186 research outputs found

    On the Optimality of Virtualized Security Function Placement in Multi-Tenant Data Centers

    Get PDF
    Security and service protection against cyber attacks remain among the primary challenges for virtualized, multi-tenant Data Centres (DCs), for reasons that vary from lack of resource isolation to the monolithic nature of legacy middleboxes. Although security is currently considered a property of the underlying infrastructure, diverse services require protection against different threats and at timescales which are on par with those of service deployment and elastic resource provisioning. We address the resource allocation problem of deploying customised security services over a virtualized, multi-tenant DC. We formulate the problem in Integral Linear Programming (ILP) as an instance of the NP-hard variable size variable cost bin packing problem with the objective of maximising the residual resources after allocation. We propose a modified version of the Best Fit Decreasing algorithm (BFD) to solve the problem in polynomial time and we show that BFD optimises the objective function up to 80% more than other algorithms

    On the placement of security-related Virtualised Network Functions over data center networks

    Get PDF
    Middleboxes are typically hardware-accelerated appliances such as firewalls, proxies, WAN optimizers, and NATs that play an important role in service provisioning over today's data centers. Reports show that the number of middleboxes is on par with the number of routers, and consequently represent a significant commitment from an operator's capital and operational expenditure budgets. Over the past few years, software middleboxes known as Virtual Network Functions (VNFs) are replacing the hardware appliances to reduce cost, improve the flexibility of deployment, and allow for extending network functionality in short timescales. This dissertation aims at identifying the unique characteristics of security modules implementation as VNFs in virtualised environments. We focus on the placement of the security VNFs to minimise resource usage without violating the security imposed constraints as a challenge faced by operators today who want to increase the usable capacity of their infrastructures. The work presented here, focuses on the multi-tenant environment where customised security services are provided to tenants. The services are implemented as a software module deployed as a VNF collocated with network switches to reduce overhead. Furthermore, the thesis presents a formalisation for the resource-aware placement of security VNFs and provides a constraint programming solution along with examining heuristic, meta-heuristic and near-optimal/subset-sum solutions to solve larger size problems in reduced time. The results of this work identify the unique and vital constraints of the placement of security functions. They demonstrate that the granularity of the traffic required by the security functions imposes traffic constraints that increase the resource overhead of the deployment. The work identifies the north-south traffic in data centers as the traffic designed for processing for security functions rather than east-west traffic. It asserts that the non-sharing strategy of security modules will reduce the complexity in case of the multi-tenant environment. Furthermore, the work adopts on-path deployment of security VNF traffic strategy, which is shown to reduce resources overhead compared to previous approaches

    Integrated IT and SDN Orchestration of multi-domain multi-layer transport networks

    Get PDF
    Telecom operators networks' management and control remains partitioned by technology, equipment supplier and networking layer. In some segments, the network operations are highly costly due to the need of the individual, and even manual, configuration of the network equipment by highly specialized personnel. In multi-vendor networks, expensive and never ending integration processes between Network Management Systems (NMSs) and the rest of systems (OSSs, BSSs) is a common situation, due to lack of adoption of standard interfaces in the management systems of the different equipment suppliers. Moreover, the increasing impact of the new traffic flows introduced by the deployment of massive Data Centers (DCs) is also imposing new challenges that traditional networking is not ready to overcome. The Fifth Generation of Mobile Technology (5G) is also introducing stringent network requirements such as the need of connecting to the network billions of new devices in IoT paradigm, new ultra-low latency applications (i.e., remote surgery) and vehicular communications. All these new services, together with enhanced broadband network access, are supposed to be delivered over the same network infrastructure. In this PhD Thesis, an holistic view of Network and Cloud Computing resources, based on the recent innovations introduced by Software Defined Networking (SDN), is proposed as the solution for designing an end-to-end multi-layer, multi-technology and multi-domain cloud and transport network management architecture, capable to offer end-to-end services from the DC networks to customers access networks and the virtualization of network resources, allowing new ways of slicing the network resources for the forthcoming 5G deployments. The first contribution of this PhD Thesis deals with the design and validation of SDN based network orchestration architectures capable to improve the current solutions for the management and control of multi-layer, multi-domain backbone transport networks. These problems have been assessed and progressively solved by different control and management architectures which has been designed and evaluated in real evaluation environments. One of the major findings of this work has been the need of developed a common information model for transport network's management, capable to describe the resources and services of multilayer networks. In this line, the Control Orchestration Protocol (COP) has been proposed as a first contriution towards an standard management interface based on the main principles driven by SDN. Furthermore, this PhD Thesis introduces a novel architecture capable to coordinate the management of IT computing resources together with inter- and intra-DC networks. The provisioning and migration of virtual machines together with the dynamic reconfiguration of the network has been successfully demonstrated in a feasible timescale. Moreover, a resource optimization engine is introduced in the architecture to introduce optimization algorithms capable to solve allocation problems such the optimal deployment of Virtual Machine Graphs over different DCs locations minimizing the inter-DC network resources allocation. A baseline blocking probability results over different network loads are also presented. The third major contribution is the result of the previous two. With a converged cloud and network infrastructure controlled and operated jointly, the holistic view of the network allows the on-demand provisioning of network slices consisting of dedicated network and cloud resources over a distributed DC infrastructure interconnected by an optical transport network. The last chapters of this thesis discuss the management and orchestration of 5G slices based over the control and management components designed in the previous chapters. The design of one of the first network slicing architectures and the deployment of a 5G network slice in a real Testbed, is one of the major contributions of this PhD Thesis.La gestión y el control de las redes de los operadores de red (Telcos), todavía hoy, está segmentado por tecnología, por proveedor de equipamiento y por capa de red. En algunos segmentos (por ejemplo en IP) la operación de la red es tremendamente costosa, ya que en muchos casos aún se requiere con guración individual, e incluso manual, de los equipos por parte de personal altamente especializado. En redes con múltiples proveedores, los procesos de integración entre los sistemas de gestión de red (NMS) y el resto de sistemas (p. ej., OSS/BSS) son habitualmente largos y extremadamente costosos debido a la falta de adopción de interfaces estándar por parte de los diferentes proveedores de red. Además, el impacto creciente en las redes de transporte de los nuevos flujos de tráfico introducidos por el despliegue masivo de Data Centers (DC), introduce nuevos desafíos que las arquitecturas de gestión y control de las redes tradicionales no están preparadas para afrontar. La quinta generación de tecnología móvil (5G) introduce nuevos requisitos de red, como la necesidad de conectar a la red billones de dispositivos nuevos (Internet de las cosas - IoT), aplicaciones de ultra baja latencia (p. ej., cirugía a distancia) y las comunicaciones vehiculares. Todos estos servicios, junto con un acceso mejorado a la red de banda ancha, deberán ser proporcionados a través de la misma infraestructura de red. Esta tesis doctoral propone una visión holística de los recursos de red y cloud, basada en los principios introducidos por Software Defined Networking (SDN), como la solución para el diseño de una arquitectura de gestión extremo a extremo (E2E) para escenarios de red multi-capa y multi-dominio, capaz de ofrecer servicios de E2E, desde las redes intra-DC hasta las redes de acceso, y ofrecer ademas virtualización de los recursos de la red, permitiendo nuevas formas de segmentación en las redes de transporte y la infrastructura de cloud, para los próximos despliegues de 5G. La primera contribución de esta tesis consiste en la validación de arquitecturas de orquestración de red, basadas en SDN, para la gestión y control de redes de transporte troncales multi-dominio y multi-capa. Estos problemas (gestion de redes multi-capa y multi-dominio), han sido evaluados de manera incremental, mediante el diseño y la evaluación experimental, en entornos de pruebas reales, de diferentes arquitecturas de control y gestión. Uno de los principales hallazgos de este trabajo ha sido la necesidad de un modelo de información común para las interfaces de gestión entre entidades de control SDN. En esta línea, el Protocolo de Control Orchestration (COP) ha sido propuesto como interfaz de gestión de red estándar para redes SDN de transporte multi-capa. Además, en esta tesis presentamos una arquitectura capaz de coordinar la gestión de los recursos IT y red. La provisión y la migración de máquinas virtuales junto con la reconfiguración dinámica de la red, han sido demostradas con éxito en una escala de tiempo factible. Además, la arquitectura incorpora una plataforma para la ejecución de algoritmos de optimización de recursos capaces de resolver diferentes problemas de asignación, como el despliegue óptimo de Grafos de Máquinas Virtuales (VMG) en diferentes DCs que minimizan la asignación de recursos de red. Esta tesis propone una solución para este problema, que ha sido evaluada en terminos de probabilidad de bloqueo para diferentes cargas de red. La tercera contribución es el resultado de las dos anteriores. La arquitectura integrada de red y cloud presentada permite la creación bajo demanda de "network slices", que consisten en sub-conjuntos de recursos de red y cloud dedicados para diferentes clientes sobre una infraestructura común. El diseño de una de las primeras arquitecturas de "network slicing" y el despliegue de un "slice" de red 5G totalmente operativo en un Testbed real, es una de las principales contribuciones de esta tesis.La gestió i el control de les xarxes dels operadors de telecomunicacions (Telcos), encara avui, està segmentat per tecnologia, per proveïdors d’equipament i per capes de xarxa. En alguns segments (Per exemple en IP) l’operació de la xarxa és tremendament costosa, ja que en molts casos encara es requereix de configuració individual, i fins i tot manual, dels equips per part de personal altament especialitzat. En xarxes amb múltiples proveïdors, els processos d’integració entre els Sistemes de gestió de xarxa (NMS) i la resta de sistemes (per exemple, Sistemes de suport d’operacions - OSS i Sistemes de suport de negocis - BSS) són habitualment interminables i extremadament costosos a causa de la falta d’adopció d’interfícies estàndard per part dels diferents proveïdors de xarxa. A més, l’impacte creixent en les xarxes de transport dels nous fluxos de trànsit introduïts pel desplegament massius de Data Centers (DC), introdueix nous desafiaments que les arquitectures de gestió i control de les xarxes tradicionals que no estan llestes per afrontar. Per acabar de descriure el context, la cinquena generació de tecnologia mòbil (5G) també presenta nous requisits de xarxa altament exigents, com la necessitat de connectar a la xarxa milers de milions de dispositius nous, dins el context de l’Internet de les coses (IOT), o les noves aplicacions d’ultra baixa latència (com ara la cirurgia a distància) i les comunicacions vehiculars. Se suposa que tots aquests nous serveis, juntament amb l’accés millorat a la xarxa de banda ampla, es lliuraran a través de la mateixa infraestructura de xarxa. Aquesta tesi doctoral proposa una visió holística dels recursos de xarxa i cloud, basada en els principis introduïts per Software Defined Networking (SDN), com la solució per al disseny de una arquitectura de gestió extrem a extrem per a escenaris de xarxa multi-capa, multi-domini i consistents en múltiples tecnologies de transport. Aquesta arquitectura de gestió i control de xarxes transport i recursos IT, ha de ser capaç d’oferir serveis d’extrem a extrem, des de les xarxes intra-DC fins a les xarxes d’accés dels clients i oferir a més virtualització dels recursos de la xarxa, obrint la porta a noves formes de segmentació a les xarxes de transport i la infrastructura de cloud, pels propers desplegaments de 5G. La primera contribució d’aquesta tesi doctoral consisteix en la validació de diferents arquitectures d’orquestració de xarxa basades en SDN capaces de millorar les solucions existents per a la gestió i control de xarxes de transport troncals multi-domini i multicapa. Aquests problemes (gestió de xarxes multicapa i multi-domini), han estat avaluats de manera incremental, mitjançant el disseny i l’avaluació experimental, en entorns de proves reals, de diferents arquitectures de control i gestió. Un dels principals troballes d’aquest treball ha estat la necessitat de dissenyar un model d’informació comú per a les interfícies de gestió de xarxes, capaç de descriure els recursos i serveis de la xarxes transport multicapa. En aquesta línia, el Protocol de Control Orchestration (COP, en les seves sigles en anglès) ha estat proposat en aquesta Tesi, com una primera contribució cap a una interfície de gestió de xarxa estàndard basada en els principis bàsics de SDN. A més, en aquesta tesi presentem una arquitectura innovadora capaç de coordinar la gestió de els recursos IT juntament amb les xarxes inter i intra-DC. L’aprovisionament i la migració de màquines virtuals juntament amb la reconfiguració dinàmica de la xarxa, ha estat demostrat amb èxit en una escala de temps factible. A més, l’arquitectura incorpora una plataforma per a l’execució d’algorismes d’optimització de recursos, capaços de resoldre diferents problemes d’assignació, com el desplegament òptim de Grafs de Màquines Virtuals (VMG) en diferents ubicacions de DC que minimitzen la assignació de recursos de xarxa entre DC. També es presenta una solució bàsica per a aquest problema, així com els resultats de probabilitat de bloqueig per a diferents càrregues de xarxa. La tercera contribució principal és el resultat dels dos anteriors. Amb una infraestructura de xarxa i cloud convergent, controlada i operada de manera conjunta, la visió holística de la xarxa permet l’aprovisionament sota demanda de "network slices" que consisteixen en subconjunts de recursos d’xarxa i cloud, dedicats per a diferents clients, sobre una infraestructura de Data Centers distribuïda i interconnectada per una xarxa de transport òptica. Els últims capítols d’aquesta tesi tracten sobre la gestió i organització de "network slices" per a xarxes 5G en funció dels components de control i administració dissenyats i desenvolupats en els capítols anteriors. El disseny d’una de les primeres arquitectures de "network slicing" i el desplegament d’un "slice" de xarxa 5G totalment operatiu en un Testbed real, és una de les principals contribucions d’aquesta tesi.Postprint (published version

    Auto-bandwidth control in dynamically reconfigured hybrid-SDN MPLS networks

    Get PDF
    The proposition of this work is based on the steady evolution of bandwidth demanding technology, which currently and more so in future, requires operators to use expensive infrastructure capability smartly to maximise its use in a very competitive environment. In this thesis, a traffic engineering control loop is proposed that dynamically adjusts the bandwidth and route of flows of Multi-Protocol Label Switching (MPLS) tunnels in response to changes in traffic demand. Available bandwidth is shifted to where the demand is, and where the demand requirement has dropped, unused allocated bandwidth is returned to the network. An MPLS network enhanced with Software-defined Networking (SDN) features is implemented. The technology known as hybrid SDN combines the programmability features of SDN with the robust MPLS label switched path features along with traffic engineering enhancements introduced by routing protocols such as Border Gateway Patrol-Traffic Engineering (BGP-TE) and Open Shortest Path First-Traffic Engineering (OSPF-TE). The implemented mixed-integer linear programming formulation using the minimisation of maximum link utilisation and minimum link cost objective functions, combined with the programmability of the hybrid SDN network allows for source to destination demand fluctuations. A key driver to this research is the programmability of the MPLS network, enhanced by the contributions that the SDN controller technology introduced. The centralised view of the network provides the network state information needed to drive the mathematical modelling of the network. The path computation element further enables control of the label switched path's bandwidths, which is adjusted based on current demand and optimisation method used. The hose model is used to specify a range of traffic conditions. The most important benefit of the hose model is the flexibility that is allowed in how the traffic matrix can change if the aggregate traffic demand does not exceed the hose maximum bandwidth specification. To this end, reserved hose bandwidth can now be released to the core network to service demands from other sites

    Cloud Based IoT Architecture

    Get PDF
    The Internet of Things (IoT) and cloud computing have grown in popularity over the past decade as the internet becomes faster and more ubiquitous. Cloud platforms are well suited to handle IoT systems as they are accessible and resilient, and they provide a scalable solution to store and analyze large amounts of IoT data. IoT applications are complex software systems and software developers need to have a thorough understanding of the capabilities, limitations, architecture, and design patterns of cloud platforms and cloud-based IoT tools to build an efficient, maintainable, and customizable IoT application. As the IoT landscape is constantly changing, research into cloud-based IoT platforms is either lacking or out of date. The goal of this thesis is to describe the basic components and requirements for a cloud-based IoT platform, to provide useful insights and experiences in implementing a cloud-based IoT solution using Microsoft Azure, and to discuss some of the shortcomings when combining IoT with a cloud platform

    PiCasso: enabling information-centric multi-tenancy at the edge of community mesh networks

    Get PDF
    © 2019 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Edge computing is radically shaping the way Internet services are run by enabling computations to be available close to the users - thus mitigating the latency and performance challenges faced in today’s Internet infrastructure. Emerging markets, rural and remote communities are further away from the cloud and edge computing has indeed become an essential panacea. Many solutions have been recently proposed to facilitate efficient service delivery in edge data centers. However, we argue that those solutions cannot fully support the operations in Community Mesh Networks (CMNs) since the network connection may be less reliable and exhibit variable performance. In this paper, we propose to leverage lightweight virtualisation, Information-Centric Networking (ICN), and service deployment algorithms to overcome these limitations. The proposal is implemented in the PiCasso system, which utilises in-network caching and name based routing of ICN, combined with our HANET (HArdware and NETwork Resources) service deployment heuristic, to optimise the forwarding path of service delivery in a network zone. We analyse the data collected from the Guifi.net Sants network zone, to develop a smart heuristic for the service deployment in that zone. Through a real deployment in Guifi.net, we show that HANET improves the response time up to 53% and 28.7% for stateless and stateful services respectively. PiCasso achieves 43% traffic reduction on service delivery in our real deployment, compared to the traditional host-centric communication. The overall effect of our ICN platform is that most content and service delivery requests can be satisfied very close to the client device, many times just one hop away, decoupling QoS from intra-network traffic and origin server load.Peer ReviewedPostprint (author's final draft

    New opportunities for load balancing in network-wide intrusion detection systems

    Full text link
    As traffic volumes and the types of analysis grow, network intru-sion detection systems (NIDS) face a continuous scaling challenge. Management realities, however, limit NIDS hardware upgrades to occur typically once every 3-5 years. Given that traffic patterns can change dramatically, this leaves a significant scaling challenge in the interim. This motivates the need for practical solutions that can help administrators better utilize and augment their existing NIDS infrastructure. To this end, we design a general architecture for network-wide NIDS deployment that leverages three scaling op-portunities: on-path distribution to split responsibilities, replicat-ing traffic to NIDS clusters, and aggregating intermediate results to split expensive NIDS processing. The challenge here is to balance both the compute load across the network and the total communica-tion cost incurred via replication and aggregation. We implement a backwards-compatible mechanism to enable existing NIDS infras-tructure to leverage these benefits. Using emulated and trace-driven evaluations on several real-world network topologies, we show that our proposal can substantially reduce the maximum computation load, provide better resilience under traffic variability, and offer improved detection coverage

    A SDN and NFV use-case: NDN implementation and security monitoring

    Get PDF
    International audienceCombining NFV fast service deployment and SDN fine grained control of data flows allows comprehensive network security monitoring. The DOCTOR architecture 2 allows detecting, assessing and remediating attacks. DOCTOR is an ANR funded project designing a NFV platform enabling to securely deploy virtual network functions. The project relies on open-source technologies providing a platform on top of which a Named Data Networking architecture (NDN [2]) is implemented. NDN is an example of application made possible by SDN and NFV coexistence, since hardware implementation would be too expansive. We show how NDN routers can be implemented and managed as VNFs. Security monitoring of the DOCTOR architecture is performed at two levels. First, host-level monitoring, provided by CyberCAPTOR, uses an attack graph approach based on network topology knowledge. It then suggests remediations to cut attack paths. We show how our monitoring tool integrates SDN and NFV specificities and how SDN and NFV make security monitoring more efficient. Then, application level monitoring relies on the MMT probe. It monitors NDN-specific metrics from inside the VNFs and a central component can detect attack patterns corresponding to known flaws of the NDN protocol. These attacks are fed to the CyberCAPTOR module to integrate NDN attacks in attack graphs
    corecore