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Abstract

Millimeter and centimeter wave scattering from the random fractal anisotropic surface
has been theoretically investigated. Designing of such surfaces is based on the modifica-
tions of non-differentiable two-dimensional Weierstrass function. Wave scattering on a
random surface is interesting for many sections of physics, mathematics, biology, and so
on. Questions of a radar location and radio physics take the predominating position
here. There are many real surfaces and volumes in the nature that can be carried to
fractal objects. At the same time, the description of processes of waves scattering of
fractal objects differs from classical approaches markedly. There are many monographs
in the world on the topic of classical methods of wave scattering but the number of
books devoted to waves scattering on fractal stochastic surfaces is not enough. These
results of estimation of three-dimensional scattering functions are a priority in the world
and are important in radar of low-contrast targets near the surface of the earth and
the sea.

Keywords: fractal, fractal surfaces, Kirchhoff approach, radio waves scattering,
Weierstrass function, radar, low-contrast targets

1. Introduction

There are a lot of scientific and engineering problems, which can be successfully solved only

with deep understanding of wave-scattering characteristics for statistically rough surface (see,

e.g., [1–3] and references). In this section, we consider the main issues of theory of fractal wave

scattering on the statistically rough surface as applied to problems of image creation by radar

methods (RMs). These issues are crucial for radio location of low-contrast targets on the

background of earth and sea surface.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In the general case, RM can be interpreted as a scattering specific effective squares (SESs), as a

σ* card (matrix) or as a signature (portrait) of object being sounded for the high angular

resolution. SES card with fuzzy bounds corresponds to real RM for the wide-probing beam.

RM resolution increase necessitates the use of complicated probing signals. Subject detail

digital radar maps (DDRM or etalons) are often results of current image processing [4–8].

Currently, there are two general approaches of scattering on the statistically rough surface:

method of small perturbation (SP) and Kirchhoff approach (tangent plane method (TPM)).

These methods relate to two extreme cases of very small flat irregularities or smooth and large

irregularities, respectively. Two-scale scattering model becomes a generalization of these

methods. The model is a combination of small ripple (computations using SP) and large

irregularities (computations using TPM). Review of these methods evolution is represented in

Refs. [1–3].

Thus, before the present diffraction problems for the statistically rough surfaces took into

account irregularities of only a single scale. Soon, it had been realized that multiscale surfaces

lead to better fitting. As we have found out [6, 7] fractality accounting makes theoretical and

experimental scattering patterns for earth cover in microwaves range closer. This fact is always

interpreted (and has been interpreted now) as results of pure instrumental errors.

The aim of this work is to report systematically and consistently about theoretical solution of

scattering problem for the random fractal anisotropic surface using Kirchhoff approach for the

first time, to calculate scattering indicatrixes for radio microwaves, and to analyze the ensem-

ble of indicatrixes obtained.

2. Formulation of the problem

Idea of fractal radio systems in the framework of fractal radio physics and radio electronics

that was proposed and now is being consistently developed in the Institute of Radio Engineer-

ing and Electronics of the RAS (see, e.g., [5–48] and references) allows us to look at conven-

tional radio physics methods in a new fashion. Currently, fractal radio physics and fractal

radio location are the very active investigation areas, where significant applications have been

obtained.

New problems that arise and being formulated are very important for every branch of science

in the sense of its evolution. During the last 35 years, we succeeded in developing a number of

important sections of fractal radio physics and fractal radio electronics that almost completes

its main structure [6–8]. At once, these results reveal perspective of its modern applications

and new relations between fractal physics and classical radio physics and electronics. It is

necessary to note that for this course several monographs and more than 800 studies and 23

monographs were published (e.g., look at Refs. [5–48] and references).

Figure 1 shows us the main courses of works that are being carried out in the Institute of Radio

Engineering and Electronics of the RAS and also information about the moment of its intensive

growth beginning is demonstrated (for details, see Refs. [6, 7]). For such a “fractal” approach, it
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is natural to focus on analysis and also on the processing of radio physical signals (fields) only

in space of fractional measuring using hypothesis of scaling and distributions with “heavy

tales” or stable distributions. Note that scale transformations using scaling effects are wide-

spread in up-to-date physics when different relations between thermodynamical values in

renormgroup theory of phase changes are setting up [49].

Fractals belong to sets, which have extremely branched and irregular structure. In December

2005 in the USA, Mandelbrot approved [34] fractal classification that was developed by the

author and is presented in Figure 2, where fractal features are characterized so long as there is

a fractal structure with fractal dimension D in the space with topological dimension. Physical

mathematical problems of the fractals theory and fractional measuring are represented in

monographs [6–8] in detail.

Figure 1. Sketch of development of a new information technology.
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In case of RM formation, the structure and parameters of wave field, which is generated by

remote random surface at the field analysis area, depend on receiving point location and surface

parameters. By taking into account these facts, we have to analyze the scattered field in a time-

spatial continuum [5]. Therefore in the late 1970s of the ХХ century, the author formulated the

problem of creating a theoretical modeling the band of millimeter and centimeter waves (MMW

and CMW, respectively) for radar time-spatial signal by taking into account radio channel

“antenna’s aperture–atmosphere–targets–chaotic covering without vegetation” and the problem

of creating of new features classes for radar targets recognition or radar signatures [5].

3. “Diffraction by fractals” 6¼ ”classical diffraction”

Effectiveness of radio physical investigations can be significantly improved by taking into

account fractality of wave phenomena that are progressing at every stage of wave radiation,

scattering, and propagation in different medium. In spite of pure scientific interest, there are

practical applications to the radar and telecommunications problems solution and also to

problems of mediums monitoring at different time-spatial scales.

Recently, interest to investigate wave scattering by rough surfaces that have non-Gaussian

statistics has also grown. They often argue that correlation spatial coefficient of dispersive

surface rðΔx ¼ x2 � x1,Δy ¼ y2 � y1Þ cannot be exponential due to non-differentiability of

respective random process. Sometimes in this case they use regularizing function about a zero

Figure 2. Classification and morphology of fractal sets and fractal set signatures.
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point. Fundamental physical foundation of non-differentiable functions application for wave-

scattering analysis was developed only after taking into account fractal theory, fractional-

measuring theory, operators of integro-differentiation, and scaling relations in radio physical

problems [6, 7, 20].

It is significant to note that Gaussian model is parabolic near the angle of incidence θ ≈ 0, while

the exponential model is linear near the same point. Below, we consider in detail the approach

to scattering of MMWand CMW by fractal random surface [5–7, 20, 39–44, 47].

At the present time, many works of foreign authors are related with wave interaction with

fractal structures (see, e.g., respective chapters in monographs [6, 7]). Fractal surface implies

the presence of irregularities of all scales with respect to scattered wavelength. Therefore,

fractal wave front being non-differentiable does not have normal. In that way, conceptions of

“ray trajectory” and “ray optics effects” are excluded. However, chords, which connect values

of typical irregularity heights at the certain horizontal distances, still have finite root-mean-

square slope. For this case, “topoteza” of fractal random surface is introduced; it is equal to the

length of surface slope closeness to the unity [6, 7, 20].

Subject to all features, there are scattering models in the west of author works: (1) model of

fractal heights and (2) model of fractal irregularities slopes. Thus, model No. 2 is once differ-

entiable and has a slope that is changing continuously from point to point. This model leads to

ray optics or to effects that are described using the conception of “ray.” Such a kind of

scattering was investigated together with radio waves propagation in the ionosphere [6, 7].

Electromagnetic waves scattering by fractal surfaces was investigated in detail in Refs. [50–58].

In Ref. [50], it was shown that diffraction by fractal surfaces fundamentally differs from

diffraction by conventional random surfaces and some of classical statistical parameters like

correlation length and root-mean-square deviation go to infinity. It is due to self-similarity of

fractal surface. In Ref. [52], band-limited Weierstrass function was used. Less restrictions were

imposed than the ones in Ref. [50]. The proposed function possesses both self-similarity

property and still finite number of derivatives over a certain range under consideration. This

relaxation of conditions of Weierstrass function allows performing analytical and numerical

calculations.

Though there are many works on the creation and analysis of chaotic surfaces with the fractal

structure [6, 7, 55–58], only few of them consider two-dimensional (2D) fractal surfaces.

Corrugated surfaces that possess fractal properties only for one dimension (1D) were charac-

terized in some works [52, 53, 59, 60]. In Refs. [39–44, 47, 61–63], modified Weierstrass function

was used for designing 2D fractal chaotic surface. This function was derived from band-

limited Weierstrass function. General solution for scattered field was obtained using Kirchhoff

theory [1–3, 5–7, 61–65]. On this basis, we will carry out further calculations.

4. Fractal model of 2D chaotic surface

Modified 2D band-limited Weierstrass function has the view [6, 7, 20, 39–44, 47, 61–63]
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Wðx, yÞ ¼ cw
X

N�1

n¼0

qðD�3Þn
X

M

m¼1

sin Kqn x � cos
2πm

M

� �

þ y � sin
2πm

M

� �� �

þ φnm

� �

, ð1Þ

where cw is the constant that provides unit normalization; q > 1- is the fundamental spatial

frequency; D is the fractal dimension (2<D<3); K is the fundamental wave number; N and M

are the number of tones; φnm- is an arbitrary phase that has a uniform distribution over the

interval [�π, π].

Eq. (1) is a combination of random structure and determined period. Function W(x, y) is

anisotropic in two directions if M and N are not very large. It has derivatives, and at the same

time, it is self-similar. Respective surface is multiscale and roughness can vary depending on

the scale being considered. Since the natural surfaces are neither purely random nor periodical

and are often anisotropic [5, 40], the function that was proposed above is a good candidate for

characterizing natural surfaces.

5. Relationships between statistical parameters of roughness

measurements and fractal surface parameters

Such parameters as correlation length Γ, mean-root-square deviation σ, and spatial autocorre-

lation coefficient r(τ) are conventionally used for numerical characterization of rough surface.

In this section of our work, these statistical parameters are introduced for the estimation of

fractal dimension D influence and other fractal parameters influence on the surface roughness.

Similar relationships are presented in Refs. [6, 7, 20] for 1D fractal surfaces. Derivations of σ

and r(τ) for 2D fractal surfaces are cumbersome and tedious [61], and so we present here only

some final results.

5.1. Mean square deviation

The mean-root-square deviation σ is determined as

σ ¼
�

〈W2ð r
!
Þ〉s

	1=2

ð2Þ

where Wð r
!
Þ ¼ W ðx, yÞ; r

!
¼ x I

!
þ yJ

!
. Angle bracket implies ensemble averaging.

From Eqs. (1) and (2), we have

σ ¼ сw

M
�

1� q2ðD�3ÞN
	

2
�

1� q2ðD�3Þ
	

2

4

3

5

1
2

: ð3Þ

If σ = 1, then Eq. (3) is as follows:
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сw ¼
2
�

1� q2ðD�3Þ
	

M
�

1� q2ðD�3ÞN
	

2

4

3

5

1
2

: ð4Þ

Thus, Eqs. (1) and (4) are as follows:

Wнðx, yÞ ¼
2ð1� q2ðD�3ÞÞ

Mð1� q2ðD�3ÞNÞ

� �1=2
X

N�1

n¼0

qðD�3Þn
X

M

m¼1

sin Kqn x � cos
2πm

M

� �

þ y � sin
2πm

M

� �� �

þ φnm

� �

:

ð5Þ

Eq. (5) is normalized with σ = 1. A normalized function will be used in the following sections

for the analysis and modeling of wave field scattered by fractal surfaces. Surface becomes more

isotropic with the increase of N and M. It is important to notice that Wu(x, y) characterizes

mathematical fractals only if N ! ∞ и M ! ∞.

5.2. Coefficient of spatial autocorrelation and of correlation length

Now, let us turn to the consideration of spatial autocorrelation coefficient r(τ) and correlation

length Г. By definition

rðτÞ ¼
〈Wнð r

!
þ τ

!
ÞWнð r

!
Þ〉s

σ2
ð6Þ

where τ ¼ ðΔx2 þ Δy2Þ
1
2: ð7Þ

From Eqs. (5) and (6), we have

rðτÞ ¼

�

1� q2ðD�3Þ
	

M
�

1� q2ðD�3ÞN
	

2

4

3

5

X

N�1

n¼0

q2ðD�3Þn
X

M

m¼1

cos Kqnτ � cos θ�
2π �m

M

� �� �

, ð8Þ

where sinθ ¼
Δy

τ
, cosθ ¼

Δx

τ
: ð9Þ

The average spatial autocorrelation coefficient

~rðτÞ ¼ 〈rðτÞ〉s ¼

�

1� q2ðD�3Þ
	

�

1� q2ðD�3ÞN
	

2

4

3

5

X

N�1

n¼0

q2ðD�3ÞnJ0ðKq
nτÞ, ð10Þ

where J0ðKq
nτÞ is the zero-order Bessel function of the first kind.

Correlation length Г is defined as the first root of r(τ) = 1/e when τ increases from zero. From

relationship (8)
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ð1� q2ðD�3ÞÞ

Mð1� q2ðD�3ÞNÞ

� �

X

N�1

n¼0

q2ðD�3Þn
X

M

m¼1

cos KqnΓ � cos θ�
2π �m

M

� �� �

¼ 1=e: ð11Þ

Similarly from Eq. (10), the average correlation length is defined �Γ:

ð1� q2ðD�3ÞÞ

Mð1� q2ðD�3ÞNÞ

X

N�1

n¼0

q2ðD�3ÞnJ0ðKq
n~ΓÞ ¼ 1=e: ð12Þ

From Eqs. (10)–(12), one can find relationships between average correlation length �Γ, fractal

dimension D, and also q. There are dependences �Γ on q and D shown in Figures 3 and 4,

respectively. It is shown that with an increased value of D, �Γ decreases more rapidly for the

same variation of q. It is shown in Figure 4 that the value of �Γreduces steadily with the increase

of D value. However, �Γ does not change when q = 1.01.

Consequently, the mean correlation length �Γ is sensitive to fractal dimension D with the

exception of cases when q is close to unity. These results imply that the value of fractal surface

irregularities is mainly determined by fractal parameter D.

Figure 3. Average correlation length ~Γ as function of q.
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6. Memoir about the basic foundation of wave-scattering theory by fractal

surfaces

As mentioned above, Kirchhoff approach has been already used for the analysis of wave

scattering by fractal surfaces [6, 7, 20, 39–44, 47, 50–63]. This theory will be used in our work

for numerical analysis of a field scattered by fractal chaotic surfaces. Conventional conditions

of Kirchhoff approach are the following: irregularities are large scale, irregularities are smooth

and flat. In the following calculations, we assume that observation is carried out from Fraun-

hofer zone, incident wave is plane and monochromatic, there are no points with infinite

gradient on the surface, Fresnel coefficient V0 is constant for this surface, and surface scales

are much greater than incident wavelength.

6.1. Scattered field

Scattering geometry is presented in Figure 5. Then, scattered field ψ
р
ð r
!
Þ that interacts with

surface square S of 2Lx � 2Ly when �Lx ≤ x ≤Lx and �Ly ≤ y ≤Ly are equal to [1–3, 5–7, 20, 61]:

ψ
р
ð r
!
Þ ¼ �

ik � exp ðikrÞ

4π � r
2Fðθ1,θ2,θ3Þ

ð
S

exp½ikφðx0, y0Þ�dx0dy0 þ ψ
к
: ð13Þ

In Eq. (13), we used the following notations:

Figure 4. Average correlation length ~Γ as function of D.
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Fðθ1,θ2,θ3Þ ¼
1

2

Aa

C
þ
Bb

C
þ c

� �

, ð14Þ

φðx0, y0Þ ¼ Ax0 þ By0 þ Chðx0, y0Þ, ð15Þ

hðx0, yÞ ¼ σ �Wнðx0, y0Þ, ð16Þ

a ¼ V0ðsinθ1 � sinθ2cosθ3Þ, ð17Þ

b ¼ V0ðsinθ2 � sinθ3Þ, ð18Þ

c ¼ V0ðcosθ1 þ cosθ2Þ, ð19Þ

A ¼ sinθ1 � sinθ2cosθ3, ð20Þ

B ¼ �sinθ2sinθ3, ð21Þ

C ¼ �ðcosθ1 þ cosθ2Þ, ð22Þ

ψ
к
¼ �

ik � expðikrÞ

4π � r

(

ia

kc

ð

½expðikφðX, y0ÞÞ � expðikφð�X, y0ÞÞ� � dy0þ

þ
ib

kc

ð

exp ikφ x0, Yð Þ

 �

� exp ikφ x0, � Yð Þ

 �� 


� dx0

)

:

ð23Þ

Component ψ
к
relates to edge effect. From Eqs. (15) and (16), we have

exp½ikφðx0, y0Þ� ¼ exp ik½Ax0 þ By0 þ Cσ �Wuðx0, y0Þ�
� �

: ð24Þ

In Eq. (24), the third exponent is expressed as

Figure 5. Scattering geometry: θ1, incident angle; θ2– scattering angle; and θ3 azimuth angle.

Fractal Analysis - Applications in Physics, Engineering and Technology196



exp½ikCσ �Wuðx0, y0Þ� ¼ exp ikCσ
2

�

1�q2ðD�3Þ

	

M

�

1�q2ðD�3ÞN

	

2

4

3

5

1=2

X

N�1

n¼0

qðD�3Þn
X

M

m¼1

�

8

>

<

>

:

�cos Kqn � x0 � cos
2π �m

M

� �

þ y0sin
2π �m

M

� �

þ φnm �
π

2

� �� ��

¼

¼
Y

N�1

n¼1

Y

M

m¼1

exp

(

ikCσ
2
�

1� q2ðD�3Þ
	

M
�

1� q2ðD�3ÞN0

	

2

4

3

5

1=2

qðD�3Þn�

�cos x0 � cos
2π �m

M

� �

þ y0sin
2π �m

M

� �

þ φnm �
π

2

� ��

:

ð25Þ

From expression (Eq. (25)) and by taking into account expansion (Eq. (26)) and relationship

(Eq. (27)):

expðizcosϕÞ ¼
X

þ∞

u¼�∞

iuJuðzÞexpðiuϕÞ, ð26Þ

cf ¼ kCσ
2
�

1� q2ðD�3Þ
	

M
�

1� q2ðD�3ÞN
	

2

4

3

5

1=2

: ð27Þ

we obtain

exp½ikCσ �Wuðx0, y0Þ� ¼
Y

N�1

n¼0

Y

M

m¼1

X

þ∞

u¼�∞

Junm

�

cf q
ðD�3Þn

	

�

�exp iu Kqn � x0 � cos
2π �m

M

� �

þ y0sin
2π �m

M

� �

þ φnm �
π

2
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:

ð28Þ

Eq. (28) can be written as

exp½ikCσ �Wuðx0, y0Þ� ¼
X

þ∞

u1,0¼�∞

…

X

þ∞

u1,0¼�∞

…

X

þ∞

u1,0¼�∞

…

X

þ∞

u1,0¼�∞

…

X

þ∞

u1,0¼�∞

�

�
Y

N�1

n¼0

Y

M

m¼1

Junm

�

cf q
ðD�3Þn

	

" #

� exp iK
X

N�1

n¼0

qðD�3Þn
X

M

m¼1

unmcos
2π �m

M

� �

" #

x0

( )

�

�exp iK
X

N�1

n¼0

qðD�3Þn
X

M

m¼1

unmsin
2π �m

M

� �

" #

y0

( )

�

� exp i
X

N�1

n¼0

X

M

m¼1

unmφnm

 !

:

ð29Þ

As result from Eqs. (13)–(23) and (29) field ψ
р
ð r
!
Þ scattered from finite site S is
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ψ
р
ð r
!
Þ ¼ �

iLxLyk � expðikrÞ

πr
2Fðθ1,θ2,θ3Þ

�
X

þ∞

u1,0¼�∞

…

X

þ∞

u1,N�1¼�∞

…

X

þ∞

u2,0¼�∞

…

X

þ∞

u2,N�1¼�∞

…

X

þ∞

uM,N�1¼�∞

�

�
Y

N�1

n¼0

Y

M

m¼1

Jumn
ðcjq

ðD�3ÞnÞ

" #

exp i
X

N�1

n¼0

X

M

m¼1

umnφmn

 !

�

�sincðϕcLxÞ � sincðϕsLyÞ þ ψ
к
,

ð30Þ

sincðxÞ �
sin ðxÞ

x
, ð31Þ

ϕc ¼ kAþ K
X

N�1

n¼0

qn
X

M

m¼1

unmcos
2π �m

M

� �

, ϕs ¼ kBþ K
X

N�1

n¼0

qn
X

M

m¼1

unmsin
2π �m

M

� �

: ð32Þ

6.2. Average-scattered field

A more convenient parameter for the characterization of scattered field properties is average-

scattered field ~ψ
р
ð r
!
Þ:

~ψ
р
ð r
!
Þ ¼ 〈ψ

р
ð r
!
Þ〉s ð33Þ

Eqs. (32) and (33) are defined as follows:

~ψ
р
ð r
!
Þ ¼ �

iLxLyk � expðikrÞ

πr
2Fðθ1,θ2,θ3Þ

Y

N�1

n¼0

JM0 ðcf q
ðD�3ÞnÞ

" #

sincðkALxÞsincðkBLyÞ þ ψ
к

ð34Þ

Assume that the outside area �Lx ≤ x0 ≤ Lxи �Ly ≤ y0 ≤Ly surface S is smooth, that is,

hð�X, � YÞ � 0, ð35Þ

where X > Lx, Y > Ly: ð36Þ

Then, Eq. (23) can be written as

ψ
к
¼ �

ik � expðikrÞ

π � r

Aa

C
þ
Bb

C

� �

lim
X!Lþx

X � sincðkAXÞ � lim
Y!Lþy

Y � sincðkBYÞ: ð37Þ

6.3. Scattering indicatrixes for field

Scattering indicatrixes for field rψ is defined as

rψ ¼
ψ
р
ð r
!
Þ

ψ
р0ð r

!Þ, ð38Þ

where field scattered from perfectly smooth surface ψ
р0ð r

!
Þ in a specular direction is expressed as
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ψ
р0ð r

!
Þ ¼ �

2LxLyik � exp ðikrÞcosθ1

π � r
: ð39Þ

Average-scattering indicatrix ~rψ can be obtained after normalization:

~rψ ¼
~ψscðrÞ

ψsc0ðrÞ
: ð40Þ

Assume that surface gradients much less than incident angle is θ1, then from Eqs. (30), (37)–

(39) we have

~rψ ¼
Fðθ1,θ2,θ3Þ

cosθ1

Y

N�1

n¼0

JM0 cf q
ðD�3Þn

� 	

" #

sincðkALxÞsincðkBLyÞþ

þ
1

2LxLycosθ1

Aa

C
þ
Bb

C

� �

lim
X!Lþx

X � sincðkAXÞ � lim
Y!Lþy

Y � sincðkBYÞ:

ð41Þ

In specular direction θ1 ¼ θ2,θ3 ¼ 0 and coefficients are the A = 0, B = 0, a = 0, b = 0. Using

Eqs. (17)–(22), we can write average-scattering indicatrixes ~rψ, which was defined in Eq. (40),

as

~rψ ¼
Y

N�1

n¼0

JM0 ðcf q
ðD�3ÞnÞ

" #

, ð42Þ

where сf ¼ �2kσ � cosθ1

2
�

1� q2ðD�3Þ
	

M
�

1� q2ðD�3ÞN
	

2

4

3

5

1
2

: ð43Þ

Thus, ~rψ relates to parameters k, σ, θ1, q, D, N, M. If сf q
ðD�3Þn

< 1, then in second

approximation~rψ we have

~rψ ¼ 1� 2ðkσ � cosθ1Þ
2
: ð44Þ

Eq. (44) shows that in specular direction ~rψ depends on the wavelength of incident radiation, σ

of rough surface, and incident angle θ1. This result coincides with conventional results for

Gaussian random surfaces [1]. Thus, fractal surfaces have diffraction properties that are similar

to the ones of Gaussian random surfaces in a specular direction. This result involves a previous

one [26], which was used as main assumption for mean-root-square scattering cross section

measurement on this surface with specular ray measurement.

6.4. Average field intensity

Now, let us find scattering indicatrixes for average field intensity ~r
I
. The intensity of scattered field

is defined as

On the Indicatrixes of Waves Scattering from the Random Fractal Anisotropic Surface
http://dx.doi.org/10.5772/intechopen.68187

199



Ið r
!
Þ ¼ ψ

р
ð r
!
Þψ�

р
ð r
!
Þ: ð45Þ

The average intensity of scattered field is obtained by Eq. (45) averaging:

~Ið r
!
Þ ¼ 〈Ið r

!
Þ〉S: ð46Þ

From Eqs. (30), (45), and (46), we have

~Ið r
!
Þ ¼

LxLyk

π�r 2Fðθ1,θ2,θ3Þ
h i2

�

�
X

þ∞

u1,0¼�∞

…

X

þ∞

u1,N�1¼�∞

…

X

þ∞

u2,0¼�∞

…

X

þ∞

u2,N�1¼�∞

…

X

þ∞

uM,N�1¼�∞

�

�
Y

N�1

n¼0

Y

M

m¼1

Jumn
ðcjq

ðD�3ÞnÞ

" #2

�

sinc2ðϕcLxÞ � sinc
2ðϕsLyÞ:

ð47Þ

6.5. Scattering indicatrix for average field intensity

In a similar manner as stated above, here we define scattering indicatrix for average field

intensity ~rI � g:

gð r
!
Þ � ~rI ¼

~Ið r
!
Þ

I0
, ð48Þ

where I0 ¼ ψ
р0ð r

!
Þ � ψ�

р0ð r
!
Þ: ð49Þ

Based on the assumptions that were proposed in the beginning of this section, we can write

Eq. (48) as

g ≈
F2ðθ1,θ2,θ3Þ

cos2θ1

(

1�
1

2
ðkCσÞ2

� �

� sinc2ðkALxÞsinc
2ðkBLyÞ

þ
1

4
C2
f

X

N�1

n¼0

X

M

m¼1

q2ðD�3Þnsinc2 kAþ Kqncos
2π �m

M

� �

Lx

� �

þ

þsinc2 kBþ Kqnsin
2π �m

M

� �

Ly

� �

)

,

ð50Þ

where values with the order higher than с2f q
2ðD�3Þn in Eqs. (48) and (49) are negligible.

Statistical parameter of scattered field σI is defined as

σI ¼ ~Ið r
!
Þ � ~ψ

2

р
ð r
!
Þ

I0,
ð51Þ

that here corresponds to the mean-root-square value of average-scattered field.
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Let us compare the view of Eq. (34) with the first term in Eq. (50). It is obvious that the first

term in Eq. (50) is equal to the expression for ~ψ
2

рð r
!
Þ that represents specular ray and side lobes.

Thus, δI is determined only by the second term in Eq. (50) that relates to scattering by surface

roughness. The second moment of scattered field σI can be useful for diffraction studying away

from specular direction and also for the determination of the influence of fractal parameters on

inverse-scattering pattern. The advantage of such a presentation is that in the consideration it

is sufficient to discount only average coefficients. Thus, it is necessary to measure phase

components that relate with scattered wave front.

6.6. Results clarification

In Ref. [52], approximate formula of average field intensity for the problem of scattering by fractal phase

screen was presented. As it is explained in Ref. [61], this formula includes some errors. Below,

details are explained and presented in Ref. [61]. Surface model in Ref. [52] is specified by

Weierstrass function (see also expression (6.77) in monograph [7]:

φðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σφ½1� bð2D�4Þ�1=2
q

½bð2D�4ÞN1 � bð2D�4ÞðN2þ1Þ�1=2

X

N2

n¼N1

bðD�2Þncosð2πsbnxþ φnÞ, ð52Þ

where b is the fundamental spatial frequency; D is the fractal dimension, which varies over

interval from 1 to 2; s is the scaling factor; φn is the phase that is distributed uniformly over the

[0, 2π]. Number of harmonics in function (Eq. (52)) is determined by N = N2 – N1 + 1.

Average-scattered field intensity is determined by Eq. (22) in Ref. [52] (or by Eq. (6.96) in

monograph [7] in the form of weighted array of Bessel functions):

〈IðxÞ〉 ¼
L4

λ2z2

X

∞

q1¼�∞

X

∞

q2¼�∞

…

X

∞

qN¼�∞

J2q1ðCN1
ÞJ2q2ðCN1þ1Þ…J2qN ðCN2

Þ�

� sinc2 L
x

λz
� sq1b� sq2b

N1þ1 �…sqN2

� �� �

sinc2
Lx

λz

� �

,

ð53Þ

where Сn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σφ½1� bð2D�4ÞbðD�2Þn�1=2
q

½bð2D�4ÞN1 � bð2D�4ÞðN2þ1Þ�1=2
ð54Þ

L is the phase screen size, x, y are the coordinate values in intensity observation plane at a

distance of z from the phase screen, and λ is the incident wavelength.

In Eqs. (B2) and (B3) in Ref. [52], typographical errors were made. In Eq. (53), term sq1b must be:

sq1b
N1 , which is clear from expression (6.95) inmonograph [7]. In line with Eq. (B2), Eq. (B3) must be

Cn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σφ½1� bð2D�4Þ�1=2bðD�2Þn
q

½bð2D�4ÞN1 � bð2D�4ÞðN2þ1Þ�1=2
: ð55Þ

Approximate expression for the average intensity is derived from Eq. (22) in Ref. [12] (see also

expression (6.97) in monograph [6]):
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〈IðxÞ〉 ¼
L4

λ2z2
ð1� σ2

φÞsinc
2ðLx=λzÞ þ

X

þ∞

n¼�∞

ðC2
n=4Þsinc

2½Lðx=λz� sbnÞ�

( )

sinc2ðLy=λzÞ: ð56Þ

After the correction, we have

〈IðxÞ〉 ¼
L4

λ2z2
ð1� σ2

φÞsinc
2ðLx=λzÞ þ

X

N2

n¼N1

ðC2
n=4Þsinc

2½Lðx=λz� sbnÞ�

( )

sinc2ðLy=λzÞ: ð57Þ

Accurate derivation of Eq. (57) looks like this [61]:

JuiðCnÞ ¼
Cn

2


 �u X
∞

j¼�∞

ð�1ÞjðCn=2Þ
2j

j!ðuþ jÞ!

J2uiðCnÞ ¼
Cn

2


 �2u X

∞

j¼�∞

ð�1ÞjðCn=2Þ
2j

j!ðuþjÞ!

2

4

3

5

2

9

>

>

>

>

>

=

>

>

>

>

>

;

, ð58Þ

where ui is the integer and ui ∈ ðq1,…, qNÞ.

Since terms with the order higher than C2
n are negligible, then ui ∈ f0, 1g,

X

ui ¼ 0 or 1.

Thus

J0ðCnÞ ¼
Cn

2


 �u X
∞

j¼�∞

ð�1ÞjðCn=2Þ
2j

j!ðuþ jÞ!
≈ 1�

1

4
С

2
n

J20ðCnÞ ¼ 1�
1

2
С

2
n

9

>

>

>

=

>

>

>

;

, ð59Þ

J21ðCnÞ ≈
1

4
C2
n: ð60Þ

From Eqs. (53), (59), and (60), we have

〈IðxÞ〉 ¼
L4

λ2z2
J20ðCN1

Þ…J20ðCN2
Þsinc2

Lx

λz

� �

þ

�

þJ21ðCnÞJ
2
0ðCN1þ1Þ…J20ðCN2

Þsinc2
Lx

λz
� sbN1

� �

þ

þ J20ðCN1
ÞJ21ðCN1þ1Þ…J20ðCN2

Þsinc2
Lx

λz
� sbN1þ1

� �

þ

þ…þ J20ðCN1
Þ…J21ðCN2

Þsinc2
Lx

λz
� sbN2

� �

#

sinc2
Ly

λz

� �

,

ð61Þ

where

J20ðCN1
Þ…J20ðCN2

Þ ≈ 1�
1

2
C2
N1

� �

… 1�
1

2
C2
N2

� �

≈ 1�
1

2

X

N2

n¼N1

C2
n ¼ 1� σ2

φ, ð62Þ
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J21ðCN1
Þ…J20ðCN2

Þ ≈
1

4
C2
N1

:
:
:

J20ðCN1
Þ…J21ðCN2

Þ ≈
1

4
C2
N2

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

: ð63Þ

So, from Eqs. (61)–(63) finally we obtain the expression for average intensity in Fraunhofer zone:

〈IðxÞ〉 ¼
L4

λ2z2
1� σ2

φ

� 	

sinc2 Lx=λzð Þ þ þ
X

N2

n¼N1

C2
n=4


 �

sinc2 Lðx=λz� sbnð Þ½ �

( )

sinc2ðLy=λzÞ:

ð64Þ

7. Results of the theoretical investigations of scattering indicatrixes

in MW range

In Figures 6–80, we present a thorough array of typical kinds of dispersing fractal surfaces with

the basis of Weierstrass function, and also 3D-scattering indicatrixes and their cross sections that

Figure 6. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 7. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 8. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 9. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 10. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 11. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 12. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 13. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 14. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 15. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 16. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 17. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 18. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 19. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 20. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 21. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 22. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 23. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 24. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 25. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 26. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 0	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 27. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 5	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 28. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 10	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 29. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 15	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 30. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 2.2 mm and θ1 = 20	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 31. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 32. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 33. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 34. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 35. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 36. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 37. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 38. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 39. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 40. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 41. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 42. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

On the Indicatrixes of Waves Scattering from the Random Fractal Anisotropic Surface
http://dx.doi.org/10.5772/intechopen.68187

221



Figure 43. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 44. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 45. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 46. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 48. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 47. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 50. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 49. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 52. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 5	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 51. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 0	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 54. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 15	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 53. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 10	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 56. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 55. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 8.6 mm and θ1 = 20	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 58. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 57. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 60. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 59. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15	: (a) fractal surface for

D = 2.2; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 62. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 61. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 64. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 63. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 66. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 65. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20	: (a) fractal surface for

D = 2.2; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 68. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 67. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 70. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 69. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15	: (a) fractal surface for

D = 2.5; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 72. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 71. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 73. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 74. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 76. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 0	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 75. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20	: (a) fractal surface for

D = 2.5; N = M = 20; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 77. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 5	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 78. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 10	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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Figure 80. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 20	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.

Figure 79. The fractal surface and the scattering indicatrix g(θ2, θ3) when λ = 30 mm and θ1 = 15	: (a) fractal surface for

D = 2.8; N = M = 10; q = 2.7; (b) g(θ2, θ3); (c) g(θ2, θ3), top view; (d) g(θ2, θ3), side view.
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were calculated in the summer of 2006 for the wavelengths λ ¼ 2:2 mm, λ ¼ 8:6 mm and

λ ¼ 3:0 cm for the different values of fractal dimension D and different scattering geometry,

respectively. It is significant to note that in this work there is only part of all of our theoretical

results obtained for these courses. Some of results for this course that relates to “Fractal Electro-

dynamics” (this conception appeared for the first time in the USA in the monographs [66, 67];

see also native monographs [6, 7]) were published by us earlier in works [8, 15, 40].

8. Conclusion

Now on the basis of large scattering characteristics data array, we can arrive at some significant

conclusions. When D has small value, the main part of energy is scattered in the specular

direction. Side lobes appear due to Bragg scattering. The number of side lobes and their

intensity increases with an increased value of fractal dimension D of the dispersive surface.

Angular range of the side lobes also increases with an increase of D when higher spatial

frequencies become significant. Radio wave that interacts with a fractal can be viewed as a

yardstick to probe rough surfaces by means of spatial frequencies selection on the basis of

Bragg diffraction conditions [6, 7]. In the case of smallD values, classical and fractal approaches

for scattered field solution coincide with each other. In practice, sizes of illuminated area must

be at least two times greater than the main period of a surface structure in order to obtain

fractal parameters information from scattering patterns.

Undoubtedly, fractal describing of the wave-scattering process [5–10, 15, 63, 72, 73, 77] will

result in establishing new physical laws in the wave theory. Author is sure that the use of fractal

theory and determined chaos jointly with formalism of the apparatus of fractional operators in the just

considered problems allows to generate more valid radio physical and radar models that

decrease significantly discrepancies between theory and measurements.

This work reviews in detail a variety of modern wave-scattering problems that appear in

theoretical and applied areas of radio physics and radiolocation when the theory of integer

and fractional measuring is used in general case. In other words, the use of dissipative system

dynamics formalism (fractality, fractional operators, non-Gaussian statistics, distributions with

heavy tales, mode of determined chaos, existing of strange attractors in the phase space of

reflected signals, their topology, etc.) allows us to expect that classical problem of wave

scattering by random mediums will be area of productive investigations in the future as

before.

All results presented here are the priority ones in the world, and it is a basis material for the

further development and foundation of practical application of fractal approaches in radio

location, electronics, and radio physics and also for generating fundamentally new fractal

elements/devices and fractal radio systems [5–48, 62, 63, 68–83]. These results can be applied

widely for fractal antennas modeling, fractal frequency-selective structures modeling, solid-

state physics, physics of nanostructures, and for the synthesis of nano-materials.
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