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Abstract

In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the
processing time depending on the number of allocated machines. Jobs are required to be executed
non-preemptively and in unison, in the sense that they occupy, during their execution, the same
time interval over all the machines of the allocated set. In this work, we study generalizations of
malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically, we
introduce a general model of malleable job scheduling, where each machine has a (possibly different)
speed for each job, and the processing time of a job j on a set of allocated machines S depends on
the total speed of S for j. For machines with unrelated speeds, we show that the optimal makespan
cannot be approximated within a factor less than e

e−1 , unless P = NP . On the positive side, we
present polynomial-time algorithms with approximation ratios 2e

e−1 for machines with unrelated
speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines.
Our algorithms are based on deterministic LP rounding and result in sparse schedules, in the sense
that each machine shares at most one job with other machines. We also prove lower bounds on
the integrality gap of 1 + ϕ for unrelated speeds (ϕ is the golden ratio) and 2 for uniform speeds
and restricted assignments. To indicate the generality of our approach, we show that it also yields
constant factor approximation algorithms (i) for minimizing the sum of weighted completion times;
and (ii) a variant where we determine the effective speed of a set of allocated machines based on the
Lp norm of their speeds.
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17:2 Malleable Scheduling Beyond Identical Machines

1 Introduction

Since the late 60s, various models have been proposed by researchers [7, 8] in order to capture
the real-world aspects and particularities of multiprocessor task scheduling systems, i.e.,
large collections of identical processors able to process tasks in parallel. High performance
computing, parallel architectures, and cloud services are typical applications that motivate
the study of multiprocessor scheduling, both theoretical and practical. An influential model is
Rayward-Smith’s unit execution time and unit communication time (UET-UCT) model [22],
where each parallel job is partitioned into a set of tasks of unit execution time and these
tasks are subject to precedence constraints modeled by a task graph. The UET-UCT model
and its generalizations have been widely studied and a large number of (approximation)
algorithms and complexity results have been proposed [10, 20].

However, the UET-UCT model mostly focuses on task scheduling and sequencing, and
does not account for the amount of resources allocated to each job, thus failing to capture
an important aspect of real-world parallel systems. Specifically, in the UET-UCT model, the
level of granularity of a job (that is, the number of smaller tasks that a job is partitioned
into) is decided a priori and is given as part of the input. However, it is common ground in
the field of parallel processing that the unconditional allocation of resources for the execution
of a job may jeopardize the overall efficiency of a multiprocessor system. A theoretical
explanation is provided by Amdahl’s law [1], which suggests that the speedup of a job’s
execution can be estimated by the formula 1

(1−p)+ p
s
, where p is the fraction of the job that

can be parallelized and s is the speedup due to parallelization (i.e., s can be thought as the
number of processors).

Malleable Scheduling. An interesting alternative to the UET-UCT model is that of malle-
able1 job scheduling [5, 24]. In this setting, a set J of jobs is scheduled on a setM of parallel
machine(-s), while every job can be processed by more than one machines at the same time
(i.e., by partitioning the job into tasks). In order to quantify the effect of parallelization,
the processing time of a job j ∈ J is determined by a function fj : N→ R+

2 depending on
the number of allocated machines. Moreover, every job must be executed non-preemptively
and in unison, i.e. having the same starting and completion time on each of the allocated
machines. Thus, if a job j is assigned to a set of machines S starting at time τ , all machines
in S are occupied with job j during the interval [τ, τ + fj(|S|)]. It is commonly assumed that
the processing time function of a job exhibits two useful and well-motivated properties:

For every job j ∈ J , the processing time fj(s) is non-increasing in the number of
machines.3
The total work of the execution of a job j on s machines, that is the product s · fj(s), is
non-decreasing in the number of machines.

The latter property, known as monotonicity of a malleable job, is justified by Brent’s law [3]:
One cannot expect superlinear speedup by increasing the level of parallelism. A great
deal of theoretical results have been published on scheduling malleable jobs according to
the above model (and its variants) for the objective of minimizing the makespan, i.e., the
completion time of the last finishing job, or other standard objectives (see, e.g., [6] and the
references therein).

1 Malleable scheduling also appears as moldable, while sometimes the two terms refer to slightly different
models.

2 We denote by R+ (resp. Z+) the set of non-negative reals (resp. integers).
3 This property holds w.l.o.g., as the system always has the choice not to use some of the allocated

machines.
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Although malleable job scheduling represents a valiant attempt to capture real-world
aspects of massively parallel processing, the latter exhibits even more complicated charac-
teristics. Machine heterogeneity, data locality and hardware interconnection are just a few
aspects of real-life systems that make the generalization of the aforementioned model neces-
sary. In modern multiprocessor systems, machines are not all identical and the processing
time of a job not only depends on the quantity, but also on the quality of the set of allocated
machines. Indeed, different physical machines may have different capabilities in terms of
faster CPUs or more efficient cache hierarchies. Moreover, the above heterogeneity may be
job-dependent, in the sense that a specific machine may be faster when executing a certain
type of jobs than another (e.g., memory- vs arithmetic-intensive applications [21]). Finally,
the execution of a job on specific combinations of machines may also yield additional benefit
(e.g., machines that are local in terms of memory hierarchy).

Our Model: Malleable Scheduling on Unrelated Machines. Quite surprisingly, no results
exist on scheduling malleable jobs beyond the case of identical machines, to the best of our
knowledge, despite the significant theoretical and practical interest in the model. In this
work, we extend the model of malleable job scheduling to capture more delicate aspects
of parallel job scheduling. In this direction, while we still require our jobs to be executed
non-preemptively and in unison, the processing time of a job j ∈ J becomes a set function
fj(S), where S ⊆M is the set of allocated machines. We require that processing times are
given by a non-increasing function, in the set function context, while additional assumptions
on the scalability of fj are made, in order to capture the diminishing utility property implied
by Brent’s law.

These assumptions naturally lead to a generalized malleable job setting, where processing
times are given by non-increasing supermodular set functions fj(S), accessed by value
queries. We show that makespan minimization in this general setting is inapproximable
within O(| J |1−ε) factors (unless P = NP , see Section 4.3). The general message of the
proof is that unless we make some relatively strong assumptions on processing times (in the
form e.g., of a relatively smooth gradual decrease in the processing time, as more machines
are allocated), malleable job scheduling (even with monotone supermodular processing times)
can encode combinatorial problems as hard as graph coloring.

Thus, inspired by (standard non-malleable) scheduling models on uniformly related
and unrelated machines, we introduce the notion of speed-implementable processing time
functions. For each machine i and each job j there is a speed si,j ∈ Z+ that quantifies the
contribution of machine i to the execution of job j, if i is included in the set allocated to
j. For most of this work, we assume that the total speed of an allocated set is given by an
additive function σj(S) =

∑
i∈S si,j (but see also Section 4.1, where we discuss more general

speed functions based on Lp-norms). A function is speed-implementable if we can write
fj(S) = fj(σj(S)) for some function fj : R+ → R+. Again, we assume oracle access to the
processing time functions.4

The notion of speed-implementable processing times allows us to quantify the fundamental
assumptions of monotonicity and diminishing utility in a clean and natural way. More
specifically, we make the following two assumptions on speed-implementable functions:
1. Non-increasing processing time. For every job j ∈ J , the processing time fj(s) is

non-increasing in the total allocated speed s ∈ R+.
2. Non-decreasing work. For every job j ∈ J , the work fj(s) · s is non-decreasing in the

total allocated speed s ∈ R+.

4 For convenience, we use the identifier fj for both functions. Since their arguments come from disjoint
domains, it is always clear from the context which one is meant.

APPROX/RANDOM 2019
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The first assumption ensures that allocating more speed cannot increase the processing time.
The second assumption is justified by Brent’s law, when the increase in speed coincides with
an increase in the physical number of machines, or by similar arguments for the increase
of the total speed of a single physical machine (e.g., memory access, I/O bottleneck [21]
etc.). We remark that speed-implementable functions with non-increasing processing times
and non-decreasing work do not need to be convex, and thus, do not belong to the class of
supermodular functions.

In this work, we focus on the objective of minimizing the makespan Cmax = maxj∈J Cj ,
where Cj the completion time of job j. We refer to this setting as the problem of scheduling
malleable jobs on unrelated machines. To further justify this term, we present a pseudopoly-
nomial transformation of standard scheduling on unrelated machines to malleable scheduling
with speed-implementable processing times (see the full version of this reading). The reduc-
tion can be rendered polynomial by standard techniques, preserving approximation factors
with a loss of 1 + ε.

1.1 Related Work
The problem of malleable job scheduling on identical machines has been studied thoroughly
for more than three decades. For the case of non-monotonic jobs, i.e., jobs that do not
satisfy the monotonic work condition, Du and Leung [5] show that the problem is strongly
NP-hard for more than 5 machines, while in terms of approximation, Turek, Wolf and Yu [24]
provided the first 2-approximation algorithm for the same version of the problem. Jansen
and Porkolab [13] devised a PTAS for instances with a constant number of machines, which
was later extended by Jansen and Thöle [15] to a PTAS for the case that the number of
machines is polynomial in the number of jobs.

For the case of monotonic jobs, Mounié, Rapine and Trystram [19] propose a 3
2 -approxima-

tion algorithm, improving on the
√

3-approximation provided by the same authors [18].
Recently, Jansen and Land [12] gave an FPTAS for the case that |M | ≥ 8| J |/ε. Together
with the approximation scheme for polynomial number of machines in [12], this implies a
PTAS for scheduling monotonic malleable jobs on identical machines.

Several papers also consider the problem of scheduling malleable jobs with preemption
and/or under precedence constraints [2, 14, 17]. An interesting alternative approach to the
general problem is that of Srinivasa, Prasanna, and Musicus [23], who consider a continuous
version of malleable tasks and develop an exact algorithm based on optimal control theory
under certain assumptions on the processing time functions. While the problem of malleable
scheduling on identical machines is very well understood, this is not true for malleable
extensions of other standard scheduling models, such as unrelated machines or the restricted
assignment model. We attempt to close this gap by introducing and investigating malleable
scheduling with speed-implementable processing time functions.

A scheduling model similar to malleable tasks is that of splittable jobs. In this regime,
jobs can be split arbitrarily and the resulting parts can be distributed arbitrarily on different
machines. For each pair of job j and machine i, there is a setup time sij and a processing
time pij . If a fraction xij ∈ (0, 1] of job j is to be scheduled on machine i, the load that is
incurred on the machine is sij + pijxij . Correa et al. [4] provide an (1 + ϕ)-approximation
algorithm for this setting (where ϕ is the golden ratio), which is based on an adaptation
of the classic LP rounding result by Lenstra, Shmoys, and Tardos [16] for the traditional
unrelated machine scheduling problem. We remark that the generalized malleable setting
considered in this paper also induces a natural generalization of the splittable setting beyond
setup times, when dropping the requirement that jobs need to be executed in unison. As
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in [4], we provide a rounding framework based on a variant of the assignment LP from [16].
However, the fact that processing times are only given implicitly as functions in our setting
makes it necessary to very carefully choose the coefficients of the assignment LP in order to
ensure a constant integrality gap. Furthermore, because jobs have to be executed in unison,
we employ a more sophisticated rounding scheme in order to better utilize free capacity on
different machines.

1.2 Contribution and Techniques
At the conceptual level, we introduce the notion of malleable jobs with speed-implementable
processing times. Hence, we generalize the standard and well-studied setting of malleable job
scheduling, in a direct analogy to fundamental models in scheduling theory (e.g., scheduling
on uniformly related and unrelated machines). This new and much richer model gives rise
to a large family of unexplored packing problems that may be of independent interest. All
omitted proofs can be found in the full version of this paper (see https://arxiv.org/abs/
1903.11016).

From a technical viewpoint, we investigate the computational complexity and the approx-
imability of this new setting. To the best of our understanding, standard techniques used
for makespan minimization in the setting of malleable job scheduling on identical machines,
such as the two-shelve approach (as used in [19, 24]) and area charging arguments, fail to
yield any reasonable approximation guarantees in our more general setting. This intuition is
supported by the following hardness of approximation result.

I Theorem 1. For any ε > 0, there is no ( e
e−1 − ε)-approximation algorithm for the problem

of scheduling malleable jobs on unrelated machines, unless P = NP .

Note that the lower bound of e
e−1 is strictly larger than the currently best known

approximation factor of 1.5 for malleable scheduling on identical machines.
Our positive results are based on a linear programming relaxation, denoted by [LP(C)]

and described in Section 2. This LP resembles the assignment LP for the standard setting
of non-malleable scheduling [16]. However, in order to obtain a constant integrality gap we
distinguish between “small” jobs that can be processed on a single machine (within a given
target makespan), and “large” jobs that have to be processed on multiple machines. For the
large jobs, we carefully estimate their contribution to the load of their allocated machines.
Specifically, we introduce the notion of critical speed and use the critical speed to define the
load coefficients incurred by large jobs on machines in the LP relaxation by proportionally
distributing the work volume according to machine speeds. For the rounding, we exploit the
sparsity of our relaxation’s extreme points (as in [16]) and generalize the approach of [4], in
order to carefully distinguish between jobs assigned to a single machine and jobs shared by
multiple machines.

I Theorem 2. There exists a polynomial-time 2e
e−1 -approximation algorithm for the problem

of scheduling malleable jobs on unrelated machines.

An interesting corollary is that for malleable job scheduling on unrelated machines, there
always exists an approximate solution where each machine shares at most one job with some
other machines. We also get improved approximation guarantees for the special cases of
restricted assignment and uniform speeds, respectively, by exploiting the special structure of
the processing time functions.

APPROX/RANDOM 2019
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I Theorem 3. There exists a polynomial-time 7
3 -approximation algorithm for the problem

of scheduling malleable jobs on restricted identical machines (i.e., si,j ∈ {0, 1} for all i ∈M
and j ∈ J ).

I Theorem 4. There exists a polynomial-time 3-approximation algorithm for the problem of
scheduling malleable jobs on uniform machines (i.e., si,j = si for all i ∈M and j ∈ J ).

All our approximation results imply corresponding upper bounds on the integrality gap of
the linear programming relaxation [LP(C)]. Based on an adaptation of a construction in [4],
we show a lower bound of 1 + ϕ ≈ 2.618 on the integrality gap of [LP(C)] for malleable job
scheduling on unrelated machines, where ϕ is the golden ratio. For the cases of restricted
assignment and uniformly related machines, respectively, we obtain an integrality gap of 2.

Moreover, we extend our model and approach in two directions. First, we consider a
setting where the effective speed according to which a set S of allocated machines processing
a job j is given by the Lp-norm σ

(p)
j (S) =

(∑
i∈S(si,j)p

)1/p of the corresponding speed
vector. In practical settings, we tend to prefer assignments to relatively small sets of physical
machines, so as to avoid delays related to communication, memory access, and I/O (see
e.g., [21]). By replacing the total speed (i.e., the L1-norm) with the Lp-norm of the speed
vector for some p ≥ 1, we discount the contribution of additional machines (especially of
smaller speeds) towards processing a job j. Thus, as p increases, we give stronger preference
to sparse schedules, where the number of jobs shared between different machines (and the
number of machines sharing a job) are kept small. Interestingly, our general approach is
robust to this generalization and results in constant approximation factors for any p ≥ 1.
Asymptotically, the approximation factor is bounded by p

p−ln p + p

√
p

ln p and our algorithm
smoothly converges to the algorithm of [16] as p tends to infinity. For the extreme case where
we use the L∞-norm, our setting becomes identical to standard scheduling on unrelated
machines and we recover the algorithm of [16], achieving an approximation ratio of 2. These
results are discussed in Section 4.1.

In another direction, we combine our approach for makespan minimization with standard
techniques employed for the objective of total weighted completion time,

∑
j∈J wjCj , and

obtain a constant factor approximation for minimizing the total weighted completion time for
malleable job scheduling on unrelated machines. These results are discussed in Section 4.2.

Trying to generalize malleable job scheduling beyond the simple setting of identical ma-
chines, as much as possible, we believe that our setting with speed-implementable processing
times lies on the frontier of the constant-factor approximability regime. We show a strong
inapproximability lower bound of O(| J |1−ε) for the (far more general) setting where the
processing times are given by a non-increasing supermodular set functions. These results
are discussed in Section 4.3. An interesting open question is to characterize the class of
processing time functions for which malleable job scheduling admits constant factor (and/or
logarithmic) approximation guarantees.

2 The general rounding framework

In this section, we provide a high-level description of our algorithm. We construct a
polynomial-time ρ-relaxed decision procedure for malleable job scheduling problems. This
procedure takes as input an instance of the problem as well as a target makespan C and either
asserts correctly that there is no feasible schedule of makespan at most C, or returns a feasible
schedule of makespan at most ρC. It is well-known that a ρ-relaxed decision procedure can
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be transformed into a polynomial-time ρ-approximation algorithm [11] provided that one
can compute proper lower and upper bounds to the optimal value of size polynomial in the
size of the input.

Given a target makespan C, let γj(C) := min{q ∈ Z+ | fj(q) ≤ C} be the critical speed
of job j ∈ J . Moreover, we define for every i ∈M the sets J+

i (C) := {j | f(si,j) ≤ C} and
J−i (C) := J\J+

i (C) to be the set of jobs that can or cannot be processed by i alone within
time C, respectively. Note that γj(C) can be computed in polynomial-time given oracle
access to fj by performing binary search. When C is clear from the context, we use the
short-hand notation γj , J+

i , and J
−
i instead. The following technical fact is equivalent to

the non-decreasing work property and is used throughout the proofs of this paper:

I Fact 5. Let f be a speed-implementable processing time function satisfying the properties
of our problem. Then for every speed q ∈ R+ we have that:
1. f(αq) ≤ 1

αf(q) for every α ∈ (0, 1), and
2. f(q′) ≤ q

q′ f(q) for every q′ ≤ q.
The following feasibility LP is the starting point of the relaxed decision procedures we

construct in this work:

[LP(C)]:
∑
i∈M

xi,j = 1 ∀j ∈ J (1)

∑
j∈J+

i

fj(si,j)xi,j +
∑
j∈J−

i

fj(γj)γj
si,j

xi,j ≤ C ∀i ∈M (2)

xi,j ≥ 0 ∀j ∈ J , i ∈M (3)

In the above LP, each variable xi,j can be thought as the fraction of job j that is
assigned to machine i. The equality constraints (1) ensure that each job is fully assigned
to a subset of machines, while constraints (2) impose an upper bound to the load of every
machine. As we can prove, the above formulation is feasible for any C that is greater than
the optimal makespan.

I Proposition 6. For every C ≥ OPT, where OPT is the makespan of an optimal schedule,
[LP(C)] has a feasible solution.

Proof. Fix a schedule of makespan OPT and let Sj ⊆M be the set of machines allocated
to a job j in that schedule. For every i ∈ M,j ∈ J set xi,j = si,j

σj(Sj) if i ∈ Sj and xi,j = 0,
otherwise. We show that x is a feasible solution to [LP (C)]. Indeed, constraints (1) are
satisfied since

∑
i∈M xi,j =

∑
i∈Sj

si,j
σj(Sj) = 1 for all j ∈ J . For verifying that constraints

(2) are fulfilled, let j ∈ J and i ∈ Sj . If j ∈ J+
i then fj(si,j)xi,j = fj(si,j) si,j

σj(Sj) ≤ fj(Sj),
using Fact 5. If j ∈ J−i then fj(γj)γj

si,j
xi,j = fj(γj)γj

σj(Sj) ≤
σj(Sj)fj(Sj)

σj(Sj) ≤ fj(Sj), again using Fact
5 and the fact that σj(Sj) ≥ γj . Therefore for any i ∈ M we obtain:

∑
j∈J+

i
fj(si,j)xi,j +∑

j∈J−
i

fj(γj)γj
si,j

xi,j ≤
∑
j∈J|i∈Sj fj(Sj) ≤ OPT ≤ C. J

Assuming that C ≥ OPT, let x be an extreme point solution to [LP(C)]. We create the
assignment graph G(x) with nodes V := J ∪M and edges E := {{i, j} ∈ M×J | xi,j > 0},
i.e., one edge for each machine-job pair in the support of the LP solution. Notice that G(x)
is bipartite by definition. Furthermore, since [LP(C)] is structurally identical to the LP
of unrelated machine scheduling [16], the choice of x as an extreme point guarantees the
following sparsity property:

APPROX/RANDOM 2019
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i1

j1

i2

j2

j3

i3 i4

i5

T (j3)

p(j3)

Figure 1 A properly oriented pseudo-
tree with indegree at most 1 for each
node.

θ

g(θ) = σj(Sj(θ))

γ
j f
j (γ

j )
(α+2θ−2)C

∫ 1

0
g(θ)dθ =

∑
i∈T (j)

si,j(1−
`i
C

)

0 1

Figure 2 Volume argument for select-
ing a subset of the children machines in
the proof of Proposition 10.

I Proposition 7 ([16]). For every extreme point solution x of [LP(C)], each connected
component of G(x) contains at most one cycle.

As a graph with at most one cycle is either a tree or a tree plus one edge, the connected
components of G(x) are called pseudotrees and the whole graph is called a pseudoforest. It is
not hard to see that the edges of an undirected pseudoforest can always be oriented in a way
that every node has an in-degree of at most one. We call such a G(x) a properly oriented
pseudoforest. Such an orientation can easily be obtained by first orienting the edges on the
unique cycle (if it exists) consistently so as to obtain a directed cycle and, then, by orienting
all remaining edges away from that cycle (see Figure 1).

Now fix a properly oriented G(x) with set of oriented edges Ē. For j ∈ J , we define
p(j) ∈ M to be its unique parent-machine (if it exists) and T (j) = {i ∈ M | (j, i) ∈ Ē} to
be the set of children-machines of j, respectively. Notice, that for every machine i, there
exists at most one j ∈ J such that i ∈ T (j). The decision procedures we construct in this
paper are based, unless otherwise stated, on the following scheme:

Algorithm: Given a target makespan C:
1. If [LP(C)] is feasible, compute an extreme point solution x of [LP(C)] and construct a

properly oriented G(x). (Otherwise, report that C < OPT.)
2. A rounding scheme assigns every job j ∈ J either only to its parent machine p(j), or to

the set of its children-machines T (j) (see Section 3).
3. According to the rounding, every job j ∈ J that has been assigned to T (j) is placed at

the beginning of the schedule (these jobs are assigned to disjoint sets of machines).
4. At any point a machine i becomes idle, it processes any unscheduled job j that has been

rounded to i such that i = p(j).

3 Rounding schemes

In each of the following rounding schemes, we are given as an input an extreme point solution
x of [LP(C)] and a properly oriented pseudoforest G(x) = (V, Ē).

3.1 A simple 4-approximation for unrelated machines
We start from the following simple rounding scheme: For each job j, assign j to its parent-
machine p(j) if xp(j),j ≥ 1

2 , or else, assign j to its children-machines T (j). Formally,
let J (1) := {j ∈ J | xp(j),j ≥ 1

2} be the sets of jobs that are assigned to their parent-
machines and J (2) := J \J (1) the rest of the jobs. Recall that we first run the jobs
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in J (2) and then the jobs in J (1) as described at the end of the previous section. For
i ∈ M, define J (1)

i := {j ∈ J (1) | p(j) = i} and J
(2)
i := {j ∈ J (2) | i ∈ T (j)} as the

sets of jobs in J (1) and J (2), respectively, that get assigned to i (note that |J (2)
i | ≤ 1,

as each machine gets assigned at most one job as a child-machine). Furthermore, let
`i :=

∑
j∈J+

i
∩J (1) fj(si,j)xi,j +

∑
j∈J−

i
∩J (1) fj(γj) γj

si,j
xi,j be the fractional load incurred by

jobs in J (1) on machine i in the LP solution x.

I Proposition 8. Let i ∈M. Then
∑
j∈J (1)

i

fj({i}) ≤ 2`i.

Proof. Let j ∈ J (1)
i . Since xi,j ≥ 1

2 by definition of J (1), we get fj(si,j) ≤ 2fj(si,j)xi,j .
Furthermore, if j ∈ J−i then fj(si,j)xi,j ≤ fj(γj) γjsi,j xi,j by Fact 5 and the fact that si,j < γj .
Thus, by summing up over all jobs in J (1)

i and then applying constraints (2), we get

∑
j∈J(1)

i

fj({i}) ≤ 2

 ∑
j∈J(1)

i
∩J+

i

fj(si,j)xi,j +
∑

j∈J(1)
i
∩J−

i

fj(γj)γj
si,j

xi,j

 ≤ 2`i. J

I Proposition 9. Let j ∈ J (2). Then fj(T (j)) ≤ 2C.

Proof. If there is a machine i ∈ T (j) with j ∈ J+
i , then fj(T (j)) ≤ fj({i}) ≤ C. So we

can assume that j ∈ J−i for all i ∈ T (j). Hence constraints (2) imply fj(γj) γj
si,j

xi,j ≤ C

for all i ∈ T (j). Summing these constraints yields
∑
i∈T (j)

fj(γj)
C γjxi,j ≤ σj(T (j)). Using

the fact that fj(γj) ≤ C by definition of γj and
∑
i∈T (j) xi,j >

1
2 because j ∈ J (2), we get

σj(T (j)) ≥ 1
2γj

fj(γj)
C . This implies fj(T (j)) ≤ 2C by Fact 5. J

Clearly, the load of any machine i ∈M in the final schedule is the sum of the load due to
the execution of J (1), plus the processing time of at most one job of J (2). By Proposition 8
and 9, it follows that any feasible solution of [LP(C)] can be rounded in polynomial-time
into a feasible schedule of makespan at most 4C.

3.2 An improved 2e
e−1 ≈ 3.163-approximation for unrelated machines

In the simple rounding scheme described above, it can be the case that the overall makespan
improves by assigning some job j ∈ J (2) only to a subset of the machines in T (j). This
happens because some machines in T (j) may have significantly higher load from jobs of J (1)

than others, but job j will incur the same additional load to all machines it is assigned to.
We can improve the approximation guarantee of the rounding scheme by taking this effect

into account and filtering out children-machines with a high load. Define J (1) and J (2) as
before. Every job in j ∈ J (1) is assigned to its parent-machine p(j), while every job j ∈ J (2)

is assigned to a subset of T (j) as follows.
For j ∈ J (2) and θ ∈ [0, 1] define Sj(θ) := {i ∈ T (j) | 1 − `i

C ≥ θ}. Choose θj so as
to minimize 2(1 − θj)C + fj(θj) (note that this minimizer can be determined by trying
out at most |T (j)| different values for θj). We then assign each job in j ∈ J (2) to the
machine set Sj(θj).

By Proposition 8, we know that the total load of each machine i ∈M due to the execution
of jobs from J (1) is at most 2`i. Recall that there is at most one j ∈ J (2) with i ∈ T (j).
If i /∈ Sj(θj), then load of machine i bounded by 2`i ≤ 2C. If i ∈ Sj(θj), then the load of
machine i is bounded by

max
i′∈Sj(θj)

{
2`i′ + fj(Sj(θj))

}
≤ 2(1− θj)C + fj(Sj(θj)), (4)
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17:10 Malleable Scheduling Beyond Identical Machines

where the inequality comes from the fact that 1 − `i′
C ≥ θj for all i′ ∈ Sθj . The following

proposition gives an upper bound on the RHS of (4) as a result of our filtering technique
and proves Theorem 2.

I Proposition 10. For each j ∈ J (2), there is a θ ∈ [0, 1] with 2(1−θ)C+fj(Sj(θ)) ≤ 2e
e−1C.

Proof. Define α := 2e
e−1 . We show that there is a θ ∈ [0, 1] with σj(Sj(θ)) ≥ γjfj(γj)

(α+2θ−2)C .
Then fj(Sj(θ)) ≤ (α+ 2θ − 2)C by Fact 5, implying the lemma.

Define the function g : [0, 1] → R+ by g(θ) := σj(Sj(θ)). It is easy to see g is non-
increasing integrable and that∫ 1

0
g(θ)dθ =

∑
i∈T (j)

si,j(1−
`i
C

).

See Figure 2 for an illustration.
Now assume by contradiction that g(θ) <

γjfj(γj)
(α+2θ−2)C for all θ ∈ [0, 1]. Note that

`i + γjfj(γj)
si,j

xi,j ≤ C for every i ∈ T (j) by constraints (2) and the fact that γjfj(γj)
si,j

≤ fj(si,j)
for all i such that j ∈ J+

i . Hence
fj(γj)γj

C xi,j ≤ si,j(1− `i
C ) for all i ∈ T (j). Summing over

all i ∈ T (j) and using the fact that
∑
i∈T (j) xi,j ≥

1
2 because j ∈ J (2) we get

fj(γj)γj
2C ≤

∑
i∈T (j)

si,j(1−
`i
C

) =
∫ 1

0
g(θ)dθ < fj(γj)γj

C

∫ 1

0

1
α+ 2θ − 2dθ,

where the last inequality uses the assumption that g(θ) < γjfj(γj)
(α+2θj−2)C for all θ ∈ [0, 1].

By simplifying the above inequality, we get the contradiction

1 <
∫ α

α−2

1
λ
dλ = ln( α

α− 2) = 1. J

By the above analysis, our main result for the case of unrelated machines follows.

I Theorem 2. There exists a polynomial-time 2e
e−1 -approximation algorithm for the problem

of scheduling malleable jobs on unrelated machines.

I Remark 11. We can slightly improve the above analysis by optimizing the threshold of
assigning a job to the parent. This optimization gives a slightly better approximation

guarantee of α = infβ∈(0,1)

{
e

1
β
−1

β(e
1
β
−1−1)

}
≈ 3.14619.

3.3 A (7/3)-approximation for restricted identical machines
We are able to provide an algorithm of improved approximation guarantee for the special
case of restricted identical machines: Each job j ∈ J is associated with a set of machines
Mj ⊆M, such that si,j = 1 for i ∈Mj and si,j = 0, otherwise.

Given a feasible solution to [LP(C)] and a properly oriented G(x), we define the sets
J (1) := {j ∈ J | xp(j),j = 1} and J (2) := J \J (1). The rounding scheme for this special
case can be described as follows: (a) Every job j ∈ J (1) is assigned to p(j) (which is the
only machine in G(x) that is assigned to j). (b.i) Every job of j ∈ J (2) such that |T (j)| = 1
or |T (j)| ≥ 3 is assigned to the set T (j) of its children-machines. (b.ii) For every job of
j ∈ J (2) such that |T (j)| = 2, the algorithm schedules the job to the subset S ⊆ T (j) that
results in the minimum makespan over T (j). Notice that for |T (j)| = 2 there are exactly
three such subsets. As usual, the jobs of J (2) are placed at the beginning of the schedule,
followed by the jobs of J (1).
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I Theorem 3. There exists a polynomial-time 7
3 -approximation algorithm for the problem

of scheduling malleable jobs on restricted identical machines (i.e., si,j ∈ {0, 1} for all i ∈M
and j ∈ J ).

3.4 A 3-approximation for uniform machines
We prove an algorithm of improved approximation guarantee for the special case of uniform
machines, i.e., every machine has a unique speed si such that si,j = si for all j ∈ J . Given a
target makespan C, we say that a machine i is j-fast for a job j ∈ J if j ∈ J+

i , while we say
that i is j-slow if j ∈ J−i . As opposed to the previous cases, the rounding for the uniform case
starts by transforming the feasible solution of [LP(C)] into another extreme point solution
that satisfies a useful structural property, as described in the following proposition.

I Proposition 12. There is an extreme point solution x of [LP(C)] that satisfies the following
property: For each j ∈ J there is at most one j-slow machine i ∈M such that xi,j > 0 and
xi,j′ > 0 for some job j′ 6= j. Furthermore, this machine, if it exists, is the slowest machine
that j is assigned to.

Let x be an extreme point solution of [LP(C)] that satisfies the property of Proposition 12
and let G(x) a properly oriented pseudoforest. By the above proposition, each job j has at
most three types of assignments in G(x): (i) j-fast machines Fj , (ii) exclusive j-slow machines
Dj , i.e. j-slow machines that are completely assigned to j, and (iii) at most one shared
j-slow machine ij (which is the slowest machine that j is assigned to).

We now describe the rounding scheme for the special case of uniform machines. For any
job j ∈ J in any order: (a) If xp(j),j ≥ 1

2 then j is assigned to its parent-machine p(j),
otherwise (b) j is assigned to a subset S ⊆ T (j). In the second case, the subset S is chosen
according to the following rule: (b.i) If Fj 6= ∅, then assign j to any i ∈ Fj , else (b.ii) if
σj(Dj) ≥ γjfj(γj)

3C , then assign j only to the machines of Dj (but not to the shared ij). In
any other case, (b.iii) j is assigned to Dj ∪ {ij}.

I Theorem 4. There exists a polynomial-time 3-approximation algorithm for the problem of
scheduling malleable jobs on uniform machines (i.e., si,j = si for all i ∈M and j ∈ J ).

4 Model extensions and discussion

4.1 Sparse allocations via p-norm regularization
In the model of speed-implementable processing time functions that we study in the previous
sections, each function fj(S) depends on the total additive speed, yet is oblivious to the
actual number of allocated machines. However, the overhead incurred by the synchronization
of physical machines naturally depends on their number and we therefore need to take into
account both the total speed and the cardinality of the machine set allocated to a job. In
this section, we model the impact of the number of machines through the notion of effective
speed. In this setting, every job j is associated with a speed regularizer pj ≥ 1, while the
total speed of a set S ⊆M is given by: σ(pj)

j (S) =
(∑

i∈S s
pj
i,j

) 1
pj . For simplicity, we assume

that every job has the same speed regularizer, p = pj ,∀j ∈ J .
Clearly, the choice of p controls the effect of the cardinality of a set to the resulting

speed of an allocation, given that as p increases a sparse set has higher effective speed
than a non-sparse set of the same total speed. Notice that for p = 1 we return to the
standard case of additive speeds, while for p → ∞, parallelization is no longer helpful
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17:12 Malleable Scheduling Beyond Identical Machines

as limp→∞ σ
(p)
j (S) = maxi∈S{si,j}. As before, the processing time functions satisfy the

standard properties of malleable scheduling, i.e., fj(s) is non-increasing while fj(s) · s is
decreasing. For simplicity of presentation we assume that all jobs have the same regularizer p,
but we comment on the case of job-dependent regularizers at the end of this section.

Quite surprisingly, we can easily modify the algorithms of the previous section in order to
capture the above generalization. Given a target makespan C, we start from a new feasibility
program [LP(p)(C)], which is given by constraints (1),(3) of [LP(C)], combined with:∑

j∈J+
i

fj(si,j)xi,j +
∑
j∈J−

i

fj(γj)
(
γj
si,j

)p
xi,j ≤ C ∀i ∈M (5)

Note that J+
i , J

−
i , and γj(C) are defined exactly as before, and that the only difference

between [LP(C)] and [LP(p)(C)] is that we replace the coefficient γj
si,j

with
(
γj
si,j

)p
in

constraints (2) of the former. It can be shown that for every C ≥ OPT , where OPT is the
makespan of an optimal schedule, [LP(p)(C)] has a feasible solution.

The algorithm for this case is similar to the one of the standard case (see Section 3.1),
having [LP (p)(C)] as a starting point. Moreover, the rounding scheme is a parameterized
version of the simple rounding of Section 3.1, with the difference that the threshold parameter
β ∈ [0, 1] (i.e., the parameter that controls the decision of assigning a job j to either p(j) or
T (j)) is not necessarily 1

2 . In short, given a pseudoforest G(x), the rounding scheme assigns
any job j to p(j) if xp(j),j ≥ β, or to T (j), otherwise.

By similar arguments as in Propositions 8,9, it can be proved that the makespan of
the produced schedule is at most

(
1
β + 1

(1−β)1/p

)
C. Therefore, the algorithm can initially

compute a threshold β ∈ [0, 1] that minimizes the above theoretical bound. Clearly, for p = 1
the minimizer of the expression is β = 1/2, yielding the 4-approximation of the standard
case, while for p→ +∞ one can verify that β → 1 and:

lim
p→+∞

inf
β∈[0,1]

(
1
β

+ 1
(1− β)1/p

)
= 2.

As expected, for the limit case where p→ +∞, our algorithm converges to the well-known
algorithm by Lenstra et al. [16] given that our problem becomes non-malleable. By using
the standard approximation β = 1− ln p

p for p ≥ 2, we can prove the following theorem.

I Theorem 13. Any feasible solution of [LP(p)(C)] for p ≥ 2 can be rounded in polynomial-
time into a feasible schedule of makespan at most

(
p

p−ln p + p

√
p

ln p

)
C.

Note that an analogous approach can handle the case where jobs have different regularizers,
with the approximation ratio for this scenario determined by the smallest regularizer that
appears in the instance (note that the approximation factor is always at most 4).

4.2 Minimizing the ∑j∈J wjCj objective
The LP-based nature of our algorithms allows the design of efficient O(1)-approximation
algorithms for the objective of minimizing the sum of weighted completion times, i.e.,∑
j∈J wjCj , employing the standard technique of interval-indexed formulations [9]. In this

setting, every job j ∈ J is associated with a weight wj ∈ Z≥0 and the objective is to compute
a feasible schedule of minimum

∑
j∈J wjCj , where Cj the completion time of job j. In

the malleable setting, the approximation guarantee of our algorithm for the
∑
j∈J wjCj

objective depends on the approximation guarantee of the underlying makespan problem.
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I Theorem 14. There exists a O(ρ)-approximation algorithm for the problem of malleable
scheduling minimizing the

∑
j∈J wjCj objective, where ρ the approximation ratio of the best

rounding scheme of [LP (C)].

4.3 Supermodular processing time functions
In this paper we concentrated our study on speed-implementable processing time functions.
However, the general definition of malleable scheduling given in Section 1 leaves room for
many other possible variants of the problem with processing times given by monotone non-
increasing set functions. One natural attempt of capturing the assumption of non-decreasing
workload is to assume that for each job j ∈ J the corresponding processing time function fj
is supermodular, i.e.,

fj(T ∪ {i})− fj(T ) ≥ fj(S ∪ {i})− fj(S)

for all S ⊆ T ⊆M and i ∈M\T . The interpretation of this assumption is that the decrease
in processing time when adding machine i diminishes the more machines are already used
for job j (note that the terms on both sides of the inequality are non-positive because fj is
non-increasing). For this setting, which we refer to as generalized malleable scheduling with
supermodular processing time functions, we derive a strong hardness of approximation result.

I Theorem 15. There is no |J |1−ε-approximation for generalized malleable scheduling with
supermodular processing time functions, unless P = NP .
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