331 research outputs found

    Multi-static Parameter Estimation in the Near/Far Field Beam Space for Integrated Sensing and Communication Applications

    Full text link
    This work proposes a maximum likelihood (ML)-based parameter estimation framework for a millimeter wave (mmWave) integrated sensing and communication (ISAC) system in a multi-static configuration using energy-efficient hybrid digital-analog arrays. Due to the typically large arrays deployed in the higher frequency bands to mitigate isotropic path loss, such arrays may operate in the near-field regime. The proposed parameter estimation in this work consists of a two-stage estimation process, where the first stage is based on far-field assumptions, and is used to obtain a first estimate of the target parameters. In cases where the target is determined to be in the near-field of the arrays, a second estimation based on near-field assumptions is carried out to obtain more accurate estimates. In particular, we select beamfocusing array weights designed to achieve a constant gain over an extended spatial region and re-estimate the target parameters at the receivers. We evaluate the effectiveness of the proposed framework in numerous scenarios through numerical simulations and demonstrate the impact of the custom-designed flat-gain beamfocusing codewords in increasing the communication performance of the system.Comment: 16 page

    Limits on Sparse Data Acquisition: RIC Analysis of Finite Gaussian Matrices

    Full text link
    One of the key issues in the acquisition of sparse data by means of compressed sensing (CS) is the design of the measurement matrix. Gaussian matrices have been proven to be information-theoretically optimal in terms of minimizing the required number of measurements for sparse recovery. In this paper we provide a new approach for the analysis of the restricted isometry constant (RIC) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distributions of the extreme eigenvalues for Wishart matrices. First, we derive the probability that the restricted isometry property is satisfied for a given sufficient recovery condition on the RIC, and propose a probabilistic framework to study both the symmetric and asymmetric RICs. Then, we analyze the recovery of compressible signals in noise through the statistical characterization of stability and robustness. The presented framework determines limits on various sparse recovery algorithms for finite size problems. In particular, it provides a tight lower bound on the maximum sparsity order of the acquired data allowing signal recovery with a given target probability. Also, we derive simple approximations for the RICs based on the Tracy-Widom distribution.Comment: 11 pages, 6 figures, accepted for publication in IEEE transactions on information theor

    On the Indicatrixes of Waves Scattering from the Random Fractal Anisotropic Surface

    Get PDF
    Millimeter and centimeter wave scattering from the random fractal anisotropic surface has been theoretically investigated. Designing of such surfaces is based on the modifications of non-differentiable two-dimensional Weierstrass function. Wave scattering on a random surface is interesting for many sections of physics, mathematics, biology, and so on. Questions of a radar location and radio physics take the predominating position here. There are many real surfaces and volumes in the nature that can be carried to fractal objects. At the same time, the description of processes of waves scattering of fractal objects differs from classical approaches markedly. There are many monographs in the world on the topic of classical methods of wave scattering but the number of books devoted to waves scattering on fractal stochastic surfaces is not enough. These results of estimation of three-dimensional scattering functions are a priority in the world and are important in radar of low-contrast targets near the surface of the earth and the sea

    Near-Field Communications: A Comprehensive Survey

    Full text link
    Multiple-antenna technologies are evolving towards large-scale aperture sizes, extremely high frequencies, and innovative antenna types. This evolution is giving rise to the emergence of near-field communications (NFC) in future wireless systems. Considerable attention has been directed towards this cutting-edge technology due to its potential to enhance the capacity of wireless networks by introducing increased spatial degrees of freedom (DoFs) in the range domain. Within this context, a comprehensive review of the state of the art on NFC is presented, with a specific focus on its 1) fundamental operating principles, 2) channel modeling, 3) performance analysis, 4) signal processing, and 5) integration with other emerging technologies. Specifically, 1) the basic principles of NFC are characterized from both physics and communications perspectives, unveiling its unique properties in contrast to far-field communications. 2) Based on these principles, deterministic and stochastic near-field channel models are investigated for spatially-discrete (SPD) and continuous-aperture (CAP) antenna arrays. 3) Rooted in these models, existing contributions on near-field performance analysis are reviewed in terms of DoFs/effective DoFs (EDoFs), power scaling law, and transmission rate. 4) Existing signal processing techniques for NFC are systematically surveyed, encompassing channel estimation, beamforming design, and low-complexity beam training. 5) Major issues and research opportunities associated with the integration of NFC and other emerging technologies are identified to facilitate NFC applications in next-generation networks. Promising directions are highlighted throughout the paper to inspire future research endeavors in the realm of NFC.Comment: 56 pages, 23figures; submit for possible journa

    Aeronautical engineering: A continuing bibliography with indexes (supplement 304)

    Get PDF
    This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Doppler Radar Techniques for Distinct Respiratory Pattern Recognition and Subject Identification.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Generating Pictures from Waves: Aspects of Image Formation

    Get PDF
    Thesis Supervisor: Gregory W. Wornell Title: Professor of Electrical Engineering and Computer ScienceThe research communities, technologies, and tools for image formation are diverse. On the one hand, computer vision and graphics researchers analyze incoherent light using coarse geometric approximations from optics. On the other hand, array signal processing and acoustics researchers analyze coherent sound waves using stochastic estimation theory and diffraction formulas from physics. The ability to inexpensively fabricate analog circuitry and digital logic for millimeter-wave radar and ultrasound creates opportunities in comparing diverse perspectives on image formation, and presents challenges in implementing imaging systems that scale in size. We present algorithms, architectures, and abstractions for image formation that relate the different communities, technologies, and tools. We address practical technical challenges in operating millimeter-wave radar and ultrasound systems in the presence of phase noise and scattering. We model a broad class of physical phenomena with isotropic point sources. We show that the optimal source location estimator for coherent waves reduces to processing an image produced by a conventional camera, provided the sources are wellseparated relative to the system resolution, and in the limit of small wavelength and globally incoherent light. We introduce quasi light fields to generalize the incoherent image formation process to coherent waves, offering resolution tradeoffs that surpass the traditional Fourier uncertainty principle by leveraging time-frequency distributions. We show that the number of sensors in a coherent imaging array defines a stable operating point relative to the phase noise. We introduce a digital phase tightening algorithm to reduce phase noise. We present a system identification framework for multiple-input multiple-output (MIMO) ultrasound imaging that generalizes existing approaches with time-varying filters. Our theoretical results enable the application of traditional techniques in incoherent imaging to coherent imaging, and vice versa. Our practical results suggest a methodology for designing millimeter-wave imaging systems. Our conclusions reinforce architectural principles governing transmitter and receiver design, the role of analog and digital circuity, and the tradeoff between data rate and data precision.Microsoft Research, MIT Lincoln Laboratory, and the C2S2 Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity
    corecore