5,765 research outputs found

    A Distributed Demand-Side Management Framework for the Smart Grid

    Get PDF
    This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures, especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing strategy, where energy tariffs are function of the overall power demand of customers. We consider two practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze numerically these two approaches, showing that they are characterized practically by the same performance level in all the considered grid scenarios. We model the proposed system using a non-cooperative game theoretical approach, and demonstrate that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equilibrium, thus demonstrating the robustness of the power scheduling plan obtained without any central coordination of the operator or the customers. Numerical results, obtained using real load profiles and appliance models, show that the system-wide peak absorption achieved in a completely distributed fashion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the growing energy demand

    Optimal Algorithms for Scheduling under Time-of-Use Tariffs

    Get PDF
    We consider a natural generalization of classical scheduling problems in which using a time unit for processing a job causes some time-dependent cost which must be paid in addition to the standard scheduling cost. We study the scheduling objectives of minimizing the makespan and the sum of (weighted) completion times. It is not difficult to derive a polynomial-time algorithm for preemptive scheduling to minimize the makespan on unrelated machines. The problem of minimizing the total (weighted) completion time is considerably harder, even on a single machine. We present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time-slots to be used for scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for.Comment: 17 pages; A preliminary version of this paper with a subset of results appeared in the Proceedings of MFCS 201

    Integrating labor awareness to energy-efficient production scheduling under real-time electricity pricing : an empirical study

    Get PDF
    With the penetration of smart grid into factories, energy-efficient production scheduling has emerged as a promising method for industrial demand response. It shifts flexible production loads to lower-priced periods to reduce energy cost for the same production task. However, the existing methods only focus on integrating energy awareness to conventional production scheduling models. They ignore the labor cost which is shift-based and follows an opposite trend of energy cost. For instance, the energy cost is lower during nights while the labor cost is higher. Therefore, this paper proposes a method for energy-efficient and labor-aware production scheduling at the unit process level. This integrated scheduling model is mathematically formulated. Besides the state-based energy model and genetic algorithm-based optimization, a continuous-time shift accumulation heuristic is proposed to synchronize power states and labor shifts. In a case study of a Belgian plastic bottle manufacturer, a set of empirical sensitivity analyses were performed to investigate the impact of energy and labor awareness, as well as the production-related factors that influence the economic performance of a schedule. Furthermore, the demonstration was performed in 9 large-scale test instances, which encompass the cases where energy cost is minor, moderate, and major compared to the joint energy and labor cost. The results have proven that the ignorance of labor in existing energy-efficient production scheduling studies increases the joint energy and labor cost, although the energy cost can be minimized. To achieve effective production cost reduction, energy and labor awareness are recommended to be jointly considered in production scheduling. (C) 2017 Elsevier Ltd. All rights reserved

    Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing

    Get PDF
    Time-of-Use (TOU) electricity pricing provides an opportunity for industrial users to cut electricity costs. Although many methods for Economic Load Dispatch (ELD) under TOU pricing in continuous industrial processing have been proposed, there are still difficulties in batch-type processing since power load units are not directly adjustable and nonlinearly depend on production planning and scheduling. In this paper, for hot rolling, a typical batch-type and energy intensive process in steel industry, a production scheduling optimization model for ELD is proposed under TOU pricing, in which the objective is to minimize electricity costs while considering penalties caused by jumps between adjacent slabs. A NSGA-II based multi-objective production scheduling algorithm is developed to obtain Pareto-optimal solutions, and then TOPSIS based multi-criteria decision-making is performed to recommend an optimal solution to facilitate filed operation. Experimental results and analyses show that the proposed method cuts electricity costs in production, especially in case of allowance for penalty score increase in a certain range. Further analyses show that the proposed method has effect on peak load regulation of power grid.Comment: 13 pages, 6 figures, 4 table

    Algorithmic And Mathematical Programming Approaches To Scheduling Problems With Energy-Based Objectives

    Get PDF
    This dissertation studies scheduling as a means to address the increasing concerns related to energy consumption and electricity cost in manufacturing enterprises. Two classes of problems are considered in this dissertation: (i) minimizing the makespan in a permutation flow shop with peak power consumption constraints (the PFSPP problem for short) and (ii) minimizing the total electricity cost on a single machine under time-of-use tariffs (the SMSEC problem for short). We incorporate the technology of dynamic speed scaling and the variable pricing of electricity into these scheduling problems to improve energy efficiency in manufacturing.The challenge in the PFSPP problem is to keep track of which jobs are running concurrently at any time so that the peak power consumption can be properly taken into account. The challenge in the SMSEC problem is to keep track of the electricity prices at which the jobs are processed so that the total electricity cost can be properly computed. For the PFSPP problem, we consider both mathematical programming and combinatorial approaches. For the case of discrete speeds and unlimited intermediate storage, we propose two mixed integer programs and test their computational performance on instances arising from the manufacturing of cast iron plates. We also examine the PFSPP problem with two machines and zero intermediate storage, and investigate the structural properties of optimal schedules in this setting. For the SMSEC problem, we consider both uniform-speed and speed-scalable machine environments. For the uniform-speed case, we prove that this problem is strongly NP-hard, and in fact inapproximable within a constant factor, unless P = NP. In addition, we propose an exact polynomial-time algorithm for this problem when all the jobs have the same work volume and the electricity prices follow a so-called pyramidal structure. For the speed-scalable case, in which jobs can be processed at an arbitrary speed with a trade-off between speed and energy consumption, we show that this problem is strongly NP-hard and that there is no polynomial time approximation scheme for this problem. We also present different approximation algorithms for this case and test the computational performance of these approximation algorithms on randomly generated instances

    Simplified Algorithm for Dynamic Demand Response in Smart Homes Under Smart Grid Environment

    Full text link
    Under Smart Grid environment, the consumers may respond to incentive--based smart energy tariffs for a particular consumption pattern. Demand Response (DR) is a portfolio of signaling schemes from the utility to the consumers for load shifting/shedding with a given deadline. The signaling schemes include Time--of--Use (ToU) pricing, Maximum Demand Limit (MDL) signals etc. This paper proposes a DR algorithm which schedules the operation of home appliances/loads through a minimization problem. The category of loads and their operational timings in a day have been considered as the operational parameters of the system. These operational parameters determine the dynamic priority of a load, which is an intermediate step of this algorithm. The ToU pricing, MDL signals, and the dynamic priority of loads are the constraints in this formulated minimization problem, which yields an optimal schedule of operation for each participating load within the consumer provided duration. The objective is to flatten the daily load curve of a smart home by distributing the operation of its appliances in possible low--price intervals without violating the MDL constraint. This proposed algorithm is simulated in MATLAB environment against various test cases. The obtained results are plotted to depict significant monetary savings and flattened load curves.Comment: This paper was accepted and presented in 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). Furthermore, the conference proceedings has been published in IEEE Xplor

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial
    • …
    corecore