton, and Cotter (2016) that this choice of finite element
space leads to an injective mapping between the pressure and potential temperature
variables in the hydrostatic balance equation (2.232). Therefore, spurious hydrostatic
pressure modes are avoided. This was further verified numerically by Melvin et al.
(2018). By our choice of approximation space for θ, a transport scheme for partially
continuous finite elements is necessary, which we summarize in the next section.

5.1.3 Semi-discrete formulation

In this section, we present the semi-discrete finite element formulation of the three-
dimensional compressible Euler system (5.1)–(5.3). We start by reviewing some no-
tation. With Th denoting our mesh of Ω consisting of product cells K, we denote the
set of facets by

Eh = {e ⊂ ∂K : ∀K ∈ Th}. (5.14)

We call Eh the skeleton of Th. We can further decompose the skeleton Eh into sets of
horizontally- and vertically-aligned facets Ehoriz.

h and Evert.
h respectively, with

Ehoriz.
h = {e ⊂ ∂Khoriz. : ∀K ∈ Th}, (5.15)
Evert.

h = {e ⊂ ∂Kvert. : ∀K ∈ Th}, (5.16)

Eh = Ehoriz.
h ∪ Evert.

h . (5.17)

In this way, we can distinguish between integrals on particular types of facets of the
mesh. An illustration for this decomposition is shown in Figure 5.1.

We now introduce notation for three different types of quantities we will encounter.
First, we have the usual jump operator defined for any double-valued vector field w
on a facet e ∈ Eh:

JwKe =

{
w|e+ · n|e+ + w|e− · n|e− , e ∈ Eh \ ∂Ω,
w|e · n|e, e ∈ ∂Ω,

(5.18)

where + and − denotes the positive and negative sides of the facet respectively.
Here, n|e+ and n|e− are the unit normal vectors corresponding to the two sides of an
interior facets e = ∂K+ ∩ ∂K−.

174 Chapter 5. A hybridizable method for the Euler equations

Similarly, we can define a jump-like quantity for the tangential-components of a
double-valued vector field w:

{w}e =

{
n|e+ ×w|e+ + n|e− ×w|e− e ∈ Eh \ ∂Ω,
n|e ×w|e e ∈ ∂Ω.

(5.19)

Finally, we define the average of a scalar field Ψ as:

{{Ψ}}e =

{
1
2 (Ψ

+ + Ψ−) , e ∈ Eh \ ∂Ω
Ψ, e ∈ ∂Ω

(5.20)

where Ψ± = Ψ|e± . Whenever the domain is clear by the context, we shall simply
write J·K, {·}, and {{·}}.

To develop a finite element formulation of (5.1), we start rewriting the advection
term using the vector-invariant form:

(u · ∇) u = (∇× u)× u +∇1
2
|u|2, (5.21)

and substituting this relation in the momentum equation (5.1). Then we discretize
in space by taking our solution uh ∈ W̊2

h , multiplying by a test function w ∈ W̊2, and
integrating by parts. Then we obtain our first equation:∫

Th

w · ∂uh

∂t
+∇h × (uh ×w) · uh dx−

∫
Eh

{uh ×w} · ũh dS

−
∫
Th

∇h ·w
1
2
|uh|2 dx +

∫
Th

w · (2Ω× uh) dx−
∫
Th

cp∇h · (wθh)Πh dx

+
∫
Evert.

h

cpJwθhK{{Πh}}dS +
∫
Th

gw · k̂ dx = 0, (5.22)

for all w ∈ W̊2, where ∇h should be interpreted as the “broken” gradient obtained
by evaluating ∇ in each cell:

∇h|K = ∇|K, (5.23)

and ũh is the velocity taken from the upwind side of each facet.1 Note that upon
integrating the pressure-gradient term, only vertically-aligned surface integrals ap-
pear since JwθhK = 0 on Ehoriz.

h ; θh is continuous on the horizontally-aligned facets by
construction of Wθ

h . Equation (5.22) summarizes our momentum transport equation.

Next, we require suitable transport scheme for ρh. Since ρh ∈ W3
h is fully discontin-

uous, a standard upwind discontinuous Galerkin method can be used:∫
Th

φ
∂ρh

∂t
−∇hφ · uhρh dx +

∫
Eh

JuhφKρ̃h dS = 0, ∀φ ∈W3
h , (5.24)

where ρ̃h denotes ρh taken in the upwind direction. Both transport equations (5.22)
and (5.24) are similar in construction to the nonlinear discretization of the shallow
water equations in Section 3.3.

Now we turn our attention to the temperature equation (5.3). Constructing a stable
transport scheme for θh requires a bit more care. Since θh is vertically continuous,
there does not exist an upwind stabilization for vertical transport. Following Natale,

1That is, the side where u±h · n
± is negative

5.2. Fully-discrete nonlinear method 175

Shipton, and Cotter (2016), we can instead use a streamline-upwind Petro-Galerkin
(SUPG) stabilization scheme (Brooks and Hughes, 1982). First, we multiply (5.3)
by a test function ξ ∈ Wθ

h and integrate by parts twice to obtain the ultra-weak
formulation:∫

Th

ξ
∂θh

∂t
+ ξuh · ∇hθh dx +

∫
Evert.

h

JuhξKθ̃h − JuhξθhK dS = 0, ∀ξ ∈Wθ , (5.25)

where θ̃h denotes θh taken from the upwind direction. Now that there are no deriva-
tive applied to the test function ξ, we can obtain the full SUPG formulation of (5.25)
by substituting in the upwind-stabilized test function ξ∗ := ξ + ηuh · k̂∆tk̂ · ∇hξ,
where η is a positive stabilization constant and ∆t is a time-stepping parameter to
be determined by the choice of time-integrator.

Now we have a complete semi-discretization as presented by Natale, Shipton, and
Cotter (2016). The full nonlinear finite element spatial discretization of (5.1)–(5.3)
reads as follows. Find uh ∈ W̊2

h , ρ ∈W3
h , and θh ∈Wθ

h such that∫
Th

w · ∂uh

∂t
+∇h × (uh ×w) · uh dx−

∫
Eh

{uh ×w} · ũh dS

−
∫
Th

∇h ·w
1
2
|uh|2 dx +

∫
Th

w · (2Ω× uh) dx−
∫
Th

cp∇h · (wθh)Πh dx

+
∫
Evert.

h

cpJwθhK{{Πh}}dS +
∫
Th

gw · k̂ dx = 0, (5.26)∫
Th

φ
∂ρh

∂t
−∇hφ · uhρh dx +

∫
Eh

JuhφKρ̃h dS = 0, (5.27)∫
Th

ξ∗
∂θh

∂t
+ ξ∗uh · ∇hθh dx +

∫
Evert.

h

Juhξ∗Kθ̃h − Juhξ∗θhK dS = 0, (5.28)

for all (w, φ, ξ) ∈ W̊2
h ×W3

h ×Wθ
h . It is important to note here that Πh is a func-

tion ρh and θh via (5.4), which can be diagnosed during the nonlinear solver. This
defines our starting point for developing a fully-discrete nonlinear method. Equa-
tions (5.26)–(5.28) still requires further investigation. However, it is known that this
approach conserves mass, but not energy, potential vorticity, or temperature. Initial
experiments using this spatial discretization are presented in Natale, Shipton, and
Cotter (2016, §7.2), where a nonlinear solver via a Picard linearization is employed.
We shall summarize this approach in the next section.

5.2 Fully-discrete nonlinear method

The Picard method for solving (5.26)–(5.28) follows from Melvin et al. (2019) and
Adams et al. (2019); it is based on the semi-implicit discretization used by the UK
Met Office’s atmospheric dynamical core (ENDGame), detailed by Wood et al. (2014)
and Thuburn (2016). It is also functionally similar to the nonlinear method for the
shallow water equations we described in Section 3.3. We begin by defining interme-
diate quantities for the time-stepping algorithm.

For given discrete fields which are known (either from initial conditions or a pre-
vious time-step) un−1

h , ρn−1
h , and θn−1

h , we seek ∆un
h , ∆ρn

h , and ∆θn
h , defined as the

176 Chapter 5. A hybridizable method for the Euler equations

nonlinear updates evolving the fields forward in time:

un
h = un−1

h + ∆un
h , ρn

h = ρn−1
h + ∆ρn

h , θn
h = θn−1

h + ∆θn
h . (5.29)

We determine the updates in (5.29) iteratively using a Picard method. This involves
successive solutions to a linearized problem.

Let ∆uk
h, ∆ρk

h, and ∆θk
h denote approximations to the quantities (5.29) at the k-th iter-

ation of the Picard cycle. Before the first Picard iteration, these quantities are initial-
ized to zero: ∆u0

h = 0, ∆ρ0
h = 0, ∆θ0

h = 0. Now we define the residual functions at
the k-th Picard iteration (k ≥ 1) as

rk
u = un−1

h +∆uk−1
h − u∗h, rk

ρ = ρn−1
h +∆ρk−1

h − ρ∗h, rk
θ = θn−1

h +∆θk−1
h − θ∗h , (5.30)

where u∗h, ρ∗h, and θ∗h are candidate solutions for the next time-step. These are com-
puted during each Picard iteration by solving transport equations using previously
computed fields (or initial conditions if at the first time-step).

To generate the updates ∆uk
h, ∆ρk

h, and ∆θk
h, we solve a coupled linear system of

equations of the form:

J

δuk

h
δρk

h
δθk

h

 = −

Rk

u[w]
Rk

ρ[φ]

Rk
θ [ξ]

 , (5.31)

where the δ-quantities are linear functions that update the nonlinear corrections:

∆uk
h = ∆uk−1

h + δuk
h, ∆ρk

h = ∆ρk−1
h + δρk

h, ∆θk
h = ∆θk−1

h + δθk
h, (5.32)

and the right-hand side co-vectors are

Rk
u[w] =

∫
Th

w · rk
u dx, Rk

ρ[φ] =
∫
Th

φrk
ρ dx, Rk

θ [ξ] =
∫
Th

ξrk
θ dx, (5.33)

for all (w, φ, ξ) ∈ W̊2
h ×W3

h ×Wθ
h . Here, J is the Jacobian obtained from the lin-

earization of (5.26)–(5.28). This procedure uses the solutions of (5.31) to determine
the next iteration of ∆-quantities. The result is then used in the linear systems for
u∗h, ρ∗h, and θ∗h and in (5.30) for the next Picard iteration. In practice, between 2-4
Picard iterations is typically good enough to generate sufficiently accurate forecasts
(Melvin et al., 2019; Adams et al., 2019), which is experimentally determined. A
more rigorous analysis of the Picard method has not yet been performed, but is a
topic for future investigations.

Having abstractly defined the procedure, we now detail precisely how the candi-
dates u∗h, ρ∗h, and θ∗h are computed. A complete description of the linear system (5.31)
will follow in Section 5.2.3.

5.2.1 Obtaining a predictive velocity

To obtain u∗h, we solve the transport equation (5.26) using known field values, which
reduces to a linear problem for u∗h. We use a Θ-stepping method for momentum
transport, with Θ = 1

2 . First, we define the midpoint quantities at the k-th Picard

5.2. Fully-discrete nonlinear method 177

iteration:

un− 1
2

h = un−1
h +

1
2

∆uk−1
h , ρ

n− 1
2

h = ρn−1
h +

1
2

∆ρk−1
h , θ

n− 1
2

h = θn−1
h +

1
2

∆θk−1
h , (5.34)

where ∆uk−1
h , ∆ρk−1

h , and ∆θk−1
h are determined from the previous Picard iteration (or

their zero-initialization if k = 1). We similarly define a diagnosed midpoint pressure
as function of the state variables, using the definition in (5.4):

Πn− 1
2

h = Π
(

ρ
n− 1

2
h , θ

n− 1
2

h

)
. (5.35)

Lastly, we define an implicit midpoint velocity: uh = 1
2

(
u∗h + un−1

h

)
.

Then the transport equation for u∗h is constructed by discretizing (5.26) in time, using

un− 1
2

h as the advecting velocity. This produces:

∫
Th

w ·
u∗h − un−1

h
∆t

+∇h ×
(

un− 1
2

h ×w
)
· uh dx

−
∫
Eh

{
un− 1

2
h ×w

}
· ũh dS−

∫
Th

∇h ·w
1
2

∣∣∣∣un− 1
2

h

∣∣∣∣2 dx

+
∫
Th

w ·
(

2Ω× un− 1
2

h

)
dx−

∫
Th

cp∇h ·
(

wθ
n− 1

2
h

)
Πn− 1

2
h dx

+
∫
Evert.

h

cp

s
wθ

n− 1
2

h

{{{
Πn− 1

2
h

}}
dS +

∫
Th

gw · k̂ dx = 0, (5.36)

for all w ∈ W̊2
h . Expanding out uh in (5.36), we obtain a linear variational problem

for u∗h: find u∗h ∈ W̊2 satisfying for all w ∈ W̊2
h :∫

Th

w · u∗h dx +
∆t
2

∫
Th

∇h ×
(

un− 1
2

h ×w
)
· u∗h dx

−∆t
2

∫
Eh

{
un− 1

2
h ×w

}
· ũ∗h dS = Rn− 1

2 [un−1
h], (5.37)

where

Rn− 1
2 [un−1

h] =
∫
Th

w · un−1
h dx− ∆t

2

∫
Th

∇h ×
(

un− 1
2

h ×w
)
· un−1

h dx

+
∆t
2

∫
Eh

{
un− 1

2
h ×w

}
· ũn−1

h dS

+ ∆t
∫
Th

∇h ·w
1
2

∣∣∣∣un− 1
2

h

∣∣∣∣2 dx + ∆tcp

∫
Th

∇h ·
(

wθ
n− 1

2
h

)
Πn− 1

2
h dS

− ∆tcp

∫
Evert.

h

s
wθ

n− 1
2

h

{{{
Πn− 1

2
h

}}
dS

− ∆t
∫
Th

w ·
(

2Ω× un− 1
2

h

)
dx− ∆t

∫
Th

gw · k̂ dx. (5.38)

178 Chapter 5. A hybridizable method for the Euler equations

5.2.2 Obtaining the predictive density and temperature fields

The density equation (5.27) is simply a continuity equation. Similarly for θh, (5.28)
is just an advection equation, albeit a more complicated discretization than that of
ρh. We can use a stabilized time-integrator to obtain the predictive quantities ρ∗h
and θ∗h . For the time discretization of both fields, we use the stabilized three-stage
Runge-Kutta scheme (SSPRK3) of Shu and Osher (Shu and Osher, 1988):

x(1) = xn−1 + L
(

xn−1; un− 1
2

h

)
x(2) =

3
4

xn−1 +
1
4

(
x(1) + L

(
x(1); un− 1

2
h

))
x∗ =

1
3

xn−1 +
2
3

(
x(2) + L

(
x(2); un− 1

2
h

))
, (5.39)

whereL denotes the time-evolving advection operator with advecting velocity un− 1
2

h ,
and x denotes the field to be advected.

5.2.3 Picard method for the corrective updates

Once u∗h, ρ∗h, and θ∗h are constructed, we again solve a coupled linear system (5.31).
We construct J via a partial linearization of equations (5.1)–(5.3) following Wood
et al. (2014). We linearize around a background state at rest, with potential tempera-
ture, density, and pressure profiles θ̄, ρ̄, and Π̄ respectively.

Discretizing in time using the Crank-Nicolson method (Crank and Nicolson, 1947)
then produces the approximate Jacobian (in strong form):

δuk +
∆t
2

(
2Ω× δuk

)
+

∆tcp

2

(
δθk∇Π̄ + θ̄∇δΠ

)
= −rk

u, (5.40)

δρk +
∆t
2
∇ ·

(
ρ̄δuk

)
= −rk

ρ (5.41)

δθk +
∆t
2

δuk · ∇θ̄ = −rk
θ , (5.42)

where the pressure perturbation δΠ is defined via the identity:

δΠ =
∂Π̄
∂θ̄

δθk +
∂Π̄
∂ρ̄

δρk. (5.43)

All the “bar” terms are known coefficients, determined from the linearized state.
However, this is not our final Jacobian; we make one further modification. Since
the effects of θ are dominate in the vertical, we discard all horizontal variations in
terms containing δθ in the weak formulation of (5.40)–(5.42). The resulting linear
finite element problem defining (5.31) reads as follows. Find δuk

h ∈ W̊2
h , δρk

h ∈ W3
h ,

5.2. Fully-discrete nonlinear method 179

and δθk
h ∈Wθ

h such that ∫
Th

w · δuk
h +

∆t
2

w ·
(

2Ω× δuk
h

)
dx

−
∆tcp

2

∫
Th

∂

∂z

(
δθk

hw · k̂
)

Π̄ dx−
∆tcp

2

∫
Th

∇h ·
(
θ̄w
)

δΠh dx

+
∆tcp

2

∫
Evert.

h

q
θ̄w

y
{{δΠh}}dS = −Rk

u[w], (5.44)∫
Th

φδρk
h −

∆t
2
∇hφ · δuk

hρ̄ dx +
∆t
2

∫
Eh

r
φδuk

h

z
{{ρ̄}}dS = −Rk

ρ[φ], (5.45)∫
Th

ξδθk
h +

∆t
2

ξ
∂θ̄

∂z
δuk

h · k̂ dx = −Rk
θ [ξ], (5.46)

for all (w, φ, ξ) ∈ W̊2
h ×W3

h ×Wθ
h .

Equations (5.44)–(5.46) defines a tightly-coupled system of each linear perturbation
and must be solved several times each time-step. There are several ways to solve
this coupled problem. Our current approach is to mimic what is done in staggered
finite difference codes, as presented by Wood et al. (2014). We eliminate δθk

h at the
equation-level, leaving a coupled set of equations exclusively for δuk

h and δρk
h. How-

ever, unlike finite difference methods, the “strong” form of (5.46) no longer holds
point-wise. As a result, we are introducing errors near topography.

Performing the elimination via δθk
h = −∆t

2
∂θ̄
∂z δuk

h · k̂ − rk
θ and substituting in (5.44)

produces the following mixed problem: find δuk
h ∈ W̊2

h and δρk
h ∈W3

h such that

A(w; δuk
h) +

∆tcp

2
G(w; δρk

h) = −Rk
u,θ [w], (5.47)

∆t
2

D(φ; δuk
h) + M3(φ; δρk

h) = −Rk
ρ[φ], , (5.48)

for all (w, φ) ∈ W̊2
h ×W3

h , where the finite element forms are defined as the expres-
sions:

A(w; δuk
h) = M2(w; δuk

h) +
∆t
2

C(w; δuk
h) +

∆t2cp

4
Mv

2(w; δuk
h), (5.49)

M2(w; δuk
h) =

∫
Th

w · δuk
h dx, (5.50)

C(w; δuk) =
∫
Th

w ·
(

2Ω× δuk
h

)
dx, (5.51)

Mv
2(w; δuk

h) =
∫
Th

∂

∂z

(
∂θ̄

∂z
δuk

h · k̂w · k̂
)

Π̄ dx +
∫
Th

∂Π̄
∂z

δuk
h · k̂

∂

∂z

(
θ̄w · k̂

)
dx

−
∫
Evert.

h

q
θ̄w

y{{∂Π̄
∂z

δuk
h · k̂

}}
dS, (5.52)

G(w; δρk
h) = −

∫
Th

∂Π̄
∂ρ̄

δρk
h∇h ·

(
θ̄w
)

dx +
∫
Evert.

h

q
θ̄w

y{{∂Π̄
∂ρ̄

δρk
h

}}
dS, (5.53)

D(φ; δuk) = −
∫
Th

∇hφ · δuk
hρ̄ dx +

∫
Eh

r
φδuk

h

z
{{ρ̄}}dS, (5.54)

M3(φ; δρk
h) =

∫
Th

φδρk
h dx, (5.55)

180 Chapter 5. A hybridizable method for the Euler equations

and the modified residual is

Rk
u,θ [w] = Rk

u[w]−
∆tcp

2

∫
Th

∂

∂z

(
rk

θw · k̂
)

Π̄ dx

− ∆t
2

∫
Th

∂Π̄
∂z

rk
θ

∂

∂z

(
θ̄w · k̂

)
dx

+
∆tcp

2

∫
Evert.

h

q
θ̄w

y{{∂Π̄
∂θ̄

rk
θ

}}
dS. (5.56)

In terms of linear algebra, this leads to a mixed system for the velocity and density
coefficients, δUk and δPk, of the form:[

A ∆t
2 cpG

∆t
2 D M3

]{
δUk

δPk

}
=

{
Ru,θ
Rρ

}
, (5.57)

where A = M2 +
∆t
2 C + ∆t2

4 cp Mv
2 is a velocity mass matrix augmented with both the

Coriolis term C and vertical coupling in Mv
2 as a result of eliminating δθk

h, D and G
are off-diagonal “div”/“grad” terms coupling velocity and density degrees of free-
dom, and M3 is a mass matrix in W3

h . Once (5.57) is solved, δθk
h can be recovered by

solving a mass matrix system in Wθ
h . Some initial numerical studies were conducted

by Natale, Shipton, and Cotter (2016) using this approach, though the Coriolis term
was neglected in A. Experiments were restricted to only two vertical slice models.

The significance of these errors introduced by the approximate elimination of δθk
h

are currently unknown, as initial numerical studies conducted by Natale, Shipton,
and Cotter (2016) did not demonstrate any strange anomalies in the reconstructed
temperature perturbation field. However, it may not be necessary to exactly treat δθk

h
since this procedure is nested in a Picard method. In operational settings, the Picard
system is never solved to convergence. This approach can simply be viewed as a
preconditioner for the true linearization. We employ a similar elimination procedure
in Section 5.3, along with more sensitive experiments which include topography in
Section 5.4. These demonstrate that the errors introduced in the linear solver do not
largely impact the overall evolution of the temperature field. Further analysis on the
effects of treating δθk

h in this manner still requires further investigation.

As currently written, this system is not hybridizable; this is due to the inter-elemental
coupling of both velocity test functions and prognostic variables appearing in the
surface term: ∫

Evert.
h

q
θ̄w

y
{{δΠh}}dS. (5.58)

This prevents direct hybridization without modifying the discretization. Instead,
(5.57) must be solved iteratively using a suitable Krylov method and preconditioner.

5.2.4 An approximate Schur-complement preconditioner

As before, one could design a preconditioner starting from the inverse of the left-
hand side operator in (5.57) using a Schur-complement factorization:[

A ∆t
2 cpG

∆t
2 D M3

]−1

=

[
I −∆t

2 cp A−1G
0 I

] [
A−1 0

0 S−1

] [
I 0

−∆t
2 DA−1 I

]
, (5.59)

5.3. A hybridizable method for the compressible equations 181

where S = M3− β2cpDA−1G, β = ∆t
2 , is the Schur-complement operator. The opera-

tor is globally dense, since it contains the dense inverse A−1. A preconditioner P can
be constructed from (5.59) by replacing S with an approximate Schur-complement

Ŝ = M3 − β2cpDÂ
−1

G, where Â = Diag(A).

One can then approximate the inverse of S by iteratively inverting Ŝ instead. In
contrast to the original operator, Ŝ is sparse, but less is understood about this ap-
proach, as no formal analysis has been performed on such a system. Note that this
approximation suffers from the same problem as in the gravity wave example from
Section 4.5.3; it fails to take into account the Coriolis term of 2Ω × δuk

h due to its
contributions being located on off-diagonal positions of the matrix A.

Moreover, simplified models such as the linear gravity wave, only capture some of
the characteristics of (5.57). The equations here are far more difficult to analyze and
precondition. Black-box preconditioners using the Schur-complement factorization
above have some success in two-dimensional vertical slice models. However, for full
three-dimensional experiments, little success has been achieved as iterative methods
appear to struggle in reaching convergence. To circumvent this, we develop an al-
ternative discretization which is, in fact, hybridizable. The resulting sparse hybridized
equation appears to be far more numerically amenable to standard iterative tech-
niques for nonsymmetric elliptic equations and negates the need for an outer Krylov
method to invert the block system.

5.3 A hybridizable method for the compressible equations

The main difficulty with the approach detailed in Section 5.2.4 is designing a robust
solver. This was discussed by Mitchell and Müller (2016) within the context of tensor
product multigrid methods (Börm and Hiptmair, 2001; Müller and Scheichl, 2014)
for a linear compressible atmospheric model. It is a subject of ongoing research to
develop a similar scheme for the equations considered in this section. Here, we
present an alternative discretization resulting in a system where the techniques of
Chapters 3 and 4 can be applied effectively.

The hybridization procedure we outline in this section reformulates the perturbation
system (5.40)–(5.42) in such a way that the system is rendered block-sparse. Therefore
the prognostic variables can be eliminated via element-wise static condensation to
produce a new sparse system for unknowns defined only on the mesh skeleton. The
recovery of the prognostic variables can be obtained locally by solving a sequence
of linear systems in each cell of the mesh. We begin by revisiting the linearized
momentum equation.

5.3.1 Discontinuous H(div) velocity fields

Velocity fields w ∈ W2
h belong to a subspace of H(div), characterized by the conti-

nuity w · n on Eh. Following our discussion in Section 3.1.2, we define the “broken”
velocity space as:

Ŵ2
h = {w ∈ [L2(Ωh)]

n : w|K ∈W2
h (K), ∀K ∈ Th}. (5.60)

182 Chapter 5. A hybridizable method for the Euler equations

This space consists of vector fields locally constructed from basis functions in W2
h in

each cell K, but with normal components not necessarily continuous on Eh. In light of
this definition, we note that W2

h = Ŵ2
h ∩ {w : JwK = 0 on Eh} is an H(div)-subspace

of Ŵ2
h .

As with the other models considered in Chapter 3, the hybridization of (5.44)–(5.46)
begins with taking the linear perturbation δuk

h and test functions w in Ŵ2
h rather than

W2
h . Following our previous convention, we denote the “broken” velocity perturba-

tion as δûk
h ∈ Ŵ2

h .

Multiplying (5.40) by w ∈ Ŵ2
h and integrating by parts in a single cell K produces:∫

K
w · δûk

h +
∆t
2

w ·
(

2Ω× δûk
h

)
dx

−
∆tcp

2

∫
K

∂

∂z

(
δθk

hw · k̂
)

Π̄ dx−
∆tcp

2

∫
K
∇ ·

(
θ̄w
)

δΠh dx

+
∆tcp

2

∫
∂K

(
δθk

hk̂
(

w · k̂
))
· nΠ̄ dS

+
∆tcp

2

∫
∂K

(
θ̄w
)
· nδΠh dS = −

∫
K

w · rk
u dx, (5.61)

for all w ∈W2
h (K), where we have dropped the horizontal variations in δθk

h as before.
Assembling all the local contributions, we obtain the equation on Th:∫

Th

w · δûk
h +

∆t
2

w ·
(

2Ω× δûk
h

)
dx

−
∆tcp

2

∫
Th

∂

∂z

(
δθk

hw · k̂
)

Π̄ dx−
∆tcp

2

∫
Th

∇h ·
(
θ̄w
)

δΠh dx

+
∆tcp

2

∫
Ehoriz.

h

r
δθk

hk̂
(

w · k̂
)z
{{Π̄}}dS

+
∆tcp

2

∫
Eh

q
θ̄w

y
{{δΠh}}dS = −R̂k

u[w], (5.62)

for all w ∈ Ŵ2
h . A couple changes in the weak momentum equation occurs as a result

of testing in the space Ŵ2
h .

• Surface integrals on Ehoriz.
h reappear since we are no longer guaranteed that

Jk̂w · k̂K = 0 on Ehoriz.
h . This was not the case previously, as our previous

velocities were always continuous in their normal components. However, the
surface terms on Evert.

h still vanish due to the vertical continuity of δθk
h.

• Similarly, a surface integral appears on the entire mesh skeleton by the discon-
tinuity of w · n on Eh. We use this term to introduce a new auxiliary variable
on the skeleton.

5.3.2 Lagrange multipliers and the pressure trace

Since the original compatible finite element spatial discretization (5.26)–(5.28) con-
structs a velocity in W2

h , we require that our new velocity perturbation δûk
h ∈ Ŵ2

h
has continuous normal components. In other words, we want Jδûk

hK = 0 on Eh. We
accomplish this by imposing a jump condition on δûk

h · n. More specifically, we use

5.3. A hybridizable method for the compressible equations 183

functions in an appropriately defined trace space Wtr
h to enforce:∫

Eh

γ
r

δûk
h

z
dS =

∫
Eh\∂Ω

γ
r

δûk
h

z
dS +

∫
∂Ω

γδûk
h · n dS = 0, ∀γ ∈Wtr

2 , (5.63)

where Wtr
2 is defined as the set:

Wtr
h = {γ ∈ L2(Eh) : γ|e ∈ Pk(e), ∀e ∈ Eh}. (5.64)

Here, Pk(e) is a polynomial space of degree ≤ k on e ∈ Eh. The degree k is deter-
mined by the degree of the polynomial space containing w · n|e, for all w ∈ W2

h .
Requiring the trace unknowns to belong in the same polynomial spaces as the nor-
mal components of w · n is analogous to the consistency requirement of standard
hybridizable methods from Section 3.1.2.

Equation (5.63) ensures we obtain a velocity perturbation whose jump of the nor-
mal components vanish on the mesh skeleton. Moreover, this equation also enforces
the rigid lid condition on the top and bottom regions of Ω. Meaning that all essen-
tial boundary conditions become natural conditions, enforced through the integral
forms in the weak formulation. If we construct a velocity satisfying (5.63), then we
have δûk

h ∈ W̊2
h by Lemma 2 in Section 3.1.2.

In order to close the system, we introduce an auxiliary unknown which arises from
integrating the pressure gradient term. In the original perturbation system (5.44)–
(5.46), the pressure gradient term appears as:∫

Th

w ·
(
θ̄∇δΠh

)
dx = −

∫
Th

∇h ·
(
θ̄w
)

δΠh dx +
∫
Eh

q
θ̄w

y
{{δΠh}}dS, (5.65)

where w ∈ W2
h . Because of (5.65), local reconstruction of δuk is impossible due to

the dependence on the trial unknowns δθk
h and δρk

h in neighboring cells (via the facet
average {{δΠh}}). To remedy this, we introduce a new independent unknown in Wtr

2
approximating the average contribution of the pressure perturbation on cell facets.
By construction, the trace is a single-valued scalar field on Eh.

Integrating in a single cell K, we introduce λh ∈ Ŵtr
h (∂K) appearing in the surface

integral:∫
K

w ·
(
θ̄∇δΠh

)
dx = −

∫
K
∇ ·

(
θ̄w
)

δΠh dx +
∫

∂K

(
θ̄w
)
· nλh dS, (5.66)

for all w ∈ W2
h (K). After collecting all the cell-wise contributions, we have the full

momentum equation containing three independent fields:∫
Th

w · δûk
h +

∆t
2

w ·
(

2Ω× δûk
h

)
dx

−
∆tcp

2

∫
Th

∂

∂z

(
δθk

hw · k̂
)

Π̄ dx−
∆tcp

2

∫
Th

∇h ·
(
θ̄w
)

δΠh dx

+
∆tcp

2

∫
Ehoriz.

h

r
δθk

hk̂
(

w · k̂
)z
{{Π̄}}dS

+
∆tcp

2

∫
Eh

q
θ̄w

y
λh dS = −R̂k

u[w], (5.67)

for all w ∈ Ŵ2
h , where R̂k

u[w] denotes the linear residual tested with discontinuous

184 Chapter 5. A hybridizable method for the Euler equations

functions. We will proceed to eliminated δθk
h as in Section 5.2.3. The new unknown

λh is a global approximation to the average of δΠh on Eh. An immediate difference
between the hybridizable methods in Chapter 3 and here is that λh is approximat-
ing a different independent unknown; one may expect the hybridized variable to
approximate a density-trace, but here we have reintroduced the Exner pressure into
the linear equations.

After performing the elimination of δθk
h, the hybridization of (5.44)–(5.46) is summa-

rized as the following variational problem: find δûk
h ∈ Ŵ2, δρk

h ∈ W3, and λh ∈ Wtr
h

such that

Ahybrid.(w; δûk
h) +

∆tcp

2
Ghybrid.(w; δρk

h) +
∆tcp

2
K(w; λh) = −R̂k

u,θ [w], (5.68)

∆t
2

Dhybrid.(φ; δûk
h) + M3(φ; δρk

h) = −Rk
ρ[φ], , (5.69)

K(δûk
h; γ) = 0, (5.70)

for all (w, φ, γ) ∈ Ŵ2
h ×W3

h ×Wtr
h , where the finite element forms are give by

Ahybrid.(w; δûk
h) = M̂2(w; δûk

h) +
∆t
2

Ĉ(w; δûk
h) +

∆t2

4
M̂v

2(w; δûk
h), (5.71)

M̂2(w; δûk
h) =

∫
Th

w · δûk
h dx, (5.72)

Ĉ(w; δûk
h) =

∫
Th

w ·
(

2Ω× δûk
h

)
dx, (5.73)

M̂v
2(w; δûk

h) =
∫
Th

∂Π̄
∂z

δûk
h · k̂

∂

∂z

(
θ̄w · k̂

)
dx

−
∫
Ehoriz.

h

s
∂θ̄

∂z
δûk

h · k̂
(

w · k̂
)

k̂
{
{{Π̄}}ds, (5.74)

Ghybrid.(w; δρk
h) = −

∫
Th

∂Π̄
∂ρ̄

δρk
h∇h ·

(
θ̄w
)

dx (5.75)

Dhybrid.(φ; δûk
h) = −

∫
Th

∇hφ · δûk
hρ̄ dx +

∫
Eh

r
φδûk

h

z
{{ρ̄}}dS, (5.76)

M3(φ; δρk
h) =

∫
Th

φδρk
h dx, (5.77)

K(w; λh) =
∫
Eh

q
θ̄w

y
λh dS, (5.78)

and the modified residual is given by:

R̂k
u,θ [w] = R̂k

u[w]−
∆tcp

2

∫
Th

∂

∂z

(
rk

θw · k̂
)

Π̄ dx

− ∆t
2

∫
Th

∂Π̄
∂z

rk
θ

∂

∂z

(
θ̄w · k̂

)
dx

+
∆tcp

2

∫
Ehoriz.

h

r
rk

θ

(
w · k̂

)
k̂
z
{{Π̄}}dS. (5.79)

Note that both {{Π̄}} and {{ρ̄}} are averages of known fields. This allows us to treat
the quantities as functions in Wtr

h whose values on the facets are the averages of Π̄
and ρ̄, respectively.

5.3. A hybridizable method for the compressible equations 185

Observe that, while we have dramatically increased the total number of unknowns,
we have actually simplified the equations just by introducing λh. Lower-order surface
terms which were originally present in both A and G in (5.52) and (5.53) no longer
appear. This is due to the fact that introducing λh as an independent unknown
decouples surface terms with δΠh; they are now treated independently in the global
system for λh.

Since all prognostic variables are only coupled within each cell, we can apply element-
wise static condensation to the system (5.68)–(5.70) to assemble a reduced problem
for λh on the mesh skeleton. Once λh is determined, δûk

h and δρk
h are reconstructed

via solving elemental linear systems. The jump condition:

K(γ; δûk
h) = 0, ∀γ ∈Wtr

h (5.80)

ensures that our computed velocity perturbation is both H(div)-conforming and
satisfies the slip-boundary conditions. Note also that scaling (5.80) by any non-zero
coefficient does not change the result. Once both fields are determined, δθk

h is re-
covered by solving a simple mass matrix system. We shall elaborate further in our
summary of the complete solution procedure for solving (5.1)–(5.3).

Remark 10. The original spatial discretization in (5.26)–(5.28), along with the perturbation
system in (5.44)–(5.46), still requires further analysis. Natale, Shipton, and Cotter (2016)
proposed the discretization as an extension of the ideas of Cotter and Shipton (2012) to the
full compressible equations (5.1)–(5.3). The scheme does conserve mass, but not energy,
potential vorticity, or temperature.

As a consequence, the hybridizable formulation (5.68)–(5.70) inherits the same conservation
properties for mass, but nothing more. Further analysis of the hybridizable method and the
original discretizations are currently work in-progress.

5.3.3 Full solution procedure with hybridization

The full solution algorithm for solving the compressible Euler equations (2.2)–(2.5)
will use the methods outlined in all preceding sections. The implementation of this
method is detailed in the open-source project: Gusto (firedrakeproject.org/gusto/),
which is a three-dimensional finite element dynamical core toolkit built around the
Firedrake Project (Rathgeber et al., 2017). Algorithmically, the procedure is similar
to how we described in Section 5.2. However, the nonlinear approach is executed
using slightly different mechanics to achieve the same result. The formulation of the
perturbation equations and the hybridization method remains unaffected.

Let qn denote the prognostic state variables (un
h , ρn

h , θn
h) (Πn

h is diagnosed from its
definition in (5.4)). We use F (qn) to describe the forcing operation which is detailed
below. The “predicting" advection step evolves the state in time using the midpoint

quantities qn− 1
2 , with un− 1

2
h as the advecting velocity. We denote this operation by

Au(qn− 1
2 ; q?), where q? is an input state to be advected. The “correction" step first

finds the residual Rk, which are reduced iteratively in the Picard method by suc-
cessively computing best approximations to the error: ∆q = qn − qn−1. The errors
are approximated by solving the linearized system J δqk = Rk in the k-th Picard
iteration. The linear updates are used to update the field for the next time-step. At
the end of a Picard cycle, we have the option to apply a diffusion scheme, which we
denote as the operation D(qn).

https://firedrakeproject.org/gusto/

186 Chapter 5. A hybridizable method for the Euler equations

The main contribution of this chapter revolves around solving the linear system, so
we refrain from going in-depth into the mechanics of both F and D. We simply
summarize here to establish context. Note that a parameter α is a time-stepping
coefficient, which can be varied. In our case, we simply take α = 1

2 . Following
Wood et al. (2014), we perform a total of 4 Picard iterations per time-step. This was
experimentally determined to be an optimal balance between the total number of
required linear solves and the quality of computed solutions. The results we have
obtained are in agreement with similar studies performed by Melvin et al. (2019).

The entire simulation process of the Gusto dynamical core can be categorized into
two main stages: (1) the initialization stage; and (2) the evolution of the nonlinear
equations. We shall quickly summarize the initialization routine first.

Initialization of the dynamical core

For many test cases, the background state of the model will be in hydrostatic balance.
In terms of initializing the model, we need to compute an Exner pressure field Π̄
given an initial temperature field θ̄ and a boundary condition for the pressure (such
as a prescribed surface pressure). After determining Π̄, a background density ρ̄ can
be determined by solving a variational problem using (5.4). Since ρ̄ is determined by
Π̄, we shall only discuss how Π̄ is obtained. For further details on this initialization
stage, we refer the interested reader to Bendall et al. (2019).

Since large-scale atmoshperic flows will always remain near a state of hydrostatic
balance (Melvin et al., 2010; Wood et al., 2014), this balanced background state is
used in the linearization for the Picard method. Therefore, it is critical that the ba-
sic state of hydrostatic balance is accurately represented in the numerical model. In
Gusto, this initialization routine uses the hybridizable method for the hydrostatic
equation (3.204)–(3.205), which was developed in Section 3.4.1. Since the equations
are only coupled in vertical columns, the hybridizable system can be efficiently eval-
uated by inverted the trace system column-wise.

Semi-implicit procedure

Once the background state (Π̄, θ̄, ρ̄) is determined, the Jacobian is obtained via a
partial linearization of (5.1)–(5.3) around this state, detailed in Section 5.2.3. We then
employ the hybridizable method in Section 5.3 to solve the perturbation equations.
The entire semi-implicit procedure is summarized as follows.

For each time-step n, we perform:

1. Explicit forcing: Compute the intermediate quantity q? via:

q? ← qn−1 + (1− α)∆tF (qn−1). (5.81)

In the case of a dry atmosphere, evaluating F (qn−1) simply involves comput-
ing a velocity u?

h ∈W2
h satisfying for all w ∈W2

h :∫
Th

w · u?
h dx =

∫
Th

cp∇h ·
(

θn−1
h w

)
−w · 2Ω× un−1

h dx

−
∫
Th

gw · k̂ dx− cp

∫
Eh

Jθn−1
h wK{{Πn−1

h }}dS. (5.82)

5.3. A hybridizable method for the compressible equations 187

That is, u?
h is balanced by all non-advective terms in equation (5.1).

2. Set: qn
p = qn−1 and ∆q = qn

p − qn−1 (zero-initialization of ∆q).

3. Picard cycle: For k = 1, · · · , K:

(a) Intermediate quantity: Compute qn− 1
2 = qn−1 + α∆q.

(b) Advect: Advect the quantities forward in time to get the predictive fields:

q∗ ← Au(qn− 1
2 ; q?), (5.83)

where the application of Au(qn− 1
2 ; ·) is described in Sections 5.2.1 and

5.2.2 as solving the relevant linear variational problems.

(c) Residuals: Evaluate Rk = q∗ + α∆tF (qn
p)− qn

p.

(d) Solve: Solve for the linear perturbations:

J δqk = Rk. (5.84)

This uses the hybridization method as formulated in (5.68)–(5.70) with
reconstruction of δθk

h following afterwards.

(e) Update: qn
p ← qn

p + δqk.

4. Diffusion: qn
p ← D(qn

p). Here, diffusive terms are treated as physical parame-
terizations using an interior penalty method (Arnold, 1982). Only one example
uses this, which is the test case by Straka et al. (1993).

5. Advance time-step: qn−1 = qn
p.

5.3.4 Static condensation procedure and iterative solver

With the “Gusto" algorithm summarized, we now return to our focus on the linear
perturbation system. The solution method for computing δqk is as follows. The
system (5.68)–(5.70) has the form A ∆tcp

2 G KT

∆t
2 D M3 0
K 0 0

δÛ
k

δPk

Λ

 =

R̂u,θ
Rρ

0

 , (5.85)

where δÛ
k

and δPk denote the coefficient vectors for δûk
h and δρk

h, and Λ is the vector
for the Lagrange multipliers. Due to the elimination of inter-elemental coupling of
δûk

h, the 2 × 2 block corresponding to the coupling of velocity and density can be

inverted element-wise. This allows for the simultaneous elimination of δÛ
k

and δPk

in each cell, which produces the following system for Λ:

[
K 0

] [A ∆tcp
2 G

∆t
2 D M3

]−1 [
KT

0

]
Λ =

[
K 0

] [A ∆tcp
2 G

∆t
2 D M3

]−1{
R̂u,θ
Rρ

}
. (5.86)

Equation (5.86) can be assembled locally, using Firedrake’s static condensation inter-
face described in Section 4.4.2.

188 Chapter 5. A hybridizable method for the Euler equations

Once Λ is computed, the velocity and density perturbations are recovered by invert-
ing the local systems in each cell:[

A ∆tcp
2 G

∆t
2 D M3

]{
δÛ

k

δPk

}
=

{
R̂u,θ
Rρ

}
−
[

KT

0

]
Λ. (5.87)

The resulting velocity field is in Ŵ2
h , but we require it to be in W2

h . Since the computed
solution δûk

h satisfies the jump condition (5.63), we can use the H(div)-averaging
operator described in Section 4.4.3; we define the velocity perturbation δuk

h ∈ W̊2
h as

the function:
δuk

h = πavg(δûk
h). (5.88)

In our Firedrake implementation, we evaluate (5.88) by locally averaging the coeffi-

cient array: δUk ← ΠavgδÛ
k
, where Πavg is defined from (4.87).

Once δuk
h is determined, we can reconstruct δθk

h by solving the linear finite element
problem for δθk

h ∈Wθ
h :

∫
Th

ξδθk
h dx = −

∫
Th

ξrk
θ dx−

∫
Th

∂θ̄

∂z
k̂ · δuk

h dx (5.89)

for all ξ ∈ Wθ
h . This is just a mass-matrix system and can be efficiently inverted

column-wise.

Up until this point, we made no mention on solution approaches for (5.86). At this
point, the system for Λ requires extensive analysis to construct an effective precon-
ditioner. While we have not yet conducted a rigorous analysis of the spectral prop-
erties for the condensed matrix in (5.86), we consider the following details to aid us
in devising an effective linear solver:

• λh is introduced in surface terms as an approximation to the pressure correc-
tion term δΠ on the mesh skeleton Eh.

• Based on the work of Melvin et al. (2010), Wood et al. (2014), and Thomas et al.
(2003), we know that in staggered finite difference models, the equation for δΠ
is a non-symmetric Helmholtz-like elliptic operator.

• Multigrid methods are increasingly attractive for the elliptic equation due to
their ability to resolve multi-scale phenomena and scalable performance on
modern supercomputers (Müller and Scheichl, 2014; Mitchell and Müller, 2016;
Dedner, Müller, and Scheichl, 2015).

• Due to the small aspect ratio of atmospheric domains, the multigrid procedure
will need to use line-relaxation methods to efficiently solve the discrete system
(Börm and Hiptmair, 2001; Buckeridge and Scheichl, 2010).

With this in mind, we proceed in a similar manner to our development of a robust
solver for the linearized gravity wave system in Section 4.5.3. Following Elman,
Ernst, and O’Leary (2001), we employ a Krylov-enhanced multigrid preconditioner
for a nonsymmetric Krylov method (flexible GMRES or GCR).

Thus far, we have achieved great success in solving (5.86) using this approach. Fur-
thermore, we show later in a three-dimensional example that standard multigrid
methods for non-symmetric elliptic equations achieves ∆t-independent convergence
for the Λ system. This strongly suggests that the operator in (5.86) at least behaves

5.4. Numerical results 189

like an elliptic operator. Formal analysis on the properties of the condensed trace
system is a subject of on-going investigation. We therefore cannot make any con-
clusive statements on the spectral properties of left-hand side matrix in (5.86) at this
time. To conclude this chapter, we provide results from standard test cases for atmo-
spheric dynamical cores using our hybridization method.

5.4 Numerical results

Here, we present some standard test cases based on the test suite of Melvin et al.
(2010) and Melvin et al. (2019). We start with some standard vertical slice exam-
ples, which are simulations of the full compressible equations in an (x, z)-slice ge-
ometry. We conclude with a three-dimensional example detailed in the Dynamical
Core Model Intercomparison Project (DCMIP) suite (Ullrich et al., 2012). The im-
plementation of all vertical slice examples uses a (RTC f

1 , dQ0) discretization and the
Firedrake preconditioner “firedrake.SCPC,” based on the Slate language detailed
in Chapter 4. Due to the success of the hybridizable method in both vertical slice
and three-dimensional modeling, the approach described in Section 5.3 is now a
core component of the Gusto dynamical core toolkit. It has since been extended to
handle discretizations of a moist atmosphere by Bendall et al. (2019).

For organization, Table 5.2 displays the model parameters used for all vertical slice
models, along with relevant identifiers for context. Options configurations for the
hybridization solver used in all vertical slice examples is presented in Listing 5.1. All
numerical results are obtained using the new hybridization method.

TABLE 5.2: Model parameters used in Gusto for the vertical slice examples. The identi-
fiers are listed as the following: NHGW - Non-hydrostatic Gravity Wave; NHMW - Non-
hydrostatic Mountain Wave; HMW - Hydrostatic Mountain Wave; DC - Density Current.
Resolution in x and z directions are provided, along with the time-step size used, compu-
tational domain, background state, surface temperature Tsurf., and background velocity U.
For all test cases, the surface pressure is fixed at psurf. = 1000 hPa.

Model parameters and test cases

Test case ∆x ∆z ∆t Domain Background Tsurf. U
(km) (m) (s) (km × km) state (K) (m/s)

NHGW 1 1000 6 300× 10 N=0.01s−1 300 20
NHMW 0.4 250 2.5 144× 35 N=0.01s−1 300 10
HMW 2 250 5 240× 50 Isothermal 250 20

T = Tsurf.
DC 0.8 800 4 51.2× 6.4 Isentropic 300 0

θ = Tsurf.
0.4 400 2
0.2 200 1
0.1 100 0.5
0.05 50 0.25

190 Chapter 5. A hybridizable method for the Euler equations

LISTING 5.1: Solver options for the static condensation of the hybridizable formulation of
the Euler perturbation equations. The iterative solver for the Lagrange multipliers uses a
flexible Krylov method with an algebraic multigrid preconditioner using Krylov-accelerated
ILU smoothers.

1 -ksp_type preonly
2 -pc_type python
3 -pc_python_type firedrake.SCPC
4 -pc_sc_eliminate_fields 0, 1
5 -condensed_field_ksp_type fgmres
6 -condensed_field_ksp_rtol 1.0e-8
7 -condensed_field_ksp_atol 1.0e-8
8 -condensed_field_ksp_max_it 100
9 -condensed_field_pc_type gamg

10 -condensed_field_pc_gamg_sym_graph True
11 -condensed_field_pc_mg_levels_ksp_type gmres
12 -condensed_field_pc_mg_levels_ksp_max_it 5
13 -condensed_field_pc_mg_levels_pc_type bjacobi
14 -condensed_field_pc_mg_levels_sub_pc_type ilu

5.4.1 Non-hydrostatic gravity waves in a periodic channel

The first example was studied by Skamarock and Klemp (1994) to investigate the
accuracy of non-hydrostatic dynamics. This test examines the evolution of a poten-
tial temperature perturbation δθ in a constant mean flow superimposed on a back-
ground atmospheric state with constant buoyancy frequency N = 0.01s−1. This ini-
tial potential temperature perturbation radiates symmetrically to the left and right
in a 300km× 10km channel with periodic boundary conditions on the side walls.

The potential temperature perturbation is given by the expression

δθ = δθ0
sin
(

πz
H

)
1 +

(
x− L

2
a

)2 , (5.90)

where δθ0 = 0.01K, H = 10km, L = 300km, and a = 5km. The simulation was run
for a total of 3000 seconds. The evolution of potential temperature is illustrated in
Figure 5.2. Our profile of δθh at t = 3000 seconds achieves maximal and minimal
values of 2.86× 10−3 K and −1.51× 10−3 K respectively, which compares well with
previous studies of this same test, c.f. Melvin et al. (2010), Melvin et al. (2019), Choi
et al. (2014), Bao, Klöfkorn, and Nair (2015), and Li et al. (2013).

5.4.2 Hydrostatic and non-hydrostatic mountain waves

We perform a qualitative comparison of results for hydrostatic and non-hydrostatic
mountain waves over a witch-of-Agnesi profile given by

zS(x) =
hma2

(x− xc)2 + a2 , (5.91)

and an imposed mean-flow velocity in the background U to galvanize the wave.
For the non-hydrostatic flow regime, we take a = 10km, xc = L/2, where L is
the length of the domain, and hm = 1m. The mean-flow is set as U = 20ms−1.

5.4. Numerical results 191

(A) Initial θ perturbation.

(B) Evolution of δθh at t = 3000s.

FIGURE 5.2: Evolution of the potential temperature perturbation δθh for the non-hydrostatic
gravity wave test in a periodic channel. Counters are shown in Figure 5.2B ranging from
[−1.5× 10−3, 3.0×−3] in intervals of 5× 10−4 K.

The background state is isothermal, with Tsurf. = 250 K and initialized in a state of
hydrostatic balance. Following Klemp, Dudhia, and Hassiotis (2008), we impose an
absorbing condition in the upper-atmosphere in the form of a sponge layer. This
condition takes the form

µ(z) =

{
0 if z < zc,

µ̄ sin2
(

π
2

z−zc
H−zc

)
if z ≥ zc,

(5.92)

where zc = 20km and µ̄ = 0.3/∆t. The sponge function µ(z) is applied implicitly
by scaling test functions in the vertical component of the velocity equation during
implicit forcing. This prevents spurious waves from reflecting off the boundary lid.

For the non-hydrostatic configuration, a is reduced to 1km and the mean wind speed
U = 10ms−1. The background state has constant buoyancy frequency N = 0.01s−1,
and therefore has finite depth. As a result, the atmospheric lid is lowered to 35km
(compared to 50km in the hydrostatic case) and we set zc = 10km. The sponge layer
is adjusted by setting µ̄ = 0.15/∆t.

For the hydrostatic test case, the model is run in a hydrostatic configuration and run
up to t = 15000s. The vertical velocity perturbation at the final time is shown in

192 Chapter 5. A hybridizable method for the Euler equations

Figure 5.3A. Qualitatively, the field is comparable to previous tests, for example see
Melvin et al. (2019), as well as the linear analytic solutions presented for comparison
by Wood et al. (2014, Figure 4(d)). However, in some regions approximately above
4000 m in the vertical, the finite element solution exhibits peaks which are less than
0.0005 m/s in magnitude. It appears the numerical model is slightly underestimat-
ing the maximal magnitudes in the vertical velocity, a phenomena also observed by
Giraldo and Restelli (2008) and Choi et al. (2014).

Similar phenomena was observed in the non-hydrostatic configuration. The model
was run to a final time of 9000s. The resulting vertical velocity perturbation is shown
in Figure 5.3B. Again, qualitatively the Gusto model agrees fairly well with the stud-
ies by Melvin et al. (2010) and Melvin et al. (2019). We observe that our model
slightly underestimates the maximal contour plots for the magnitude of vertical ve-
locity components (approximately O(10−4)).

To determine whether the slight underestimations in the vertical components of the
fluid velocity is a direct result of hybridization, both test cases were re-run using the
discretization of Natale, Shipton, and Cotter (2016) (not shown). The resulting fields
were identical to that of the ones produced here. Therefore, we can rule out any po-
tential errors caused via hybridization. This may indicate issues with the nonlinear
method, advection schemes, and/or treatment of the potential temperature pertur-
bation when eliminating under the presence of orography. These test cases, along
with revisiting the core Gusto-algorithm, is a subject of on-going investigation.

5.4.3 Density current

The last vertical slice test we consider was first presented by Straka et al. (1993). This
test consists of a cold bubble suspended in a motionless isentropic atmosphere with
θ = Tsurf. = 300 K. The profile of the bubble is initialized via

δθ =

{
0 if r > 1,
15
2 (cos (πr) + 1) if r ≤ 1,

(5.93)

where

r =

√(
x− xc

xr

)2

+

(
z− zc

zr

)2

, (5.94)

xc = L
2 , xr = 4000 m, zc = 3000 m, and zr = 2000 m. The test case also features

artificial diffusion using a dynamic viscosity ν = 75m2s−1 to ensure convergence
of the numerical solution. Driven by its negative buoyancy, the bubble falls to the
bottom of the domain and should spread symmetrically in the horizontal direction,
developing Kelvin-Helmholtz rotors.

We run this test using various levels of resolution, listed in Table 5.2. The initial
bubble, along with the potential temperature perturbation and velocity fields at the
final simulation time of t = 900 s are shown in Figures 5.4 and 5.5 at the finest
resolution ∆x = 50 m. The solution remains symmetric about the channel origin,
indicating little to no phase errors in our numerical method.

Figures 5.6 and 5.7 display the potential temperature perturbation at the final sim-
ulation time across various resolutions. The front of the bubble forms at approxi-
mately 14637 m from the center, which is comparable to previous studies of this test

5.4. Numerical results 193

(A) The vertical velocity perturbation at t = 15000s for the hydrostatic test case.

(B) The vertical velocity perturbation at t = 9000s for the non-hydrostatic test case.

FIGURE 5.3: The vertical velocity perturbation for the hydrostatic mountain wave test at
t = 15000s (Figure 5.3A) and the vertical velocity perturbation for the non-hydrostatic test
case at t = 9000s (Figure 5.3B). Contours in the hydrostatic vertical velocity range from
[−4× 10−3, 4× 10−3] m/s, with intervals of 5× 10−4 m/s centered around the 0 contour.
For the non-hydrostatic case, contours range from [−4.8× 10−3, 4.8× 10−3] in intervals of
6× 10−4 m/s

(Melvin et al., 2010; Melvin et al., 2019; Bao, Klöfkorn, and Nair, 2015; Li et al., 2013).
Moreover, our numerical converges relatively rapidly in terms of front formation, as
well as developing all three Kelvin-Helmholtz rotors at a relatively coarse resolution
of ∆x = 200 m.

Table 5.3 shows the minimum and maximum values of the potential temperature
perturbation δθh after 900 seconds for all resolutions considered here. After ∆x =
200 m, increasing the resolution dramatically reduces the overshoot in δθmax, which

194 Chapter 5. A hybridizable method for the Euler equations

analytically should be 0 K. Increasing the resolution further and comparing with
Straka et al. (1993), we observe comparable results with other models considered in
the study. All fine-scale structures are fully developed by ∆x = 100 m.

TABLE 5.3: Maximum and minimum values of δθh after 900 seconds across various resolu-
tions.

Min and max values of δθh
Resolution (m) δθmin (K) δθmax (K)

800 -8.0464 0.8391
400 -10.1331 1.2621
200 -9.4668 0.6600
100 -8.9137 0.2686
50 -8.7686 0.0237

(A) The initial perturbation in the potential temperature.

(B) The potential temperature field at t = 900 s.

FIGURE 5.4: The temperature perturbation at t = 0s (5.4A), and t = 900 s (5.4B). A solid
line is plotted at x = 25600m, the mid-point of the domain. The solution remains symmetric
about the origin throughout the simulation (∆x = 50 m).

5.4. Numerical results 195

FIGURE 5.5: The velocity field at t = 900 s with a solid line plotted at x = 25600m (∆x = 50
m).

(A) ∆x = 800 m.

(B) ∆x = 400 m.

FIGURE 5.6: The potential temperature perturbation (t = 900 s) at the coarser resolutions:
∆x = 800m and 400m. The vertical line denotes the front location at the finest resolution:
x = 40237m (14637 m from the center). Contours range from −9 to −1 K in intervals of 1 K.

196 Chapter 5. A hybridizable method for the Euler equations

(A) ∆x = 200 m.

(B) ∆x = 100 m.

(C) ∆x = 50 m.

FIGURE 5.7: The potential temperature perturbation (t = 900 s) at the finest resolutions:
∆x = 200m, 100m, and 50m. The vertical line denotes the front location at the finest resolu-
tion solution: x = 40237m (14637 m from the center). Contours range from −9 to −1 K in
intervals of 1 K.

5.4. Numerical results 197

5.4.4 Non-orographic gravity waves on a small planet

The final test case we consider is a full three-dimensional simulation of a gravity
wave on a condensed planet. We run the model in a non-hydrostatic regime fol-
lowing test case 3.1 of the Dynamical Core Model Intercomparison Project (DCMIP)
suite (Ullrich et al., 2012). The test consists of a balanced state in a solid body rota-
tion with a mean-flow velocity U = 20ms−1 on the equator. A localized potential
temperature perturbation is added along the equator of the form:

δθ =
d2

d2 + r2 sin
(πz

H

)
, (5.95)

where d = 5000m is the width parameter for the perturbation, H = 10km is the
height of the atmospheric lid. The “great circle distance" r is defined via

r =
R
X

arccos (sin (φc) sin (φ) + cos (φc) cos (φ) cos (λ− λc)) , (5.96)

where φc = 0, λc = 2π/3 is the latitudal and longitudinal center-point of the per-
turbation respectively, R = 6371km, and X = 125 is the planet-radius reduction
factor.

The horizontal grid is a cubed sphere consisting of 6,144 quadrilateral cells extruded
upwards uniformly with 64 layers, for a total of 393,216 cuboid cells. We construct
the finite element complex in three-dimensions using the lowest-order complex pre-
sented in Section 2.4.4 for cuboid elements. The initial perturbation field, as well as
the field at t = 3000 s is presented in Figure 5.8. A time-step size of ∆t = 100 s was
used. The numerical results are similar to those provide by other models, which are
publicly available as part of workshop hosted by The 2012 Dynamical Core Model
Intercomparison Project: https://www.earthsystemcog.org/projects/dcmip-2012/.

(A) Initial temperature perturbation. (B) Evolution of the potential temperature at
t = 3000 s.

FIGURE 5.8: Plots of the potential temperature perturbation at t = 0 s and t = 3000 s for the
non-orographic gravity wave test on a condensed planet.

https://www.earthsystemcog.org/projects/dcmip-2012/

198 Chapter 5. A hybridizable method for the Euler equations

TABLE 5.4: Vertical and horizontal spaces for the semi-implicit hybridizable system for the
Euler equations, as well as total degree of freedom count (broken velocity, density, and La-
grange multipliers).

Compatible finite element discretizations
Method V0

h V1
h U0

h U1
h U2

h Hybrid. dofs
RT1 (LO) P1 dP0 P1 RT1 dP0 2.8 M

RT2 (NLO) P2 dP1 P2 RT2 dP1 13.1 M
BDFM2 (NLO) P2 dP1 P2 ⊕ B3 BDFM2 dP1 13.7 M

Robustness against implicit Courant number

We now examine the iterative solver in a three-dimensional setting. Indeed, all the
vertical slice examples from Sections 5.4.1–5.4.3 provided insight on our model re-
producing relevant dynamics for select dynamical core tests, transitioning the model
into three-dimensions requires solvers which are robust against parameters. Of par-
ticular interest is time-step size robustness in semi-implicit methods. In this section,
we perform a stress-test on the hybridized equation for the Lagrange multipliers by
increasing the horizontal implicit Courant number. For this experiment, the implicit
Courant number ν is defined as

ν = cs
∆t
∆x

, cs =

√
cpT0

γ
, (5.97)

where cs is the speed of sound in an air-parcel and ∆x is the horizontal resolution.
Here, cp is the specific heat capacity of a dry atmosphere at constant pressure, T0 =
300 K is the isothermal atmospheric temperature, and γ = (1− κ)/κ with κ = Rd/cp
denoting the ratio of the ideal gas constant Rd and cp.

Computational domain and discretization spaces. The computational domain is
a spherical annulus Ω = S(R)× [0, H], where S(R) is the surface of a sphere with
radius R = 6731 km and H = 10 km is the height of the atmosphere. A mesh Th of
Ω is constructed by first generating a base mesh of S(R) consisting of 4 refinements
of an icosahedron. This produces a base mesh with 5,120 triangular cells. Then Th is
obtained by vertically extruding the based mesh into 64 uniform levels, producing a
mesh containing 327,680 triangular prism cells.

Using the one- and two-dimensional de-Rham complexes: V0
h

∂z→ V1
h and U0

h
∇⊥→

U1
h
∇·→ U2

h . We construct the three-dimensional complex: W0
h
∇→ W1

h
∇×→ W2

h
∇·→ W3

h
as before. Here, we consider three discretization methods: one lowest-order (LO)
method and two next-to-lowest order (NLO) methods, constructed from the spaces
in Table 5.4. Note that the finite element BDFM2, while only mentioned briefly in
Chapter 4, was shown to be a part of a compatible sequence by Cotter and Shipton
(2012), with U0

h = P2 ⊕ B3, where B3 is a cubic “bubble" function vanishing on cell
edges. For our purposes, we only need the latter two spaces in the complex.

Experimental setup. We construct a setup with background fields as in the DCMIP
test case 3.1 (scaled to a full sized Earth), but with advection turned off entirely. This
is due to the fact that we will run over a parameter range the exceeds the critical

5.4. Numerical results 199

advective CFL limit for our current choice set of advection equations. With no ad-
vection, we are simply testing the implicit solver. We invert the hybridizable system
(5.85) onto a (seeded) randomly generated right-hand side, with entries sampled
from a standard Gaussian distribution. We compute time-step sizes corresponding
to increasing ν, as defined in (5.97). Note that typically atmospheric models run with
time-steps such that ν = O(2− 10). In our setup, we consider values of ν up to 20.

Iterative solvers. We consider two solver strategies for inverting the Lagrange
multiplier system. Both procedures are outlined here.

1. AMG(Kgmres(k)): This preconditioning strategy follows exactly as in the linear
gravity wave example in Section 4.5.3. The AMG method employed is PETSc’s
implementation of smoothed aggregation multigrid (GAMG), using a Krylov-
accelerated smoother based on line relaxation.

• Line relaxation is the optimal choice for smoothing in small aspect ra-
tion domains. As we have previously mentioned, the trace degrees of
freedom are ordered column-wise (Bercea et al., 2016). We can therefore
use PETSc’s implementation of block ILU as a line-ILU method (Shapira,
2008, §11.6). In other words, block ILU-based smoothing (Wesseling and
Oosterlee, 2001; Stevenson, 1994; Wittum, 1989) behaves like a line relax-
ation method for the trace system.

• ILU is used in conjunction with non-restarted GMRES due to the non-
symmetry of the trace operator. Krylov-accelerated smoothing is more
often used for both non-symmetric or indefinite systems, as discussed by
Birken, Bull, and Jameson (2016) and Elman, Ernst, and O’Leary (2001).

• We denote by Kgmres(k) as k iterations of preconditioned GMRES using
the block ILU method outlined above.

2. AMG(R(k)): Our second strategy also uses a smoothed aggregation multigrid
approach. However, instead of Krylov-based smoothing, we consider a more
common approach in atmospheric modeling. We construct smoothers based
on the Richardson iteration (Richardson, 1911).

• The Richardson iteration is one of the simplest choices of classical iterative
methods. For a matrix system SΛ = R, the preconditioned Richardson
iteration takes the form:

Λ(i+1) = (I −ωP−1S)Λ(i) + ωP−1R, i ≥ 1, (5.98)

where ω is a relaxation parameter and P is a preconditioner. The opti-
mal choice of ω is explored by Smolarkiewicz and Margolin (1994), but
produces a parameter ω = ωi that depends on the iterates Λ(i).

• Line relaxation based on Richardson iterations has been demonstrated to
be highly effective for accelerating Krylov methods (like GCR) for non-
symmetric elliptic operators (particularly for geophysical flows) (Smo-
larkiewicz and Margolin, 1994; Thomas et al., 2003). We therefore con-
sider the Richardson method preconditioned with block ILU.

200 Chapter 5. A hybridizable method for the Euler equations

• R(k) denotes k ILU-preconditioned Richardson iterations. In our imple-
mentation, we take ω = 0.8 in (5.98). This was heuristically determined
based on experimentation.

In this experiment, we use a flexible variant of GMRES on the trace system. Both
AMG(Kgmres(k)) and AMG(R(k)) are used as preconditioners to accelerate the
convergence of the Krylov method, which is set to terminate when the residual is
reduced by a factor of 106. We consider two values of k for the AMG smoothers
Kgmres(k) and R(k), k = 3 and k = 5. The rationale behind this decision is to specif-
ically examine the effectiveness of each preconditioner given different varying levels
of smoothing.

All computations were performed on a fully-loaded compute node of dual-socket
Intel E5-2630v4 (Xeon) processors running at 2.2GHz, utilizing a total of 40 MPI pro-
cesses (2× 10 cores with 2 threads per core). Figure 5.9 displays the results of this ex-
periment for increasing ν and all choices of spatial discretizations in Table 5.4. For all
cases, a steady increase in iterations throughout the Courant numbers ν = O(1− 6)
is observed. The solver plateaus in iteration count after ν = 6, maintaining conver-
gence behavior up to ν = 20. This demonstrates good solver robustness with respect
to ∆t. This behavior is further improved by increasing the number of smoothing it-
erations.

While the spectral properties of the trace operator are not rigorously understood at
this time, our results indicate that multigrid is a feasible preconditioning strategy.
This warrants further investigation. In particular, the design of optimal smoothing
strategies is critical for the success of multigrid. Our findings are promising and
have provided some insight on the effectiveness of Krylov-accelerated smoothing
and standard line relaxation methods.

When using Krylov-enhanced smoothers, we observe that the convergence of the
outer Krylov method is more sporadic for AMG(Kgmres(3)). This is remedied by in-
creasing the number of smoothing iterations (Kgmres(5)), as variations in outer itera-
tions remains far more controlled. This suggests that 3 GMRES-smoothing iterations
doesn’t sufficiently produce a smooth enough error for the coarse-grid correction to
handle effectively. This in turn requires the outer Krylov method to iterate further
in order to control the reduction in the problem residual.

In contrast, the convergence behavior using Richardson smoothers in Figure 5.9B is
far more controlled (compare with Figure 5.9A). Overall, AMG(R(k)) requires less
outer iterations to reach convergence. This suggests that the Richardson smoothers
are more effective for removing the high-frequency errors. Due to the simplicity of
the Richardson method, this is perhaps a far more viable alternative over Krylov-
based smoothing. It is worth noting that the results shown in Figure 5.9B depend
on the choice of relaxation parameter ω. For ω u 1 and ω < 0.5, the total number
of outer Krylov iterations noticeably increased. It was heuristically determined by
experimentation that ω ≈ 0.8 produced consistently better results in terms of solver
convergence.

There is currently increased interest in geometric multigrid approaches (GMG) rather
than purely algebraic methods. The approach by Gopalakrishnan and Tan (2009) is
particularly interesting, as this involves coarsening the trace problem to a P1 continu-
ous Lagrange finite element space, where the GMG strategies of Müller and Scheichl
(2014) can be applied. A more concentrated study on iterative methods and geomet-
ric multigrid techniques for the trace system (5.86) is currently being investigated.

5.4. Numerical results 201

1 2 4 6 8 10 12 14 16 18 200

5

10

15

20

25

30

35
K

ry
lo

v
ite

ra
tio

ns

Solver convergence for the trace system

RT1 AMG(gmres(3))
RT1 AMG(gmres(5))

RT2 AMG(gmres(3))
RT2 AMG(gmres(5))

BDFM2 AMG(gmres(3))
BDFM2 AMG(gmres(5))

(A) Courant number parameter test for AMG(Kgmres(k)), k = 3, 5

1 2 4 6 8 10 12 14 16 18 200

5

10

15

20

25

30

35

K
ry

lo
v

ite
ra

tio
ns

Solver convergence for the trace system

RT1 AMG((3))
RT1 AMG((5))

RT2 AMG((3))
RT2 AMG((5))

BDFM2 AMG((3))
BDFM2 AMG((5))

(B) Courant number parameter test for AMG(R(k)), k = 3, 5

FIGURE 5.9: Number of Krylov iterations to invert the trace system versus horizontal
Courant number for AMG(Kgmres(k)) (5.9A) and AMG(R(k)) (5.9B). Flexible GMRES is
used as the outer solver for the trace system and terminates when the residual is reduced by
a factor of 106.

202 Chapter 5. A hybridizable method for the Euler equations

5.5 Chapter summary

In this chapter, we introduced a new hybridizable method for the linearized Eu-
ler equations obtained from a semi-implicit discretization, a common approach in
operational dynamical cores. The formulation permits the local elimination of prog-
nostic variables to produce a condensed equation for a new unknown on the mesh
skeleton. Unlike the previous hybridizable methods described in Chapters 3 and
4, the formulation in Section 5.3 reintroduces the pressure correction term, which
was previously not directly included as an independent unknown. Additionally,
the hybridizable formulation actually simplifies the mixed system for the linear per-
turbations due to the introduction of the Lagrange multipliers, eliminating several
lower-order surface terms coupling velocity and density unknowns in (5.47)–(5.48).

The software framework in Chapter 4 allows for the rapid implementation of this
new hybridizable method. Due to the composable nature of the Slate-based static
condensation interfaces, we are able to rapidly prototype various solver configura-
tions to better understand the numerical properties of the condensed equation for
the pressure trace. With that in mind, we remark here that this work has opened
many different avenues of possible research. The UK Met Office is currently ex-
ploring the application of these new hybridization techniques for the equation sets
considered in this chapter.

There are currently unanswered performance questions about this new hybridizable
method, though much of the mechanical aspects of the algorithm (static condensa-
tion, local recovery) can be inferred from the results of Chapter 4. Ultimately, the
question about scalable solution methods for the Lagrange multiplier systems must
be investigated further. The extension of the hybridizable method in Section 5.3 to a
moist atmosphere has been successfully done in Bendall et al. (2019).

203

6 Summary and outlook

6.1 Summary and conclusions

In this dissertation, we have studied the application of hybridization to the com-
patible finite element formulations of various equation sets relevant for geophysical
flows. We summarize here our findings here.

We started in Chapter 2 by providing standard systems of PDEs which commonly
arise in atmospheric (and occasionally ocean) applications. Emphasis was placed
on familiarity with common definitions used in context. Next, a formal definition
of the finite element was provided. From that definition, various element fami-
lies corresponding to different classes of Sobolev spaces. From there, we connected
the finite element families with the discrete de-Rham complexes in one-, two-, and
three-dimensional settings. This led to a formal definition of a compatible finite el-
ement discretization; by selecting the appropriate sequence of spaces, deriving the
finite element formulation produces the desired compatible method. We concluded
the chapter with constructions of three-dimensional complexes using tensor product
finite elements, a particularly useful construction for atmospheric-shaped domains.

In Chapter 3, we formally introduce the hybridization technique for a linear shallow
water model. The purpose of this is to build up for the analysis of the hybridized
variable λh. In Section 3.2, we analyzed the hybridizable formulation of the linear
shallow water equations. The conclusions that we made were the following:

• The hybridization of the shallow water equations defines a well-posed discrete
system;

• The local solvers defining the hybridizable method are well-posed;

• The solutions of the hybridizable method are also the solutions to the original
compatible finite element discretization;

• The Lagrange multiplier λh is the unique solution to a variational problem
defined on the mesh skeleton;

• The prognostic variables can be expressed as local lifting operators which re-
constructs the variables in each cell using data obtained from either λh or right-
hand side function. Mechanically, this is what the element-wise recovery en-
capsulates.

The fact that the eliminated variables can be recovered locally is due to the fact that
the equations for the local solvers in Section 3.2.1 are well-posed. We then used the
hybridizable method within a nonlinear method for the full shallow water equations
and provided numerical results from standard test cases on the sphere. We then con-
cluded by constructing new hybridizable formulations of the hydrostatic equation
and a linear gravity wave system in Section 3.4.

204 Chapter 6. Summary and outlook

No mention of the implementation was given in Section 3.3, as the purpose of those
numerical results were to provide verification within the context of well-documented
test cases. In Chapter 4, we introduce a new domain-specific abstraction which
enables all the hybridization procedures in this dissertation. The language, Slate,
allows for the concise representation of the local linear algebra operations that is
required of solving hybridizable systems. Using Firedrake and its strong composi-
tion with the PETSc solver library, we develop Slate-based preconditioner interfaces
which allows for on-demand and runtime-configurable static condensation solvers.
These precondtioners may be arbitrarily composed with existing precondtioners,
and the linear system for the Lagrange multipliers has access to all internal and
external solver libraries that PETSc provides. This facilitates rapid proto-typing of
solver strategies for the trace system. In Section 4.4.4, we summarize precondition-
ing strategies for the Lagrange multiplier system using algebraic multigrid methods.

The performance of hybridization was examined in Section 4.5, using Slate-generated
kernels for local linear algebra. We demonstrated that hybridizable methods greatly
outperforms standard mixed methods in terms of time-to-solution. For the three-
dimensional gravity wave experiment, we also showed that hybridization allows
for a more parameter-robust solution approach. This is especially apparent when
implicitly incorporating the Coriolis term.

Finally, Chapter 5 presents a new hybridizable formulation of the linearized pertur-
bation system for the compressible Euler equations. The main difference compared
with all previous hybridization methods is that the hybridizable Euler system rein-
troduced a separate independent unknown which is not the trace of any prognostic
variable in the original mixed system. This already opens up many question regard-
ing the nature of the Lagrange multipliers for that system. We presented standard
vertical slice tests using the Gusto dynamical core with the new hybridizable solver.
While there were some minor differences in the test case results when compared to
ENDGame, the results were comparable to many other existing models using dif-
ferent numerics. A three-dimensional example was provided in Section 5.4.4, which
included a parameter-robustness test for the hybridizable solver. Our initial findings
suggest that the trace system can be efficiently solved using multigrid techniques.

6.2 Further work

There are many potential areas of future work concerning the work presented in this
dissertation.

• Spectral properties of the trace system: The hybridization of the linearized
shallow water equations in Section 3.2 provides a strong starting point for ex-
amining the discrete operator even further. It will therefore be interesting to
extend these ideas to the hybridizable methods presented in Section 3.4. For
each of these systems, a rigorous proof demonstrating the spectral equivalence
of the trace operator with a known elliptic operator would be a powerful re-
sult. The idea that such an equivalence can be made is inspired by the findings
of Gopalakrishnan (2003).

• Optmization of dense linear algebra: Slate as described in Chapter 4 is a con-
tinuously evolving piece of software, adapting based on research demands.

6.2. Further work 205

Slate-generated kernels can and should be improved. To exploit different ar-
chitectures, such as accelerators (GPUs), batched or vectorized linear algebra
should be incorporated in Slate’s compiler. In doing so, we can make good
use of the batched linear algebra routines being developed in LAPACK/BLAS
(Haidar et al., 2015; Abdelfattah et al., 2016).

• Analysis of the hybridizable Euler system: The hybridizable Euler system,
while numerically stable, is relatively unknown in terms of the analysis. Cur-
rently, a characterization theorem akin to that of Section 3.2 is being developed
for the hybridizable Euler system. This will require the following

– Construction of the local solvers and their well-posedness;

– A characterization theorem for λh that relates the prognostic variables (ve-
locity and density) with the local solvers;

– Analysis of the variational problem corresponding to λh.

On the latter point, a couple ideas to consider are the following. Since λh is
an approximation of the pressure-correction, δΠ on the skeleton, then perhaps
there is some level of spectral equivalence with the reduced trace operator and
the non-symmetric Helmholtz operator for δΠ in staggered finite-difference
models (Wood et al., 2014; Thuburn, 2016). Moreover, a proof of the ellipticity
of the trace operator would be a strong result for this case. It would further
validate the behavior of multigrid preconditioning observed in Section 5.4.4.

• Non-nested multigrid preconditioning: It was shown for mixed formulations
of elliptic equations that the hybridized variable λh could be solved by solving
a corresponding P1 continuous Galerkin system using a non-nest multigrid
algorithm (Gopalakrishnan and Tan, 2009). The extension of this multigrid
method for a shallow water system using an HDG method is detailed in a
paper in preparation based on the work of Cockburn et al. (2013). A natural
extension of this multigrid approach for the hybridization of compatible finite
element discretizations is a topic of on-going interest.

206

Bibliography

Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra (2016). “Performance, Design,
and Autotuning of Batched GEMM for GPUs”. In: Lecture Notes in Computer Sci-
ence. Springer International Publishing, pp. 21–38. DOI: 10.1007/978- 3- 319-
41321-1_2.

Adams, M., M. Brezina, J. Hu, and R. Tuminaro (2003). “Parallel multigrid smooth-
ing: polynomial versus Gauss–Seidel”. In: Journal of Computational Physics 188.2,
pp. 593–610. DOI: 10.1016/s0021-9991(03)00194-3.

Adams, S. V., R. W. Ford, M. Hambley, J. M. Hobson, I. Kavčič, C. M. Maynard, T.
Melvin, E. H. Müller, S. Mullerworth, A. R. Porter, M. Rezny, B. J. Shipway, and
R. Wong (2019). “LFRic: Meeting the challenges of scalability and performance
portability in Weather and Climate models”. In: Journal of Parallel and Distributed
Computing 132, pp. 383–396. DOI: 10.1016/j.jpdc.2019.02.007.

Alnæs, M. S., A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells (2014). “Unified
form language: A domain-specific language for weak formulations of partial dif-
ferential equations”. In: ACM Transactions on Mathematical Software 40.2, pp. 1–37.
DOI: 10.1145/2566630.

Amestoy, P. R., I. S. Duff, and J. Y. L’Excellent (2000). “Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers”. In: Computer Methods in Applied
Mechanics and Engineering 184.2-4, pp. 501–520. DOI: 10.1016/s0045- 7825(99)
00242-x.

Arakawa, A. and C. S. Konor (1996). “Vertical Differencing of the Primitive Equa-
tions Based on the Charney–Phillips Grid in Hybrid σ–p Vertical Coordinates”.
In: Monthly Weather Review 124.3, pp. 511–528. DOI: 10.1175/1520-0493(1996)
124<0511:VDOTPE>2.0.CO;2.

Arakawa, A. and V. R. Lamb (1977). “Computational Design of the Basic Dynamical
Processes of the UCLA General Circulation Model”. In: Methods in Computational
Physics: Advances in Research and Applications. Elsevier, pp. 173–265. DOI: 10.1016/
b978-0-12-460817-7.50009-4.

Arbogast, T. and Z. Chen (1995). “On the implementation of mixed methods as non-
conforming methods for second-order elliptic problems”. In: Mathematics of Com-
putation 64.211, pp. 943–943. DOI: 10.1090/s0025-5718-1995-1303084-8.

Argyris, J. H. (1955). “Energy theorems and structural analysis: a generalized dis-
course with applications on energy principles of structural analysis including the
effects of temperature and non-linear stress-strain relations part I. General the-
ory”. In: Aircraft Engineering and Aerospace Technology 27.4, pp. 125–134. DOI: 10.
1108/eb032545.

Argyris, J. H., I. Fried, and D. W. Scharpf (1968). “The TUBA Family of Plate Ele-
ments for the Matrix Displacement Method”. In: The Aeronautical Journal 72.692,
pp. 701–709. DOI: 10.1017/s000192400008489x.

Arnold, D. N. (1982). “An Interior Penalty Finite Element Method with Discontin-
uous Elements”. In: SIAM Journal on Numerical Analysis 19.4, pp. 742–760. DOI:
10.1137/0719052.

https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1016/s0021-9991(03)00194-3
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1145/2566630
https://doi.org/10.1016/s0045-7825(99)00242-x
https://doi.org/10.1016/s0045-7825(99)00242-x
https://doi.org/10.1175/1520-0493(1996)124<0511:VDOTPE>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<0511:VDOTPE>2.0.CO;2
https://doi.org/10.1016/b978-0-12-460817-7.50009-4
https://doi.org/10.1016/b978-0-12-460817-7.50009-4
https://doi.org/10.1090/s0025-5718-1995-1303084-8
https://doi.org/10.1108/eb032545
https://doi.org/10.1108/eb032545
https://doi.org/10.1017/s000192400008489x
https://doi.org/10.1137/0719052

Bibliography 207

– (2013). “Spaces of Finite Element Differential Forms”. In: Analysis and Numerics of
Partial Differential Equations. Springer Milan, pp. 117–140. DOI: 10.1007/978-88-
470-2592-9_9.

Arnold, D. N. and G. Awanou (2014). “Finite element differential forms on cubi-
cal meshes”. In: Mathematics of Computation 83.288, pp. 1551–1570. DOI: 10.1090/
s0025-5718-2013-02783-4.

Arnold, D. N., D. Boffi, and F. Bonizzoni (2015). “Finite element differential forms
on curvilinear cubic meshes and their approximation properties”. In: Numerische
Mathematik 129.1, pp. 1–20. DOI: 10.1007/s00211-014-0631-3.

Arnold, D. N. and F. Brezzi (1985). “Mixed and nonconforming finite element meth-
ods : implementation, postprocessing and error estimates”. In: ESAIM: Mathe-
matical Modelling and Numerical Analysis 19.1, pp. 7–32. DOI: 10 . 1051 / m2an /
1985190100071.

Arnold, D. N., R. S. Falk, and R. Winther (2000). “Multigrid in H(div) and H(curl)”.
In: Numerische Mathematik 85.2, pp. 197–217. DOI: 10.1007/pl00005386.

– (2006). “Finite element exterior calculus, homological techniques, and applica-
tions”. In: Acta Numerica 15, pp. 1–155. DOI: 10.1017/s0962492906210018.

– (2010). “Finite element exterior calculus: from Hodge theory to numerical stabil-
ity”. In: Bulletin of the American Mathematical Society 47.2, pp. 281–354. DOI: 10.
1090/s0273-0979-10-01278-4.

Arnold, D. N. and A. Logg (2014). “Periodic table of the finite elements”. In: SIAM
News 47.9, p. 212.

Arnold, D. N., F. Brezzi, B. Cockburn, and L. D. Marini (2002). “Unified Analysis
of Discontinuous Galerkin Methods for Elliptic Problems”. In: SIAM Journal on
Numerical Analysis 39.5, pp. 1749–1779. DOI: 10.1137/s0036142901384162.

Baker, A. H., R. D. Falgout, T. Gamblin, T. V. Kolev, M. Schulz, and U. M. Yang (2011).
“Scaling Algebraic Multigrid Solvers: On the Road to Exascale”. In: Competence in
High Performance Computing 2010. Springer Berlin Heidelberg, pp. 215–226. DOI:
10.1007/978-3-642-24025-6_18.

Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith (1997). “Efficient Management
of Parallelism in Object-Oriented Numerical Software Libraries”. In: Modern Soft-
ware Tools for Scientific Computing. Birkhäuser Boston, pp. 163–202. DOI: 10.1007/
978-1-4612-1986-6_8.

Balay, S., S. Abhyankar, M. Adams, P. Brune, K. Buschelman, L. Dalcin, W. D. Gropp,
B. F. Smith, D. Karpeyev, D. Kaushik, L. C. McInnes, K. Rupp, H. Zhang, and S.
Zampini (2016). PETSc Users Manual Revision 3.7. Tech. rep. DOI: 10.2172/1255238.

Bao, L., R. Klöfkorn, and R. D. Nair (2015). “Horizontally Explicit and Vertically
Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhy-
drostatic Model”. In: Monthly Weather Review 143.3, pp. 972–990. DOI: 10.1175/
mwr-d-14-00083.1.

Bauer, P., A. Thorpe, and G. Brunet (2015). “The quiet revolution of numerical
weather prediction”. In: Nature 525.7567, pp. 47–55. DOI: 10.1038/nature14956.

Bauer, W. and C. J. Cotter (2018). “Energy–enstrophy conserving compatible finite el-
ement schemes for the rotating shallow water equations with slip boundary con-
ditions”. In: Journal of Computational Physics 373, pp. 171–187. DOI: 10.1016/j.
jcp.2018.06.071.

Bendall, T. M., T. H. Gibson, J. Shipton, C. J. Cotter, and B. J. Shipway (2019). A
Compatible Finite Element Discretisation for the Moist Compressible Euler Equations.
arXiv: 1910.01857 [math.NA].

Benzi, M., G. H. Golub, and J. Liesen (2005). “Numerical solution of saddle point
problems”. In: Acta Numerica 14, pp. 1–137. DOI: 10.1017/s0962492904000212.

https://doi.org/10.1007/978-88-470-2592-9_9
https://doi.org/10.1007/978-88-470-2592-9_9
https://doi.org/10.1090/s0025-5718-2013-02783-4
https://doi.org/10.1090/s0025-5718-2013-02783-4
https://doi.org/10.1007/s00211-014-0631-3
https://doi.org/10.1051/m2an/1985190100071
https://doi.org/10.1051/m2an/1985190100071
https://doi.org/10.1007/pl00005386
https://doi.org/10.1017/s0962492906210018
https://doi.org/10.1090/s0273-0979-10-01278-4
https://doi.org/10.1090/s0273-0979-10-01278-4
https://doi.org/10.1137/s0036142901384162
https://doi.org/10.1007/978-3-642-24025-6_18
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.2172/1255238
https://doi.org/10.1175/mwr-d-14-00083.1
https://doi.org/10.1175/mwr-d-14-00083.1
https://doi.org/10.1038/nature14956
https://doi.org/10.1016/j.jcp.2018.06.071
https://doi.org/10.1016/j.jcp.2018.06.071
http://arxiv.org/abs/1910.01857
https://doi.org/10.1017/s0962492904000212

208 Bibliography

Bercea, G.-T., A. T. T. McRae, D. A. Ham, L. Mitchell, F. Rathgeber, L. Nardi, F. Lu-
porini, and P. H. J. Kelly (2016). “A structure-exploiting numbering algorithm for
finite elements on extruded meshes, and its performance evaluation in Firedrake”.
In: Geoscientific Model Development 9.10, pp. 3803–3815. DOI: 10.5194/gmd-9-3803-
2016.

Birken, P., J. Bull, and A. Jameson (2016). “A study of multigrid smoothers used in
compressible CFD based on the convection diffusion equation”. In: Proceedings of
the VII European Congress on Computational Methods in Applied Sciences and Engi-
neering (ECCOMAS Congress 2016). Institute of Structural Analysis and Antiseis-
mic Research School of Civil Engineering National Technical University of Athens
(NTUA) Greece. DOI: 10.7712/100016.1987.7289.

Boffi, D., F. Brezzi, and M. Fortin (2013). Mixed finite element methods and applications.
Springer International Publishing. ISBN: 978-3-642-36519-5. DOI: 10.1007/978-3-
642-36519-5.

Boffi, D., F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, and M. Fortin (2008).
Mixed finite elements, compatibility conditions, and applications. Springer International
Publishing. ISBN: 978-3-540-78319-0. DOI: 10.1007/978-3-540-78319-0.

Börm, S. and R. Hiptmair (2001). “Analysis of tensor product multigrid”. In: Numer-
ical Algorithms 26.3, pp. 219–234. DOI: 10.1023/A:1016686408271.

Bramble, J. H., D. Y. Kwak, and J. E. Pasciak (1994). “Uniform Convergence of Multi-
grid V-Cycle Iterations for Indefinite and Nonsymmetric Problems”. In: SIAM
Journal on Numerical Analysis 31.6, pp. 1746–1763. DOI: 10.1137/0731089.

Bramble, J. H., J. E. Pasciak, and J. Xu (1988). “The analysis of multigrid algorithms
for nonsymmetric and indefinite elliptic problems”. In: Mathematics of Computation
51.184, pp. 389–389. DOI: 10.1090/s0025-5718-1988-0930228-6.

Bramble, J. H. and J. Xu (1989). “A Local Post-Processing Technique for Improving
the Accuracy in Mixed Finite-Element Approximations”. In: SIAM Journal on Nu-
merical Analysis 26.6, pp. 1267–1275. DOI: 10.1137/0726073.

Brenner, S. C. and R. Scott (2008). The Mathematical Theory of Finite Element Methods.
Springer International Publishing. ISBN: 978-0-387-75934-0. DOI: 10.1007/978-0-
387-75934-0.

Brezzi, F., J. Douglas, and L. D. Marini (1985). “Two families of mixed finite elements
for second order elliptic problems”. In: Numerische Mathematik 47.2, pp. 217–235.
DOI: 10.1007/bf01389710.

Brezzi, F. and M. Fortin (1991). Mixed and hybrid finite element methods. Springer Inter-
national Publishing. ISBN: 978-1-4612-3172-1. DOI: 10.1007/978-1-4612-3172-1.

Brezzi, F., J. Douglas, M. Fortin, and L. D. Marini (1987a). “Efficient rectangular
mixed finite elements in two and three space variables”. In: ESAIM: Mathemat-
ical Modelling and Numerical Analysis 21.4, pp. 581–604. DOI: 10 . 1051 / m2an /
1987210405811.

Brezzi, F., J. Douglas, R. Durán, and M. Fortin (1987b). “Mixed finite elements for
second order elliptic problems in three variables”. In: Numerische Mathematik 51.2,
pp. 237–250. DOI: 10.1007/bf01396752.

Brooks, A. N. and T. J.R. Hughes (1982). “Streamline upwind/Petrov-Galerkin for-
mulations for convection dominated flows with particular emphasis on the incom-
pressible Navier-Stokes equations”. In: Computer Methods in Applied Mechanics and
Engineering 32.1-3, pp. 199–259. DOI: 10.1016/0045-7825(82)90071-8.

Brown, J., M. G. Knepley, D. A. May, L. C. McInnes, and B. F. Smith (2012). “Com-
posable Linear Solvers for Multiphysics”. In: 2012 11th International Symposium on
Parallel and Distributed Computing. IEEE. DOI: 10.1109/ispdc.2012.16.

https://doi.org/10.5194/gmd-9-3803-2016
https://doi.org/10.5194/gmd-9-3803-2016
https://doi.org/10.7712/100016.1987.7289
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1007/978-3-540-78319-0
https://doi.org/10.1023/A:1016686408271
https://doi.org/10.1137/0731089
https://doi.org/10.1090/s0025-5718-1988-0930228-6
https://doi.org/10.1137/0726073
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/bf01389710
https://doi.org/10.1007/978-1-4612-3172-1
https://doi.org/10.1051/m2an/1987210405811
https://doi.org/10.1051/m2an/1987210405811
https://doi.org/10.1007/bf01396752
https://doi.org/10.1016/0045-7825(82)90071-8
https://doi.org/10.1109/ispdc.2012.16

Bibliography 209

Brunner, T. A. and T. V. Kolev (2011). “Algebraic Multigrid for Linear Systems Ob-
tained by Explicit Element Reduction”. In: SIAM Journal on Scientific Computing
33.5, pp. 2706–2731. DOI: 10.1137/100801640.

Bryan, G. H. and J. M. Fritsch (2002). “A Benchmark Simulation for Moist Nonhy-
drostatic Numerical Models”. In: Monthly Weather Review 130.12, pp. 2917–2928.
DOI: 10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

Buckeridge, S. and R. Scheichl (2010). “Parallel geometric multigrid for global
weather prediction”. In: Numerical Linear Algebra with Applications 17.2-3, pp. 325–
342. DOI: 10.1002/nla.699.

Charney, J. G. and N. A. Phillips (1953). “Numerical Integration of The Quasi-
Geostrophic Equations For Barotropic and Simple Baroclinic Flows”. In: Journal
of Meteorology 10.2, pp. 71–99. DOI: 10.1175/1520-0469(1953)010<0071:NIOTQG>
2.0.CO;2.

Choi, S. J., F. X. Giraldo, J. Kim, and S. Shin (2014). “Verification of a non-hydrostatic
dynamical core using the horizontal spectral element method and vertical finite
difference method: 2-D aspects”. In: Geoscientific Model Development 7.6, pp. 2717–
2731. DOI: 10.5194/gmd-7-2717-2014.

Ciarlet, P. G. (2002). “Introduction to the Finite Element Method”. In: The Finite Ele-
ment Method for Elliptic Problems. Society for Industrial and Applied Mathematics,
pp. 36–109. DOI: 10.1137/1.9780898719208.ch2.

Clough, R. W. (1960). “The Finite Element Method in Plane Stress Analysis”. In: Pro-
ceedings of 2nd ASCE Conference on Electronic Computation.

Cockburn, B. (2016). “Static Condensation, Hybridization, and the Devising of the
HDG Methods”. In: Lecture Notes in Computational Science and Engineering. Springer
International Publishing, pp. 129–177. DOI: 10.1007/978-3-319-41640-3_5.

Cockburn, B. and J. Gopalakrishnan (2004). “A Characterization of Hybridized
Mixed Methods for Second Order Elliptic Problems”. In: SIAM Journal on Numeri-
cal Analysis 42.1, pp. 283–301. DOI: 10.1137/s0036142902417893.

– (2005). “Error analysis of variable degree mixed methods for elliptic problems
via hybridization”. In: Mathematics of Computation 74.252, pp. 1653–1678. DOI: 10.
1090/s0025-5718-05-01741-2.

Cockburn, B., J. Gopalakrishnan, and R. Lazarov (2009). “Unified Hybridization of
Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second
Order Elliptic Problems”. In: SIAM Journal on Numerical Analysis 47.2, pp. 1319–
1365. DOI: 10.1137/070706616.

Cockburn, B., J. Gopalakrishnan, and F.-J. Sayas (2010). “A projection-based error
analysis of HDG methods”. In: Mathematics of Computation 79.271, pp. 1351–1367.
DOI: 10.1090/s0025-5718-10-02334-3.

Cockburn, B., J. Guzmán, and H. Wang (2009). “Superconvergent discontinuous
Galerkin methods for second-order elliptic problems”. In: Mathematics of Compu-
tation 78.265, pp. 1–1. DOI: 10.1090/s0025-5718-08-02146-7.

Cockburn, B., J. Gopalakrishnan, F. Li, N.-C. Nguyen, and J. Peraire (2010). “Hy-
bridization and Postprocessing Techniques for Mixed Eigenfunctions”. In: SIAM
Journal on Numerical Analysis 48.3, pp. 857–881. DOI: 10.1137/090765894.

Cockburn, B., O. Dubois, J. Gopalakrishnan, and S. Tan (2013). “Multigrid for an
HDG method”. In: IMA Journal of Numerical Analysis 34.4, pp. 1386–1425. DOI: 10.
1093/imanum/drt024.

Côté, J. and A. Staniforth (1988). “A Two-Time-Level Semi-Lagrangian Semi-implicit
Scheme for Spectral Models”. In: Monthly Weather Review 116.10, pp. 2003–2012.
DOI: 10.1175/1520-0493(1988)116<2003:ATTLSL>2.0.CO;2.

https://doi.org/10.1137/100801640
https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
https://doi.org/10.1002/nla.699
https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
https://doi.org/10.5194/gmd-7-2717-2014
https://doi.org/10.1137/1.9780898719208.ch2
https://doi.org/10.1007/978-3-319-41640-3_5
https://doi.org/10.1137/s0036142902417893
https://doi.org/10.1090/s0025-5718-05-01741-2
https://doi.org/10.1090/s0025-5718-05-01741-2
https://doi.org/10.1137/070706616
https://doi.org/10.1090/s0025-5718-10-02334-3
https://doi.org/10.1090/s0025-5718-08-02146-7
https://doi.org/10.1137/090765894
https://doi.org/10.1093/imanum/drt024
https://doi.org/10.1093/imanum/drt024
https://doi.org/10.1175/1520-0493(1988)116<2003:ATTLSL>2.0.CO;2

210 Bibliography

Cotter, C. J. and A. T. T. McRae (2014). Compatible finite element methods for numerical
weather prediction. arXiv: 1401.0616 [math.NA].

Cotter, C. J. and J. Shipton (2012). “Mixed finite elements for numerical weather pre-
diction”. In: Journal of Computational Physics 231.21, pp. 7076–7091. DOI: 10.1016/
j.jcp.2012.05.020.

Cotter, C. J. and J. Thuburn (2014). “A finite element exterior calculus framework
for the rotating shallow-water equations”. In: Journal of Computational Physics 257,
pp. 1506–1526. DOI: 10.1016/j.jcp.2013.10.008.

Courant, R. (1943). “Variational methods for the solution of problems of equilibrium
and vibrations”. In: Bulletin of the American Mathematical Society 49.1, pp. 1–24. DOI:
10.1090/s0002-9904-1943-07818-4.

Courant, R., K. Friedrichs, and H. Lewy (1928). “Über die partiellen Differen-
zengleiehungen der mathematischen Physik”. In: Mathematische Annalen 100.1,
pp. 32–74. DOI: 10.1007/bf01448839.

Crank, J. and P. Nicolson (1947). “A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type”. In: Math-
ematical Proceedings of the Cambridge Philosophical Society 43.1, pp. 50–67. DOI: 10.
1017/s0305004100023197.

Cullen, M. J. P. (2001). “Alternative implementations of the semi-Lagrangian semi-
implicit schemes in the ECMWF model”. In: Quarterly Journal of the Royal Meteoro-
logical Society 127.578, pp. 2787–2802. DOI: 10.1256/smsqj.57813.

Dalcin, L. D., R. R. Paz, P. A. Kler, and A. Cosimo (2011). “Parallel distributed com-
puting using Python”. In: Advances in Water Resources 34.9, pp. 1124–1139. DOI:
10.1016/j.advwatres.2011.04.013.

Danilov, S. (2010). “On utility of triangular C-grid type discretization for numerical
modeling of large-scale ocean flows”. In: Ocean Dynamics 60.6, pp. 1361–1369. DOI:
10.1007/s10236-010-0339-6.

Davies, T., A. Staniforth, N. Wood, and J. Thuburn (2003). “Validity of anelastic and
other equation sets as inferred from normal-mode analysis”. In: Quarterly Journal
of the Royal Meteorological Society 129.593, pp. 2761–2775. DOI: 10.1256/qj.02.195.

Davis, P. J. and P. Rabinowitz (1984). Methods of Numerical Integration. 2nd. Academic
Press. ISBN: 978-0-12-206360-2. DOI: 10.1016/C2013-0-10566-1.

Davis, T. A. (2004). “Algorithm 832: UMFPACK V4.3–an unsymmetric-pattern mul-
tifrontal method”. In: ACM Transactions on Mathematical Software 30.2, pp. 196–199.
DOI: 10.1145/992200.992206.

De Veubeke, B. M. F. (1965). “Displacement and Equilibrium Models in the Finite
Element Method”. In: B.M. Fraeijs De Veubeke Memorial Volume of Selected Papers.
Springer Netherlands, pp. 101–168. DOI: 10.1007/978-94-009-9147-7_3.

Dedner, A., E. H. Müller, and R. Scheichl (2015). “Efficient multigrid preconditioners
for atmospheric flow simulations at high aspect ratio”. In: International Journal for
Numerical Methods in Fluids 80.1, pp. 76–102. DOI: 10.1002/fld.4072.

Dennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A.
St-Cyr, M. A. Taylor, and P. H. Worley (2011). “CAM-SE: A scalable spectral ele-
ment dynamical core for the Community Atmosphere Model”. In: The International
Journal of High Performance Computing Applications 26.1, pp. 74–89. DOI: 10.1177/
1094342011428142.

Devloo, P. R. B., C. O. Faria, A. M. Farias, S. M. Gomes, A. F. D. Loula, and S. M.
C. Malta (2018). “On continuous, discontinuous, mixed, and primal hybrid finite
element methods for second-order elliptic problems”. In: International Journal for
Numerical Methods in Engineering 115.9, pp. 1083–1107. DOI: 10.1002/nme.5836.

http://arxiv.org/abs/1401.0616
https://doi.org/10.1016/j.jcp.2012.05.020
https://doi.org/10.1016/j.jcp.2012.05.020
https://doi.org/10.1016/j.jcp.2013.10.008
https://doi.org/10.1090/s0002-9904-1943-07818-4
https://doi.org/10.1007/bf01448839
https://doi.org/10.1017/s0305004100023197
https://doi.org/10.1017/s0305004100023197
https://doi.org/10.1256/smsqj.57813
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1007/s10236-010-0339-6
https://doi.org/10.1256/qj.02.195
https://doi.org/10.1016/C2013-0-10566-1
https://doi.org/10.1145/992200.992206
https://doi.org/10.1007/978-94-009-9147-7_3
https://doi.org/10.1002/fld.4072
https://doi.org/10.1177/1094342011428142
https://doi.org/10.1177/1094342011428142
https://doi.org/10.1002/nme.5836

Bibliography 211

Dobrev, V., T. Kolev, C. S. Lee, V. Tomov, and P. S. Vassilevski (2019). “Algebraic
Hybridization and Static Condensation with Application to Scalable H(div) Pre-
conditioning”. In: SIAM Journal on Scientific Computing 41.3, B425–B447. DOI: 10.
1137/17m1132562.

Donea, J. (1984). “A Taylor-Galerkin method for convective transport problems”. In:
International Journal for Numerical Methods in Engineering 20.1, pp. 101–119. DOI:
10.1002/nme.1620200108.

Durran, D. R. (1989). “Improving the Anelastic Approximation”. In: Journal of the At-
mospheric Sciences 46.11, pp. 1453–1461. DOI: 10.1175/1520-0469(1989)046<1453:
ITAA>2.0.CO;2.

– (2008). “A physically motivated approach for filtering acoustic waves from the
equations governing compressible stratified flow”. In: Journal of Fluid Mechanics
601, pp. 365–379. DOI: 10.1017/s0022112008000608.

Eisenstat, S. C., H. C. Elman, and M. H. Schultz (1983). “Variational Iterative Meth-
ods for Nonsymmetric Systems of Linear Equations”. In: SIAM Journal on Numer-
ical Analysis 20.2, pp. 345–357. DOI: 10.1137/0720023.

Elman, H. C., O. G. Ernst, and D. P. O’Leary (2001). “A Multigrid Method Enhanced
by Krylov Subspace Iteration for Discrete Helmholtz Equations”. In: SIAM Journal
on Scientific Computing 23.4, pp. 1291–1315. DOI: 10.1137/s1064827501357190.

Fabien, M. S., M. G. Knepley, R. T. Mills, and B. M. Rivière (2019). “Manycore Par-
allel Computing for a Hybridizable Discontinuous Galerkin Nested Multigrid
Method”. In: SIAM Journal on Scientific Computing 41.2, pp. C73–C96. DOI: 10 .
1137/17m1128903.

Falgout, R. D. (2006). “An introduction to algebraic multigrid”. In: Computing in Sci-
ence & Engineering 8.6, pp. 24–33. DOI: 10.1109/mcse.2006.105.

Falgout, R. D., J. E. Jones, and U. M. Yang (2006). “The Design and Implementation of
hypre, a Library of Parallel High Performance Preconditioners”. In: Lecture Notes
in Computational Science and Engineering. Springer-Verlag, pp. 267–294. DOI: 10.
1007/3-540-31619-1_8.

Fournier, A., M. A. Taylor, and J. J. Tribbia (2004). “The Spectral Element Atmosphere
Model (SEAM): High-Resolution Parallel Computation and Localized Resolution
of Regional Dynamics”. In: Monthly Weather Review 132.3, pp. 726–748. DOI: 10.
1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2.

Fulton, S. R., P. E. Ciesielski, and W. H. Schubert (1986). “Multigrid Methods for
Elliptic Problems: A Review”. In: Monthly Weather Review 114.5, pp. 943–959. DOI:
10.1175/1520-0493(1986)114<0943:MMFEPA>2.0.CO;2.

Gassmann, A. (2011). “Inspection of hexagonal and triangular C-grid discretiza-
tions of the shallow water equations”. In: Journal of Computational Physics 230.7,
pp. 2706–2721. DOI: 10.1016/j.jcp.2011.01.014.

Gee, M. W., C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala (2006). ML 5.0
smoothed aggregation user’s guide. Tech. rep. Technical Report SAND2006-2649, San-
dia National Laboratories.

Geuzaine, C. and J. F. Remacle (2009). “Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities”. In: International Journal for Nu-
merical Methods in Engineering 79.11, pp. 1309–1331. DOI: 10.1002/nme.2579.

Gibson, T. H., A. T.T. McRae, C. J. Cotter, L. Mitchell, and D. A. Ham (2019a). Compat-
ible Finite Element Methods for Geophysical Flows. Springer International Publishing.
ISBN: 978-3-030-23957-2. DOI: 10.1007/978-3-030-23957-2.

Gibson, T. H., L. Mitchell, D. A. Ham, and C. J. Cotter (2019b). Slate: extending Fire-
drake’s domain-specific abstraction to hybridized solvers for geoscience and beyond. arXiv:
1802.00303 [cs.MS].

https://doi.org/10.1137/17m1132562
https://doi.org/10.1137/17m1132562
https://doi.org/10.1002/nme.1620200108
https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
https://doi.org/10.1017/s0022112008000608
https://doi.org/10.1137/0720023
https://doi.org/10.1137/s1064827501357190
https://doi.org/10.1137/17m1128903
https://doi.org/10.1137/17m1128903
https://doi.org/10.1109/mcse.2006.105
https://doi.org/10.1007/3-540-31619-1_8
https://doi.org/10.1007/3-540-31619-1_8
https://doi.org/10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1986)114<0943:MMFEPA>2.0.CO;2
https://doi.org/10.1016/j.jcp.2011.01.014
https://doi.org/10.1002/nme.2579
https://doi.org/10.1007/978-3-030-23957-2
http://arxiv.org/abs/1802.00303

212 Bibliography

Giraldo, F. X., J. F. Kelly, and E. M. Constantinescu (2013). “Implicit-Explicit For-
mulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmo-
sphere (NUMA)”. In: SIAM Journal on Scientific Computing 35.5, B1162–B1194. DOI:
10.1137/120876034.

Giraldo, F. X. and M. Restelli (2008). “A study of spectral element and discontinuous
Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale
atmospheric modeling: Equation sets and test cases”. In: Journal of Computational
Physics 227.8, pp. 3849–3877. DOI: 10.1016/j.jcp.2007.12.009.

Gopalakrishnan, J. (2003). “A Schwarz Preconditioner for a Hybridized Mixed
Method”. In: Computational Methods in Applied Mathematics 3.1. DOI: 10 . 2478 /
cmam-2003-0009.

Gopalakrishnan, J. and S. Tan (2009). “A convergent multigrid cycle for the hy-
bridized mixed method”. In: Numerical Linear Algebra with Applications 16.9,
pp. 689–714. DOI: 10.1002/nla.636.

Guennebaud, G., B. Jacob, et al. (2010). Eigen v3. URL: http://eigen.tuxfamily.org.
Guyan, R. J. (1965). “Reduction of stiffness and mass matrices”. In: AIAA Journal 3.2,

pp. 380–380. DOI: 10.2514/3.2874.
Haidar, A., T. Dong, P. Luszczek, S. Tomov, and J. Dongarra (2015). “Batched ma-

trix computations on hardware accelerators based on GPUs”. In: The International
Journal of High Performance Computing Applications 29.2, pp. 193–208. DOI: 10.1177/
1094342014567546.

Hairer, E. and G. Wanner (1996). Solving Ordinary Differential Equations II. Springer
Berlin Heidelberg. DOI: 10.1007/978-3-642-05221-7.

Hecht, F. (2012). “New development in freefem++”. In: Journal of Numerical Mathe-
matics 20.3-4. DOI: 10.1515/jnum-2012-0013.

Hiptmair, R. and J. Xu (2007). “Nodal Auxiliary Space Preconditioning in H(curl)
and H(div) Spaces”. In: SIAM Journal on Numerical Analysis 45.6, pp. 2483–2509.
DOI: 10.1137/060660588.

Holdaway, D., J. Thuburn, and N. Wood (2012a). “Comparison of Lorenz and
Charney-Phillips vertical discretisations for dynamics-boundary layer coupling.
Part I: Steady states”. In: Quarterly Journal of the Royal Meteorological Society 139.673,
pp. 1073–1086. DOI: 10.1002/qj.2016.

– (2012b). “Comparison of Lorenz and Charney-Phillips vertical discretisations for
dynamics-boundary layer coupling. Part II: Transients”. In: Quarterly Journal of the
Royal Meteorological Society 139.673, pp. 1087–1098. DOI: 10.1002/qj.2017.

Holst, M. and A. Stern (2012). “Geometric Variational Crimes: Hilbert Complexes, Fi-
nite Element Exterior Calculus, and Problems on Hypersurfaces”. In: Foundations
of Computational Mathematics 12.3, pp. 263–293. DOI: 10.1007/s10208-012-9119-7.

Homolya, M., R. C. Kirby, and D. A. Ham (2017). Exposing and exploiting structure: op-
timal code generation for high-order finite element methods. arXiv: 1711.02473 [cs.MS].

Homolya, M., L. Mitchell, F. Luporini, and D. A. Ham (2018). “TSFC: A Structure-
Preserving Form Compiler”. In: SIAM Journal on Scientific Computing 40.3,
pp. C401–C428. DOI: 10.1137/17m1130642.

Horn, R. A. and C. R. Johnson (2012). Matrix Analysis. 2nd. Cambridge University
Press. ISBN: 9781139020411. DOI: 10.1017/9781139020411.

Hrennikoff, A. (1941). “Solution of problems of elasticity by the framework method”.
In: Journal of Applied Mechanics 8.4, pp. 169–175.

Irons, B. (1965). “Structural eigenvalue problems - elimination of unwanted vari-
ables”. In: AIAA Journal 3.5, pp. 961–962. DOI: 10.2514/3.3027.

https://doi.org/10.1137/120876034
https://doi.org/10.1016/j.jcp.2007.12.009
https://doi.org/10.2478/cmam-2003-0009
https://doi.org/10.2478/cmam-2003-0009
https://doi.org/10.1002/nla.636
http://eigen.tuxfamily.org
https://doi.org/10.2514/3.2874
https://doi.org/10.1177/1094342014567546
https://doi.org/10.1177/1094342014567546
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1137/060660588
https://doi.org/10.1002/qj.2016
https://doi.org/10.1002/qj.2017
https://doi.org/10.1007/s10208-012-9119-7
http://arxiv.org/abs/1711.02473
https://doi.org/10.1137/17m1130642
https://doi.org/10.1017/9781139020411
https://doi.org/10.2514/3.3027

Bibliography 213

Jablonowski, C. and D. L. Williamson (2006). “A baroclinic instability test case for at-
mospheric model dynamical cores”. In: Quarterly Journal of the Royal Meteorological
Society 132.621C, pp. 2943–2975. DOI: 10.1256/qj.06.12.

Kalchev, D. Z., C. S. Lee, U. Villa, Y. Efendiev, and P. S. Vassilevski (2016). “Up-
scaling of Mixed Finite Element Discretization Problems by the Spectral AMGe
Method”. In: SIAM Journal on Scientific Computing 38.5, A2912–A2933. DOI: 10.
1137/15m1036683.

Kalnay, E. (2002). “Atmospheric predictability and ensemble forecasting”. In: Atmo-
spheric modeling, data assimilation and predictability. Cambridge University Press,
pp. 205–260. DOI: 10.1017/cbo9780511802270.007.

Kang, S., F. X. Giraldo, and T. Bui-Thanh (2019). “IMEX HDG-DG: A coupled implicit
hybridized discontinuous Galerkin and explicit discontinuous Galerkin approach
for shallow water systems”. In: Journal of Computational Physics, p. 109010. DOI:
10.1016/j.jcp.2019.109010.

Kelly, J. F. and F. X. Giraldo (2012). “Continuous and discontinuous Galerkin meth-
ods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-
area mode”. In: Journal of Computational Physics 231.24, pp. 7988–8008. DOI: 10.
1016/j.jcp.2012.04.042.

Kirby, R. C. (2004). “Algorithm 839: FIAT, a new paradigm for computing finite ele-
ment basis functions”. In: ACM Transactions on Mathematical Software 30.4, pp. 502–
516. DOI: 10.1145/1039813.1039820.

– (2018). “A general approach to transforming finite elements”. In: SMAI Journal of
Computational Mathematics 4, pp. 197–224. DOI: 10.5802/smai-jcm.33.

Kirby, R. C. and A. Logg (2006). “A compiler for variational forms”. In: ACM Trans-
actions on Mathematical Software 32.3, pp. 417–444. DOI: 10.1145/1163641.1163644.

Kirby, R. C. and L. Mitchell (2018a). Code generation for generally mapped finite elements.
arXiv: 1808.05513 [cs.MS].

– (2018b). “Solver Composition Across the PDE/Linear Algebra Barrier”. In: SIAM
Journal on Scientific Computing 40.1, pp. C76–C98. DOI: 10.1137/17m1133208.

Kirby, R. C., A. Logg, M. E. Rognes, and A. R. Terrel (2012). “Common and unusual
finite elements”. In: Automated Solution of Differential Equations by the Finite Element
Method. Springer International Publishing, pp. 95–119. DOI: 10.1007/978-3-642-
23099-8_3.

Kirby, R. M., S. J. Sherwin, and B. Cockburn (2011). “To CG or to HDG: A Compar-
ative Study”. In: Journal of Scientific Computing 51.1, pp. 183–212. DOI: 10.1007/
s10915-011-9501-7.

Klemp, J. B., J. Dudhia, and A. D. Hassiotis (2008). “An Upper Gravity-Wave Absorb-
ing Layer for NWP Applications”. In: Monthly Weather Review 136.10, pp. 3987–
4004. DOI: 10.1175/2008mwr2596.1.

Knepley, M. G. and D. A. Karpeev (2009). “Mesh Algorithms for PDE with Sieve I:
Mesh Distribution”. In: Scientific Programming 17.3, pp. 215–230. DOI: 10.1155/
2009/948613.

Kolev, T. V. and P. S. Vassilevski (2009). “Parallel Auxiliary Space AMG for H(Curl)
Problems”. In: Journal of Computational Mathematics 27.5, pp. 604–623. DOI: 10 .
4208/jcm.2009.27.5.013.

Kronbichler, M. and W. A. Wall (2018). “A Performance Comparison of Continuous
and Discontinuous Galerkin Methods with Fast Multigrid Solvers”. In: SIAM Jour-
nal on Scientific Computing 40.5, A3423–A3448. DOI: 10.1137/16m110455x.

Lange, M., L. Mitchell, M. G. Knepley, and G. J. Gorman (2016). “Efficient Mesh
Management in Firedrake Using PETSc DMPlex”. In: SIAM Journal on Scientific
Computing 38.5, S143–S155. DOI: 10.1137/15m1026092.

https://doi.org/10.1256/qj.06.12
https://doi.org/10.1137/15m1036683
https://doi.org/10.1137/15m1036683
https://doi.org/10.1017/cbo9780511802270.007
https://doi.org/10.1016/j.jcp.2019.109010
https://doi.org/10.1016/j.jcp.2012.04.042
https://doi.org/10.1016/j.jcp.2012.04.042
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.5802/smai-jcm.33
https://doi.org/10.1145/1163641.1163644
http://arxiv.org/abs/1808.05513
https://doi.org/10.1137/17m1133208
https://doi.org/10.1007/978-3-642-23099-8_3
https://doi.org/10.1007/978-3-642-23099-8_3
https://doi.org/10.1007/s10915-011-9501-7
https://doi.org/10.1007/s10915-011-9501-7
https://doi.org/10.1175/2008mwr2596.1
https://doi.org/10.1155/2009/948613
https://doi.org/10.1155/2009/948613
https://doi.org/10.4208/jcm.2009.27.5.013
https://doi.org/10.4208/jcm.2009.27.5.013
https://doi.org/10.1137/16m110455x
https://doi.org/10.1137/15m1026092

214 Bibliography

Lax, P. D. and A. N. Milgram (1955). “Parabolic Equations”. In: Contributions to the
Theory of Partial Differential Equations. Princeton University Press, pp. 167–190. DOI:
10.1515/9781400882182-010.

Li, X., C. Chen, X. Shen, and F. Xiao (2013). “A Multimoment Constrained Finite-
Volume Model for Nonhydrostatic Atmospheric Dynamics”. In: Monthly Weather
Review 141.4, pp. 1216–1240. DOI: 10.1175/mwr-d-12-00144.1.

Lin, P. T., J. N. Shadid, and P. H. Tsuji (2019). On the performance of Krylov smoothing for
fully coupled AMG preconditioners for VMS resistive MHD. Tech. rep. 12, pp. 1297–
1309. DOI: 10.1002/nme.6178.

Logg, A., K.-A. Mardal, and G. N. Wells (2012). Automated Solution of Differential
Equations by the Finite Element Method. Springer International Publishing. ISBN:
978-3-642-23098-1. DOI: 10.1007/978-3-642-23099-8.

Logg, A. and G. N. Wells (2010). “DOLFIN: Automated finite element comput-
ing”. In: ACM Transactions on Mathematical Software 37.2, pp. 1–28. DOI: 10.1145/
1731022.1731030.

Logg, A., K. B. Ølgaard, M. E. Rognes, and G. N. Wells (2012). “FFC: the FEniCS
form compiler”. In: Automated Solution of Differential Equations by the Finite Ele-
ment Method. Springer Berlin Heidelberg, pp. 227–238. DOI: 10.1007/978-3-642-
23099-8_11.

Long, K., R. C. Kirby, and B. G. van Bloemen Waanders (2010). “Unified Embed-
ded Parallel Finite Element Computations via Software-Based Fréchet Differenti-
ation”. In: SIAM Journal on Scientific Computing 32.6, pp. 3323–3351. DOI: 10.1137/
09076920x.

Lorenz, E. N. (1960). “Energy and Numerical Weather Prediction”. In: Tellus 12.4,
pp. 364–373. DOI: 10.1111/j.2153-3490.1960.tb01323.x.

Luporini, F., A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam, D. A. Ham,
and P. H. J. Kelly (2015). “Cross-Loop Optimization of Arithmetic Intensity for Fi-
nite Element Local Assembly”. In: ACM Transactions on Architecture and Code Opti-
mization 11.4, pp. 1–25. DOI: 10.1145/2687415.

Lynch, P. (2008). “The ENIAC Forecasts: A Re-creation”. In: Bulletin of the American
Meteorological Society 89.1, pp. 45–56. DOI: 10.1175/bams-89-1-45.

Mandel, J. (1986). “Multigrid convergence for nonsymmetric, indefinite variational
problems and one smoothing step”. In: Applied Mathematics and Computation 19.1-
4, pp. 201–216. DOI: 10.1016/0096-3003(86)90104-9.

Marini, L. D. (1985). “An Inexpensive Method for the Evaluation of the Solution of
the Lowest Order Raviart–Thomas Mixed Method”. In: SIAM Journal on Numerical
Analysis 22.3, pp. 493–496. DOI: 10.1137/0722029.

Markall, G. R., A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J. Sher-
win (2012). “Finite element assembly strategies on multi-core and many-core ar-
chitectures”. In: International Journal for Numerical Methods in Fluids 71.1, pp. 80–97.
DOI: 10.1002/fld.3648.

Marras, S., J. F. Kelly, M. Moragues, A. Müller, M. A. Kopera, M. Vázquez, F. X.
Giraldo, G. Houzeaux, and O. Jorba (2015). “A Review of Element-Based Galerkin
Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements,
and Discontinuous Galerkin”. In: Archives of Computational Methods in Engineering
23.4, pp. 673–722. DOI: 10.1007/s11831-015-9152-1.

McRae, A. T. T. and C. J. Cotter (2014). “Energy- and enstrophy-conserving schemes
for the shallow-water equations, based on mimetic finite elements”. In: Quarterly
Journal of the Royal Meteorological Society 140.684, pp. 2223–2234. DOI: 10.1002/qj.
2291.

https://doi.org/10.1515/9781400882182-010
https://doi.org/10.1175/mwr-d-12-00144.1
https://doi.org/10.1002/nme.6178
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1007/978-3-642-23099-8_11
https://doi.org/10.1007/978-3-642-23099-8_11
https://doi.org/10.1137/09076920x
https://doi.org/10.1137/09076920x
https://doi.org/10.1111/j.2153-3490.1960.tb01323.x
https://doi.org/10.1145/2687415
https://doi.org/10.1175/bams-89-1-45
https://doi.org/10.1016/0096-3003(86)90104-9
https://doi.org/10.1137/0722029
https://doi.org/10.1002/fld.3648
https://doi.org/10.1007/s11831-015-9152-1
https://doi.org/10.1002/qj.2291
https://doi.org/10.1002/qj.2291

Bibliography 215

McRae, A. T. T., G.-T. Bercea, L. Mitchell, D. A. Ham, and C. J. Cotter (2016). “Au-
tomated Generation and Symbolic Manipulation of Tensor Product Finite Ele-
ments”. In: SIAM Journal on Scientific Computing 38.5, S25–S47. DOI: 10 . 1137 /
15m1021167.

Melvin, T., M. Dubal, N. Wood, A. Staniforth, and M. Zerroukat (2010). “An in-
herently mass-conserving iterative semi-implicit semi-Lagrangian discretization
of the non-hydrostatic vertical-slice equations”. In: Quarterly Journal of the Royal
Meteorological Society 136.648, pp. 799–814. DOI: 10.1002/qj.603.

Melvin, T., T. Benacchio, J. Thuburn, and C. J. Cotter (2018). “Choice of function
spaces for thermodynamic variables in mixed finite-element methods”. In: Quar-
terly Journal of the Royal Meteorological Society 144.712, pp. 900–916. DOI: 10.1002/
qj.3268.

Melvin, T., T. Benacchio, B. J. Shipway, N. Wood, J. Thuburn, and C. J. Cotter
(2019). “A mixed finite-element, finite-volume, semi-implicit discretization for at-
mospheric dynamics: Cartesian geometry”. In: Quarterly Journal of the Royal Mete-
orological Society 145.724, pp. 2835–2853. DOI: 10.1002/qj.3501.

Met Office, UK (2019). Next generation atmospheric model development. Accessed: 2019-
09-13. URL: https://www.metoffice.gov.uk/research/news/2019/gungho-and-
lfric.

Mitchell, L. and E. H. Müller (2016). “High level implementation of geometric multi-
grid solvers for finite element problems: Applications in atmospheric modelling”.
In: Journal of Computational Physics 327, pp. 1–18. DOI: 10.1016/j.jcp.2016.09.
037.

Morley, L. S. D. (1971). “The constant-moment plate-bending element”. In: Journal of
Strain Analysis 6.1, pp. 20–24. DOI: 10.1243/03093247v061020.

Müller, E. H. and R. Scheichl (2014). “Massively parallel solvers for elliptic partial
differential equations in numerical weather and climate prediction”. In: Quarterly
Journal of the Royal Meteorological Society 140.685, pp. 2608–2624. DOI: 10.1002/qj.
2327.

Nair, R. D., S. J. Thomas, and R. D. Loft (2005). “A Discontinuous Galerkin Global
Shallow Water Model”. In: Monthly Weather Review 133.4, pp. 876–888. DOI: 10.
1175/mwr2903.1.

Natale, A. and C. J. Cotter (2017). “A variational H(div) finite-element discretization
approach for perfect incompressible fluids”. In: IMA Journal of Numerical Analysis
38.3, pp. 1388–1419. DOI: 10.1093/imanum/drx033.

Natale, A., J. Shipton, and C. J. Cotter (2016). “Compatible finite element spaces for
geophysical fluid dynamics”. In: Dynamics and Statistics of the Climate System 1.1.
DOI: 10.1093/climsys/dzw005.

Nechaev, D. and M. Yaremchuk (2004). “On the Approximation of the Coriolis Terms
in C-Grid Models”. In: Monthly Weather Review 132.9, pp. 2283–2289. DOI: 10.1175/
1520-0493(2004)132<2283:OTAOTC>2.0.CO;2.

Nédélec, J.-C. (1980). “Mixed finite elements in R3”. In: Numerische Mathematik 35.3,
pp. 315–341. DOI: 10.1007/bf01396415.

– (1986). “A new family of mixed finite elements in R3”. In: Numerische Mathematik
50.1, pp. 57–81. DOI: 10.1007/bf01389668.

Ogura, Y. and N. A. Phillips (1962). “Scale Analysis of Deep and Shallow Convection
in the Atmosphere”. In: Journal of the Atmospheric Sciences 19.2, pp. 173–179. DOI:
10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

Ølgaard, K. B. and G. N. Wells (2010). “Optimizations for quadrature representations
of finite element tensors through automated code generation”. In: ACM Transac-
tions on Mathematical Software 37.1, pp. 1–23. DOI: 10.1145/1644001.1644009.

https://doi.org/10.1137/15m1021167
https://doi.org/10.1137/15m1021167
https://doi.org/10.1002/qj.603
https://doi.org/10.1002/qj.3268
https://doi.org/10.1002/qj.3268
https://doi.org/10.1002/qj.3501
https://www.metoffice.gov.uk/research/news/2019/gungho-and-lfric
https://www.metoffice.gov.uk/research/news/2019/gungho-and-lfric
https://doi.org/10.1016/j.jcp.2016.09.037
https://doi.org/10.1016/j.jcp.2016.09.037
https://doi.org/10.1243/03093247v061020
https://doi.org/10.1002/qj.2327
https://doi.org/10.1002/qj.2327
https://doi.org/10.1175/mwr2903.1
https://doi.org/10.1175/mwr2903.1
https://doi.org/10.1093/imanum/drx033
https://doi.org/10.1093/climsys/dzw005
https://doi.org/10.1175/1520-0493(2004)132<2283:OTAOTC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<2283:OTAOTC>2.0.CO;2
https://doi.org/10.1007/bf01396415
https://doi.org/10.1007/bf01389668
https://doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
https://doi.org/10.1145/1644001.1644009

216 Bibliography

Penrose, R. (1955). “A generalized inverse for matrices”. In: Mathematical Proceed-
ings of the Cambridge Philosophical Society 51.3, pp. 406–413. DOI: 10 . 1017 /
s0305004100030401.

Poirier, D., S. Allmaras, D. McCarthy, M. Smith, and F. Enomoto (1998). “The CGNS
system”. In: 29th AIAA, Fluid Dynamics Conference. American Institute of Aeronau-
tics and Astronautics. DOI: 10.2514/6.1998-3007.

Prud’homme, C., V. Chabannes, V. Doyeux, M. Ismail, A. Samake, and G. Pena
(2012). “Feel++: A computational framework for Galerkin Methods and Advanced
Numerical Methods”. In: ESAIM: Proceedings 38, pp. 429–455. DOI: 10.1051/proc/
201238024.

Putman, W. M. and S. J. Lin (2007). “Finite-volume transport on various cubed-
sphere grids”. In: Journal of Computational Physics 227.1, pp. 55–78. DOI: 10.1016/
j.jcp.2007.07.022.

Rathgeber, F., G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham, C. Bertolli, and
P. H.J. Kelly (2012). “PyOP2: A High-Level Framework for Performance-Portable
Simulations on Unstructured Meshes”. In: 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. IEEE. DOI: 10.1109/sc.companion.
2012.134.

Rathgeber, F., D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T.
Bercea, G. R. Markall, and P. H. J. Kelly (2017). “Firedrake: automating the finite
element method by composing abstractions”. In: ACM Transactions on Mathematical
Software 43.3, pp. 1–27. DOI: 10.1145/2998441.

Raviart, P. A. and J. M. Thomas (1977). “A mixed finite element method for 2-nd or-
der elliptic problems”. In: Lecture Notes in Mathematics. Springer Berlin Heidelberg,
pp. 292–315. DOI: 10.1007/bfb0064470.

Richardson, L. F. (1911). “The Approximate Arithmetical Solution by Finite Differ-
ences of Physical Problems Involving Differential Equations, with an Application
to the Stresses in a Masonry Dam”. In: Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 210.459-470, pp. 307–357. DOI:
10.1098/rsta.1911.0009.

Ringler, T. D., J. Thuburn, J. B. Klemp, and W. C. Skamarock (2010). “A unified ap-
proach to energy conservation and potential vorticity dynamics for arbitrarily-
structured C-grids”. In: Journal of Computational Physics 229.9, pp. 3065–3090. DOI:
10.1016/j.jcp.2009.12.007.

Rognes, M. E., R. C. Kirby, and A. Logg (2009). “Efficient Assembly of H(div) and
H(curl) Conforming Finite Elements”. In: SIAM Journal on Scientific Computing
31.6, pp. 4130–4151. DOI: 10.1137/08073901x.

Rognes, M. E., D. A. Ham, C. J. Cotter, and A. T. T. McRae (2013). “Automating the
solution of PDEs on the sphere and other manifolds in FEniCS 1.2”. In: Geoscientific
Model Development 6.6, pp. 2099–2119. DOI: 10.5194/gmd-6-2099-2013.

Rothe, E. (1930). “Zweidimensionale parabolische Randwertaufgaben als Grenzfall
eindimensionaler Randwertaufgaben”. In: Mathematische Annalen 102.1, pp. 650–
670. DOI: 10.1007/bf01782368.

Ruge, J. W. and K. Stüben (1987). “Algebraic Multigrid”. In: Multigrid Methods. So-
ciety for Industrial and Applied Mathematics, pp. 73–130. DOI: 10 . 1137 / 1 .
9781611971057.ch4.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics. DOI: 10.1137/1.9780898718003.

Schneider, E. K. (1987). “An Inconsistency in Vertical Discretization in Some Atmo-
spheric Models”. In: Monthly Weather Review 115.9, pp. 2166–2169. DOI: 10.1175/
1520-0493(1987)115<2166:AIIVDI>2.0.CO;2.

https://doi.org/10.1017/s0305004100030401
https://doi.org/10.1017/s0305004100030401
https://doi.org/10.2514/6.1998-3007
https://doi.org/10.1051/proc/201238024
https://doi.org/10.1051/proc/201238024
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.1109/sc.companion.2012.134
https://doi.org/10.1109/sc.companion.2012.134
https://doi.org/10.1145/2998441
https://doi.org/10.1007/bfb0064470
https://doi.org/10.1098/rsta.1911.0009
https://doi.org/10.1016/j.jcp.2009.12.007
https://doi.org/10.1137/08073901x
https://doi.org/10.5194/gmd-6-2099-2013
https://doi.org/10.1007/bf01782368
https://doi.org/10.1137/1.9781611971057.ch4
https://doi.org/10.1137/1.9781611971057.ch4
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1175/1520-0493(1987)115<2166:AIIVDI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<2166:AIIVDI>2.0.CO;2

Bibliography 217

Schoof, L. A. and V. R. Yarberry (1994). EXODUS II: A finite element data model. Tech.
rep. DOI: 10.2172/10102115.

Shapira, Y. (2008). Matrix-Based Multigrid. Springer US. DOI: 10.1007/978-0-387-
49765-5.

Shewchuk, J. R. (1996). “Triangle: Engineering a 2D quality mesh generator and De-
launay triangulator”. In: Applied Computational Geometry Towards Geometric Engi-
neering. Springer Berlin Heidelberg, pp. 203–222. DOI: 10.1007/bfb0014497.

Shipton, J., T. H. Gibson, and C. J. Cotter (2018). “Higher-order compatible finite ele-
ment schemes for the nonlinear rotating shallow water equations on the sphere”.
In: Journal of Computational Physics 375, pp. 1121–1137. DOI: 10.1016/j.jcp.2018.
08.027.

Shu, C. W. and S. Osher (1988). “Efficient implementation of essentially non-
oscillatory shock-capturing schemes”. In: Journal of Computational Physics 77.2,
pp. 439–471. DOI: 10.1016/0021-9991(88)90177-5.

Siefert, C. and E. De Sturler (2006). “Preconditioners for Generalized Saddle-Point
Problems”. In: SIAM Journal on Numerical Analysis 44.3, pp. 1275–1296. DOI: 10.
1137/040610908.

Skamarock, W. C. and J. B. Klemp (1994). “Efficiency and Accuracy of the
Klemp-Wilhelmson Time-Splitting Technique”. In: Monthly Weather Review 122.11,
pp. 2623–2630. DOI: 10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2.

Smolarkiewicz, P. K. and L. G. Margolin (1994). Variational elliptic solver for atmo-
spheric applications. Tech. rep. DOI: 10.2172/10130964.

Staniforth, A. and J. Côté (1991). “Semi-Lagrangian Integration Schemes for Atmo-
spheric Models—A Review”. In: Monthly Weather Review 119.9, pp. 2206–2223.
DOI: 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2.

Staniforth, A., T. Melvin, and C. J. Cotter (2013). “Analysis of a mixed finite-element
pair proposed for an atmospheric dynamical core”. In: Quarterly Journal of the Royal
Meteorological Society 139.674, pp. 1239–1254. DOI: 10.1002/qj.2028.

Staniforth, A. and J. Thuburn (2011). “Horizontal grids for global weather and cli-
mate prediction models: a review”. In: Quarterly Journal of the Royal Meteorological
Society 138.662, pp. 1–26. DOI: 10.1002/qj.958.

Staniforth, A. and N. Wood (2008). “Aspects of the dynamical core of a nonhydro-
static, deep-atmosphere, unified weather and climate-prediction model”. In: Jour-
nal of Computational Physics 227.7, pp. 3445–3464. DOI: 10.1016/j.jcp.2006.11.
009.

Stenberg, R. (1991). “Postprocessing schemes for some mixed finite elements”. In:
ESAIM: Mathematical Modelling and Numerical Analysis 25.1, pp. 151–167. DOI: 10.
1051/m2an/1991250101511.

Stevenson, R. (1994). “Robust Multi-grid with 7-point ILU Smoothing”. In: Multigrid
Methods IV. Birkhäuser Basel, pp. 295–307. DOI: 10.1007/978-3-0348-8524-9_22.

Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier
(1993). “Numerical solutions of a non-linear density current: A benchmark solu-
tion and comparisons”. In: International Journal for Numerical Methods in Fluids 17.1,
pp. 1–22. DOI: 10.1002/fld.1650170103.

Strang, G. (1973). “Piecewise polynomials and the finite element method”. In: Bul-
letin of the American Mathematical Society 79.6, pp. 1128–1138. DOI: 10.1090/s0002-
9904-1973-13351-8.

Stüben, K. (2001). “A review of algebraic multigrid”. In: Numerical Analysis: Historical
Developments in the 20th Century. Elsevier, pp. 331–359. DOI: 10.1016/b978-0-444-
50617-7.50015-x.

https://doi.org/10.2172/10102115
https://doi.org/10.1007/978-0-387-49765-5
https://doi.org/10.1007/978-0-387-49765-5
https://doi.org/10.1007/bfb0014497
https://doi.org/10.1016/j.jcp.2018.08.027
https://doi.org/10.1016/j.jcp.2018.08.027
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1137/040610908
https://doi.org/10.1137/040610908
https://doi.org/10.1175/1520-0493(1994)122<2623:EAAOTK>2.0.CO;2
https://doi.org/10.2172/10130964
https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
https://doi.org/10.1002/qj.2028
https://doi.org/10.1002/qj.958
https://doi.org/10.1016/j.jcp.2006.11.009
https://doi.org/10.1016/j.jcp.2006.11.009
https://doi.org/10.1051/m2an/1991250101511
https://doi.org/10.1051/m2an/1991250101511
https://doi.org/10.1007/978-3-0348-8524-9_22
https://doi.org/10.1002/fld.1650170103
https://doi.org/10.1090/s0002-9904-1973-13351-8
https://doi.org/10.1090/s0002-9904-1973-13351-8
https://doi.org/10.1016/b978-0-444-50617-7.50015-x
https://doi.org/10.1016/b978-0-444-50617-7.50015-x

218 Bibliography

Süli, E. and D. F. Mayers (2003). An Introduction to Numerical Analysis. Cambridge
University Press. ISBN: 9780511801181. DOI: 10.1017/CBO9780511801181.

Taylor, C. and P. Hood (1973). “A numerical solution of the Navier-Stokes equations
using the finite element technique”. In: Computers & Fluids 1.1, pp. 73–100. DOI:
10.1016/0045-7930(73)90027-3.

Temperton, C. (1997). “Treatment of the Coriolis Terms in Semi-Lagrangian Spectral
Models”. In: Atmosphere-Ocean 35.sup1, pp. 293–302. DOI: 10.1080/07055900.
1997.9687353.

Thomas, J. M. (1976). “Méthode des éléments finis hybrides duaux pour les prob-
lèmes elliptiques du second ordre”. In: Revue française d’automatique, informatique,
recherche opérationnelle. Analyse numérique 10.R3, pp. 51–79. DOI: 10.1051/m2an/
197610r300511.

Thomas, S. J. and R. D. Loft (2005). “The NCAR spectral element climate dynamical
core: Semi-implicit eulerian formulation”. In: Journal of Scientific Computing 25.1-2,
pp. 307–322. DOI: 10.1007/bf02728993.

Thomas, S. J., J. P. Hacker, P. K. Smolarkiewicz, and R. B. Stull (2003). “Spectral Pre-
conditioners for Nonhydrostatic Atmospheric Models”. In: Monthly Weather Re-
view 131.10, pp. 2464–2478. DOI: 10.1175/1520-0493(2003)131<2464:SPFNAM>2.
0.CO;2.

Thuburn, J. (2016). “ENDGame: The New Dynamical Core of the Met Office Weather
and Climate Prediction Model”. In: UK Success Stories in Industrial Mathematics.
Springer International Publishing, pp. 27–33. DOI: 10.1007/978-3-319-25454-
8_4.

Thuburn, J. and C. J. Cotter (2012). “A Framework for Mimetic Discretization of the
Rotating Shallow-Water Equations on Arbitrary Polygonal Grids”. In: SIAM Jour-
nal on Scientific Computing 34.3, B203–B225. DOI: 10.1137/110850293.

Thuburn, J., C. J. Cotter, and T. Dubos (2014). “A mimetic, semi-implicit, forward-in-
time, finite volume shallow water model: comparison of hexagonal–icosahedral
and cubed-sphere grids”. In: Geoscientific Model Development 7.3, pp. 909–929. DOI:
10.5194/gmd-7-909-2014.

Ullrich, P. A., C. Jablonowski, and B. Van Leer (2010). “High-order finite-volume
methods for the shallow-water equations on the sphere”. In: Journal of Computa-
tional Physics 229.17, pp. 6104–6134. DOI: 10.1016/j.jcp.2010.04.044.

Ullrich, P. A., K. A. Reed, and C. Jablonowski (2015). “Analytical initial conditions
and an analysis of baroclinic instability waves in f - and β-plane 3D channel mod-
els”. In: Quarterly Journal of the Royal Meteorological Society 141.693, pp. 2972–2988.
DOI: 10.1002/qj.2583.

Ullrich, P. A., C. Jablonowski, J. Kent, P. H. Lauritzen, R. D. Nair, and M. A. Taylor
(2012). “Dynamical core model intercomparison project (DCMIP) test case docu-
ment”. In: DCMIP Summer School 83.

Ullrich, P. A., T. Melvin, C. Jablonowski, and A. Staniforth (2013). “A proposed
baroclinic wave test case for deep- and shallow-atmosphere dynamical cores”.
In: Quarterly Journal of the Royal Meteorological Society 140.682, pp. 1590–1602. DOI:
10.1002/qj.2241. URL: https://doi.org/10.1002%2Fqj.2241.

Vallis, G. K. (2017). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-
Scale Circulation. 2nd. Cambridge University Press. ISBN: 9780511790447. DOI: 10.
1017/CBO9780511790447.

Vaněk, P., M. Brezina, and J. Mandel (2001). “Convergence of algebraic multigrid
based on smoothed aggregation”. In: Numerische Mathematik 88.3, pp. 559–579.
DOI: 10.1007/s211-001-8015-y.

https://doi.org/10.1017/CBO9780511801181
https://doi.org/10.1016/0045-7930(73)90027-3
https://doi.org/10.1080/07055900.1997.9687353
https://doi.org/10.1080/07055900.1997.9687353
https://doi.org/10.1051/m2an/197610r300511
https://doi.org/10.1051/m2an/197610r300511
https://doi.org/10.1007/bf02728993
https://doi.org/10.1175/1520-0493(2003)131<2464:SPFNAM>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<2464:SPFNAM>2.0.CO;2
https://doi.org/10.1007/978-3-319-25454-8_4
https://doi.org/10.1007/978-3-319-25454-8_4
https://doi.org/10.1137/110850293
https://doi.org/10.5194/gmd-7-909-2014
https://doi.org/10.1016/j.jcp.2010.04.044
https://doi.org/10.1002/qj.2583
https://doi.org/10.1002/qj.2241
https://doi.org/10.1002%2Fqj.2241
https://doi.org/10.1017/CBO9780511790447
https://doi.org/10.1017/CBO9780511790447
https://doi.org/10.1007/s211-001-8015-y

Bibliography 219

Vaněk, P., J. Mandel, and M. Brezina (1996). “Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic problems”. In: Computing 56.3,
pp. 179–196. DOI: 10.1007/bf02238511.

Wesseling, P. and C. W. Oosterlee (2001). “Geometric multigrid with applications to
computational fluid dynamics”. In: Partial Differential Equations. Elsevier, pp. 311–
334. DOI: 10.1016/b978-0-444-50616-0.50013-0.

Williamson, D. L. (2007). “The Evolution of Dynamical Cores for Global Atmo-
spheric Models”. In: Journal of the Meteorological Society of Japan 85B, pp. 241–269.
DOI: 10.2151/jmsj.85b.241.

Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber (1992). “A
standard test set for numerical approximations to the shallow water equations in
spherical geometry”. In: Journal of Computational Physics 101.1, pp. 227–228. DOI:
10.1016/0021-9991(92)90060-c.

Wimmer, G. A., C. J. Cotter, and W. Bauer (2019). “Energy conserving upwinded
compatible finite element schemes for the rotating shallow water equations”. In:
Journal of Computational Physics, p. 109016. DOI: 10.1016/j.jcp.2019.109016.

Wittum, G. (1989). “On the Robustness of ILU Smoothing”. In: SIAM Journal on Sci-
entific and Statistical Computing 10.4, pp. 699–717. DOI: 10.1137/0910043.

Wood, N., A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross, T. Melvin,
C. Smith, S. Vosper, M. Zerroukat, and J. Thuburn (2014). “An inherently mass-
conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere
global non-hydrostatic equations”. In: Quarterly Journal of the Royal Meteorological
Society 140.682, pp. 1505–1520. DOI: 10.1002/qj.2235.

Yakovlev, S., D. Moxey, R. M. Kirby, and S. J. Sherwin (2015). “To CG or to HDG:
A Comparative Study in 3D”. In: Journal of Scientific Computing 67.1, pp. 192–220.
DOI: 10.1007/s10915-015-0076-6.

Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf (2014). “The ICON (ICOsahedral
Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the
non-hydrostatic dynamical core”. In: Quarterly Journal of the Royal Meteorological
Society 141.687, pp. 563–579. DOI: 10.1002/qj.2378.

Zenodo/Tabula-Rasa (2019). Tabula Rasa: experimentation framework for hybridization
and static condensation. DOI: 10.5281/zenodo.2616031.

Zienkiewicz, O.C. and Y. K. Cheung (1965). “Finite elements in the solution of field
problems”. In: The Engineer 220.5722, pp. 507–510.

https://doi.org/10.1007/bf02238511
https://doi.org/10.1016/b978-0-444-50616-0.50013-0
https://doi.org/10.2151/jmsj.85b.241
https://doi.org/10.1016/0021-9991(92)90060-c
https://doi.org/10.1016/j.jcp.2019.109016
https://doi.org/10.1137/0910043
https://doi.org/10.1002/qj.2235
https://doi.org/10.1007/s10915-015-0076-6
https://doi.org/10.1002/qj.2378
https://doi.org/10.5281/zenodo.2616031

	Declaration of Authorship
	Abstract
	Acknowledgements
	Copyright Declaration
	Introduction
	Thesis statement
	Technical contributions
	Dissertation outline
	Dissemination

	Preliminaries
	Hierarchy of geophysical models
	The compressible Euler system
	Anelastic and Boussinesq approximations
	Hydrostatic approximation
	Single-layer rotating shallow water system
	Linearized shallow water equations
	Shallow water waves on the f-plane
	Shallow water waves on the -plane

	Numerical modeling of atmospheric flows

	Background on the finite element method
	The finite element
	Finite element spaces
	Sobolev spaces
	Weak formulations of PDEs
	H1 finite elements
	H(div) finite elements
	H(curl) finite elements
	L2 finite elements

	Finite element computations
	Evaluating finite element forms
	Finite element computations on immersed manifolds
	Differential operators on manifolds
	Piola-mapped finite elements on manifolds

	Compatible finite element methods
	L2 de-Rham complexes
	Compatible finite elements in two-dimensions
	Tensor product elements
	Product cells and function spaces
	Nodes of a tensor product element

	Compatible finite elements in three-dimensions
	Finite element space for the potential temperature
	Approximations of de-Rham complexes on hypersurfaces

	Chapter summary

	Hybridizable compatible finite element methods
	The hybridizable mixed method
	Compatible discretization of a linear shallow water model
	A hybridizable discretization of a linear shallow water model
	Broken H(div) spaces
	Trace spaces
	Discrete hybridizable system

	Analysis of the hybridizable method
	Local solvers
	Solvability of the discrete hybridizable system
	Characterization of the hybridizable solutions
	The discrete variational problem for h
	Remark on the operator S

	Nonlinear method and numerical examples
	Nonlinear shallow water equations
	Quasi-Newton/Picard iteration scheme

	Numerical experiments on the sphere
	The computational domain
	Solid body rotation
	Isolated mountain test case

	Other hybridizable discretizations
	Hydrostatic pressure equation
	A vertical discretization using compatible finite elements
	A vertically-oriented hybridizable method

	Linear gravity wave system
	Compatible finite element formulation
	Hybridization of the velocity-pressure system

	Chapter summary

	An automated framework for hybridization and static condensation
	Introduction
	The Firedrake finite element library
	A mixed Poisson example
	Formulating the problem in UFL
	Code-generation and operator assembly
	Solving the linear system and configuring PETSc
	Extending Firedrake's solver capabilities

	Slate: a system for linear algebra on element tensors
	An overview of Slate
	Terminal tensors
	Symbolic linear algebra

	Examples
	Hybridization of mixed methods
	Hybridization of discontinuous Galerkin methods
	Local post-processing
	Post-processing of the scalar solution
	Post-processing of the flux

	Static condensation as a preconditioner
	Interfacing with PETSc via custom preconditioners
	A general-purpose static condensation preconditioner
	Preconditioning mixed methods via hybridization
	Preconditioning the Lagrange multiplier system
	A quick overview of algebraic multigrid (AMG)
	AMG for the hybridizable mixed method
	A remark on the HDG trace system

	Numerical studies
	HDG method for a three-dimensional elliptic equation
	Error versus execution time
	Break down of solver time

	Hybridizable mixed methods for the shallow water equations
	Profiling Williamson test case 5

	Rotating linear gravity wave model
	Implicit solver strategy
	Preconditioning the mixed velocity pressure system
	Solving the non-symmetric trace system
	Problem setup
	Time-step robustness with implicit Coriolis

	Chapter summary

	A hybridizable method for the Euler equations
	A compatible finite element method for the Euler equations
	Tensor product finite element complex
	Finite element space for the potential temperature
	Semi-discrete formulation

	Fully-discrete nonlinear method
	Obtaining a predictive velocity
	Obtaining the predictive density and temperature fields
	Picard method for the corrective updates
	An approximate Schur-complement preconditioner

	A hybridizable method for the compressible equations
	Discontinuous H(div) velocity fields
	Lagrange multipliers and the pressure trace
	Full solution procedure with hybridization
	Initialization of the dynamical core
	Semi-implicit procedure

	Static condensation procedure and iterative solver

	Numerical results
	Non-hydrostatic gravity waves in a periodic channel
	Hydrostatic and non-hydrostatic mountain waves
	Density current
	Non-orographic gravity waves on a small planet
	Robustness against implicit Courant number

	Chapter summary

	Summary and outlook
	Summary and conclusions
	Further work

	Bibliography

