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(Received 16 May 2008; published 28 August 2008)

It has been suggested that the interactions of energetic particles with the foamy structure of space-time

thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that

they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or

quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v=c ¼ ½1�
ðE=M�QG1Þ� or ½1� ðE=M�QG2Þ2�, using data from supernova explosions and the OPERA long-baseline

neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experi-

ments, we set the limits M�QG1 > 2:7ð2:5Þ � 1010 GeV for subluminal (superluminal) propagation and

M�QG2 > 4:6ð4:1Þ � 104 GeV at the 95% confidence level. A future galactic supernova at a distance of

10 kpc would have sensitivity to M�QG1 > 2ð4Þ � 1011 GeV for subluminal (superluminal) propagation

and M�QG2 > 2ð4Þ � 105 GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of

10:5 �s and with standard clock synchronization techniques, the sensitivity of the OPERA experiment

would reachM�QG1 � 7� 105 GeV (M�QG2 � 8� 103 GeV) after 5 years of nominal running. If the time

structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to

Gran Sasso spills could be exploited, these figures would be significantly improved to M�QG1 � 5�
107 GeV (M�QG2 � 4� 104 GeV). These results can be improved further if a similar time resolution can

be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential

sensitivities to M�QG1 � 4� 108 GeV and M�QG2 � 7� 105 GeV.
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I. INTRODUCTION

Neutrinos from astrophysical sources and long-baseline
experiments are powerful probes of potential new physics.
They have already been used to discover and measure the
novel phenomena of neutrino oscillations, thereby estab-
lishing that neutrino have masses [1,2]. Long-baseline
neutrino experiments have also been used to set limits on
quantum decoherence effects that might be induced by
foamy fluctuations in the space-time background in some
models of quantum gravity (QG) [3–6]. It has also been
suggested that the space-time foam due to QG fluctuations
might cause energetic particles to propagate at speeds
different from the velocity of light, which would be ap-
proached only by low-energy massless particles [7,8]. Any
deviation from the velocity of light at high energies might
be either linear or quadratic, �v=c ¼ ðE=MQG1Þ or

ðE=MQG2Þ2, and might be either subluminal or superlumi-

nal. Such effects are, in principle, easily distinguishable
from the effects of neutrino masses, since they depend
differently on the energy E.

There have been many tests of such Lorentz-violating
effects on photon propagation from distant astrophysical
objects such as gamma-ray bursters [9], pulsars [10], and
active galactic nuclei [11]. These tests have looked for
delays in the arrival times of energetic photons relative to
low-energy photons, and their sensitivities improve with

the distance of the source, the energies of the photons, the
accuracy with which the arrival times of photons can be
measured, and the fineness of the time structure of emis-
sions at the astrophysical source. The sensitivities of these
tests has reached M�QG1 � 2� 1017 GeV and M�QG2 �
4� 1010 GeV for linear and quadratic violations of
Lorentz invariance, respectively.
At least one QG model of space-time foam [12,13]

suggests that Lorentz violation should be present only for
particles without conserved internal quantum numbers,
such as photons, and should be absent for particles with
electric charges, such as electrons. Indeed, astrophysical
data have been used to set very stringent limits on any
Lorentz violation in electron propagation. However, these
arguments do not apply to neutrinos, since they are known
to oscillate, implying that lepton flavor quantum numbers
are not conserved. Moreover, neutrinos are often thought to
be Majorana particles, implying that the overall lepton
number is also not conserved, in which case QG effects
might also be present in neutrino propagation [14]. It
therefore becomes interesting to study experimentally the
possibility of Lorentz violation in neutrino propagation.
Experimental probes of Lorentz violation in neutrino

propagation are hindered by the relative paucity of neutrino
data from distant astrophysical sources, and require the
observation of narrow time structures in neutrino emis-
sions. However, there has been one pioneering experimen-
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tal study of possible Lorentz violation using the long-
baseline MINOS experiment exposed to the neutrinos at
the main injector (NuMI) neutrino beam from Fermilab,
which found a range of neutrino velocities�2:4� 10�5 <
ðv� cÞ=c < 12:6� 10�5 allowed at the 99% C.L. [15].
Assuming an average neutrino energy of 3 GeV, and al-
lowing for either linear or quadratic Lorentz violation:
v=c ¼ ½1� ðE=M�QG1Þ� or ½1� ðE=M�QG2Þ2�, the

MINOS result [15] corresponds, in the case of linear
Lorentz violation, to M�QG1 > 1ð4Þ � 105 GeV in the

case of subluminal (superluminal) propagation, and in
the case of quadratic Lorentz violation, to M�QG2 >

600ð250Þ GeV.
In this paper we first establish limits on Lorentz viola-

tion using neutrino data from supernova 1987a, using data
from the Kamioka II (KII) [16], Irvine-Michigan-
Brookhaven (IMB) [17], and Baksan detectors [18]. We
find M�QG1 > 2:7ð2:5Þ � 1010 GeV for subluminal (super-

luminal) propagation and M�QG2 > 4:6ð4:1Þ � 104 GeV at

the 95% confidence level. These limits are already much
more stringent than those established using the MINOS
detector. We then assess the improved sensitivity to
Lorentz violation that could be obtained if a galactic
supernova at a distance of 10 kpc is observed using the
Super-Kamiokande detector, estimating sensitivities to
M�QG1 > 2ð4Þ � 1011 GeV for subluminal (superluminal)

propagation and M�QG2 > 2ð4Þ � 105 GeV. All these re-

sults are obtained taking neutrino oscillation effects into
account, and assuming that any Lorentz violation is flavor
independent.1

We also discuss the sensitivity to Lorentz violation of
the OPERA experiment at the CERN neutrinos to Gran
Sasso (CNGS) neutrino beam.2 We recall that the CNGS
beam cycle provides two fast-extracted proton spills last-
ing 10:5 �s each and separated by 50 ms, each containing
2100 bunches with standard deviation 0.25 ns, separated
from each other by the CERN super proton synchrotron
(SPS) radio frequency (RF) bucket structure of 5 ns [20].
The OPERA data-acquisition (DAQ) system is organized
in such a way that each subdetector provides its data with a
distributed timestamp with a granularity of 10 ns. If a time-
synchronization method conceptually similar to that of
MINOS between the CERN neutrino extraction-magnet
signal and the OPERA timestamp were implemented, the
sensitivity would be greater than that of MINOS. This is

because, even though the baselines between the source and
the detector are the same and the spill lengths are similar,
the neutrinos in the CNGS beam typically have higher
energies than those in the NuMI beam. Exploiting this
feature, on the basis of an optimized analysis we estimate
that after 5 years of running sensitivities using OPERA
could reach M�QG1 � 7� 105 GeV (M�QG2 � 8�
103 GeV) for subluminal (superluminal) propagation.
Further improvements in sensitivity would result if one

could exploit the RF bucket structure of the spill.
Assuming that the arrival time of the neutrinos would be
correlated with the RF bunch structure with a timing
accuracy of, say, 1 ns, the sensitivity to Lorentz violation
could be improved to M�QG1 � 5� 107 GeV (M�QG2 �
4� 104 GeV) for the linear and quadratic cases, respec-
tively. These results could be improved significantly if
neutrino events occurring in the rock upstream from
OPERA could be included in the analysis. In this case,
the sensitivities would becomeM�QG1 � 4� 108 GeV and

M�QG2 � 7� 105 GeV. In the case of quadratic Lorentz

violation, this sensitivity is better than that obtained from
supernova 1987a, and even improves on the sensitivity
possible with a future galactic supernova.

II. LIMITS ON LORENTZ VIOLATION FROM
SUPERNOVAE

In this section we discuss the supernova mechanism and
the ability to test Lorentz violation via the detection of
neutrinos created in this process. We then analyze the data
from the supernova SN1987a, the first supernova from
which neutrinos have been detected, giving bounds at the
95% C.L. Then we simulate a possible future galactic
supernova and discuss the potential of the next generation
of neutrino detectors, represented by Super-Kamiokande
(SK), to improve this bound.

A. Review of neutrino emissions from supernovae

The detection of neutrinos from SN1987a in the Large
Magellanic Cloud (LMC) remains a landmark in neutrino
physics and astrophysics. Although only a handful of
neutrinos were detected by the Kamiokande-II (KII) [16],
Irvine-Michigan-Brookhaven (IMB) [17], and Baksan [18]
detectors, they provided direct evidence of the mechanism
by which a star collapses and the role played by neutrinos
in this mechanism [2]. The numbers and energies of the
neutrinos observed were consistent with the expected su-
pernova energy release of a few times 1053 ergs via neu-
trinos with typical energies of tens of MeV. A future
galactic supernova is expected to generate up to tens of
thousands of events in a water-Čerenkov detector such as
SK, which will clarify further theories of the supernova
mechanism and of particle physics [21].
Current simulations reveal several distinct stages of

neutrino emission [22–24]. During the early stage with a

1This is a strong condition on any model of Lorentz violation
that is imposed by the success of conventional neutrino oscil-
lation phenomenology, which implies that flavor-dependent dis-
persion effects can be neglected in the analyses of MINOS and
OPERA data. Such effects could, in principle, appear in neu-
trinos from supernovae, but would not affect the results pre-
sented below, which are essentially independent of oscillation
hypotheses.

2For previous discussions of searches for Lorentz violation in
neutrino data, see [14,19].
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typical time scale of a few milliseconds, huge numbers of
�e are produced via pe ! n�e, known as the neutroniza-
tion peak. Despite the huge numbers of neutrinos pro-
duced, these are difficult to be detected with water-
Čerenkov detectors, because the neutrinos produced in
this process are detected via scattering on electrons and
(in the case of the electron neutrino) via interactions with
oxygen nuclei. At the energies of interest the cross section
for detection is dominated by the charged-current interac-
tion ��ep ! neþ, which detects antielectron neutrinos.
During the later stages of the supernova explosion, all
flavors of neutrinos and antineutrinos are produced with
approximate Fermi-Dirac spectra, that are characterized by
different average energies for different neutrino species:
hE�e

i ¼ ð10–12Þ MeV, hE ��e
i ¼ ð12–18Þ MeV, and

hE�x
i ¼ ð15–28Þ MeV (where �x denotes ��, �� and their

respective antiparticles), with total emitted energy frac-
tions "�e

¼ ð10–30Þ%, " ��e
¼ ð10–30Þ%, "�x

¼ ð10–20Þ%
[23,24].

The neutrinos produced in the supernova pass from
densities close to nuclear density in the core through to
the approximate vacuum of interstellar space, and the
interactions with this matter dominate the neutrino oscil-
lations. The neutrinos become maximally mixed at
Mikheev-Smirnov-Wolfenstein (MSW) resonances, and
to the first approximation the nature of the oscillations
can be determined by the properties of these resonances.
The resonance condition is A ¼ �m2 cos2�, where A is the
matter potential, �m2 is the difference in mass squared,
and � is the mixing angle. For a typical density profile and
composition of the supernova medium, and typical neu-
trino energies, the matter potential is positive (negative) for
neutrinos (antineutrinos). Assuming just the three standard
model neutrinos, there are two possible MSW resonances,
corresponding to the solar and atmospheric mass-squared
splittings [25–27]. We know from the solar and
KamLAND data that �m2

21 � m2
2 �m2

1 is positive, and

therefore the corresponding MSW resonance is in the
neutrino sector [28].

However, the sign of �m2
32 is undetermined, and there-

fore the corresponding resonance could be in either the
neutrino or the antineutrino sector, corresponding to the
two possible mass hierarchies, the normal (inverted) for a
positive (negative) �m2

32. At the resonance there is a

probability of transitions between the mass eigenstates,
known as ‘‘level crossing.’’ If the width of the resonance
is large compared to the neutrino oscillation length at the
resonance, then the level-crossing probability is small and
the resonance is adiabatic. On the other hand, if the width
of the resonance is small compared to the neutrino oscil-
lation length scale, then transitions between the mass
eigenstates occur and the resonance is said to be nonadia-
batic. Combining current simulations of the supernova and
the value of the solar mixing angle, we can determine that
the solar resonance is adiabatic [1]. However, the current

limit on �13 is insufficient to determine whether the atmos-
pheric resonance is adiabatic or not: simulations indicate
that if sin22�13 * 10�3 the resonance is adiabatic and if
sin22�13 & 10�5 the resonance is nonadiabatic. The oscil-
lation probabilities for both hierarchies are given in Table I.
In addition to these effects, recent work has shown that

neutrino self-interactions can induce large, non-MSW fla-
vor oscillations [29]. These occur at large neutrino den-
sities, just outside the neutrinosphere. For the normal
hierarchy these effects have little effect on the flavor
oscillations, but for the inverted hierarchy with nonzero
�13, significant flavor changes can occur. These effects
result in a ‘‘spectral split,’’ in which the �e and �x spectra
are simply swapped above a critical energy, while the
entire spectra of the ��e and ��x are swapped. For the case
where the flavor transformations have occurred before the
MSW resonances, the flavor transformations can be
thought of as changing the initial spectra, whereas in the
case of shallow density profiles this becomes more
complicated.
We note in addition that, as the shock wave inside the

supernova passes through the atmospheric resonance, it
can change it from adiabatic to nonadiabatic, resulting in
a time dependence in the signal that we do not consider in
this paper [30].

B. Analysis techniques

As previously discussed, it has been suggested that QG
effects may lead to Lorentz-violating modifications in the
propagation of energetic particles, and hence to dispersive
effects, specifically a nontrivial refractive index. These
dispersive properties of the vacuum would lead to an
energy dependence in the arrival times of neutrinos.
Even in the absence of any detailed, analytic under-

standing of time structure of a neutrino signal from a
supernova, one can exploit the observation that, since the
neutrino events have a range of energies, an energy depen-
dence of the neutrino velocity would spread out the arrival
times, compared to the signal, if there were no dispersive
properties of the vacuum. Any data set comprising both the
time and energy of each neutrino event can be analyzed by

TABLE I. The oscillation probabilities for the normal and
inverse hierarchies, including the effect of the spectral split
(SS), where the resulting �e and ��e fluxes are F�e

¼ pF0
�e
þ

ð1� pÞF0
�x

and F ��e
¼ �pF0

��e
þ ð1� �pÞF0

��x
, respectively.

Hierarchy sin2�13 p �p
E < Ec E > Ec

Normal * 10�3 0 0 cos2��
Inverted * 10�3 sin2�� sin2�� 0

Normal or inverted & 10�5 sin2�� sin2�� cos2��
Inverted SS * 10�3 sin2�� cos2�� 1

Inverted SS & 10�5 sin2�� cos2�� sin2��

PROBES OF LORENTZ VIOLATION IN NEUTRINO . . . PHYSICAL REVIEW D 78, 033013 (2008)

033013-3



inverting the dispersion that would be caused by any
hypothesized QG effect. The preferred value of the
energy-dependence parameter would minimize the dura-
tion (time spread) of the supernova neutrino signal.

Assuming either a linear or a quadratic form of Lorentz
violation: v=c¼½1�ðE=M�QG1Þ� or ½1�ðE=M�QG2Þ2�,
a lower limit on M�QG1 and M�QG2 may be obtained by

requiring that the emission peak not be broadened signifi-
cantly. A nonzero value of M�1

�QG1 or M�1
�QG2 might be

indicated if it significantly reduced the duration (time
spread) of the neutrino signal. The duration (time spread)
of the neutrino signal can be quantified using different
estimators depending mostly on the amount of available
statistics and the time profile of the data set, if applicable.3

In the following, we outline two estimators for analyzing
neutrino signals, which we use to quantify first the limits
obtainable from the SN1987a neutrino data and then the
sensitivities that would be provided by a possible future
galactic supernova signal.

1. Minimal dispersion (MD) method

We assume that the data set consists of a list of neutrino
events with measured energies E and arrival times t such as
that in Table II. In the first method, we consider event lists
with a relatively low number of events, which do not allow
a reasonable time profile to be extracted. In this case we
consider the time dispersion of the data set, quantified by

�2
t � hðt� htiÞ2i; (1)

where t is the time of each detected event. We then apply
an energy-dependent time shift �t ¼ �lE

l, where �l ¼
L=cMl

�QGl, varying M�QGl so as to remove any assumed

dispersive effects.
The ‘‘correct’’ value of the time shift �l should always

compress the arrival times of the neutrino events. Any
other (‘‘uncorrect’’) value of �l would spread in time the
events relative to the correct shift. Therefore, the disper-
sion (1) can be considered as an estimator to measure the
degree of ‘‘compression’’ of the neutrino events in time. In
the following, we first apply this MD method in a warm-up
exercise to the data from SN1987a, and later we exhibit in
Sec. II D the typical behavior of this estimator versus �l for
hypothetical data from a possible future galactic super-
nova. Evaluating the dispersion (1) one obtains

�2
t ¼ hðt� �lE

l � ht� �lE
liÞ2i (2)

¼ ht2i � hti2 � 2�lðhtEli � htihEliÞ þ �2l ðhE2li � hEli2Þ:
(3)

Therefore, the dispersion of the ‘‘derefracted’’ time distri-
bution is minimized by the parameter �min

l , defined by

�min
l � htEli � htihEli

hE2li � hEli2 : (4)

We can use (4) for any data set to estimate the scaleM�QGl

at which Lorentz violation is manifest. However, there are
uncertainties in the energy and time measurements, as well
as statistical uncertainties in the estimation of the observ-
ables calculated from any given data set, compared to their
true values. We estimate the statistical uncertainties of an
observable x as

�stat
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i � hxi2

N

s
; (5)

where N is the number of events, and x ¼ E, t or some
combination of both. In order to estimate the uncertainties

TABLE II. The measured neutrino data from SN1987a, where
we have omitted the events identified previously as background,
and in each data set we define t � 0:0s for the first event.

IMB

t (s) E (MeV) �E (MeV)

t � 0:0 38 7

0.412 37 7

0.650 28 6

1.141 39 7

1.562 36 9

2.684 36 6

5.010 19 5

5.582 22 5

Baksan

t (s) E (MeV) �E (MeV)

t � 0:0 12.0 2.4

0.435 17.9 3.6

1.710 23.5 4.7

7.687 17.6 3.5

9.099 10.3 4.1

Kamiokande-II

t (s) E (MeV) �E (MeV)

t � 0:0 20.0 2.9

0.107 13.5 3.2

0.303 7.5 2.0

0.324 9.2 2.7

0.507 12.8 2.9

1.541 35.4 8.0

1.728 21.0 4.2

1.915 19.8 3.2

9.219 8.6 2.7

10.433 13.0 2.6

12.439 8.9 1.9

3Statistically poor event lists, such as that for SN1987a, the
only one currently available in supernova neutrino astronomy, do
not allow the time profile to be classified, because time binning is
impractical and one cannot apply nonparametric statistical tests
to unbinned data.
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in �min
l , we use a Monte Carlo (MC) simulation to repeat

the calculation of �min
l including the energy and statistical

uncertainties. We then make a Gaussian fit and use it to
quote best-fit parameters and errors.

2. Energy cost function (ECF) method

This is a different analysis technique that is mostly
applicable to event lists that are statistically rich. This
means that one can combine the neutrino events into a
time profile exhibiting pulse features that can be distin-
guished (parametrically or nonparametrically) from a uni-
form distribution at high confidence level.

For the analysis, we first choose the most active (tran-
sient) part of the signal ðt1; t2Þ, as defined using a
Kolmogorov-Smirnov (KS) statistic. The KS statistic is
calculated using the difference between the cumulative
distribution function (CDF) of the unbinned data and that
of a uniform distribution. The KS statistic is defined as the
time that elapses between the minimum and maximum of
this difference.4 Having chosen this window, we scan the
time distribution of all events over its whole support,
shifted by �t ¼ �lE

l, and sum the energies of events in
the window. This procedure is repeated for many values of
�l, chosen so that the shifts �t match the precision of the
arrival-time measurements, thus defining the ‘‘energy cost
function’’ (ECF). The maximum of the ECF indicates the
value of �l that best recovers the signal, in the sense of
maximizing its power (amount of energy in a window of a
given time width t2 � t1). This procedure is then repeated
for many MC data samples generated by applying to the
measured neutrino energies the estimated Gaussian errors.
A typical ECF for one particular MC realization as well as
the typical distribution of the positions of the maxima of
the ECFs for many energy-smeared MC realizations are
illustrated in Sec. II D (see Figs. 5 and 6).

We perform this procedure for different energy weight-
ings En, where n ¼ 0, 1, 2, summing up either the numbers
of events, the energies, or the squares of the energies in the
time window selected, so as to optimize the errors placed
on the scale of Lorentz violation.

C. Data analysis

For the analysis of SN1987a we use the uncertainties in
Table II, which were taken from [31]. In the case of a
possible galactic supernova, we consider the SK water
Čerenkov detector, and we use the detector properties
given in [30,32], where the energy uncertainties are mod-
eled as �det2

E ¼ ffiffiffiffiffiffiffiffiffi
E0E

p
, where E0 ¼ 0:22 MeV. We note

that the uncertainties in the time measurements are, in

general, much less than the statistical and energy uncer-
tainties, and we therefore neglect them in our analysis.

1. SN1987a

Neutrinos from SN1987a were detected in three detec-
tors, KII, IMB, and Baksan. The times and energies of the
events are given in Table II. The minimum dispersion was
calculated 1000 times for each data set to include the
smearing from uncertainties. As an example, Fig. 1 shows
this smearing for the KII data set. From these distributions
we can determine the best fit and the error, which are
summarized in Table III. We analyze similarly the data
from IMB and Baksan. As there is an uncertainty in the
relative time measurements of each detector, we analyze
each data set independently using the minimal dispersion
method, and then combine them to quote the final best fit
and error, as shown in Table III.
On the basis of this combined analysis, Fig. 2 shows the

region which is excluded by the SN1987a data. Taking the
distance to the supernova as L ¼ ð51:3� 1:2Þ kpc, the
scale at which Lorentz violation may enter the neutrino
sector is constrained to be

M�QG1 > 2:7� 1010 GeV or M�QG1 > 2:5� 1010 GeV

(6)

at the 95% C.L. for the linear subluminal and superluminal
models, respectively. The corresponding limits for the
quadratic models are

M�QG2 > 4:6� 104 GeV or M�QG2 > 4:1� 104 GeV

(7)

at the 95% C.L. for the subluminal and superluminal
versions, respectively.

FIG. 1. The distribution �min of 1000 Monte Carlo simulations
of the KII data on neutrinos from SN1987a, including the
smearing due to energy uncertainties.

4The most active part of the signal can also be chosen by fitting
the binned time profile, but the nonparametric way we use to
extract a feature is less dependent on the time profile. In the case
of a multipulse structure of the time profile, several windows
may be analyzed separately.
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D. A Possible future galactic supernova

The detection of a galactic supernova would provide
improved sensitivity to the scale at which Lorentz violation
might enter the neutrino sector, due to an increase in the
number of neutrinos which would be detected. The number
of events would also increase because the current neutrino
detectors are larger than those used to detect neutrinos
from SN1987a. However, these effects would be partially
offset because �l / L, and therefore the time-energy shift
will be reduced if, as expected, the supernova takes place
within the galactic disc at a distance�10 kpc, compared to
SN1987a in the LMC at a distance of �51 kpc. The
expected increase in the number of detected neutrinos is
connected with the expectations of the next supernova to be
closer to the Earth than SN1987a. For definiteness, we use
here a Monte Carlo simulation of the SK neutrino detector,
but note that other neutrino detectors could also probe this
physics [33]. Simulations estimate that the number of
events detected in SK from a supernova at 10 kpc would
be of the order of 10 000 [21]. In order to analyze at what
scales Lorentz violation could be probed by the detection
of galactic supernova neutrinos, we made Monte Carlo
simulations with various levels of linear and quadratic
Lorentz violation. We used the energy spectra of neutrinos
from the Livermore simulation [22], which is shown in
Fig. 3, and the detector properties given in [32].

We show in Fig. 4 results from our Monte Carlo simu-
lation, including both charged-current and neutral-current

events for linear subluminal Lorentz violation at the energy
scales M�QG1 ¼ 1010 GeV and M�QG1 ¼ 1011 GeV, in-

cluding oscillations corresponding to the normal hierarchy
and assuming that the atmospheric resonance is adiabatic.

TABLE III. The best fits to the SN1987a neutrino data obtained using the minimal dispersion method.

Data set �1ðs �MeV�1Þ �2ð10�3 s �MeV�2Þ
Best fit Error Best fit Error

Kamiokande-II �0:023 330 7 0.197 601 �0:685 2.935

IMB �0:004 176 22 0.121 513 �0:308 1.601

Baksan 0.057 416 7 0.477 89 2.704 8.105

Combined �0:006 436 48 0.101 162 �0:304 1.385

FIG. 2. The regions of parameter space excluded by SN1987a, for subluminal (dashed lines) and superluminal (solid lines) linear
(left panel) and quadratic (right panel) models.

FIG. 3. The neutrino energy spectra from the Livermore simu-
lation [22].
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The signal has spread out and shifted in time, as we would
expect. This time shift is unobservable because it is shifted
relative to the signal in the absence of Lorentz violation,
which, in practice, cannot be measured. We have
applied the MD and the maximal ECF methods with vari-
ous energy weightings to the Monte Carlo data with
MQG1 ¼ 1010 GeV in order to estimate the level of

Lorentz violation.
Figure 5 shows the ECF for one realization of the

energy-smeared sample obtained applying to the measured
neutrino energies the Gaussian errors expected from SK. It
exhibits a clear maximum, whose position may be esti-
mated by fitting it with a Gaussian profile in the peak
vicinity. Figure 6 shows the results of such fits to the
ECFs constructed for the 1000 energy-smeared realiza-
tions. From this distribution we can derive the preferred
value of �l.

The results are summarized in Table IV, where we have
defined m̂l � M�QGl=M

true
�QGl, whereM

true
�QGl is the true scale

of Lorentz violation and M�QGl is that deduced from the

analysis method. Comparing these results, we find that the
maximal ECF technique has greater sensitivity than the
MD method, and that the linear energy weighting has the
greatest sensitivity among the ECF analyses. We therefore
use this in the following.
We have performed simulations for both the normal and

inverted mass hierarchies, with and without the spectral
splits caused by neutrino self-interactions, for the extreme
cases PH ¼ 0:0 and PH ¼ 1:0, and analyzed them using
the ECF method. The corresponding results are summa-
rized in Table V, where we see that Lorentz violation can be
probed with similar sensitivity for all mass hierarchies.
The top three rows of Table VI show the results of our

analysis for the linear cases M�QG1 ¼ ð1010; 1011;
1012Þ GeV, using the minimal ECF method with no energy
weighting, and making linear and quadratic fits. We see
that data from a future galactic supernova could place
strong 95% C.L. limits on the range of M�QG1 if it is lower

than 1011 GeV. In the limit of negligible Lorentz violation
(M�QG1 	 1012 GeV), we find the lower limits M�QG1 >
2:2� 1011 GeV and M�QG1 > 4:2� 1011 GeV at the

FIG. 5. The ECF linearly weighted with energy from one
realization of the simulated time profile of Fig. 4 with neutrino
energies smeared by MC applying to the expected energy
resolution of SK, for the case of linear energy depending
neutrino velocity.

FIG. 6. The distribution of the positions of the maximums
from fits of ECFs like in Fig. 5 of 1000 realizations of the
simulated time profile of Fig. 4 with neutrino energy smeared by
MC.

TABLE IV. The 95% C.L. ranges of m̂l � M�QGl=M
true
�QGl ob-

tained using the different dispersion methods and various energy
weights for a Monte Carlo simulation of a possible future
galactic supernova for P ¼ 0:0, assuming the normal mass
hierarchy and M�QG1 ¼ 1010 GeV.

Method 95% C.L.

Minimal dispersion 0:60< m̂1 < 2:37
ECF 0th order 0:90< m̂1 < 1:29
ECF 1st order 0:88< m̂1 < 1:26
ECF 2nd order 0:87< m̂1 < 1:27

FIG. 4. The time distribution of events predicted by our
Monte Carlo simulation for the case of subluminal Lorentz
violation at the mass scales M ¼ 1010 GeV andM ¼ 1011 GeV.
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95% C.L. for subluminal and superluminal models, respec-
tively. The bottom three rows of Table VI show the corre-
sponding results for the quadratic cases M�QG2 ¼
ð104:5; 105; 105:5Þ GeV, again using the minimal ECF
method with no energy weighting. We see that data from
a future galactic supernova could place strong 95% C.L.
limits on the range ofM�QG2 if it is lower than 10

5 GeV. In
the case of large M�QG2, we find the lower limits M�QG2 >
2:3� 105 GeV and M�QG2 > 3:9� 105 GeV at the

95% C.L. for subluminal and superluminal models, respec-
tively, in the quadratic case.

Although the ECF method is more sensitive than the MD
method, it is not applicable to a statistically poor data set.
The ECF method is best for the analysis of a feature in a
distribution superposed on a uniform background, and the
extraction procedure is possible only with a relatively
representative (i.e., large) sample of events. This is dem-
onstrated by simulating a possible future extra galactic
supernova which might take place at a distance similar to
that of SN1987a. The simulation has been performed in
such a way as to have a sample with sufficient statistics to
claim at least a 3-� detection of Lorentz invariance in
neutrino propagation. About 600 events would be needed
for the linear case, corresponding, assuming the sensitivity
of SK, to a supernova at a distance of about 40 kpc from the

Earth. An expected time profile is presented in Fig. 7. The
signal in Fig. 7 contains 600 events and the time distribu-
tion encodes a linearly energy-dependent propagation ef-
fect at the level of �1 ¼ 5:5 s �MeV�1, corresponding to
M�QG1 ¼ 7� 109 GeV. This distribution does not demon-

strate any significant feature that one could extract in a
time window to be analyzed using the ECF. Therefore, we
apply the MD method, which is better for a signal with
poor statistics. The typical behavior of the dispersion (2)
versus � for one realization of the energy-smeared sample
of the 600 simulated events is presented in Fig. 8. The
distribution of �min given by (4) of 1000 MC simulations
similar to Fig. 1 recovers, in this case, the encoded signal
�1 ¼ 5:5 s �MeV�1 (M�QG1 ¼ 7� 109 GeV) at the 3-�
level. A similar simulation for the quadratic case would
require about 400 events, which would correspond to a SN

TABLE V. The 95% C.L. for m̂l � M�QGl=M
true
�QGl obtained

using the ECF method for a Monte Carlo simulation of a possible
future galactic supernova, for the normal hierarchy (NH) and the
inverted hierarchy (IH), and including the effect of a SS, where P
is the level-crossing probability, and NH P ¼ 1:0 is equivalent to
IH P ¼ 1:0.

Mass hierarchy 95% C.L.

NH P ¼ 0:0 0:90< m̂1 < 1:29
NH P ¼ 1:0 0:90< m̂1 < 1:28
IH P ¼ 0:0 0:91< m̂1 < 1:26
IH SS P ¼ 0:0 0:90< m̂1 < 1:27
IH SS P ¼ 1:0 0:91< m̂1 < 1:28

TABLE VI. The 95% C.L. limits on M�QG1 and M�QG2 ob-
tained using the KS statistic and the ECF method, for subluminal
Lorentz violation with certain input choices of M�QG1 (top three

rows) and M�QG2 (bottom three rows). We give the 95% C.L.

limits for subluminal (superluminal) propagation as m̂1ðm̂super
1 Þ;

if a limit for m̂
super
1 is not given, then superluminal propagation

has been ruled out at the 95% C.L.

Model 95% C.L.

M�QG1 ¼ 1010 GeV 0:90< m̂1 < 1:29
M�QG1 ¼ 1011 GeV 0:64< m̂1 < 1:93
M�QG1 ¼ 1012 GeV 0:22< m̂1, 0:42< m̂

super
1

M�QG2 ¼ 104:5 GeV 0:93< m̂2 < 1:23
M�QG2 ¼ 105 GeV 0:65> m̂2, 2:3< m̂super

2

M�QG2 ¼ 105:5 GeV 0:19> m̂2, 0:72< m̂super
2

FIG. 7. The time profile of 600 events, which could be detected
by SK from a future extra galactic supernovae, occurred at the
distance 40 kpc from the Earth. The events are simulated with
respect to the energy spectrum given in Fig. 3 with linear energy
depending propagation effect, encoded at the level �1 ¼ 55 s �
MeV�1.

FIG. 8. The dispersion (2) versus � from one realization of the
simulated time profile of Fig. 7 with neutrino energies smeared
by MC applying to the expected energy resolution of SK, for the
case of linear energy depending neutrino velocity.
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at a distance of about 50 kpc from the Earth for the SK
efficiency. A 3-� signal could be recovered if the disper-
sion effect was at the level �2 ¼ 0:1 s �MeV�2, which
corresponds to M�QG2 ¼ 7� 103 GeV.

The minimal 3-� discovery statistics, which amounts to
600 (400) events for linear (quadratic) energy dependence,
is defined for the MD method by the uncertainty in the

denominator of (4), which reads 
 5=
ffiffiffiffi
N

p
( 
 4=

ffiffiffiffi
N

p
) for

either the simulated events or events from SN1987a, where
N is the number of detected events. This means that, for the
statistics of SN1987a, a Lorentz-violating signal could be
detected only at about the 1-� C.L., corresponding to the
bounds obtained in the previous subsection. In the case of
limited statistics like SN1987a, it is possible to estimate
similar limits on Lorentz violation without the full MD
machinery used in Sec. . However, such an estimate would
implicitly assume that the dispersion of the initial signal at
the source is known. One could rely on computer simula-
tions of a supernova explosion [22], but this would intro-
duce an element of model-dependent information into the
analysis. The methods considered here do not assume any
knowledge of the true profile (spread) of the neutrino
signal at the source: instead, they remove any propagation
effect that may be encoded in the time profile.

III. CNGS AND THE OPERA EXPERIMENT

In this section we discuss the sensitivities to Lorentz
violation in neutrino propagation that could be provided by
the OPERA experiment in the CNGS neutrino beam. We
first discuss the sensitivity to Lorentz violation that could
be obtained using the spill structure alone, without taking
into account its bunch substructure. In a second step, we
consider how this bunch substructure could be exploited to
improve the sensitivity, which could be possible if the
timing resolution currently expected for the OPERA de-
tector could be improved significantly.

We first recall some of the details of the pioneering
analysis of the neutrino velocity in a long-baseline neutrino
beam that has been published by the MINOS Collaboration
using the NuMI beam [15]. This analysis compared the
absolute timings of the detected neutrino events in the near
and far detectors. The arrival times in the near detector
provide a direct measurement of the neutrino intensity time
profile, consisting of either 5 or 6 batches separated by
short gaps within a 9:7 �s long spill. The near and far
clocks were synchronized absolutely by means of Global
Positioning Satellite (GPS) receivers. The resulting sys-
tematic error of�64 ns was dominated by uncertainties in
the delays in the optical fibres that ran between the surface
antennae and the underground detectors. Including the
jitter of the two GPS clocks, the total relative time uncer-
tainty was � ¼ 150 ns. This analysis measured ðv�
cÞ=c ¼ ð5:1� 2:9Þ � 10�5 at the 68% C.L., or �2:4�
10�5 < ðv� cÞ=c < 12:6� 10�5 at the 99% C.L., at an
average neutrino energy of 3 GeV [15]. In the case of linear

Lorentz violation, this would correspond approximately to
M�QG1 > 1:2ð4:2Þ � 105 GeV in the case of subluminal

(superluminal) propagation.

A. CNGS beam characteristics

The energy spectrum of the calculated CNGS �� flux is

reproduced in Fig. 9. Its average neutrino energy is
�17 GeV, significantly higher than that of the NuMI
beam. Since the CNGS baseline is almost identical with
that of the NuMI beam, this gives some advantage to
OPERA, assuming that it can attain similar or better timing
properties. We also recall that the CNGS beam is produced
by extracting the SPS beam during spills of length 10:5 �s
(10 500 ns). Within each spill, the beam is extracted in
2100 bunches separated by 5 ns. Each individual spill has a
4-� duration of 2 ns, corresponding to a Gaussian RMS
width of 0.25 ns [20].

B. Spill analysis

We introduce a ‘‘slicing estimator,’’ based on the fact
that if some energy-dependent time delay is encoded into
the time structure of the spill by propagation of the neu-
trinos before detection, one should observe a systematic
increase in the overall time delay of events as their energies
grow. Therefore, we propose cutting the energy spectrum
of the neutrino beam into a number of energy slices, and
searching for a systematic delay in the mean arrival times
of the events belonging to different energy slices that
increases with the average energy of the slice.
In order to illustrate this idea, we perform a simple

exercise simulating the sensitivity of the slicing estimator
for a time delay depending linearly on the neutrino energy:
�t ¼ �E, assuming 
 2� 104 charged-current events, as
are expected to be observed in the 1.8 kton OPERA detec-
tor over 5 years of exposure time to the CNGS beam. We

FIG. 9 (color online). The expected CNGS neutrino beam
energy spectrum [20].

PROBES OF LORENTZ VIOLATION IN NEUTRINO . . . PHYSICAL REVIEW D 78, 033013 (2008)

033013-9



envisage superposing all the CNGS spills with a relative
timing error �t. Since each spill has 2100 bunches, we
expect about 10 events on average due to each set of
superposed bunches. As a starting point, before incorpo-
rating the relative timing error, the timing of each event has
been smeared using a Gaussian distribution with standard
deviation of 0.25 ns, reflecting the bunch spread. We dis-
play in Fig. 10 a sample of events in our simulation, before
incorporating the relative timing error and any delay in
propagation. The 5 ns internal time structure of the spill is
clearly visible.

We now incorporate the uncertainty in the relative tim-
ing of the bunch extraction and the detection of an event in
the detector. The overall uncertainty has three components:
an uncertainty in the extraction time relative to a standard
clock at CERN, an uncertainty in the relative timing of
clocks at CERN and the Laboratori Natzionali del Gran
Sasso (LNGS) provided by the GPS system, and the un-
certainty in the detector timing relative to a standard clock
in the LNGS. With the current beam instrumentation,
implementation of GPS, and detector resolution, it is ex-
pected that this will be similar to that achieved by MINOS
in the NuMI beam, namely, �100 ns. Such a timing error
renders the internal bunch structure of the CNGS spill
essentially invisible, which looks indistinguishable from
a uniform distribution generated with the same statistics, as
shown in the upper panel of Fig. 11.

We next demonstrate in the lower panel of Fig. 11 the
effect of a time delay during neutrino propagation at the
level of �l ¼ 5 ns=GeV, as would occur ifM�QG1 ¼ 4:8�
105 GeV. This would correspond to a total delay �100 ns
at the average energy of the CNGS neutrino beam. We see
clearly its smearing effect at the beginning and end of the

spill, due to the later arrivals of the more energetic neu-
trinos. Our ‘‘slicing estimator’’ aims to quantify this effect.
We smear the events with an energy resolution of 20%,

and then cut the sample into slices of about 1000 events
each with increasing energies. The asterisks in Fig. 12
show the mean arrival times of each slice, relative to the
mean time of the superposed spills, using one particular
smearing of the timing with a Gaussian error �t ¼ 100 ns.

FIG. 10. A superposition of the production times of neutrinos
in CNGS spills reflects the bunch structure of the CNGS beam
[20].

FIG. 11. The time structure of events in the CNGS beam,
including a 100 ns timing uncertainty without (upper panel)
Lorentz violation in neutrino propagation, and with (lower
panel) a linearly energy-dependent time delay during neutrino
propagation at the level of � ¼ 5 ns=GeV.

FIG. 12 (color online). The mean arrival times of 1000-event
slices with increasing energies without Lorentz violation in the
neutrino propagation (asterisks) and with the effect of a time
delay during neutrino propagation at the level of � ¼ 5 ns=GeV
(triangles). The latter corresponds to M�QG1 ¼ 4:8� 105 GeV.
One particular simulation of the OPERA experiment is shown:
others are similar, exhibiting the expected statistical fluctuations.
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The triangles in Fig. 12, on the other hand, show the mean
arrival times of events in each energy slice if the propaga-
tion delays caused by an assumed value of � ¼ 5 ns=GeV
are included. We see clear differences between the aster-
isks and the red triangles, which increase with the energies
of the slices.

By making many realizations of the event sample with
the Gaussian �t ¼ 100 ns smearing, one can understand
the significance of the shifts in the mean positions of the
slices. Figure 13 shows the energy dependence of the shifts
in the mean timings of the slices of 1000 events with a
delay �l ¼ 5 ns=GeV encoded. These points may be fitted
to a straight line,

�hti ¼ �lhEi þ b: (8)

In general, when choosing the number of events for each
slice, one has to strike a balance between the statistics of
each subsample (which determines the precision of the
determination of the mean arrival time of each slice) and
the number of subsamples to be included in the fit. We
choose the statistics of each slice so as to give comparable
error bars for each energy bin. The propagation effect of
interest to us is reflected in the slope �l, while the intercept
is an overall shift that has no physical significance. The
sensitivity of the experiment to linear Lorentz violation at,
say, the 95% C.L. may be estimated by finding the value of
the parameter �l which yields a fitted slope parameter that
differs from a horizontal line (�l ¼ 0) by 1:95� or more.
We show in Fig. 14 the confidence contours corresponding
to 68%, 95%, and 99% sensitivity levels in the ðb; �lÞ

plane. From the upper (lower) edge of the corresponding
ellipse, one obtains �l95% ¼ 4:9ð2:6Þ ns=GeV at the
95% C.L. for the subluminal (superluminal) propagation
schemes, corresponding via

M�QG1 ¼ LCNGS

c
��1
l ¼ 2:4� 106

�
nsGeV�1

�l

�
GeV (9)

to values of the linear Lorentz-violating scale M�QG1 ¼
4:9ð9:2Þ � 105 GeV for the subluminal (superluminal)
case, yielding a mean sensitivity5 to M�QG1 ’ 7�
105 GeV. It is important to note that the slope and intercept
are anticorrelated in such a fit, as shown in Fig. 14. Our
conservative estimate of the limits corresponds to the upper
(lower) edges of the ellipse.
If the velocity of the neutrino depends quadratically on

the energy of the neutrino, the slices should obey a para-
bolic fit

�hti ¼ �qhEi2 þ c: (10)

Here the propagation effect of interest is parametrized by
�q, while an overall shift is reflected in the constant c. The

sensitivity contours at 68%, 95%, and 99% C.L. are pre-
sented in Fig. 15. According to the formula

M�QG2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LCNGS

c
��1
q

s
¼ 1:6� 103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsGeV�2

�q

vuut GeV;

(11)

FIG. 13. The measured shifts in the average arrival times of
neutrinos in 1000-event slices with increasing energies, assum-
ing a time delay during neutrino propagation at the level of � ¼
5 ns=GeV.

FIG. 14 (color online). The 68% (dashed-dotted line), 95%
(dashed line), and 99% (solid line) sensitivity contours for the
case of a linear energy-dependent fit (8).

5Since the CNGS spill is, in principle, time symmetric, the
estimated sensitivities for subluminal and superluminal propa-
gation should be the same. The difference between these num-
bers reflects the finite size of the simulated sample. Here and
subsequently, we quote the means of our subluminal and super-
luminal limits as estimates of the CNGS sensitivity.
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after substituting �q95% ¼ 0:066ð0:022Þ, we obtain

M�QG1 ¼ 6:2ð11Þ � 103 GeV ’ 8� 103 GeV.
The stability of the slicing estimator has been checked

by generating several data sets that have linear or quadratic
dispersion effects artificially encoded. To test our level of
sensitivity, we chose the Lorentz-violating parameters to
be close to our estimations of the levels of sensitivities in
the case where dispersion effects are absent. The encoded
values have been recovered for the linear (8) and quadratic
(10) fits to slices containing the same numbers of events.
Slight variations in the numbers of events in the individual
slices do not change substantially the levels of sensitivity
estimated for 1000-event bins. Another check has been
performed using the minimal dispersion method described
in Sec. II B 1. This method has been applied to the whole
sample of about 2� 105 events expected to occur in the
rock upstream of the OPERA detector, and results very
similar to those of the slicing estimator have been obtained.
Although the whole data sample is very rich statistically,
the time distribution, given the 100 ns time uncertainty
assumed in the current analysis, is still featureless apart
from the edges of the spill.6

Another check has been made analyzing the distortion of
the shape of the spill at its edges. For this purpose, we
analyze two independent histograms of the type shown in
Fig. 11. One of the histograms is treated as a reference,
while the other is shifted by introducing a time delay �lðqÞ
for every event, corresponding to the linear (quadratic)
propagation scheme. In Fig. 16 the shifted histogram has
been compared to the reference (unshifted) histogram, and
the parameter �lðqÞ increased until the difference between

the two histograms reaches the 95% C.L. We find that this
edge-fitting method has a factor 5 less sensitivity than that

obtained earlier with the slicing estimator or the MD
method.
We recall that the OPERA detector may also be used to

measure the arrival times of muons from 2� 105 neutrino
events in the rock upstream of the detector. Information on
the neutrino energy is missing in this measurement.
Therefore, one cannot employ methods involving time-
energy correlation information such as the slicing estima-
tor. Methods requiring an energy-dependent time shift of
the data, like theMDmethod, are also not applicable in this
case, again because events in the rock do not have mea-
sured energies. Nevertheless, one can use methods that
compare overall the time shift of the simulated data to
the measured time distribution of the rock events. In this
spirit, applying to the 2� 105 expected rock events the
edge-fitting procedure described in the previous paragraph,
we find a sensitivity to M�QG1 
 2:4� 106 GeV, about 3
times better than previously, for the sensitivity to linear
energy dependence, and the same level of sensitivity for
the quadratic energy dependence.
One can also modify the MD method for analyzing rock

events. Namely, one could generate the reference spill and
introduce an energy-dependent shift via the parameter �lðqÞ
so as to make the dispersion of the shifted reference spill
match as closely as possible the dispersion of the events
measured in the rocks. However, due to statistical uncer-
tainties, the dispersion of each reference spill will be
different from the dispersion of the rock events. If this
uncertainty is much less than the increase in the dispersion
of the rock events due to Lorentz violation, then this
method can be used. However, this limits the sensitivity
to M�QG1 ’ 3� 105 GeV for the linear propagation

scheme, which is not as sensitive to other methods we
have described above. From the other side, the sensitivity
of this modified MD method approaches M�QG2 ’
7� 103 GeV, which is similar to the slicing estimator.

C. Bunch analysis

We now explore the additional sensitivity that OPERA
could obtain if it could achieve a correlation between the
SPS RF bunch structure and the detector at the nanosecond
level. Sub-ns resolution could be obtained in OPERAwith
the help of additional specialized timing detectors such as
time-of-flight hodoscopes.7 However, synchronizing the
SPS and OPERA clocks with such a precision over a period
of 5 years is a challenging task. With the new IEEE
Standard Precision Time Protocol (PTP) IEEE1588 [34],
it is possible to achieve time synchronization in the range
of 100 ns on an ethernet network but not better; GPS clock
synchronization at the ns level is also highly demanding.
Standard ‘‘one-way’’ GPS techniques [35] can reach a
precision of �20 ns at best. Devices known as GPS dis-

FIG. 15 (color online). The same as in Fig. 14 calculated for
the sensitivity of the quadratically energy-dependent fit (10).

6For this reason, the ECF technique described in Sec. II is
inapplicable.

7We point out that it is sufficient to refer all measured far times
to a well-defined plane perpendicular to the beam axis.
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ciplined oscillations (GPSDO) [36], containing high-
quality temperature-controlled local oscillators, steered to
agree with the onboard oscillators of the GPS satellites, can
provide ultraprecise standard frequencies that could repro-
duce the CERN RF frequency. A more elegant but less
standard method is called ‘‘common-view’’ GPS [35]: in
this case two clocks (e.g., one at CERN and the other at
LNGS) view simultaneously the same GPS satellite,
thereby canceling out the common errors (e.g., the satel-
lite’s local clock). It has been shown that the data recorded
by the two GPS receivers can be processed offline to
provide a timing uncertainty & 5 ns. Finally, it has been

shown that ‘‘Carrier-Phase’’ GPS measurements [37],
which use the carrier frequencies instead of the codes
transmitted by the satellites, can achieve synchronization
of clocks with uncertainties �0:5 ns at the cost of exten-
sive post processing. Turning to ground-based solutions,
the most precise atomic clock (the NIST-F1 used to define
the UTC) has a long-term accuracy of 5� 10�16 or�75 ns
over 5 years. It would therefore not be sufficient to bring
two a priori synchronized clocks to the near and far
locations to define the arrival times with the required
long-term stability. Alternatively, next-generation accel-
erators, e.g., free electron lasers such as XFELs that aim
to generate x-ray pulses with pulse durations down to tens
of femtoseconds, will meet the challenge of finding new
methods of ultrastable timing stabilization, synchroniza-
tion, and distribution over several kilometers. These
systems will most likely rely on optical timing synchroni-
zation. We can therefore imagine a phase-locked loop RF
oscillator located at the far location remotely locked to the
SPS RF system. These two systems would be connected
and locked via stabilized optical fibre links.8 To conclude,
a combination of space- or ground-based solutions could
provide the possible synchronization of the CNGS and
OPERA clocks, and allow for systematic cross-checks to
be performed.
We now discuss how the sensitivity of the previous

analysis could be improved by taking into account the 5-
ns bunch structure of the CNGS spills. In Fig. 17 we
present one particular realization of a sample of simulated
events which incorporates a relative timing error of 1 ns.
Although the periodic bunch structure survives, the signal

FIG. 16 (color online). The left (right) spill edges fitted using 20 000 detector events for scenarios with a linear energy dependence of
the neutrino velocity. The solid gray (red) line is the reference histogram, while the points represent the shifted data. The solid black
line represents the probability distribution function.

FIG. 17 (color online). A particular realization of the bunch
structure with
 1 ns relative time uncertainty incorporated. The
histogram is binned with a resolution suitable for resolving the
bunch structure.

8We note that the temperature dependence of the refractive
index of an optical fibre is typically 10�6=K, which corresponds
to a drift of 5 ns for 1000 km and a temperature stability of 1�C.
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itself represents a time series with a relatively low signal-
to-noise ratio. The latter implies that the proper deconvo-
lution to extract isolated features cannot be made. In the
other words, there is a problem in fitting the fine structure
of the signal with an analytical function. Such a situation
has been widely investigated and applied to the temporal
profiles of gamma-ray bursters (GRBs) [38]. We therefore
apply a cross correlation function (CCF) method similar to
that described in [38] but differing only in details of its
adaptation. Namely, we introduce the temporal correlation
of two time series AðtÞ and Bðtþ �lðqÞÞ,

CCF ð�lðqÞÞ ¼ hðAðtÞ � �AðtÞÞðBðt� �lE
lÞ � �Bðt� �lE

lÞÞi
�AðtÞ�Bðt��lE

lÞ
;

(12)

where AðtÞ is a Monte Carlo simulation of the events with
no dispersion effects, Bðt� �lE

lÞ is the simulated data
which have the time shift required to invert the effect of
the energy-dependent dispersion, �AðtÞ and �Bðt� �lE

lÞ are
the mean values of the corresponding time series, and �AðtÞ
and �Bðt��lE

lÞ are the standard deviations from these mean

values. We average over several Monte Carlo simulations
to include the statistical uncertainties, as well as perform
time and energy smearing due to the uncertainty in these
measurements.

We calculate the CCFð�lðqÞÞ as a function of �l and find

its maximum value. The value of �l which maximizes the
CCF is an estimate of the true value of �l. To find this
estimate we fit a Gaussian to the peak of the resulting CCF
function shown in Fig. 18. Each realization produced an
independent measurement of the CCF at a given value of
the shift parameter. The process of iteration for every value
of the shift parameter in Fig. 18 was repeated until the
resulting distribution approached a normal distribution,

which typically took about 100 runs. Using these normal
distributions, the values and the standard deviations (error
bars) presented in Fig. 18 have been calculated.
The sensitivity of the CCF can then be estimated by the

precision of the position of the maximum for the Gaussian
fit in Fig. 18. For the case of linear energy dispersion, the
maximum of the CCF is found at �max

l ¼ �0:033�
0:036 ns=GeV if no time shift is encoded in the simulated
data. For superluminal propagation, when �l > 0, one can
estimate �sul95% ¼ 0:037 ns=GeV, which corresponds via

(9) to M�QG1 
 6:6� 107 GeV. For the subluminal case,

one obtains �sbl95% ¼ 0:1 ns=GeV, which corresponds to

M�QG1 
 2:4� 107GeV. The same CCF procedure may

also be applied to the quadratic case, as shown in Fig. 19.

FIG. 18 (color online). The Gaussian fit to the CCF calculated
for the case of a linear energy dependence with time smearing

 1 ns.

FIG. 19 (color online). The same as in Fig. 18 for the quadratic
energy dependence.

FIG. 20 (color online). The profile of the CCF calculated with
a 2 ns time resolution for the case of linear energy dependence in
neutrino propagation.
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The limits deduced from the fit in Fig. 19 are M�QG2 ¼
3:6ð4:9Þ � 104 GeV ’ 4� 104 GeV.

Repeating the CCF procedure for a time resolution
above 2 ns, one observes no maximum correlation in a
reasonable range of the shift parameter, as seen in Fig. 20.
From this, one can conclude that the bunch structure
degenerates into an essentially uniform distribution as
soon as the time resolution becomes bigger than 
 2 ns,
in which case the slicing estimator described in the pre-
vious subsection should be applied.

If the same time resolution �1 ns can be attained for
events occurring in the rock upstream from the OPERA

detector, the CCF method can also be used to analyze these
data, which should amount to some 2� 105 events. We see
in Fig. 21 that the bunch structure of the rock events is
clearly visible if a time resolution 
 1 ns is achieved,
despite the fact that the energies of the neutrinos colliding
in the rock cannot be determined. The CCF calculated for
the rock events is presented in Fig. 22, together with a
Gaussian fit. The sensitivities to Lorentz violation now
attain the levels of M�QG1 ¼ 4:3ð3:2Þ � 108 GeV ’
4� 108 GeV for the linear case, and M�QG2 ¼ 8:8ð4:3Þ �
105 GeV ’ 7� 105 GeV for the quadratic case. The sen-
sitivity in the quadratic case is significantly better than the
sensitivity estimated for a possible future galactic
supernova.

IV. CONCLUSIONS

We find from the SN1987a data lower limits on the scale
of linear Lorentz violation in the neutrino sector, namely,
M�QG1 > 2:68� 1010 GeV and M�QG1 > 2:51�
1010 GeV at the 95% C.L. in the subluminal and super-
luminal cases, respectively. The corresponding limits for
the quadratic models are M�QG2 > 4:62� 104 GeV and

M�QG2 > 4:13� 104 GeV at the 95% C.L. in the sublumi-

nal and superluminal cases, respectively. We have also
used a Monte Carlo simulation of a galactic supernova at
10 kpc to estimate how accurately Lorentz violation could
be probed in the future. In such a case one would observe
more events because of the larger fiducial volume of the
SK detector compared to the previous generation of detec-
tors, and because the next observable supernova is likely to
be inside the galaxy and hence closer than SN1987a. On
the other hand, if the next supernova is closer than
SN1987a, then the energy-dependent time shift due to
Lorentz violation will be reduced, reducing also the ex-
pected sensitivity. We performed simulations for both the
normal and inverted mass hierarchies and for both an
adiabatic and a nonadiabatic atmospheric resonance. In
all scenarios it would be possible to probe Lorentz viola-
tion using the methods described in this paper. We used the
MD method and the maximal ECF method with several
energy weightings, and have shown that using the latter
with a linear energy weighting has the greatest sensitivity.
Using this method, we have shown that we could place
limits up toM�QG1 > 2:2� 1011 GeV andM�QG1 > 4:2�
1011 GeV at the 95% C.L. for the subluminal and super-
luminal cases, respectively, for linear models of Lorentz
violation, and M�QG2 > 2:3� 105 GeV and M�QG2 >
3:9� 105 GeV at the 95% C.L. for the subluminal and
superluminal cases, respectively, for quadratic models of
Lorentz violation.
We have then explored the sensitivity to Lorentz viola-

tion in neutrino propagation that could be obtained using
data from the OPERA detector in the CNGS beam. By
comparison with the result already obtained by MINOS in
the NuMI beam, OPERA would benefit from the higher

FIG. 21 (color online). A simulated realization of the bunch
structure for rock events, incorporating a timing uncertainty

 1 ns. The histogram is binned with a resolution suitable for
resolving the bunch structure.

τ

FIG. 22 (color online). The CCF for rock events with time
resolution 
 1 ns in the case of linear energy dependence,
compared with a Gaussian fit.
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energy of the CNGS beam, the larger statistics we assume,
and the possibility of exploiting the bunch structure of the
CNGS beam that we have explored. We find that, using
standard clock synchronization techniques, the sensitivity
of the OPERA experiment would reach M�QG1 � 7�
105 GeV (M�QG2 � 8� 103 GeV) after 5 years of nominal

running. If the time structure of the SPS RF bunches within
the extracted CNGS spills of 10:5 �s could be exploited,
which would require reducing the timing uncertainty to
�1 ns, these figures would be significantly improved to
M�QG1 � 5� 107 GeV (M�QG2 � 4� 104 GeV). Using

events in the rock upstream of OPERA, and again assum-
ing a time resolution �1 ns, the sensitivities to Lorentz
violation could be further improved to M�QG1 ’
4� 108 GeV for the linear case and M�QG2 ¼
’ 7� 105 GeV for the quadratic case. While still inferior
to the sensitivity of the supernova limits in the linear case,
the OPERA rock sensitivity in the quadratic case would

exceed even that possible using data from a future galactic
supernova. This and the fact that any accelerator limit
benefits from better-understood experimental conditions
would motivate the effort that would be required to achieve
nanosecond time resolution for the OPERA/CNGS
combination.
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