21,459 research outputs found

    Variation of the Diameter of the Sun as Measured by the Solar Disk Sextant (SDS)

    Full text link
    The balloon-borne Solar Disk Sextant (SDS) experiment has measured the angular size of the Sun on seven occasions spanning the years 1992 to 2011. The solar half-diameter -- observed in a 100-nm wide passband centred at 615 nm -- is found to vary over that period by up to 200 mas, while the typical estimated uncertainty of each measure is 20 mas. The diameter variation is not in phase with the solar activity cycle; thus, the measured diameter variation cannot be explained as an observational artefact of surface activity. Other possible instrument-related explanations for the observed variation are considered but found unlikely, leading us to conclude that the variation is real. The SDS is described here in detail, as is the complete analysis procedure necessary to calibrate the instrument and allow comparison of diameter measures across decades.Comment: 41 pages; appendix and 2 figures added plus some changes in text based on referee's comments; to appear in MNRA

    Time-scale analysis of abrupt changes corrupted by multiplicative noise

    Get PDF
    Multiplicative Abrupt Changes (ACs) have been considered in many applications. These applications include image processing (speckle) and random communication models (fading). Previous authors have shown that the Continuous Wavelet Transform (CWT) has good detection properties for ACs in additive noise. This work applies the CWT to AC detection in multiplicative noise. CWT translation invariance allows to define an AC signature. The problem then becomes signature detection in the time-scale domain. A second-order contrast criterion is defined as a measure of detection performance. This criterion depends upon the first- and second-order moments of the multiplicative process's CWT. An optimal wavelet (maximizing the contrast) is derived for an ideal step in white multiplicative noise. This wavelet is asymptotically optimal for smooth changes and can be approximated for small AC amplitudes by the Haar wavelet. Linear and quadratic suboptimal signature-based detectors are also studied. Closed-form threshold expressions are given as functions of the false alarm probability for three of the detectors. Detection performance is characterized using Receiver Operating Characteristic (ROC) curves computed from Monte-Carlo simulations

    Probes of Lorentz Violation in Neutrino Propagation

    Get PDF
    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1 +- (E/M_\nuQG1)] or [1 +- (E/M_\nu QG2}^2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB and Baksan experiments, we set the limits M_\nuQG1 > 2.7(2.5)x10^10 GeV for subluminal (superluminal) propagation, respectively, and M_\nuQG2 >4.6(4.1)x10^4 GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to M_\nuQG1 > 2(4)x10^11 GeV for subluminal (superluminal) propagation, respectively, and M_\nuQG2 > 2(4)x10^5 GeV. With the current CNGS extraction spill length of 10.5 micro seconds and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach M_\nuQG1 ~ 7x10^5 GeV (M_\nuQG2 ~ 8x10^3 GeV) after 5 years of nominal running. If the time structure of the SPS RF bunches within the extracted CNGS spills could be exploited, these figures would be significantly improved to M_\nuQG1 ~ 5x10^7 GeV (M_\nuQG2 ~ 4x10^4 GeV). These results can be improved further if similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to M_\nuQG1 ~ 4x10^8 GeV and M_\nuQG2 ~ 7x10^5 GeV.Comment: 33 pages, 22 figures, version accepted for publication in Physical Review

    Exploration of Possible Quantum Gravity Effects with Neutrinos II: Lorentz Violation in Neutrino Propagation

    Full text link
    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1 +- (E/M_\nuQG1)] or [1 +- (E/M_\nu QG2}^2], using data from supernova explosions and the OPERA long-baseline neutrino experiment.Comment: 8 pages, 6 figures, proceedings for invited talk by A.Sakharov at DISCRETE'08, Valencia, Spain; December 200

    Continuous bunch-by-bunch spectroscopic investigation of the micro-bunching instability

    Get PDF
    Electron accelerators and synchrotrons can be operated to provide short emission pulses due to longitudinally compressed or sub-structured electron bunches. Above a threshold current, the high charge density leads to the micro-bunching instability and the formation of sub-structures on the bunch shape. These time-varying sub-structures on bunches of picoseconds-long duration lead to bursts of coherent synchrotron radiation in the terahertz frequency range. Therefore, the spectral information in this range contains valuable information about the bunch length, shape and sub-structures. Based on the KAPTURE readout system, a 4-channel single-shot THz spectrometer capable of recording 500 million spectra per second and streaming readout is presented. First measurements of time-resolved spectra are compared to simulation results of the Inovesa Vlasov-Fokker-Planck solver. The presented results lead to a better understanding of the bursting dynamics especially above the micro-bunching instability threshold.Comment: 12 pages, 11 figure

    Nonlinearity and pixel shifting effects in HXRG infrared detectors

    Get PDF
    We study the nonlinearity (NL) in the conversion from charge to voltage in infrared detectors (HXRG) for use in precision astronomy. We present laboratory measurements of the NL function of a H2RG detector and discuss the accuracy to which it would need to be calibrated in future space missions to perform cosmological measurements through the weak gravitational lensing technique. In addition, we present an analysis of archival data from the infrared H1RG detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides evidence consistent with the existence of a sensor effect analogous to the brighter-fatter effect found in Charge-Coupled Devices. We propose a model in which this effect could be understood as shifts in the effective pixel boundaries, and discuss prospects of laboratory measurements to fully characterize this effect.Comment: Accepted for publication in the Journal of Instrumentation (JINST). Part of "Precision Astronomy with Fully Depleted CCDs" (Dec 1-2, 2016), Brookhaven National Laboratory, Upton, NY, US

    Principled Design and Implementation of Steerable Detectors

    Full text link
    We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown position and orientation. We propose a continuous-domain additive image model, where the analyzed image is the sum of the template and an isotropic background signal with self-similar isotropic power-spectrum. The method is able to learn an optimal steerable filter fulfilling the SNR criterion based on one single template and background pair, that therefore strongly responds to the template, while optimally decoupling from the background model. The proposed filter then allows for a fast detection process, with the unknown orientation estimation through the use of steerability properties. In practice, the implementation requires to discretize the continuous-domain formulation on polar grids, which is performed using radial B-splines. We demonstrate the practical usefulness of our method on a variety of template approximation and pattern detection experiments
    • …
    corecore