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ABSTRACT

CLOUD BASED IOT ARCHITECTURE

by

Nathan Roehl

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Tian Zhao

The Internet of Things (IoT) and cloud computing have grown in popularity over the

past decade as the internet becomes faster and more ubiquitous. Cloud platforms are well

suited to handle IoT systems as they are accessible and resilient, and they provide a scalable

solution to store and analyze large amounts of IoT data. IoT applications are complex

software systems and software developers need to have a thorough understanding of the

capabilities, limitations, architecture, and design patterns of cloud platforms and cloud-

based IoT tools to build an efficient, maintainable, and customizable IoT application. As

the IoT landscape is constantly changing, research into cloud-based IoT platforms is either

lacking or out of date. The goal of this thesis is to describe the basic components and

requirements for a cloud-based IoT platform, to provide useful insights and experiences in

implementing a cloud-based IoT solution using Microsoft Azure, and to discuss some of the

shortcomings when combining IoT with a cloud platform.
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1 Introduction

IoT applications are complex software systems that include software components for devices,

gateways, message aggregation, data analysis, storage, and visualization. As an emerging

technology, IoT has been used in areas such as predictive maintenance [43, 127], smart

metering [1, 39], asset tracking [129, 130], connected vehicles [9, 35, 117], and fleet manage-

ment [10]. These applications collect vast volumes of telemetry messages from distributed

IoT devices and processed them in real-time to gain business insights and to take actions

based on the insights. The sensitive data collected by IoT devices must be protected dur-

ing data transmission and processing. Stable storage is needed to archive historical data.

Scalable data analysis tools are needed to learn knowledge in real-time from streaming data

or as offline analysis from historical data. Data visualization and graphic user interface are

needed to provide visual feedback and user control of data analysis and IoT devices [36, 120].

Each one of these components is a software program that requires significant engineering ef-

fort. Composing them so that they work together properly is even more challenging. In

this context, developers of IoT applications may find it more productive to use existing

IoT frameworks and other commercial off-the-shelf software components to build their final

products.

1.1 IoT platforms

In recent years, many IoT platforms have emerged to answer the demand for rapid proto-

typing of robust and scalable IoT applications. These IoT platforms include cloud-based

system such as AWS, Google, Azure, IBM IoT [36, 118, 120] and standalone systems such

as NodeRed [15], Thingworx [36, 120], and Thingsboard [38]. While differing in interfaces,
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implementation, performance, and costs, these IoT systems all offer device clients, messaging

hubs, stable storage, data analysis modules, data routing mechanisms, and data visualization

tools. From the users’ perspective, experience gained from working with one platform can

be translated to others since these IoT platforms have similar design principles.

IoT applications are large software systems that are difficult to develop from the ground

up. IoT platforms are designed to alleviate this burden. Despite the recent advances of IoT

platforms, the complexity of IoT applications should not be underestimated. IoT applications

have to be compatible with diverse and distributed sensors, able to process large volume

of data in real-time, be tolerant to missing or erroneous data, runtime exceptions, and

unreliable networks, scalable to big data analysis and storage, and extensible to complex

workflow and business logic [36, 120]. As common to any complex software, utilization of

appropriate software architecture and design patterns are essential to the success of IoT

development projects. When making choices of the architecture and design patterns, it is

important to understand the requirements of the IoT applications and balance them against

the performance, limitations, and design tradeoffs of the software components of an IoT

platform [36].

1.2 Requirements of IoT Applications

Different types of IoT applications have different functional and non-functional requirements.

Based on these requirements, developers need to select the suitable architecture, design pat-

terns, and software components to be used on an IoT platform. Functional requirements refer

to the specific functionalities of a software system while non-functional requirements refer

to the properties of the software application such as performance, security, fault tolerance,

and cost.
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For example, predictive maintenance and smart metering applications require device

monitoring, abnormal event detection, and real-time and offline data analysis [1, 39, 43].

For applications such as asset tracking and fleet management, spatial locations of the sensor

devices needs to be maintained [10, 129, 130]. For connected vehicles, field gateways are

often required to collect data from vehicles of each road segment and generate traffic alerts

and send aggregate information to the cloud servers [9, 35, 117]. For connected vehicles,

there are hard real-time constraints, which require low latencies [9, 35, 117]. For smart

metering and asset tracking, high throughput is needed to process large volume of telemetry

data [1, 39, 129, 130]. For asset tracking and fleet management, offline analysis such as mixed

integer linear programming is needed to find optimal scheduling [10, 129]. For predictive

maintenance, offline analysis such as machine learning is needed to generate models that

can be used to suggest proactive measures in real-time [43]. All these applications require

graphic user interface (GUI) for data visualization and control, user management, device

management, device provisioning, and data security. While functional requirements often

are related to individual IoT components, the non-functional requirements such as data

security, latency, scalability, and fault tolerance are cross-cutting concerns that affect the

entire IoT system. Below is a summary of the functional and non-functional requirements

of IoT applications.

1. Functional requirements

(a) Real-time and/or offline data analysis.

(b) Sensor data archive. Some types of data may be compressed.

(c) Requirement and availability of gateways for IoT devices.

(d) Real-time control of IoT devices.

(e) GUI for data visualization and control.
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(f) Data processing workflow and/or business logic.

(g) Distributed machine learning.

(h) Device management and provisioning.

(i) User management.

2. Non-functional requirements

(a) Scalability to large number of IoT devices or telemetry messages.

(b) Strong data security.

(c) Hard real-time constraints with low latency or high throughput with soft real-time

constraints.

(d) Tolerance of faults such as erroneous data and unreliable network.

(e) Cost requirements.

1.3 Cloud-based IoT platform

IoT applications can be implemented using on-premise servers or cloud-based platforms. The

choice mostly depends on the non-functional requirements of the application such as latency

and security. Cloud-based software systems have gained tremendous growth in recent years

with many legacy software systems migrated to cloud platforms to offer software as ser-

vices rather than installation-based products. The benefits of cloud-based software systems

include transparent updates, distributed and load-balanced processing, scalable computing

and storage, and flexible offering of diverse products and services [111]. The drawback is

that users of the cloud-based system need to maintain network connectivity for some prod-

uct features to function correctly. Also, unstable network or latencies of a slow network can

cause unpredictable issues for applications with hard real-time constraints.
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Fundamentally, a cloud platform is a collection of network-connected distributed com-

puting and storage servers that provide virtual environments for different operation systems,

application containers (such as Google’s app engine), and computing services [111]. A soft-

ware system can run on a cloud platform by deploying its instances on virtual machines

of the cloud platform, though the advantage of this is limited to eliminating the need to

acquire and maintain physical hardware. Users still have to set up the required computa-

tion environments such as dependency libraries, networking, and storage within the cloud

servers. Application containers reduce some of these burdens in that the containers provide

interfaces to computation environments that users do not need to separately set up for each

deployment of the software system on a cloud platform.

Utilization of cloud-based platforms can be divided into four types: IaaS, PaaS, FaaS,

and SaaS with increasing level of dependency on the cloud platform [28, 30, 111].

1. IaaS (Infrastructure as a Service) is the ability of a cloud platform to act as virtual

machines for software applications that normally run in local servers. Amazon EC2

(Elastic Compute Cloud) is such an example, where users can deploy software ap-

plications by launching instances of virtual servers, uploading the applications, and

executing them. The virtual machines can be distributed and can use stable storage

such as Amazon S3 (Simple Storage Service) buckets.

2. PaaS (Platform as a Service) is a managed computation environment for specialized

applications such as Web servlets. Google’s app engine is such an example, where

users can develop software programs using app engine development tool and deploy the

programs to the app engine to execute. In PaaS, users still need to develop complete

software programs as in IaaS except that users rely on the API of the platform for

runtime support, network, and storage.
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3. FaaS (Function as a Service) such as AWS Lambda and Azure Functions allow users

to implement lightweight applications as stateless functions, which can be used for

high throughput processing such as data transformation, filtering, and event detection.

FaaS functions connect to storage and network through APIs. FaaS functions are

usually considered serverless since there is no dedicated servers allocated for running

the functions and the cost is based on calls to the functions.

4. SaaS (Software as a Service) refers to software applications hosted by cloud servers

such as Dropbox, Microsoft Office 365, and Google Apps that deliver functionalities

over the network.

Most of the software components of a cloud-based IoT platform fit the mode of PaaS (e.g.

Azure Event Hubs, Cosmos DB, Redis Cache, and Stream Analytics), FaaS (e.g. Azure

Functions), or SaaS (e.g. Azure IoT Central). Azure IoT Central is a software service for

developing IoT applications through a Web interface, which is supposed to be simple to use

with the least amount of control and customizability. PaaS and FaaS are used for customiz-

able IoT applications that can be reasonably handled by the services such as IoT Hub and

Stream Analytics. Solutions based on IaaS are usually reserved for customized and complex

IoT applications that require a high-level of control. Developers can utilize open-source

software stack such as Spark, Mesos, Akka, Cassandra, and Kafka to build customized IoT

applications and deploy them in IaaS virtual machines. Since IaaS-based IoT applications

need to reserve virtual machines, it is more suitable for computation-intensive applications

with high rate of utilization of the virtual machines. SaaS such as Azure IoT Central is

intended for simple IoT applications with limited functionalities while IaaS-based IoT ap-

plications are essentially locally developed applications deployed on IaaS virtual machines.

Therefore, this research will focus on cloud-based IoT components provided in forms of PaaS

and FaaS.
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The contributions of this thesis are as follows.

1. The IoT landscape is constantly evolving, where past survey papers are either out

of date or their scope of research focused on a few key aspects and not the entire

system. This thesis presents a current in-depth analysis and description on many

of the capabilities, limitations, architecture, design patterns, and services of modern

cloud-based IoT platforms and applications, providing a better understanding of each

part and how it relates to the whole.

2. Cloud platforms can offer an overwhelming amount of services to choose from, creating

a steep learning curve for new users. Chapter 5 gives guidance for how to navigate a

large cloud platform such as Microsoft Azure, and use it to implement an IoT appli-

cation and avoid many of the pitfalls that are not immediately noticeable.

3. The combination of IoT with cloud platforms create an accessible, resilient, and scalable

solution that can handle many devices and can store and process large volumes of data.

The combination is not without its shortcomings, as there are limits to throughput and

query efficiency. Two proposals are described, one distributed and one unique to the

scenario focusing on reducing costs.

4. Lastly, corporations such as Amazon, Microsoft, and Google have become leading

providers for cloud-based IoT platforms as demand for IoT solutions from industries

such as healthcare, automotive, industrial, security, and many more increase. Many

of the services from each platform are compared, showing current similarities and

differences between the platforms.

The remainder of this thesis is organized in the following order. Chapter 2 reviews

prior surveys on IoT systems. Chapter 3 describes the main aspects of IoT platforms using

7



Microsoft’s Azure as a model. Chapter 4 shares our experiences using Microsoft Azure

to create a small IoT application. Chapter 5 discusses the short comings of cloud-based

IoT platforms and possible solutions. Chapter 6 compares the services offered by Amazon,

Microsoft, and Google with respect to their cloud-based IoT platforms. Chapter 7 concludes.

Portions of this thesis were published in a chapter for a book, where I was a contributing

author [11].
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2 Related Works

This Chapter reviews survey papers relating to IoT and cloud computing, which described

general concepts and architecture, compared current cloud-based IoT platforms, explained

analytics and its uses in IoT, and detailed the relation of IoT to big data.

Past research [40, 36, 33] has provided high level IoT reference architectures. Goyal et

al. [40] discusses a five layer architecture that consists of perception, transport, processing,

application, and business layers. The perception layer is the device layer which collects

information. Transport layer is the connection created between device layer and processing

layer. Processing layer analyzes the data that is collected. The application layer is software

that interacts with perception and processing layer. The business layer manages the work of

the entire system, such as privacy and security.

Hejazi et al. [36] proposed an IoT architecture consisting of four components, sensing,

communication and identification, computation and cloud, and services and applications

components. The sensing component consists of devices and data collection. Communication

and identification connect devices to the computation and cloud components. Computation

and cloud, also called IoT Integration Middleware, provide processing capabilities and acts as

a combination layer for devices and applications. The services and applications components

are the many tools provided by cloud platforms that collect, analyze, and visualize the data.

They also discuss several considerations when selecting an IoT platform, such as stability,

scalability, and cost as well as the benefits of using open source over proprietary software.

Lastly, they provide a table comparing 20 different IoT platforms.

Guth et al. [33] noticed a lack of standards among the increasing number of IoT platforms,

creating confusion and lack of comprehension when selecting or building an IoT platform.
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They proposed an abstract IoT reference architecture that consists of five main layers. They

are sensors/actuators, devices, gateways, IoT Integration Middleware, and application. Sen-

sors and actuators are part of the devices, which send their data to a gateway. The gateway

is responsible for bi-directional communication and authentication with devices. IoT Inte-

gration Middleware processes the data, and the application layer is software that uses the

middleware layer to gain insights. Because the design is very high level, it allows for easier

comparisons with existing IoT architectures such as OpenMTC, FIWARE, SiteWhere, and

AWS IoT. It is clear that all three share similar design ideas, with minor variations on layers

and naming.

Pflanzer et al. [118] listed and compared many cloud platforms with an emphasis on

PaaS IoT related services, providing an extensive list of options for application developers.

Platforms discussed range from large corporations like Amazon’s AWS, Microsoft Azure, and

Google Cloud Platform, to alternate options such as Heroku, CloudFoundry, and DreamFac-

tory. Parse, bought and run by Facebook trying to compete with AWS, Azure, and GCP, is

mentioned as an option but was discontinued.

Verma et al. [131] stressed the importance of real time analytics in IoT, with a focus on

analytical network methodologies. IoT analytics can be separated into historical and proac-

tive. Historical analytics focuses on learning insights from historical data. This category is

separated into descriptive, such as energy use patterns, and diagnostic, generating disaster

alerts. Proactive analytics can be separated into stream IoT analytics, where streams or

batches of IoT data are monitored with low or no real-time constraints, and real-time IoT

analytics. Real-time IoT analytics have harder real-time constraints and are becoming more

popular. Real-time IoT analytics are separated into predictive, such as predicting power

usage, and prescriptive, determining if or when repairs can be made to a machine. They

argue that the massive amounts of IoT data create many challenges for real-time analytics,
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and that current networking technologies, similar to ones used in cloud infrastructures, are

not adequate to support real-time IoT analytics in their current state.

Siow et al. [126] provides an extensive survey on the many aspects of analytics in IoT.

Several definitions of IoT are discussed, with four common principles to each. They ex-

ist at a global scale, are made of uniquely identifiable Things that monitor the physical

world, the Things are connected so data can be shared, and they have the ability to impact

our society through advanced services. Advanced services are use case scenarios in differ-

ent industries, with a vast number of examples given spanning industries such as health,

transport, living, environment, and industry. Five categories are discussed listing different

analytical capabilities: prescriptive, prediction, discovery, diagnosis, and description. The

category descriptions are similar to Verma et al., except no hierarchy is established among

the analytical types, and stream processing is replaced by discovery. An extensive list of

infrastructure components are given, focusing on data generation, collection, aggregation,

storage, and compute. Lastly, challenges are discussed with relation to analytics and IoT.

They argue there is a trade-off between distribution and interoperability, performance, and

analytical value.

Chen et al. [14] provides an in depth analysis of big data, with several sections discussing

IoT as a big data producer. Currently IoT data is not the majority of big data, but by 2030

HP predicts it will be. They argue that even though the technologies are inter-dependent

they should be developed jointly, as research and advancement in one area helps the other.

Data generated from IoT devices have four common characteristics. First characteristic is

large-scale data, where current and historical data are collected to generate large volumes

of data. Second is heterogeneity, as having a variety of devices means a variety of data is

collect. Third is a strong time and space correlation. Devices are placed in specific locations

where each message is time stamped, creating a time and space correlation when performing
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analysis. Lastly, much of the data collected will not be useful in many cases. There example

is of a traffic camera, where the only useful footage is when accidents or violations occur.

The rest of the data is normal traffic with little value.

Past research surveys of cloud computing and IoT either lack specifics [40, 36, 33], are

out of date [118], provide in depth analysis of specific parts of an IoT platform [131, 126], or

focus on a different subject that overlaps with IoT [14]. Our research aims to fix these short

comings by providing an up to date, comprehensive, and focused survey of the requirements

and parts of a cloud-based IoT platform. Not only does our research improve on past

research in these specific areas, it also provides insights and experiences using Microsoft

Azure to implement a cloud-based IoT solution.
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3 Azure IoT Platform

The architecture of cloud-based IoT platforms are mostly driven by the functional require-

ments of IoT applications. The main requirements are to collect and analyze information

collected from IoT sensors, to store the collected information, to report the results of analysis

to users, and to integrate the analysis results with business systems [40]. The non-functional

requirements such as security and latency are cross-cutting concerns that impact multiple

components of the IoT platform. In this chapter, we discuss the main components of an IoT

application, design choices, and related crosscutting concerns using Azure IoT platform for

examples and as a guide.

Azure IoT platform refers to a suite of software tools offered on Azure cloud platform

that can be used in combination to build IoT applications. While some software tools such as

Azure IoT Hub [62], Stream Analytics [77], and Power BI [80] are designed IoT applications,

others such as Blob storage [61], Cosmos DB [78], and Azure Functions [47] are for general-

purpose applications but frequently used in IoT applications as part of the solution. The

overall architecture of a cloud-based IoT system is shown in Figure 3.1.

Figure 3.1: Cloud IoT platform architecture, where solid line denotes direction of data flow
and dashed line denotes direction of control.
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3.1 IoT Devices and Gateways

The primary functionality of an IoT application is to enable IoT devices to send telemetry

messages to a cloud gateway which enables further processing of the messages. To implement

this functionality, a messaging protocol must be chosen for communication between IoT

devices and cloud gateways. IoT client must be implemented for the IoT devices so that

they can establish secure communication with a specific cloud gateway. In order to manage

the IoT devices, an IoT application must also maintain storage for device identities, device

entities, and device provisioning.

Messaging protocol IoT devices communicate with IoT gateways through messaging

protocols such as MQTT, AMQP, and HTTP as shown in Figure 3.2.

1. MQTT (Message Queue Telemetry Transport) is a lightweight client-server messaging

protocol. It has a small memory footprint on the device and sends compact messages

that use less network bandwidth [119]. Thus, MQTT is a popular choice for devices

with limited computing resources and network connectivity. However, the compact

messaging format also presents challenges to IoT applications. Since MQTT does not

support message metadata in its header, IoT clients and gateways must agree on the

Figure 3.2: Communication protocols between IoT devices and cloud gateway, where solid
line denotes the direction of device-to-cloud messages and the dash line denotes the direction
of cloud-to-device messages
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format of the message content. MQTT has three levels of quality of service related

to the message delivery: at most once, at least once, and exactly once delivery [114].

Azure IoT Hub supports the first two but not the last one since it increases the latency

while reducing the availability of distributed IoT infrastructure.

2. AMQP (Advanced Message Queuing Protocol) is a connection-oriented, multiplexing

messaging protocol with compact message format, which is suitable for devices that

require long-running connections and high-throughput communication with cloud gate-

ways [112]. Both AMQP and MQTT are implemented over TCP layer. While MQTT

is more lightweight and suitable for devices that connect to cloud gateway directly with

per-device credentials, AMQP allows more complex device topology so that multiple

devices can connect with cloud gateway using the same secure connection.

3. IoT devices can also directly communicate with Azure IoT Hub via HTTP though the

implementation is more complex and the message overhead is higher than the binary

format of MQTT and AMQP messages [112]. Moreover, cloud-to-device messaging is

less efficient over HTTP since the device has to periodically poll messages while AMQP

and MQTT can push cloud messages to a device with far less latency [112]. AMQP

and MQTT can run over WebSocket for devices with restriction on open ports.

Device Client There are a variety of IoT devices with different processors, operating sys-

tems, networking capabilities, and runtime support of programming languages. For example,

Intel NUC runs Ubuntu Linux while Raspberry Pi can run Windows 10. For devices that

run an operation system, IoT clients may be implemented using Azure IoT SDK [55] using

various programming languages such as Java, C, .NET, Python, and JavaScript (Node.js).

For the devices supported by Azure IoT SDK, the implementation of IoT clients is a rela-

tively straightforward process that first establishes connection to cloud gateway with device
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credentials and then starts the loop of encoding messages and sending them asynchronously

to the gateway. For FPGA-based devices such as CompactRIO, IoT clients can be developed

using vendor-specific languages such as LabView, though such client may not be compatible

with specific cloud gateways such as Azure IoT Hub due to its security requirement.

Cloud Gateway IoT devices may be connected to cloud gateway directly or connect

through field gateways such as edge devices, which then connect to the cloud gateway. In

the former case, IoT client program runs in IoT devices while in the latter case, the IoT

client runs in the field gateways. Field gateways may be used in cases where the IoT devices

are low-power sensors that lack the computing power and network connectivity to reliably

transmit IoT messages. Field gateways may be used to aggregate, filter, and preprocess raw

telemetries from IoT sensors to reduce network congestion and workload of cloud gateway.

Field gateway may also be used to connect to devices such as CompactRIO that lack suitable

implementation of secure communication layers or to devices that can only be connected

with industrial protocols such as OPC UA. In some cases, a custom cloud gateway may be

developed using Azure IoT protocol gateway [48] to perform the functions of a field gateway

where the connection from IoT devices to the custom gateway may be secured using network

tunneling such as VPN (Virtual Private Network).

Azure platform supports two types of IoT gateways: Azure IoT Hub and Azure Event

Hubs with available connection patterns shown in Figure 3.3. Azure IoT Hub is more suitable

for applications that require bidirectional messaging between devices and cloud gateways [62].

Azure Event Hubs is more suitable for applications that only need to send large number

of messages to cloud gateway [58] and it does not support MQTT protocol. MQTT is

based on publisher-subscriber model where message producers register as publishers in a

MQTT broker and message consumers also register at the broker to listen on messages of
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Figure 3.3: Communication patterns between IoT devices and Azure IoT/Event Hubs, where
solid line denotes the direction of device-to-cloud messages and the dash line denotes the
direction of cloud-to-device messages

selected topics. Azure IoT Hub is such a broker except that MQTT protocol does not specify

security requirement. To protect sensitive IoT data transmitted over untrusted networks,

Azure IoT Hub requires connections be established over TLS (Transportation Layer Security)

protocol [60]. In order to connect to Event Hubs, the clients need to have the access keys

associated with the IoT Hub account that they will connect to. Applications can retrieve

the messages through IoT Hub using the same access keys.

After installing IoT clients on devices and setting up cloud gateway such as Azure Event

Hubs, developers need to make sure that only authorized devices can be connected, the

messages from the devices can be understood by the rest of the application, and the devices

can be managed and controlled remotely through cloud gateway and other components. To

this end, an IoT application needs to have device identity store, device provisioning service,

and device and application models as shown in Figure 3.4.

While developers can configure small number of devices manually, for commercially pro-

duced IoT devices such as smart meters and smart thermostats, bulk processing of the device
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Figure 3.4: Relation between IoT devices and device identity store, device provisioning
service, and device and application model.

configuration and setup may be necessary. Azure IoT Hub provides Device Provisioning Ser-

vice (DPS), which is a global service to support device registration and configuration [76].

DPS provides API for device configuration and registration using Azure IoT Hub’s device

identity store to provide per-device security credentials for authentication and authoriza-

tion. DPS can also automate the registration of the devices to store the device model and

application model.

The device model defines the schemas of device metadata, output, control parameters,

and control actions. The application model contains the semantic relation between devices

such as device topology and the relation between device and other application components.

The device and application models are core design abstractions of each IoT application. For

example, devices such as smart thermostats are modeled in relation to the room and building

where they are located. A building management system may define a static hierarchical

structure to model the devices based on their physical locations [130]. For applications

such as fleet management, the device topology is more dynamic since the IoT devices may

change their grouping as the vehicles carrying the devices are assigned to different tasks.

Regardless of the specific designs, these models should be made persistent in storage such
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as SQL database or Azure Cosmos DB, which includes a graph API for convenient query of

device topology.

3.2 Storage

IoT applications generate increasingly large amounts of data that must be processed in

real-time or by offline batch applications. Storing IoT data in an on-premise database is

not suitable for industrial IoT applications due to the lack of scalability of local storage.

Cloud-based storage offers elastic capability that can scale up without significantly degrading

performance [111]. Cloud-based storage can be divided into warm and cold storage with some

tradeoff between latency, query capabilities, and cost. Warm storage such as Cosmos DB

and Azure SQL Database offer lower latency and flexible query interface but at a higher cost.

Cold storage such as Blob storage and Data Lake Storage have higher latency and simpler

interface but lower cost. Figure 3.5 shows the possible dataflow path between cloud gateway,

data processing computation, and storage.

The distribution of data between warm and cold storage should be based on the require-

ment of IoT applications. To reduce cost, data that is not frequently used should be stored

Figure 3.5: Dataflow between IoT gateway, data transformation, stream processing, cold
storage, warm storage, and data visualization modules.
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in cold storage. Data used in real-time processing components such as Stream Analytics and

data visualization should be kept in warm storage [71]. A straightforward way of managing

data for different storage is to store recently-transmitted data in warm storage first and

then gradually migrate old data into cold storage after a predetermined amount of time has

passed.

There are a few options for warm and cold storage on Azure IoT platform as shown in

Figure 3.6. For warm storage, low latency is required. Azure provides Cosmos DB, which is

a NoSQL database that supports five query methods including traditional SQL, MongoDB,

graph, table, and Cassandra Query Language (CQL). Data in Cosmos DB can be set with

an expiration date, after which the data is automatically deleted. Another option is Azure

SQL Database [79], which provides relational database model with transactional support,

which may be necessary for applications with strong integrity constraints. Both databases

have flexible query interfaces but they also have higher cost than that of cold storage such as

Blob storage and Azure Data Lake Storage [74], which stores data as files or objects and uses

Figure 3.6: Options of warm and cold storage with different query methods.

20



RESTful API for query access. Query interface to cold storage is much more restrictive than

that of warm storage. Thus, for computation such as visualizing power usage of a freezer

over the past 30 days, warm storage should be used since the computation needs to issue

queries that can return precise results with low latency. For computation such as analyzing

the average power consumption of all freezers over the past year, cold storage can be used

since the analysis can be computed offline with aggregate data set as input.

3.3 Data Analysis

The main purpose of IoT applications is to learn insight from data emitted from IoT devices

and use the insight in making logical decisions towards business objectives [126] such as

reducing operating cost of fleet vehicles or preventative maintenance of industrial equipment.

Data analysis is the crucial step in realizing this goal. Depending on applications, IoT data

analysis can be online processing of data streams or off-line processing of data batches. For

online processing, the computation can also be divided as stateless or stateful. Figure 3.7

shows the possible dataflow paths for the different types of IoT data processing on Azure

platform.

For online processing of IoT data, latency is an important consideration [125]. Latency

in this context refers to the amount of time it takes to analyze the IoT data collected over

a time window (such as 5 seconds) to generate the input for a backend application such

as a data visualization tool. For example, latency in the scale of seconds is not suitable

for applications such as connected vehicles, which may have real-time constraints in milli-

seconds. Throughput is another consideration for online processing. Throughput refers to

the amount of data that can be processed within a time period. Applications with high data

ingestion rates require sufficient throughput to handle incoming telemetry data to avoid data
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Figure 3.7: Possible dataflow paths for IoT analytics.

loss or excessive latency. Insufficient throughput can increase latency since unprocessed data

has to be buffered and if the buffer overflows, unhandled telemetry data is dropped.

An application can reduce the requirement of throughput by slowing down data ingestion

rates using methods such as sampling or aggregation. Cloud-based IoT platforms such as

Azure can usually satisfy high throughput requirements of IoT applications since users can

allocate more resources to process data in parallel. However, latencies of these platforms

are more difficult to reduce. For applications that demand near real-time response time,

on-premise data processing is more appropriate. For example, field gateways can be used

to perform preliminary data integration, data analysis, and aggregation before sending the

lower frequency data to the cloud gateway [29] such as Azure IoT Hub. This also can reduce

the computation cost associated with cloud platform usage and the network bandwidth.
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Online data processing includes data transformation, data filtering, event detection,

alert generation, data aggregation, and other streaming data analysis such as Key Per-

formance Indicator (KPI) calculation, classification, and anomaly detection. Online data

processing may be stateless or stateful computation. Stateless computation such as data

transformation only needs its input data at time t to obtain its output at time t. Stateful

computation needs to use both its input at time t and its states at previous time stamps

such as t− 1 to compute its output and states at time t.

Azure includes two types of data processing systems: Azure Functions and Azure Stream

Analytics. Both systems can take streaming inputs from IoT/Event Hubs and output results

to Azure storage and reporting tools such as Power BI. Stream Analytics implements query

computation on data streams while Azure Functions provides general-purpose computation

triggered by events. A common design pattern is to use Stream Analytics to preprocess

data streams from IoT Hubs and then forward the results to Azure Functions for advanced

processing.

Azure Stream Analytics provides a domain-specific way for processing IoT data streams

using a SQL-like (stream analytics) query language [46] that treats data streams as ta-

bles, stream events as records, and stream event fields as record fields. For example,

select V, I from Power where V > 10 returns a stream of values that are the

fields (V, I) from the stream Power where value of V is greater than 10. Nested queries

can be made using with clause to define result sets of inner queries to be used in the outer

query. In this query language, streams can be joined with the addition of an on operator

that specifies the time bound of the joined stream events. The time bound is calculated with

the datediff function using the timestamps of the stream events. Selected stream events can

be grouped by field names with the addition of a window function or system timestamp. A
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window function specifies the grouping of stream events based on the event timestamps so

that aggregate function can be applied to the events in each time window to output a single

event. Azure window functions include tumbling window (fixed-sized and non-overlapping),

hopping window (with fixed overlap), sliding window (all distinct windows with fixed size),

and session window (events grouped by similar timestamps) [75]. This query language also

provides a list of builtin functions to support computation on scalars, aggregates, records,

spatial values, and temporal values (e.g. lagged events, last event, and first event in an

interval).

Azure Stream Analytics can invoke user-defined function (UDF) [56] written in JavaScript

in its queries. UDF allows users to perform operations such as math, array, regexp, and

remote data access, which is not supported by builtin functions of the query language.

Stream Analytics can also utilize user-defined aggregate (UDA) [49] that specifies how values

are (de-)accumulated over event sequences grouped by window functions in a query. UDA is

defined as a function that constructs a JavaScript object with fixed-named methods. Stream

Analytics can also use Azure Functions to perform additional processing by sending query

results via HTTP request to an Azure Function in batches [70]. The batch size is limited

to 256KB while each batch is limited to 100 events by default. Note that Azure Stream

Analytics can perform both stateless and stateful data processing. Through window and

analytic functions, Stream Analytics can perform stateful computation on event streams

subject to time-based constraints.

Azure Stream Analytics jobs can be launched through Azure’s Web interface by filling in

the query statements in a textbox and specifying the input and output sinks of the analytics

jobs. Launching a Stream Analytics job takes a few minutes while error messages are few and

uninformative, which makes it difficult to perform testing since mistakes in query statement

such as typo of field names may simply yield empty results. Azure Stream Analytics does,
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however, allow faster tests by executing the queries on sampled datasets though this kind

of testing does not reveal all possible faults with the queries. Also, the UDF and UDA

associated with each Stream Analytics query are in separate scopes, which prevents sharing

across multiple queries.

Azure Functions provide serverless computation triggered by events. Azure Functions

can be implemented in languages such as Java, C#, and JavaScript to provide stateless

computation in response to events from sources such as HTTP, Blob storage, Event Hubs.

Cosmos DB, Storage Queue, and Service Bus [47]. Azure Functions allows the use of general-

purpose programming languages to define complex logic to process event data and redirect

the result to a destination such as Blob storage.

For stateful data processing, users can use durable Azure Functions [57], which is an

extension of Azure Functions that implicitly uses Azure storage to manage stateful com-

putation. As shown in Figure 3.8, durable Azure Functions includes orchestration function

that can compose multiple activity functions to run in sequence or in parallel. Durable Azure

Functions also includes orchestration client that can start a long-running process that can

be monitored for progress via HTTP endpoints.

As an evaluation of the throughput and latency of high-volume event processing with

Azure Functions, Microsoft conducted a performance test [50] to demonstrate some of the

optimization strategies. This test partitioned a stream of weather and seismic event data into

two streams to be processed independently. The stream processing used Azure Event Hubs

to act as buffers, Azure Functions to separate the two types of event data and push them into

their respective Event Hubs for further processing. In this test, a stream of 100,000 events

per second was processed for 9 days. During the test, half of the events were processed

with about 1 second of latency while 90% of the events were processed with less than 3
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Figure 3.8: Stateful data analysis using durable Azure Functions.

seconds of latency. However, max latency was about 4 minutes. The test achieved this level

of throughput by configuring each Event Hub with 100 partitions, which translates to 100

virtual machines that execute the Azure Functions in parallel. This test also processed the

streaming events in batches instead of individual events in Azure Functions, which increases

throughput by reducing the overhead of launching Azure Functions.

Offline data processing includes KPI calculation using historical data, clustering, regres-

sion, and classification using unsupervised or supervised machine learning. Many of these

offline data analysis tasks can be completed in Azure HDInsight [72], which is a PaaS cluster

platform for launching distributed computing services. Apache Spark, which is a distributed

in-memory programming library, is available in HDInsight as a computation environment for

big data analysis [69]. With Spark, users can develop parallel applications that can perform

data analysis using data from storage facilities such as Azure Data Lake Storage, Blob storage

and gateways such as Event Hubs (through Spark streaming). Spark utilizes a map-reduce

programming model to support distributed computation and its memory-based resilient dis-

tributed dataset (RDD) abstraction provides better performance on big data than disk-based
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distributed file system such as Hadoop does [122]. Spark supports offline analysis such as

machine learning. For example, using Spark, an IoT application can train a regression model

offline using historical data and use the model to make online predictions for streaming data

as shown in Figure 3.7.

Note that Spark uses a cluster of machines to complete its tasks. When running Spark in

HDInsight, a cluster of VMs of a minimum configuration such as a master and a slave must

be created and the cluster will exist until the task completes. Keeping a cluster running

is far more expensive than services such as Azure Functions. Thus, it is not cost effective

to keep a long-running data analysis using Spark in HDInsight, which is more suitable for

offline data analysis that is both computation intensive and has a finite duration.

3.4 User interface

Some IoT applications such as smart thermostats can use the results of data analysis to

generate automatic control signals such as setting the thermostat temperature. However, for

most applications, graphic user interface is needed to render data visualization and generate

reports for business decision making. The interface can also be used to monitor the status of

IoT devices and domain abstractions such as buildings that contain smart meters, to schedule

an offline data analysis such as machine learning on historical data of certain time period,

and to change an online data analysis such as the formula of a KPI. Azure IoT platform

provides several PaaS and SaaS components for this purpose.

Visualization Azure Power BI is a versatile dashboard tool for data visualization and

report generation of static or low frequency data. Using the graphic interface of Power

BI, non-programmers can create dashboard with various data charts from a range of data

sources. Power BI includes two versions: Power BI Desktop and Power BI Service (online).
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Power BI Desktop has more functionalities in terms of visualization and report generation.

However, only Power BI Service supports real-time streaming where its data ingest rate is

limited to 5 requests per second for its streaming dataset and 1 request per second for push

dataset [59]. Higher frequency data may be streamed or pushed to Power BI in batches

with some added latency. For visualization and analysis on IoT data as time series, Azure

Time Series Insights [51] may be used. Time Series Insights is also a type of warm storage

that stores data in memory and solid state drives, though its data is only kept for a limited

amount of time and its query latency is still too high for on-demand applications.

Web and mobile apps Azure App Service provides environment for building Web app,

mobile backend, and RESTful APIs. Users can create a Web interface using Azure App

Service to connect to IoT components such as Azure IoT Hub through WebSocket. For mobile

devices with unreliable network and limited energy budget, push notification may be used to

send IoT data such as alerts and event notification. To this end, Azure provides Notification

Hubs [73], which allows applications to push messages to mobile devices of platforms such as

iOS and Android. Azure Notification Hubs can also be integrated with Azure App Service

Mobile Apps, which works by retrieving device PNS (platform notification system) handles,

registering the devices with notification hubs, and sending notifications from app backend

through notification hubs.
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4 Experiences with Azure

The Azure Cloud offers a wide range of services, where each service belongs to a broader

category to help with organization. As of this writing, there are 22 categories, where the

number of services each category has ranges from as low as 1 to as high as 50. Many services

are unique to each category, but some services do overlap and are placed in other categories

as well. Information and examples of each service can be found at Microsoft’s main Azure

website. See Figure 4.1 for a view of the Azure portal and the many services offered. The

wide range of services, categories, and amount of information online creates a steep learning

curve to those unfamiliar with the Azure platform. To study the platform and ease of use,

a set of tasks were selected to be performed on a data set. To illustrate the implementation

of an IoT application using Azure platform, an experiment was conducted using Azure to

Figure 4.1: View of the Azure portal. The left most menu contains favorite services. When
clicking on any of these tabs, a window opens to the right. These windows are called blades.
The All services tab was selected, showing only a small portion of all available services.
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analyze a set of time-series data of Li-ion batteries. The remainder of this chapter details

the data set, the process, and our experiences using Azure. The experiences are based on

the current iteration of Azure, which is always changing. Some features or services may not

be available at the time this is read.

4.1 Data Set

The data set used details the operational use of a number of Li-ion batteries collected over an

extended period of time by NASA [121]. This experiment used the data of battery number

5. The data was collected over many cycles, each of which includes a full charging phase

followed by a full discharging phase while metrics such as current, voltage, temperature,

sampling time, and the impedance were collected. As the number of cycles increased, the

time to fully discharge the battery decreased. The data was originally in Matlab data files

and was converted to CSV (Comma Separated Value) files before it is used for the simulation

of IoT telemetries in the experiments.

4.2 Azure Set Up

The main goal of this experiment is to create a IoT system using Azure. The experiment

simulated telemetry data from sensors connected to the battery and sent it to an Azure IoT

Hub. The data is stored, processed, then analyzed during each cycle. The analysis will then

reveal when the battery should be replaced as its capacity degrades over time. The list of

different services used during the set up are IoT Hub, Storage Accounts, Stream Analytics

Jobs, Function App, Machine Learning Studio, Resource Groups, and Cost Management +

Billing.

To use any Azure service, a user must have an account along with a subscription. The
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subscription keeps track of what services were used and how much to charge. A nice feature

is that many of the services in Azure only charge a user when they are running. If a user is

looking to cut costs, turning off a service during low-peak hours is a viable option. The user

still must be careful as some services may incur charges just for creating a resource.

4.3 Resource Groups

Before going in to detail about many of the services and what was done, the importance

of resources and Resource Groups must be stressed. When using any of these services, a

resource from that service must first be created. For example, when using the IoT Hub, a

user must create an IoT Hub resource first. Since multiple resources can be created from the

same service, a unique name is given to each one to distinguish them. Once a resource is

created, it must be assigned to a resource group. Resource group is a convenient way to store

multiple resources together in one place. When creating some resources Azure may create

other resources unaware to the user. The resources created automatically will appear in

the same resource group, keeping related resources together. This makes it easier to locate,

delete, and manage multiple resources. Creating a resource can be done via command line

inputs using the cloud shell or through the Azure portal. Both work through a browser and

allow a user to create and monitor resources, but the cloud shell requires the user to know

all the commands where the Azure portal is an interactive graphic interface. Azure portal is

used for the remainder of the chapter.

4.4 IoT Hub and Storage

After creating a resource group, an IoT Hub resource is needed as a location to receive

messages [62]. An IoT Hub can also send messages, but this functionality is not required
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for this experiment. When creating an IoT Hub resource, a tier must be selected to specify

how many messages this hub is expected to receive. Tier selection helps Microsoft allocate

physical hardware resources on their end to meet the users needs. The free tier was used in

this experiment, as it provides sufficient throughput and is cost effective. See Figure 4.2 for

the blade used to create an IoT Hub and Figure 4.3 for more details on IoT Hub tiers. IoT

devices must be added to the IoT Hub after an IoT Hub resource is created. Each device

requires its own device ID in the IoT Hub to distinguish one device from another. To add a

device, select the IoT Devices tab under the newly created IoT Hub resource. Here a user

can add devices where Azure will auto generate connection strings for each device. The

connection string is critical in maintaining a secure connection between the device and the

IoT Hub.

To send messages from a device, Microsoft provides many SDKs and example code to con-

nect various types of IoT devices to the IoT Hub [100]. Various programming languages and

Figure 4.2: Creating an IoT Hub.
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Figure 4.3: Different tiers for IoT Hubs. IoT Edge enabled means this tier can send/receive
messages from IoT Edge devices. Device Management means this tier can use device twin,
query, direct method, and jobs [64].

platforms such as Java, C, .NET, Node.js, Python, and iOS frameworks are all supported.

This experiment used Java, which needed Microsofts SDKs and Maven. It is recommended to

use Maven as a build tool for Java-based IoT client, as Microsoft provides a dependency snip-

pet that can be copied and pasted into the Maven build file (commonly named as pom.xml)

which will then import all the appropriate library dependencies (namely jar files) to connect

to the IoT Hub. Modifying one of the example codes provided by Microsoft was an easy way

to start a project and send messages. The default connection string given in the example

must be updated to match the devices ID in the IoT Hub, if it is not the messages will not

send. To simulate telemetry messages, the battery data was first read from the CSV file,

converted to strings in JSON format, and sent as MQTT messages to the IoT Hub using

the libraries provided. A quick way to view whether the messages are being sent or not

is to examine the real-time graphs that are shown on the overview page of the IoT Hub

(Figure 4.4). There will be some latency, but if the messages are sent correctly the graphs

will eventually update.

The type of storage account determines what services can be used to store data. Stor-

ageV2 allows storage in blobs, files, queues, and tables. StorageV1 is similar to StorageV2

except is used for legacy accounts. BlockBlobStorage accounts are blob only storage tailored
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Figure 4.4: Real-time graphs showing incoming messages to the IoT Hub.

to blob performance. FileStorage accounts are file only storage tailored to file performance.

BlobStorage accounts are blob only storage but for legacy accounts [98]. The replication

option determines where duplicated data is stored geographically. Azure creates multiple

copies of all data, the further away from the source the more expensive storage gets, and

replicated data is updated synchronously.

First storage option is locally redundant storage (LRS). LRS maintains three replicas

in the same storage scale unit, which is a collection of storage racks. LRS is the most

cost-effective way but it provides the least durability in case of hardware failure or natural

disasters. Zone-redundant storage (ZRS) maintains three replicas in the same data center

but in different zones. If only the storage scale unit that contains source data malfunctions,

replicated data will still be accessible with ZRS. This is the not case with LRS as the source

and replicas are in the same storage scale unit. The last two options are geo-redundant

storage (GRS) and read-access geo-redundant storage (RA-GRS). Both store three replicas

in the same data center and three replicas at a different data center in a region hundreds
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of miles away. RA-GRS is the only option that allows read only access to replicated data.

Latency could be a problem with RA-GRS, as replicas at different data centers are updated

asynchronously unlike updates done in the same data center. Lastly, cold or hot storage can

be selected. Hot storage should be used for frequent reads and updates. Use cold storage

otherwise.

After creating a storage account with the appropriate settings, see Figure 4.5 for example

of this in Azure portal, messages sent to the IoT Hub can now be stored. If no other services

are needed and storage is the only concern, the IoT Hub’s Message Routing options can be

updated to output data into four locations. They are Event Hubs, Service Bus queue, Service

Bus topic, and Blob storage [99]. Having a message reroute to an Event Hub seems redundant,

since the IoT Hub is essentially an Event Hub with bidirectional communication, but if a

user wanted to combine information from an IoT Hub and an existing Event hub that collects

Figure 4.5: Creating a storage account.
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data from multiple non IoT sources for data analysis this could be a useful option. A service

bus is a message broker, where the IoT Hub would be the publisher and any number of Azure

services could be a subscriber [65]. A Service Bus queue stores messages in a single queue

where a subscriber service reads from the queue when ready. Typically, Service Bus queues

are meant for point to point communication. A Service Bus topic is similar to a Service Bus

queue except that multiple queues are used. This allows multiple subscriber services to read

from one source and is more similar to the typical publisher/subscriber model. If the data

isn’t needed immediately, Blob storage can be used for long term storage or for analysis at a

later time.

When using the Azure portal, certain storage options don’t allow a user to view the

contents of stored messages. It is recommended to download and install Microsoft Azure

Storage Explorer. This program is free and links up with an existing storage account after

providing the correct credentials. After installation a user can now access all stored messages

in their storage account from their desktop with out having to go through the Azure portal.

4.5 Stream Analytics

If more destinations for storage or processing are needed, Stream Analytics is another service

for routing messages sent to the IoT Hub [101]. The basic set up of a Stream Analytics

job are the inputs, query, and outputs (Figure 4.6). Inputs are differentiated between data

streams and reference data [104]. Data streams are unbounded streams of data, like Event

Hubs, Blob storage, or an IoT Hub. Reference data is typically static data that is used for

correlation and look ups. Currently only SQL Databases and Blob Storage are offered as

reference data inputs. The query language used by Stream Analytics is similar to SQL, and

considered a subset of Transact-SQL (also known as T-SQL) [46]. Queries can determine
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Figure 4.6: Overview of inputs and outputs for Stream Analytics. [101]

or limit what gets stored, and can be combined with windowing to perform analytics over

designated periods of time. Output is where the data gets stored after being processed

by the user defined query [105]. Options for output are Event Hub, SQL Database, Blob

Storage, Table Storage, Service Bus topic, Service Bus queue, Cosmos DB, Power BI, and

Data Lake Storage Gen1. Azure Functions is also an option for output, but these details will

be discussed later. Unlike the IoT Hub, Stream Analytics jobs must be started to be used.

A start button is visible after creating a Stream Analytics resource, click this to start a job

after all inputs, queries, and outputs are added. It may take a few moments for the job to

start, but it will inform the user when it has started. A user is only charged when a job is

running, so remember to stop the job when it is not in use.

When adding inputs or outputs, an alias is used in a Stream Analytics query to refer to

an actual resource. Multiple inputs and outputs can be used for a single Stream Analytics

job, reducing the amount of services required. For the experiment, a Stream Analytics job

was created that used a IoT Hub resource as input and a Table Storage resource as output.
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Figure 4.7: Stream Analytics query with multiple parts. First selection takes all data sent to
an IoT Hub aliased as IoTHubData and outputs to Table Storage aliased as OutTableStorage.
The second selection reads data from the same IoT Hub, except when the parameters of the
where statement are true it executes an Azure Function.

See Figure 4.7 for the example. Several other storage options could have been selected, but

Table Storage provides all the functionality required. Tables are a NoSQL data store that

can store lots of data, can scale with the data, can be queried easily and quickly, and they

are viable input and output sources for Azure Functions [102, 103]. When adding a table

as output for a Stream Analytics job, it will ask for a Partition and Row key as field values

which form the primary key for each row entry in the table. When combined they must

be unique, if not it will over write the existing data with the matching primary key. Both

keys must reference a named datatype in the streaming data. If not Stream Analytics will

display a yellow warning symbol next to the output saying it is degraded. During testing no

messages were updated when a Stream Analytics job became degraded.

Azure does offer query testing and some syntax error detection which helps save time and

potential head aches as starting up a Stream Analytics job can be cumbersome [68]. Files to

upload must be in JSON, CSV, or Avro format. Running the test after uploading, if done
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Figure 4.8: Results of testing query in Figure 4.7.

correctly, will give results to what is expected to happen during execution (Figure 4.8). The

testing that is offered is helpful, but it is not fool proof. Queries can still be syntactically

correct but produce no output. Azure does not provide any debugging tools to understand

why something is not working. It is also unclear whether testing works with windowing, as

windowing reads messages based on the time they were received and whether they reside

inside a designated time slot.

4.6 Azure Functions

Once the data is stored, an Azure Function can be triggered to read and perform some

computations on the data. The main parts of an Azure Function are the trigger, bindings,
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and code implementation. The trigger causes a function to execute, and a function can only

have one trigger [102]. Previously it was mentioned that Azure Functions can be used as

output for a Stream Analytics job. The output is not a data stream, but an HTTPTrigger that

is sent when a certain condition is met to execute the function. Bindings can be distinguished

by input vs output. They are not required, but they provide an easier way to connect to

other data sources for input or output in the function. See Figure 4.9 for a list of some of

the triggers and bindings offered.

Azure Functions can be written in C#, JavaScript, Java, and Python [67]. All languages

listed can be written in an integrated development environment (IDE) on a desktop and

then uploaded to Azure. An IDE is provided in Azure portal through the browser, but it

only supports C# scripts and JavaScript. Each option has its advantages and disadvantages.

Using a desktop IDE gives the developer the choice to use a setup and programming language

they are more familiar with. A desktop IDE also offers debugging and syntax error detection.

Developing in the portal offers only two programming languages, and no debugging or syntax

error detection. Mistakes are only found when the code is executed. A downside to using

a desktop IDE is having to set up the programming environment to be able to connect to

Azure. This means having to go through Microsoft’s online documentation which can be

Figure 4.9: Azure Functions triggers, inputs, and output options [102]. Other services are
available but were not included as they do not relate to IoT.
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difficult to follow. Desktop IDE’s also require a user to upload their functions to Azure,

where anytime a function is updated it must be re-uploaded. The portal avoids both of

these issues.

To create a function in the portal, use the Function App service to create a Function App

resource. The resource creation stage is where the programming language is selected. All

functions that reside in this resource will use that language. For the experiment, the .NET

framework was chosen to create a C# script because it did not require much code, many

of the better examples online were in C#, and ease of environment setup. The rest of the

setup described is based on the user selecting the .NET framework in the portal to develop a

function. The other programming language options were not tested and will not be discussed

in great detail. Once the resource is created and opened in a new blade, a function can be

made by clicking the plus symbol. After selecting the trigger to be used and providing a

name, Azure will generate a C# script template, and a function.json file. For script files, a

function.json file is required to list the trigger, and all input and output bindings [53, 102].

See Figure 4.10 for an example of the function.json file.

The process of updating the json file and connecting to sources outside the function are

the most difficult aspects when creating an Azure Function. The idea was very simple for

the experiment: have a function read data from a table, perform some calculations on the

data, and then output the new information to another table. One would think having the

storage and processing all done in Azure would be a simple process, but sadly it is not.

Microsoft provides a lot of documentation and examples online for how to add input and

output bindings, but the amount of information and lack of explanations for each example

given make it more difficult than it needs to be.

To update the bindings, select the integrate option underneath the selected function. A

new blade will open up which allows a user to update the trigger and add any bindings.
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Figure 4.10: A functions trigger and bindings json file.

When using table storage, it needs the connection string to the appropriate storage account,

the name of the table where the data is stored, and a parameter name. There are other fields

to fill out but they are optional and not required for the experiment. The connection string

can be updated in the storage account connection field option. Clicking the new option next

to the field reveals all storage accounts associated with the current subscription. Selecting

the correct storage account will automatically import the connection string. When inputting

the table, only the table name is required. Unlike Blob storage, table storage does not allow

sub containers so all tables are stored in the same location under one storage account [103].
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The parameter name is the name used in the function when referencing the actual table.

For example, the experiment’s table name was battery5TableStorage and the parameter name

was inputTable. Any time a read operation was performed on the battery5TableStorage table

in the function, the inputTable parameter name would be used. The documentation online

on how to perform this basic setup is lacking. While intuitive in hindsight, it was initially

very confusing. After updating the bindings through the portal, the existing json file should

update automatically to reflect the changes made.

Once the bindings are updated, modifications can be made to the function code. The

parameter names used in the json file must be used as actual parameter names for the

function. The datatype for these parameters depends on which function runtime is being

used. The two versions are 1.x, for legacy runtimes, and 2.x, for newer runtimes [66].

If using 1.x, the datatype used is called IQueryable. If using 2.x, the datatype used is

called CloudTable. Developing functions in the portal automatically uses version 2.x, so each

parameter representing a table should be a CloudTable datatype. Continuing the example

from above, the full function parameter name would be CloudTable inputTable.

After the function parameters are declared, it would be nice if the process was over

and a user could simply use the CloudTable parameters directly. But there is still more

setup required. To get information from the table, it can be queried using TableQuery and

TableQuerySegment datatypes [54]. A query is provided to a TableQuery, which in turn is

passed to a TableQuerySegment to get information from the table. After the results are

returned from the query, one final step remains. A class must be declared whose instance

variables match the names of the columns in the table to be read. The user may select

which columns to use as instance variables for the class, but the partition key and row key

are included by default. Take note of the datatypes of each column, the datatype of each

instance variable must match the datatype of the corresponding column. If unsure of the
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data types, use the Microsoft Azure Storage Explorer to view specific details about each

column. Once the class is created, data can finally be processed and analyzed by iterating

over each row in the results sequentially. Each rows data is stored in an object of the classes

instance variables allowing for easy access and modification of the data.

To store data to a table from a function, the output binding must be added to the json file

similar to how input bindings were added. The chosen parameter name must be added to the

function parameter list as well. For example, if an output table was declared in the bindings

called outputTable, the full function parameter name would be CloudTable outputTable. No

querying is necessary to write to the output table, so the TableQuery and TableQuerySegment

datatypes are not needed. Instead, a TableOperation datatype is used [54]. An object must

be created which stores any relevant data for a row to be written. This object is passed

to the TableOperation which then writes the data to storage. Online documentation shows

other ways to read and write from table storage, but the examples are limited and don’t

provide much detail if an error occurs. See Figures 4.11 and 4.12 for function used.

Figure 4.11: Classes used to help Azure Function read and write to table storage. See
Figure 4.12 for main method of Azure Function.
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Figure 4.12: Azure Function used to read and write to table storage. See Figure 4.11 for
classes required to complete function.
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4.7 Azure Machine Learning

When the telemetry data has been processed and stored, a machine learning model can ana-

lyze the processed data to perform predictive analytics. The process of creating a predictive

model is straight forward. First data must be collected and processed, where processing

means transforming the data into a more readable format for a machine learning algorithm

to analyze. Then an algorithm must be selected to act as the predictive backbone for the

model. Data is then passed to the selected algorithm to train and create a model. Once the

model is trained and fully tested, it can be deployed and used for real time prediction.

When selecting an algorithm there are three main categories, supervised, unsupervised,

and reinforcement learning [8, 19]. Supervised learning uses clearly labeled historical data

to train a model and provide predictions. The equation f(x)=y is a simple way to explain

how it works. The function f, the model, accepts the variable x, the historical input data

often referred to as the features, as a parameter which computes y, the variable to predict.

Typically, the input data comes in a table format, where each row represents a single entity

and each column is an attribute for each entity. For example, a table could contain infor-

mation about a list of houses. Each row is a different house, and the columns describe the

number of the bathrooms, bedrooms, square footage, and so on for each house.

Supervised learning can be separated into classification and regression, with each category

offering a different type of prediction. Classification algorithms focus on creating groups

with similar traits, where prediction is used to classify new data as belonging to one of

these groups. Classification is well suited for spam detection, where a model is trained using

millions of different emails where each email is labeled as spam or not spam. When the model

is trained, new emails that are not labeled can be passed to the model to predict the group

it belongs to. Regression algorithms are used to predict future values, typically numerical.

A common example for regression is predicting housing prices. Feature selection can include
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many of the attributes listed previously and any other relevant information. The model is

trained using these features along with the houses current value. Once trained, data from

new houses can be input to the model to predict its future price. For the battery experiment,

some form of regression would be the best choice for predicting what cycle the battery will

need to be replaced during.

While unsupervised and reinforcement learning were not used, they will be discussed

briefly here to complete the machine learning picture. Unsupervised learning is used for

learning without knowing the desired outcome. It is more of an exploratory process where

there is no specific output value to predict unlike supervised learning. Some uses are clus-

tering, association, and anomaly detection. Clustering and association find hidden relations

amongst the data. Clustering is like supervised classification where similar or dissimilar data

is grouped together, but no predictions are made. It is just grouping the data together based

on relations. Advertising firms can use clustering to group populations to better understand

and target an area for a product. Association can be used by retailers to find correlation

between buying certain products to help increase sales. Anomaly detection is used for finding

unexpected behavior. Credit card companies can use this for fraud detection, where unex-

plained spending can be detected and the customer can be alerted. Reinforcement learning

involves a model being able to learn in an environment where rewards and punishments are

given based on its actions. The goal is to maximize the rewards while minimizing punish-

ments. The company DeepMind Technologies is famous for creating AlphaZero, a program

that uses reinforcement learning to play the games of chess, shogi, and go at superhuman

levels [124].

When selecting features to train the model, it is common practice to visualize the data

before training a model. Visualizing the battery experiment data, where the x-coordinates
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are one feature and the y-coordinates are another, can reveal several relations between differ-

ent features helping with feature selection. See Figure 4.13 for an example, which shows the

battery data imported and visualized with different plots in Power BI Desktop. The cycle of

the battery will be a feature, so comparing other features to it may reveal significant trends.

Capacity and Time, where Time is the length of each cycle, have the strongest relation to a

cycle, so they should be included in the feature selection. Temperature also has some relation

so it may also prove useful. The rest are more erratic with no real trends, which means they

may not be the best choices to include.

The visuals can also be used to help with algorithm selection. Many of the less erratic

visuals have a sloping trend, so linear or polynomial regression could be good choices. Linear

regression tries to find a straight line that closely represents the general trend of the data,

and polynomial regression creates a similar line except the line can curve to follow the data,

like a polynomial function. Trial and error will always be a part of the process, where many

Figure 4.13: Plotting relations between each feature and Cycle in Power BI Desktop. Battery
Current, Battery Voltage, Load Voltage, and Temperature are all instances of the data set when
the Load Voltage dropped below 2.7. Capacity and Time are computed from the start of each
cycle to the point where Load Voltage drops below 2.7.
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features should be tested against many different algorithms. Using visuals can help narrow

down the best features and algorithms to choose from.

Understanding the process to create a model is straight forward, knowing how to collect

and process data, feature selection, selecting an algorithm, and being able to write programs

to combine all these parts successfully is not trivial. Azure provides services for all skill

levels, where even users new to machine learning can create models in minutes. Selecting

one of these services can be confusing though, as there are cloud-based, on-premise, and

development platforms and tool options. Also, some of the names used for different ser-

vices are very similar, which can add to the confusion. The cloud-based options are Azure

Machine Learning Studio, and Azure Machine Learning Services. On-premises options are

SQL Server Machine Learning Services, and Microsoft Machine Learning Server. The de-

velopment platforms and tools are Azure Data Science Virtual Machine, Azure Databricks,

ML.NET, and Windows ML [88]. The cloud-based options will be the focus for this section,

with an emphasis on Azure Machine Learning Studio as it was used for the battery experi-

ment. Azure Machine Learning Studio is great for creating, training, and deploying models

quickly with ease. It is also better for smaller projects, where scaling the model to accept

larger amounts of data are not a issue.

Azure Machine Learning Studio is a drag and drop interface which focuses on placing

and connecting modules to build a model [91]. It does not run in the Azure portal, but can

be accessed through the Azure portal using a Machine Learning Studio Workspaces resource

or via normal web site addressing. A similar version is available in the portal called Visual

Interface, but it is accessible using a Machine Learning service workspaces resource which

will be discussed later. The layout of the interface is very intuitive and easy to understand,

with several tabs to make organization and creating models easier. The projects tab is

used for creating projects, which act as containers for organizing experiments and files. The
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experiments tab is where the design and creation of a model begins. Take note that models

are called training or predictive experiments in studio. The web services tab contains all web

services. A web service is a fully trained predictive experiment that is accessible by other

users and programs.

A free and standard version of Azure Machine Learning Studio are available where there

are similarities and differences between both. Both versions can create predictive models

and deploy classic web services. The standard version does have a monthly subscription

fee, but it offers more storage, allows for larger models to be built, can train models faster,

has a service level agreement, and can deploy new web services which offer more features

compared to classic web services. If using the standard version, a Machine Learning Studio

Workspaces resource must be created in the portal so compute and storage accounts can be

allocated. The free version does not require a workspaces resource or need any connection

to the portal.

To create a new experiment, select the experiments tab and click the new button to

bring up a list of options. The user can create a blank experiment or use one of the many

examples Microsoft provides as a starting point or guide to creating their own [86]. Selecting

a blank experiment opens a new work space where modules can now be selected, dragged,

and dropped in to. After dropping a few modules in the experiment, they can be connected

with lines denoting the control flow of the experiment.

Every module is self-contained meaning no code is required to use it [84]. Each module can

be customized to some extent, but most of the implementation is hidden from the user. Each

module performs some task which sends its results to the next module, and the names of the

modules typically describe their task. For example, a module titled Import Data is used for

importing a data set. This module can connect to azure storage, but the users subscription

level may limit this feature [83]. If this is the case, the data can be uploaded directly to
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the work space. There are a wide array of modules to select from whose operations range

from data transformation, statistical analysis, performing SQL commands, machine learning

algorithms, and many more. Of the machine learning algorithms, regression, classification,

anomaly detection, and clustering algorithms are all available with each category offering

multiple choices. If a module does not exist for a certain task, the Execute Python Script

and Execute R Script modules are available to implement custom code. This allows users to

perform custom data transformations, create and use different metrics for analysis, and even

run different algorithms not available as an existing module.

Once the data is imported and features are selected, one way to create a model is to

use the Split Data, Train Model, Score Model, and Evaluate Model modules. The Split Data

module takes data as input, and splits the data into training and testing sets. The training

set is used to train the model, where the testing set is used to see how accurate the model is

once trained. By default, 70% of the data becomes training, where 30% becomes testing but

this number can be changed by the user. Randomization can also be applied when splitting

the data, and it is highly recommended to do so. The training set is used as input for the

Train Model module, along with the output of the module for the algorithm chosen. For the

battery experiment, the Linear Regression module was chosen as the algorithm.

The Train Model module trains and creates a model for prediction. Each algorithm module

has different hyperparameters that can be adjusted to train the model differently. Feature

selection and model selection are extremely important, as changing hyperparameters and

selecting different features can increase or decrease prediction accuracy. Visualizing the data

before selection and training is one way to help select both as described earlier. The output

model is combined with the testing set in the Score Model module to compute predictions for

the testing set. This module does not give an overall score for the model, but each individual

prediction can be compared to its actual value. See Figure 4.14 for an example comparing
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Figure 4.14: Some visualization features comparing real to predicted values.

the two values along with some other visualization features offered in studio.

To get the overall accuracy of the model, the output from the score module can be sent to

the Evaluate Model module. Good accuracy scores can be anything above 75%, but there is

no set number for a good score as it may vary based on the complexity of the model and the

predictions being made. If a number is too high, say 99% or 100%, the model is probably

overfitted. This means too much noise is being captured when training which causes the

model to fit the training data too well. If the number is very low, the model is probably

underfitted. This occurs when no general trends are found in the data and the model is

oversimplified [12]. If either occurs, adding or removing features from the data, modifying

the hyperparameters of the current model, or selecting a new algorithm are possible fixes.

Both scenarios can lead to very poor predictions of new data if not addressed. See Figure 4.15

for examples of underfitting, a good fit, and overfitting.

Another way to create a model is to use the Cross Validate Model module. It splits,

trains, scores, and evaluates the model all in one module. It uses a technique called cross

validation to split the data randomly into equal folds, or partitions [82]. The default number
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Figure 4.15: Underfitting, good fitting, and overfitting examples for machine learning [12].

of folds is 10 but this can be changed using the Partition and Sample module if desired. The

model is trained using all but one of the folds. The fold not used, called the holdout fold, is

used for testing the trained model. This process is repeated so each fold is used as testing

data. For example, if there are 10 folds the model would be trained 10 times. During each

training iteration, a different holdout fold is selected where the remaining 9 folds are used

for training. Evaluation is done during each iteration and stored, if each iterations score is

vastly different than there may be problems with the model or data. The advantages of using

cross validation over splitting the data are it uses more data for training and testing making

it better for smaller data sets, it can help prevent overfitting, and it evaluates the quality

of the data being used as well. A disadvantage is it is more computationally expensive, so

larger data sets may take more time. See Figure 4.16 for an example of a battery training

experiment using both methods described to create a model.

When a user thinks the training experiments prediction capabilities are sufficient, it

must be deployed as a web service so it may be used against new data. The process is

very easy, click the Set Up Web Service option then select Predictive Web Service. This

will automatically start shuffling, adding, and removing modules to convert the training
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Figure 4.16: Experiment using two different methods to train a model.

experiment to a predictive experiment. If multiple algorithm modules are being tested

in one experiment, it is recommended to remove all unwanted modules unrelated to the

selected algorithm so only the relevant modules remain [87]. The conversion process will

not remove the module used to import data, as it is used as a template for what features

will be passed into the predictive experiment. When building the training experiment the

variable to predict was allowed to pass through the Select Columns in Dataset module as

it was needed for training the model, with new data this value is unknown so it can be

removed from feature selection in the predictive experiment. See Figure 4.17 for the result

of converting Figure 4.16 to a predictive experiment.

When complete, the Deploy as Web Service option can be selected which will add the
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Figure 4.17: Result of converting Figure 4.16 experiment to a web service prediction model.

model to the Web services tab as a classic or new web service. As mentioned previously,

the free version of studio can only create classic web services, where the standard version

can create both. From the web services tab in Azure Machine Learning Studio, the newly

created web service should appear and can now be used for prediction. Single values or

batch testing can be done through the browser using Azure Machine Learning Web Services

or excel. Azure Machine Learning Web Services is another option for managing, testing, and

deleting web services created in studio [52]. Selecting the New Web Services Experience link

from the web service tab in studio will open up Azure Machine Learning Web Services in a

new web page. The Test tab contains all options for running predictions against the model.

If using excel, the add-in for Azure Machine Learning must be installed and the URL and

API key must be entered. The URL and API keys are found in the Consume tab from the

Azure Machine Learning Web Services page. The user may also click the excel link from the
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studio or web services page, this will download a blank excel file with the Azure Machine

Learning add-in, URL, and API keys installed. Data in excel can be selected and sent to

the web service for prediction, with the results being returned and populated in excel.

Azure Machine Learning Services is another cloud-based machine learning platform in

Azure. It offers multiple ways to build, train, and manage predictive models from multiple

sources in the cloud. It is Azure portal based, meaning a user must create a Machine

Learning Service Workspaces resource to use it. Predictive models can be created using

Visual Interface, Automated Machine Learning, or the Azure Machine Learning Python SDK

can be used with multiple programming interfaces [90]. Currently several of the tools are

in preview stage, which means the service should primarily be used for testing or proof of

concept. Services labeled as preview can be removed at any time, have different service level

agreements, and are used as is without expectations of further updates [81].

Visual Interface is a partial clone of Azure Machine Learning Studio with some minor

differences. Visual Interface is a drag and drop workspace to create and train models using

prebuilt modules, but everything is done in the Azure portal so it is fully integrated with

Azure Machine Learning Services unlike studio [93]. It also has fewer modules to choose

from, and it relies on a user’s own compute resources to train and test models [91]. Compute

resources are created by the user, used by the workspace to run and train models, and can

be located on a local machine or in the cloud. Like other Azure services, compute resources

running in the cloud are only billed when they are active. When training and testing, it

is recommended to use a local machine with smaller data sets. When the model is ready,

compute resources can be pushed to the cloud where they can scale up or down based on

demand.

Automated Machine Learning, or sometimes referred to as Automated ML, is a way for

Azure to train, test, and tune multiple models at a time [89]. The user only needs to
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provide a data set, feature selection, prediction variable, and whether they want to perform

regression, classification, or forecasting. When automation is started, Azure will train many

models using multiple algorithms, modifying the hyperparameters during each iteration in

an attempt to create the best model for prediction. When complete, all the models trained

are presented to the user with prediction scores and other evaluation metrics. Automated ML

can be run in the portal or by using the Azure Machine Learning Python SDK in Python.

Figure 4.18 shows a sample run using the Azure portal on the battery data set. Each blue

dot is not a different model, but a models score during one of its training iterations. The

sample run took about 15 min. and created 26 different models. Many of the scores are

extremely high though, so there is a good chance many of the models are overfitted.

If a user prefers more control and writing their own code, the Azure Machine Learning

Python SDK can be used with Jupyter Notebook, any Python IDE, or Visual Studio Code

to connect to Azure Machine Learning Services [92]. Jupyter Notebook is an open source

Figure 4.18: Automated Machine Learning results.
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web application that allows users to write and share code through a browser [45]. Microsoft

also offers a service called Azure Notebooks, which essentially is Jupyter notebooks but it

runs in the cloud and requires no installation [85]. By importing the SDK, any Python

environment can manage datasets or cloud resources, train models, deploy web services,

and use Automated Machine Learning. Using the SDK requires more knowledge about

programming, where Automated ML and Visual Interface are code free.

Many of the steps used to to create a predictive model for the battery experiment have

been detailed in the previous chapter focusing on Azure Machine Learning Studio, even

though many of the tools in Azure Machine Learning Services could have been used as well.

Figure 4.19 shows a plot using the Execute Python Script module comparing the training

data to the prediction line. For this data set the predicted replacement cycle is only off by

three compared to when the battery should be replaced.

Figure 4.19: Output created using python script module to show prediction.
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4.8 Power BI

Many of Azure services provide some basic visualization options for data analysis, but they

are limited in terms of customization and creating presentations. Microsoft offers Power

BI, a collaborative drag and drop visualization tool that allows users to transform their

data into interactive presentations. There are several services offered in Power Bi, but three

useful tools for creating presentations and delivering actionable business insights are Power

BI Desktop, Power BI service, and Power BI mobile apps [97].

Power BI Desktop is a free, downloadable software that allows users to connect, import,

modify, and visualize their data on their own computer [80]. When importing or connecting

to the data source, the Query Editor is used to remove columns, change data types, or

perform other modifications to the data before creating visuals. Modifications made are

saved in the query, so each time the file is opened again the data remains in the same

format. This also keeps the source data intact and allows queries to be reversed [96]. Special

attention should be placed on the column data type, as data types determine how the data

is visualized. When the data is in the correct format, the Query Editor can be closed and

the data can be used to create visualizations. Visualizations, sometimes called visuals, are

pre-configured templates for bar charts, line charts, scatter charts, maps, and many other

options. Each visualization has options that can be further edited to fit a specific visual

style, such as modifying colors, adding text, and selecting a range for the data. Visuals can

be placed on report pages, which are canvases to drag and drop visuals on to. Typically

Power BI Desktop is used for creating reports, and not sharing them. To share reports, they

can be published and uploaded to Power BI service.

Power BI service is a cloud-based, Software as a Service (SaaS) tool primarily used

for collaboration on pre-built models from Power BI Desktop. Both can create and edit

reports, but Power BI desktop is better suited for it [63]. The key components of a Power
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BI Service are workspaces, dashboards, reports, datasets, and workbooks [94]. Workspaces are

containers for the other key components of a Power BI service. Workspaces can either be a

my workspace or app workspaces. A my workspace is a personal workspace for a single user,

where only they can access and modify its content. App workspaces are for collaboration

and sharing workspace content with other users. They also are used for app creation where

end users can interact with the data but not modify it. Dashboards are a single, shareable

canvas that can display visualizations from multiple reports, datasets, and other tools such

as excel. They are useful for grouping many related visualizations together to aid in business

decisions. Reports consist of one or more pages of visualizations in a workspace. A report

can only get data from one dataset, but reports can belong to multiple dashboards. Datasets

are data a user wishes to visualize. They can be imported or connected to, and be used in

multiple workspaces. Workbooks are similar to datasets, except the data is from an excel

workbook.

Embedded analytics is the process of inserting meaningful visuals, reports, and dash-

boards into an application through application program interfaces (APIs) to give a customer

or an organization business insight for better decision making. Embedding can be done using

the APIs in Power BI service, or through the Azure portal with Power BI Embedded ser-

vice [95]. Embedding for a customer and a organization are two different tasks. Embedding

for a customer allows a client to access visuals, reports, and dashboards without having a

Power BI account. The customer does not even need to know how to use Power BI, as much

of the implementation is hidden from them. Embedding for an organization requires all users

of the organization to have a Power BI account. Each user is given access to information

only required for their work, narrowing the information flow and giving the user more focus

to relevant information for their task. Another way to view information is through Power

BI mobile apps. The apps are available for apple, android, and windows 10 devices. Users
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simply download the app and sign in. The app will list all dashboards and reports available

so they can be monitored from any device. Dashboards and reports cannot be created using

Power BI mobile apps, which must be done in Power BI service or Power BI Desktop.

For the battery experiment, an excel file with actual and predicted data was loaded into

Power BI Desktop. After the file is loaded, the Query Editor will open allowing for the

modification of the data. When complete, clicking ‘close and apply’ will cause the query

editor to exit after applying all changes to the data set. With the data loaded, visualizations

can be added. Clicking any of the options in the Visualizations tab will cause a generic box

to appear in the report page. With the generic box selected, columns can be dragged and

dropped into the settings of the box, which are below the Visualizations tab. After a few

columns are added, the box will populate itself with the corresponding values. Visualizations

can be changed to any other visualization at any time. If a visual is a stacked bar chart,

selecting stacked area chart will update the visual automatically. Some visualizations may

not have a one to one correlation, such as a line chart and a pie chart, so some of the settings

will need to be modified. The whole process is very intuitive, and as it is a design process,

trial and error will be involved. See Figure 4.20 for example output from the data set.

4.9 Experiment Observations

Throughout this chapter, many of the steps used to create the experiment have been de-

scribed and shown in great detail. After all the setup is complete and the predictive model

is released as a web service, new batteries can be connected to sensors which will send their

messages to the IoT Hub. Stream Analytics can monitor these messages and store the data

in a table while scanning the current battery cycle. When the battery voltage dips below

2.7 for the specified cycle, it will trigger a Azure Function to read all relevant data for the
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Figure 4.20: Power BI report showing prediction compared to actual values. Temperature (in
Celsius) is the instance of the data set when the Battery Voltage dropped below 2.7. Capacity
(in Coulomb) and Time (in seconds) are computed from the start of each cycle to the point
where Battery Voltage drops below 2.7.

new battery and compute the necessary values. The computed values can be sent to the

predictive web service to get a better idea when the battery should be changed out.

If a user wants to cut costs or to ensure that the amount of data sent to the IoT Hub

is manageable for human observers, the user can create a custom endpoint for the IoT Hub

resource, which stores all telemetry data to Blob storage. The user can than monitor the

cycles on their own and wait till the desired cycle is reached to launch a slightly modified

Azure Function to read from Blob storage and to compute the new values. This eliminates

Stream Analytics from the process, which can greatly reduce the overall costs. For the battery

experiment, it is possible to do this as the time intervals between the MQTT messages are

large enough for a human observer to manage. There will be some loss in efficiency, as Stream
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Analytics triggers the Azure Function the moment it finds the value where a human will have

to continuously check. A hybrid approach is also possible, where telemetry data sent to the

IoT Hub is stored in Blob storage and Stream Analytics is started much later in the batteries

life cycle. This reduces the overall costs and maintains efficiency. If multiple battery’s are

being monitored or the time intervals decreased to a speed humans cannot perceive, Stream

Analytics should be used and the costs are unavoidable.
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5 High Velocity and High Volume

Data

5.1 Cloud IoT Pitfalls

The amount of data generated by IoT devices is based on the number of devices times how

frequently they send telemetry. IoT data can be considered a subset of Big Data, which is

often described using a different set of words that start with the letter V. Typically 3 V’s

are used, but sometimes 5, 6, 7, or even as many as 51 can be applied [41]. For IoT big data,

Mohammadi et al. described 6 V’s. They are volume, velocity, variety, veracity, variability,

and value [110]. These six traits can be applied to any IoT system, but not all of the 6

V’s will apply to every IoT system. Many IoT systems will be very specific in their scope,

limiting the type of data that is collected and controlling the frequency the data is sent at.

For example, a study in the United Kingdom collected data from 2,000 smart plugs installed

in 40 homes and generated 4 billion messages a month [21]. For this study, volume, velocity,

and value would be the best choices to describe the data because the type and frequency of

the data is known.

IoT systems, like the UK housing study, can run in to problems with public cloud plat-

forms when the they need to increase the total number of sensors or messages increasing

the volume and velocity of the telemetry data. High volume, high velocity data doesn’t just

come from many devices sending a few messages each second, but can also come from few de-

vices sending tens of thousands of messages per second. The problem created is many cloud

gateways used to connect and receive data have a throughput limit, meaning the gateway
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can only process so many messages in a given time frame.

For example, looking at Figure 4.3 shows the seven tiers of an Azure IoT Hub. The tiers

with the highest ingestion rates are B3 and S3, which if either increase their units to 10 units

can process 3 billion messages per day, or up to 93 billion messages per month at a cost of

$25,000 per month. The UK housing study produced 4 billion messages a month from 40

homes, a single Azure IoT Hub B3 or S3 tier would be able to handle 930 houses. If the study

were to expand to all 26.4 million households in the United Kingdom [126], there would need

to be 28,388 Azure IoT Hub B3 or S3 tiers at a cost of about $142 million per month if

using B3 or $710 million dollars per month if using S3. What if instead of having millions of

devices, only a few devices send tens of thousands of messages per second? The Azure IoT

Hub B3 or S3 tier with 10 units can handle 34,722 messages per second. If a single device

can send 10,000 messages per second, the highest Azure IoT Hub tiers can handle at most 3

devices. This severely limits the amount of devices that can be used while still being very

expensive. It is possible to increase throughput by performing batch updates and reduce

costs of the gateway [42]. Each IoT Device collects multiple readings, compresses the data,

and uploads a batch of messages. If devices with very low processing power are used, an

edge device can be added between the device and gateway to receive, compress, and perform

batch uploads.

Once the data passes through the cloud gateway it must be stored to allow for easy access

and fast queries. Because the data is high velocity it is also high volume, meaning lots of

memory will be required to store the data. Many cloud platforms offer numerous ways to

store large amounts of data, but being able to query this data efficiently is very difficult.

Some common options provided for storing large amounts of data are Relational databases,

NoSQL databases, Data Lakes, and Blob storage. Each option has its own strengths and

weaknesses, where selection of the storage format will be project dependent.
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Relational databases are one of the most common ways to store, modify, and query data.

Relational databases use SQL, Structured Query Language, as the backbone for inserting,

removing, and querying elements in the database. They have been around since the 1970’s

and follow the ACID properties, which are Atomicity, Consistency, Isolation, and Durabil-

ity [133]. ACID properties ensure that integrity of the database is maintained before and

after each transaction is performed in the database. The schema for a relational database is

very strict, which allows only structured data to be entered.

NoSQL, Not Only SQL, databases started to gain popularity in the early 2000’s with

the increase in popularity of the internet. More internet traffic and larger data sets created

a higher demand for faster web sites. Developers attempted to optimize their relational

databases by simplifying their schema to improve availability and decrease latency. This did

not work as it does not address the horizontal scalability of the database [133].

NoSQL databases were invented to fix the short comings of relational databases with

Big Data, not replace them entirely. A characteristic common to NoSQL databases are

a schemaless design allowing for unstructured, semi-structured, and structured data to be

stored. A relaxation of the ACID properties allows for higher availability, lower latency with

Web applications, and data is replicated and distributed among many servers to allow for

horizontal scalability [17]. The data can be stored in different formats such as key-value,

wide-column, document, and graph. Each format provides different functionality suited for

different applications, providing efficient queries over large amounts of data. Because it is a

distributed database, it follows the CAP theorem which stands for Consistency, Availability,

and Partition tolerance. The theorem states that any distributed system can only satisfy up

to two of the three properties at the same time, never all three [17].

Research done by Samanta et al. [123] compared the performance of a relational database,

MySQL, to two NoSQL databases, MongoDB and Cassandra. The data set used in the
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testing was a 100 MB CSV file with 31 columns and 1,000,000 rows. The tests included

11 queries that were performed against all three databases. Each query involved a different

set of tasks, with execution time being the average of repeating the query at least 10 times.

After inserting all the data, the storage requirements for MySQL was 143.43 MB, MongoDB

was 961 MB, and Cassandra was 212.8 MB. The results showed for each query MySQL had

the lowest execution time, which was typically followed by Cassandra and then MongoDB.

Yassien et al. performed a similar analysis with a data set of 11 GB and different queries,

but instead of Cassandra they used HBase. Their results showed MySQL had the lowest

read latency, but MongoDB and HBase had lower write latency [133]. According to Khan et

al. [41], big data volume is on the scale of Petabytes, Exabytes, and Zettabytes, which are

orders of magnitude larger than Megabytes or Gigabytes. If data of this scale was used in

either test MySQL’s performance would have been much worse.

Data Lakes were invented as another solution to handle the rise of Big Data. Data Lakes

can store massive amounts of structured, semi-structured, and unstructured data of any kind

in a central place to be queried and analyzed at a later time. Data Lakes are typically divided

in to three parts. First is a storage system often built on Hadoop Distributed File System

(HDFS). Second is a metadata system. Each stored piece of data has it’s own metadata tag

which allows users to understand and access the data. The third part is a tool to access and

analyze the Data Lake. Analysis of the Data Lake is usually done with a schema-on-read,

which applies a schema to the data as it queries it. Two common tools for analysis are

MapReduce and Spark [113]. For projects that involve high volume and velocity data, Data

Lakes offer a viable and affordable storage solution. Fast writing is done because no schema

is every applied to the data, it simply gets added to the Data Lake. Because no schema

is applied though, querying the data can take longer which makes it a poor choice if time

sensitive information needs to be found quickly.
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Blob, or object, storage is a cost effective and simple way of storing data. Blob stands for

Binary Large Object and any type of data can be stored in a blob. Blobs can store massive

amounts of data, with limits varying by type of blob and cloud provider. For example,

Microsoft’s Azure can store Block Blobs up to 4.7 TB and Page Blobs up to 8 TB [61]. A

user can create as many blobs as needed, allowing for near unlimited and affordable storage.

Access policies allow for easier sharing and protection. Each blob is assigned an ID and is

associated with the access key of its container. Sharing these keys allows for specific blobs to

be shared while hiding sensitive informative in private blobs. If millions of small files need

to be stored, storing all the files together in one blob alleviates the maintenance nightmare

by only needing to keep track of a few blobs instead of millions of files [20]. Blobs can also

have extremely high throughput depending on the cloud provider. Azure announced possible

throughput of up to 12.5 GB per second when using the High Throughput Block Blob [109].

There are many advantages to blobs, but query performance is often very poor. Blobs are

not stored in a hierarchical format and they can contain any type of information. Similar to

Data Lakes, the metadata of each blob needs to be stored and made searchable to improve

query performance.

While IoT based cloud platforms are used in many IoT scenarios, IoT projects that

involve high velocity and high volume data can place a large burden on a cloud platform.

As shown, cloud IoT gateways cannot handle the high velocity data without adding more

gateways at great cost or performing batch updates using edge devices. Similarly with the

storage options, each has it’s own benefits and trade offs which need to be accounted for

when making a selection. The goal, if possible, is to provide a way to store, index, and query

IoT high volume and velocity data efficiently and in a cost-effective manner using cloud

based technology.
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5.2 Possible Solutions

5.2.1 Distributed Model

The first solution uses open source software to create a distributed IoT system than can run

on cloud virtual machines. It is composed of several parts of the Apache Software Foundation,

which provides many open source software solutions that can be used and combined in

different ways. The proposed combination uses Kafka [24] for ingestion, Druid [23, 132] for

processing and querying, Zookeeper [26] for cluster management, and Hadoop Distributed

File System (HDFS) [25] for data storage.

Apache Kafka is a distributed streaming platform which follows the publish/subscribe

model, where IoT devices can publish their telemetry data and subscribers can read from it.

Kafka is well suited for communications inside a shared network, but if Kafka is running in a

cloud it is not immediately usable for ingesting IoT data without some modifications [115].

A major concern is devices need to be able to directly connect to Kafka. Because the IoT

devices exist outside the cloud and Kafka is in the cloud, Kafka would need to be exposed to

the public internet to be visible to the devices. To keep it encapsulated in the cloud, a server

running an MQTT broker is required to act as a secure bridge for telemetry data between

devices and Kafka. The MQTT Broker can be custom built for the project, or it can be open

sourced or purchased such as the different options offered from HiveMQ. If Kafka struggles

with the high velocity data, the server running the MQTT Broker can perform batch uploads

of multiple messages to increase throughput.

The subscriber to Kafka would be Druid, which is an online analytical processing (OLAP)

distributed data store. It is designed for real-time analytics, is column orientated, and is

optimized for low query latency on large data sets. IoT data can vary greatly between

sensors, as each sensor is tailored to a unique scenario or environment. A common trait with
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IoT data is it is time series based, meaning all IoT data will have a timestamp related to

when the information was collected. Time series databases (TSDB) such as InfluxDB [37],

TimescaleDB [128], and OpenTSDB [116] were designed to store and query large volumes

of time series data. As stated previously parts of this design can be swapped out, such

as replacing Druid and HDFS with OpenTSDB and HBase. Druid was selected because

it pairs well with Kafka, and it performs well not only on time series data but multi field

data. Currently Airbnb, Alibaba, Cisco, eBay, Hulu, Lyft, Metamarkets, Netflix, Paypal,

Twitter, Walmart and many more use Druid to monitor large ingestion streams and perform

analytics. The highest ingestion rates come from Metamarkets, which claims to ingest 200

billion events per day which is about 2.4 million events/s [22].

Druid’s architecture is based around having a cluster of nodes where each node performs

a unique operation based on its type. The four types of nodes used are real-time, historical,

broker, and coordinator. Because it is a distributed system, all nodes share metadata infor-

mation with Zookeeper, a coordination system for distributed file systems. Real-time nodes

are responsible for ingesting and querying event streams. Kafka can be used as a single point

of entry for telemetry data and act as a message bus which real-time nodes can read from.

They are also responsible for writing the data to deep storage, where deep storage can be

any compatible storage service with Druid. For this solution HDFS was chosen as it is part

of the Apache Framework and is widely used and tested.

Historical nodes load and serve the data created by real-time nodes. All data that is

stored is immutable. Immutable data offers efficient replication, read consistency, and par-

allelization across all historical nodes. Broker nodes read the metadata stored in Zookeeper

to determine which data segments are queryable and route the queries to the correct real-

time and historical nodes to be processed. Coordinator nodes monitor the data in historical

nodes. They tell historical nodes when to load, remove, and replicate data based on a set
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of rules loaded in to each coordinator node. They also monitor load balancing to distribute

data for better query performance.

Being distributed makes the system horizontally scalable, making it well suited for in-

gestion, storing, and querying of high velocity and high volume data. Using open source

software has many benefits as well. It reduces costs as open source is typically free, it can

have a robust support network of active users, and it gives more flexibility as the software

can be tailored to unique scenarios. Running this solution in the cloud alleviates having

to manage all hardware, which includes networking, operating system updates, and fixing,

adding, or replacing machines.

A few downsides are costs and expertise. The costs of running multiple virtual machines

can add up quickly. Knowing how much data will be processed can help determine what type

of virtual machines will be needed, but sometimes this data isn’t readily available or it may

change as the project continues making estimation difficult. To further complicate things,

understanding Quality of Service (QoS), Service Level Agreements (SLA), and the pricing

structures for different virtual machines can be very confusing as they vary between cloud

providers [18]. For example, virtual machines charge differently for compute and storage

services per virtual machine. A Kafka cluster ingesting from 1 MB/s to 32 MB/s can cost

between a few hundred dollars to over $1500 per month just for storage for that cluster

using AWS EC2 [2]. Using many of the tools selected will require a solid knowledge base, as

getting everything to work together as a cohesive unit will require skill and time. For some

developers this may not be a feasible solution as the knowledge required and costs may be

too high.
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5.2.2 Cost Efficient Model

An alternative solution is to combine many of the existing services from a cloud provider

with custom software to create a design that is cost efficient, scalable, and queryable at

the expense of added latency. The design consists of edge devices, cloud provided SDK’s,

blob storage, storage queues, serverless functions, and a single virtual machine for processing

queries. Edge devices, a stand alone server, will be responsible for collecting IoT telemetry

data from devices, compressing batches of data based on a set time frame, and performing

batch uploads directly to blob storage using cloud provided SDK’s. Since it is time series

data, each entry in the batch should be sorted by time making it easier to keep track of

which messages belong to which batch. The batch is stored as a blob in compressed format,

which helps reduce bandwidth and storage needed in the cloud. For example, a CSV file

with 200,000 different entries with 13 fields was created spanning 10 seconds to mimic device

telemetry. With out any compression the file size is about 36MB, when using basic windows

compression it is only 3.5MB. The batch is only decompressed when being scanned by the

serverless function or when returning a query, both which are discussed later. When the

batch of data has been successfully uploaded as a blob, the blob URL can be obtained and

uploaded to a storage queue in the cloud.

The storage queues sole responsibility is to alert a serverless function a new blob has been

created. Combining serverless functions and queue storage take advantage of the pay-as-you-

go billing that many cloud providers offer, as serverless functions are only charged when they

are running and they will only run when the queue triggers them. The queue creates an

alert which triggers the function to execute, which reads the blob URL at the head of the

queue. The function uses the blob URL to download the actual blob, decompress it, and the

read the telemetry data creating a minimum and maximum range for each field. It is also

possible to calculate ranges for other fields that are not part of the initial data set, such as
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key performance indicators (KPI) like power levels or total harmonic distortion (THD). If

certain fields are used for error detection, a minimum or maximum threshold can be applied

when scanning. If the either threshold is met, the blob URL and a warning message can be

added to a warnings queue. The developer is then alerted to when a message is added and

they can inspect further.

After reading the entire blob, a metadata tag is created which contains the device id,

current year, current month, current day, start time of blob, end time of blob, all minimum

and maximum values for each field and KPI, and the blob URL. To reduce cloud computing

costs the edge device can perform many of the calculations of each batch of data. A downside

is this will put a greater strain on the edge device, requiring a more powerful and expensive

server to handle the increased load. It is up to the developer which avenue to choose,

but having each part of the system perform one job allows for easier implementation and

debugging.

When the metadata for a blob is complete, it is sent to a single virtual machine which

is responsible for the storing metadata tags, and answering queries. The storage structure

used takes ideas from Colmenares et al. [16] MultiDimensional DataStore (MDDS), which

focused on creating a single node that can handle ingestion, indexing, storage, and querying of

massive amounts of data. To store and index data, a two-level indexing structure of R*-trees

with kd-trees was used to increase query performance. A R*-tree is a variation of the R-

tree, which creates minimum bounding rectangles that are useful in storing multidimensional

data. The difference between the two is the R*-tree will “self balance” itself, which involves a

complicated process of removal and reinsertion of data to reduce overlap and increase query

performance. A kd-tree is a data structure similar to a binary search tree, only at each

node depth a different dimension is used to sort the data. Kd-trees are useful for storing

multidimensional data, as well as performing range queries, point queries, and finding a
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nearest neighbor. R*-trees and kd-trees can suffer from the curse of dimensionality, which is

when the number of dimensions exceeds a certain threshold causing poor query performance.

High dimensions usually means 10 to 16, but can be as a low as 5 or 6 in some cases [13].

The virtual machine will have a varying level indexing structure, where the number of

levels is determined by how much metadata is going to be stored. Because each device will

be creating different telemetry, the first level will always be sorted by device id to keep the

device data separate. Since IoT data is time series based, the next levels of the structure

will focus on year, month, day, and hour. Year, month, and day are the varying part of the

structure, as the amount of metadata to be stored will determine which values to use. If the

number of metadata tags to store is low, year, month, and day can all be used. If the number

is very high, then the developer needs to determine which levels to include as the memory of

the virtual machine is finite. If one of these is not included in the indexing structure it will

still be used when storing the indexing structure to blob storage. For example, if month and

day were used and year was not, every year would have its own indexing structure stored as

a blob. When a query is looking for data spanning years, each individual indexing structure

relating to a year in the range of the query is loaded from blob storage in to the virtual

machine for scanning.

The second lowest level will always be hour, where each hour level is broken up in to

24 separate buckets for each hour of the day. Each bucket points to an R*-tree where all

metadata tags are stored for that time period. Breaking the indexing structure in to a tree

where each level focuses on a different unit of time helps reduce the amount of data being

stored in each R*-tree. It can also be advantageous to know what fields will have very little

variance, as these fields do not need to be indexed to help reduce the curse of dimensionality.

If the number of metadata tags created per hour is low, a list can be used instead of an

R*-tree to store the metadata tags.
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When a query is entered, the virtual machine will work its way through the levels and

store all metadata tags returned from the R*-trees. When all tags are retrieved, the blobs

are downloaded to the virtual machine to display the results to the user. If more processing

is required, say only specific values are needed and not entire chunks of data, the virtual

machine can parse out the relevant information from each blob. If the number of devices

and time frame used are constrained limiting the search scope, the amount of blobs returned

will be manageable with most latency coming from downloading and decompressing the

blobs. If a query searches many devices with larger time frames this can drastically increase

the amount of blobs returned. After all metadata tags are retrieved, the virtual machine

can perform a quick estimation based on the number of blobs and the size of each blob for

how long it will take to download and further process. The user can then decide whether

to proceed or not based on the result, or they can further trim the results by modifying

their original query. This design does involve re-computing derived fields such as KPIs. If

the query limits the scope, the amount of blobs returned should be manageable for most

computers to be able to download and process with acceptable latency.

This proposal offers a more affordable solution to using a distributed system. Costs are

saved by using blob storage, bypassing cloud gateways with cloud provided SDKs, taking

advantage of serverless functions with pay-as-you-go billing, and running a single virtual

machine to perform queries. The solution is not perfect, as every design will have trade offs.

Latency is increased, making it difficult to use in time critical situations. Using existing cloud

services can be very restraining and at times frustrating as documentation can be lacking and

confusing at the same time. Fine tuning parameters such as time frame size, error detection

thresholds, and which fields to index in the R*-tree for optimal query performance are trial

and error based. If many devices are required, each device requires its own indexing structure

limiting the number of devices the system can handle. The goal was to provide a way to
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store, index, and query IoT high volume and velocity data efficiently and in a cost-effective

manner in the cloud. If costs are no issue, using a distributed system will provide good

performance. Otherwise the alternative is to combine many of the existing technologies into

a custom solution.
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6 AWS vs Azure vs GCP

According to Harvey et al. [34], the top three cloud providers ordered from first to third

are Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP).

AWS’s maturity, continued ingenuity, broad distribution of data centers, and extensive set

of tools are reasons why developers and companies continue to make it the number one cloud

platform. It is not surprising then that these are the top three cloud-based IoT platforms

as well. According to an IoT developer Survey from the Eclipse Foundation [27], 34% of

respondents use AWS, 23% use Azure, and 20% use GCP. As each platform competes for more

market share, the services provided become more similar. The similarities and differences

are made clear as the remainder of this chapter will compare AWS, Azure, and GCP based

on IoT related services. Pricing is not directly addressed even though it is a major factor

when selecting a cloud provider. Each provider uses different metrics for compute resources,

services can have different tiers with varying pricing, and prices are constantly changing as

new services are added or updated making it difficult to capture the total costs.

6.1 IoT Related Services

IoT related services are specific to IoT use cases. These services include IoT cloud gateways,

acceptable message formats, support for edge computing, and provided software develop-

ment kits (SDKs). Looking at Figure 6.1, the similarities are evident as each category has

a similar service for each provider. The main differences are gateway throughput limits,

possible message formats, and provided device SDKs. Each provider offers different levels

of throughput, where limitations and scaling are unique to each gateway. Azure accepts

MQTT, HTTP, and AMQP, where AWS and GCP only accept MQTT, and HTTP. In terms

77



Figure 6.1: Comparison of cloud-based IoT services between AWS, Azure, and GCP.

of device SDKs, C or embedded C SDKs are offered by all platforms. AWS and Azure offer

Java, Python, and iOS SDKs. Azure is the only provider for Node.js and .NET SDKs. AWS

is the only platform to offer Arduino Yun, a popular microcontroller, and Android device

SDKs.

While not listed, AWS and Azure offer multiple other services tailored to IoT scenarios.

AWS freeRTOS [3] is an open source operating system specifically for microcontrollers, al-

lowing easier connections to AWS IoT Core and AWS IoT Greengrass. AWS IoT 1-Click [4]

allows for simple devices to trigger AWS Lambda functions. This makes it easier to alert

staff, and monitor asset tracking. Azure Time Series Insights [108] is a managed service that

is meant to store, visualize, and query large amounts of time series data, combining several

services into one. Azure IoT Central [107] provides a fully managed interface for managing

simple IoT projects.

6.2 IoT Storage Services

Each provider offers a multitude of storage options which can serve to store IoT data. Fig-

ure 6.2 lists the different types of Object storage, SQL databases, NoSQL databases, Data

Warehouses, and Data Lake options for each provider. There is not much that differentiates
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Figure 6.2: Comparison of cloud-based storage services between AWS, Azure, and GCP.

the three platforms as many of the services are replicated to provide similar functionality.

Each version of object storage offers warm, cold, and archival storage. SQL databases are

available for structured data. Object, NoSQL databases, Data Warehouses, and Data Lakes

can be used for big data storage.

One category that requires further explanation is Data Lake Storage, as the services

offered vary more compared to other storage categories. Azure Data Lake Storage has two

versions, Gen1 [106] and Gen2 [74]. ADLS Gen1 is an Apache Hadoop file system, running

on an HDInsight cluster, for big data storage. ADLS Gen2 combines several features from

Gen1 but uses Azure Blob storage instead of an HDInsight cluster, reducing overall costs

while still offering good performance.

AWS Lake Formation [5] is a service that can help set up a data lake using Amazon

S3 for storage. AWS also offers many guides and solutions for how to create a data lake,

where ingestion, storage, and analytics are all integrated into one unit and the design can

be customized to the problem [7]. One example uses a provided template file which is read

by AWS CloudFormation service to create all services used by the data lake [6]. The process

creates a solution using AWS Lambda, Amazon Elasticsearch, Amazon Cognito, AWS Glue,

Amazon Athena, Amazon S3 and Amazon DynamoDB. An odd thing about AWS naming is

if a service starts with “Amazon” it means it is a stand alone service, where if it starts with

“AWS” it is a utility service that typically uses other services.
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GCP provides a design architecture for implementing data lake storage using Cloud Stor-

age service [31]. Several techniques are discussed for ingestion and analysis, but from our

research no services are provided to automatically create a data lake such as AWS and Azure.

Another possibility is to use BigQuery, which will act as both Azure Data Lake Storage and

Data Lake Analytics, reducing the amount of services to monitor [32].

6.3 Streaming, Analytics, and Visualization Services

The remaining services do not fit in the IoT specific or storage related categories from the

previous sections, which is why they are compared in this final section. Real time stream

processing, analytics, serverless computing, machine learning, and visualization services are

offered by all three platforms as seen in Figure 6.3. Similar to gateways, real time streaming

will vary in terms of throughput limits per platform. All three provide their own unique

solutions for analytics, such as AWS IoT Anaytics, Azure Data Lake Analytics, and Big-

Query. Amazon EMR, Azure HDInsight, and GCP Cloud Dataproc repackages the Apache

Framework, such as Spark, Hive, HBase, and Kafka, to more easily integrate with many of

their other services such as gateways, storage, and visualization for more analytical options.

Figure 6.3: Comparison of cloud-based streaming, analytics, and visualization services be-
tween AWS, Azure, and GCP.
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McGrath et al [44] performed two tests on all three serverless functions, AWS Lambda,

Azure Functions, and GCP Cloud Functions. The first test focused on concurrency and

scaling, with AWS Lambda almost scaling linearly and having the highest throughput. GCP

Cloud Functions performed the worst, with performance appearing to decrease after a certain

threshold. Azure Functions had good performance but does not exhibit obvious scaling with

concurrency. The second test focused on cold start times and expiration behaviors for each

function. AWS Lambda and GCP Cloud Functions had similar performance with minimal

latency, and Azure Functions performed the worst.

Machine learning has become another hot topic in computer science, and each platform

offers different yet similar services. AWS SageMaker, Azure Machine Learning, and GCP

Cloud Machine Learning Engine offer multiple options and algorithms for creating a trained

model to integrate into their IoT designs. Similar to machine learning and many of the

categories before it, visualization services are offered for each platform. Microsoft’s Power

BI may have the upper hand with respect to the other services, as Power BI integrates with

many of the programs from the Microsoft’s Office Suite that many people are familiar with

already.
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7 Conclusion

Developing an IoT application on a cloud platform requires thoroughly understanding the

programming API, configuration, performance, limitation, and design patterns of the tools

of the platform. In this thesis, we reviewed the different aspects required to create a cloud-

based IoT system, such as device clients, gateways, IoT communication protocols, storage,

analysis, and visualization using many of the tools from Azure as examples. Following the

requirements and design patterns for a cloud-based IoT system, we provided our experiences

using Microsoft Azure to create a custom IoT solution. Our insights and experiences can

be used by many as an introduction to the various services Azure provides, or as a starting

point to implement their IoT solution.

New services for IoT platforms are emerging every year, with performance and API of ex-

isting tools rapidly improving as well. While cloud-based IoT platforms are already scalable,

extensible, and comprehensive development environments, it still has many limitations. One

limitation discussed focused on ingestion and storage of extremely high velocity and high

volume data, where current gateways cannot handle the high traffic without adding great

costs to the user. Two solutions were proposed, one implementing a distributed IoT system

running on cloud virtual machines, and another custom solution combining existing cloud

services, on-premise edge devices, and a unique indexing structure used for querying. The

distributed model reduces latency, but costs more. The custom solution is less expensive,

but has higher latency. There are many possible solutions that can be implemented, but

there will always be a trade-off between latency and costs which need to be factored into

design choices.

This thesis also provides a comparison of the current IoT related services from the top
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three cloud platforms, AWS, Azure, and GCP. All provide similar services for many of

the requirements of implementing an IoT system. For example, each platform offers a bi-

directional gateway with similar functionality that varies in terms of throughput and costs.

This is a trend in most categories, where services provided are similar with minor nuances.

Some platforms offer unique solutions to different problems, such as Azure Time Series

Insights and AWS IoT 1-Click. Each platform also provides unique services tailored to their

platform, such as AWS IoT Analytics, Data Lake Analytics, and BigQuery.

There are several areas in this thesis that can benefit from further work and research.

In Chapter 4, the IoT system created used only Microsoft Azure. It would be beneficial

to replicate the same IoT system in AWS and GCP, explaining the different steps and

comparing the overall process done to implement the system. Even though many of the

services are similar, implementing and maintaining each service may vary greatly between

platforms. If each platform is running the same IoT system using platform specific services,

the performance of each IoT system can also be compared to create more distinctions between

the providers. Another issue is the IoT system created in Azure was not designed to put a

lot of stress on Azure. A more robust system could be designed where performance can be

measured across all services used, comparing the results to the performance claims of Azure.

This can also be done on AWS and GCP, not only comparing the results against each cloud

providers claims, but against each other as well.

Two solutions were proposed in Chapter 5 for handling extremely high velocity and high

volume data, but neither were implemented. Detailing the experiences of creating each

solution can offer more insights into the many services offered by a platform. Analysis and

performance metrics can be compared to show the feasibility, strengths, and weaknesses of

each design. Costs can also be compared revealing potential savings and trade-offs with

performance.
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Lastly, further analysis can be gained when comparing the many different services be-

tween the cloud providers in Chapter 6. Costs were not discussed at all, even though this

could be the single determining factor between each provider. One possible idea is to create

many different IoT scenarios, each having varying ingestion, storage, analytical, and visual-

ization requirements. Using the pricing calculators for each platform, overall costs can be

estimated and compared. More information can also be provided between the many ser-

vices offered, but navigating and reading through each platforms online documentation can

be very cumbersome and confusing. Key details are often not discussed or buried in other

pages, links to other pages can lead you in circles, and examples are limited or outdated.

Beyond these shortcomings, this thesis provides a wide depth of knowledge and information

with respect to cloud-based IoT systems that all skill levels can use to gain insights and

better understanding of the evolving world of IoT.
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