

Ali, Abeer Farouk Tawfeek (2020) On the placement of security-related

Virtualised Network Functions over data center networks. PhD thesis.

http://theses.gla.ac.uk/81595/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Glasgow Theses Service

https://core.ac.uk/display/328703334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://theses.gla.ac.uk/81595/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

ON THE PLACEMENT OF

SECURITY-RELATED VIRTUALISED

NETWORK FUNCTIONS OVER

DATA CENTER NETWORKS

ABEER FAROUK TAWFEEK ALI

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

AUGUST 2020

c© ABEER FAROUK TAWFEEK ALI

Abstract

Middleboxes are typically hardware-accelerated appliances such as firewalls, proxies, WAN

optimizers, and NATs that play an important role in service provisioning over today’s data

centers. Reports show that the number of middleboxes is on par with the number of routers,

and consequently represent a significant commitment from an operator’s capital and opera-

tional expenditure budgets. Over the past few years, software middleboxes known as Virtual

Network Functions (VNFs) are replacing the hardware appliances to reduce cost, improve the

flexibility of deployment, and allow for extending network functionality in short timescales.

This dissertation aims at identifying the unique characteristics of security modules imple-

mentation as VNFs in virtualised environments. We focus on the placement of the secu-

rity VNFs to minimise resource usage without violating the security imposed constraints

as a challenge faced by operators today who want to increase the usable capacity of their

infrastructures. The work presented here, focuses on the multi-tenant environment where

customised security services are provided to tenants. The services are implemented as a

software module deployed as a VNF collocated with network switches to reduce overhead.

Furthermore, the thesis presents a formalisation for the resource-aware placement of secu-

rity VNFs and provides a constraint programming solution along with examining heuristic,

meta-heuristic and near-optimal/subset-sum solutions to solve larger size problems in re-

duced time.

The results of this work identify the unique and vital constraints of the placement of security

functions. They demonstrate that the granularity of the traffic required by the security func-

tions imposes traffic constraints that increase the resource overhead of the deployment. The

work identifies the north-south traffic in data centers as the traffic designed for processing

for security functions rather than east-west traffic. It asserts that the non-sharing strategy of

security modules will reduce the complexity in case of the multi-tenant environment. Fur-

thermore, the work adopts on-path deployment of security VNF traffic strategy, which is

shown to reduce resources overhead compared to previous approaches.

Acknowledgements

With a lot of love and appreciation, I would like to express my grateful appreciation to

the people who help me accomplish this work. First, I would like to thank my supervisor

Dimitrios P. Pezaros for his continues motivation, guidance and support. Thanks also to my

second supervisor Christos Anagnostopoulos for your knowledge and discussions. I also

want to thank the UK Engineering and Physical Sciences Research Council (EPSRC) for

funding this work. To all my friends in Egypt and Glasgow, Thanks for your friendship and

encouragement, this work will never be completed without you. Finally thanks to my Mam,

sisters and brother for your love and support. For my Dad, you are not among us, but you

are always with me.

Table of Contents

1 Introduction 2

1.1 Overview . 2

1.2 Contributions . 4

1.3 Thesis Outline . 5

2 Related Work 7

2.1 Overview . 7

2.2 Network Security . 10

2.2.1 Distributed Denial of Services (DDoS) 10

2.2.2 Classification . 14

2.2.3 Firewalls . 15

2.2.4 Intrusion Detection System (IDS) 15

2.3 Security Systems . 21

2.3.1 Hardware Middleboxes . 21

2.3.2 Software Middleboxes . 24

2.4 Virtual Network Functions Orchestration 26

2.4.1 SDN . 28

2.4.2 Orchestration Frameworks . 31

2.4.3 VNF Placement . 32

2.5 Security VNF Challenges . 36

2.5.1 Security VNFs Potentials . 36

2.5.2 Customised Security Services . 37

2.5.3 Security Functions Orchestration 38

2.5.4 Current Issues and Limitations . 40

2.6 Summary . 44

3 Design of a Resource-Aware, Security Placement Framework 45

3.1 Overview . 45

3.2 Framework . 46

3.2.1 Architecture . 46

3.2.2 Characteristics . 48

3.3 Resource-Aware Placement . 51

3.3.1 Traffic Processing-based Classification 52

3.3.2 Allocation Strategies . 54

3.3.3 Constraints . 56

3.3.4 Objective Function . 62

3.4 Mathematical Model . 63

3.4.1 Formulation . 63

3.4.2 Security Placement Reduction to VSBPP Problem 67

3.5 Solution Methods . 68

3.5.1 Constraint Programming . 69

3.5.2 Heuristic . 70

3.5.3 Meta-Heuristic . 71

3.5.4 Near-Optimal Subset-Sum Solution 73

3.5.5 One-dimensional Implementation 73

3.6 Summary . 75

4 Implementation 77

4.1 Overview . 77

4.2 Architecture . 78

4.2.1 Fat-Tree Data Centers . 78

4.2.2 Routing . 79

4.2.3 Deployment Locations . 79

4.2.4 Allocation Strategy Implementation 81

4.3 Constraint Programming . 83

4.4 Heuristic Solutions . 86

4.5 Meta-Heuristic Solutions . 88

4.6 Subset-Sum Near-Optimal Solution . 91

4.7 Linear Programming . 93

4.7.1 Locations Rearrangement . 93

4.7.2 One-dimensional VS Two-dimensional 94

4.8 Summary . 95

5 Evaluation 96

5.1 Overview . 96

5.2 Performance Metrics . 97

5.3 Experimental Setup . 98

5.3.1 Simulation Parameters . 98

5.3.2 Workload . 100

5.3.3 The System Capacity Constraint 100

5.4 Results Analysis . 100

5.4.1 Heuristic Solutions . 101

5.4.2 Constraint Programming . 105

5.4.3 Meta-Heuristic . 107

5.4.4 Subset-Sum Near-Optimal Solution 110

5.4.5 Single Instance Allocation . 112

5.4.6 Linear Programming . 114

5.5 Extended Analysis . 116

5.5.1 Network Size . 116

5.5.2 Optimality Gap Analysis . 118

5.5.3 Execution Time . 118

5.5.4 Success Rate . 120

5.5.5 Class Types Distribution . 121

5.5.6 Number of Modules . 122

5.6 Scalability . 123

5.7 Summary . 125

6 Conclusion and Future Work 126

6.1 Overview . 126

6.2 Contribution Summary . 126

6.3 Future Work . 128

6.3.1 Supporting Placement of Security VNF Chains 128

6.3.2 Dynamic Placement . 129

6.3.3 Exploring Real Data Center Architectures 129

6.3.4 QoS Constraints . 130

6.4 Summary and Concluding Remarks . 130

Publications 132

Bibliography 133

List of Tables

5.1 Simulation Parameters . 99

5.2 Optimality Gap, when k=6 . 118

List Of Abbreviations

AIDS Anomaly-base Intrusion Detection Systems.

BFD Best Fit Decreasing.

DC Data Center.

DDoS Distributed Denial of Service.

DoS Denial of Service.

DPI Deep Packet Inspection.

ECMP Equal-Cost Multi-Path.

FFD First Fit Decreasing.

ICT Information and Communications technology.

IDS Intrusion Detection System.

IPS Intrusion Prevention System.

LP Linear Programming.

MIDS Misuse-base Intrusion Detection Systems.

NF Network Function.

NFV Network Function Virtualisation.

PPS Packet Per Second.

SDN Software-Defined Networking.

VMP Virtual Machine Placement.

VNE Virtual Networks Embedding.

VNF Virtualised Network Function.

VSBPP Variable Sized Bin Packing Problem.

List of Figures

2.1 Literature Survey . 8

2.2 Amplification Attack . 12

2.3 IDS Classification . 16

2.4 A Typical Enterprise Network . 22

2.5 Number of Middleboxes in Enterprise Networks 23

2.6 Mutli-Tenant Virtualised Environment . 25

2.7 Hardware vs Software Middleboxes . 27

2.8 Software Defined Networking (SDN) Architecture 29

2.9 ETSI NFV Architecture Framework . 33

3.1 Security Placement Framework . 47

3.2 On-path and Off-path Deployment . 48

3.3 Security Functions Collocated with Network Switches 49

3.4 Security Function Equivalence Classes . 53

3.5 Traffic Constraint for Independent Duplication of the Stateless Class 57

3.6 Traffic Constraint for Dependent Duplication of the Stateful Class 59

3.7 Traffic Constraint for Single Instance . 59

3.8 Traffic Constraint for Multiple Ingress Networks 60

4.1 Fat-Tree Cloud Data Center Size k=4 . 79

4.2 Traffic Constraint For the Stateless and Stateful Classes in Fat-Tree 81

4.3 Traffic Constraint for Single Instance in Fat-Tree 84

4.4 New Locations Schema for Fat-Tree Size k=4 92

5.1 RS and CO of Heuristic Algorithms for Modules Sizes Workload, when k=6 102

5.2 RS and CO of Heuristic Algorithms for Traffic Demand Workload, when k=6 103

5.3 RS and CO of Constraint Programming Models for Modules Sizes Work-

load, when k=6 . 105

5.4 RS and CO of Constraint Programming Models for Traffic Demand Work-

load, when k=6 . 106

5.5 RS and CO of BFD Meta-heuristic for Modules Sizes Workload, when k=6 108

5.6 RS and CO of Random Meta-heuristic for Modules Sizes Workload, when

k=6 . 109

5.7 RS and CO of BFD Meta-heuristic for Traffic Demand Workload, when k=6 110

5.8 RS and CO of Near Optimal for Modules Sizes Workload, when k=6 . . . 111

5.9 RS and CO of Near Optimal for Traffic Demand Workload, when k=6 . . 111

5.10 RS and CO of Single Instance for Modules Sizes Workload, when k=6 . . . 112

5.11 RS and CO of Single Instance for Traffic Demand Workload, when k=6 . . 113

5.12 PR and RS of BFD CP and BFD LP Algorithms ,when k=6 114

5.13 RS and CO for Network Size, in Low Workload 116

5.14 RS and CO for Network Size, in High Workload 117

5.15 Execution Time for Modules Sizes Workload, when k=6 119

5.16 Success Rate for Modules Sizes Workload, when k=6 120

5.17 RS and CO for The Probability of the Stateless Class, when k=6 121

5.18 RS and CO for Number of Modules, when k=6 123

5.19 PR, RS and CO for Request Rate, when k=6 123

1

2

Chapter 1

Introduction

1.1 Overview

Large-scale Data Centers (DCs) are the underlying infrastructures that provide virtualised

compute, network, and storage resources in an elastic manner. Therefore, many organisa-

tions have outsourced their information communications technology (ICT) provisioning to

the cloud and successfully reduce their capital and operational expenditure. However, the

increase in the size of data centers causes a phenomenal increase in operational cost for ser-

vices providers. This combined with the operator’s profit-awareness, motivate the research in

different aspects of managing data centers such as resource management, energy efficiency,

networking, and security.

Network services in data centers such as firewalls, caches, proxies, intrusion detection sys-

tems, WAN accelerators, etc., have been deployed as high-speed vendor-specific hardware-

based middleboxes physically hardwired to the network infrastructure of data centers. While

surveys show the number of middleboxes is equal to or exceeding the number of routers at

all network sizes, estimations of the initial hardware cost of middleboxes for an enterprise

network (between 10,000 and 100,000 hosts) reached $1m every 5 years. Thus, much of

the research conducting on managing data centers are directed to middleboxes, security in

particular, where numbers show that security middleboxes can reach up to more than 30% of

1.1. Overview 3

the network middleboxes [1].

As ICT is moving to the cloud, modern data centers underpin the *-as-a-Service paradigm

with increasing (in-the-cloud) services offered to users by service providers. However, hard-

ware middleboxes limit cloud service provider ability to offer network functions as services

where they are suffering from expensiveness, deployment inflexibility, inefficient resources

management, vendor-specific and limited functionality [2–4]. Furthermore, it has limited

ability to provide customised services. On the other hand, softwarizing middleboxes have

been offered as a solution to the hardware-based middleboxes problems.

Through exploiting the newly emerged Software Defined Networking (SDN) and Network

Function Virtualisation (NFV), service providers can efficiently manage the softwarised net-

work functions in the cloud paradigm. Hence, VNF enables data center operators to manage

and orchestrate virtualised services/software middleboxes as Virtualised Network Functions

(VNFs), providing the deployment flexibility and the efficient provisioning of resources that

hardware middleboxes lack. While SDN will provide the global view and centralised control

of the network to orchestrate the VNFs and introduce programmability as well. With these

two complementary technologies, virtualised services will reduce the operational expendi-

ture and improve the utilisation of existing resources.

Users of a multi-tenant environment run different applications which require different levels

of security per application. For example, a web server may require protection against HTTP

flooding attacks, while critical servers may require deep packet inspection and/or a combi-

nation of signature-based and anomaly-based intrusion detection. Over the cloud, security

services are offered by cloud Services Providers (CSP) or third-party companies to satisfy the

need for customised security services. As the use of virtualised middleboxes becomes more

widespread, research is focusing on the different aspects of managing network functions in

virtualised environments. Nevertheless, only a few consider the distinct requirements and

constraints related to security functions in a multi-tenant environment.

This dissertation investigates how the newly emerging technologies can leverage virtualised

data centers to address the placement of security modules as virtualised network functions in

1.2. Contributions 4

a multi-tenant environment with the objective of increasing usable capacity. Furthermore, it

presents an analysis of security modules processing of traffic that leads to a classification of

security modules based on the required granularity of traffic processing. The classification

introduces new constraints that impose a resource overhead to the management of security

functions. While other work addressing the efficient management of network functions aims

at utilising resources or increasing performance measures, these approaches have limitations

when it comes to deploying security functions, and the work presented in this thesis demon-

strates these limitations.

Furthermore, this thesis advocates on-path deployment to reduce resource consumption and

a non-sharing strategy to reduce complexity. Combined with VNF and SDN, this work al-

lows service operators to provide resource-efficient on-demand customised security services

for tenants by deploying security modules as VNFs in the multi-tenant environment. More-

over, this work provides the mathematical analysis to the placement problem of security

services and time-optimised solutions targeting at saving the infrastructure’s computing and

communication resources.

To conclude, the deployment of network functions as VNFs introduces flexibility and dy-

namism as uprising demand in modern multi-tenant environments such as the cloud. This

work asserts there are unconsidered and vital constraints to the deployment process of se-

curity network functions compared to other types of functionality. These constraints will

restrict the placement operation and increase resource consumption of the deployment. The

work presented here identifies these security constraints and proposes a placement frame-

work that satisfies these constraints while maintaining efficient management of the resources

by adopting on-path deployment and introducing a heuristic algorithm as a time-optimised

solution to the problem.

1.2 Contributions

The contributions of this thesis are as follows:

1.3. Thesis Outline 5

• Identifying the unique constraints of security functions placement based on traffic

analysis requirement and traffic directional, compared to other network functions.

• The design of a resource-aware placement strategy that satisfies the traffic constraints

of the security functions different classes.

• The design of a resource-aware placement framework for customised security services

in multi-tenant data centers where security modules are implemented as on-path VNFs.

• The formulation of one-dimensional and two-dimensional resources implementations

of the security VNFs placement problem with the objective of increasing usable ca-

pacity.

1.3 Thesis Outline

The remainder of this dissertation is structured as follows:

• Chapter 2 describes the legacy security solutions and their deployment by network

providers, and the inherent limitation of these legacy tools in modern networks. It

discourses the motivation for the creation and development of Virtualised Network

Function and Software Defined Networking, and covers the trade-offs of softwarising

network functions compared to legacy middleboxes. Then, it presents the motivation

for developing orchestration systems for VNFs. The chapter details current platforms

for orchestrating VNFs and latest research in the placement problem. Then, it focuses

on security functions orchestration and discusses their current issues and limitations.

• Chapter 3 presents the design of the proposed security placement framework. It de-

scribes the framework architecture and characteristics. It introduces the classification

of the security modules based on traffic processing requirements and then the place-

ment strategy adopted by the framework based on that classification. Then, it describes

the two-dimensional resource-aware placement problem of the framework along with

1.3. Thesis Outline 6

its mathematical formulation. Furthermore, the chapter introduces heuristic, meta-

heuristic, near-optimal methods as solution to the placement problem. Finally, it intro-

duces a one-dimensional resources implementation to the problem.

• Chapter 4 provides the technical aspects of the implementation of the design dis-

cussed in Chapter 3 on fat-trees. The chapter begins by describing the architecture of a

fat-tree data center, traffic routing, and the implementation of the proposed framework

of on-path VNFs. Then, it presents the constraint programming implementation of

the placement problem by the CPlex optimiser. Then, it discusses the implementation

of heuristic, meta-heuristic, near-optimal algorithms on fat-tree. Finally, a linear pro-

gramming solution to the one-dimensional implementation of the placement problem

is presented.

• Chapter 5 presents a comprehensive evaluation of the resource-aware security VNF

placement framework. Through simulation, the placement framework and solution

methods are evaluated to determine the optimality of solutions compared to the con-

straint programming solution. Then, it extended the evaluation to different characteris-

tics such as network size, number of modules, success rate and class type distribution.

Moreover, it presents the optimality gap analysis and execution time of the solution

methods. Finally, it evaluates the scalability of the framework with the number of

requests.

• Chapter 6 gives a summary of the contributions and findings of this work, and ex-

plores potential research directions and future work.

7

Chapter 2

Related Work

2.1 Overview

Data centers (DCs) important role in modern IT infrastructure can be contributed to 1) pro-

vide the computational power, storage, and applications necessary to support various enter-

prise business 2) numerous services run by a single infrastructure, in the contradictory to

previous model where each service had its own server to be operated on 3) reduce capital

and operational expenditure for businesses due to the economics of scale principle 4) abil-

ity to process billions of Internet transactions every day [5]. This led to the deployment of

large data centers with thousands of servers by renowned ICT organisations such as Ama-

zon, Microsoft, and Google to offer cloud computing services to a wide range of users and

businesses. However, the increase in the size of data centers causes a phenomenal increase in

operational cost, this combined with the operator’s profit-awareness motivate the research in

the management of data centers such as resource management, energy efficiency, network-

ing, and security [6].

Security in data centers is accomplished by installing dedicated security components by sys-

tem administrators, such as anti-malware, firewalls, Intrusion Detection and Prevention Sys-

tems (IDS/IPS) that usually perform Deep Packet Inspection (DPI) to detect attacks. These

security components are commonly hardware-based middleboxes deployed in fixed loca-

2.1. Overview 8

tions across the network [7]. While many companies (e.g., Cisco, Juniper, Fortinet, Blue

Coat, IBM, Radware, and Intel security) offer line speed appliances that provide firewall,

IDS, IPS, and DPI functionality, these appliances are allocated manually based on a static

risk management process [8].

These legacy hardware security systems suffer from many problems such as lack of deploy-

ment flexibility, limited functionality, high cost, and inefficient management of resources.

Many of these problems are inherited from hardware-based systems. As ICT is increasingly

outsourced to the cloud, middleboxes start the transition with the increasing number of vir-

tualised network appliances such as WAN optimiser (e.g. virtual VX from SilverPeak [9]

and SteelHead from Riverbed [10]), Firewalls (e.g. ASAv from Cisco [11] and XG from

Sophos [12]), and IDPS (e.g. Snort [13] and Suricata [14]). There is also in-the-cloud

network services offered by cloud Services Providers (CSP) or third party companies. The

virtualised security services will provide the same protection that hardware-based systems

provide combined by the high performance and efficiency of cloud services. Although with

the increase in the size of data centers, the management of theses virtualised services together

with data center infrastructure resources becoming more of a complex task that an inefficient

one can cause performance degradation and/or reduce turnover [3]. However, recent tech-

nologies such as SDN and VNF can be exploited to accomplish efficient management of

infrastructure resources combined with facilitating the process of managing the virtualised

services.

Figure 2.1: Literature Survey

We inspect the state-of-the-art work in the related fields to be able to comprehend the contri-

bution context. With numerous work that has been done in the area of VNF orchestration, it

2.1. Overview 9

is necessary to examine this work and identify how it can be applied in the context of security

functions. The organisation of the literature Survey is shown in Figure 2.1. First, it details

hardware and software middleboxes and demonstrates their comparison. Then, it introduces

the Network Functions Virtualisation and Software-Defined Networking as the tools exploit

to deploy and manage software middleboxes as Virtualised Network Functions (VNFs) in

virtualised data centers. Then, it discusses the frameworks addressing the management and

orchestration of VNFs then placement strategies implemented. Then, we discuss the work

related to security network functions such as the security functions orchestrations frame-

work. Finally, it discussed the issues and limitations of orchestrating security functions of

previous work of security VNFs security functions. Therefore, this chapter is organised as

follows:

Section 2.2 defines security threats and their classification and examines DDoS attack as an

example. Then, it illustrates security tools classification and examples and discusses their

threat detection techniques. Finally, it describes the traffic preprocessing phase of security

functions.

Section 2.3 details the best practices of hardware security tools deployment by network

providers. Then, it demonstrates the limitations of these legacy tools in modern networks.

Then, it presents software middleboxes and network function virtualisation and highlights

their potentials for deploying security modules.

In Section 2.4, we discuss the problem of orchestrating virtual network functions, then ex-

amine the characteristics of SDN-enabled networks that support solving the problem. Then,

we outline the frameworks of orchestration VNFs and their proposed implementation. Then,

we discuss the latest research in VNF placement and the short-comes.

Section 2.5 discuss potentials that VNFs offer to security functions. Then, it illustrates the

rise of customised security services in multi-tenant virtual environments. Then, it demon-

strates frameworks of orchestrating security functions and placement strategies. Then, it

details the current issues and limitations for orchestrating security functions in multi-tenant

environments. Finally, we summarise the chapter in Section 2.6.

2.2. Network Security 10

2.2 Network Security

As a real-time system, computers have some security threats that are commonly known as

computer attacks and defined as any malicious act against one or more computer system.

Bhuyan et al. in [15] classify computer attacks based on their nature as; Viruses, Trojans,

Worms, Denial of Service (DoS), Network attacks, Physical attacks, Password attacks, In-

formation gathering attacks, User to Root attacks (U2R), Remote to Local attacks (R2L) and

probe attacks. The common purposes of attacks are usually accessing, gathering, manipulat-

ing data or driving the system into an inaccessible state for legitimate users [15]. Here, the

term network attack will be used to refer to any act that exploits network communication in

a malicious intent against a host, a subnet of hosts, or a network component in a computer

network.

2.2.1 Distributed Denial of Services (DDoS)

For example, Denial of Services (DoS) attacks are one of the major network attacks that

networks are facing today. They mainly aim at disturbing the normal behaviour of a system

by over-consuming compute or network resources at the victim site, making it inaccessible

or slow to legitimate users and in some severe cases causing entire system failures. The

attacks usually are made by sending large volumes of traffic that leave the victim site in an

unstable state, causing the system to deny some or all the services to legitimate users.

Distributed Denial of Service (DDoS) attacks are DoS attacks with multiple synchronised

attacker sources that add more bandwidth and consequently amplify the damage [16]. To

launch a powerful DDoS, attackers usually take control of a large number of machines (zom-

bies or bots) by infecting them with malware which allows them to control the machine by

sending instructions through a handler program such as Internet Relay Chat (IRC) and HTTP

requests [17, 18]. Bots make it harder to detect attacks due to their distributed nature. To-

day, almost all attacks are distributed in nature which makes DDoS a major threat to any

computer system connected to a network. DDoS attacks can be classified based on different

2.2. Network Security 11

criteria such as attack layer, launching method, and vulnerability exploited. In [19], Specht

et al. suggest a classification of DDoS attacks based on their impact on system resources

which as follows:

1. Bandwidth depletion attacks: the victim’s network is flooded with traffic preventing

legitimate users from reaching the victim, e.g., flooding attacks (UDP and ICMP) and

amplification attacks (Smurf and Fraggle).

2. Resource depletion attacks: attack traffic consumes the victim resources preventing

it from processing legitimate user requests, such as protocol exploitation attacks (e.g.,

TCP SYN) and malformed packet attacks (e.g., Land attack).

3. Application-level attacks: server resources (e.g., sockets, memory, CPU cycles) are

exhausted, or a vulnerability in the application layer protocol is exploited, such as

HTTP fragmentation and HTTP GET attacks [18, 20].

Recently, there has been a substantial increase in DDoS attacks in volume and rate. In March

2018, GitHub1 reported the largest DDoS attack in history till now. A reported 1.35 Tbps

DDoS attack that makes the famous hosting website unavailable for around 10 minutes.

The volumetric attack was created by an unusual attack method that exploits a bug in the

most-widely used Memcached database servers to create an amplified traffic attack with a

response that can be 51,200 times bigger than the original request [21]. Moreover, the largest

Packet Per Second (PPS) DDos attack was recorded in April 2019 by Imperva2 which peaked

at 580 PPS while GitHub peaked at 129.6 MPPS. DDoS attacks can also be multi-vector,

in November 2016, Akamai3 the Content Delivery Network (CDN) and Security provider

confirmed a 5-day attack on a website that peaked at 623 Gbps generated traffic, consisting

of six DDoS attack vectors: GRE floods, SYN floods, NTP amplification, and ACK floods

at the network level, and both PUSH and GET floods at the application layer. Furthermore,

1https://github.com/
2https://www.imperva.com
3https://www.akamai.com/

2.2. Network Security 12

Neustar4 reported in their Cyberthreats and Trends Report an 180% increase in DDoS attacks

in 2019 compared to 2018. This increase can be contributed to two main factors:

1. Indirect attacks are massive volumes of aggregate traffic generated by small initial at-

tack vectors which make it easy to generate and hard to detect [22]. For example, the

most famous DNS amplification attack exploits open DNS resolvers to issue requests

with the victim’s spoofed IP address. In the attack on Spamhaus in 2013, a 36-byte

DNS malicious request converted to more than 3,000-byte response as shown in Fig-

ure 2.2, and results in aggregate 75 Gbps attack volume that launched with 30,000

unique DNS resolver involved [23].

2. The outbreak of botnet services (DDoS-as-a-service or malware-as-a-service) that be-

come more powerful and inexpensive as described below.

Bot

DNS Resolver

Victim

Spoofed Request36 bytes
Large Response

3000 bytes

Attacker

Figure 2.2: Amplification Attack

The recent outbreak of botnets provides attackers with a powerful launching platform for

their attacks which can be attributed to 1) Services like DDoS-as-a-service and malware-as-

a-service that enable even inexperienced attackers to create a powerful attack vector with
4https://www.home.neustar/

2.2. Network Security 13

little expense [22, 23]. 2) cloud clones of VM instances allow an attacker with usually

hijacked cloud account to easily and rapidly creates bots by duplicating instances that do

not need much memory or disk space [22]. 3) The wide penetration of insecure consumer

devices (e.g., tablets, Smartphones, laptops, and IoT devices) with broadband connectivity

capabilities [22]. For example, 150K compromised IoT devices were used to launch a 623

Gbps attacks on the Kerbs on security5 website and Dyn6 The Internet infrastructure provider

company. The attack on Dyn disrupted services such as Netflix, Twitter, Amazon, Spotify,

Reddit, CNN, PayPal, Pinterest and Fox over the east coast of the United States. The attacks

use the Mirai malware which took control of IoT devices with a weak/default password. This

kind of malware demonstrates the ability to launch attacks with billions of devices around

the world. Reports claim that the Dyn attack reached 1 Tbps in volume.

Furthermore, The rapid increase of volume and rate of attacks transforms the cloud from a

promising solution to mitigate the effects of DDoS attacks due to the over-provisioning of

resources to a potential target. With attack traffic reaching 1Tbps, even global cloud service

providers are being tested when successful attacks can take down parts of the Internet as

seen on the Dyn attack. Furthermore, powerful bots can cause a multiplied damage that

people making bots went so far to hire developers with a unique brand- and vendor-specific

expertise to create bots that can avoid anti-bot measures and escape detection which reported

by Akamai in Internet state security report in 2019 [24].

Since many corporate and global ICT systems are moving their daily operations to the cloud

such as banking transactions, government services, online shopping, entertainment... etc. to

reduce their capital and operational expenditure [22], cloud services are increasingly becom-

ing targets of attacks. While services offered by cloud service providers (CSP) are offered in

a scalable, elastic and always-on manner, they are extremely prone to security vulnerabilities

which cause downtime, economic loss, and reputation damage to the infrastructure, service

and application providers.

5https://krebsonsecurity.com/
6https://dyn.com/

2.2. Network Security 14

2.2.2 Classification

In enterprise systems, the primary defence system against network threats is a combination

of prevention, detection and mitigation techniques. Prevention is usually done by filtering

any suspicions traffic before it reaches the destination hosts. For instance, prevention can be

done using Turing tests in the form of CAPTCHAs or puzzles to identify legitimate users and

block spoofed traffic [25]. Detecting attacks is accomplished by installing dedicated security

components by system administrators, such as anti-malware, firewalls, Intrusion Detection

or Prevention Systems (IDS/IPS) that usually perform Deep Packet Inspection (DPI). These

security components are commonly hardware-based middleboxes deployed in fixed loca-

tions across the network [7]. On the other hand, mitigation techniques are based on filtering

attacker’s traffic and do not guarantee full elimination of the attack [18]. As a common

mitigation technique, malicious traffic identified by the detection process can be filtered in

upstream routers to mitigate the attack; however, this process is prone to false positives and

results in legitimate traffic filtered as a malicious one. Alternative mitigation techniques aim

at surviving attacks by scaling up resources until the attack is over. However, this can only

be used on infrastructures where scaling is provided on-demand (e.g., in clouds).

Furthermore, some of the solutions mentioned above are not effective against massive DDoS

attacks that can scale up to overwhelm most traditional on-premises equipment and resources

available at cloud providers as seen in recent attacks such as Dyn attack. As a popular

option, third-party mitigation services (e.g., Cloudflare, Akamai) can be used to mitigate

such attacks, as they have massive amounts of network bandwidth and DDoS mitigation

capacity at multiple locations around the world that can absorb and filter any amount of

network attacks. Using these services is effective since these providers are fine-tuned to cope

with extremely high demand but are often expensive due to their infrastructural requirements.

They can also raise privacy concerns since user traffic is redirected to third-party servers [26].

As the ineffectiveness of the legacy on-premise detection systems is caused by the inherited

problems of hardware-based middleboxes, resolving some of these problems such as the

inflexible deployment can increase the system’s ability to handle massive volume attacks

2.2. Network Security 15

without using expensive mitigation add-on services. Besides, most security systems in the

market do not belong to only one of the previous classes but usually combine more than one.

In the following, we discuss firewall and intrusion detection as the two most widely deployed

security solutions currently in enterprise networks to process network traffic.

2.2.3 Firewalls

A firewall function is used to deny or allow specific traffic based on IP addresses, protocols

or ports. It is installed at the entry points of the system to examine all egress and ingress

traffic [27]. Firewalls can be categorised as: Access Control List (ACL)-based stateless fire-

walls that evaluate packet contents statically; stateful firewalls that keep track of the bidirec-

tional state of network connections (e.g., TCP streams, UDP communication) [28], travelling

across in both directions and only those forming a proper connection are permitted to pass

through the firewall; Proxy firewalls that analyse the protocol syntax by breaking up clien-

t/server connection [27]. Some firewalls apply packet filtering as mitigation or prevention

system.

2.2.4 Intrusion Detection System (IDS)

An intrusion detection system (IDS) tries to detect intrusion or threats through monitoring

and analysing events that occur in a computer system or a network. Intrusion Prevention

Systems (IPS) is an active IDS that also detect intrusion but can also react to stop them from

damaging the system, for example, stop the attack by dropping the packets, reconfiguring

the firewall or changing the attack’ content [29]. A typical IDS is organised in modules

including data collection, preprocessing, detection and reporting (alarm) modules, and in

the case of an IPS, a countermeasure (response) module is included [30]. The detection

module is responsible for providing as much information as possible regarding the intrusion

detected to support forming a response to stop or mitigate the intrusion or to be used later

for further analysis to discover the vulnerabilities of the system. IDS provide information

such as source(s) and/or destination(s) of the attack, type of attack, attack volume and period.

2.2. Network Security 16

An IDS can be classified according to multiple characteristics such as (Detection method,

Deployment location, structure, time of detection ..etc.) [30–37], as shown in Figure 2.3

Figure 2.3: IDS Classification.source[34]

The detection algorithm is the core of the IDS that defines how the intrusion will be de-

tected and subsequently determines other characteristics of the IDS such as which data to

be collected and in what form, time of detection where some detection algorithms are time-

consuming to be running in real-time mode. There are three main categories of IDS: misuse-

based, anomaly-based and hybrid approaches.

2.2.4.1 Misuse-based Intrusion Detection Systems (MIDS)

Misuse-based Intrusion Detection Systems (MIDS) compare the stored pattern of known at-

tacks to the analysed data and report intrusions if a match is found. It has a low false positive

rate, but it is clear that it cannot detect new intrusions (zero-day attacks) or attacks with no

corresponding patterns in its knowledge base [36]. Furthermore, defining the attack signa-

tures is hard work since it is challenging to write a signature to detect all variance of an

attack [38]. In [39], data mining techniques are used to generate the signatures; however, it

can be time-consuming. Most MIDSs are network-based, using features derived from packet

headers, payload, or both, For example, SNORT [13] used signatures derived from header

data (source address, destination address and ports) and optional content data (payload, meta-

2.2. Network Security 17

data). However, host-based features like system calls can also be modelled to represent an

attack pattern [38]. A MIDS has a huge knowledge-base due to the enormous number of

attacks discovered every day and their variants. Therefore, MIDS are computationally ex-

pensive with respect to time and requirements to match all signatures to the sampled data,

especially if payload features are used causing performance to vary depending on the pat-

tern matching technique implemented. This companionability can result in losing packets

in high-speed links because the system can not process incoming data at line speed which

makes it impractical for high-speed networks [33, 37]. Furthermore, a knowledge-base with

the latest attack patterns must be maintained and updated periodically or whenever a new

attack has been identified. The most popular and widely used network MIDS are Snort and

Bro [13, 40].

2.2.4.2 Anomaly-based Intrusion Detection Systems (AIDS)

Anomaly-based Intrusion Detection Systems (AIDS) model the normal behaviour of the

system and report an intrusion if the observed behaviour deviates from the normal model.

MIDS and AIDS can be distinguished through the difference between the two words attacks

and anomaly: while an attack is an action that can be defined explicitly by a signature or

a rule to be matched in MIDS, the anomaly is a deviation from what normal behaviour is

expected to be [36]. As a result, anomaly-based IDS can detect zero-day attacks or vari-

ants of known attacks if their behaviour represents a deviation from the modelled behaviour

while a MIDS can only detect attacks represented in their attack databases. Nevertheless,

AIDS has a high false positive rate due to those legitimate events that can cause deviation

from the stored normal model such as, the stored model is inaccurate or out of date and in

various cases some events may seem abnormal although it is a legitimate event like a flash

crowd. The anomaly detection is performed in two phases: the training phase and the de-

tection phase [20]. The training phase is used to build a model for normal behaviour, and

the detection phase is the process of comparing the stored model to the observed model and

generates an alarm if any deviation is detected. Stateful protocol analysis detection methods

2.2. Network Security 18

build a profile of protocols normal activity instead of profiling network or host behaviour.

It can track the state of the network, transport and application protocol by building profiles

from vendor-developed protocol implementations [29]. Methods used to build the normal

behaviour model and compare it to new events can be classified as statistical, soft-computing

techniques, and hybrid methods [20].

In statistical techniques, a dataset is used to construct a profile for the system monitored activ-

ity; the profile consists of intensity or distributed measures and is stored as the normal profile

of the system. The system calculates the current profile and compares it to the stored profile.

If the changes in measures exceed a certain threshold, an alarm is raised. The system updates

the stored profile periodically to reflect system changes. Statistical techniques can detect un-

known attacks; however, setting threshold values for the profile measures is a complicated

process, and also attackers can train the system through slow attacks to avoid detection [41].

One of the earliest implementations of statistical-based techniques is Haystack [42], where

profiles for users and groups were generated based on Gaussian random variables. Statistical

techniques use a wide range of measures and approaches to build normal profiles and mea-

sure deviation such as mean, standard deviation, T2 test [43], entropy [17, 44], covariance

matrix [45], outlier algorithms [46], Bayesian networks, etc. Soft-computing techniques are

used to improve the accuracy of anomaly-based detection methods [27]. For example, Neu-

ral networks have been used in the case of incomplete datasets. In [47] a multi-layer neural

network is built as a multi-class problem to identify the type of attack, not just the presence

of one. Authors also propose a design to the optimal neural network with regards to the

number of hidden layers. A Support Vector Machine (SVM) is used when a limited sample

data is present. In [48], SVM outperforms neural network approach in the case of limited

sampled data. In fuzzy logic techniques, fuzzy logic variables are used to represent system

features [49]. Genetic algorithms have been used to select the best features to be used by

other techniques. In [50], genetic algorithms are used to find the best-fit feature for a fuzzy

algorithm. In [51], a Markov model approach is used to implement a host-based intrusion

detection to model system calls.

2.2. Network Security 19

2.2.4.3 Traffic Preprocessing

Traffic Preprocessing in a security tool is the process of constructing the features required

by the detection algorithm. For example, in a stateful firewall, preprocessing involves re-

constructing traffic connections and extracting parameters for comparing against the firewall

rule set. In a network-based AIDS, preprocessing is more complex where network traf-

fic can be represented by infinite features. These features can be classified as volumetric

based or informative measures (flow variations based or probability measures), time-based

or connection-based, packet-based or flow-based, header-based or content-based, single-

connection or multiple-connection and more sophisticated measures can be used like en-

tropy [35]. It is reported that this process can take up to 50% of the overall time of the

detection system while the detection process can take up to 20% [37]. Thus, it has a signifi-

cant impact on the security system performance.

Yet, the features selected for the detection phase determines the type(s) of detected attacks

and the accuracy of detection. For example, most anomaly detection systems are flow-based

(only use information derived from packet headers). They use flow and/or flow aggregate

records as input to model the normal behaviour of a system. Such data only represents

the interaction between nodes and does not carry all the traffic information, in particular,

the payload information. However, flow data provide enough information to detect most

attacks by examining communication patterns, periodic changes and temporal trends [33,

35]. However, some attacks cannot be detected unless the payload is examined. Payload

attacks are more difficult and expensive to detect. It usually involves malicious content in

the payload of IP/TCP packet, for example (e.g.server-side content attacks such as SQL-

injection and cross-site scripting) [37]. On the other hand, some anomaly detector is built

based on content-based features. For example, PAYL [52] is content-based AIDS built to

detect zero-day worms. It is based on packet payload having an unusual byte frequency in

the presence of a worm. It builds a model of frequency, variance and standard deviation of

each the 256 of the byte possibilities for each destination port and length of the flow.

Another example, application-level DDoS attacks (e.g., HTTP flooding) are nearly invisible

2.2. Network Security 20

from the flow level. Attack traffic is presented as legitimate TCP connections but drains the

victim internal resources which can not be seen from the network view. Some of them can be

detected using outbound instead of inbound traffic. The outbound bandwidth of the victim

is saturated by responses to what seem to be legitimate requests causing volumetric changes

in the outbound traffic that can be detected at the flow level [53]. However, some AIDS

were proposed to detect application-layer attacks based on analysing the server request in

the application-layer header. For example, web servers’ DDoS attacks can be detected by

observing features like request rate, download rate, uptime, downtime, page access rate,

etc. [53]. In [54], an analysis of SQL statements between databases and the web application

is used to detect SQL injection attacks. Thus, an application-layer DDoS detection algorithm

uses features excluded from the application-layer header. As features selected to model the

system define the coverage of the IDS (which attacks will be detected) and some attacks

cannot be detected using certain features. Thus, some approaches try to find some common

features that can be used to detect different types of attacks and reduce preprocessing. For

example, scans cannot be detected using volumetric based methods, while most flooding

DDoS attacks can [33]. Worms like Sapphire/Slammer cannot be detected on the flow level

and require a payload analysis. In [33] an approach proposed observing the incoming/out-

going connection ratio of hosts can detect both DDoS and Scans and also detect worms in

the scanning phase before launching the attack. Therefore, the accuracy of AIDS is highly

dependent on the features selected to build the normal behaviour model [37].

Security functions characteristics such as features used in the detection process must be

considered in the function deployment process to ensure accurate detection. However, the

process of deploying legacy security functions by security experts is an ad-hoc process as

detailed below, which makes considering this characteristic in the process a major challenge.

2.3. Security Systems 21

2.3 Security Systems

2.3.1 Hardware Middleboxes

Traditionally, security functions and other network functions such as (WAN optimiser, Caches

and Proxies) have been implemented as hardware middleboxes. While many companies

(e.g., Cisco, Juniper, Fortinet, Blue Coat, IBM, Radware, and Intel security) offer line speed

appliances that provide firewall, IDS, IPS, and DPI functionality, these appliances are allo-

cated manually based on a static risk management process where it deployed across different

parts of the network to process the bulk of the ingress and egress traffic [8, 55, 56]. For

example, a firewall function is installed at the entry points of the system to examine all

egress and ingress traffic [27, 29]. In the case of IDS appliances, Cisco, for instance, recom-

mends installing them in centralised positions around the protected network (e.g., between

the network and the Internet to protect a connection with a business partner or to protect a

specific Internet connection (e.g., a web server) [57]. A typical Enterprise network is shown

in Figure 2.4 where a firewall is installed at the point connecting the system network to

the Internet, followed by IDS to process malicious traffic. However, this approach prevents

middleboxes from being efficiently managed and updated, as any maintenance on the net-

work function requires all the traffic to be redirected to an alternative path until maintenance

is completed. This approach is even more problematic in legacy infrastructure where the

management protocols is limited, and most traffic redirection requires physically changing

cabling of the network devices. Furthermore, the effectiveness of these approaches can be

significantly limited in modern networks for example by the capabilities of the hardware or

the fixed allocation of the security functions that reduce the system’s ability to respond to

attacks such as DDoS. We detail these challenges below:

2.3.1.1 Lack of Deployment Flexibility

The functionality of a defence system is measured by the accuracy of detection and perfor-

mance stability over time. An efficient defence system must adapt to traffic changes (e.g.,

2.3. Security Systems 22

IDS Firewall Internet Gateway

Enterprise Servers Network

Figure 2.4: A Typical Enterprise Network

volume and distribution), infrastructure changes (e.g., failures, reconfiguration), and policy

changes without degradation. These changes can occur under normal conditions or as a result

of an attack. For a virtualised environment like the cloud, the rapid resource re-allocation

such as VM migration is a typical change that a security system must adapt to and the adap-

tation must come into effect in short timescales [58]. The manual and ad-hoc placement of

physical security appliances results in reconfiguration and maintenance of the network be-

coming a challenging process and affects the ability of the system to react rapidly to changes

or respond to attacks [59]. Furthermore, as system administrators deploy middleboxes in

specific locations, steering traffic to non-shortest paths can seriously affect the performance

of the system [60].

2.3.1.2 Cost and Inefficient Management of Resources

To mitigate the problems mentioned above of deployment inflexibility and to increase system-

wide fault tolerance, administrators tend to deploy more security middleboxes on network

links which causes under-utilised, expensive middleboxes to be deployed across the net-

work. The survey by Sherry et al. [2] shows that for an enterprise network (between 10,000

and 100,000 hosts), the hardware cost of middleboxes alone can reach $1m every 5 years.

Figure 2.5 shows the number of middleboxes in Very large(>100k hosts), Large(10k-100k

hosts), Medium(1k-10k hosts) and Small(<1k hosts) networks reported in survey conducted

2.3. Security Systems 23

in UC Berkeley [1]. It shows the numbers in a logarithmic scale of all middleboxes, router,

Firewalls and IDSs in different network sizes. Moreover, it shows that the number of middle-

boxes is equal to or exceeding the number of Routers at all network sizes, while all security

middleboxes represented in Firewalls and IDS can reach up to more than 30% of the net-

work middleboxes. Furthermore, all very large networks in the survey had spent over $1m

dollars on middleboxes hardware, while $50,000 was the spending of the top third of the

small networks as reported by the survey. Moreover, because hardware middleboxes are not

scaled up or down easily, the traditional approach is to provision for peak-demand in order

to handle traffic spikes [61]. Thus, most middleboxes’ resources are idle most of the time

which increases the capital expenditure for under-utilised resources.

Figure 2.5: Number of Middleboxes in Enterprise Networks

2.3.1.3 Vendor Lock-in

The variations across vendor-specific middleboxes result in complex, specialised functions

and different configuration interfaces for each vendor and device. Thus, security administra-

tors are required to have per-vendor expertise for each type to effectively allocate and manage

them, increasing expenses as a team of specialists is required to manage the appliances [62].

Besides, compatibility issues can arise in case of security system upgrade [2].

2.3. Security Systems 24

2.3.1.4 Limited Functionality

A security system must continuously adapt to respond to the latest threats [2] which includes

changing the implemented security functionality such as, updating the attacks’ signature-

database, changing or extending the functionality of the security service itself. However,

extending or updating a hardware-based appliance is usually very limited as there is a tight

coupling between hardware capabilities (e.g., memory, TCAM, ASIC or NPUs) and the

software running on them. Although reprogrammability for network equipment has been

suggested by academic projects such as P4 [63], these projects have not reached widespread

adoption among vendors.

2.3.2 Software Middleboxes

To mitigate the problems of legacy hardware-based middleboxes such as, expensiveness,

vendor lock-in, deployment inflexibility, and lack of resource scalability [64], virtualised/-

softwarised middleboxes have emerged such as WAN optimizers [9, 10], Firewalls [11, 12,

65, 66] and IDPS systems [13, 14, 67]).

Most modern networks support virtualisation. It allows heterogeneous architectures and ap-

plications to run on the same hardware as shown in Figure 2.6. Therefore, it has been used

to optimise the usage of physical resources and to reduce expenses. One of their main fea-

tures is on-demand resource allocation where virtual nodes can be dynamically instantiated

and removed to satisfy changes in demand [6, 68]. Cloud computing is a paradigm that

uses virtualisation to provide computing and networking resources as services. Usually, it

uses multiple data centers in several geographic locations as the backbone of the system. As

we mainly consider design aspect of the multi-tenant data center we will use the term data

center to reference virtualised multi-tenant data center which is a virtualised data center

architecture that is suitable for service deployment in a public or private cloud model [69].

In multi-tenant virtualised environments (e.g. cloud data center), Softwarised middleboxes

are implemented as Virtualised Network Function (VNF). Network Function Virtualization

2.3. Security Systems 25

Virtual Infrastructure

Servers Storage Network

Virtual Machine Virtual Machine Virtual Machine

Operating System Operating SystemOperating System

Applications Applications Applications

Figure 2.6: Mutli-Tenant Virtualised Environment

(NFV) aims at replacing hardware-based equipment with software-based network functions

(NFs). It enables implementing and running NFs on off-the-shelf servers by using com-

modity programming languages, frameworks and virtualisation techniques. Therefore, NFV

offers faster deployment and provisioning of service functions and addresses the problem of

compatibility of vendor-specific hardware and reduces the capital and operational expendi-

ture associated with them [70, 71].

NFV introduces the benefits of software-based solutions to security systems. NFV offers

cost reduction, solving compatibility and updating issues. Software solutions are inexpen-

sive compared to hardware appliances as they eliminate the cost of the periodical rebuild or

upgrade of the security system and the cost of maintaining vendor-specific knowledge. Pure

software solutions can also benefit vendors: they allow them to put more effort into reducing

the complexity of managing and re-configuring their products by providing easy to use pro-

gramming interfaces. Furthermore, updating or upgrading software services is a matter of

dynamically retrieving the new source code of software components rather than extending or

2.4. Virtual Network Functions Orchestration 26

replacing hardware equipment. VNFs can be developed and run on commodity x86 servers.

It is usually encapsulated in VMs or lightweight containers to lower the hardware require-

ments and increase the NF-to-host ratio [62, 71–73]. VNFs can be started and teared-down

in significantly less time compared to weeks (the time it takes to design, purchase and deploy

a new middlebox in a traditional network).

While VNFs provide many benefits for security systems, it is worth mentioning the chal-

lenges they face. For instance, the performance properties of generic software NFs are

inferior to their hardware counterparts, since general-purpose hardware and software have

originally not been designed for high-speed packet processing. In addition to, the need to

use multiple CPU cores to achieve line rate processing with the rise in capacity of network

links [74]. In order to tackle the performance challenges without sacrificing deployability,

many research projects are focusing on new approaches to address these challenges. For

example, open-source packet processing techniques (e.g., the Intel Data Plane Development

Kit 7). Another challenging aspect is performance isolation between network services shar-

ing the same physical hardware such as the work in [74] to improve both efficiency and

fairness in sharing resources among software middleboxes.

2.4 Virtual Network Functions Orchestration

Implementing security functions as VNFs in a multi-tenant virtualised environment will mit-

igate the hardware middleboxes problem and offer the benefits of software middleboxes as

discussed in the previous section and summarised in Figure 2.7. Moreover, it introduces

the efficiency of cloud services to the network function deployment process and offers the

customisation for the multi-tenant environment.

However, many design issues need to be tackled when managing security VNFs in multi-

tenant environment such as where are the locations that VNFs will be allocated in the in-

frastructure, which location to select for a new VNF request, which VNF to migrate when a

7https://dpdk.org

2.4. Virtual Network Functions Orchestration 27

Figure 2.7: Hardware vs Software Middleboxes

server is overloaded, what are the mapping strategy of services requests to VNF instance(e.g.

1:1 mapping each services request is deployed to one VNF instance), are VNFs instances

shared among multiple tenants to save resources or non-sharing policy is adopted. Such de-

cisions must be carefully designed not to turnover the gains of virtualised services as they

highly affect the network performance and can result in resource wastage, or cause bot-

tlenecks [3]. For example, where the functions will be deployed and how the data center

routing will be affected, as in some cases redirecting traffic to hosts that are not always on

the shortest path will increase experienced end-to-end latency undoubtedly.

In this section, we explore how research addresses the challenge of deploying Software mid-

dleboxes as VNFs in a virtualised multi-tenant environment. Designing new tools to manage

network functions in a virtualised environment is an active research area where many re-

searchers propose different answers to aforementioned questions. Recently many of these

approaches exploit Software Defined Networks (SDNs) features to introduce dynamism in

managing VNFs as the work proposed in this thesis. Thus, we start by depicting the SDN

architecture and its characteristics below.

2.4. Virtual Network Functions Orchestration 28

2.4.1 SDN

2.4.1.1 Architecture

Software Defined Networking (SDN) promotes the decoupling of data and control planes

of the network. Driving by the powerful network architecture that SDN can provide for,

the Open Networking Foundation (ONF) was formed by major companies like Google, Mi-

crosoft, and Facebook to endorse SDN through supporting OpenFlow [75]. ONF offers a

high-level architecture for SDN that divides the architecture to three layers: infrastructure

layer, a control layer and application layer [76, 77] as shown in Figure 2.8. The infras-

tructure layer also known as the data plane consists of network/forwarding elements such

as physical or virtual switches that are connected to the network through an open interface.

The control layer also known as the control plane is a set of one or more controller that

orchestrates the forwarding of the data plan layer through an open interface. Application

layer consists of user and business applications such as network services, security, analytics

and network management application that communicate with SDN control [77]. Two main

open interfaces that controllers use to interact with the other layers: the northbound API (e.g.

REST API) to communicate with the application, the southbound (e.g. OpenFlow) to com-

municate with the forwarding devices. This separation and abstraction between the layers

allow for new network control services to be implemented without changes in the underlying

infrastructure which introduces programmability to networks [75]. Besides, SDN increases

manageability, scalability, and dynamism of the network which enhances the capability of

the system to handle security challenges [22, 58, 71, 76]. We introduce some of the charac-

teristics that SDN enabled networks have that can be exploited to solve security challenges

in the multi-tenant environment.

2.4.1.2 Characteristics

• Centralised control: In SDN, forwarding elements are directly connected to and con-

trolled by controller software (e.g., Ryu or OpenDaylight). This centralisation of the

2.4. Virtual Network Functions Orchestration 29

Application Layer

Control Layer

Infrastructure layer

Northbound API

Southbound API

Network Device Network Device

Network Device

SDN Control
Software Network

Services

Routing
Protocol Business and Network

Applications Traffic
Engineering

Business
Policies

Orchestration

Programmable
Devices

Data plane

Figure 2.8: Software Defined Networking (SDN) Architecture.Source: SDxCentral

control plane enables a defence system to rapidly respond to network changes from a

central controller through updating the forwarding rules of the entire network infras-

tructure. For example, custom policies can be applied through the controller instead of

configuring each component separately [76].

• Programmability: The ability to apply custom routing policies in SDN through pro-

gramming the controller, instead of by statically configuring each network element

individually, introduces programmability to networks. Combined with the centralised

control of the network, SDN provides the ability to programmatically steer traffic

through network services hosted at any physical location of the network. Addition-

ally, it can improve the efficiency of a security system through the dynamic control of

traffic to achieve load balancing between security functions. Furthermore, programma-

bility introduces dynamism that leverages the capabilities of an attack defence system

2.4. Virtual Network Functions Orchestration 30

to mitigate attacks through automatic updates of forwarding rule as a response to at-

tack detected. Also, SDN enables experimentation and testing new ideas by allowing

inexpensive network management [22].

• Global view of the network: In contrast to a traditional network, in an SDN envi-

ronment, the controller is able to maintain a global view of the network status and

operation. The controller can query all the flow entries across the network to identify

individual traffic paths, request per-switch statistics of the ports as well as flow util-

isation. Furthermore, the controller can build a full topological representation of the

network allowing (re-)routing decisions to be made. Combining all the available data

at the controller, it is possible to have a fine-grained view of the network-level utili-

sation as well as identifying the flows, ports and hosts responsible for the bulk of the

traffic. Using this information can increase a security system’s ability to monitor and

analyse network behaviour and reconfigure the network in response to changes.

2.4.1.3 SDN and Software Network Functions

There has been considerable research on using SDN for software network function manage-

ment. However, most approaches only focus on network management such as advocate the

use of SDN to the problem of per-flow steering [78] which explore the centralised controller

paradigm to steer traffic to different network services/functions including security to enforce

system policies and/or network functions chaining [55, 60]. Stratos presented by [3] is a

network-aware orchestration layer for virtualised middleboxes. In addition to enforcing net-

work policies through chaining, it uses SDN to dynamically instantiate new NF instances

in response to workload changes. In [79], Tajiki et al. propose a resource allocation archi-

tecture which enables energy-aware service deployment for SDN-based networks, it targets

the optimisation of power consumption while considering delay, link utilisation, server util-

isation as constraints. In contrast to this approach, we advocate the use of SDN not only

for flexible traffic steering but also as the underlying mechanism to dynamically distribute

network functions where and when required across the network.

2.4. Virtual Network Functions Orchestration 31

2.4.2 Orchestration Frameworks

There has been a considerable amount of work in software middleboxes and VNFs man-

agement and orchestration. Some of them, mostly earlier work, are specific frameworks

that focus on particular aspects of an overarching architecture while others are more general

frameworks.

2.4.2.1 Specific Framework

The ClickOS project proposed in [61] focuses on high-performance data plane NFs by re-

ducing latency for packets that go through multiple NFs in the same location. It is named

after the Click modular router [80] as it is used as the underlying packet processor. However,

it does not have any network-wide control over the functions. Another example, in [81],

the Slick programming framework is proposed to manage fine-grained functions that can be

shared and composed into more complex packet processing sequences, also Slick elements

can be allocated at arbitrary locations and traffic can be steered through them. OpenNF

in [82] is a centralised control plane that orchestrates NF dynamically. It supports scaling

through duplication and proposes coping the internal states and network forwarding states

instead of copying the whole virtual machine to reduce migration cost. It utilises SDN to

redirecting flows; however, this implementation involves a significant modification to the

middleboxes implementations. FlowTags in [83] is another control plan for NF that is using

SDN controller to dynamically steer traffic to enforce chaining and also tag the packets to

guarantee the correctness of policy enforcement in case of NF mangling where functions

may change packets header. While such platforms offer high-performance network func-

tions, they use a custom hypervisor and restrict users to a specific programming language.

However, a more dynamic system should utilise generic, widely deployable NFs.

2.4.2.2 General Framework

On the other side, a lot of recent research is targeted towards a sophisticated management

and orchestration framework for NFV to solve what is known to be the VNF Orchestra-

2.4. Virtual Network Functions Orchestration 32

tion Problem (VNF-OP). Others use the term VNF management, automation and orchestra-

tion (MANO) to refer to the same problem. Many Standard organisations, with the support

of service providers, start projects to standardise the IT virtualisation technologies and the

VNF orchestration in particular. The Open Linux foundation standard for VNF has the OP-

NFV Framework project [84]. They target creating a NFV platform reference to acceler-

ate the enterprise and service provider transformation to the new technology. The European

Telecommunications Standards Institute (ETSI) also has their own Open Source MANO [85]

project. In Figure 2.9, we show the MANO framework proposed by ETSI. It consists of 3

main components. 1)NFV Orchestrator (NFVO): responsible for accepting new requests

for Network Services (NS); monitoring and managing their life-cycle such as instantiation,

scaling, performance measurements and termination; global resource management of NFV

infrastructure resource requests; policy management for network services. 2)VNF Manager

(VNFM): reasonable for the life-cycle management of VNF instances like NFVO for NS.

3)Virtualised Infrastructure Manager (VIM): responsible for controlling and managing the

NFVI computing, storage and network resources such as orchestrating the allocation/up-

grade/release/reclamation of NFVI resources. It is also responsible for optimisation of such

resources usage, in addition to, collection and forwarding of performance measurements and

events [86]. Some Researchers propose an implementation for the standard frameworks. For

example, authors in [87] propose a policy-based MANO framework to orchestrate NFV ser-

vices in SDN networks. The architecture addresses VNF life cycle management and service

chaining for the Content Delivery Network (CDN), while no placement strategy is reported.

2.4.3 VNF Placement

In Enterprise networks, an orchestration system adopts a placement strategy that decides

where an NF will be allocated. It considers network traffic, resources utilisation, and the

multiplexing of different services and physical machines in a complex optimisation prob-

lem that initiated many research projects and considered as the main focus of this thesis.

The problem is considered as one of the challenges that network providers face in their

2.4. Virtual Network Functions Orchestration 33

Storage
Hardware

Computing
Hardware

Network
Hardware

Hardware Resources

Virtualisation Layer

Virtual Storage Virtual Computing Virtual Network

NFV Infrastructure NFVI

VNF

NFV Orchestrator (NFVO)

VNF Manager (VNFM)

Visualised Infrastructure
Manager (VIM)

NVF Management and Orchestration

VNFVNF

Figure 2.9: ETSI NFV Architecture Framework

transformation to VNF technology, where designing a placement strategies that minimise

provisioning and operation cost is not trivial [88]. The objective of the placement optimisa-

tion problem can combine computing resources, power consumption and/or communication

cost. Also, the optimisation problem can consider parameters such as SLA, policy rules,

and/or security rules. While many researchers study the problem from different perspectives

many propose a mathematical model for the problem. However, due to the complexity and

domain of the problem, approximation algorithms are usually offered as a solution to the

NP-hard problem. Designing a placement strategy has two approaches: design a static initial

placement algorithm that consider a group of requested VNF to be allocated on distributed

location with limited capacity for hosts and links, and a dynamic placement where an initial

placement is required plus as a migration algorithm which selects one or more of the de-

ployed VNFs to be migrated to optimise performance or solve a performance problem such

as server overloaded, scaling up, not enough resources to accommodate new requests. In the

2.4. Virtual Network Functions Orchestration 34

following, we discuss some of the recent and most cited work that has been done in the VNF

placement problem.

Most of the earlier research done in the VNF placement is based on the work under vir-

tual networks embedding (VNE) or VM placement (VMP). VNE is the mapping of a set

of logical graphs of interconnected VMs on a substrate graph of shared physical infrastruc-

ture [89, 90]. Considerable research has been done on VNF placement as an instance of the

VNE problem [91–94]. However, many researchers address the difference between VNE

and VNF placement such as flow demand representation and absence of chaining in VNE

problems [90, 95–97]. They also point out that VNF placement is a considerably harder

problem to solve than traditional VNE problems.

VMP is the process of selecting which VMs should be allocated at each physical machine

(PM). Also, many researchers address the problem of VNF placement as an instance of VMP

problem [98–102]. However, a technical paper by Grochowski from Juniper Networks [103]

claimed that allocating VM requests by current cloud scheduler (e.g. OpenStack) is based

on metrics like available RAM, storage and compute which proven to enough for traditional

cloud workloads as memory usually is the number one in contention for web-based apps

and services, then come CPU and storage resources but not bandwidth. Also, in the case of

common workload, per-node bandwidth utilisation has never been a problem that needs to be

addressed. However, in the case of purpose-built VNFs, the requirements for CPU, storage,

and memory are almost fixed, but the variation of network requirements for each user is

significant. Bouet et al. in [104] also discuss the differences between the two problems,

they argue that VM placement is a node-centric problem where many VMs exist as small

end-points, while a VNF placement is a network-centric problem where few VNF exist as

large middle-points. The VNF placement problem is prevalent with dozens of papers trying

to tackle it from different angles in the last few years, we discuss some of these approaches

below.

While VNF placement problem depends on several parameters such as computing cost, link

bandwidth, QoS, economic profit, network load, energy efficiency, security.. etc [105]. Most

2.4. Virtual Network Functions Orchestration 35

of the proposed approaches consider either one or two of these parameter as objectives which

is occasionally are contradictory objectives while other parameters to be considered as con-

straints. MORSA in [106] provides an NFV infrastructure with a multi-objective approxima-

tion genetic algorithm for resource scheduling that considers computing and communication

cost. In [107] Luizelli et al. focus on the servers cost in large infrastructures by using objec-

tive function to minimise the number of VNF instances with end-to-end latency constraints.

Palkar et al. in [101] introduce E2, a scheduling framework for VM-based VNF. It aims

to minimise intra-server traffic when mapping VNFs, it decomposes NFs to reuse some I/O

operations functions such as TCP reconstruction, but not to reuse core processing blocks. E2

estimate the number of instances of each VNF based on traffic load the per-instance capacity

and uses dynamic scaling to save resource by using latency threshold to detect overloaded

VNF, however, it designed for specific architecture where VNFs are interconnected by a

Layer-2 network. Wen et al. in [108] solve the Network Function Consolidation (NFC)

problem targeting minimising the number of deployed VNFs. In [109] Kuo et al. identify

Joint VNF Placement and Path Selection (JVP) Problem to allocate services chains as shared

VMs with capacity constraint, the authors considers the relation between the link and server

usage.

Furthermore, Cohen et al. in [110] minimises the system cost which is divided into setup

cost and distance cost to reduce the distance between clients and services. They reduced

the VNF placement problem into two NP-hard sub-problems facility location problems and

the generalised assignment problem. [111] proposed SAMA a sampling-based Markov ap-

proximation algorithm which was used to find an efficient solution to save functional costs

and network traffic costs. Hsieh et al. in [112] proposed a network-aware service that min-

imises server cost. Eramo et al. in [113] target reducing the energy consumption using a

consolidation algorithm based on a migration policy of chained VNFs. In [114], Qu et al.

formulate the VNF placement problem as a series of scheduling decisions aiming at minimis-

ing the latency of VNF scheduling by assigning the execution time slots to different services

traversing the same VNF. In [102], authors consider the problem of VNFs placement for

minimising the end-to-end delay with deployment cost and SLA constraints in multi-cloud

2.5. Security VNF Challenges 36

scenario. In [115], authors’ goal is to speed the placement solving by narrowing the search

space of the VNF placement. It restricts locations of VNFs to what they called the accessible

scope, which is the number of servers close to ingress or egress nodes of the VNF flow. The

results explore the optimal size of accessible scope through extensive experiments. The ap-

proach reduces non-shortest path routing to some extent while enhancing the time efficiency

of the placement. However, it assumes functions are packet or flow-based. In [116], Pei et al.

explore VNF management for SDN/NFV-enabled networks. It uses Reinforcement Learning

to forecast future requests to reduce setup latency. However, it assumes functions are based

on packet or flow and offers to duplicate VNF for load balancing.

2.5 Security VNF Challenges

2.5.1 Security VNFs Potentials

Many challenges need to be addressed for security VNFs. Yet, implementing security net-

work functions such as firewalls and IDSes in software has the potential to increase efficiency

and flexibility of a defence system for cloud environments [3, 61, 117]. Some of these po-

tentials are detailed below:

2.5.1.1 Efficient Resource Provisioning

The rapid and easy deployment of VNFs increases the system’s flexibility to react to changes

such as traffic dynamics, dynamic resource (e.g. VM) allocation or the adding of new se-

curity functions. Therefore, it increases the efficiency of the system to handle attacks and

maintain a consistent security policy. VNFs also offer dynamic up and down-scaling on-

demand, leveraging the system’s ability to handle traffic changes and attacks and at the same

time maintain efficient management of resources which is considered a more efficient ap-

proach to the fixed under-utilised resources of hardware middleboxes.

2.5. Security VNF Challenges 37

2.5.1.2 Modularity and Chaining of NFs

As VNFs are implemented in software, they allow effective modularisation of security ser-

vices and small component reuse to build more complex and customised security systems.

The modularisation encourages developers and vendors to focus on building more efficient,

but standalone modules instead of large monolithic applications. As a concrete example

presenting modularity, one could build a high-performance IDP (Intrusion Detection and

Prevention) NF by using a high-performance packet processing library (e.g., Intel DPDK),

a software switch (e.g., Open vSwitch [118]) and an open-source IDP software (e.g., Bro).

Moreover, modularisation allows the chaining of NFs to apply complex security policies.

As an example, a common service chain consists of packet classifiers and firewalls or IDPs

functions that are only used for a specific set of traffic (identified by the packet classifiers).

2.5.2 Customised Security Services

Furthermore, implementing softwarised security functions as VNFs support providing cus-

tomised security services to users of multi-tenant environments. As tenants in multi-tenant

virtualised environments run different applications, they require different levels of security

per application. For example, a web server may require protection against HTTP flood-

ing attacks, while critical servers may require deep packet inspection and/or a combination

of signature-based and anomaly-based intrusion detection. As hardware appliances are de-

signed to process all traffic passing through with very limited capabilities to specify different

operations on specific parts of the traffic, there is no opportunity to specify different services

for different users when using hardware middleboxes [7, 119]. In multi-tenant virtualised

environments like cloud, security services are offered by Cloud Services Providers or third-

party companies to satisfy the need for customised security services [3]. These services

offer to deploy and manage virtualised security solutions to ICT organisations, and there are

becoming more efficient and cost-effective than to hire a team of specialists to deploy and

run your own security tools. With new security threats appearing every day, more of these

services are emerging.

2.5. Security VNF Challenges 38

For example, Amazon’s AWS security services have increased over the past few years. It

starts with tools to monitor and control access to your application, such as CloudWatch and

CloudFront. In 2015 it offered Firewall web application (WAF) to AWS users and Amazon

Inspector which is a Host-based signature IDS with a knowledge base of hundreds of rules

mapped to common security best practices and vulnerability definitions, These rules are

regularly updated by AWS security researchers. They also demonstrate how using their

monitoring and scaling services such as (CloudWatch, CloudFront and Autoscaling) can

detect and mitigate DDoS attacks. Later in 2016, they announced their first DDoS Protection

service a.k. AWS Shield, which is a managed DDoS protection service that safeguards web

applications running on AWS. It detects, logs, reports and response to threats. In 2017,

GuardDuty was announced as an intelligent threat detection service that analyses billions

of events from multiple AWS log sources. It uses threat intelligence feeds, such as lists of

malicious IPs and domains, and machine learning to detect threats more accurately. There are

also third-party services that are available now from many security companies such as Alert

Logic Cloud Defender, Armor, CISCO, Fortinet which provide services that are compatible

with most cloud providers such as Amazon, Google and Microsoft.

2.5.3 Security Functions Orchestration

There has been considerable research on managing security network function. For exam-

ple, the work used SDN such as Yoon et al. in [75] propose managing routing to security

functions such as firewalls and IPSs from a Floodlight SDN controller through a designated

SDN application. The application can update flow rules to forward traffic to the appropri-

ate security function that is connected to a specific interface of the switch. Another related

example of utilising SDN for improving security is presented in [120]. In this work, the

authors distribute security functions between switches and an SDN controller. Specifically,

a local detection component is installed on each SDN switch, and a global detection compo-

nent is installed on the controller to detect attacks that can only be seen on the global view.

Implementing security functions on switches and/or controllers introduces scalability issues

2.5. Security VNF Challenges 39

where resources are limited to detect intrusions in the case of high volume attacks or traffic

changes.

Furthermore, few systems were proposed to provide customised security services to users in a

multi-tenant environment. In [121], a framework to provide service-based intrusion detection

to the cloud was proposed. Different services are provided as subsets of the Snort signatures

database. User subscription to a service means testing the user traffic by the subset of the

signatures corresponding to the service. Subscription management is implemented through a

web-based application which allows each user to add or remove subscriptions or view alerts.

The system provided centralised signature-based protection with all traffic having to pass by

to be processed. Roschke et al. in [122] propose an IDS management architecture for the

cloud. Each VM is secured by host-based and network-based IDS implemented as virtual

machines on the same physical server. Each IDS can be reconfigured by the cloud users to

meet their needs, such as dropping unused rules or changing threshold parameters. A central

management system is responsible for correlating alerts from all IDS. No implementation

for the system is discussed. The previously proposed systems suffer from flexibility and

scalability problems: such as, limited services, inflexible deployment location (e.g. the same

server as the user) and/or a central processing point that leaks scalability and resilience.

Still, only a few researchers consider the distinct requirements and constraints related to

security functions in the placement strategy implemented. The authors in [7], address the

allocation of security services in virtualised environments and discuss their challenges. They

model the allocation problem for ISP networks to minimise the cost of operators as a Mixed-

Integer Linear Programming (MILP) problem, but no implementation is reported. Both ap-

proaches only consider security functions that process traffic at the flow level. While Bouet

et al. in [104] address the Cost-based placement of vDPI functions in NFV infrastructures

with the objective to minimise the number of licenses used as their cost function.

On the other hand, in [123] authors examine a placement strategy to provide a multi-function

multi-tenant NFaaS. They suggest two strategies tenant-centric and service-centric. Tenant-

centric where all VNFs leased by a tenant are mapped into a single server which proved

2.5. Security VNF Challenges 40

to save physical bandwidth and reduces network delay while service-centric maps VNFs of

executing the same service for different tenants on the same server which proved to have

better resource utilisation. However, this approach considers a VM implementation inside

cloud servers to the VNF which introduces communication overhead of rerouting traffic to

the NF hosts. In [124], Shameli-Sendi et al. propose a model for network security defence

patterns (NSDP) to advocate the best practice of deploying security functions in a multi-

tenant environment. The model considers security constraints such as placing an IDS on an

encrypted channel and steering all flows of a tenant go through a single point to be tested

by a specific function. However, the proposed optimisation algorithm considers flows of the

east-west traffic in the network. While in [91], Dwiardhika and Tachibana approach security

from a different perspective where a virtual network is mapped to a substrate network if the

security level matches. At the same time, the placement algorithm is allowed to place more

security VNF to increase the substrate security level to match the virtual network demand,

which represents a minimum cost. The VNF placement is treated as an optimisation problem

with genetic algorithm solution. However, security VNF functions are shared among mapped

networks.

2.5.4 Current Issues and Limitations

As the use of virtualised middleboxes becomes more widespread, research is focusing on the

different aspects of managing network functions in virtualised environments. Nevertheless,

only a few consider the distinct requirements and constraints related to security functions

and multi-tenant environment, which are the main focus of this thesis. We discuss the main

differences below.

2.5.4.1 Shared Security Modules

Sharing security modules among multiple tenants that has been adopted in previous work [3,

91, 104, 107–109, 113, 114, 121], to save resources or to reduce the number of licences,

is not feasible. It does not allow for customisation required by multi-tenant users and intro-

2.5. Security VNF Challenges 41

duces some security risks. Some proposals implemented virtualised functions similar to their

hardware counterparts, i.e., as high-speed high-capacity appliances. They process traffic for

different users in the network within their capacity where it is assumed that sharing secu-

rity modules among tenants could save some static resources such as rule set memory space

or the modules binary code space. However, key configuration differences may exist based

on different security policies and strategies among different tenants which make configuring

shared instances to keep the consistency of configuration (e.g. rule set) is a very complicated

process. Besides, increasing the size of the rule set to include specific rules for each tenant

where needed will increase the processing time and resources and decrease the throughput.

Furthermore, this process must be handled only by the framework, not the tenants and prob-

ably manually where no tools exist to handle this kind of configuration that depends mainly

on each module which leaves tenants with no direct access to control their modules except

through the framework and therefore cancel any gain from the sharing process. Furthermore,

specific security functionality that is based on building a behavioural model for traffic (e.g.

anomaly detection modules, cannot be shared since each tenant will have a different normal

behavioural model. Besides, tenants should be allowed to configure their security functions

themselves. Besides, if the same binaries are shared among different tenants, then access

control becomes cumbersome, and there are real risks for illegitimate access that can cause

security policy violations. Furthermore, while most optimisation models assume that VNF

of the same function is identical in their resource consumption and throughput, However,

Service Providers offer the network function with different configurations to guarantee dif-

ferent levels of quality of service such as different throughput based on the number of used

CPU cores [125]. Thus, in multi-tenant environments where services are offered on a per-

tenant basis, sharing security functions among different tenants will increase the complexity

of managing them and reduce the ability to have customised services to fit different tenant

needs.

2.5. Security VNF Challenges 42

2.5.4.2 Security-specific Traffic Constraints

Security functions have more traffic constraints in the allocation than other network func-

tions. Network functions use extracted features from the processed traffic as input data for

their operation, as shown in Section 2.2.4.3. Simple features can be extracted directly from

packet header (e.g. IP address, port numbers, transport layer protocol) while other features

need to re-construct flow or aggregate more than one flow. Due to the complexity and the

different forms of attacks today, security functions use more complex features compared to

other functions (e.g.NAT, WAN optimiser). For example, DDoS attacks on a web-server

can be detected by observing features (e.g. request rate, download rate, uptime, page access

rate) [53]. Because traffic in data centers is usually split on multiple paths due to Equal Cost

Multiple Path (ECMP) routing, capturing representative traffic of complex features is not a

trivial process. It involves rerouting some of the network traffic based on the implemented

placement algorithm, which can affect the network performance metric such as delay and

throughput. Which are not presented in other network functions where they are mainly based

on features of a single connection or flow and addressed in previous work [3, 7, 115, 116].

Consequently, security functions in data centers hold more traffic constraints in the allocation

than other functions.

2.5.4.3 Duplicating Security VNFs

Duplicating VNF in case of security functions is limited where many approaches used du-

plicated instances of a security function as a solution to function overload or split of traf-

fic [82, 116]. This is applicable for security functions that work on a packet or single

flow level, however, for an anomaly detector to capture an accurate behaviour model that

is based flow aggregation features in ECMP networks, the intended monitored flows must

all be steered to one instance of this type and it cannot be duplicated in case of traffic split.

This approach has been widely adopted and involves all the data continuously pushed to a

central point for analysis [126]. Others propose that computational, transmission and stor-

age cost of monitoring traffic for anomaly detection can be reduced by mapping the traffic

2.5. Security VNF Challenges 43

to less dimensional space by extracting features and only transmit these features in case of

distributed nodes monitoring [127–131]. In [128], Huang et al. aim at increasing scalabil-

ity for networks with a large number of monitored nodes. The proposed approach is based

on distributed tracking combined with approximate PCA analysis where the architecture in-

volves a set of local monitors that send quantised data streams to a coordinator which makes

global decisions based on these data. In [129], Keralapura et al. use a threshold count to

minimise the communication overhead between communicating nodes in a wireless sensor

network. They accomplish that by aggregating the frequency count of an event which is con-

tinuously monitored by distributed nodes and sent to a centralised point whenever the actual

count exceeds a given threshold to detect anomalies, however, this approach only considers

hardware-based security middleboxes.

2.5.4.4 Traffic Direction

Traffic inside data centers flow in two main directions, ”North-South” which is traffic moved

in and out of the data center, while ”East-West” is traffic internally generated and consumed

by various applications’ instances within the data center where multi-tier is the dominant

paradigm for enterprise application. East-west traffic is the dominant flow in data cen-

ters [132] with reports that it will reach 85% of total traffic by 2021 [133], although north-

south traffic is usually what produces east-west traffic. For instance, a user request to a web-

based application hosted in the cloud can result in multiple requests to application servers

in the form of internal communication will occur, before the final answer to the original re-

quest has been found and sent back to the user. However, north-south traffic is what most

data centers security solutions middleboxes are focusing on (e.g. Firewalls and IDs) as they

are not designed for east-west traffic and mainly designed to protect users from outsiders

attacks. Moreover, east-west traffic is based on encrypted communication between the appli-

cation instances/tiers and to find internal threats, application-based security solutions must

be designed to decrypt messages and to analyse communication protocols between appli-

cation instances. Furthermore, east-west traffic is always content in TOR level to reduce

2.6. Summary 44

contention. On the other hand, most previous approaches of orchestrating network function

consider east-west traffic of the network [101, 111, 112, 124]. They argue that it is the dom-

inant traffic direction; however, this is not the case when dealing with security functions as

it is designed for north-south traffic.

2.6 Summary

This chapter studies the virtualised security network function in a multi-tenant environment

and analysis related work of orchestrating VNF and security. To comprehend the background

of virtualised security middleboxes, an overview of network threats and their classification

with DDoS attack as an example, along with recently reported attacks and their impact. Se-

curity solutions such as firewalls and IDS have been discussed along with a demonstration of

the complexity of traffic processing in their operation. Legacy hardware middleboxes have

been discussed and their challenges in a multi-tenant virtualised environment. As it suffers

from lack of deployment flexibility; expensiveness; and limited extension of functionality

and the inefficient management of resources, software middleboxes and VNF were intro-

duced, and their potentials for security were demonstrated. However, orchestrating virtual

network function is a complex process that inefficient one can turn over the outcome of the

virtualisation. An analysis of orchestration frameworks has been followed by a review of

the latest state of art search on the placement part of the orchestration. It has demonstrated

the limitations of currently proposed systems of deploying security functions in multi-tenant

environments due to the unique constraint and requirements of these functions such as the

complexity of features extracted from network traffic and their processing to north-south

traffic is contradictory to other network functions. Based on the previous discussion, this

thesis will address the efficient placement of security VNF in a multi-tenant virtualised in-

frastructure. In the next chapter, we propose a placement framework of the security functions

in a virtualised infrastructure. We identify the placement constraints then propose a classi-

fication to guide the placement strategy of the framework to efficiently allocate the security

functions.

45

Chapter 3

Design of a Resource-Aware,

Security Placement Framework

3.1 Overview

In multi-tenant virtualised data centers, users run different applications, each with differ-

ent security requirements. For instance, a typical web server may require security modules

to detect and mitigate HTTP flood attacks and SQL injections, while critical servers may

require a firewall, IDS and/or DPI to guarantee high availability and data integrity. We pro-

pose a placement framework for security services in multi-tenant virtualised data centers

where security modules are deployed as VNFs throughout the infrastructure. Based on the

classification of how modules process traffic, we identify the allocation strategies suitable

for allocating security functions through the network infrastructure. The framework offers

the customisation to fulfil diverse tenants needs for different security services and levels of

protection and reduce the complexity of having to manage shared modules. A placement al-

gorithm is responsible for selecting allocations for security VNFs to satisfy the requirements

and constraints of the security service requests. We propose a resource-aware placement

algorithm that maintains an efficient usage of the data centers resources by maintaining min-

imum usage of computing and networking resources.

3.2. Framework 46

The following sections present the design of the proposed placement framework. The frame-

work architecture and its characteristics are presented in Section 3.2. In Section 3.3, we

propose a security module classification based on traffic processing granularity. Then, we

design allocation strategies for the resource-aware placement framework that are based on

the classification. Then, we represent the constraints and objectives of the placement. In

Section 3.4, we formulate the placement problem then show the reduction of the placement

problem to the variable size variable cost bin-packing problem. Finally, We adopt heuristic,

meta-heuristic and near-optimal solutions to the placement problem, and we propose a one-

dimensional implementation to the placement that eliminates the communication overhead

of the problem in Section 3.5.

3.2 Framework

We propose a security placement framework for multi-tenant virtualised environments that

address the challenges of legacy and monolithic security deployment through exploit SDN

and VNF technologies. Security Services will be offered as software modules that are allo-

cated throughout the infrastructure as VNF to process the designated traffic. The modules

are offered on a per-tenant basis, and each request will result in allocating a module which

will be deployed as one or more VNF instances of the software module to process flows

of the requesting tenant. A high-level architecture of such the framework is presented in

Figure 3.1.

3.2.1 Architecture

The framework is responsible for the placement and management of security services. As

shown in Figure 3.1, it is managed from a logically centralised controller that maintains a

network-wide view and handles communication to and from the network infrastructure. The

framework stores security software modules in a database that can be easily updated. It

monitors the system components, their temporal resource utilisation, the network state (e.g.,

3.2. Framework 47

Storage
Hardware

Computing
Hardware

Network
Hardware

Hardware Resources

Virtualisation Layer

VNFs instances SDN switches

Virtualised Environment Infrastructure

VNF Manager

Security Placement Framework

Software Modules Database

Firewall IDS Anomaly
detector

Configure Switches to route
traffic to/from switches and

VNF instances

VNF Orchestrator
Tenants

Allocate,start and stop
VNF and manage VNF

allocated resources

Logically Centralised Controller

SDN Controller

Figure 3.1: Security Placement Framework

traffic distribution, network failures, VM migrations), and subsequently responds to reflect

any operational changes. The controller consists of two main units: a VNF orchestration unit

and a VNF manager unit. The VNF orchestration unit is responsible for accepting tenants’

requests for security services and converting it into deployment orders of VNF instances.

It is also responsible for the placement process where it selects the locations of the VNF

instances which are then executed by the VNF manager unit.

Furthermore, it communicates with the SDN controller to install the rules to enforce steer-

ing the designated traffic through switches to instances’ selected locations, and periodically

retrieving flow and port statistics from all network devices. While the VNF manager unit

is responsible for managing the virtualised network and compute resources available for the

3.2. Framework 48

security functions deployment. It is responsible for the start and stop of the VNF instances

and allocating their resources with the capability of provisioning their resources if needed

by continuously monitoring their performance. Furthermore, it reports periodical updates of

locations resources to the VNF orchestration unit. The main characteristics of this system

are detailed below.

3.2.2 Characteristics

3.2.2.1 On-path Deployment

Our approach allocates software modules as VNFs on-path of the actual traffic to avoid

redirecting traffic through a non-minimal path. This approach will reduce the detour cost of

the path that traffic has to take to pass through a security function as shown in Figure 3.2.

Figure 3.2a shows traffic flow from inbound point 1 to outbound point 8 with the shortest

path through 2 and 5. On-path deployment will require the middlebox to be deployed on the

shortest path for instance at point 2 as shown in the figure. The off-path deployment will not

restrict deployment to shortest path points as shown in 3.2b where middlebox deployed in

point 4 that is not is the shortest path selected by the routing algorithm which requires traffic

to be rerouted to a non-shortest path (through points 3,4,7 and 9).

3

2

7

8

5

1

6

9

4

Inbound
Traffic

Outbound
Traffic

MB
Shortest
path

(a) On-path Deployment

3

2

7

8

5

1

6

9

4

Inbound
Traffic

Outbound
Traffic

MB
Non-

Shortest
path

(b) Off-path Deployment

Figure 3.2: On-path and Off-path Deployment

3.2. Framework 49

To allow the on-path deployment of the security VNFs, deployment location must be on-

path too. Therefore, the framework will utilise location that is collocated with switches of

the network to deploy the security functions. Traffic is rerouted from switches to the security

function and back as shown in Figure 3.3.

Security
Functions

Figure 3.3: Security Functions Collocated with Network Switches

This approach will reduce overhead and save network bandwidth which complies with our

resource-aware approach. However, It requires that the placement algorithm will be routing-

aware to determine the on-path points for the placement of VNFs.

3.2.2.2 Traffic Directionality

While east-west traffic is the dominant traffic direction in data centers, security functions are

designed to protect against north-west traffic as illustrated in Section 2.5.4.4. Furthermore,

east-west traffic is concentrated on the top of rack level where data centers operators try

to consolidate traffic-correlated VM (usually instances/tiers of the same application) in one

rack to avoid congestion. Rerouting this traffic outside of top of rack switch for processing

is a process called hair-pinning and can result in a massive explosion in the numbers of

middleboxes and increases the complexity of the routing which pointed by VMware COO

in [134] Therefore, our approach only considers north-south traffic when placing security

function such as firewalls, intrusion detection and deep packet inspection.

3.2.2.3 Services to Security Functions Mapping

Our work reduces the complexity and security risks of deploying shared modules by adopting

a non-sharing strategy. As pointed out in Section 2.5.4, sharing security modules among

multiple tenants may save resources but increases the complexity of managing these services.

3.2. Framework 50

Thus, the non-sharing policy will eliminate this complexity and introduce the customisation

that can be offered to a multi-tenant environment such as quality of services (e.g. throughput)

by service providers. Furthermore, it reduces the security risks for illegitimate access that

can cause security policy violations. Therefore, Our framework accepts tenants’ requests to

security services and maps these requests to security modules dedicated to processing the

traffic of the requested tenant and deployed on-path of this traffic.

3.2.2.4 Elastic Security Provisioning

The framework implements security services as VNFs with logically centralised manage-

ment to allocate, deploy, and orchestrate them in software, hence allowing for flexible scal-

ing, reduced deployment time, and minimal reconfiguration overhead. The deployment flex-

ibility provided by NFV allows the elastic deployment of security functionality when and

where required, hence increasing resource usage efficiency. For example, a new (e.g., miti-

gation or filtering) function can be deployed in response to the detection of an attack, or new

instances can be added to distribute attack detection and prevention to multiple points. Poli-

cies in general and security functionality, in particular, can also be migrated in response to a

reconfiguration of the network or the services running on top of it (e.g., live VM migration

or consolidation).

3.2.2.5 Service-based Model

NFV adheres to the service-based model of cloud computing. It offers the key features of

any cloud service such as the abstraction of the infrastructure and applications as service

interfaces, the sharing of multi-tenant resources, the on-demand self-service provisioning,

and near real-time deployment. It allows each tenant to request security services according

to the required level of protection and SLA. For instance, a tenant can require a firewall, IDS,

and DPI services on top of their standard leased resources, or a combination of them with

the possibility of changing the requested services later.

3.3. Resource-Aware Placement 51

3.2.2.6 Resource-Aware Allocation

The allocation strategy for placing the security functions ensures capturing the indented traf-

fic for accurate and efficient detection while incurring minimal impact on the monitored

traffic/services through, e.g., maintaining shortest path routing and reduces the overhead of

the framework. The allocation decision of a security software module is based on three

factors.

1. Require minimum traffic steering.

2. Ensure enough resources are available to accommodate the additional module on the

chosen location/host.

3. Efficient management of resources to reduce duplication, increase the network-wide

security system usable capacity.

To achieve the resource-aware allocation, a resource-aware placement based on the security

modules classification according to traffic processing granularity will be introduced in the

next section.

3.3 Resource-Aware Placement

The placement of security modules VNFs in multi-tenant data centers can be defined as

selecting a location for VNF instance(s) to fulfil a tenant’s request for a security module.

The placement must guarantee that the module is working correctly by satisfying the module

constraints such as (the required traffic is passed to the module, enough computing resources

are available at the location for the module to process the traffic...etc.). However, the resource

cost of allocating the modules varies based on the location point(s) selected, for instance, one

allocation may require traffic to be steered to a non-shortest path while another may require

multiple instances to be deployed. Therefore, when many allocations satisfy a module’s

requirements, the placement algorithm is responsible for selecting one of them based on the

3.3. Resource-Aware Placement 52

certain objectives which make it a resource allocation problem. A typical objective of VNFs

placement can combine computing resources, power consumption and/or communication

cost under specific problem constraints such as (quality of services and end-end-delay..etc).

However, security modules process traffic differently from other network functions which

affect the selected location for deployment. Thus, we begin by classifying security functions

based on traffic processing granularity.

3.3.1 Traffic Processing-based Classification

Security modules process traffic in different ways, depending on how threats are being de-

tected. Traffic can be processed on a per-packet, per-flow, or per-flow-aggregate basis where

each level can protect against different types of security vulnerabilities. For example, per-

packet or per-flow processing cannot detect threads that span multiple flows (e.g. DDoS

flooding, worm spreading and probes). Therefore, each module requires a different granu-

larity of traffic processing and traffic distribution in the network will constrain the allocation

of security modules to locations where this granularity can be satisfied. We have produced

a set of equivalence classes of security functions based on the detection method of differ-

ent attacks and subsequently, the granularity of the traffic being processed, as illustrated in

Figure 3.4.

3.3.1.1 Stateless

Stateless (packet-based) class: The first equivalence class represents modules that process

traffic at the individual flow or packet level. Detection or mitigation decisions are made based

on the state of a single packet or flow. The typical operation of a module of this class is to

match patterns of the packet or flow specification against a database of signatures/access lists

and take action on finding a match (e.g., block, pass, alert and/or log). Since this packet/flow

matching on a given signature is done independently at different links, replicated instances

of this class can be distributed across multiple network locations. This can be achieved by

per-flow routing and by placing duplicate detection modules at diverse network locations

3.3. Resource-Aware Placement 53

Figure 3.4: Security Function Equivalence Classes

where traffic matching a certain specification is being split due to ECMP routing. Exam-

ples of this equivalence class include Access Control List (ACL)-based stateless firewalls

that evaluate packet contents statically; firewalls that keep track of the bidirectional state of

network connections (e.g., TCP streams, UDP communication) [135]; signature-based IDS

and Deep Packet Inspections (DPI) [136] systems where header/payload data are processed

against a database of known attack signatures (e.g., Snort [13], Bro [40], Suricata [14], etc.).

3.3.1.2 Stateful

Stateful (flow-based) class: The second equivalence class consists of security modules that

process traffic to extract anomalies based on coarser granularity than a single flow. They use

techniques based on different features of traffic such as changes in traffic volume (Change

Point Detection [137]), deviations in a given traffic feature distribution (Entropy, Histograms,

etc.) [138], or use more complex machine learning techniques such as, Outlier detectors [46],

classifiers, neural networks and SVM [15]. They mine information from flow aggregate

features to construct a model of normal behaviour and detect anomalies based on deviations

from such normality. Therefore, steering all the intended monitored flows to one instance of

3.3. Resource-Aware Placement 54

this type results in an accurate construction of the behaviour model. However, some modules

may be able to periodically share meta-information between distributed instances that work

together which can be an alternative to steering the entire traffic flow to one instance.

3.3.2 Allocation Strategies

Based on the previous classification, we propose four resource-aware allocation strategies

that can be adopted when placing a security network function on-path in the network in-

frastructure as pointed out in Section 3.2. These strategies are designed to 1) satisfy the

traffic granularity of the function as represented by the function class and 2) save the net-

work and computing resources of the infrastructure. The on-path allocation targets minimise

resources overhead by the system, however, most modern networks support ECMP-based

routing where traffic is split among multiple paths. Therefore, the proposed strategies must

consider the ECMP traffic split in the network topology to ensure the capture of the intended

traffic by the network function.

3.3.2.1 Independent Duplication

Security modules that process traffic based on flow or stateless packet-level characteristics

(e.g., stateless detection based on packet header signatures) can employ replicated instances

across traffic split switches without the need for further coordination between them as long

as the entire traffic destined to a particular tenant is monitored. Independent duplication will

adopt this strategy where independent replicates VNF of the same module will be deployed

whenever traffic is split.

3.3.2.2 Dependent Duplication

Dependent duplication strategy will adopt the distributed approach as illustrated in 2.5.4.3

where modules that process traffic based on coarser granularity than a single flow such as (

anomaly detection based on statistical properties of the aggregate traffic) need to coordinate

3.3. Resource-Aware Placement 55

between duplicate instances to accurately capture the traffic features. Although, the com-

munication overhead bandwidth resulting from the coordination between VNF the instances

should not exceed the communication overhead in case of redirecting traffic to one instance.

3.3.2.3 Single Instance

Approaches that based on coordination between distributed instances propose a trade-off be-

tween the accuracy of anomaly detection and the amount of data communicated over the

network which based on how much data reduction has of the communication overhead com-

pared to one instance deployment has been achieved and how frequent the nodes need to

share information to maintain accurate detection [128]. Therefore, single instance strategy

will be adopted when coordination between instance is not acceptable or does not provide

any gain such as (e.g a function based on many features to extracted which results in huge

amount of information need to be shared that is equal or more than the original traffic or

the information need to be shared with high frequency that rerouting traffic to one instance

will induce less overhead. Single instance strategy based on traffic rerouted through a single

switch where a single instance of the security module would be deployed which would be

decided by the VNF orchestration unit.

3.3.2.4 Ingress-control

Mitigation can be defined as a process that enables a victim server to continue serving re-

quests in the presence of an attack. This process is usually temporary and can be uplifted

once the attack subsides. For example, Somani et al. in [25] discuss mitigation and recovery

methods for DDoS attacks in the cloud as resource scaling, victim migration, OS resource

management, software-defined networking and finally DDoS mitigation as a service. Such

mitigation methods are based on scaling resources or attack filtering which involves filter-

ing the attack traffic and dropping it without disturbing legitimate traffic [25, 139]. Other

methods are based on rate-limiting techniques where control the rate of traffic sent or re-

ceived. As filtering or rate-limiting process include dropping or rate-limiting attack traffic

3.3. Resource-Aware Placement 56

that consumes victim and infrastructure resources such as network bandwidth, Therefore,

Ingress-control strategy is based on allocating functions to be close to traffic ingress point

to reduce attack traffic entering the network, consume network resources, saturate network

links and cause congestion.

3.3.3 Constraints

The placement of security VNFs, which are requested as security services by tenants over

a virtualised environment in distributed locations collocated with network switches, casts as

a resource allocation problem where different allocations for a security function will cost a

different amount of computing resource and communication overhead of the infrastructure

resources based on the allocation strategies proposed. We show this cost as traffic, resources

and security constraints presented below.

3.3.3.1 Traffic

The traffic constraints of a security module will limit the available locations where the re-

quired traffic granularity is satisfied. This will introduce computing and communication

overhead based on the selected location. As shown for the following cases:

• The security modules of the stateless class process traffic on a per-packet or per-flow

basis and, therefore, they can process traffic in parallel over a per-flow routing protocol.

Consequently, they can adopt the independently duplicated strategy over links to cover

the overall traffic distribution. For example in Figure 3.5, traffic enters the network

through ingress point 4 and network switches/routers and links carrying the traffic for

a tenant through egress point 8. Assuming flow-based ECMP routing where flows

are distributed on equal cost paths and assuming that traffic from ingress 4 will be

distributed on 2 equal costs shortest paths 3,5 and 7,9 to destination 8 as shown in red

arrows. Therefore, a stateless security module requested for a tenant through egress

3.3. Resource-Aware Placement 57

8 will have three allocations that satisfy the traffic constraints of the function to be

considered:

– Ingress allocation: a single instances of the function is deployed at the ingress

point, as shown in a green block in Figure 3.5a which represent minimum re-

sources consumption and overhead presented by deploying only one instance and

no redirecting of traffic is required.

– Egress allocation: a single instance of the function is deployed at egress switch

covering all traffic destined to/originating from the tenant’s host as shown in a

green block in Figure 3.5b which represents minimum resources consumption as

well.

– Intermediate allocation: multiple instances of the function are deployed at inter-

mediate switches as long it covers all the traffic to/from the tenant. For example

at points 5 and 7 as shown in Figure 3.5c which represent a computing resources

overhead due to duplicating instances deployment but no redirecting of traffic is

required.

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

MB

(a) Ingress Allocation

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

MB

(b) Egress Allocation

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

MB

 MB

(c) Intermediate Allocation

Figure 3.5: Traffic Constraint for Independent Duplication of the Stateless Class

• The security modules of the stateful class process traffic to extract anomalies based

on coarser granularity than a single flow. Consequently, they adopt a dependent du-

plicated strategy over links, and a dependent instance will be deployed to cover the

overall traffic distribution. Monitoring nodes will be deployed wherever traffic is dis-

tributed. These nodes will extract the needed features from the traffic and share this

3.3. Resource-Aware Placement 58

information with the main node that takes the detection decision. For example, in Fig-

ure 3.6 traffic enters the network through one ingress point and out through one egress

point to the tenant’s host and routed the same as figure 3.5. A stateful security module

requested for the tenant will have the same three allocations to the stateless shown in

Figure 3.5 except in case of multiple instances deployment. One main instance at one

point and monitoring instances for the rest of the points will be deployed, as shown in

figure 3.6.

– Ingress allocation: a single instance of the function is deployed at the ingress

point, as shown in a green block in Figure 3.6a which represents minimum re-

sources consumption.

– Egress allocations: a single instance of the function is deployed at egress switch

covering all traffic destined to/originating from the tenant’s host as shown in a

green block in Figure 3.6b which represents minimum resources consumption.

– Intermediate allocations: multiple instances of the function are deployed at in-

termediate switches as long it covers all the traffic to/from the tenant. One of

them will be the main instance and the others will be monitoring instances of the

function. For example, a main instance at points 5 and a monitoring instance at

point 7, as shown in Figure 3.6c. Of course, the other way around with the main

instance in 7 and the monitoring instance at 5 is valid too. This allocation re-

quires a computing overhead due to duplication and a communication overhead

due to coordinating communication between instances.

It is important to consider the communication that carries the metadata information

between the monitoring node in 7 and the main node in 5 as shown in Figure 3.6c in

dotted lines as it will impose a communication overhead to the allocation. Moreover,

the path for that communication is a multi-path for instance, the communication path

between 7 and 5 can follow the path 4,3 or 9,8. Minimising this overhead must be

considered, such as selecting the path with minimum cost in case different paths are

available with different costs.

3.3. Resource-Aware Placement 59

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

MB

(a) Ingress Allocation

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

MB

(b) Egress Allocation

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

Monitoring
MB

Main
MB

(c) Intermediate Allocation

Figure 3.6: Traffic Constraint for Dependent Duplication of the Stateful Class

• A single-instance allocation will be adopted when independent or dependent duplica-

tion is not accepted. In such case, all traffic must be routed to one instance of the

function as shown in Figure 3.7. A security module requested for the tenant will have

multiple allocations that satisfy the traffic constraints where every available point for

allocation is to be considered in case of single instance allocation strategy. This strat-

egy will impose restrictions on routing the traffic such as in the case of intermediate

allocation as shown in Figure 3.7 where multiple paths are dropped.

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

MB

Figure 3.7: Traffic Constraint for Single Instance

• In case of multiple ingress point network, ingress allocations will require multiple

instances to be deployed at each ingress point as shown in Figure 3.8 and will be

treated like intermediate allocation.

– For a stateless class: duplicated instances of the function are deployed at each

ingress point, as shown in a green block in Figure 3.8a which represent overhead

3.3. Resource-Aware Placement 60

on resource consumption in the form of duplication.

– For a stateful class: multiple instances of the function is deployed at each ingress

switch covering all traffic destined to/originating from the tenant’s host one main

and monitoring instances for the rest as shown in the green block in Figure 3.8b

which represent computing resources overhead in the form of duplication and

communication overhead in the form of communication between monitoring and

main instances as shown as a dotted line.

– for single instance: single instances of the function are deployed at one ingress

point and rest of traffic will be routed to that point as shown in Figure 3.8c with

communication overhead in form rerouting traffic to a non-shortest path.

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

MB
Ingress

MB

Ingress

(a) Stateless Allocation

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

Ingress

Monitoring
MB

Main
MB

(b) Stateful Allocation

3

2

7

8

5

1

6

9

4

Egress

Destination/Tenant

Ingress

MB

Ingress

(c) Single Instance Allocation

Figure 3.8: Traffic Constraint for Multiple Ingress Networks

3.3.3.2 Resources

While each location has limited computing resources defined by a vector (CPU cores, Mem-

ory...etc.), each request from a tenant must be associated with a similar vector of the esti-

mated resource required which is the resources required for the modules to process the re-

quired amount of traffic. The chosen allocation must then satisfy the resource requirements

of the request where the resources available at the chosen location(s) must be greater than or

equal to the resources requested, and only the allocations that satisfy the traffic and resource

constraints are considered in the selection process. However, computing the resources re-

quired by a security module is a complex process. For any traffic processing application

3.3. Resource-Aware Placement 61

such as a security function, the temporal traffic characteristics can have a significant impact.

Moreover, beyond a certain load, any increase in the traffic rate will cause packets to be de-

layed and possibly dropped. For example, reports indicate that stateless IDSs such as Snort

and Suricata start dropping/passing packets in case of dealing with a large amount of traffic,

high speed or large packet size [140]. Thus, assigning resources to security modules must

ensure that instances would process traffic at line rate with no packet drop.

We conclude that the resources required by a security module depend on many factors such

as hardware, configuration, platform, the rule set, traffic rate, etc [140–145]. However, when

estimating the resources for the module deployment, traffic intensity is the main factor to

consider under the same platform. Thus, each security module available to be requested by

tenants will be associated with a resources vector that represents i) baseline resources which

is the amount of resources required for initial deployment of the module and ii) traffic re-

sources which is resources per traffic unit associated with each traffic type such as (e.g TCP,

HTTP, mixed traffic, etc.) and represents the estimated amount of resources required to pro-

cess a unit of traffic of this type. Besides, each request will be associated with the estimated

rate(s) of each traffic type(s) to be processed for the requested tenant. Similar approaches

have been adopted by other researchers in allocating computing resources, in [146] the two

parts of resources named ”rigid” and ”fluid”, while in [147], they were ”load-independent”

and ”load-dependent”. From the service provider point of view, baseline resources and traf-

fic resources for a module are to be determined empirically by testing each module in the

modules pool over infrastructure [148].

In case of mitigation modules with a filtering approach that results in dropping a significant

amount of traffic before saturating network links, an ingress-control strategy will be adopted.

The strategy will restrict the allocation to be close to the ingress point to ensure minimum

disturbance to tenant and infrastructure. It also allows saving network bandwidth to other

tenants and reduces overall latency.

3.3. Resource-Aware Placement 62

3.3.3.3 Security Constraints

A security-related constraint has been proposed by researchers that include forcing/prefer-

ring allocating certain services or services’ requested by a specific tenant to certain locations

for security reasons. These rules will be forced through security constraints in the placement

and their cost will depend on which strategy allocation will be used.

3.3.4 Objective Function

The rest of this chapter will focus on the allocation of security modules over a virtualised

environment infrastructure using a resource-aware placement methodology. We focus on

security services placement in multi-tenant virtualised data centers where they are offered

as software modules that are allocated throughout the infrastructure as VNFs to process the

required traffic. The services are offered on a per-tenant basis as, and each request will result

in deploying one or more instances of security functions to process traffic of the requesting

tenant. The placement algorithm will be responsible for allocating the requested functions

to locations that satisfy the traffic, resources and security constraints detailed in the previous

section.

Since there will be more than one allocation that will satisfy the constraints of the request, the

framework will select one that optimises the objective function. For efficient management

of resources, we design the two-dimensional placement to optimise the resources usage by

joint optimisation of communication and computing resources. We accomplish this with

two objectives; The first objective is to maximise the residual resources of the framework,

which represents the spare computing resources of the locations after the placement has

been completed. The second objective is to minimise the communication overhead of the

allocation which represents the communication bandwidth overhead due to the allocation

and targeting minimise bandwidth usage for the placement.

3.4. Mathematical Model 63

3.4 Mathematical Model

In the rest of the thesis, we focus on the static placement problem of security modules in a vir-

tualised multi-tenant environment (e.g. data centers) considering the computing and network

resources. To satisfy the traffic constraints, the stateless class modules will independently

duplicate over links in case of allocations where traffic is distributed over multiple links. In

contrast, the stateful class modules will dependably be duplicated as one main instance and

monitoring instances that will be duplicated over links, where traffic is distributed. To sat-

isfy the resources constraint, only locations with computing and communication resources

more than the resources required by the security module will be considered for allocation.

The placement framework will be forcing the security constraints, restricting allocation to

predefined location(s) and the single instance allocation too. The allocation that satisfies all

the constraints will be considered in the placement, and the final selection for allocation for

each requested module will be based on optimising the objective function proposed in Sec-

tion 3.3.4. In this section, we model the placement problem as an instance of a bin packing

problem.

3.4.1 Formulation

The placement of security functions is an instance of a variable cost – variable size bin

packing problem (VSBPP) [149]. The bins represent switches and links each with capacity

that represents computing resources and bandwidth respectively. The requested security

modules are the items, bin sizes are the resource capacity of the switches and bandwidth

capacity of the links. The cost of allocating a request to a location will have two dimensions,

computing and a communication cost. To represent the problem as VSBPP, every request

must be allocated to only one location. Therefore, every request will be associated with a

tenant and a security function requested by that tenant.

A list of the available locations for the deployment will be defined and considered for the

allocation. Every location available has two dimensions of resources, switches dimension

3.4. Mathematical Model 64

and links dimension. The switches dimension will represent the set of switches for a request

to be allocated, while the links dimension will be the links representing the function com-

munication overhead to allocate the request in the switches. Egress locations that represent

allocating requests in egress switches can be used to allocate both types of security functions

and have empty links dimension, while locations representing other allocations are designed

for only one type. Therefore, every request can be only associated with locations that could

allocate its function type (stateless, stateful and single-instance).

For example, in Figure 3.5a, the location of the stateless class, shown in green, will be

represented as two dimensions location, switches dimension as shown in equations 3.1 and

links dimension shown in equation 3.2. However, the links dimension will be empty as

shown:

Switches dimension

Location.S={s4 : main instance} (3.1)

and links dimension

Location.L={} (3.2)

Another example, in Figure 3.5c the location of the stateless class, shown in green, will be

represented as shown in equations 3.3 and 3.4.

Switches dimension

Location.S={s5 : main instance, s7 : main instance} (3.3)

and links dimension

Location.L={} (3.4)

Another example, in Figure 3.6c the location of the stateful class, shown in green, will be

represented as shown in equations 3.5 and 3.6:

3.4. Mathematical Model 65

Switch dimension

Location.S= {s5 : main instance, s7 : monitoring instance} (3.5)

and links dimension

Location.L={[(s7, s4)], [(s4, s3), [(s3, s5)]} (3.6)

Locations will cover all allocation possibilities for requests, for example, there is another

allocation where the main instance will be in s7 and the monitoring instance will be in s5

instead of the other way in the example. Every location will be associated with a request, but

a request can be allocated to only one location. For example, considering the shortest path

routing between monitoring and main instances, another location can be considered with the

same switches dimension, but for the links dimension, it will use the communication path

through switches 9 and 8.

The cost of different allocations is presented as the sum resources consumed of the alloca-

tion in both dimensions and will increase with duplicated/monitoring instances deployed in

the architecture to cover traffic distribution. Therefore, to minimise this cost and optimise

the placement to our objectives presented in 3.3.4, the allocation will reduce duplicates and

subsequently keep allocation in minimum resource consumption locations while maintain-

ing all constraints of allocating the functions satisfied. For simplicity, we assume switches

resources is a one-dimensional vector.

The formulation of the problem is as follows: Let the overall framework include a set of

q > 0 requests Q= {r1, r2,rq} with each request r representing a function requested

by a tenant each, set of m > 0 switches S= {s1, s2,, sm} each with attribute s.c as the

resources capacity of s, a set of n > 0 links L= {l1, l2,ln} each with attribute l.b as

the bandwidth capacity of link l and attribute l.w as the link weight, a set of k locations

P= {p1, p2,pk}, switches and links dimensions for locations for different requests pre-

sented in the following two metrics. A matrix u of size k x q x m representing the switches

3.4. Mathematical Model 66

resources cost of allocation where up,r,s is location p required resources to be allocated in

switch s to satisfy request r; or zero if location p can not accommodate request r due to

function type or does not require any resources to be allocated in switch s. A matrix v of

size k x q x n representing the communication cost of allocations where vp,r,l is location p

required bandwidth to be allocated in link l to satisfy request r; or zero if location p can not

accommodate request r due to function type or does not require any bandwidth to allocated

in link l. A matrix w of size k x q represents the validation of allocating requests to locations

where wp,r equal 1 if the location p valid for satisfy request r or zero otherwise. This matrix

enforces security constraints when allocating security modules are constrained to specific

servers, also it will be used to force allocation security class type match.

We have two objectives: the first objective is to maximise the residual resources (RS) which

represents the spare resources in switches after placement. The second objective is to min-

imise Communication Overhead (CO) which is the communication cost of the placement

that is represented as the sum of communication overhead traffic rate on each link multiplied

by the link weight. The allocation is represented as a binary variable x of size qxk where

xr,p=1 when request r is allocated to location p; 0 otherwise. The problem variable x is

represented as

xr,p ∈

1,

0

∀r ∈ Q, ∀p ∈ P (3.7)

The formulation is as follows: , i.e.:

max .
[∑
∀s∈S

s.c−
∑
∀r∈Q

∑
∀p∈P

∑
∀s∈S

xr,p · up,r,s
]

(3.8)

min .
[∑
∀r∈Q

∑
∀p∈P

∑
∀l∈L

xr,p · vp,r,l · l.w
]

(3.9)

3.4. Mathematical Model 67

s.t.
∑
∀r∈Q

∑
∀p∈P

xr,p · up,r,s ≤ s.c ∀s ∈ S (3.10)

∑
∀r∈Q

∑
∀p∈P

xr,p · vp,r,l ≤ l.b ∀l ∈ L (3.11)

xr,p = 0, ∀r ∈ Q, ∀p ∈ P if wp,r = 0 (3.12)

∑
∀p∈P

xr,p = 1, ∀r ∈ Q (3.13)

The first objective function of the formulation is represented in equation (3.8) as maximising

the residual resources after the placement. The Second objective function of the formula-

tion is represented in equation (3.9) as minimising the communication overhead after the

placement. The constraint in equation (3.10) represents the switches capacity constraints.

The constraint in equation (3.11) represents the links capacity constraints. The constraint in

equation (3.12) represents the location-validity for requests where security constraints and

the function type of the request must be satisfied by the location. The constraint in equa-

tion (3.13) ensures that each request is allocated to one location.

3.4.2 Security Placement Reduction to VSBPP Problem

As classic bin-packing problems have been shown to be NP-hard [150]. To prove that the

placement of security modules in multi-tenant data centers is NP-hard problem, we reduce

the known NP-hard problem variable sized bin packing problem (VSBPP) with variable cost

to our placement problem in polynomial time. In VSBPP a set of items is going to be

allocated to a set of bins. The bins have different sizes and different costs, and the objective

is to minimise the overall cost of bins used for packing the items. Consider the security

modules requests are the items, consider each switch and link be a bin with limited capacity.

3.5. Solution Methods 68

Given an instance of the VSBPP, we can transform it to an instance of the placement problem

in polynomial time.

• Create a list of locations that represent the combinations of switches and links for

each possible location and which security class can be allocated to as described in

Section 3.4.1.

• Allocate requests to locations with matching type.

• Extended the cost attribute of each item to represent the consumed size of each loca-

tion.

• The objective still to minimise the cost of bins representing the amount of resources

consumed.

The above reduction is trivial and can be carried in polynomial time. Therefore, the VSBPP

problem is reducible to the security function problem in polynomial time, and hence the

problem is NP-hard.

3.5 Solution Methods

Since the VSBPP is NP-hard, exact methods can not solve large instances of the problems

within a reasonable time. While not-optimal/ approximated solutions are proposed to solve

NP-hard problems, their accuracy varies. Some of the thesis algorithms have approximation

guarantee accuracy (e.g. First Fit Decreasing), and thus they are not problem-specific, others

like local search based algorithms have no accuracy guarantee and mainly depend on the

shape of the search space of the problem [151]. Exploring the optimality of different algo-

rithms for our placement problem would result in a significant reduction in resource usage

in a virtualised environment such as cloud data centers.

Therefore, we explore various approaches used to solve similar problems such as VSBPP

and the VNF placement problem to determine their optimality and performance in solving

3.5. Solution Methods 69

the placement of security functions problem. For example, Heuristic algorithms are simple

to design and implement and very efficient as well. However, it can be very different in

effectiveness according to the different problems. Some are approximated or feasible solu-

tion guarantee while others can not guarantee a feasible solution by the end of the algorithm.

Greedy Constructive heuristic is one of the most common used heuristic algorithms and many

have proposed it to solve similar problem to our placement problem. It is usually used in

cases of very little compute time and very large instances such as First-Fit Decreasing (FFD)

and Best-Fit Decreasing (BFD) algorithms that have been proved to be approximated guaran-

tee in solving classic bin-packing problems within a polynomial time [152]. Moreover, the

most common meta-heuristics algorithms used in the literature are the Genetic Algorithm

(GA), Greedy Randomized Adaptive Search Procedure (GRASP), Neural Networks (NN),

Threshold Accepting Algorithms (TAA), Simulated Annealing (SA), and Tabu Search (TS).

However, accuracy of the meta-heuristic algorithms is based on the search space of problem.

We adopt a Tabu search based algorithm to solve the security function placement as it has

been used in bin packing problem [153] and recently in VNF placement problems [154, 155]

and it also showed better performance over other meta-heuristics algorithms for large size in-

stance when solving bin packing instances [151]. In the following, we describe the adoption

of these solutions to solve the security function placement problem:

3.5.1 Constraint Programming

The first approach is the constraint programming solution which gives an optimal solution

to the problem. However, the problem has two objectives which requires combining the two

objectives for the optimiser to solve. Sum the two objectives as stated in equation 3.14 is

a valid method to address this problem with maximising the residual resources objective in

equation 3.8 converted to minimise consumed resources. While other methods can be used

such as two-pass optimisation where it optimises the problem to one of the objectives, then

it optimises to the second objective. We target to find the optimisation that balances the two

objectives.

3.5. Solution Methods 70

min .
[∑
∀r∈Q

∑
∀p∈P

∑
∀l∈L

xr,p · vp,r,l · l.w +
∑
∀r∈Q

∑
∀p∈P

∑
∀s∈S

xr,p · up,r,s
]

(3.14)

3.5.2 Heuristic

Constructive heuristics algorithms start with 1) an empty subset/solution then 2) at each

iteration it selects an element that is believed to be the best one or admissible one and will

result in getting an optimal or feasible final solution. Then 3) insert the element into the

current subset. 4)go to step 2 until a solution is complete. We detail some of the most

common used greedy algorithms for the classic bin-packing problems as follow:

First-Fit Decreasing (FFD) and Best-Fit Decreasing (BFD) algorithms are decreasing algo-

rithms have been proved to be approximated guarantee in solving classic bin-packing prob-

lems within a polynomial time, with an approximation of not more than 11
9
·N+1 bins, where

N is the number of bins in an optimal solution [156]. There is also a simple heuristic such

as First Fit which is the same as FFD without ordering elements in non-increasing order. In

the following we explain the FFD algorithm:

1. Sort the bins arbitrarily

2. Sort the items in non-increasing order

3. Start with the empty solution

4. Select the first unassigned item in order

5. Select the first bin to receive the item (has enough space, choose empty bin if neces-

sary)

6. Insert the new assignment in the solution

7. Go to step 4 until no item is unassigned

The BFD algorithm is most widely applied to bin-packing, VM placement and VNF place-

ment problems. In BFD, the items are still sorted in decreasing order as in step 2 of FFD,

3.5. Solution Methods 71

but the sorted items are allocated to the best location where the best location is the one with

minimum space left after the allocation [157]. However, Best-fit can be interpreted in dif-

ferent contexts. For example, in [149] Beloglazov et al. solve a VM placement problem

with the objective to save power consumption. They used a power-aware best fit decreasing

algorithm that allocates virtual machines (VM) to locations that cause the least increase in

power consumption as a best-fit location. Some approaches add location/bins order to the

algorithm such as in [158] authors sort hosts with the highest current utilisation among the

least increased power consumption to increase energy efficiency. Thus, we propose adopt-

ing a resource-ware BFD decreasing algorithm to solve the placement of security functions

with resources usage optimisation. The decreasing order of the requests will be based on

required resources, and the best-fit location will be selected based on minimum resources

consumption to optimise our objective.

3.5.3 Meta-Heuristic

Tabu search is based on local search (search among neighbours). It is proposed to solve the

local search problem of stuck on sub-optimal solutions by allowing non-improving moves

when a local optimum is encountered. It searches feasible solutions to find one that optimises

the objective function as well as local search. It starts by an initial solution then moves to

the next solution by searching the surrounding neighbouring of the current solution for a

solution better than the best feasible solution found by the algorithm so far. Then repeat the

operation with the new obtained solution until no improvement can be found or time/iteration

limit has been exceeding. However, tabu search broke the rule of moving to a better solution

by moving to a worst solution if no improvement solution can be found (local minimum).

Furthermore, it utilises a tabu list of solutions that is forbidden to visit. The tabu list consists

of recently visited solutions and can include user-defined solutions. The recently visited

solution is stored in a memory structure to increase the chances of visiting new solutions.

Nonetheless, aspiration criteria can remove a solution from the tabu list and override it to

allow for improving the solution in the tabu list to be considered for moving. Besides, the

3.5. Solution Methods 72

length of the tabu list and stopping criteria determine the complexity of the tabu search. It

should not be set too short or too long to avoid local optima or high complexity. Moreover,

the iterations of stopping criteria should be set reasonably to get a near-optimal solution

without complex calculations.

We design the main five components of Tabu algorithm that fit the placement of security

functions as follow:

1. Initial solution: initial solutions are examined for BFD and random solutions.

2. Neighbourhood solutions: Ideally, each feasible solution that involves moving each

virtual function from one location to the other could be a neighbour solution. However,

this can lead to a big search space, so we define the following neighbourhoods suitable

for our security placement.

• restrict the move to one function, with the largest resource size. If the function

does not have any feasible neighbours, no location can accommodate this func-

tion, the next function in size is to be selected.

• move can be shift or swap

3. Tabu list: Tabu list can be fixed size FIFO queue or memory structure. A memory

structure is where a function is moved from one location to another then we add the

move of this function go back to its original location to the tabu list , so it can not

be moved for the next n-1 movies where n is the number of functions which give the

chance to other functions to move before moving this function back. We implement

memory type with size n.

4. Aspiration rule:

• If a tabu move has a better solution than the most known solution.

• If no moves available but the tabu moves, due to no moves with better solutions.

Then we select the best tabu, best solution in the tabu list.

3.5. Solution Methods 73

5. Stopping condition:

• after m iteration.

• no feasible solutions in the neighbourhood can be found.

3.5.4 Near-Optimal Subset-Sum Solution

We adopted a Subset-sum solution that has been used as near-optimal solutions in problems

such as VM allocation [158] and variable size bin packing problems [159]. It is based on

the constructive heuristic that requires to solve the subset-sum/knapsack problem, which

is solved optimally in pseudo-polynomial time. It includes finding the best-fit functions

for each location, instead of finding the best location for each function. We can solve this

problem as a 0-1 knapsack problem for each location.

3.5.5 One-dimensional Implementation

Implementation of the placement problem can consider the computing resources and elim-

inates the communication overhead, which converts the problem to a one-dimensional re-

sources allocation problem. To eliminate the communication overhead and be able to satisfy

the traffic constraint, the stateful class modules will be allocated to switches where they can

capture all traffic destined to the requested tenant such as single ingress allocation or egress

allocation. Of course, this implementation is limited to architectures where at least one al-

location available for every user where are all terrific is passing through one point the same

as in egress allocation in Section 3.3. For-short, we reference the two implementations as a

one-dimensional model and two-dimensional model.

The same as the two-dimensional model, the one-dimensional model is optimising the place-

ment problem to achieve efficient management of resources. Therefore, the objective is to

maximise the residual resources of the framework which represent the spare resources after

the placement has been completed. While the allocation resources cost is represented by the

sum of the computing resources consumption of VNFs allocated to satisfy tenants requests

3.5. Solution Methods 74

and will be increased with duplicated instances of modules deployed in higher layers of the

hierarchy of the architecture to cover traffic distribution.

The formulation of problem is as follows: Let the overall framework include a set of q > 0

requestsQ= {r1, r2,rq} with each request r representing a function requested by a tenant,

a set of k > 0 locations P= {p1, p2,pk}, each with attribute p.c as the resources’ capacity

at location p which represent the sum of switches capacity in the location. A matrix w of size

k x q representing the validation of allocating request to locations where wp,r equal 1 if the

location p valid for satisfy request r or zero otherwise. For instance, for the stateful class,

only the ToR level will be valid for allocation. While, for the stateless class, there are three

parent locations that are valid. A matrix u of size k x q representing the locations resource

cost of allocation where up,r is the required resources to be allocated in location p to satisfy

request r; or zero if location p can not accommodate request r due to function type or does

not require any resources to be allocated. The allocation is represented as a binary variable x

of size qxk where xr,p=1 when request r is allocated to location p; 0 otherwise. The problem

variable x is represented as

xr,p ∈

1,

0

∀r ∈ Q, ∀p ∈ P (3.15)

The formulation is as follows: , i.e.:

max .
[∑
∀p∈P

p.c−
∑
∀r∈Q

∑
∀p∈P

xr,p · up,r
]

(3.16)

s.t.
∑
∀r∈Q

xr,p · up,r ≤ p.c ∀p ∈ P (3.17)

xr,p = 0, ∀r ∈ Q, ∀p ∈ P if wp,r = 0 (3.18)

3.6. Summary 75

∑
∀p∈P

xr,p = 1, ∀r ∈ Q (3.19)

The objective function of the one-dimensional formulation is represented in (3.16) as max-

imising the residual resources after the placement. The constraint in (3.17) represents the

location’s capacity constraints which are enforced by the resources requirements of the prob-

lem. The constraint in (3.18) represents the location-validity for requests which enforce the

traffic constraint of the problem and the stateful allocation constraint. The constraint in (3.19)

ensures that each request is allocated to only one location.

While the one-dimensional consider computing resources of the architecture, previous meth-

ods can be adopted to solve the implementation by adding the placement of stateful class

modules in single switch locations as a constraint.

3.6 Summary

In this chapter, The framework proposed has used the SDN and VNF technology to address

the limitation of legacy deployment of network function. It has tackled the specific con-

straints of security modules that previous virtualised network management systems failed to

address. It has exploited features like on-path deployment and non-shared models to save re-

sources and reduce management complexity. The framework allocation strategies are based

on the classification of security modules that depends on the granularity of traffic process-

ing in the module. These strategies have combined the efficient management of network

resources and satisfying the traffic granularity required by the security module.

The resource-aware placement is responsible for selecting the final allocation of the secu-

rity functions requests by satisfying the constraints of the placement presented by traffic,

resources and security constraints and maintaining efficient management of resources by op-

timising the placement based on optimising the computing and communication resources

objectives. Furthermore, we propose a one-dimensional implementation to the placement

3.6. Summary 76

problem that will eliminate the communication cost of the problem; however, it will restrict

the stateful class module to locations where all traffic flows are passing through.

77

Chapter 4

Implementation

4.1 Overview

The placement of security modules is a resource allocation problem, where modules re-

quested by tenants in virtualised data centers are allocated in a set of distributed locations

each with limited capacity. We focus on the initial placement of security equivalence classes

introduced in Chapter3. The following sections present the implementation of the proposed

framework on fat-tree as the most common virtualised data centers architecture. Moreover,

the implementation of the allocation strategy and the placement solutions on fat-tree will be

demonstrated.

The fat-tree architecture and its characteristics are presented in Section 4.2. Then the imple-

mentation of the allocation strategies will be discussed. Then, we represent the constraint

programming solution of the placement problem in Section 4.3. In Section 4.4, the imple-

mentation of the heuristic solution algorithm will be demonstrated. In Section 4.5, the imple-

mentation of a Meta-heuristic Tabu algorithm is presented. Then, a subset-sum Near-optimal

solution is discussed in Section 4.6. In Section 4.7, the LP solution of the one-dimensional

model of the placement problem is introduced. Finally, we conclude the chapter in Sec-

tion 4.8.

4.2. Architecture 78

4.2 Architecture

4.2.1 Fat-Tree Data Centers

A three-tier architecture is one of the common network architectures and considered the most

common in virtualised data centers [160]. It consists of three structural layers. An access

tier, the bottom level, in which each server is connected to one (or two for redundancy)

access switch. Each access switch connected to one or two switches at the aggregation tier.

An aggregation tier, in which each aggregation switch connects with multiple switches at the

core tier. Many data center architectures follow the three-tier architecture to a great extent

such as VL2, Fat-tree(Clos) and Bcube with every one of them has been built with a specific

purpose in mind, for example, VL2 is an agile architecture that targeted load balancing, flat

addressing and performance isolation between services [5].

The fat-tree topology, also known as Clos or Portland topology, is a scalable and fault-

tolerant architecture which is built around the concept of pods [161]. A pod is a group

of access and aggregation switches that form a Clos graph. Each pod is connected to the

core switches with another Clos, by evenly distributing the up-links between all the aggrega-

tion switches of the pod and the core switches. For a fat-tree with the size k, The core layer

contains k2/4 k-port switches at the top. The aggregation layer has k pods, each containing

two layers of k/2 switches. In the core layer, a port i in a core switch is connected to pod

i. On the other hand, every switch in the access layer is connected to k/2 servers. Thus,

a fat-tree with size k connects k3/4 servers. For example, a k=4 fat-tree topology shown

in Figure 4.1 with the three layers of switches (ToR, aggregation, and core). Fat-tree has a

diameter of 6 regardless of its size. The fat-tree can build with commodity Ethernet switches,

and the flows between 2 servers have multiple paths to consider. The core layer is the gate to

the data center; it is responsible for all flows going in and out of the data center.

4.2. Architecture 79

TOR

Aggregation

Core

Internet

Server
Pod1 Pod2 Pod3 Pod4

Security
fucntions

Figure 4.1: Fat-Tree Cloud Data Center Size k=4

4.2.2 Routing

We assume routing is flow-based Equal Cost Multiple Path (ECMP) [162] where a flow

is identified by the typical 5-tuple (source IP, destination IP, source port, destination port,

and the transport protocol type). In flow-based ECMP, flows are distributed over equal cost

links which guarantee load balancing and in-order packet delivery within the same flow. For

example, ”East-West” traffic destined to the server in grey in Figure 4.1 and coming from

other pods will be distributed in the upward path until it reaches a core switch, and then it

will traverse the dotted links in its descending path to the server. While ”North-South” traffic

coming from outside the data center will follow a deterministic shortest path route through

the dotted link to the destination.

4.2.3 Deployment Locations

Deployment locations for the security VNFs are collocated points to the network switches

at all layers. Traffic is rerouted from switches to the security function and back. The se-

curity function abstraction can be implemented as switch/router-integrated computing mod-

ules or on a separate, virtualised commodity x86 architecture that physically connects to

4.2. Architecture 80

a traffic-forwarding switch/router [163]. For example, a TCP acceleration network service

implemented using HP’s ONE (Open Network Ecosystem) server collocated with a network

switch in [164]. The location selected to deploy a security function must satisfy the con-

straints imposed by the traffic processing methodology of the network function. We exploit

the SDN enabled architecture to manage traffic in security functions and out to the destina-

tion.

For the capacity of the locations, design ensures that locations have enough resources to ac-

commodate requests from tenants. To distribute allocation workload on all network switches,

the designed architecture will distribute allocation workload (resources) equally on the three

layers in case of a heavy load of requested resources. Because duplication will increase

allocation cost in higher levels, switches initial capacity will increase for higher layers

based on duplication cost which depends on network size. Therefore, we assign switches

initial capacity in each level based on network size. For simplicity, we assume an equal

workload of both classes. If x the server request capacity is the maximum requested re-

sources for each server and that baseline and traffic part is 50% each, and as there is no

duplication on TOR level, a TOR switch location will have an initial capacity of 33% of

server request capacity ∗ number of servers per switch as shown in equation 4.1.

TOR capacity = 0.33 · x · k/2 (4.1)

For aggregation level, there is the same number of switches as in TOR level and to accom-

modate the same amount of resources accommodated to TOR level, for each switch location

duplication will increase the total resources requested by (k/2 + 1)/2 for the stateless class

and by 1 + ((k/2− 1)/(k/2)) · 1/2 for the stateful class which expressed in equation 4.2.

Agg capacity = (((k/2 + 1)/2) · 1/2 + (1 + ((k/2− 1)/(k/2)) · 1/2) · 1/2) · TOR capacity (4.2)

For core level, to accommodate the same amount of resources accommodated to TOR level

with half the number of switches in TOR level, there be ((k/2)2 + 1)/2 duplication for the

4.2. Architecture 81

stateless class and 1 + ((k/2 − 1)/(k/2)) · 1/2 for the stateful class which expressed in

equation 4.3.

Core capacity = (((k/2)2 + 1)/2 + (1 + ((k/2− 1)/(k/2)) · 1/2)) · TOR capacity (4.3)

4.2.4 Allocation Strategy Implementation

The placement of security VNFs casts as a resource allocation problem where different al-

locations for a security function will cost a different amount of computing resource and

communication overhead that are represented as traffic, resources and security constraints.

The implementation of these constraints in the fat-tree is based on the three-tier architecture

and the ECMP routing of the north-south traffic from the core to TOR servers. The resources

constraints will be typically enforced as capacity constraint where valid allocation will be

considered if there are enough resources to accommodate requests. In contrast, security con-

straints will be enforced as validation constraints where only valid locations are permitted for

certain requests. For the Ingress-control classes and as we adopt a resource-aware approach

to the problem, it will be constrained to level 2 core layer allocation to prevent the harmful

traffic from entering the network and this will be enforced through validation constraints.

Besides, the traffic constraint for the stateless class and stateful classes is as follow:

L2

L3
L4

TOR

Aggregation

Core

Internet

Pod1 Pod2 Pod3 Pod4

Security
Functions

Stateless
Stateful

Monitoring
Instance

Main
instanceDuplicated

instance
Duplicated
instance

s15s14

L1
s6 s7

Figure 4.2: Traffic Constraint For the Stateless and Stateful Classes in Fat-Tree

4.2. Architecture 82

4.2.4.1 Traffic Constraints for the Stateless Class

The security modules of the stateless class process traffic on a per-packet or per-flow basis

and, therefore, they can process traffic in parallel over a per-flow routing protocol. Conse-

quently, they can be independently duplicated over links to cover the overall traffic distribu-

tion.

In the fat-tree k=4 in Figure 4.2, switches and links carrying the traffic for the host in red

are shown in dashed lines, and a security module requested for tenants residing on this host

will have three allocations that satisfy the traffic constraints to be considered:

• Level 1 allocation: a single instance of the security function is deployed at the ToR

switch of this server, covering all traffic destined to/originating from that host

• Level 2 allocation: two instances of the function are deployed at the aggregation

switches routing traffic to/from this host, as shown in red in Figure 4.2.

• Level 3 allocation: four instances of the function are deployed in the four core layer

switches.

4.2.4.2 Traffic Constraints for the Stateful Class

The security modules of the stateful class process traffic to extract anomalies based on

coarser granularity than a single flow. Consequently, they can not be independently du-

plicated over links and dependent instances will be deployed to cover the overall traffic dis-

tribution. Monitoring nodes will be deployed wherever traffic is distributed. These nodes

will extract the needed features from the traffic and share this information with the main

node that takes the detection decision. In the fat-tree k=4 in Figure 4.2, a stateful security

module requested for tenants residing on the host in green will have seven allocations that

satisfy the traffic constraints to be considered:

• Level 1 allocation: a single instance of the security function is deployed at the ToR

switch of this server, covering all traffic destined to/originating from that host

4.3. Constraint Programming 83

• Level 2 allocations: two allocations are available at this level, one allocation is where a

main instance is deployed in s14 and a monitoring instance in s15 as shown in Figure 4.2

in green. The other allocation is the other way around with the main instance in s15

and a monitoring instance in s14.

• Level 3 allocations: four allocations are available at this level. Each allocation will

deploy only one main instance in one of the core switches and a monitoring instance

in the other three core switches.

For stateful class functions, there is a communication overhead due to the dependent dupli-

cation allocation strategy. For example, the allocation shown in Figure 4.2, a communication

that carries the metadata information between the monitoring node in s15 and the main node

in s14 will impose a communication cost to the allocation. Moreover, The path for that

communication is a multi-path for instance , the communication path between s15 and s14

can follow the path L1, L2 or L3, L4. This communication overhead requires the allocation

process to consider the capacity of links. Furthermore, minimising this overhead must be

considered, such as selecting the path with minimum cost in case different paths are avail-

able with different costs.

In cases where dependent duplication is not accepted, a single-instance allocation will be

adopted, and all traffic must be routed to the allocation switch, as shown in Figure 4.3. To

keep minimising the overhead, we restrict the locations available to the parents’ switches

of the host server. Therefore, a stateful security module requested for tenants residing on

h8 will have seven allocations that satisfy the traffic constraints to be considered in case of

single instance allocation strategy.

4.3 Constraint Programming

The constraint programming model is combining the objectives of the mathematical model

of the placement problem presented in Section 3.4. Two approaches have been considered

4.3. Constraint Programming 84

TOR

Aggregation

Core

Internet

h8Pod1 Pod2 Pod3 Pod4

Figure 4.3: Traffic Constraint for Single Instance in Fat-Tree

to combine them. The first approach is called CP COMP+COMM which optimises the con-

straint programming model for the sum of both functions with equal weights for each as

stated in equation 3.14. This method gives both functions equal weight in the optimisation.

The second approach is called CP Two-pass [165], which consists of a two-pass method

optimisation. First, it optimises the placement of functions of one class against one of the

objectives then it optimises the functions of the second class for the other objective. In

CP 2 PASS STATEFUL version, the model optimises the placement of the stateful requests

for minimising the communication overhead objective in equation 3.9 and then it optimises

for maximising the residual resources objective in equation 3.8 against the stateless requests

after encoding the solution obtained in the first optimisation as a hard constraint. This version

optimises the objective in equation 3.9 as a primary goal to the problem, while the objective

in equation 3.8 is considered a secondary goal. While the CP 2 PASS STATELESS version

optimises the stateless requests against the objective in equation 3.8 then the stateful requests

against the objective in equation 3.9. The constraint programming solution implementation

is shown in Algorithm 1.

4.3. Constraint Programming 85

Algorithm 1 CP Model Algorithm
Input: Set of requests Q, set of locations P
Output: Set of requests allocated to locations A

1: function GETCPSOLUTION(obj,Q)
2: cpmodel← CreatecpModel() . Create model
3: x← AddTwoDimBinaryV ariable(cpmodel, Q, P) . problem variable
4: for all r ∈ Q do
5: for all p ∈ P do
6: AddV alidConstraint(cpmodel, w(x, p), X(r, p)) . valid constraint
7: for all r ∈ Q do
8: AddLocationConstraint(cpmodel, r) . single location per request constraint
9: for all s ∈ S do

10: AddSwitchCapacityConstraint(cpmodel, s) . switch capacity constraint
11: for all l ∈ L do
12: AddLinkCapacityConstraint(cpmodel, l) . link capacity constraint
13: comp obj ← CreateCompObj(S, u,Q, P)
14: residual obj ← CreateResidualObj(comp obj)
15: comm obj ← CreateCommObj(L, v,Q, P)
16: comp plus comm obj ← CreateSumObj(comp obj, comm obj)
17: if obj=COMP then
18: AddMaximizeObjective(cpmodel, residual obj)
19: else if obj=COMM then
20: AddMinimizeObjective(cpmodel, comm obj)
21: else if obj=COMP PLUS COMM then
22: AddMinimizeObjective(cpmodel, comp plus comm obj)
23: else if obj=TWO PASS STATELESS then
24: Q∗ ← GetStatelessRequests(Q)
25: stateless solution = GETCPSOLUTION(COMP,Q∗)
26: AddSolutionToModel(stateless solution, cpmodel)
27: AddMinimizeObjective(cpmodel, comm obj)
28: else if obj=TWO PASS STATEFUL then
29: Q∗ ← GetStatefulRequests(Q)
30: stateful solution = GETCPSOLUTION(COMM,Q∗)
31: AddSolutionToModel(stateful solution, cpmodel)
32: AddMaximizeObjective(cpmodel, residual obj)

33: solution = SolveCPModel(cpmodel) . Solve model
34: A← GetAllocation(solution)
35: return Set of allocated requests A

4.4. Heuristic Solutions 86

4.4 Heuristic Solutions

We adopt the resource-aware BFD algorithm introduced in Section 4.4 to solve the place-

ment of the security functions problem. In the resource-aware BFD in Algorithm 2, Q is a

set of initial requests, each represents a tenant’s request to a certain module, P is a set of

locations available for allocating requests and the set A refers to the set of allocated requests

in certain locations, the function sort(Q) sorts the requests from Q by a decreasing order of

computing resources required; capacity(A, r, p) ensures the resources required in location p

in allocation A is enough to accommodate a give request r; validation(r, p) constrains the

location to those who satisfy the traffic constraints such as for a stateful class request r, only

locations that associated with communication links are valid, while total cost(r, p) calcu-

lates the total cost of allocating the request r to location p which represented of computing

cost plus communication cost as illustrated by the following algorithm:

Algorithm 2 BFD Placement
Input: Set of requests Q, set of locations P
Output: Set of requests allocated to locations A

1: A← ∅ . initialisation
2: Q∗ ← sort(Q) . sort request w.r.t. resources
3: for all r ∈ Q∗ do
4: for all p ∈ P do
5: if (capacity(A, r, p)=TRUE)

∧
(validation(r, p)=TRUE) then

6: p∗ = argminp′∈P total cost(r, p
′)

7: if (p∗ 6= 0) then
8: A← A ∪ {(r, p∗)} // allocate request r to location p∗

9: return Set of allocated requests A

The proposed resource-aware allocation algorithm (i) sorts requests and then (ii) allocates

each request to the BF allocation. Firstly, it sorts requests by the amount of required re-

sources to deploy one instance for each in decreasing order. Then to determine the BF

location, the cost of locating the request to each valid location will be calculated. Then, The

algorithm selects the allocations that have enough resources to accommodate the request to

satisfy the resources constraints, and finally selects the location that causes the least increase

in total resource consumption (min cost).

4.4. Heuristic Solutions 87

For the fat-tree architecture, the cost is based on the architecture level and all locations on the

same level have equal cost. Therefore, the algorithm is changed to the BFD in Algorithm 3

where LEV ELS LIST = [0, 1, 2] and GetLocations() function return locations in certain

level. The algorithm searches the architecture’ levels in order from TOR to Core to find a

location to the current request. If a location has enough resources to accommodate the re-

quest and satisfies the validation constraint, the algorithm stops the searching and assigns the

location to the request. Although locations in the same level have the same computing and

communication cost, the stateful class has an unequal distribution of computing resources on

the switches of the location in aggregation and core layer where one switch will receive the

main instance of the function. In contrast, other switches will receive a monitoring instance.

To balance the load between switches in the same level and reduce fragmentation, a Worst-fit

allocation will be adopted among the single level locations where locations with the most re-

sources available will be allocated to requests first. This can be achieved by sorting location

in non-increasing order of available resources as shown in step 6.

Algorithm 3 BFD Placement for Fat-tree
Input: Set of requests Q, set of locations P
Output: Set of requests allocated to locations A

1: A← ∅ . initialisation
2: Q∗ ← Sort(Q) . sort request w.r.t. resources
3: for all r ∈ Q∗ do
4: for all level ∈ levels list do
5: P ′ ← GetLocations(level)
6: P∗ ← Sort(P ′) . sort locations w.r.t. available resources
7: for all p ∈ P∗ do
8: if (capacity(A, r, p)=TRUE)

∧
(validation(r, p)=TRUE) then

9: p∗ = p
10: break
11: if (p∗ 6= 0) then
12: A← A ∪ {(r, p∗)} . allocate request r to location p∗

13: break
14: return Set of allocated requests A

The non-increasing sort in step 3 is considering the computing resources (baseline part+traffic -

part) of the request, and we implement three versions of BFD algorithm with different biases.

The tested BFD algorithms are BFD, BFD STATELESS and BFD STATEFUL. The BFD al-

4.5. Meta-Heuristic Solutions 88

gorithm has no bias, it sort requests in non-increasing order based on computing resources

required for each while BFD STATELESS is biased to stateless class functions where it sort

requests of this class first then the stateful class, inside the same class it sort based on com-

puting resources. The BFD STATEFUL is the same as BFD STATELESS but to the stateful

class requests.

The heuristic algorithms RANDOM and FFD have been implemented. The RANDOM al-

gorithm allocates requests in no specific order and selects locations randomly in a condition

that the location has enough resources and is valid for the request. The FFD algorithm is the

same as RANDOM but with requests sorted in non-increasing order before allocated. For N

requests, the complexity of BFD and FFD algorithms for a fat-tree is O(NlogN) for sorting

the requests.

4.5 Meta-Heuristic Solutions

The Tabu search based algorithm has been used to solve similar problems to the security

function placement and has shown better results in solving bin packing problems as previ-

ously discussed in Section 3.5. Therefore, we compare the greedy algorithm BFD to the

TABU search method which starts by an initial solution then moves to the next solution by

searching the surrounding neighbouring solutions of the current solution for a better solution

than the current solution. We design the algorithm to optimise the objectives presented in

Section 3.4. Thus, a neighbouring solution is considered better if it improves one of the ob-

jectives or both but never to worsen any of them. Typically, a move will consider being every

possible move in the system; for example, in the security placement problem, a move could

consider moving every request to every possible location. However, this will lead to very

big search space, so the design will consider the search space consisting of every move that

could be done by the most resources consuming request, if no better solution can be found,

the next request in order is considered.

In the fat-tree architecture, multiple locations can fit the request, each with a different cost

4.5. Meta-Heuristic Solutions 89

where lower levels location has less cost than higher layers, so we implemented a lower move

which includes moving the request down in the hierarchy to reduce resources. Furthermore,

we consider a swap move which considers swapping the request location with every other

request valid for the swapping process. The tabu list will contain the recent requests that

have been moved with a size equal to the number of requests. We implement three variants

of the TABU algorithm with different moves types. The algorithms are TABU LOWER,

TABU SWAP, and TABU LOWER+SWAP where the last one is an algorithm that considers

both movies (Lower and SWAP) for each request and selects the best of them to be the

next move. The initial solution of the Tabu algorithms are tested with two initial heuristic

solutions the BFD and RANDOM algorithms.

In the TABU LOWER shown in Algorithm 4, Q is a set of initial requests, each repre-

sents a tenant’s request to a certain module, P is a set of locations available for allocating

requests and the set A refers to the set of allocated requests in certain locations, the func-

tion sort(Q) sorts the requests from Q by a decreasing order of computing resources re-

quired; InitialSolution() return initial solution to the problem; GetBestMove(r) return a

new location to request r that will most reduce computing or communication cost or both;

GetBestTabuMove(tabu list) will find the best move among all requests in tabu list;

CompareMoves() will compare to moves and return the one with most saving resources.

RemoveF irstElement(tabu list) will remove the first element of the tabu list to imple-

ment the list FIFO queue.

For the TABU SWAP, Algorithm 4 will be modified based on the swap move where move

will be a tuple of two moves indicating the swap and the GetBestMove, UpdateAllocation

andCompareMoves function will be updated accordingly. The same for TABU LOWER+SWAP

algorithm where move is the better solution of the lower or swap move. For N requests and

M locations and Tabu list size L, the complexity of TABU LOWER algorithm in worst case

for a fat-tree isO(NlogN+NL) whereO(NlogN) is the complexity of sorting requests and

O(NL) for best and tabu list moves. While the complexity of TABU SWAP and TABU -

LOWER+SWAP, is O(NlogN +NL+N2).

4.5. Meta-Heuristic Solutions 90

Algorithm 4 TABU LOWER algorithm
Input: Set of requests Q, set of locations P
Output: Set of requests allocated to locations A

1: A← InitialSolution() . initialisation
2: Q∗ ← Sort(Q)
3: i← 0
4: tabu list← ∅
5: while i ≤MAX ITERATIONS do
6: for all r ∈ Q∗ do
7: move = 0
8: if r ∈ tabu list then
9: continue

10: move← GetBestMove(A,P, r)
11: if move 6= 0 then
12: tabu list← tabu list ∪ r . Add r to the Tabu list
13: A = UpdateAllocation(A,move)
14: break
15: if move=0 then
16: move← GetBestTabuMove(A,P, tabu list)
17: if move 6= 0 then
18: A = UpdateAllocation(A,move)

19: if move=0 then
20: break . no more moves- End algorithm
21: if i ≥ TABU LIST SIZE then
22: RemoveF irstElement(tabu list)

23: i← i+ 1

24: return Set of allocated requests A
25: function GETBESTTABUMOVE(A,P, tabu list)
26: best move← 0
27: for all r ∈ tabu list do
28: move← GetBestMove(A,P, r)
29: if move 6= 0 then
30: if best move=0 then
31: best move← (r, p)
32: else
33: best move← CompareMoves(best move,move)

34: return best move
35: function UPDATEALLOCATION(A,move)
36: (r, p)← move
37: A← A− (r, ∗)
38: A← A ∪ (r, p)
39: return Set of allocated requests A

4.6. Subset-Sum Near-Optimal Solution 91

4.6 Subset-Sum Near-Optimal Solution

We adopted a Subset-sum solution that has been used as near-optimal solutions in problems

such as VM allocation [158] and variable size bin packing problems [159]. It is based on a

constructive heuristic that requires to solve subset-sum/knapsack problem, which is solved

optimally in pseudo-polynomial time. It includes finding the best-fit functions for each loca-

tion, instead of finding the best location for each function. Finding the best-fit functions can

be solved as a 0-1 knapsack problem for each location.

The fat-tree will be rearranged to a new location schema to combine switches with duplicated

instances in aggregation and core level to one location. The number of locations of the new

schema in a fat-tree architecture will be k2/2 + k + 1. k2/2 locations in TOR level, one for

each TOR switch. k locations in aggregation level, one for each pod and only one location

to represent the core level locations. For instance, in the k=4 fat-tree, the number of new

locations will be 13 as the blocks shown in Figure 4.4. Every new location will invoke an

instance of 0-1 knapsack problem that will consider all the valid and unallocated yet requests

and all locations from the old location schema that require allocating resources in the new-

location switches. For example, the tenant in server h8 in Figure 4.4 will have three new

locations to be considered, that are shown in blue blocks. On the contrary to the constraint

programming solution in the Section 4.3, the knapsack problem in fat-tree will optimise for

minimising the residual resources as all locations in a new-location valid for a request, will

have equal cost.

In the Near-Optimal Subset-sum shown in Algorithm 5, Q is a set of initial requests, each

represents a tenant’s request to certain module, P is a set of locations available for allocating

requests and the set A refers to the set of allocated requests in certain locations, the function

GetNewLocations() create new locations schema from the fat-tree whileGetLocations(p∗)

will return the list of locations in the new location p∗, Unallocated(Q,A) will return the un-

allocated requests by searchingQ of request that not in allocationAwhileGetOptimal(Q′, P ′)

will solve the knapsack problem for requests Q′ and location P ′. For requests N and lo-

cations M , the complexity of Near-Optimal Subset-sum is O(MNC) where solving 0-1

4.6. Subset-Sum Near-Optimal Solution 92

h8
Pod1 Pod2 Pod3 Pod4

TOR

Aggregation

Core

Figure 4.4: New Locations Schema for Fat-Tree Size k=4

Algorithm 5 Near-Optimal Subset-Sum
Input: Set of requests Q, set of locations P
Output: Set of requests allocated to locations A

1: A← ∅ . initialisation
2: Q′ ← Q
3: P ∗ ← GetNewLocations()
4: for all p∗ ∈ P ∗ do
5: P ′ = GetLocations(p∗)
6: A′ ← GetOptimal(Q′, P ′)
7: A← A ∪ A′
8: Q′ ← Unallocated(Q,A)

9: return Set of allocated requests A
10: function GETOPTIMAL(Q,P)
11: cpmodel← CreateCpModel() . Create model
12: x← AddTwoDimBinaryV ariable(cpmodel, Q, P) . problem variable
13: for all r ∈ Q do
14: for all p ∈ P do
15: AddV alidConstraint(cpmodel, w(x, p), X(r, p)) . valid constraint
16: for all r ∈ Q do
17: AddLocationConstraint(cpmodel, r) . single location per request constraint
18: for all s ∈ S do
19: AddSwitchCapacityConstraint(cpmodel, s) . switch capacity constraint
20: for all l ∈ L do
21: AddLinkCapacityConstraint(cpmodel, l) . link capacity constraint
22: comp obj ← CreateCompObj(S, u,Q, P)
23: residual obj ← CreateResidualObj(Comp obj)
24: AddMinimizeObjective(cpmodel, residual obj)
25: solution = SolveCPModel(cpmodel) . Solve model
26: A← GetAllocation(solution)
27: return Set of allocated requests A

4.7. Linear Programming 93

knapsack problem would take O(NC) where C is the number of capacity slots used in the

dynamic programming method; it is, therefore, a constant (a configurable parameter) and it

will be solved M times.

4.7 Linear Programming

The One-dimensional implementation is considering the computing resources of the fat-tree

data center and eliminates the communication overhead, which converts the problem to a

representation that can be solved by Integral linear programming (ILP). To satisfy the traffic

constraints, the stateless class modules will independently duplicate as shown in Chapter 3

over links in case of allocations where traffic is distributed over multiple links. However,

this model will eliminate the communication overhead that can be endured in the case of a

stateful class by allocating the stateful class modules to the ToR switches where they can

capture all traffic destined to the requested tenant.

For example, in the k=4 fat-tree shown in Figure 4.4, a stateless class module deployed

for a tenant in the server 8 has three available locations (shown in blue blocks) that satisfy

the traffic constraints where each allocation will have redundant instances in each switch.

On the other hand, a stateful module will be directly deployed at the corresponding ToR

switch, which eliminates steering traffic to the instance or inducing communication between

distributed instances. Adopting this strategy allows us to eliminate the communication re-

sources in this model.

4.7.1 Locations Rearrangement

To represent the problem as VSBPP in ILP form, every request must be allocated to only one

location. Therefore, switches are rearranged in location schema similar to the one adopted by

the Near-Optimal solution in Section 4.6 and shown in blocks in Figure 4.4. The locations

schema combines switches with duplicated instances in aggregation and core level to one

location. For example, all core switches now combined to one location. Consequently, the

4.7. Linear Programming 94

number of locations in the structure will be changed, for instance in the k=4 fat-tree shown

in Figure 4.4, the number of locations will be reduced to 13 locations. In addition, locations

combining more than one switch will have a capacity equal to the sum of the capacity of

the combined switches. Also, the cost of the resources for allocating a module to a location

with combined switches will be equal to the cost of duplicating the module VNFs across the

switches in the new location. For example, a tenant in server 8 in Figure 4.4 will have three

valid locations that are shown in blue blocks to allocated stateless modules. The ToR blue

block location with a total cost equal the cost of the deployment of one instance. The second

location will be the blue block in the aggregation level with the cost of two instances, and

the third location in the core level will have a cost of four instances deployment.

4.7.2 One-dimensional VS Two-dimensional

The One-dimensional and two-dimensional models represent two implementations to the

placement problem of the security functions with different approaches to the infrastructure

resources. The main difference between the two is that the one-dimensional model only

considers the computing resources dimension of the problem, while the two-dimensional

considers both computing and communication resources of the infrastructure. Therefore,

the one-dimensional has no communication overhead where the stateful class functions are

allocated to points where there is no split of traffic which are the less consuming resources

locations. Subsequently, the stateless functions will have increased probability to be al-

located in locations that require full duplicated instances deployment, which increases the

total computing resources consumption of the placement. Therefore, the one-dimensional

model requires more computing resources than the two-dimensional model to accommodate

the same set of requests.

Furthermore, the one-dimensional implementation in a fat-tree architecture would allocate

the stateless class functions in the TOR level where there is no traffic split. Therefore, every

request will have only one location that can satisfy traffic constraints. Hence, it will reduce

the framework fault-tolerance where no replacement location for stateful class functions can

4.8. Summary 95

be found in case of TOR location failure. On the other side, the communication overhead in

the two-dimensional model can be a problem in case of network congestion. We conclude

a trade off between the computing and communication resources of the infrastructure are to

be considered in choosing one model over the other.

4.8 Summary

The fat-tree is the most common architecture in virtualised data centers where three layers

of switches connect the north-south traffic coming from outside of the network to the ten-

ants’ servers. In this chapter, we have presented a carefully designed implementation to the

placement framework presented in Chapter 3 for the fat-tree architecture. The implemen-

tation determines the location’s computing capacity in each level to balance the allocation

in the three-level architecture. Furthermore, the implementation of the allocation strategy

such as independent duplication, dependent duplication and single-instance are designed to

save computing and communication resources in the three-tier architecture. Moreover, the

implementation of the constraint programming, heuristic, meta-heuristic and near-optimal

solutions in this chapter are modified to fit the characteristics of the fat-tree architecture. For

example, heuristic solutions will balance the dependent allocation of the stateful class at a

certain level by selecting the worst fit allocation. At the same time, the subset-sum algorithm

is designed to optimise the allocation for each location as a knapsack problem to minimise

the residual resources where all request’s allocations have the same cost in the fat-tree new

location schema. Furthermore, a one-dimensional implementation that eliminates the com-

munication overhead of the problem has been designed; however, it causes an increase in the

computing cost of the placement compared to the two-dimensional model.

96

Chapter 5

Evaluation

5.1 Overview

The evaluation shown in this chapter has been selected to show the most important char-

acteristics of the placement framework. In addition to, illustrate the optimality, efficiency

and scalability of the developed heuristic, meta-heuristic, near-optimal solutions. First, Sec-

tion 5.2 shows the objective functions of the resource-aware placement introduced in chap-

ter 3 and the performance metrics used in the evaluation. Section 5.3 depicts the evaluation

environment used to evaluate the proposed framework and the placement algorithms. Then,

it details the simulation parameters and demonstrates the implemented workloads. In Sec-

tion 5.4, we compare the optimality of the constraint programming, heuristic, meta-heuristic,

near-optimal placement algorithms for the implemented workloads. Furthermore, it com-

pares the proposed framework against the legacy single instance allocation and shows the

evaluation of the LP and heuristic solutions for the one-dimensional model. Section 5.5 ex-

tends the evaluation of the promising solutions to show the performance metrics for different

network sizes. Then, we present the optimality gap analysis and evaluate the execution time

and success rate of the algorithms. Then, we evaluate the effect of the class types distribu-

tion and number of offered modules. Section 5.6 evaluate the scalability of the proposed

algorithms while increasing the request rate. Finally, Section 5.7 concludes the chapter.

5.2. Performance Metrics 97

5.2 Performance Metrics

To evaluate the resource allocation algorithms, we introduce two metrics that represent our

objectives presented in Chapter 3. Furthermore, two metrics represent the speed and suc-

cess rate performance of the algorithms and the placement ratio metric that represent the

utilisation of resources and a final metric to represent the optimality gap.

The first metric is the Residual Resources (RS) of the network, which is the ratio of the

spare resources (after placement) to the total amount of resources available and is calculated

by adding the residual resources at each location after placement. RS is a normalisation of

our first objective presented in Section 3.4.

The second metric is Communication Overhead (CO) of the allocation as the total of the

communication overhead resulting from sharing information by the stateful class which rep-

resents the sum of communication overhead traffic rate on each link multiplied by the link

weight. CO is a normalisation by the total consumed bandwidth to represent our second

objective presented in Section 3.4.

The third metric is Success Rate of the algorithm as the average number of times the algo-

rithm was able to find a feasible solution to the problem.

The fourth metric is Execution Time of the algorithm, which represents the average of time

in seconds spent to reach the final solution to the problem.

The fifth metric is the overall Placement Ratio (PR), which represents the ratio of allocated

resources out of the total amount of resources requested, For example, PR=1 will indicate

meeting all requests by finding the allocation that satisfies their constraints, while PR<1

indicates a failure ratio where not all requests are satisfied. Furthermore, it indicates the

utilisation level of resources, where an efficient algorithm will result in a higher amount of

allocated resources.

The sixth metric is the average Optimality Gap (G) of a solution, which represents the differ-

ence between the solution and the optimal solution. The optimality gap is calculated using

Equation 5.1 Where R is the average value of the algorithm objective, Rop is the average

5.3. Experimental Setup 98

value of the optimal solution objective.

G =
R−Rop

Rop

(5.1)

5.3 Experimental Setup

The evaluation was conducted using software to simulate the static state of fat-tree data

centers topology. The software runs on a desktop computer (8GB of RAM, Intel i7). The

environment was built using Python 3.6, The CP and LP models were implemented on the

IBM ILOG CPLEX 1 using the object-oriented modelling Python API DOCplex. The fat-

tree network topology builds using The NetworkX 2 library. Without loss of generality,

we assume traffic is uniformly distributed on all servers, and each server represents one

tenant, resources as a one-dimensional vector. The evaluation focuses on the stateless and

stateful classes with the independent and dependent duplication strategy respectively. While

the single instance and flow-rate control strategy will be forced as hard constraints to the

placement process where limited locations satisfy their constraints. All results are computed

over an average of 10 runs. The python source code of simulated environment and solutions

along with the instructions to replicate the experiments can be found in GitHub3. In the next

paragraphs, we outline the most important characteristics of the simulated environment.

5.3.1 Simulation Parameters

We assume a server request capacity is 100 units as the maximum computing resources

requested capacity of a server while links that connect switches and servers have a bandwidth

capacity of 100 units with over-subscription upper bound of o=1.5. A tenant requested

security services as a set of modules to process the traffic destined for the tenant, represented

as tenant request rate r which is the number of functions requested by a tenant. The resources

1https://www.ibm.com/products/ilog-cplex-optimization-studio/
2https://networkx.github.io/
3https://github.com/AbeerFaroukAli/Security Placement.git

5.3. Experimental Setup 99

Parameter Description

k Fat-Tree Size

o Over-subscription Upper Bound

r Tenant Request Rate (Workload)

n Number of Security Functions

p Probability of Security Function to be Stateless

µ Mean of the Normal Distribution

σ Standard Deviation of the Normal Distribution

ServerCapacity Computing Resources of a Server

LinkCapacity Links Capacity Bandwidth

TrafficDemand Traffic Demand Rate of a Tenant (Workload)

ModuleSize Module Required Resources (Workload)

CommunicationOverhead Sharing information Rate

TimeLimit Time Limit Parameter of the Cplex optimiser

RS Allocation Residual Resources (Objective)

CO Allocation Communication Overhead (Objective)

PR Allocation Placement Ratio

G Optimality Gap of Algorithm

SuccessRate Success Rate of Algorithm to Find the Solution

ExecutionT ime Average of Execution Time for an Algorithm

Table 5.1: Simulation Parameters

requested for each module are drawn for a normal distribution with a maximum of 25% of

server maximum request capacity. The traffic demand rate of each tenant is drawn for a

normal distribution with a maximum of 100% of link capacity. We simulated n different

sizes of security functions. A security function will have a probability p to be stateless and

(1− p) to be stateful. For the stateful class module, the communication overhead of sharing

information is drawn from a normal distribution with the maximum as the traffic rate between

the sharing nodes. The initial capacity of the switches in each level is determined based on

the size of the network as detailed in Section 4.2. Simulation parameters, workloads and

objectives symbols are listed in Table 5.1.

5.4. Results Analysis 100

5.3.2 Workload

We simulated the increase of workload over the network in two dimensions: the modules

required resources (modules’ sizes) and the traffic demand of tenants. The former is repre-

sented as the mean of the normal distribution which resources requirements of the modules

are drawn from. The latter is represented as the mean of the normal distribution which traffic

demand rate of tenants is drawn from. The mean values of the modules required resources

shown in the evaluation is a percentage of the maximum value of resources for a module,

and the mean values of the traffic demand is a percentage of the maximum value of traffic

demand for a tenant which is 100% of the link bandwidth as mentioned above.

5.3.3 The System Capacity Constraint

The system capacity constraint represents the search space of the problem which extend from

when the workload is very light (for BFD case: most of the requests will be kept in TOR

level) to heavy workload (for BFD case: function allocation will be distributed on the three

infrastructure levels) in a condition that all requests have been allocated. This constraint will

be enforced by keeping 10% to 20% slack percentage in each experiment [146] where a slack

percentage is the percentage of total required resources over the total available resources. For

the following experiments, the simulation parameters are tuned for each experiment to keep

the system capacity constraints satisfied unless otherwise is stated.

5.4 Results Analysis

In this section, we present the evaluation of the placement solutions implemented in Chap-

ter 4. We tested the solutions and compared their performance of residual resources and com-

munication overhead objectives of the security placement problem against different work-

loads. For a complete evaluation for each solution method, we implemented different vari-

ants of each method. For clarity, we divided the tested methods over the following sections.

5.4. Results Analysis 101

In each, we tested the variants for each method to find the most efficient then compare it

with the next section. For each solution method, two experiments have been conducted to

show the performance of the tested methods against the workloads presented in the previous

section. The first experiment shows the effect of the modules sizes workload of the tested

algorithms and the second experiment shows the effect of traffic demand of tenant workload.

While the simulation parameters are tuned for each experiment to keep the system capacity

constraints satisfied.

The first experiment shows the effect of modules’ sizes on the tested algorithms on the per-

formance metrics RS and CO in case of traffic demand rate parameters are µ=80% and

σ=10% of the maximum value of flow rate, tenant request rate equal r=4, communication

overhead parameters are µ=20% and σ=10% of the max value of flow rate between shared

nodes, base part to traffic part percentage is 50%, number of available modules n=20, and

the probability of the stateless class p = 50%. While the second experiment shows the effect

of traffic demand workloads on the performance metrics RS and CO in case of modules size

(required resources) parameters are µ=70% and σ=10% of the maximum value of module

size and the same parameters for the first experiment.

5.4.1 Heuristic Solutions

We compare the heuristic greedy algorithms BFD, FFD and RANDOM. We also evaluate

the three BFD algorithms BFD, BFD STATELESS and BFD STATEFUL detailed on Sec-

tion 4.4. The BFD algorithm with no bias, it sorts requests in non-increasing order based on

computing resources required for each while BFD STATELESS is biased to stateless class

functions and the BFD STATEFUL is to stateful class requests. We present results of the RS

and CO for the following experiment:

The results of RS and CO metrics for the first experiment of BFD, BFD STATELESS, BFD -

STATEFUL, FFD, and RANDOM algorithms for a k=6 fat-tree are shown in Figure 5.1.

Figure 5.1a shows the objective function Residual Resources (RS) starts decreasing linearly

with the workload, where the increase of requested resources will result in a reduction in

5.4. Results Analysis 102

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
FFD
BFD_STATELESS
BFD_STATEFUL
RANDOM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

FFD
BFD_STATELESS
BFD_STATEFUL
RANDOM

(b) Communication Overhead

Figure 5.1: RS and CO of Heuristic Algorithms for Modules Sizes Workload, when k=6

spare resources. While all algorithms suffer from such reduction, the Fest-Fit Decreasing

BFD algorithms show less reduction in RS than (FFD and RANDOM). This can be attributed

to best-fit algorithms utilise resources by selecting locations which cost the least increase in

resource consumption, allowing more resources to the allocation process, and leading to an

increase in RS that can reach 100% of other algorithms. Furthermore, The figure shows

at low workload (less than 0.3) the three BFD algorithms have the same residual resources

where all requests have been allocated to the TOR level. However, as workload increases,

the BFD STATELESS algorithm has more residual resources among other BFD algorithms

as it gives priority to stateless class function and as they the most consuming function to the

computing resources with full duplication, it utilises their allocation and results in reducing

overall resource consumption. While BFD STATEFUL show the least residual resources

among all BFD versions as it utilises allocation for the stateful class which less computing

resources consumption compared the stateless class.

Furthermore, at higher workload (beyond 0.7) BFD STATEFUL show slightly less residual

resources than FFD and RANDOM algorithms due to increasing percentage of stateless class

allocated to higher-layer which results in less residual resources than allocating all classes

in random. Moreover, the BFD algorithm shows more residual resources than BFD STATE-

FUL but less residual resources than BFD STATELESS, which the result of it sort requests

regardless of their class type and consequently utilise allocation of both of them. Nonethe-

5.4. Results Analysis 103

less, it shows more RS by 60% than FFD and RANDOM.

Figure 5.1b shows the Communication Overhead (CO) objective function after the allocation

is complete and, the results show that at low workload, less than 0.3, best-fit algorithms

BFD show no communication overhead while FFD and RANDOM show overhead. This is

a result of the FFD and RANDOM allocate requests in random locations which will result

in allocations in higher layers of the network which cause a communication overhead while

best-fit algorithm allocates requests to a less resource-consuming location first which are

TOR switches which have no communication overhead. In higher workload, beyond 0.3,

CO is linear with the workload which indicates that more requests are allocated to higher

layers which impose a communication overhead of shared information between main and

monitoring instances of the stateful class. However, FFD and RANDOM show steady CO

as all layers randomly selected with the same percentage of requests which impose the same

CO percentage. Moreover, BFD STATEFUL algorithms show less communication overhead

over BFD and BFD STATELESS where it utilises stateful class functions which the cause the

of the communication overhead while it reaches up to 80% less CO over FFD and RANDOM

algorithms. In addition to that, the BFD algorithm shows more communication overhead

than the BFD STATELESS but still shows up to 70% less CO than the FFD and RANDOM

algorithms.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
FFD
BFD_STATELESS
BFD_STATEFUL
RANDOM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

FFD
BFD_STATELESS
BFD_STATEFUL
RANDOM

(b) Communication Overhead

Figure 5.2: RS and CO of Heuristic Algorithms for Traffic Demand Workload, when k=6

The results of RS and CO metrics for the second experiment for a k=6 fat-tree are shown

5.4. Results Analysis 104

in Figure 5.2. Figure 5.2a shows residual resources decreases with the workload, where

the increase of traffic rate results in increasing of required resources as the traffic part of

functions’ required resources is depending on traffic rate and results in a reduction in spare

resources. While all algorithms suffer from such reduction, BFD algorithms still show less

reduction than (FFD and RANDOM algorithms) that reach up to more than 60% in spare

resources. Moreover, BFD still shows more residual resources than BFD STATEFUL and

less residual resources than BFD STATELESS the same as in Figure 5.1a with no less than

50% more RS than (FFD and RANDOM algorithms).

In Figure 5.2b, the results show that CO has a linear increase in communication overhead

for the BFD algorithms at low workload (less 0.5) due to increasing the flow rate will in-

crease the requested computing resources, and more requests will be allocated to higher

layers which cause more communication overhead to the allocation. While at high work-

load, beyond 0.5, there is a slight increase in CO as a result of, CO is normalised to the

total consumed bandwidth which also increases with the workload. On the other hand, FFD

and RANDOM algorithms show less increase in CO with the workload increase than other

BFD algorithms show and this can be attributed to as all locations start to fill up, FFD and

RANDOM will allocate more requests to lower layers of the network which impose no com-

munication overhead to the system. Furthermore, BFD STATEFUL demonstrates less CO

than other BFD algorithms, while BFD STATELESS shows more CO than BFD. Moreover,

BFD has less CO up to 70% of RANDOM and FFD.

We conclude that the BFD algorithm demonstrates higher utilisation of the computing and

the communication resources over other greedy algorithms such as FFD or RANDOM algo-

rithm. However, as the sorting phase of BFD change algorithm bias to one of the resources

over the other, we select BFD algorithms as our proposed greedy algorithm to solve the

placement problem where is balance the allocation of the stateless and the stateful class

rather than priorities one of them such as in BFD STATELESS or BFD STATEFUL algo-

rithms. Therefore, the BFD algorithm is going to be adopted as the heuristic solution for the

remaining of this chapter.

5.4. Results Analysis 105

5.4.2 Constraint Programming

The modelled constraint programming solution is used as a baseline for comparison with

other solutions. We modelled three variants of constraint programming solution, the CP -

COMP+COMM model and the two versions of TWO PASS model, the CP 2 PASS STATE-

LESS and the CP 2 PASS STATEFUL introduces in Section 4.3. While the constraint pro-

gramming optimiser takes days to solve a single instance of the problem, it stops getting

better solutions after a certain time elapses. Thus, we set the TimeLimit parameter of the

optimiser to enough time to get the best solutions. We include the result of heuristic BFD

and RANDOM algorithms for comparison. We present the results of the RS and CO for the

following experiment:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
CP_COMP+COMM
CP_2_PASS_STATEFUL
CP_2_PASS_STATELESS

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
CP_COMP+COMM
CP_2_PASS_STATEFUL
CP_2_PASS_STATELESS

(b) Communication Overhead

Figure 5.3: RS and CO of Constraint Programming Models for Modules Sizes Workload,
when k=6

The results of RS and CO metrics for the first experiment of BFD, CP COMP+COMM, CP -

2 PASS STATELESS, CP 2 PASS STATEFUL, and RANDOM with TimeLimit=10min

for a k=6 fat-tree are shown in Figure 5.3. Figure 5.3a RS starts decreasing linearly with

the workload for all algorithms, where the increase of requested resources will result in a

reduction in spare resources. At low workload (less 0.3) all algorithms are showing the

same RS where all requests are allocated to TOR level. However, at high workload (beyond

0.3) CP 2 PASS STATELESS demonstrate more RS that can reach 60% more than (FFD and

RANDOM) algorithms which can contribute to it prioritises the STATELESS class functions

5.4. Results Analysis 106

allocation which are the most computing resources consumption. On the contrary, CP 2 -

PASS STATEFUL shows the least RS after RANDOM as it prioritises utilising STATEFUL

class functions allocation. Furthermore, the results show CP COMP+COMM the same RS

as BFD. However, at a high workload, beyond 0.7, CP COMP+COMM shows a slightly

more RS than BFD by 5%.

Figure 5.3b shows CO after the allocation is complete and, it shows an increase in CO as

Figure 5.1b with no communication overhead for algorithms in low workload (less 0.3)

except the RANDOM algorithm. Furthermore, it shows that CP 2 PASS STATEFUL has

the least communication overhead as it prioritises the STATEFUL class functions allocation

which introduce the communication overhead. On the contrary, CP 2 PASS STATELESS

shows the highest CO after RANDOM algorithm. The results show CP COMP+COMM has

less communication overhead than CP 2 PASS STATELESS but higher than CP 2 PASS -

STATEFUL the same as BFD. However, CP COMP+COMM shows less CO than BFD that

reach up 10% while it shows the same as BFD at high workload.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
CP_COMP+COMM
CP_2_PASS_STATEFUL
CP_2_PASS_STATELESS

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
CP_COMP+COMM
CP_2_PASS_STATEFUL
CP_2_PASS_STATELESS

(b) Communication Overhead

Figure 5.4: RS and CO of Constraint Programming Models for Traffic Demand Workload,
when k=6

The results of RS and CO metrics for the second experiment of BFD, CP COMP+COMM,

CP 2 PASS STATELESS, CP 2 PASS STATEFUL, and RANDOM for a k=6 fat-tree are

shown in Figure 5.4. Figure 5.4a shows residual resources decreases with the workload as in

Figure 5.2a for all algorithms. Furthermore, CP 2 PASS STATELESS still shows more RS

5.4. Results Analysis 107

than other algorithms while CP 2 PASS STATEFUL shows the less RS than BFD or other

CP solutions but more that RANDOM algorithm. In Figure 5.4b, the results show that CO

increases as in Figure 5.2b. Furthermore, it shows CP 2 PASS STATELESS has more CO

than other algorithms but less than the RANDOM algorithm while CP 2 PASS STATEFUL

shows less CO than the others. Moreover, the results show that in workload less than 0.7,

CP COMP+COMM has more RS than BFD as shown in Figure 5.4a while it has more CO

as shown in Figure 5.4 which can be attributed to it balance the two performance metrics

based on their normalised value and in this case RS has outweighed CO and results in RS

optimised over CO. However, beyond 0.7 workload, CO is optimised over RS where it shows

lower CO than BFD but less RS.

We conclude that BFD and CP COMP+COMM are demonstrating a balance in optimising

both RS and CO more than CP 2 PASS STATELESS and CP 2 PASS STATEFUL. There-

fore, CP COMP+COMM will be used as a baseline solution for the remainder of the chapter.

5.4.3 Meta-Heuristic

We implement three variants of the TABU algorithm with different moves types as illus-

trated in Section 4.5. The algorithms are TABU LOWER , TABU SWAP, and TABU -

LOWER+SWAP each has been tested with an initial solution of a RANDOM or a BFD

algorithm. We include the heuristic BFD and RANDOM and the constraint programming

CP COMP+COMM for comparison.

The results of RS and CO metrics of BFD , TABU LOWER , TABU SWAP , TABU -

LOWER+SWAP, and CP COMP+COMM in case of the tabu list length is equal the number

of requests to allow a move for every request. for a k=6 fat-tree are shown in Figure 5.5 and

Figure 5.6.

Figure 5.5a shows RS and CO of Tabu algorithms TABU BFD LOWER, TABU BFD -

SWAP and TABU BFD LOWER+SWAP with BFD algorithm as an initial solution. It shows

the RS objective function starts decreasing linearly with the workload as expected, similar

to Figure 5.1a. Furthermore, it shows that Tabu algorithms have the same RS as the heuris-

5.4. Results Analysis 108

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
TABU_BFD_LOWER
TABU_BFD_SWAP
TABU_BFD_LOWER+SWAP
CP_COMP+COMM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
TABU_BFD_LOWER
TABU_BFD_SWAP
TABU_BFD_LOWER+SWAP
CP_COMP+COMM

(b) communication Overhead

Figure 5.5: RS and CO of BFD Meta-heuristic for Modules Sizes Workload, when k=6

tic BFD. Figure 5.5b shows the CO objective function after the allocation is complete and,

it shows similar results as Figure 5.1b where algorithms have a linear increase of CO with

the workload. It also shows all BFD based Tabu algorithms have the same CO as the BFD

heuristic algorithm.

Figure 5.6a shows the Tabu algorithms TABU RANDOM LOWER, TABU RANDOM -

SWAP and TABU RANDOM LOWER+SWAP with an initial solution of the RANDOM

algorithm. The results show that RS objective function starts decreasing linearly with the

workload as expected. Furthermore, TABU RANDOM SWAP algorithm has slightly more

RS than RANDOM but less than other algorithms which can be contributed to that only

swap moves are allowed and start with requests in random locations will result in requests

end up in higher layers of the network which cause less residual resources. However,

TABU RANDOM LOWER and TABU RANDOM LOWER+SWAP will improve its allo-

cation by moving requests to lower locations and end up with the same residual resources

as BFD. Furthermore, it shows that TABU RANDOM LOWER and TABU RANDOM -

LOWER+SWAP do not show any significant improvement compared to BFD in low work-

load. However, in high workload (beyond 0.6), TABU RANDOM LOWER and TABU -

RANDOM LOWER+SWAP show very slightly higher residual resources. This can be at-

tributed to, starting by random solution, swap and lower moves can save some RS where it

can fill some fragmentation that is resulting from greedy algorithms such as BFD.

5.4. Results Analysis 109

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
TABU_RANDOM_MOVE
TABU_RANDOM_SWAP
TABU_RANDOM_ALL_MOVES
CP_COMP+COMM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
TABU_RANDOM_MOVE
TABU_RANDOM_SWAP
TABU_RANDOM_ALL_MOVES
CP_COMP+COMM

(b) communication Overhead

Figure 5.6: RS and CO of Random Meta-heuristic for Modules Sizes Workload, when k=6

Figure 5.6b shows the CO objective function after the allocation is complete. It shows that

TABU RANDOM SWAP algorithm has less CO than RANDOM algorithm but more than

the other algorithms which can be attributed to limited swap move restriction. Moreover,

it shows that TABU RANDOM LOWER+SWAP and TABU RANDOM LOWER have the

same CO as the BFD algorithm. However, at high workload (beyond 0.7) where TABU -

RANDOM LOWER+SWAP shows a very slight less CO than other algorithms. On the

other hand, Tabu algorithms with swap moves (TABU RANDOM SWAP and TABU RAN-

DOM LOWER+SWAP) take a significant time to finish and that time increases exponentially

with network sizes as the number of requests available of the swap is increasing. Therefore

we only consider TABU algorithms with BFD as an initial solution for the remainder of

experiments.

The results of RS and CO metrics of the second experiment of the Tabu algorithms TABU -

BFD LOWER, TABU BFD SWAP and TABU BFD LOWER+SWAP with BFD algorithm

as an initial solution for a k=6 fat-tree are shown in Figure 5.7. Figure 5.7a shows that

residual resources decrease with the workload and that all Tabu algorithms have the same

RS as BFD. While Figure 5.7b shows CO after the allocation is complete and the results

show that the Tabu BFD algorithms show the same CO as BFD. We conclude that Tabu

algorithms that start with BFD can not achieve better utilisation to resources while Tabu that

starts with a random solution can achieve slightly higher utilisation. Furthermore, the BFD

5.4. Results Analysis 110

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
TABU_BFD_LOWER
TABU_BFD_SWAP
TABU_BFD_LOWER+SWAP
CP_COMP+COMM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
TABU_BFD_LOWER
TABU_BFD_SWAP
TABU_BFD_LOWER+SWAP
CP_COMP+COMM

(b) Communication Overhead

Figure 5.7: RS and CO of BFD Meta-heuristic for Traffic Demand Workload, when k=6

algorithms that start with random algorithms are time consuming while swap based tabu

algorithms have exponential complexity with the number of requests.

5.4.4 Subset-Sum Near-Optimal Solution

We evaluated the subset-sum NEAR OPTIMAL solution presented in Section 4.6. The sub-

optimal solutions of the locations are taking a long time to finish without getting any better

solutions the same as the constraint programming solution. Therefore, the TimeLimit pa-

rameter is set to terminate the search. We include the results of the heuristic BFD and RAN-

DOM and constraint programming CP COMP+COMM for comparison. We present results

of the RS and CO for the following experiment:

The results of RS and CO metrics of the first experiment of BFD, CP COMP+COMM,

NEAR OPTIMAL, and RANDOM algorithms in case of TimeLimit=5min for a k=6 fat-

tree are shown in Figure 5.8. Figure 5.8a show RS decreasing linearly with the workload the

same as in Figure 5.1a, and that CP COMP+COMM algorithm shows a higher RS than other

algorithms in high workload as Figure 5.3a. Furthermore, the results show that the BFD algo-

rithm has residual resources that almost overlap with NEAR OPTIMAL solution. However,

In high workload (beyond 0.6) NEAR OPTIMAL was able to spare more residual resources

than BFD up to 5% which the same RS as the optimal CP COMP+COMM which can be at-

5.4. Results Analysis 111

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
NEAR_OPTIMAL
CP_COMP+COMM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
NEAR_OPTIMAL
CP_COMP+COMM

(b) communication Overhead

Figure 5.8: RS and CO of Near Optimal for Modules Sizes Workload, when k=6

tributed to NEAR OPTIMAL is optimising to minimise computing resources will minimise

the resources wasted from fragmentation seen in BFD and increase residual resources.

Figure 5.8b show the CO objective function after the allocation is complete and, the re-

sults show that CO of CP COMP+COMM has less CO the same as shown in Figure 5.3b.

Moreover, the results show that communication overhead of the BFD algorithm is almost

overlapping with NEAR OPTIMAL solution.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
NEAR_OPTIMAL
CP_COMP+COMM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
NEAR_OPTIMAL
CP_COMP+COMM

(b) Communication Overhead

Figure 5.9: RS and CO of Near Optimal for Traffic Demand Workload, when k=6

The results of RS and CO metrics for the second experiment for a k=6 fat-tree are shown

in Figure 5.9. Figure 5.9a shows a decrease in residual resources with the workload as

expected similar to Figure 5.2a as a result of increasing computing resources with traffic

5.4. Results Analysis 112

rate. Furthermore, similar to Figure 5.8a, in high workload (beyond 0.8) NEAR OPTIMAL

was able to spare slightly more residual resources than BFD. Figure 5.9b shows the CO

objective function after the allocation is complete. It shows that NEAR OPTIMAL has the

same CO as BFD. We conclude that NEAR OPTIMAL can reach a slightly better usage of

the computing and the communication resources than the BFD algorithm.

5.4.5 Single Instance Allocation

We compare the greedy algorithm BFD to the middleboxes single instance legacy allocation.

A single instance is where a request is allocated to a single instance of the requested func-

tion, and all traffic must be steered to that instance. For comparison reasons, we adopt the

BFD version of the algorithm, the BFD SINGLE INSTANCE. Because BFD SINGLE IN-

STANCE is a high bandwidth consumption algorithm, we changed the experiment parame-

ters of the two experiments. Otherwise, it would not be able to find a complete solution to the

problem being solved. We present results of the RS and CO for the following experiments:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
BFD_SINGLE_INSTANCE
RANDOM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Modules mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

BFD_SINGLE_INSTANCE
RANDOM

(b) communication Overhead

Figure 5.10: RS and CO of Single Instance for Modules Sizes Workload, when k=6

The results of RS and CO metrics for the first experiment of the BFD, BFD SINGLE IN-

STANCE, and RANDOM algorithms in case of traffic demand rate parameters are µ=60%

and σ=10% of the maximum value of flow rate, and over-subscription upper bound are raised

to o=2 for a k=6 fat-tree are shown in Figure 5.10. In Figure 5.10a, RS starts decreasing lin-

5.4. Results Analysis 113

early with the workload as in Figure 5.1a. The results show that BFD SINGLE INSTANCE

algorithm has more spare resources than other algorithms which are a result of only one

instance being deployed for each request, and no duplication is endured. It shows up to

50% more residual resources than BFD. Figure 5.10b show the CO objective function after

the allocation is complete and, the results show, opposite to RS, BFD SINGLE INSTANCE

shows a linear increase in CO as the traffic steered to the centralised instance will cause a

significant communication overhead compared to the distributed allocation strategy adopted

by other algorithms where BFD can reach to 50% less CO than BFD SINGLE INSTANCE.

The results of RS and CO metrics for the second experiment in case of µ=50% and σ=10%

of the maximum value of module size and o=2 for a k=6 fat-tree are shown in Figure 5.11.

Figure 5.11a shows a slight decrease in residual resources with the workload as similar as

a result of increasing computing resources with the traffic rate. Furthermore, similar to

Figure 5.10a, Figure 5.2a shows that BFD SINGLE INSTANCE algorithm has more spare

resources as a result of single instance deployment policy. While Figure 5.11b results show

a high increase of CO for BFD SINGLE INSTANCE that reach up to 90% more CO than

BFD.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
BFD_SINGLE_INSTANCE
RANDOM

(a) Residual Resources

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Flow mean ()

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

BFD_SINGLE_INSTANCE
RANDOM

(b) Communication Overhead

Figure 5.11: RS and CO of Single Instance for Traffic Demand Workload, when k=6

We conclude that BFD SINGLE INSTANCE algorithm has more spare computing resources

than BFD algorithms, while it suffers a very high communication overhead due to the steer-

ing traffic policy.

5.4. Results Analysis 114

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Pl
ac

em
en

t
Ra

ti
o

(P
R)

BFD_CP
LP
BFD_LP
RANDOM_LP

(a) Placement Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Modules mean ()

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD_CP
LP
BFD_LP
RANDOM_LP

(b) Residual Resources

Figure 5.12: PR and RS of BFD CP and BFD LP Algorithms ,when k=6

5.4.6 Linear Programming

The evaluation shown in this section illustrates the characteristics of the one-dimensional

implementation of the placement framework. It demonstrates the optimality of the heuristic

solution against the LP solution of the implementations and compares the one-dimensional

model to the two-dimensional model. We compare the BFD algorithm of the one-dimensional

model BFD LP to the LP solution and the BFD of the two-dimensional model BFD CP. Fur-

thermore, we implemented RANDOM versions of the one-dimensional model RANDOM -

LP. The LP solution has been modelled in MIP CPLEX optimiser.

For the comparison with the two-dimensional implementation, we extend the experiment

to include the case where not all requests have been allocated. Therefore, we add an extra

virtual location to the actual locations in the one-dimensional implementation with unlimited

capacity. Besides, any request that is allocated to that location will be considered as an

unallocated request in the final solution. However, the cost of allocating a request to that

location is set to more than the cost for Core layer allocation, and proportional to the required

computing resources of that request.

The experiment shows the effect of the modules sizes workload of BFD CP, BFD LP, LP

and RANDOM LP where the traffic demand rate parameters are µ=80% and σ=10% of

the maximum value of flow rate, tenant request rate equal r=4, communication overhead

5.4. Results Analysis 115

parameters are µ=20% and σ=10% of the max value of flow rate between shared nodes,

base part to traffic part percentage is 50%, the number of available modules n=20, and the

probability of the stateless class is p=50%. The results of PR and RS metrics for a k=6

fat-tree are shown in Figure 5.12. It is worth mentioning that the following experiment is not

satisfying the system capacity constraint.

Figure 5.12a shows the placement ratio near 1 for low workloads. While beyond 0.5 work-

load, PR starts decreasing linearly with the workload for LP-based algorithms, which oc-

curs as a result of the requested resources starting to exceed resource capacity available in

switches as a result of the stateful class constraint will reduce available resources for the

stateless class which are the most consuming type for resources. Moreover, the results show

that the BFD CP has PR=1 While BFD LP suffers a decrease in PR, it shows less reduction

than RANDOM and overlap with the LP solution. While Figure 5.12b shows the residual re-

sources after the allocation is complete and, similar to the PR case, it exhibits a reduction as

workload increases where the increasing of requested resources will result in a reduction in

spare resources. Furthermore, it shows that when workload>0.5 BFD LP has more residual

resources than the RANDOM algorithm and almost overlaps with the LP algorithm. Fur-

thermore, the BFD LP and LP algorithms have less residual resources to spare than BFD CP

algorithm that reach 20% even if the PR is less than 1, and it could not accommodate all

requests.

Based on the above results, the BFD P exhibits better resource utilisation to accommo-

date more resources compared to the RANDOM algorithm and show near-optimal results

compared to the LP solution. However, BFD LP has less residual resources than BFD CP,

where stateless class consuming more resources in higher layers than stateful class functions.

Therefore, the LP implementation of the framework will require more computing resources

to match the CP model accommodation level for requests. To accomplish that for a fat-tree,

it will require an update to the capacity of the deployment locations presented in Section 4.2.

5.5. Extended Analysis 116

5.5 Extended Analysis

In this section, we extend the evaluation of the framework and the developed algorithms.

First, we evaluate the framework resources capacity presented in Section 4.2 in different

network sizes. Second, we present the optimality gap analysis of the methods that show

promising performance in the previous section. Then, we evaluate the efficiency of the algo-

rithms for execution time and success rate. Finally, we evaluate the effect of the class types

distribution and the number of offered modules on the algorithms.

5.5.1 Network Size

The next experiment shows the effect Network Sizes on the residual resources and communi-

cation overhead of the BFD and RANDOM algorithms at low workload where modules size

(required resources) parameters are µ=60% and σ=10% of the maximum value of mod-

ule size and traffic demand rate parameters are µ=60% and σ=10% of the maximum value

of flow rate, tenant request rate r=4, communication overhead parameters are µ=20% and

σ=10% of the max value of flow rate between shared nodes, base part to traffic part percent-

age is 50%, the probability of the stateless class p=50%, and the number of modules n=20.

fat-tree with k ∈ {6, 8, 10, 12} were tested. The results of RS and CO metrics for tested

networks are shown in Figure 5.13.

6 7 8 9 10 11 12
Network Size k

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM

(a) Residual Resources

6 7 8 9 10 11 12
Network Size k

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM

(b) Communication Overhead

Figure 5.13: RS and CO for Network Size, in Low Workload

5.5. Extended Analysis 117

Figure 5.13a shows RANDOM has less residual resources than BFD as Figure 5.1. Fur-

thermore, it shows that the RANDOM algorithm has steady residual resources as network

size increases which results of requests are allocated randomly to the three layers with equal

percentage. However, the results show RS for BFD increasing linearly with the network

size which can be attributed to that in low workload, BFD will keep requests in lower layers

to reduce duplication while computing resources available in higher layers location is in-

creasing exponentially with network size as illustrated in Section 4.2 which results in more

residual resources percentage in higher network sizes. While Figure 5.13b shows that BFD

and RANDOM have a steady CO with network size.

The next experiment shows the effect Network Sizes on the residual resources and communi-

cation overhead of the BFD and RANDOM algorithms at high workload where modules size

(required resources) parameters are µ=90% and σ=10% of the maximum value of module

size and traffic demand rate parameters are µ=70% and σ=10% of the maximum value of

flow rate and the same parameters for the previous experiment. The results of RS and CO

metrics for tested networks are shown in Figure 5.14. Figure 5.14a shows the scalability of

the BFD algorithm in a high workload where RS percentages are stable through all network

sizes While Figure 5.14b shows the same for communication overhead which prove the the

switches capacity selected in Section 4.2.3 is able to scale with network size to accomplish

the same level of request satisfaction.

6 7 8 9 10 11 12
Network Size k

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM

(a) Residual Resources

6 7 8 9 10 11 12
Network Size k

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM

(b) Communication Overhead

Figure 5.14: RS and CO for Network Size, in High Workload

5.5. Extended Analysis 118

µ
Heuristic Meta-heuristic (TABU)

NEAR OPTIMAL
BFD FFD RANDOM LOWER SWAP LOWER+SWAP

0.1 0.00 5.96 5.77 0.00 0.00 0.00 0.00
0.3 0.00 2.66 2.73 0.00 0.00 0.00 0.00
0.5 0.08 1.29 1.23 0.08 0.07 0.07 0.04
0.7 0.06 0.70 0.75 0.06 0.05 0.05 0.00
0.9 0.07 0.46 0.45 0.07 0.06 0.06 0.03

Table 5.2: Optimality Gap, when k=6

5.5.2 Optimality Gap Analysis

The optimality gap analysis measures the ratio of how close the provided solutions are to

the optimum. The experiment in this section shows the optimality gap by comparing the

objective function result of a solution to the constraint programming solution. The optimality

gap of an algorithm is calculated using Equation 5.1 Where Rop is the average value of the

objective of the CP COMP+COMM solution.

The results of optimality gap G metric of BFD, FFD, RANDOM, TABU LOWER, TABU -

SWAP, TABU LOWER+SWAP and NEAR OPTIMAL algorithms in case of same parame-

ters as the first Experiment of previous section for a k=6 fat-tree are shown in Table 5.2. It is

worth mentioning that the Tabu algorithms have a BFD initial solution. The results show that

the average optimality gap in case of µ of the size of the modules is in [0.1, 0.3, 0.5, 0.7, 0.9].

The results show that the heuristic BFD and meta-heuristic solutions can provide solutions

close to the optimal constraint programming solution where the maximum gap was 0.08%

while RANDOM and FFD algorithms show the highest gap that can reaches up to 5.96%.

Furthermore, results show NEAR OPTIMAL algorithm has the least gap among all algo-

rithms with a maximum of 0.04%, which underlines a higher accuracy than other algorithms.

5.5.3 Execution Time

While the optimality gap results show that BFD, meta-heuristic and NEAR-OPTIMAL algo-

rithms show close results to the constraint programming solution; however, their execution

5.5. Extended Analysis 119

time may vary. Therefore, the next experiment shows the Execution Time of BFD, RAN-

DOM, TABU LOWER, TABU SWAP, TABU LOWER+SWAP, NEAR OPTIMAL and BFD -

SINGLE INSTANCE algorithms. The experiment tested in case of the same parameters as

the previous experiment. The results of the tested algorithms for k=6 fat-tree are shown

in Figure 5.15. It worth-mentioning that the results of BFD SINGLE INSTANCE shown

are with allocating percentages that are less than 1, which means not all requests have been

allocated due to the high bandwidth requirement of the algorithm.

Figure 5.15: Execution Time for Modules Sizes Workload, when k=6

Figure 5.15 shows that at low workload, less 0.3, execution time is less than one second

for all algorithms while BFD and RANDOM algorithm keep the 1 second execution time

for all workloads. The results also show that TABU algorithms have increasing execution

time where an increasing number of requests are allocated in different layers and will be

available for swapping. However, TABU LOWER has less execution time than other TABU

algorithms where it reaches more than 10 seconds at 0.9 workload while TABU SWAP and

TABU LOWER+SWAP have shown a high execution time in a high workload where they ex-

ceed 1300 second at workload 0.9. Besides, the results show that BFD SINGLE INSTANCE

show execution time of 3 seconds at workload 0.9. It is worth mentioning that we omit the

results of NEAR OPTIMAL and CP algorithms as their execution time is determined by the

time limit set by the experiment. We conclude that the BFD algorithm outperforms TABU

and NEAR OPTIMAL algorithms in execution time while they slightly outperform BFD in

optimality.

5.5. Extended Analysis 120

5.5.4 Success Rate

In some cases, an algorithm could not find a solution to the problem. Thus, the next ex-

periment shows Success Rate of BFD, BFD SINGLE INSTANCE, NEAR OPTIMAL and

RANDOM algorithms. It is worth mentioning that this experiment is tested with search space

that violates the system capacity constraint where µ of the modules size is [0.1, 0.3, 0.5, 0.7, 0.9]

and traffic demand rate parameters are µ=70% and σ=10% of maximum value of flow rate,

tenant request rate equal r=4, communication overhead parameters are µ=20% and σ=10%

of maximum value of flow rate between shared nodes, base part to traffic part percentage is

90%, number of available modules n=20, and the probability of the stateless class p=50%.

The results for k=6 fat-tree over 50 runs are shown in Figure 5.16. It is worth mentioning

that we omit the Tabu algorithms as they already have an initial solution to start with.

Figure 5.16: Success Rate for Modules Sizes Workload, when k=6

Figure 5.16 shows that at low workload, all algorithms have a success rate of 1 where all

algorithms have succeeded in finding a feasible solution. However, the success rate starts

decreasing as the workload increases. The results show the BFD SINGLE INSTANCE and

RANDOM algorithms start desecrating at workload 0.4 and 0.7 respectively, while BFD

starts at 0.8 and NEAR OPTIMAL at 1. Furthermore, BFD SINGLE INSTANCE shows

zero success rate at workload 0.5 while RANDOM algorithms could not find any solution at

workload 0.8. Moreover, BFD was able to find a solution in 40% of the scenario at workload

0.9 while NEAR OPTIMAL could find a solution to all of them. No algorithms could find

any solutions to any of the instances at workload 1.

5.5. Extended Analysis 121

5.5.5 Class Types Distribution

The next experiment shows the effect of the probability of the two classes of security func-

tions of the BFD, BFD SINGLE INSTANCE, NEAR OPTIMAL and RANDOM algorithms

on the residual resources and communication overhead in case of modules size (required -

resources) parameters are µ=80% and σ=10% of the maximum value of module size and

traffic demand rate parameters are µ=80% and σ=10% of the maximum value of flow rate,

tenant request rate r=4, communication overhead parameters are µ=20% and σ=10% of the

maximum value of flow rate between shared nodes, base part to traffic part percentage is

50%, the number of available modules n=20. The results of RS and CO metrics for a k=6

fat-tree are shown in Figure 5.17. It worth-mentioning that the results of BFD SINGLE -

INSTANCE shown are with allocating percentages that are less than 1, which means not all

requests have been allocated due to the high bandwidth requirement of the algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Stateless class p

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
BFD_SINGLE_INSTANCE
RANDOM
NEAR_OPTIMAL

(a) Residual Resources

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Stateless class p

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

BFD_SINGLE_INSTANCE
RANDOM
NEAR_OPTIMAL

(b) Communication Overhead

Figure 5.17: RS and CO for The Probability of the Stateless Class, when k=6

Figure 5.17a shows Residual Resources decreases with the increase of the probability of

the stateless class p as the stateless class has complete duplicated elements compared to

the stateful class where only monitoring elements are duplicated. While BFD SINGLE -

INSTANCE show steady performance as requests are allocated as one instance despite their

type, furthermore, BFD SINGLE INSTANCE show more RS than all algorithms as it adopts

one instance strategy while BFD show more RS than the RANDOM algorithm. Moreover,

the results show NEAR OPTIMAL algorithm spare more RS than BFD which is a result of

5.5. Extended Analysis 122

optimising each allocation to reduce residual resources will fill the fragments that may be

resulted from BFD and increase overall residual resources.

Figure 5.17b shows the CO objective function after the allocation is complete. It shows

as p increases, and the communication overhead decreases with the decrease of the stateful

classes which impose no communication overhead to the system. Additionally, when p=1

and only stateless class is present, the communication overhead reaches zero. Furthermore,

BFD SINGLE INSTANCE shows a steady case with both classes allocated in the same way.

However, BFD SINGLE INSTANCE has less CO than other algorithms where it failed to

allocate all requests. Furthermore, NEAR OPTIMAL algorithm shows more CO than BFD

which can be attributed to optimising for minimising residual resources will prefer stateless

class over a stateful class where it requires more resources and resulting in more stateful

class allocated in higher layers which increase CO.

5.5.6 Number of Modules

The next experiment shows effect of Number of Modules on the residual resources and com-

munication overhead of the BFD, NEAR OPTIMAL and RANDOM algorithms in case of

modules size (required resources) parameters are µ=60% and σ=10% of the maximum

value of module size and traffic demand rate parameters are µ=60% and σ=10% of the

maximum value of flow rate, tenant request rate r=4, communication overhead parameters

are µ=50% and σ=10% of max value of flow rate between shared nodes, base part to traf-

fic part percentage is 50%, and the probability of the stateless class p=50%. The number of

modules tested is from the list [10, 20, 30, 40, 50]. The results of RS and CO metrics for a

k=6 fat-tree are shown in Figure 5.18. The Figure shows the scale properties of the BFD and

other algorithms where identical results for RS and CO are observed of modules numbers 10

to 50 for all algorithms.

5.6. Scalability 123

10 20 30 40 50
Number of Modules

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
RANDOM
NEAR_OPTIMAL

(a) Residual Resources

10 20 30 40 50
Number of Modules

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

RANDOM
NEAR_OPTIMAL

(b) Communication Overhead

Figure 5.18: RS and CO for Number of Modules, when k=6

5.6 Scalability

The scalability of the BFD, BFD SINGLE INSTANCE, NEAR OPTIMAL and RANDOM

algorithms are shown by increasing the number of requests until the algorithms could not

find a complete solution to the problem. Moreover, the experiment will test the performance

results of the partial solution found. The experiment shows the effect of request rate workload

on the performance metrics as the first experiment in Section Section 5.4 and in case of

module size (required resources) parameters are µ=70% and σ=10% of the maximum value

of module size and the request rates are ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The results of PR, RS

and CO metrics for a k=6 fat-tree are shown Figure 5.19. It is worth mentioning that the

experiment does not guarantee the system capacity constraint and that we omit the constraint

programming where it could not obtain a partial solution.

2 4 6 8 10
Request rate

0.0

0.2

0.4

0.6

0.8

1.0

Pl
ac

em
en

t
Ra

ti
o

(P
R)

BFD
BFD_SINGLE_INSTANCE
RANDOM
NEAR_OPTIMAL

(a) Placement Ratio

2 4 6 8 10
Request rate

0.0

0.2

0.4

0.6

0.8

1.0

Re
si

du
al

 R
es

ou
rc

es
 (

RS
)

BFD
BFD_SINGLE_INSTANCE
RANDOM
NEAR_OPTIMAL

(b) Residual Resources

2 4 6 8 10
Request rate

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(C

O
) BFD

BFD_SINGLE_INSTANCE
RANDOM
NEAR_OPTIMAL

(c) Communication Overhead

Figure 5.19: PR, RS and CO for Request Rate, when k=6

5.6. Scalability 124

Figure 5.19a show the PR objective function after the allocation is complete and, the results

show PR=1 below r=6 where all requested resources have been allocated while show de-

creasing of PR beyond that. Moreover, results show that NEAR OPTIMAL has less PR then

BFD and RANDOM. This can be attributed that NEAR OPTIMAL objective of filling loca-

tions with the most resources will prioritise stateless class over stateful class which results in

allocating the more consuming resources class type and results in less RS to accommodate

requests and subsequently less PR. Furthermore, BFD SINGLE INSTANCE has PR < 1

beyond r=2 which is a result of no available bandwidth to allocate requests with its steering

strategy.

Figure 5.19b shows a decrease in residual resources below r=6 while showing steady results

beyond that which can be attributed to the increase in the number of requests will result in a

reduction in available resources until no more resources can be allocated. Furthermore, the

results show that BFD SINGLE INSTANCE has more spare resources than BFD, where it

could not allocate most of the requests as shown in Figure 5.19a. While BFD and NEAR -

OPTIMAL have more spare resources than the RANDOM algorithm as they utilise allocation

to minimise resource consumption.

Figure 5.19c show the CO objective function after the allocation is complete and, the results

show a linear increase of CO as more requests will introduce more communication overhead

to the allocation while BFD SINGLE INSTANCE has less CO than other algorithms where

it could not allocate most of the requests. Moreover, the results show that NEAR OPTIMAL

algorithm has a decreasing CO beyond r=6, which can be attributed to less stateful class

functions being allocated, and less CO endured.

We conclude that increasing the request rate will result in algorithms failing to find a com-

plete solution to the placement problem. However, the BFD algorithm has been able to scale

and find a solution that will satisfy more computing resources requests than other algorithms

including the near-optimal algorithms which will priorities one of the classes over the other

and results in less CO but less requests satisfaction.

5.7. Summary 125

5.7 Summary

These chapter sections have presented the most important characteristics of the developed so-

lutions to solve the placement of security function problems. It has used simulation results to

compare the constraint programming, heuristic, meta-heuristic, near-optimal and LP imple-

mentation as well. Furthermore, it has explored the different characteristics of the proposed

solutions against different factors, such as network size and the number of available security

modules. The main findings of this chapter are the BFD algorithm based on sorting request

on computing required resources of the requested modules has shown a balance between

utilising computing and communication resources compared to other heuristic algorithms.

It shows a near-optimal solution compared to the constraint programming solutions while

solutions such as TABU meta-heuristic and near-optimal solutions have reached a slightly

more utilisation to resources than the tested BFD. However, BFD has proved optimised time

and success rate compared to other algorithms. When testing the legacy single instance al-

location against BFD, it has shown better saving to computing resources that reached 50%

while it showed more communication overhead up to 70% more than BFD. Moreover, an

LP implementation that eliminated the communication overhead of the framework has been

evaluated. The results show that an increasing amount of computing resources are required to

accommodate requests compared to the CP model. Furthermore, the BFD version of the LP

implementation is shown to have a near-optimal solution compared to the LP model solution.

Furthermore, BFD shows scalability with increasing the request rate.

126

Chapter 6

Conclusion and Future Work

6.1 Overview

In this chapter, we summarise and conclude this work. The remainder of this chapter is

structured as follows: Section 6.2 details the contributions made throughout this work. A

discussion on directions for future work is presented in Section 6.3, including improvements

and extensions to the current work. Finally, concluding remarks in Section 6.4.

6.2 Contribution Summary

This thesis has addressed the security function requirements and constraints of today’s vir-

tual network function orchestration and management frameworks. While a security function

has been typically treated the same as any other network function, it poses unique require-

ments and constraints that have been identified and justified in this thesis. This work outlines

the benefits and challenges of deploying network functions as VNFs in multi-tenant environ-

ments with an emphasis on security network functions. Furthermore, it analyses the previous

approaches found in the literature to address similar problems and surveys their aims, meth-

ods and shortcoming in case of security functions.

This thesis has begun by detailing the benefits that NFV and SDN bring to network func-

6.2. Contribution Summary 127

tion deployment (e.g., software-based network functions, efficient resource provisioning, the

flexibility of placement, etc.) compared to their counterpart hardware middleboxes in legacy

networks. Then, it illustrates the rising of customised security services in a multi-tenant vir-

tual environment which motivated the aims of future customised security VNFs provided as

services for tenants.

While there is considerable work that has addressed the virtual network function manage-

ment problem, this thesis showed that security functions enforce placement constraints that

are not presenting in other types of network functions in a multi-tenant environment. For

example, the different granularity of the traffic required by the security functions classes will

constraint the placement of the function to locations where it can be satisfied. Moreover, the

complexity of the security functionality, the stateful class in particular, limits function shar-

ing among multiple tenants. Besides, identifying north-south traffic as the traffic direction

required for security classes in contrast to east-west traffic promoted as the designated traf-

fic direction of network functions by previous approaches. Moreover, some constraints will

increase the required resources for the deployment process. For example, the non-sharing

policy will increase the number of instances while the granularity of security functions will

limit function placement location or force traffic steering. Furthermore, the limitations of

current research and solutions to address these constraints and requirements have been dis-

cussed.

The work conducted in this thesis focused on the design of a security placement framework

that utilises the SDN and VNF technologies to allow system operators to provide customised

security services to their tenants. Increasing their capability for dynamic security solutions

that can elastically face security threats at the run time. The placement framework is tailored

to security functions, and aimed at reducing complexity and saving computing and commu-

nication resources. It implements a placement strategy that satisfies the unique constraints

of the security functions and reduces the resource overhead due to the constraints enforces

by the deployment. The framework provides customised security services to meet the di-

versity of users in multi-tenant environments. Furthermore, the placement problem of the

6.3. Future Work 128

framework has been analysed and modelled mathematically.

Heuristic, meta-heuristic (tabu), near-optimal and constraint programming methods have

been evaluated as solutions to the placement problem. The results show that the BFD heuris-

tic algorithm shows up to 70% less CO and up to 50% more than in RS compared to RAN-

DOM and FFD heuristic solutions. It also shows that the Tabu algorithms that start with

a BFD solution can not achieve better utilisation to resources while tabu that starts with a

random solution can achieve slightly higher utilisation. Moreover, the near-optimal solution

was able to spare up to 5% more residual resources than BFD and has the same residual re-

sources as the constraint programming solution while communication overhead of the BFD

algorithm is almost overlapping with the near-optimal solution. However, constraint pro-

gramming shows less CO than BFD that reach up 10% while it shows the same as BFD

at high workload. Furthermore, the single instance strategy has shown 50% more residual

resources than BFD while BFD has reached 50% less CO. The results also show that the

BFD algorithm outperforms tabu and near-optimal solutions in execution time and scalabil-

ity while they slightly outperform BFD in optimality.

6.3 Future Work

6.3.1 Supporting Placement of Security VNF Chains

To simplify the problem, the design of the placement framework assumes a user can request

multiple security functions but it does not support a specific order of the functions of the

request. However, security policy usually involves processing traffic in a specific order such

as a firewall then an IDS which has been known as a chain of requests. Supporting chains of

requests will add a chain location optimisation as an objective to the problem which converts

it to another complex problem where our objective has been saving resources while satisfying

the identified constraints of security modules placement. Moreover, it will require changes

to the placement algorithm.

6.3. Future Work 129

6.3.2 Dynamic Placement

While the current framework supports the static version (initial placement) of the placement

problem, in a real situation, a migration algorithm is to be implemented as well to handle

dynamic (run-time) problems such as overloaded servers, not enough space of scaling up,

etc. These problems usually arise from the dynamic nature of the environment where changes

can occur at all levels such as VM migration or changes in traffic, plus the dynamic nature

of security where a user comes under attack will require changes to their services at run-

time. Besides, a migration algorithm is to determine a policy when migrating or rearranging

VNFs is required. Typically, it will take decisions such as which function to migrate and

where to. Moreover, migrating algorithms will also be designed with the objective of the

initial placement, in our case, save resources and reduce the number of migrations as well as

migrating VNF can affect QoS due to the stop/start operations.

Besides, migration has many types such as stateless, quick, and live migration which iden-

tifies how it moves the VNF and internal state reservation policy. The type of migration

selected would highly affect a security function where the stateful class, for example, de-

pends on previous data that was stored for comparison to the new traffic pattern. Therefore,

it would be interesting to explore how migration types can support the stateful class while

keeping high QoS to the highly sensitive security services which is a non-trivial process.

6.3.3 Exploring Real Data Center Architectures

This work presented an implementation of the proposed placement framework on the fat-

tree architecture as a widely used architecture in data centers. However, real data center

deployments include modifications to enhance certain characteristic. A future direction may

include testing the proposed solution with other typologies such as the spine plane architec-

ture of Facebook [166] or the Jupiter topology of Google [167].

6.4. Summary and Concluding Remarks 130

6.3.4 QoS Constraints

Security services offered by cloud providers allow different service types to the same se-

curity module such as different throughput based on CPU cores deployed. The proposed

framework assumes that throughput is granted by the initial resources required per mod-

ule. QoS parameters such as throughput requested by a user add a further dimension to the

placement problem that can help save resources and offer more customised services to fit

users’ needs. It also adds more complexity to the placement problem represented as more

constraints are added to the placement.

6.4 Summary and Concluding Remarks

The growth in numbers of ICT companies moving to the cloud comes with more network ser-

vices offered by cloud services providers to users. In addition to the rising in security threats

such as DDoS and ransom attacks that target all size companies, research is focusing on im-

proving the security network function softwarisation and virtualisation. While the dynamic

control of service orchestration of security functionality is a complex process that is based

on user requirements and QoS with the objective to increase profit and reduce expenditure.

come form section The work presented in this thesis proposes a placement framework that

addresses these constraints and a placement strategy to minimise the resource overhead due

to the function deployment. It exploits collocations with network switches for VNF deploy-

ment which allows on-path deployment for the security function and reduces traffic steering

overhead. Moreover, it adopts distributed deployment of the stateful class which reduces

the communication overhead of the deployment compared to the single instance strategy.

The framework placement problem has been addressed mathematically with the objective

to minimise both computing and communication resource consumption of the infrastructure

with a solution provided in Constraint Programming for optimal placement. This thesis in-

troduces a heuristic solution to the problem as a time-optimised solution that will balance the

trade of computing and communication resource consumption in the placement process. The

6.4. Summary and Concluding Remarks 131

proposed solution has proven scalable and near-optimal compared to previously proposed

meta-heuristic and near-optimal subset-sum solutions.

This work intends to prove the hypothesis that security functions pose characteristics that

are not present in case of other network functions. These characteristics enforce constraints

to the orchestration process and increase resource overhead of the placement. Through this

work, operators can orchestrate security network function as VNFs to provide customised se-

curity services to users. This work has shown that the placement of security VNFs can satisfy

the security constraints and maintain efficient management of the network-wide resources.

6.4. SUMMARY AND CONCLUDING REMARKS 132

Publication

The work reported in this dissertation has led to the following publications:

• Ali, Abeer, Christos Anagnostopoulos, and Dimitrios P. Pezaros. ”In-Network Place-

ment of Security VNFs in Multi-Tenant Data Centers.” In 2020 IEEE Symposium on

Computers and Communications (ISCC), 2020.

• Ali, Abeer, Christos Anagnostopoulos, and Dimitrios P. Pezaros. ”On the Optimality

of Virtualized Security Function Placement in Multi-Tenant Data Centers.” In 2018

IEEE International Conference on Communications (ICC), pp. 1-6. IEEE, 2018.

• Ali, Abeer, Christos Anagnostopoulos, and Dimitrios P. Pezaros. ”Resource-aware

placement of softwarised security services in cloud data centers.” In 2017 13th Inter-

national Conference on Network and Service Management (CNSM), pp. 1-5. IEEE,

2017.

• Ali, Abeer, Richard Cziva, Simon Jouet, and Dimitrios P. Pezaros. ”SDNFV-based

DDoS detection and remediation in multi-tenant, virtualised infrastructures.” In Guide

to Security in SDN and NFV, pp. 171-196. Springer, Cham, 2017.

BIBLIOGRAPHY 133

Bibliography

[1] F. G. Perraudeau, “Middleboxes as a Cloud Service,” Ph.D. dissertation, UC Berkeley,

2018.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar,

“Making middleboxes someone else’s problem: Network processing as a cloud

service,” in Proceedings of the ACM SIGCOMM 2012 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication, ser.

SIGCOMM ’12. New York, NY, USA: ACM, 2012, pp. 13–24. [Online]. Available:

http://doi.acm.org/10.1145/2342356.2342359

[3] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand, T. Benson,

V. Sekar, and A. Akella, “Stratos: A network-aware orchestration layer for virtual

middleboxes in clouds,” arXiv preprint arXiv:1305.0209, 2013.

[4] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high availability

framework for middleboxes,” in Proceedings of the 4th Annual Symposium on Cloud

Computing, ser. SOCC ’13. New York, NY, USA: ACM, 2013, pp. 1:1–1:15.

[Online]. Available: http://doi.acm.org/10.1145/2523616.2523635

[5] L. Gyarmati and T. A. Trinh, Energy Efficiency of Data Centers. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 229–244. [Online]. Available:

https://doi.org/10.1007/978-3-642-22179-8 12

[6] S. U. Khan and A. Y. Zomaya, Handbook on data centers. Springer, 2015.

http://doi.acm.org/10.1145/2342356.2342359
http://doi.acm.org/10.1145/2523616.2523635
https://doi.org/10.1007/978-3-642-22179-8_12

Bibliography 134

[7] C. Basile, C. Pitscheider, F. Risso, F. Valenza, and M. Vallini, “Towards the dynamic

provision of virtualized security services,” in Cyber Security and Privacy Forum.

Springer, 2015, pp. 65–76.

[8] S. Shin, H. Wang, and G. Gu, “A first step toward network security virtualization:

from concept to prototype,” IEEE Transactions on Information Forensics and Secu-

rity, vol. 10, no. 10, pp. 2236–2249, 2015.

[9] (2017) Silver peak. [Online]. Available: https://www.silver-peak.com/

[10] (2019) Riverbed. [Online]. Available: https://www.riverbed.com/gb/

[11] Cisco. Cisco. [Online]. Available: https://www.cisco.com/

[12] sophos. Sophos. [Online]. Available: https://home.sophos.com/en-us.aspx

[13] (2017) Snort intrusion detection system. [Online]. Available: https://www.snort.org/

[14] (2017) The suricata open source ids, ips, and nsm. [Online]. Available:

https://suricata-ids.org/

[15] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly detection:

methods, systems and tools,” Ieee communications surveys & tutorials, vol. 16, no. 1,

pp. 303–336, 2014.

[16] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mechanisms: classifica-

tion and state-of-the-art,” Computer Networks, vol. 44, no. 5, pp. 643–666, 2004.

[17] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms against dis-

tributed denial of service (ddos) flooding attacks,” IEEE Communications Surveys &

Tutorials, vol. 15, no. 4, pp. 2046–2069, 2013.

[18] B. B. Gupta and O. P. Badve, “Taxonomy of dos and ddos attacks and

desirable defense mechanism in a cloud computing environment,” Neural

Computing and Applications, pp. 1–28, 2016. [Online]. Available: http:

//dx.doi.org/10.1007/s00521-016-2317-5

https://www.silver-peak.com/
https://www.riverbed.com/gb/
https://www.cisco.com/
https://home.sophos.com/en-us.aspx
https://www.snort.org/
https://suricata-ids.org/
http://dx.doi.org/10.1007/s00521-016-2317-5
http://dx.doi.org/10.1007/s00521-016-2317-5

Bibliography 135

[19] S. M. Specht and R. B. Lee, “Distributed denial of service: Taxonomies of attacks,

tools, and countermeasures,” in ISCA PDCS, 2004, pp. 543–550.

[20] O. Osanaiye, K.-K. R. Choo, and M. Dlodlo, “Distributed denial of service (ddos)

resilience in cloud: review and conceptual cloud ddos mitigation framework,” Journal

of Network and Computer Applications, vol. 67, pp. 147–165, 2016.

[21] (2018) DDoS Incident Report - GitHub Engineering. [Online]. Available:

https://githubengineering.com/ddos-incident-report/

[22] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (sdn) and dis-

tributed denial of service (ddos) attacks in cloud computing environments: A sur-

vey, some research issues, and challenges,” IEEE Communications Surveys Tutorials,

vol. 18, no. 1, pp. 602–622, Firstquarter 2016.

[23] F. Wong and C. Xiang Tan, “A survey of trends in massive ddos attacks and cloud-

based mitigations,” International Journal of Network Security & Its Applications,

vol. 6, pp. 57–71, 05 2014.

[24] Akamai, “state of the internet - security : DDoS and Applica-

tion Attacks Report,” Akamai, Tech. Rep., 2019. [Online]. Available:

https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/

global-state-of-the-internet-security-ddos-attack-reports.jsp

[25] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya, “Ddos attacks

in cloud computing: Issues, taxonomy, and future directions,” Computer

Communications, vol. 107, pp. 30 – 48, 2017. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0140366417303791

[26] G. Somani, M. S. Gaur, and D. Sanghi, “Ddos/edos attack in cloud: Affecting

everyone out there!” in Proceedings of the 8th International Conference on Security

of Information and Networks, ser. SIN ’15. New York, NY, USA: ACM, 2015, pp.

169–176. [Online]. Available: http://doi.acm.org/10.1145/2799979.2800005

https://githubengineering.com/ddos-incident-report/
https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
http://www.sciencedirect.com/science/article/pii/S0140366417303791
http://www.sciencedirect.com/science/article/pii/S0140366417303791
http://doi.acm.org/10.1145/2799979.2800005

Bibliography 136

[27] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A

survey of intrusion detection techniques in Cloud,” Journal of Network and

Computer Applications, vol. 36, no. 1, pp. 42–57, jan 2013. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1084804512001178

[28] M. G. Gouda and A. X. Liu, “A model of stateful firewalls and its properties,” in

2005 International Conference on Dependable Systems and Networks (DSN’05), June

2005, pp. 128–137.

[29] K. A. Scarfone and P. M. Mell, “SP 800-94. Guide to Intrusion Detection and Preven-

tion Systems (IDPS),” Gaithersburg, MD, United States, Tech. Rep., 2007.

[30] H. T. Elshoush and I. M. Osman, “Alert correlation in collaborative intelligent

intrusion detection systems—A survey,” Applied Soft Computing, vol. 11, no. 7, pp.

4349–4365, oct 2011. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S156849461000311X

[31] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection

system: A comprehensive review,” Journal of Network and Computer Applications,

vol. 36, no. 1, pp. 16–24, jan 2013. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1084804512001944

[32] H. Debar, M. Dacier, and A. Wespi, “A revised taxonomy for intrusion-detection

systems,” Annales Des Télécommunications, vol. 55, no. 7-8, pp. 361–378, 2000.

[Online]. Available: https://link.springer.com/article/10.1007/BF02994844

[33] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,

“An Overview of IP Flow-Based Intrusion Detection,” IEEE Communications

Surveys & Tutorials, vol. 12, no. 3, pp. 343–356, 2010. [Online]. Available:

http://ieeexplore.ieee.org/document/5455789/

[34] A. Patel, M. Taghavi, K. Bakhtiyari, and J. Celestino Júnior, “An intrusion detection

and prevention system in cloud computing: A systematic review,” Journal of Network

https://www.sciencedirect.com/science/article/pii/S1084804512001178
https://www.sciencedirect.com/science/article/pii/S156849461000311X
https://www.sciencedirect.com/science/article/pii/S156849461000311X
https://www.sciencedirect.com/science/article/pii/S1084804512001944
https://www.sciencedirect.com/science/article/pii/S1084804512001944
https://link.springer.com/article/10.1007/BF02994844
http://ieeexplore.ieee.org/document/5455789/

Bibliography 137

and Computer Applications, vol. 36, no. 1, pp. 25–41, jan 2013. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S108480451200183X

[35] G. Münz and G. Carle, “Real-time analysis of flow data for network attack

detection,” in 10th IFIP/IEEE International Symposium on Integrated Network

Management 2007, IM ’07. IEEE, may 2007, pp. 100–108. [Online]. Available:

http://ieeexplore.ieee.org/document/4258526/

[36] P. Garcı́a-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and E. Vázquez,

“Anomaly-based network intrusion detection: Techniques, systems and challenges,”

Computers & Security, vol. 28, no. 1-2, pp. 18–28, feb 2009. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167404808000692

[37] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based network intrusion

detection: A review,” Computers & Security, vol. 30, no. 6-7, pp. 353–375,

sep 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0167404811000691

[38] A. A. Ghorbani, W. Lu, and M. Tavallaee, Detection Approaches. Boston,

MA: Springer US, 2010, pp. 27–53. [Online]. Available: https://doi.org/10.1007/

978-0-387-88771-5 2

[39] H. Han, X. L. Lu, J. Lu, C. Bo, and R. L. Yong, “Data mining aided

signature discovery in network-based intrusion detection system,” ACM SIGOPS

Operating Systems Review, vol. 36, no. 4, pp. 7–13, oct 2002. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=583800.583801

[40] (2017) The bro network security monitor. [Online]. Available: https://www.bro.org/

[41] A. Patcha and J.-M. Park, “An overview of anomaly detection techniques: Existing

solutions and latest technological trends,” Computer Networks, vol. 51, no. 12, pp.

3448–3470, aug 2007. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S138912860700062X

https://www.sciencedirect.com/science/article/pii/S108480451200183X
http://ieeexplore.ieee.org/document/4258526/
https://www.sciencedirect.com/science/article/pii/S0167404808000692
https://www.sciencedirect.com/science/article/pii/S0167404811000691
https://www.sciencedirect.com/science/article/pii/S0167404811000691
https://doi.org/10.1007/978-0-387-88771-5_2
https://doi.org/10.1007/978-0-387-88771-5_2
http://portal.acm.org/citation.cfm?doid=583800.583801
https://www.bro.org/
https://www.sciencedirect.com/science/article/pii/S138912860700062X
https://www.sciencedirect.com/science/article/pii/S138912860700062X

Bibliography 138

[42] S. Smaha, “Haystack: an intrusion detection system,” in [Proceedings 1988] Fourth

Aerospace Computer Security Applications. IEEE Comput. Soc. Press, 1998, pp.

37–44. [Online]. Available: http://ieeexplore.ieee.org/document/113412/

[43] C. Krügel, T. Toth, and E. Kirda, “Service specific anomaly detection for network

intrusion detection,” in Proceedings of the 2002 ACM symposium on Applied

computing - SAC ’02. New York, New York, USA: ACM Press, 2002, p. 201.

[Online]. Available: http://portal.acm.org/citation.cfm?doid=508791.508835

[44] Wenke Lee and Dong Xiang, “Information-theoretic measures for anomaly

detection,” in Proceedings 2001 IEEE Symposium on Security and Privacy.

S&P 2001. IEEE Comput. Soc, 2001, pp. 130–143. [Online]. Available:

http://ieeexplore.ieee.org/document/924294/

[45] M. N. Ismail, A. Aborujilah, S. Musa, and A. Shahzad, “Detecting flooding

based DoS attack in cloud computing environment using covariance matrix

approach,” in Proceedings of the 7th International Conference on Ubiquitous

Information Management and Communication - ICUIMC ’13. New York,

New York, USA: ACM Press, 2013, pp. 1–6. [Online]. Available: http:

//dl.acm.org/citation.cfm?doid=2448556.2448592

[46] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A Comparative Study

of Anomaly Detection Schemes in Network Intrusion Detection,” in Proceedings of

the 2003 SIAM International Conference on Data Mining. Philadelphia, PA: Society

for Industrial and Applied Mathematics, may 2003, pp. 25–36. [Online]. Available:

https://epubs.siam.org/doi/10.1137/1.9781611972733.3

[47] B. Subba, S. Biswas, and S. Karmakar, “A Neural Network based system for

Intrusion Detection and attack classification,” in 2016 Twenty Second National

Conference on Communication (NCC). IEEE, mar 2016, pp. 1–6. [Online].

Available: http://ieeexplore.ieee.org/document/7561088/

http://ieeexplore.ieee.org/document/113412/
http://portal.acm.org/citation.cfm?doid=508791.508835
http://ieeexplore.ieee.org/document/924294/
http://dl.acm.org/citation.cfm?doid=2448556.2448592
http://dl.acm.org/citation.cfm?doid=2448556.2448592
https://epubs.siam.org/doi/10.1137/1.9781611972733.3
http://ieeexplore.ieee.org/document/7561088/

Bibliography 139

[48] W.-T. Wong and S.-H. Hsu, “Application of SVM and ANN for image retrieval,”

European Journal of Operational Research, vol. 173, no. 3, pp. 938–950,

sep 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0377221705006922

[49] S. M. Bridges, R. B. Vaughn, and Others, “Fuzzy data mining and genetic algorithms

applied to intrusion detection,” in Proceedings of 12th Annual Canadian Information

Technology Security Symposium, 2000, pp. 109–122.

[50] Y. Dhanalakshmi and I. Ramesh Babu, “Intrusion Detection Using Data Mining Along

Fuzzy Logic and Genetic Algorithms,” International Journal of Computer Science

and Network Security, vol. 8, 2008.

[51] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and

static behavioral models,” Pattern Recognition, vol. 36, no. 1, pp. 229–243,

jan 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0031320302000262

[52] K. Wang and S. J. Stolfo, “Anomalous Payload-Based Network Intrusion Detection,”

in Recent Advances in Intrusion Detection, E. Jonsson, A. Valdes, and M. Almgren,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 203–222.

[53] H. Beitollahi and G. Deconinck, “ConnectionScore: a statistical technique to

resist application-layer DDoS attacks,” Journal of Ambient Intelligence and

Humanized Computing, vol. 5, no. 3, pp. 425–442, jun 2014. [Online]. Available:

http://link.springer.com/10.1007/s12652-013-0196-5

[54] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the detection

of sql attacks,” in Proceedings of the Second International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, ser. DIMVA’05.

Berlin, Heidelberg: Springer-Verlag, 2005, pp. 123–140. [Online]. Available:

http://dx.doi.org/10.1007/11506881 8

https://www.sciencedirect.com/science/article/pii/S0377221705006922
https://www.sciencedirect.com/science/article/pii/S0377221705006922
https://www.sciencedirect.com/science/article/pii/S0031320302000262
https://www.sciencedirect.com/science/article/pii/S0031320302000262
http://link.springer.com/10.1007/s12652-013-0196-5
http://dx.doi.org/10.1007/11506881_8

Bibliography 140

[55] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying mid-

dlebox policy enforcement using sdn,” SIGCOMM Comput. Commun. Rev., vol. 43,

no. 4, pp. 27–38, Aug. 2013.

[56] Xin Li and Chen Qian, “A survey of network function placement,” in 2016 13th IEEE

Annual Consumer Communications & Networking Conference (CCNC). IEEE,

jan 2016, pp. 948–953. [Online]. Available: http://ieeexplore.ieee.org/document/

7444915/

[57] Cisco. Installing the IDS Appliance - Cisco. [Online]. Available: http://www.cisco.

com/c/en/us/td/docs/security/ips/4-0/installation/guide/

[58] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “Ddos attack protection in the era of

cloud computing and software-defined networking,” in 2014 IEEE 22nd International

Conference on Network Protocols, Oct 2014, pp. 624–629.

[59] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching layer for data

centers,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 51–62, Aug. 2008.

[Online]. Available: http://doi.acm.org/10.1145/1402946.1402966

[60] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra,

R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan et al., “Steering: A

software-defined networking for inline service chaining,” in Network Protocols

(ICNP), 2013 21st IEEE International Conference on. IEEE, 2013, pp. 1–10.

[61] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici,

“Clickos and the art of network function virtualization,” in Proceedings of the

11th USENIX Conference on Networked Systems Design and Implementation, ser.

NSDI’14. Berkeley, CA, USA: USENIX Association, 2014, pp. 459–473. [Online].

Available: http://dl.acm.org/citation.cfm?id=2616448.2616491

[62] R. Cziva, S. Jouet, and D. P. Pezaros, “Gnfc: Towards network function cloudifi-

http://ieeexplore.ieee.org/document/7444915/
http://ieeexplore.ieee.org/document/7444915/
http://www.cisco.com/c/en/us/td/docs/security/ips/4-0/installation/guide/
http://www.cisco.com/c/en/us/td/docs/security/ips/4-0/installation/guide/
http://doi.acm.org/10.1145/1402946.1402966
http://dl.acm.org/citation.cfm?id=2616448.2616491

Bibliography 141

cation,” in 2015 IEEE Conference on Network Function Virtualization and Software

Defined Network (NFV-SDN), Nov 2015, pp. 142–148.

[63] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese et al., “P4: Programming protocol-independent

packet processors,” ACM SIGCOMM Computer Communication Review, vol. 44,

no. 3, pp. 87–95, 2014.

[64] A. Ali, R. Cziva, S. Jouët, and D. P. Pezaros, SDNFV-Based DDoS Detection

and Remediation in Multi-tenant, Virtualised Infrastructures. Cham: Springer

International Publishing, 2017, pp. 171–196. [Online]. Available: https://doi.org/10.

1007/978-3-319-64653-4 7

[65] FortiGate. FortiGate Next Generation Firewall Virtual Appliance (NGFW).

[Online]. Available: https://www.fortinet.com/products/private-cloud-security/

fortigate-virtual-appliances.html

[66] Juniper. Juniper vSRX Virtual Firewall. [Online]. Available: https://www.juniper.net/

us/en/products-services/security/srx-series/vsrx/

[67] Cisco. Cisco Adaptive Security Virtual Appliance (ASAv).

[Online]. Available: https://www.cisco.com/c/en/us/products/security/

virtual-adaptive-security-appliance-firewall/index.html

[68] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”

Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1721654.1721672

[69] “Cisco Virtualized Multi-Tenant Data Center Design Guide Version 2.2 -

Architecture Overview [Data Center Designs: Virtualization] - Cisco.” [On-

line]. Available: https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data{ }

Center/VMDC/2-2/design{ }guide/vmdcDesign22/VMDC{ }2-2{ }DG{ }1.html

https://doi.org/10.1007/978-3-319-64653-4_7
https://doi.org/10.1007/978-3-319-64653-4_7
https://www.fortinet.com/products/private-cloud-security/fortigate-virtual-appliances.html
https://www.fortinet.com/products/private-cloud-security/fortigate-virtual-appliances.html
https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://www.cisco.com/c/en/us/products/security/virtual-adaptive-security-appliance-firewall/index.html
https://www.cisco.com/c/en/us/products/security/virtual-adaptive-security-appliance-firewall/index.html
http://doi.acm.org/10.1145/1721654.1721672
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data{_}Center/VMDC/2-2/design{_}guide/vmdcDesign22/VMDC{_}2-2{_}DG{_}1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data{_}Center/VMDC/2-2/design{_}guide/vmdcDesign22/VMDC{_}2-2{_}DG{_}1.html

Bibliography 142

[70] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Network

function virtualization: State-of-the-art and research challenges,” IEEE Communica-

tions Surveys Tutorials, vol. 18, no. 1, pp. 236–262, Firstquarter 2016.

[71] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources and virtual

network functions,” IEEE Communications Surveys Tutorials, pp. 1–1, 2018.

[72] R. Cziva, S. Jouet, K. J. S. White, and D. P. Pezaros, “Container-based network func-

tion virtualization for software-defined networks,” in 2015 IEEE Symposium on Com-

puters and Communication (ISCC), July 2015, pp. 415–420.

[73] R. Cziva and D. P. Pezaros, “Container network functions: Bringing nfv to the network

edge,” IEEE Communications Magazine, vol. 55, no. 6, pp. 24–31, June 2017.

[74] H. Sadok, M. Campista, and L. Costa, “Improving software middleboxes and data-

center task schedulers,” 09 2019, pp. 137–144.

[75] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “Enabling security

functions with sdn: A feasibility study,” Computer Networks, vol. 85, pp. 19

– 35, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1389128615001619

[76] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking:

State of the art and research challenges,” Computer Networks, vol. 72, pp. 74

– 98, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1389128614002588

[77] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy of software-

defined networking,” IEEE Communications Surveys Tutorials, vol. 16, no. 4, pp.

1955–1980, Fourthquarter 2014.

[78] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network function place-

ment for nfv chaining in packet/optical data centers,” Journal of Lightwave Technol-

ogy, vol. 33, no. 8, pp. 1565–1570, April 2015.

http://www.sciencedirect.com/science/article/pii/S1389128615001619
http://www.sciencedirect.com/science/article/pii/S1389128615001619
http://www.sciencedirect.com/science/article/pii/S1389128614002588
http://www.sciencedirect.com/science/article/pii/S1389128614002588

Bibliography 143

[79] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari, “Joint energy

efficient and qos-aware path allocation and vnf placement for service function chain-

ing,” IEEE Transactions on Network and Service Management, vol. 16, no. 1, pp.

374–388, 2019.

[80] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click modular router,”

SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 217–231, Dec. 1999. [Online]. Available:

http://doi.acm.org/10.1145/319344.319166

[81] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick network

functions,” in Proceedings of the 1st ACM SIGCOMM Symposium on Software

Defined Networking Research, ser. SOSR ’15. New York, NY, USA: ACM, 2015,

pp. 14:1–14:13. [Online]. Available: http://doi.acm.org/10.1145/2774993.2774998

[82] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and

A. Akella, “Opennf: Enabling innovation in network function control,” SIGCOMM

Comput. Commun. Rev., vol. 44, no. 4, pp. 163–174, Aug. 2014. [Online]. Available:

http://doi.acm.org/10.1145/2740070.2626313

[83] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “Enforcing

network-wide policies in the presence of dynamic middlebox actions using flowtags,”

in Proceedings of the 11th USENIX Conference on Networked Systems Design and

Implementation, ser. NSDI’14. Berkeley, CA, USA: USENIX Association, 2014, pp.

533–546. [Online]. Available: http://dl.acm.org/citation.cfm?id=2616448.2616497

[84] (2019) Opnfv. [Online]. Available: https://www.opnfv.org/

[85] (2019) Open source mano. [Online]. Available: https://osm.etsi.org/

[86] N. ETSI, “Gs nfv-man 001 v1. 1.1 network function virtualisation (nfv); management

and orchestration,” 2014.

[87] K. Giotis, Y. Kryftis, and V. Maglaris, “Policy-based orchestration of nfv services

http://doi.acm.org/10.1145/319344.319166
http://doi.acm.org/10.1145/2774993.2774998
http://doi.acm.org/10.1145/2740070.2626313
http://dl.acm.org/citation.cfm?id=2616448.2616497
https://www.opnfv.org/
https://osm.etsi.org/

Bibliography 144

in software-defined networks,” in Proceedings of the 2015 1st IEEE Conference on

Network Softwarization (NetSoft), April 2015, pp. 1–5.

[88] M. C. Luizelli, D. Raz, Y. Sa’ar, and J. Yallouz, “The actual cost of software switching

for nfv chaining,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service

Management (IM), May 2017, pp. 335–343.

[89] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,”

Computer Networks, vol. 54, no. 5, pp. 862 – 876, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128609003387

[90] M. Gao, B. Addis, M. Bouet, and S. Secci, “Optimal orchestration of virtual network

functions,” Computer Networks, vol. 142, pp. 108 – 127, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128618303578

[91] D. Dwiardhika and T. Tachibana, “Virtual network embedding based on security level

with vnf placement,” Security and Communication Networks, vol. 2019, 2019.

[92] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains of virtual

network functions,” in 2014 IEEE 3rd International Conference on Cloud Networking

(CloudNet), Oct 2014, pp. 7–13.

[93] F. Carpio, S. Dhahri, and A. Jukan, “Vnf placement with replication for loac balancing

in nfv networks,” in 2017 IEEE International Conference on Communications (ICC),

May 2017, pp. 1–6.

[94] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and S. Davy, “Design and

evaluation of algorithms for mapping and scheduling of virtual network functions,” in

Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft),

April 2015, pp. 1–9.

[95] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating

virtual network functions,” in Proceedings of the 2015 11th International Conference

on Network and Service Management (CNSM), ser. CNSM ’15. Washington,

http://www.sciencedirect.com/science/article/pii/S1389128609003387
http://www.sciencedirect.com/science/article/pii/S1389128618303578

Bibliography 145

DC, USA: IEEE Computer Society, 2015, pp. 50–56. [Online]. Available:

http://dx.doi.org/10.1109/CNSM.2015.7367338

[96] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions placement

and routing optimization,” in 2015 IEEE 4th International Conference on Cloud Net-

working (CloudNet), Oct 2015, pp. 171–177.

[97] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive survey,”

IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 518–532,

Sep. 2016.

[98] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability driven

VNF placement in a MEC-NFV environment,” in GLOBECOM 2018, IEEE

Global Communications Conference, 9-13 December 2018, Abu Dhabi, UAE,

Abu Dhabi, UNITED ARAB EMIRATES, 12 2018. [Online]. Available: http:

//www.eurecom.fr/publication/5649

[99] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R. Boutaba, “Elastic

virtual network function placement,” in 2015 IEEE 4th International Conference on

Cloud Networking (CloudNet), Oct 2015, pp. 255–260.

[100] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros, “Synergistic policy and virtual machine

consolidation in cloud data centers,” in IEEE INFOCOM 2016 - The 35th Annual

IEEE International Conference on Computer Communications, April 2016, pp. 1–9.

[101] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker,

“E2: A framework for nfv applications,” in Proceedings of the 25th Symposium on

Operating Systems Principles, ser. SOSP ’15. New York, NY, USA: ACM, 2015,

pp. 121–136. [Online]. Available: http://doi.acm.org/10.1145/2815400.2815423

[102] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,

“Optimal virtual network function placement in multi-cloud service function chaining

http://dx.doi.org/10.1109/CNSM.2015.7367338
http://www.eurecom.fr/publication/5649
http://www.eurecom.fr/publication/5649
http://doi.acm.org/10.1145/2815400.2815423

Bibliography 146

architecture,” Computer Communications, vol. 102, pp. 1 – 16, 2017. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0140366417301901

[103] A. Grochowski, “Virtual machine placement strategies for virtual net-

work functions,” NCTA-2016 Spring Technical Forum Proceedings, Tech.

Rep., 2016. [Online]. Available: https://www.nctatechnicalpapers.com/Paper/2016/

2016-virtual-machine-placement-strategies-for-virtual-network

[104] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of vdpi functions in nfv

infrastructures,” in Proceedings of the 2015 1st IEEE Conference on Network Soft-

warization (NetSoft), April 2015, pp. 1–9.

[105] S. Demirci and S. Sagiroglu, “Optimal placement of virtual network functions

in software defined networks: A survey,” Journal of Network and Computer

Applications, vol. 147, p. 102424, 2019. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S1084804519302760

[106] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku, “Morsa: A multi-

objective resource scheduling algorithm for nfv infrastructure,” in The 16th Asia-

Pacific Network Operations and Management Symposium, Sep. 2014, pp. 1–6.

[107] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piecing

together the nfv provisioning puzzle: Efficient placement and chaining of virtual net-

work functions,” in 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM), May 2015, pp. 98–106.

[108] T. Wen, H. Yu, G. Sun, and L. Liu, “Network function consolidation in service func-

tion chaining orchestration,” in 2016 IEEE International Conference on Communica-

tions (ICC), May 2016, pp. 1–6.

[109] T. Kuo, B. Liou, K. C. Lin, and M. Tsai, “Deploying chains of virtual network func-

tions: On the relation between link and server usage,” IEEE/ACM Transactions on

Networking, vol. 26, no. 4, pp. 1562–1576, Aug 2018.

http://www.sciencedirect.com/science/article/pii/S0140366417301901
https://www.nctatechnicalpapers.com/Paper/2016/2016-virtual-machine-placement-strategies-for-virtual-network
https://www.nctatechnicalpapers.com/Paper/2016/2016-virtual-machine-placement-strategies-for-virtual-network
http://www.sciencedirect.com/science/article/pii/S1084804519302760
http://www.sciencedirect.com/science/article/pii/S1084804519302760

Bibliography 147

[110] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal placement of virtual

network functions,” in 2015 IEEE Conference on Computer Communications (INFO-

COM), April 2015, pp. 1346–1354.

[111] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware and energy-

efficient vnf placement for service chaining: Joint sampling and matching approach,”

IEEE Transactions on Services Computing, pp. 1–1, 2018.

[112] C. Hsieh, J. Chang, C. Chen, and S. Lu, “Network-aware service function chaining

placement in a data center,” in 2016 18th Asia-Pacific Network Operations and Man-

agement Symposium (APNOMS), Oct 2016, pp. 1–6.

[113] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach for service func-

tion chain routing and virtual function network instance migration in network function

virtualization architectures,” IEEE/ACM Transactions on Networking, vol. 25, no. 4,

pp. 2008–2025, Aug 2017.

[114] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource optimiza-

tion with network function virtualization,” IEEE Transactions on Communications,

vol. 64, no. 9, pp. 3746–3758, Sep. 2016.

[115] D. Qi, S. Shen, and G. Wang, “Towards an efficient vnf placement in network function

virtualization,” Computer Communications, vol. 138, pp. 81 – 89, 2019. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0140366418308247

[116] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via deep rein-

forcement learning in sdn/nfv-enabled networks,” IEEE Journal on Selected Areas in

Communications, vol. 38, no. 2, pp. 263–278, 2020.

[117] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined

framework for developing, deploying, and managing network functions,” in

Proceedings of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16.

http://www.sciencedirect.com/science/article/pii/S0140366418308247

Bibliography 148

New York, NY, USA: ACM, 2016, pp. 511–524. [Online]. Available: http:

//doi.acm.org/10.1145/2934872.2934875

[118] L. Foundation, “Linux foundation open vswitch,” https://

LinuxFoundationOpenvSwitch, March 2017, (Accessed on 28/03/2017).

[119] X. Zhang, X. Wang, C. Nguyen, J. Wang, Z. Qian, and S. Lu, “A virtual middleboxes

network placement algorithm in multi-tenant datacenter networks,” in 2017 IEEE 23rd

International Conference on Parallel and Distributed Systems (ICPADS), Dec 2017,

pp. 445–452.

[120] K. Cabaj, J. Wytrebowicz, S. Kuklinski, P. Radziszewski, and K. T. Dinh, “Sdn archi-

tecture impact on network security,” in FedCSIS position papers, 2014, pp. 143–148.

[121] H. Hamad and M. Al-hoby, “Article: Managing intrusion detection as a service in

cloud networks,” International Journal of Computer Applications, vol. 41, no. 1, pp.

35–40, March 2012.

[122] S. Roschke, F. Cheng, and C. Meinel, “Intrusion detection in the cloud,” in 2009

Eighth IEEE International Conference on Dependable, Autonomic and Secure Com-

puting, Dec 2009, pp. 729–734.

[123] X. He, T. Guo, E. M. Nahum, and P. Shenoy, “Placement strategies for virtualized

network functions in a nfaas cloud,” in 2016 Fourth IEEE Workshop on Hot Topics in

Web Systems and Technologies (HotWeb), Oct 2016, pp. 48–53.

[124] A. Shameli-Sendi, Y. Jarraya, M. Pourzandi, and M. Cheriet, “Efficient provisioning

of security service function chaining using network security defense patterns,” IEEE

Transactions on Services Computing, vol. 12, no. 4, pp. 534–549, 2019.

[125] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba, “Distributed ser-

vice function chaining,” IEEE Journal on Selected Areas in Communications, vol. 35,

no. 11, pp. 2479–2489, Nov 2017.

http://doi.acm.org/10.1145/2934872.2934875
http://doi.acm.org/10.1145/2934872.2934875
https://Linux Foundation Open vSwitch
https://Linux Foundation Open vSwitch

Bibliography 149

[126] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic

anomalies,” in Proceedings of the 2004 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, ser. SIGCOMM

’04. New York, NY, USA: ACM, 2004, pp. 219–230. [Online]. Available:

http://doi.acm.org/10.1145/1015467.1015492

[127] T. Huang, H. Sethu, and N. Kandasamy, “A new approach to dimensionality reduction

for anomaly detection in data traffic,” IEEE Transactions on Network and Service

Management, vol. 13, no. 3, pp. 651–665, Sep. 2016.

[128] L. Huang, X. Nguyen, M. Garofalakis, M. I. Jordan, A. Joseph, and

N. Taft, “In-network pca and anomaly detection,” in Proceedings of the 19th

International Conference on Neural Information Processing Systems, ser. NIPS’06.

Cambridge, MA, USA: MIT Press, 2006, pp. 617–624. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2976456.2976534

[129] R. Keralapura, G. Cormode, and J. Ramamirtham, “Communication-efficient

distributed monitoring of thresholded counts,” in Proceedings of the 2006 ACM

SIGMOD International Conference on Management of Data, ser. SIGMOD

’06. New York, NY, USA: ACM, 2006, pp. 289–300. [Online]. Available:

http://doi.acm.org/10.1145/1142473.1142507

[130] J. Dromard, G. Roudiere, and P. Owezarski, “Online and scalable unsupervised

network anomaly detection method,” IEEE Trans. on Netw. and Serv. Manag.,

vol. 14, no. 1, pp. 34–47, Mar. 2017. [Online]. Available: https://doi.org/10.1109/

TNSM.2016.2627340

[131] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor

networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 56–69, July 2006.

[132] N. Terzenidis, M. Moralis-Pegios, G. Mourgias-Alexandris, T. Alexoudi, K. Vyrsoki-

nos, and N. Pleros, “High-port and low-latency optical switches for disaggregated data

http://doi.acm.org/10.1145/1015467.1015492
http://dl.acm.org/citation.cfm?id=2976456.2976534
http://doi.acm.org/10.1145/1142473.1142507
https://doi.org/10.1109/TNSM.2016.2627340
https://doi.org/10.1109/TNSM.2016.2627340

Bibliography 150

centers: The hipoλaos switch architecture,” IEEE/OSA Journal of Optical Communi-

cations and Networking, vol. 10, no. 7, pp. 102–116, July 2018.

[133] C. V. Networking, “Cisco global cloud index: Forecast and methodology 2016–2021,”

White paper, 2018.

[134] (2019) Securing ’East-West’ Traffic in the Cloud. [Online]. Available: https://www.

bankinfosecurity.com/interviews/interview-vmware-coo-raghu-raghuram-i-4151

[135] M. G. Gouda and A. X. Liu, “A model of stateful firewalls and its properties,” in

2005 International Conference on Dependable Systems and Networks (DSN’05), June

2005, pp. 128–137.

[136] T. AbuHmed, A. Mohaisen, and D. Nyang, “A survey on deep packet inspection for

intrusion detection systems,” CoRR, vol. abs/0803.0037, 2008. [Online]. Available:

http://arxiv.org/abs/0803.0037

[137] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blazek, and H. Kim, “A novel approach

to detection of intrusions in computer networks via adaptive sequential and batch-

sequential change-point detection methods,” IEEE Transactions on Signal Processing,

vol. 54, no. 9, pp. 3372–3382, Sep. 2006.

[138] P. Bereziński, B. Jasiul, and M. Szpyrka, “An entropy-based network anomaly

detection method,” Entropy, vol. 17, no. 4, pp. 2367–2408, 2015. [Online]. Available:

http://www.mdpi.com/1099-4300/17/4/2367

[139] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense

mechanisms countering the dos and ddos problems,” ACM Comput. Surv., vol. 39,

no. 1, Apr. 2007. [Online]. Available: http://doi.acm.org/10.1145/1216370.1216373

[140] I. Karim, Q.-T. Vien, T. A. Le, and G. Mapp, “A comparative experimental

design and performance analysis of snort-based intrusion detection system in

practical computer networks,” Computers, vol. 6, no. 1, 2017. [Online]. Available:

http://www.mdpi.com/2073-431X/6/1/6

https://www.bankinfosecurity.com/interviews/interview-vmware-coo-raghu-raghuram-i-4151
https://www.bankinfosecurity.com/interviews/interview-vmware-coo-raghu-raghuram-i-4151
http://arxiv.org/abs/0803.0037
http://www.mdpi.com/1099-4300/17/4/2367
http://doi.acm.org/10.1145/1216370.1216373
http://www.mdpi.com/2073-431X/6/1/6

Bibliography 151

[141] J. S. White, T. Fitzsimmons, and J. N. Matthews, “Quantitative analysis of intrusion

detection systems: Snort and suricata,” in Cyber Sensing 2013, vol. 8757. Interna-

tional Society for Optics and Photonics, 2013, p. 875704.

[142] K. Salah and A. Kahtani, “Performance evaluation comparison of snort nids under

linux and windows server,” Journal of Network and Computer Applications, vol. 33,

no. 1, pp. 6 – 15, 2010. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1084804509001040

[143] W. Bul’ajoul, A. James, and M. Pannu, “Improving network intrusion detection

system performance through quality of service configuration and parallel technology,”

Journal of Computer and System Sciences, vol. 81, no. 6, pp. 981 – 999, 2015, special

Issue on Optimisation, Security, Privacy and Trust in E-business Systems. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0022000014001767

[144] M. Fisk and G. Varghese, “Applying fast string matching to intrusion detection,” Los

Alamos National Lab., NM (US), Tech. Rep., 2001.

[145] C. Sanders and J. Smith, Applied Network Security Monitoring: Collection, Detection,

and Analysis, 1st ed. Syngress Publishing, 2013.

[146] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation

algorithms for virtualized service hosting platforms,” Journal of Parallel and

Distributed Computing, vol. 70, no. 9, pp. 962 – 974, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0743731510000997

[147] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko,

and A. Tantawi, “Dynamic placement for clustered web applications,” in

Proceedings of the 15th International Conference on World Wide Web, ser. WWW

’06. New York, NY, USA: ACM, 2006, pp. 595–604. [Online]. Available:

http://doi.acm.org/10.1145/1135777.1135865

[148] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity provisioning

http://www.sciencedirect.com/science/article/pii/S1084804509001040
http://www.sciencedirect.com/science/article/pii/S1084804509001040
http://www.sciencedirect.com/science/article/pii/S0022000014001767
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://doi.acm.org/10.1145/1135777.1135865

Bibliography 152

system for the cloud,” in 2011 31st International Conference on Distributed Comput-

ing Systems, June 2011, pp. 559–570.

[149] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing,” Future

Generation Computer Systems, vol. 28, no. 5, pp. 755 – 768, 2012, special

Section: Energy efficiency in large-scale distributed systems. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X11000689

[150] D. S. Johnson, Bin Packing. New York, NY: Springer New York, 2016.

[151] M. Iori, S. Martello, and M. Monaci, Metaheuristic Algorithms for the Strip Packing

Problem. Boston, MA: Springer US, 2003, pp. 159–179. [Online]. Available:

https://doi.org/10.1007/978-1-4613-0233-9 7

[152] K. Fleszar and C. Charalambous, “Average-weight-controlled bin-oriented heuristics

for the one-dimensional bin-packing problem,” European Journal of Operational Re-

search, vol. 210, no. 2, 2011.

[153] J. L. Viegas, S. M. Vieira, E. M. P. Henriques, and J. M. C. Sousa, “A tabu search

algorithm for the 3d bin packing problem in the steel industry,” in CONTROLO’2014 –

Proceedings of the 11th Portuguese Conference on Automatic Control, A. P. Moreira,

A. Matos, and G. Veiga, Eds. Cham: Springer International Publishing, 2015, pp.

355–364.

[154] S. Ahvar, M. M. Mirzaei, J. Leguay, E. Ahvar, A. M. Medhat, N. Crespi, and R. Glitho,

“Set: a simple and effective technique to improve cost efficiency of vnf placement and

chaining algorithms for network service provisioning,” in 2018 4th IEEE Conference

on Network Softwarization and Workshops (NetSoft), June 2018, pp. 293–297.

[155] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “Vnf placement

optimization at the edge and cloud,” Future Internet, vol. 11, no. 3, 2019. [Online].

Available: https://www.mdpi.com/1999-5903/11/3/69

http://www.sciencedirect.com/science/article/pii/S0167739X11000689
https://doi.org/10.1007/978-1-4613-0233-9_7
https://www.mdpi.com/1999-5903/11/3/69

Bibliography 153

[156] M. Yue, “A simple proof of the inequality FFD (L) ≤ 11/9 opt (L) + 1, ∀L for the

FFD bin-packing algorithm,” Acta Mathematicae Applicatae Sinica, vol. 7, no. 4, pp.

321–331, 1991.

[157] M. R. Chowdhury, M. R. Mahmud, and R. M. Rahman, “Implementation and

performance analysis of various vm placement strategies in cloudsim,” Journal

of Cloud Computing, vol. 4, no. 1, p. 20, Nov 2015. [Online]. Available:

https://doi.org/10.1186/s13677-015-0045-5

[158] J. Huang, K. Wu, and M. Moh, “Dynamic virtual machine migration algorithms using

enhanced energy consumption model for green cloud data centers,” in 2014 Interna-

tional Conference on High Performance Computing Simulation (HPCS), July 2014,

pp. 902–910.

[159] M. Haouari and M. Serairi, “Heuristics for the variable sized bin-packing problem,”

Comput. Oper. Res., vol. 36, no. 10, pp. 2877–2884, Oct. 2009. [Online]. Available:

http://dx.doi.org/10.1016/j.cor.2008.12.016

[160] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks

with traffic-aware virtual machine placement,” in 2010 Proceedings IEEE INFOCOM,

March 2010, pp. 1–9.

[161] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center

network architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference on

Data Communication, ser. SIGCOMM ’08. New York, NY, USA: ACM, 2008, pp.

63–74. [Online]. Available: http://doi.acm.org/10.1145/1402958.1402967

[162] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” Internet Requests for

Comments, Internet Engineering Task Force, RFC 2992, November 2000.

[163] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee, “No more middlebox: Integrate

processing into network,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 459–

460, Aug. 2010. [Online]. Available: http://doi.acm.org/10.1145/1851275.1851262

https://doi.org/10.1186/s13677-015-0045-5
http://dx.doi.org/10.1016/j.cor.2008.12.016
http://doi.acm.org/10.1145/1402958.1402967
http://doi.acm.org/10.1145/1851275.1851262

Bibliography 154

[164] J. Lee, P. Sharma, J. Tourrilhes, R. McGeer, J. Brassil, and A. Bavier, “Network

integrated transparent tcp accelerator,” in 2010 24th IEEE International Conference

on Advanced Information Networking and Applications, April 2010, pp. 285–292.

[165] J. Cano, D. R. White, A. Bordallo, C. McCreesh, A. L. Michala, J. Singer, and

V. Nagarajan, “Solving the task variant allocation problem in distributed robotics,”

Autonomous Robots, vol. 42, no. 7, pp. 1477–1495, Oct 2018. [Online]. Available:

https://doi.org/10.1007/s10514-018-9742-5

[166] A. Andreyev, “Introducing data center fabric, the next-generation facebook data center

network,” Facebook, Nov, vol. 14, p. 13, 2014.

[167] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving,

G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A decade of clos topologies

and centralized control in google’s datacenter network,” ACM SIGCOMM computer

communication review, vol. 45, no. 4, pp. 183–197, 2015.

https://doi.org/10.1007/s10514-018-9742-5

	2020AliThesis cover sheet (1) (4)
	2020Abeerphd
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Thesis Outline

	2 Related Work
	2.1 Overview
	2.2 Network Security
	2.2.1 Distributed Denial of Services (DDoS)
	2.2.2 Classification
	2.2.3 Firewalls
	2.2.4 Intrusion Detection System (IDS)

	2.3 Security Systems
	2.3.1 Hardware Middleboxes
	2.3.2 Software Middleboxes

	2.4 Virtual Network Functions Orchestration
	2.4.1 SDN
	2.4.2 Orchestration Frameworks
	2.4.3 VNF Placement

	2.5 Security VNF Challenges
	2.5.1 Security VNFs Potentials
	2.5.2 Customised Security Services
	2.5.3 Security Functions Orchestration
	2.5.4 Current Issues and Limitations

	2.6 Summary

	3 Design of a Resource-Aware, Security Placement Framework
	3.1 Overview
	3.2 Framework
	3.2.1 Architecture
	3.2.2 Characteristics

	3.3 Resource-Aware Placement
	3.3.1 Traffic Processing-based Classification
	3.3.2 Allocation Strategies
	3.3.3 Constraints
	3.3.4 Objective Function

	3.4 Mathematical Model
	3.4.1 Formulation
	3.4.2 Security Placement Reduction to VSBPP Problem

	3.5 Solution Methods
	3.5.1 Constraint Programming
	3.5.2 Heuristic
	3.5.3 Meta-Heuristic
	3.5.4 Near-Optimal Subset-Sum Solution
	3.5.5 One-dimensional Implementation

	3.6 Summary

	4 Implementation
	4.1 Overview
	4.2 Architecture
	4.2.1 Fat-Tree Data Centers
	4.2.2 Routing
	4.2.3 Deployment Locations
	4.2.4 Allocation Strategy Implementation

	4.3 Constraint Programming
	4.4 Heuristic Solutions
	4.5 Meta-Heuristic Solutions
	4.6 Subset-Sum Near-Optimal Solution
	4.7 Linear Programming
	4.7.1 Locations Rearrangement
	4.7.2 One-dimensional VS Two-dimensional

	4.8 Summary

	5 Evaluation
	5.1 Overview
	5.2 Performance Metrics
	5.3 Experimental Setup
	5.3.1 Simulation Parameters
	5.3.2 Workload
	5.3.3 The System Capacity Constraint

	5.4 Results Analysis
	5.4.1 Heuristic Solutions
	5.4.2 Constraint Programming
	5.4.3 Meta-Heuristic
	5.4.4 Subset-Sum Near-Optimal Solution
	5.4.5 Single Instance Allocation
	5.4.6 Linear Programming

	5.5 Extended Analysis
	5.5.1 Network Size
	5.5.2 Optimality Gap Analysis
	5.5.3 Execution Time
	5.5.4 Success Rate
	5.5.5 Class Types Distribution
	5.5.6 Number of Modules

	5.6 Scalability
	5.7 Summary

	6 Conclusion and Future Work
	6.1 Overview
	6.2 Contribution Summary
	6.3 Future Work
	6.3.1 Supporting Placement of Security VNF Chains
	6.3.2 Dynamic Placement
	6.3.3 Exploring Real Data Center Architectures
	6.3.4 QoS Constraints

	6.4 Summary and Concluding Remarks

	Publications
	Bibliography

