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Abstract. We consider a natural generalization of classical scheduling problems in which
using a time unit for processing a job causes some time-dependent cost which must be paid
in addition to the standard scheduling cost. We study the scheduling objectives of min-
imizing the makespan and the sum of (weighted) completion times. It is not difficult to
derive a polynomial-time algorithm for preemptive scheduling to minimize the makespan
on unrelated machines. The problem of minimizing the total (weighted) completion time
is considerably harder, even on a single machine. We present a polynomial-time algorithm
that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of
time-slots to be used for scheduling jobs according to the given sequence. This result is
based on dynamic programming using a subtle analysis of the structure of optimal solutions
and a potential function argument. With this algorithm, we solve the unweighted problem
optimally in polynomial time. For the more general problem, in which jobs may have in-
dividual weights, we develop a polynomial-time approximation scheme (PTAS) based on a
dual scheduling approach introduced for scheduling on a machine of varying speed. As the
weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can
hope for.

1 Introduction

One of the classical operations research problems is the Production Planning problem. It appears
in almost any introductory course in Operations Research [11, 19]. In its deterministic form a
production plan at lowest total cost is required to meet known demands in the next few weeks,
given holding cost for keeping inventory at the end of the week, and with unit production cost
varying over the weeks. It is a very early example of a problem model in which unit cost, or tariffs,
for production, service, labor, energy, etc., vary over time.

Nowadays, new technologies allow direct communication of a much larger variety of time-of-
use tariffs to customers. E.g. in energy practice electricity prices can differ largely over the hours.
Producers or providers of these resources use these variable pricing more and more to spread
demand for their services, which can save enormously on the excessive costs that are usually
involved to serve high peak demands. Customers are persuaded to direct their use of the scarce
resources to time slots that are offered at cheaper rates. From the provider’s point of view variable
pricing problems have been studied quite extensively. For instance, revenue management is a well
established subfield of operations research [20].

As in the Production Planning problem, in this paper we advocate models from the point of
view of the user of the resources, who may take advantage from variable pricing by traveling,

⋆ A preliminary version of this paper with a subset of results appeared in the Proceedings of MFCS
2015 as [4]. This research was supported by the German Science Foundation (DFG) under contract
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renting labor, using electricity, etc. at moments at which these services are offered at a lower price.
This point of view forms a rich class of optimization problems in which next to classical objectives,
the cost of using services needs to be taken into account.

This widely applicable framework is particularly well suited for scheduling problems, in which
jobs need to be scheduled over time. Processing jobs requires labor, energy, computer power, or
other resources that often exhibit variable tariffs over time. It leads to the natural generalization
of scheduling problems, in which using a time slot incurs certain cost, varying over time, which we
refer to as utilization cost that must be paid in addition to the actual scheduling cost. However
natural and practicable this may seem, there appears to be very little theoretical research on
such scheduling models. The only work we are aware of is by Wan and Qi [21], Kulkarni and
Munagala [14], Fang et al. [9] and Chen and Zhang [3], where variable tariffs concern the cost of
labor or the cost of energy.

The goal of this paper is to expedite the theoretical understanding of fundamental scheduling
problems within the framework of time-varying costs or tariffs. We contribute optimal polynomial-
time algorithms and best possible approximation algorithms for the fundamental scheduling ob-
jectives of minimizing the sum of weighted completion times and the makespan.

1.1 Problem definition

We first describe the underlying classical scheduling problems. We are given a set of jobs J :=
{1, . . . , n} where every job j ∈ J has a given processing time pj ∈ N and possibly a weight
wj ∈ Q≥0. The objective is to find a preemptive schedule on a single machine such that the total
(weighted) completion time,

∑

j∈J wjCj , is minimized; here Cj denotes the completion time of job
j. Preemption means that the processing of a job may be interrupted at any time and can continue
at any time later at no additional cost. In the three-field scheduling notation [10], this problem
is denoted as 1 | pmtn |

∑

wjCj . We also consider makespan minimization on unrelated machines,
R | pmtn |Cmax, where we are given a set of machines M , and each job j ∈ J has an individual
processing time pij ∈ N for running on machine i ∈ M . The objective is to find a preemptive
schedule that minimizes the makespan, that is, the completion time of the latest job.

In this paper, we consider a generalization of these scheduling problems within a time-of-use
tariff model. We assume that time is discretized into unit-size time slots. We are given a tariff or
cost function e : N → Q≥0, where e(t) denotes the tariff for processing job(s) at time slot [t, t+1).
We assume that e is piecewise constant. I.e., we assume that the time horizon is partitioned into
given intervals Ik = [sk, dk) with sk, dk ∈ N, k = 1, . . . ,K, within which e has the same value ek.
To ensure feasibility, we assume that dK ≥

∑

j∈J mini∈M pij .
Given a schedule S, let y(t) be a binary variable indicating if any processing is assigned to time

slot [t, t+ 1). The utilization cost of S is E(S) =
∑

t e(t)y(t). That means, for any time unit that
is used in S we pay the full tariff, even if the unit is only partially used. We also emphasize that
in the makespan problem in which we have multiple machines, a time slot paid for can be used by
all machines. This models applications in which paying for a time unit on a resource gives access
to all units of the resource, e.g., all processors on a server.

The overall objective is to find a schedule that minimizes the scheduling objective,
∑

j∈J wjCj

resp. Cmax, plus the utilization cost E. We refer to the resulting problems as 1 | pmtn |
∑

wjCj+E
and R | pmtn |Cmax+E. We emphasize that the results in this paper also hold if we minimize any
convex combination of the scheduling and utilization cost.

1.2 Related work

Scheduling with time-of-use tariffs (aka variable time slot cost) has been studied explicitly by
Wan and Qi [21], Kulkarni and Munagala [14], Fang et al. [9] and Chen and Zhang [3]. In their
seminal paper, Wan and Qi [21] consider several non-preemptive single machine problems, which
are polynomial-time solvable in the classical setting, such as minimizing the total completion
time, lateness, and total tardiness, or maximizing the weighted number of on-time jobs. These
problems are shown to be strongly NP-hard when taking general tariffs into account, while efficient
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algorithms exist for special monotone tariff functions. In particular, the problem 1 | |
∑

Cj + E
is strongly NP-hard, and it is efficiently solvable when the tariff function is increasing or convex
non-increasing [21]. Practical applications, however, often require non-monotone tariff functions,
which lead to wide open problems in the context of preemptive and non-preemptive scheduling.
In this paper, we answer complexity and approximability questions for fundamental preemptive
scheduling problems.

Kulkarni and Munagala [14] focus on a relevant but different problem in an online setting,
namely online flow-time minimization using resource augmentation. Their main result is a scalable
algorithm that obtains a constant performance guarantee when the machine speed is increased by
a constant factor and there are only two distinct unit tariffs. They also show that, in this online set-
ting, for an arbitrary number of distinct unit tariffs there is no constant speedup-factor that allows
for a constant approximate solution. For the problem considered in this paper, offline scheduling
without release dates, Kulkarni and Munagala [14] observed a relation to universal sequencing
on a machine of varying speed [8] which implies the following results: a pseudo-polynomial 4-
approximation for 1 | pmtn |

∑

wjCj +E, which gives an optimal solution in case that all weights
are equal, and a constant approximation in quasi-polynomial time for a constant number of distinct
tariffs or when using a machine that is processing jobs faster by a constant factor.

Fang et al. [9] study scheduling on a single machine under time-of-use electricity tariffs. They
do not take the scheduling cost into account, but only the energy cost. It also differs from our
approach since the schedule is made by the provider and not by the user of the energy. In their
model the time horizon is divided into K regions, each of which has a cost ck per unit energy.
For processing jobs the dynamic variable speed model is used; that is, the energy consumption is
sα per unit time if jobs are run at speed s, whence, within region k, the energy cost is sαck. The
objective is to minimize energy cost such that all jobs are scheduled within the K regions. They
prove that the non-preemptive case is NP-hard and give a non-constant approximation, and for
the preemptive case, they give a polynomial-time algorithm.

Chen and Zhang [3] consider non-preemptive scheduling on a single machine so as to minimize
the total utilization cost under certain scheduling feasibility constraints such as a common deadline
for all jobs or a bound on the maximum lateness, maximum tardiness, maximum flow-time, or
sum of completion times. They define a valley to be a cost interval Ik that has smaller cost
than its neighboring intervals and show the following. General tariffs lead to a strongly NP-hard
problem for any of the just mentioned constraints, and even very restricted tariff functions with
more than one valley result in NP-hard problems that are not approximable within any constant
factor. The problem with a common deadline on the job completion times is shown to admit
a pseudo-polynomial time algorithm when having two valleys, a polynomial time algorithm for
tariff functions with at most one valley, and an FPTAS if there are at most two valleys and
maxk ek/mink ek is bounded. For the other mentioned constraints, they also present polynomial
time algorithms when having no more than one valley, where the problem with a bound on the
sum of completion times requires the number of cost intervals, here K, to be fixed.

The general concept of taking into consideration additional (time-dependent) cost for resource
utilization when scheduling has been implemented differently in other models. We mention the
area of energy-aware scheduling, where energy consumption is taken into account (see [1] for an
overview). Further, the area of scheduling with generalized non-decreasing (completion-) time
dependent cost functions, such as minimizing

∑

j wjf(Cj), e.g. [8, 12, 17], or even more general
job-individual cost functions

∑

j fj(Cj), e.g. [2, 5, 6, 13] has received quite some attention. Our
model differs fundamentally from those models since our cost function may decrease with time.
In fact, delaying the processing in favor of cheaper time slots may decrease the overall cost. This
is not the case in the above-mentioned models. Thus, in our framework we have the additional
dimension in decision-making of selecting the time slots that shall be utilized.

Finally, we point out some similarity between our model and scheduling on a machine of varying
speed, which (with

∑

j wjCj as objective function) is an equivalent statement of the problem
of minimizing

∑

j wjf(Cj) on a single machine with constant speed [8, 12, 17]. We do not see
any mathematical reduction from one problem to the other. However, it is noteworthy that the
independently studied problem of scheduling with non-availability periods, see e.g. the survey by
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Lee [16], is a special case of both the varying-speed and the time-varying tariff model. Indeed,
machine non/availability can be expressed either by 0/1-speed or equivalently by ∞/0 tariff.
Results shown in this context imply that our problem 1 | pmtn |

∑

wjCj +E is strongly NP-hard,
even if there are only two distinct tariffs [22].

1.3 Our contribution

We present new optimal algorithms and best-possible approximation results, unless P=NP, for the
generalization of basic scheduling problems to a framework with time-varying tariffs.

One of our results is a rather straightforward optimal polynomial-time algorithm for the prob-
lem R | pmtn |Cmax +E (Section 4): We design a procedure that selects the optimal time slots to
be utilized, given that we know their optimal number. That number can be determined by solving
the scheduling problem without utilization cost, which can be done in polynomial time by solving
a linear program [15].

Whereas minimizing makespan plus utilization cost appears to be efficiently solvable even in
the most general machine model, the objective of minimizing the total weighted completion time
raises significant complications. Our results on this objective concern single-machine problems
(Section 2). We present an algorithm that computes for a given ordered set of jobs an optimal
choice of time slots to be used. We derive this by first showing structural properties of an optimal
schedule, which we then exploit together with a properly chosen potential function in a dynamic
program yielding polynomial running time. Based on this algorithm, we show that the unweighted
problem 1 | pmtn |

∑

Cj+E can be solved in polynomial time and that it allows almost directly for
a fully polynomial (4+ε)-approximation algorithm for the weighted version 1 | pmtn |

∑

wjCj+E,
for which a pseudo-polynomial 4-approximation was observed by Kulkarni and Munagala [14].
While pseudo-polynomial time algorithms are relatively easy to derive, it is quite remarkable that
our DP’s running time is polynomial in the input, in particular, independent of dK .

In Section 3, we significantly improve the approximation result for the weighted problem by
designing a polynomial-time algorithm that computes for any fixed ε a (1+ε)-approximate schedule
for 1 | pmtn |

∑

wjCj+E, that is, we give a polynomial-time approximation scheme (PTAS). Unless
P=NP, our algorithm is best possible, since the problem is strongly NP-hard even if there are only
two different tariffs [22].

Our approach is inspired by a recent PTAS for scheduling on a machine of varying speed [17]
and it uses some of its properties. As discussed before, we do not see a formal mathematical relation
between these two seemingly related problems which allows to apply the result from [17] directly.
The key is a dual view on scheduling: instead of directly constructing a schedule in the time-
dimension, we first construct a dual scheduling solution in the weight-dimension which has a one-
to-one correspondence to a true schedule. We design an exponential-time dynamic programming
algorithm which can be trimmed to polynomial time using techniques known for scheduling with
varying speed [17].

For both the makespan and the min-sum problem, job preemption is crucial for obtaining con-
stant worst-case performance ratios. For non-preemptive scheduling, a straightforward reduction
from 2-Partition shows that no approximation is possible, unless P=NP, even if there are only
two different tariffs, 0 and ∞.

Finally, we remark that in general it is not clear that a schedule can be encoded polynomially in
the input. However, for our completion-time based minimization objectives, it is easy to observe
that if an algorithm utilizes p unit-size time slots in an interval of equal cost, then it utilizes
the first p slots within this interval, which simplifies the structure and the output of an optimal
solution in a crucial way.

We start below with presenting the more involved results for the problems with scheduling
objective minimizing total (weighted) completion time. The efficient algorithm for the makespan
objective is then presented in Section 4.
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2 An optimal algorithm for minimizing total completion time

In this section, we show how to solve the unweighted problem 1 | pmtn |
∑

Cj + E to optimality.
Our main result is as follows.

Theorem 1. There is a polynomial-time algorithm for 1 | pmtn |
∑

Cj + E.

An algorithm for the scheduling problem with time-of-use tariffs has to make essentially two
types of decisions: (i) which time slots to use and (ii) how to schedule the jobs in these slots.
It is not hard to see that these two decisions can be handled separately. In fact, the following
observation on the optimal sequencing of jobs holds independently of the utilization decision and
follows from a standard interchange argument.

Observation 1 In an optimal schedule S∗ for the problem 1 | pmtn |
∑

Cj+E, jobs are processed
according to the Shortest Processing Time First (SPT) rule.

Thus, in the remainder of the section we can focus on determining which time slots to use. We
design an algorithm that computes, for any given (not necessarily optimal) scheduling sequence σ,
an optimal utilization decision for σ. In fact, we show our structural result even for the more
general problem in which jobs have arbitrary weights.

Theorem 2. Given an instance of 1 | pmtn |
∑

wjCj +E and an arbitrary processing sequence of
jobs σ, we can compute an optimal utilization decision for σ in polynomial time.

Combining the optimal choice of time slots (Theorem 2) with the optimal processing order
SPT (Observation 1) immediately implies Theorem 1.

The remainder of the section is devoted to proving Theorem 2. Thus, we choose any (not nec-
essarily optimal) order of jobs, σ = (1, . . . , n), in which the jobs must be processed. We want to
characterize an optimal schedule S∗ for σ, that is, the optimal choice of time slots for schedul-
ing σ. We firstly identify structural properties of an optimal solution. Essentially, we give a full
characterization which we can compute efficiently by dynamic programming.

More precisely, we establish a closed form that characterizes the relationship between the tariff
of an utilized slot and job weights in an optimal solution. This relationship allows to decompose
an optimal schedule into a series of sub-schedules. Our algorithm will first compute all possible
sub-schedules and then use a dynamic programming approach to select and concatenate suitable
sub-schedules.

In principle, an optimal schedule may preempt jobs at fractional time points. However, since
time slots can only be paid for entirely, any reasonable schedule uses the utilized slots entirely as
long as there are unprocessed jobs. It can be shown by a standard interchange argument that this
is also true if we omit the requirement that time slots must be utilized entirely; for details, see [18].
(We remark that for the makespan problem with multiple machines considered in Section 4 this
is not true.)

Lemma 1. Allowing to pay for utilizing partial time slots, there is an optimal schedule S∗ for
1 | pmtn |

∑

wjCj + E in which all utilized time slots are entirely utilized and jobs are preempted
only at integral points in time.

Next, we split the optimal schedule S∗ for the given job sequence σ = (1, . . . , n) into smaller
sub-schedules. To that end we introduce the concept of a split point.

Definition 1 (Split Point). Consider an optimal schedule S∗ and the set of potential split points

P :=
⋃K

k=1 {sk, sk + 1} ∪ {dK}. Let Sj and Cj denote the start time and completion time of job
j, respectively. We call a time point t ∈ P a split point for S∗ if all jobs that start before t also
finish their processing not later than t, i.e., if {j ∈ J : Sj < t} = {j ∈ J : Cj ≤ t}.
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Given an optimal schedule S∗, let 0 = τ1 < τ2 < · · · < τℓ = dK be the maximal sequence
of split points of S∗, i.e. the sequence containing all split points of S∗. We denote the interval
between two consecutive split points τx and τx+1 as region RS∗

x := [τx, τx+1), for x = 1, . . . , ℓ− 1.
Consider now any region RS∗

x for an optimal schedule S∗ with x ∈ {1, . . . , ℓ− 1} and let
JS∗

x :=
{

j ∈ J : Sj ∈ RS∗

x

}

, the jobs that start and finish within RS∗

x . Note that JS∗

x might be
empty. Among all optimal schedules we shall consider an optimal solution S∗ that minimizes the
value

∑dK−1
t=0 t · y(t), where y(t) is a binary variable that indicates if time slot [t, t+ 1) is utilized

or not.
We observe that any job j completing at the beginning of a cost interval Ik, i.e. Cj = sk ∈ RS∗

x

or Cj = sk + 1 ∈ RS∗

x , would make sk resp. sk + 1 a split point. Thus, no such job can exist.

Observation 2 There is no job j ∈ JS∗

x with Cj ∈ RS∗

x ∩ P.

We say that interval Ik is partially utilized if at least one time slot in Ik is utilized, but not
all.

Lemma 2. There exists an optimal schedule S∗ in which for all x = 1, . . . , ℓ − 1 at most one
interval is partially utilized in RS∗

x .

Proof. By contradiction, suppose that there is more than one partially utilized interval in RS∗

x .
Consider any two such intervals Ih and Ih′ with h < h′, and all intermediate intervals utilized
entirely or not at all. Let [th, th + 1) and [th′ , th′ + 1) be the last utilized time slot in Ih and
Ih′ , respectively. If we utilize [th′ + 1, th′ + 2) instead of [th, th + 1), then the difference in cost is

δ1 := eh′ − eh +
∑

j∈J′ wj with J ′ :=
{

j ∈ J : Cj ∈
⋃h′

k=h+1 Ik

}

because all jobs in J ′ are delayed

by exactly one time unit. This is true since by Observation 2 no job finishes at dk = sk+1 for
any k. If we utilize [th + 1, th + 2) instead of [th′ , th′ + 1), then the difference in cost is δ2 :=
eh − eh′ −

∑

j∈J′ wj , again using Observation 2 to assert that no job finishes at sk + 1 for any
h + 1 ≤ k ≤ h′. Since δ1 = −δ2 and S∗ is an optimal schedule, it must hold that δ1 = δ2 = 0.
This, however, implies that there is another optimal schedule with earlier used time slots which
contradicts our assumption that S∗ minimizes the value

∑dK−1
t=0 t · y(t). ⊓⊔

The next Lemma characterizes the time slots that are used within a region. Let ejmax be the
maximum tariff spent for job j in S∗. Furthermore, let ∆x := maxj∈JS∗

x
(ejmax +

∑

j′<j wj′ ) and
let jx be the last job (according to sequence σ) that achieves ∆x. Suppose, there are b ≥ 0 jobs
before and a ≥ 0 jobs after job jx in JS∗

x . The following lemma gives for every job j ∈ JS∗

x \ {jx}
an upper bound on the tariff spent in the interval [Sj , Cj).

Lemma 3. Consider an optimal schedule S∗ for a given job permutation σ. For any job j ∈
JS∗

x \ {jx} a slot [t, t+ 1) ∈ [Sj , Cj) is utilized if and only if the tariff e(t) of [t, t+ 1) satisfies the
following upper bound:

e(t) ≤

{

ejxmax +
∑jx−1

j′=j wj′ , ∀j : jx − b ≤ j < jx

ejxmax −
∑j−1

j′=jx
wj′ ∀j : jx < j ≤ jx + a .

Proof. Consider any job j := jx − ℓ with 0 < ℓ ≤ b. Suppose there is a job j for which a slot is
utilized with cost (tariff) ejmax > ejxmax +

∑jx−1
j′=j wj′ . Then ejmax +

∑

j′<j wj′ > ejxmax +
∑

j′<jx
wj′ ,

which is a contradiction to the definition of job jx. Thus, ejmax ≤ ejxmax +
∑jx−1

j′=j wj′ .

Now suppose that there is a slot [t, t+ 1) ∈ [Sj , Cj) with cost e(t) ≤ ejxmax +
∑jx−1

j′=j wj′ that is

not utilized. There must be a slot [t′, t′ + 1) ∈ [Sjx , Cjx) with cost exactly ejxmax. If we utilize slot
[t, t+ 1) instead of [t′, t′ + 1), then the difference in cost is non-positive, because the completion
times of at least ℓ jobs (j = jx− ℓ, . . . , jx−1 and maybe also jx) decrease by one. This contradicts

either the optimality of S∗ or our assumption that S∗ minimizes
∑dK−1

t=0 t · y(t).
The proof of the statement for any job jx + ℓ with 0 < ℓ ≤ a follows a similar argument, but

now using the fact that for every job j := jx + ℓ we have ejmax < ejxmax −
∑j−1

j′=jx
wj′ , because jx

was the last job with ejmax +
∑

j′<j wj′ = ∆x. ⊓⊔
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Corollary 1. If the interval [Sj , Cj) for processing a job j ∈ JS∗

x \ {jx} intersects interval Ik but
job j does not complete in Ik, i.e., Cj > dk, then all time slots in Ik are fully utilized.

To decide on an optimal utilization decision for the sub-schedule of the jobs in RS∗

x , we need
the following two lemmas.

Lemma 4. If there is a partially utilized interval Ik in region RS∗

x , then (i) Ik is the last interval
of RS∗

x , or (ii) jx is the last job being processed in Ik and ek = ejxmax.

Proof. Suppose there exists a partially utilized interval Ik in region RS∗

x . Suppose j with j 6= jx
is the last job that is processed in Ik, hence (ii) does not hold. Then either Cj < dk, in which case
dk = sk+1 is a split point and thus Ik is the last interval in the region, whence (i) is true. Or, we
are in the situation of Corollary 1 and have a contradiction, because then Ik must be fully utilized.

Now suppose jx is the last job being processed in Ik. If Cjx < dk, then again Ik is the last
interval in the region. Otherwise Cjx /∈ Ik. If ek = ejxmax, then case (ii) of the lemma holds. If not,
by definition of ejxmax we have ek < ejxmax. By optimality of S∗, interval Ik comes after the last
utilized “expensive” interval with cost ejxmax. Hence, job jx is processed in an expensive interval,
then in Ik and is completed in yet another interval. But then we can utilize an extra time slot in
Ik instead of a time slot in the expensive interval, without increasing the completion time. This
contradicts optimality, and, hence, ek = ejxmax, which completes the proof. ⊓⊔

Lemma 5. There exists an optimal schedule S∗ for a given job permutation σ with the following
property. If the last interval Ik of a region RS∗

x is only partially utilized then all time slots in
[Sjx , Cjx) with cost at most ejxmax are utilized.

Proof. Recall that jx + a is the last job being processed in the region, and hence, it is the last job
processed in the partially utilized interval Ik.

Suppose there is a time slot [t, t+ 1) ∈ [Sjx , Cjx) with cost at most ejxmax that is not utilized.
If we utilize [t, t+ 1) instead of the last utilized slot in Ik, then the difference in cost is δ1 :=

e(t)− ek −
∑jx+a

j=jx
wj . On the other hand, if we utilize one additional time slot in Ik instead of a

time slot in [Sjx , Cjx) with cost ejxmax, then the difference in cost is δ2 := ek−ejxmax+
∑jx+a

j=jx
wj . We

consider an optimal schedule S∗, thus δ1 ≥ 0 and δ2 ≥ 0 which implies that δ1+δ2 = e(t)−ejxmax ≥ 0.
This is a contradiction if e(t) < ejxmax. If e(t) = ejxmax, then δ1 = −δ2 = 0, because we consider
an optimal schedule S∗. This, however, contradicts our assumption that S∗ minimizes the value
∑dK−1

t=0 t · y(t). ⊓⊔

We now show how to construct an optimal partial schedule for a given ordered job set in a
given region in polynomial time.

Lemma 6. Given a region Rx and an ordered job set Jx, we can find in polynomial time an
optimal utilization decision for scheduling Jx within the region Rx, which does not contain any
other split points than τx and τx+1, the boundaries of Rx.

Proof. Given Rx and Jx, we guess the optimal combination
(

jx, e
jx
max

)

, i.e., we enumerate over all
nK combinations and choose eventually the best solution.

We firstly assume that a partially utilized interval exists and it is the last one in Rx (case (i) in
Lemma 4). Based on the characterization in Lemma 3 we find in polynomial time the slots to be
utilized for the jobs jx − b, . . . , jx − 1. This defines Cjx−b, . . . , Cjx−1. Then starting job jx at time
Cjx−1, we check intervals in the order given and utilize as much as needed of each next interval
Ih if and only if eh ≤ ejxmax, until a total of pjx time slots have been utilized for processing jx.
Lemma 5 justifies to do that. This yields a completion time Cjx . Starting at Cjx , we use again
Lemma 3 to find in polynomial time the slots to be utilized for processing the jobs jx+1, . . . , jx+a.
This gives Cjx+1, . . . , Cjx+a.

Now we assume that there is no partially utilized interval or we are in case (ii) of Lemma 4.
Similar to the case above, we find in polynomial time the slots that S∗ utilizes for the jobs
jx− b, . . . , jx− 1 based on Lemma 3. This defines Cjx−b, . . . , Cjx−1. To find the slots to be utilized
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for the jobs jx + 1, . . . , jx + a, in this case, we start at the end of Rx and go backwards in time.
We can start at the end of Rx because in this case the last interval of Rx is fully utilized. This
gives Cjx+1, . . . , Cjx+a. Job jx is thus to be scheduled in [Cjx−1, Sjx+1). In order to find the right
slots for jx we solve a makespan problem in the interval [Cjx−1, Sjx+1), which can be done in
polynomial time (Theorem 4) and gives a solution that cannot be worse than what an optimal
schedule S∗ does.

If anywhere in both cases the utilized intervals can not be made sufficient for processing the
job(s) for which they are intended, or if scheduling the jobs in the utilized intervals creates any
intermediate split point, then this

(

jx, e
jx
max

)

-combination is rejected. Hence, we have computed

the optimal schedules over all nK combinations of
(

jx, e
jx
max

)

and over both cases of Lemma 4
concerning the position of the partially utilized interval. We choose the schedule with minimum
total cost and return it with its value. This completes the proof. ⊓⊔

Now we are ready to prove our main theorem.

Proof (Proof of Theorem 2). We give a dynamic program. Assume jobs are indexed according to
the order given by σ. We define a state (j, t), where t is a potential split point t ∈ P and j is a
job from the job set J , and a dummy job 0. The value of a state, Z(j, t), is the optimal scheduling
cost plus utilization cost for completing jobs 1, . . . , j by time t. We apply the following recursion:

Z(j, t) = min

{

Z(j′, t′) + z
({

j′+ 1, . . . , j
}

, [t′, t)
)

| t′, t ∈ P , t′ < t, j′, j ∈ J, j′ ≤ j

}

,

Z(0, t) = 0, for any t,

Z(j, s1) = ∞, for any j > 0,

where z
({

j′ + 1, . . . , j
}

, [t′, t)
)

denotes the value of an optimal partial schedule for job set {j′ +

1, j′ + 2, . . . , j
}

in the region [t′, t), or ∞ if no such schedule exists. In case j = j′ there is no job

to be scheduled in the interval [t′, t), whence we set z
({

j′ + 1, . . . , j
}

, [t′, t)
)

= 0. This models the
option of leaving regions empty.

An optimal partial schedule can be computed in polynomial time as we have shown in Lemma 6.
Hence, we compute Z(j, t) for all O(nK) states in polynomial time, which concludes the proof. ⊓⊔

Remark: A simple (4+ǫ)-approximation for the weighted problem. It is worth mention-
ing that the characterization of an optimal utilization decision above (Theorem 2) can be used to
obtain a simple (4 + ε)-approximation for the weighted problem 1 | pmtn |

∑

wjCj + E.

For the weighted problem, there may not exist a job sequence that is universally optimal for
all utilization decisions [8]. However, in the context of scheduling on an unreliable machine there
has been shown a polynomial-time algorithm that computes a universal (4+ ε)-approximation [8].
More precisely, the algorithm constructs a sequence of jobs which approximates the scheduling
cost for any utilization decision within a factor at most 4 + ε.

Consider an instance of problem 1 | pmtn |
∑

wjCj+E and compute such a universally (4+ε)-
approximate sequence σ. Applying Theorem 2 to σ, we obtain a schedule S with an optimal
utilization decision for σ. Let S ′ denote the schedule which we obtain by changing the utilization
decision of S to the utilization in an optimal schedule S∗ (but keeping the scheduling sequence
σ). The schedule S ′ has cost no less than the original cost of S. Furthermore, given the utilization
decision in the optimal solution S∗, the sequence σ approximates the scheduling cost of S∗ within
a factor of 4 + ε. This gives the following result.

Corollary 2. There is a (4 + ε)-approximation algorithm for 1 | pmtn |
∑

wjCj + E.

This result is superseded by the PTAS presented in the next section.
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3 A PTAS for minimizing the total weighted completion time

The main result of this section is a polynomial time approximation scheme for minimizing the
total weighted completion time with time-varying utilization cost.

Theorem 3. There is a polynomial-time approximation scheme for 1 | pmtn |
∑

wjCj + E.

In the remainder of this section we describe some preliminaries, present a dynamic program-
ming (DP) algorithm with exponential running time, and then we argue that the running time
can be reduced to polynomial time. As noted in the introduction, our approach is inspired by a
PTAS for scheduling on a machine of varying speed [17], but a direct application does not seem
possible.

3.1 Preliminaries and scheduling in the weight-dimension

We describe a schedule S not in terms of completion times Cj(S), but in terms of the remaining
weight function WS(t) which, for a given schedule S, is defined as the total weight of all jobs not
completed by time t. Notice that, by definition, WS(t) is right-continuous. Based on the remaining
weight function we can express the cost for any schedule S as

∫ ∞

0

WS(t) dt =
∑

j∈J

wjCj(S) .

This has a natural interpretation in the standard 2D-Gantt chart, which was originally introduced
in [7].

For a given utilization decision, we follow the idea of [17] and implicitly describe the completion
time of a job j by the value of the function WS at the time that j completes. This value is referred
to as the starting weight Sw

j of job j. In analogy to the time-dimension, the value Cw
j := Sw

j +wj

is called completion weight of job j. When we specify a schedule in terms of the remaining weight
function, then we call it a weight-schedule, otherwise a time-schedule. Other terminologies, such as
feasibility and idle time, also translate from the time-dimension to the weight-dimension. A weight-
schedule is called feasible if no two jobs overlap and the machine is called idle in weight-dimension
if there exists a point w in the weight-dimension with w /∈

[

Sw
j , C

w
j

]

for all jobs j ∈ J .
A weight-schedule together with a utilization decision can be translated into a time-schedule

by ordering the job in decreasing order of completion weights and scheduling them in this or-
der in the time-dimension in the utilized time slots. For a given utilization decision, consider a
weight-schedule S with completion weights Cw

1 > · · · > Cw
n > Cw

n+1 := 0 and the corresponding
completion times 0 =: C0 < C1 < · · · < Cn for the jobs j = 1, . . . , n. We define the (schedul-
ing) cost of a weight-schedule S as

∑n
j=1

(

Cw
j − Cw

j+1

)

Cj . This value equals
∑n

j=1 π
S
j C

w
j , where

πS
j := Cj − Sj , if and only if there is no idle weight. If there is idle weight, then the cost of a

weight-schedule can only be greater, and we can safely remove idle weight without increasing the
scheduling cost [17]. Figure 1 illustrates this fact.

Summarizing, a time-schedule implies a correspondent weight-schedule of the same cost. On the
other hand, a weight-schedule plus a utilization decision implies a time-schedule with a possibly
smaller cost.

3.2 Dynamic programming algorithm

Let ε > 0. Firstly, we scale the input parameters so that all job weights wj , j = 1, . . . , n, and all
tariffs ek, k = 1, . . . ,K, are non-negative integers. Then, we apply standard geometric rounding
to the weights to gain more structure on the input, i.e, we round the weights of all jobs up to the
next integer power of (1+ε), by losing at most a factor (1+ε) in the objective value. Furthermore,
we discretize the weight-space into intervals of exponentially increasing size: we define intervals
WIu := [(1 + ε)

u−1
, (1 + ε)

u
) for u = 1, . . . , ν with ν := ⌈log1+ε

∑

j∈J wj⌉.
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Fig. 1. 2D-Gantt chart. The x-axis shows a time-schedule, while the y-axis corresponds to W (t) =∑
Cj>t

wj plus the idle weight in the corresponding weight-schedule [17].

Consider a subset of jobs J ′ ⊆ J and a partial weight-schedule of J ′. In the dynamic program,
the set J ′ represents the set of jobs at the beginning of a corresponding weight-schedule, i.e., if
j ∈ J ′ and k ∈ J \ J ′, then Cw

j < Cw
k . However, the jobs in J ′ are scheduled at the end in a

corresponding time-schedule. As discussed in Section 3.1, a partial weight-schedule S for the jobs
in J \ J ′ together with a utilization decision for these jobs can be translated into a time-schedule.

Let Fu := {Ju ⊆ J :
∑

j∈Ju
wj ≤ (1 + ε)

u
} for u = 1, . . . , ν. The set Fu contains all the

possible job sets Ju that can be scheduled in WIu or before. Additionally, we define F0 to be
the set that contains only the set of all zero-weight jobs J0 := {j ∈ J : wj = 0}. The following
observation allows us to restrict to simplified completion weights.

Observation 3 Consider an optimal weight-schedule in which the set of jobs with completion
weight in WIu, u ∈ {1, . . . , ν}, is exactly Ju \ Ju−1 for some Ju ∈ Fu and Ju−1 ∈ Fu−1. By
losing at most a factor (1+ ε) in the objective value, we can assume that for all u ∈ {1, . . . , ν} the
completion weight of the jobs in Ju \ Ju−1 is exactly (1 + ε)u.

The following observation follows from a simple interchange argument.

Observation 4 There is an optimal time-schedule in which J0 is scheduled completely after all
jobs in J \ J0.

The dynamic program recursively constructs states Z = [Ju, b, avg] and computes for every
state a time point t(Z) with the following meaning. A state Z = [Ju, b, avg] with time point t(Z)
expresses that there is a feasible partial time-schedule S for the jobs in J \ Ju with Ju ∈ Fu

together with a utilization decision for the time interval [0, t(Z)) with total utilization cost at
most b and for which the average scheduling cost, i.e.,

1

t(Z)
·

∫ t(Z)

0

WS(t) dt,

is at most avg. We remark that even if S only schedules jobs in J\Ju, the remaining weight function
WS still considers jobs in J \ Ju, and thus WS(t(Z)) =

∑

j∈J\Ju
wj . Also, S implies a weight-

schedule for jobs in J \Ju where the completion weights belong to [
∑

j∈Ju
wj ,

∑

j∈J wj ]. Note that
avg · t(Z) is an upper bound on the total scheduling cost of S and that the average scheduling cost
is non-increasing in time, because the remaining weight function WS(t) is non-increasing in time.
In the iteration for u, we only consider states [Ju, b, avg] with Ju ∈ Fu. The states in the iteration
for u are created based on the states from the iteration for u+ 1. Initially, we only have the state
Zν = [J, 0, 0] with t(Zν) := 0, we start the dynamic program with u = ν − 1, iteratively reduce u
by one, and stop the process after the iteration for u = 0. In the iteration for u, the states together
with their time points are constructed in the following way. Consider candidate sets Ju+1 ∈ Fu+1
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and Ju ∈ Fu with Fu ⊆ Fu+1, a partial time-schedule S of J \ Ju, in which the set of jobs with
completion weight (in the correspondent weight-schedule) in WIu+1 is exactly Ju+1 \ Ju and the
set of jobs later than WIu+1 is exactly J \ Ju+1, two budgets b1, b2 with b1 ≤ b2, and two bounds
on the average scheduling cost avg1, avg2. Let Z1 = [Ju+1, b1, avg1] and Z2 = [Ju, b2, avg2] be the
corresponding states. We know that there is a feasible partial schedule for the job set J \ Ju+1

up to time t(Z1) having average scheduling cost at most avg1 and utilization cost at most b1. By
augmenting this schedule, we want to compute a minimum time point t(Z1, Z2) that we associate
with the link between Z1 and Z2 so that there is a feasible partial schedule for J \Ju that processes
the jobs from Ju+1 \Ju in the interval [t(Z1), t(Z1, Z2)), has average scheduling cost at most avg2,
and utilization cost at most b2. That is, t(Z1, Z2) is the minimum makespan if we start with Z1

and want to arrive at Z2. For the computation of t(Z1, Z2), we use the following subroutine.
Using Observation 3, we approximate the area under the remaining weight function WS(t) for

the jobs in Ju+1 \ Ju by (1 + ε)u+1 · (t(Z1, Z2)− t(Z1)), where t(Z1, Z2) is the time point that we
want to compute. Approximating this area gives us the flexibility to schedule the jobs in Ju+1 \Ju
in any order. However, we need that avg2 · t(Z1, Z2) is an upper bound on the integral of the
remaining weight function by time t(Z1, Z2). That is, we want that

avg2 · t(Z1, Z2) ≥ (1 + ε)u+1 · t(Z1, Z2) + t(Z1) · (avg1 − (1 + ε)u+1).

Both the left-hand side and the right-hand side of this inequality are linear functions in t(Z1, Z2).
So, we can compute a smallest time point tLB such that the right-hand side is greater or equal to
the left-hand side for all t(Z1, Z2) ≥ tLB. If there is no such tLB, then we set t(Z1, Z2) to infinity
and stop the subroutine. Otherwise, we know that our average scheduling cost at tLB or later is at
most avg2. Let E(p, [t1, t2)) denote the total cost of the p cheapest slots in the time-interval [t1, t2).
We compute the smallest time point t(Z1, Z2) ≥ tLB so that the set of jobs Ju+1\Ju can be feasibly
scheduled in [t(Z1), t(Z1, Z2)) having utilization cost not more than b2 − b1. That is, we set

t(Z1, Z2) = min
{

t ≥ max{t(Z1), t
LB} : E(p(Ju+1 \ Ju), [t(Z1), t)) ≤ b2 − b1

}

.

The time point t(Z1, Z2) can be computed in polynomial time by applying binary search to the
interval [max{t(Z1), t

LB}, dK), since E(p, [t1, t2)) is a monotone function in t2.
Given all possible states [Ju+1, b1, avg1] from the iteration for u + 1, the dynamic program

enumerates for all these states all possible links to states [Ju, b2, avg2] from the iteration for u
fulfilling the above requirement on the candidate sets Ju+1 and Ju, on the budgets b1 and b2, and
on the average scheduling costs avg1 and avg2. For any such possible link (Z1, Z2) between states
from the iteration for u + 1 and u, we apply the above subroutine and associate the time point
t(Z1, Z2) with this link. Thus, the dynamic program associates several possible time points with a
state Z2 = [Ju, b2, avg2] from the iteration for u. However, we only keep the link with the smallest
associated time point t(Z1, Z2) (ties are broken arbitrarily) and this defines the time point t(Z2)
that we associate with the state Z2. That is, for a state Z2 from the iteration for u we define
t(Z2) := min{t(Z1, Z2) |Z1 is a state from the iteration for u+ 1}.

Let Emax be an upper bound on the total utilization cost in an optimal solution, e.g., the total
cost of the first p(J) finite-cost time slots. The dynamic program does not enumerate all possible
budgets but only a polynomial number of them, namely budgets with integer powers of (1 + η1)
with η1 > 0 determined later. That is, for the budget on the utilization cost, the dynamic program
enumerates all values in

B := {0, 1, (1 + η1), (1 + η1)
2, . . . , (1 + η1)

ω1} with ω1 = ⌈log1+η1
Emax⌉.

The value η1 will be chosen so that (1 + η1)
ω1 ≤ (1 + ε) and ω1 is polynomial (see proof of

Lemma 7 for the exact definition). Similarly, we observe that (1 + ε)ν is an upper bound on the
average scheduling cost. The dynamic program does also only enumerate a polynomial number of
possible average scheduling costs, namely integer powers of (1 + η2) with η2 > 0 also determined
later. This means, for the average scheduling cost, the dynamic program enumerates all values in

AV G := {0, 1, (1 + η2), (1 + η2)
2, . . . , (1 + η2)

ω2} with ω2 = ⌈ν log1+η2
(1 + ε)⌉.
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As before, the value η2 will be chosen so that (1 + η2)
ω2 ≤ (1 + ε) and ω2 is polynomial.

The dynamic program stops after the iteration for u = 0. Now, only the set of zero-weight jobs
is not scheduled yet. For any state Z = [J0, b, avg] constructed in the iteration for u = 0, we
append the zero-weight jobs starting at time t(Z) and utilizing the cheapest slots, which is justified
by Observation 4. We add the additional utilization cost to b. After this, we return the state
Z = [J0, b, avg] and its corresponding schedule, which can be computed by backtracking and
following the established links, with minimum total cost b + avg · t(Z). With this, we obtain the
following result.

Lemma 7. The dynamic program computes a (1 +O(ε))-approximate solution.

Proof. Consider an arbitrary iteration u of the dynamic program and let i = ν − u. We consider
states Z = [Ju, b, avg] with Ju ∈ Fu, b ∈ B, and avg ∈ AV G for which we construct the time points
t(Z). Let Z∗

1 = [J∗
u+1, b

∗
1, avg

∗
1 ] and Z∗

2 = [J∗
u , b

∗
2, avg

∗
2 ] with J∗

u+1 ∈ Fu+1 and J∗
u ∈ Fu be the states

that represent an optimal solution S∗ for which the set of jobs with completion weight in WIu+1

is exactly J∗
u+1 \ J

∗
u. By Observation 3, we assume that also in S∗ the area under the remaining

weight function WS∗

(t) for the jobs in J∗
u+1 \ J

∗
u is approximated by (1 + ε)u+1 · (t(Z∗

2 )− t(Z∗
1 )).

We now show the following. The dynamic program constructs in iteration i a state Z = [Ju, b, avg]
with Ju ∈ Fu, b ∈ B, and avg ∈ AV G such that

(i) Ju = J∗
u,

(ii) b ≤ (1 + η1)
i · b∗2,

(iii) avg ≤ (1 + η2)
i · avg∗2 , and

(iv) t(Z) ≤ t(Z∗
2 ).

We prove this statement by induction on i = 1, . . . , ν. Consider the first iteration of the dynamic
program, in which we consider states with job sets from Fν−1. Let Z∗ = [J∗

ν−1, b
∗, avg∗] be the

state that corresponds to the optimal solution S∗. The dynamic program also considers the job
set J∗

ν−1. Suppose, we utilize the same slots that S∗ utilizes for the jobs in J \J∗
ν−1 in the interval

[0, t(Z∗)). Let b be the resulting utilization cost after rounding b∗ up to the next value in B.
With this, we know that b ≤ (1 + η1) · b

∗. Furthermore, by our assumption, we know that the
average scheduling cost of S∗ up to time t(Z∗) is (1 + ε)ν . Let avg be (1 + ε)ν rounded up to
the next value in AV G. Then we know that avg ≤ (1 + η2) · avg

∗. The dynamic program also
considers the state Z = [J∗

ν−1, b, avg]. However, the dynamic program computes the minimum
time point t(Zν , Z) ≥ tLB so that the set of jobs J \J∗

ν−1 can be feasibly scheduled in [0, t(Zν , Z))
having utilization cost not more than b. This implies that t(Zν , Z) ≤ t(Z∗), which implies that
t(Z) ≤ t(Z∗). Note that tLB = 0 for the specified values in Z.

Suppose, the statement is true for the iterations 1, 2, . . . , i − 1. We prove that it is also true
for iteration i, in which we consider job sets from Fu. Again, let Z∗

1 = [J∗
u+1, b

∗
1, avg

∗
1 ] and Z∗

2 =
[J∗

u, b
∗
2, avg

∗
2 ] with J∗

u+1 ∈ Fu+1 and J∗
u ∈ Fu be the states that represent S∗. By our hypothesis,

we know that the dynamic program constructs a state Z1 = [Ju+1, b1, avg1] with

(i) Ju+1 = J∗
u+1,

(ii) b1 ≤ (1 + η1)
i−1 · b∗1,

(iii) avg1 ≤ (1 + η2)
i−1 · avg∗1 , and

(iv) t(Z1) ≤ t(Z∗
1 ).

We augment this schedule in the following way. Suppose, we utilize the same slots that S∗ utilizes
for the jobs in J∗

u+1 \ J∗
u in the interval [t(Z∗

1 ), t(Z
∗
2 )). Let b2 be the resulting total utilization

cost after rounding up to the next value in B. Thus, there is a feasible schedule for J \ J∗
u having

utilization cost of at most

b2 ≤ (1 + η1) · (b1 + b∗2 − b∗1)

≤ (1 + η1)
i · (b∗1 + b∗2 − b∗1)

= (1 + η1)
i · b∗2.
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The new average scheduling cost after rounding to the next value in AV G is

avg2 ≤ (1 + η2) ·
avg1 · t(Z1) + (1 + ε)u+1 · (t(Z∗

2 )− t(Z1))

t(Z∗
2 )

≤ (1 + η2)
i ·

avg∗1 · t(Z1) + (1 + ε)u+1 · (t(Z∗
2 )− t(Z1))

t(Z∗
2 )

≤ (1 + η2)
i ·

avg∗1 · t(Z∗
1 ) + (1 + ε)u+1 · (t(Z∗

2 )− t(Z∗
1 ))

t(Z∗
2 )

= (1 + η2)
i · avg∗2 .

The third inequality follows from the fact that avg∗1 ≥ (1 + ε)u+1. The dynamic program also
considers the link between the state Z1 and Z2 := [J∗

u , b2, avg2]. We first observe that tLB ≤ t(Z∗
2 ),

since

avg2 · t(Z
∗
2 ) ≥ avg1 · t(Z1) + (1 + ε)u+1 · (t(Z∗

2 )− t(Z1))

by construction of avg2. Furthermore, we observe that b2 − b1 ≥ b∗2 − b∗1 by construction of b2.
These two facts together with t(Z1) ≤ t(Z∗

1 ) imply that t(Z1, Z2) ≤ t(Z∗
2 ), which implies that

t(Z2) ≤ t(Z∗
2 ).

To complete the proof, we need to specify the parameters η1 and η2. We want that (1+ ηi)
ν ≤

(1 + ε) for i = 1, 2. We claim that for a given ν ≥ 1 there exists an η̄ > 0 such that for all
η ∈ (0, η̄] we have (1 + η)ν ≤ 1 + 2νη. Consider the function f(η) := (1 + η)ν − 1− 2νη. We have
that f(0) = 0 and f ′(η) < 0 for η ∈ [0, 21/(ν−1) − 1). This shows the claim. Hence, we choose
ηi = min{ ε

2ν , 2
1/(ν−1) − 1} for i = 1, 2. This shows the statement of the lemma and that the size

of B as well as the size of AV G are bounded by a polynomial in the size of the input.

We remark that the given DP works for more general utilization cost functions e : N → Q≥0

than considered here in the paper. As argued in the proof, it is sufficient for the DP that there
is a function E(p, [t1, t2)) that outputs in polynomial time for a given time interval [t1, t2) and a
given p ∈ Z≥0 the total cost of the p cheapest slots in [t1, t2).

We also remark that the running time of the presented DP is exponential, because the size of
the sets Fu are exponential in the size of the input. However, in the next section we show that we
can trim the sets Fu down to ones of polynomial size at an arbitrarily small loss in the performance
guarantee.

3.3 Trimming the state space

The set Fu, containing all possible job sets Ju, is of exponential size, and so is the DP state
space. In the context of scheduling with variable machine speed, it has been shown in [17] how to
reduce the set Fu for a similar DP (without utilization decision, though) to a set F̃u of polynomial
size at only a small loss in the objective value. In general, such a procedure is not necessarily
applicable to our setting because of the different objective involving additional utilization cost
and the different decision space. However, the compactification in [17] holds independently of the
speed of the machine and, thus, independently of the utilization decision of the DP (interpret
non/utilization as speed 0/1). Hence, we can apply it to our cost-aware scheduling framework and
obtain a PTAS. We now describe the building blocks for this trimming procedure and argue why
we can apply it in order to obtain the set F̃u for our problem.

Light Jobs. The first building block for the trimming procedure is a classification of the jobs
based on their weights.

Definition 2. Given a weight schedule and a job j ∈ J with starting weight Sw
j ∈ WIu, we call

job j light if wj ≤ ε2|WIu|, otherwise j is called heavy.
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This classification enables us to structure near-optimal solutions. To impose structure on the set
of light jobs, the authors in [17] describe the following routine for a given weight schedule S. First,
remove all light jobs from S and move the remaining jobs within each interval WIu so that the
idle weight in WIu is consecutive. Then, schedule the light jobs according to the reverse Smith’s
rule, that is, for each u = 1, . . . , ν and each idle weight w ∈ WIu, process at w a light job j that
maximizes pj/wj . Eventually, shift the processing of each interval WIu to WIu+1, which delays the
completion of every job by at most a factor of (1 + ε)2. This delay allows to completely process
every light job in the weight interval where it starts processing. It can be shown that the cost of
the resulting schedule is at most a factor of 1 + O (ε) greater than the cost of S, which brings us
to the following structural statement.

Lemma 8 ([17]). At a loss of a factor of 1 + O (ε) in the scheduling cost, we can assume the
following. For a given interval WIu, consider any pair of light jobs j, k. If both jobs start in WIu
or later and pk/wk ≤ pj/wj, then Cw

j ≤ Cw
k .

We remark, that Lemma 8 holds independently of the speed of the machine, as pointed out
in [17]. This means that at a loss of a factor of 1 + O (ε) in the scheduling cost we can assume
also for our problem that light jobs are scheduled according to reverse Smith’s rule in the weight-
dimension, which holds independently of our actual utilization decision.

Localization. We now localize jobs in the weight-dimension to gain more structure. That is,
we determine for every job j ∈ J two values rwj and dwj such that, independently of our actual

utilization decision, j is scheduled completely within
[

rwj , d
w
j

)

in some (1 + O (ε))-approximate
weight-schedule (in terms of the scheduling cost). We call rwj and dwj the release-weight and the
deadline-weight of job j, respectively.

Lemma 9 ([17]). We can compute in polynomial time values rwj and dwj for each j ∈ J such
that: (i) there exists a (1 +O (ε))-approximate weight-schedule (in terms of the scheduling cost)
that processes each job j within [rwj , d

w
j ), (ii) there exists a constant s ∈ O (log (1/ε) /ε) such that

dwj ≤ rwj · (1 + ε)s, (iii) rwj and dwj are integer powers of (1 + ε), and (iv) the values rwj an dwj are
independent of the speed of the machine.

This lemma enables us to localize all jobs in J in polynomial time and independent of our
actual utilization decision, as guaranteed by property (iv).

Compact Search Space. Based on the localization of jobs in weight space, we can cut the
number of different possibilities for a candidate set Ju in iteration u of our DP down to a polynomial
number. That is, we replace the set Fu by a polynomially sized set F̃u. Instead of describing all
sets S ∈ F̃u explicitly, the we give all possible complements R = J \ S and collect them in a set
Du, where a set R ∈ Du represents a possible set of jobs having completion weights in WIu+1 or
later. Obviously, a set R ∈ Du must contain all jobs j ∈ J having a release weight rwj ≥ (1 + ε)u.

Furthermore, we know that dwj ≥ (1+ε)u+1 is necessary for job j to be in a set R ∈ Du. Following
property (ii) in Lemma 9, we thus only need to decide about the jobs having a release weight
rwj = (1 + ε)i with i ∈ {u+ 1− s, . . . , u− 1}. An enumeration over basically all possible job sets
for each i ∈ {u+ 1− s, . . . , u− 1} gives the following desired result.

Lemma 10 ([17]). For each u, we can construct in polynomial time a set F̃u that satisfies the
following: (i) there exists a (1 + O (ε))-approximate weight-schedule (in terms of the scheduling
cost) in which the set of jobs with completion weight at most (1 + ε)u belongs to F̃u, (ii) the set

F̃u has cardinality at most 2O(log
3(1/ε)/ε2), and (iii) the set F̃u is completely independent of the

speed of the machine.

Again, Property (iii) implies that we can construct the set F̃u independently of our utilization
decision.
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To complete the proof of Theorem 3 it remains to argue on the running time of the DP. The DP

has ν iterations, where in each iteration for at most 2O(log
3(1/ε)/ε2) · |B| · |AV G| previous states at

most 2O(log
3(1/ε)/ε2) · |B| · |AV G| many links to new states are considered. Therefore, the running

time complexity of our DP is ν · (2O(log
3(1/ε)/ε2) · |B| · |AV G|)2, which is bounded by a polynomial

in the size of the input.

4 Minimizing the makespan on unrelated machines

Finally we derive positive results for the problem of minimizing makespan with utilization costs
on unrelated machines. The standard scheduling problem without utilization cost R | pmtn |Cmax

can be solved optimally in polynomial time by solving a linear program as was shown by Lawler
and Labetoulle [15]. We show that the problem complexity does not increase significantly when
taking into account time-varying utilization cost.

Consider the preemptive makespan minimization problem with utilization cost. Recall that
we can use every machine in a utilized time slot and pay only once. Thus, it is sufficient to find
an optimal utilization decision for solving this problem, because we can use the polynomial-time
algorithm in [15] to find the optimal schedule within these slots.

Observation 5 Given the set of time slots utilized in an optimal solution, we can compute an
optimal schedule in polynomial time.

Given an instance of our problem, let Z be the optimal makespan of the relaxed problem without
utilization cost. Notice that Z is not necessarily integral. To determine an optimal utilization
decision, we use the following observation.

Observation 6 Given an optimal makespan C∗
max for R | pmtn |Cmax + E, an optimal schedule

utilizes the ⌈Z⌉ cheapest slots before ⌈C∗
max⌉.

Note that we must pay full tariff for a used time slot, no matter how much it is utilized, and
so does an optimal solution. In particular, this holds for the last utilized slot. Hence, it remains
to compute an optimal value C∗ := ⌈C∗

max⌉ which we do by the following procedure.
We compute for every interval Ik = [sk, dk), k = 1, . . . ,K, an optimal point in time for C∗

assuming that C∗ ∈ Ik. Hereby we restrict to relevant intervals Ik which allow for a feasible
schedule, i.e., sk ≥ ⌈Z⌉. For a relevant interval Ik, we let C∗ = sk and utilize the ⌈Z⌉ cheapest
time slots before C∗, which is optimal by Observation 6. Notice that any utilized time slot of cost e
such that e > ek +1 can be replaced by a time slot from Ik leading to a solution of less total cost.
Thus, if there is no such time slot then sk is the best choice for C∗ in Ik. Suppose there is such a
time slot that could be replaced. Let R ⊆ {1, . . . , k − 1} be the index set of intervals that contain
at least one utilized slot. We define Iℓ to be the interval with eℓ = maxh∈R eh and denote by rh
the number of utilized time slots in Ih. Replace min{rℓ, dk −sk− rk} utilized slots from Iℓ by slots
from Ik and update R, Iℓ and rk. This continues until eℓ ≤ ek + 1 or the interval Ik is completely
utilized, i.e., rk = dk − sk. This operation takes at most O(K) computer operations per interval
to compute the best C∗-value in that interval. It yields the following theorem.

Theorem 4. The scheduling problem R | pmtn |Cmax+E can be solved in polynomial time in the
order of O(K2) plus the running time for solving R | pmtn |Cmax without utilization cost [15].

5 Conclusion

We investigate basic scheduling problems within the framework of time-varying costs or tariffs,
where the processing of jobs causes some time-dependent cost in addition to the usual QoS measure.
We presented optimal algorithms and best possible approximation algorithms for the scheduling
objectives of minimizing the makespan on unrelated machines and the sum of (weighted) comple-
tion times on a single machine.
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While our work closes the problems under consideration from an approximation point of view,
it leaves open the approximability of multi-machine settings for the min-sum objective. Further
research may also ask for the complexity status when assuming that jobs have different release
dates and for other natural objective functions such as average and maximum flow-time.

Our unrelated machine model is time-slot based, that is, a utilization decision is made for a
time slot and then all machines in this time slot are available. No less relevant appears to be the
model with machine-individual tariffs, that is, a utilization decision is made for a time slot on each
machine individually. It is not difficult to see that a standard LP can be adapted for optimally
solving R | pmtn, rj |Cmax with fractional utilization cost. However, if time slots can be utilized
only integrally then the integrality gap for the simple LP is unbounded and the problems seems
much harder.

Time-varying cost or tariffs appear in many applications in practice but they are hardly in-
vestigated from a theoretical perspective. With our work we settle the complexity status and
approximability status for very classical scheduling problems. We hope to foster further research
on this framework of time-varying costs or tariffs. We emphasize that the framework is clearly not
restricted to cost-aware scheduling problems. Virtually any problem in which scarce resources are
to be rented from some provider lends itself to be modelled in this way, with (vehicle) routing
problems as a directly appealing example.
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