28,394 research outputs found

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    A (3/2+ɛ) approximation algorithm for scheduling malleable and non-malleable parallel tasks

    Get PDF
    In this paper we study a scheduling problem with malleable and non-malleable parallel tasks on mm processors. A non-malleable parallel task is one that runs in parallel on a specific given number of processors. The goal is to find a non-preemptive schedule on the mm processors which minimizes the makespan, or the latest task completion time. The previous best result is the list scheduling algorithm with an absolute approximation ratio of 22. On the other hand, there does not exist an approximation algorithm for scheduling non-malleable parallel tasks with ratio smaller than 1.51.5, unless P=NPP=NP. In this paper we show that a schedule with length (1.5+Ï”)OPT(1.5 +\epsilon) OPT can be computed for the scheduling problem in time O(nlog⁥n)+f(1/Ï”)O(n \log n) + f(1/\epsilon). Furthermore we present an (1.5+Ï”)(1.5 + \epsilon) approximation algorithm for scheduling malleable parallel tasks. Finally, we show how to extend our algorithms to the variant with additional release dates

    Approximation Algorithms for Energy, Reliability, and Makespan Optimization Problems

    Get PDF
    International audienceWe consider the problem of scheduling an application on a parallel computational platform. The application is a particular task graph, either a linear chain of tasks, or a set of independent tasks. The platform is made of identical processors, whose speed can be dynamically modified. It is also subject to failures: if a processor is slowed down to decrease the energy consumption, it has a higher chance to fail. Therefore, the scheduling problem requires us to re-execute or replicate tasks (i.e., execute twice the same task, either on the same processor, or on two distinct processors), in order to increase the reliability. It is a tri-criteria problem: the goal is to minimize the energy consumption, while enforcing a bound on the total execution time (the makespan), and a constraint on the reliability of each task. Our main contribution is to propose approximation algorithms for linear chains of tasks and independent tasks. For linear chains, we design a fully polynomial-time approximation scheme. However, we show that there exists no constant factor approximation algorithm for independent tasks, unless P=NP, and we propose in this case an approximation algorithm with a relaxation on the makespan constraint

    New bounds for truthful scheduling on two unrelated selfish machines

    Full text link
    We consider the minimum makespan problem for nn tasks and two unrelated parallel selfish machines. Let RnR_n be the best approximation ratio of randomized monotone scale-free algorithms. This class contains the most efficient algorithms known for truthful scheduling on two machines. We propose a new Min−MaxMin-Max formulation for RnR_n, as well as upper and lower bounds on RnR_n based on this formulation. For the lower bound, we exploit pointwise approximations of cumulative distribution functions (CDFs). For the upper bound, we construct randomized algorithms using distributions with piecewise rational CDFs. Our method improves upon the existing bounds on RnR_n for small nn. In particular, we obtain almost tight bounds for n=2n=2 showing that ∣R2−1.505996∣<10−6|R_2-1.505996|<10^{-6}.Comment: 28 pages, 3 tables, 1 figure. Theory Comput Syst (2019

    Scheduling Independent Moldable Tasks on Multi-Cores with GPUs

    Get PDF
    The number of parallel systems using accelerators is growing up.The technology is now mature enough to allow sustainedpetaflop/s. However, reaching this performance scale requiresefficient scheduling algorithms to manage the heterogeneouscomputing resources.We present a new approach for scheduling independent tasks onmultiple CPUs and multiple GPUs. The tasks are assumed to beparallelizable on CPUs using the moldable model: the final numberof cores allotted to a task can be decided and set by thescheduler. More precisely, we design an algorithm aiming atminimizing the makespan---the maximum completion time of alltasks---for this scheduling problem. The proposed algorithmcombines a dual approximation scheme with a fast integer linearprogram (ILP). It determines both the partitioning of the tasks,ie whether a task should be mapped to CPUs or a GPU, and thenumber of CPUs allotted to a moldable task if mapped to the CPUs.A worst case analysis shows that the algorithm has anapproximation ratio of 32+ϔ\frac{3}{2} + \epsilon. However, sincethe complexity of the ILP-based algorithm could benon-polynomial, we also present a proved polynomial-timealgorithm with an approximation ratio of 2+ϔ2+\epsilon.We complement the theoretical analysis of our two novelalgorithms with an experimental study. In these experiments, wecompare our algorithms to a modified version of the classical\heft algorithm, adapted to handle moldable tasks. Theexperimental results show that our algorithm with the32+ϔ\frac{3}{2} + \epsilon approximation ratio producessignificantly shorter schedules than the modified \heft for mostof the instances. In addition, the experiments provide evidencethat this ILP-based algorithm is also practically able to solvelarger problem instances in a reasonable amount of time

    Resource assignment algorithms for vehicular clouds

    Get PDF
    In this thesis, we study the task scheduling problem in vehicular clouds. It falls in the category of unrelated parallel machine scheduling problems. Resource assignment in vehicular clouds must deal with the transient nature of the cloud resources and a relaxed definition of non-preemptive tasks. Despite a rich literature in machine scheduling and grid computing, the resource assignment problem in vehicular clouds has not been examined yet. We show that even the problem of finding a minimum cost schedule for a single task over unrelated machines is NP-hard. We then provide a fully polynomial time approximation scheme and a greedy approximation for scheduling a single task. We extend these algorithms to the case of scheduling n tasks. We validate our algorithms through extensive simulations that use synthetically generated data as well as real data extracted from vehicle mobility and grid computing workload traces. Our contributions are, to the best of our knowledge, the first quantitative analysis of the computational power of vehicular clouds

    Malleable Scheduling Beyond Identical Machines

    Get PDF
    In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the processing time depending on the number of allocated machines. Jobs are required to be executed non-preemptively and in unison, in the sense that they occupy, during their execution, the same time interval over all the machines of the allocated set. In this work, we study generalizations of malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically, we introduce a general model of malleable job scheduling, where each machine has a (possibly different) speed for each job, and the processing time of a job j on a set of allocated machines S depends on the total speed of S for j. For machines with unrelated speeds, we show that the optimal makespan cannot be approximated within a factor less than e/(e-1), unless P = NP. On the positive side, we present polynomial-time algorithms with approximation ratios 2e/(e-1) for machines with unrelated speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines. Our algorithms are based on deterministic LP rounding and result in sparse schedules, in the sense that each machine shares at most one job with other machines. We also prove lower bounds on the integrality gap of 1+phi for unrelated speeds (phi is the golden ratio) and 2 for uniform speeds and restricted assignments. To indicate the generality of our approach, we show that it also yields constant factor approximation algorithms (i) for minimizing the sum of weighted completion times; and (ii) a variant where we determine the effective speed of a set of allocated machines based on the L_p norm of their speeds
    • 

    corecore