11,319 research outputs found

    Single machine scheduling with job-dependent machine deterioration

    Get PDF
    We consider the single machine scheduling problem with job-dependent machine deterioration. In the problem, we are given a single machine with an initial non-negative maintenance level, and a set of jobs each with a non-preemptive processing time and a machine deterioration. Such a machine deterioration quantifies the decrement in the machine maintenance level after processing the job. To avoid machine breakdown, one should guarantee a non-negative maintenance level at any time point; and whenever necessary, a maintenance activity must be allocated for restoring the machine maintenance level. The goal of the problem is to schedule the jobs and the maintenance activities such that the total completion time of jobs is minimized. There are two variants of maintenance activities: in the partial maintenance case each activity can be allocated to increase the machine maintenance level to any level not exceeding the maximum; in the full maintenance case every activity must be allocated to increase the machine maintenance level to the maximum. In a recent work, the problem in the full maintenance case has been proven NP-hard; several special cases of the problem in the partial maintenance case were shown solvable in polynomial time, but the complexity of the general problem is left open. In this paper we first prove that the problem in the partial maintenance case is NP-hard, thus settling the open problem; we then design a 22-approximation algorithm.Comment: 15 page

    Optimal Composition Ordering Problems for Piecewise Linear Functions

    Get PDF
    In this paper, we introduce maximum composition ordering problems. The input is nn real functions f1,,fn:RRf_1,\dots,f_n:\mathbb{R}\to\mathbb{R} and a constant cRc\in\mathbb{R}. We consider two settings: total and partial compositions. The maximum total composition ordering problem is to compute a permutation σ:[n][n]\sigma:[n]\to[n] which maximizes fσ(n)fσ(n1)fσ(1)(c)f_{\sigma(n)}\circ f_{\sigma(n-1)}\circ\dots\circ f_{\sigma(1)}(c), where [n]={1,,n}[n]=\{1,\dots,n\}. The maximum partial composition ordering problem is to compute a permutation σ:[n][n]\sigma:[n]\to[n] and a nonnegative integer k (0kn)k~(0\le k\le n) which maximize fσ(k)fσ(k1)fσ(1)(c)f_{\sigma(k)}\circ f_{\sigma(k-1)}\circ\dots\circ f_{\sigma(1)}(c). We propose O(nlogn)O(n\log n) time algorithms for the maximum total and partial composition ordering problems for monotone linear functions fif_i, which generalize linear deterioration and shortening models for the time-dependent scheduling problem. We also show that the maximum partial composition ordering problem can be solved in polynomial time if fif_i is of form max{aix+bi,ci}\max\{a_ix+b_i,c_i\} for some constants ai(0)a_i\,(\ge 0), bib_i and cic_i. We finally prove that there exists no constant-factor approximation algorithm for the problems, even if fif_i's are monotone, piecewise linear functions with at most two pieces, unless P=NP.Comment: 19 pages, 4 figure

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    The Integration of Maintenance Decisions and Flow Shop Scheduling

    Get PDF
    In the conventional production and service scheduling problems, it is assumed that the machines can continuously process the jobs and the information is complete and certain. However, in practice the machines must stop for preventive or corrective maintenance, and the information available to the planners can be both incomplete and uncertain. In this dissertation, the integration of maintenance decisions and production scheduling is studied in a permutation flow shop setting. Several variations of the problem are modeled as (stochastic) mixed-integer programs. In these models, some technical nuances are considered that increase the practicality of the models: having various types of maintenance, combining maintenance activities, and the impact of maintenance on the processing times of the production jobs. The solution methodologies involve studying the solution space of the problems, genetic algorithms, stochastic optimization, multi-objective optimization, and extensive computational experiments. The application of the problems and managerial implications are demonstrated through a case study in the earthmoving operations in construction projects

    Efficient heuristics for the parallel blocking flow shop scheduling problem

    Get PDF
    We consider the NP-hard problem of scheduling n jobs in F identical parallel flow shops, each consisting of a series of m machines, and doing so with a blocking constraint. The applied criterion is to minimize the makespan, i.e., the maximum completion time of all the jobs in F flow shops (lines). The Parallel Flow Shop Scheduling Problem (PFSP) is conceptually similar to another problem known in the literature as the Distributed Permutation Flow Shop Scheduling Problem (DPFSP), which allows modeling the scheduling process in companies with more than one factory, each factory with a flow shop configuration. Therefore, the proposed methods can solve the scheduling problem under the blocking constraint in both situations, which, to the best of our knowledge, has not been studied previously. In this paper, we propose a mathematical model along with some constructive and improvement heuristics to solve the parallel blocking flow shop problem (PBFSP) and thus minimize the maximum completion time among lines. The proposed constructive procedures use two approaches that are totally different from those proposed in the literature. These methods are used as initial solution procedures of an iterated local search (ILS) and an iterated greedy algorithm (IGA), both of which are combined with a variable neighborhood search (VNS). The proposed constructive procedure and the improved methods take into account the characteristics of the problem. The computational evaluation demonstrates that both of them –especially the IGA– perform considerably better than those algorithms adapted from the DPFSP literature.Peer ReviewedPostprint (author's final draft

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective
    corecore