2,978 research outputs found

    Electromagnetic model subdivision and iterative solvers for surface and volume double higher order numerical methods and applications

    Get PDF
    2019 Fall.Includes bibliographical references.Higher order methods have been established in the numerical analysis of electromagnetic structures decreasing the number of unknowns compared to the low order discretization. In order to decrease memory requirements even further, model subdivision in the computational analysis of electrically large structures has been used. The technique is based on clustering elements and solving/approximating subsystems separately, and it is often implemented in conjunction with iterative solvers. This thesis addresses unique theoretical and implementation details specific to model subdivision of the structures discretized by the Double Higher Order (DHO) elements analyzed by i) Finite Element Method - Mode Matching (FEM-MM) technique for closed-region (waveguide) structures and ii) Surface Integral Equation Method of Moments (SIE-MoM) in combination with (Multi-Level) Fast Multipole Method for open-region bodies. Besides standard application in decreasing the model size, DHO FEM-MM is applied to modeling communication system in tunnels by means of Standard Impedance Boundary Condition (SIBC), and excellent agreement is achieved with measurements performed in Massif Central tunnel. To increase accuracy of the SIE-MoM computation, novel method for numerical evaluation of the 2-D surface integrals in MoM matrix entries has been improved to achieve better accuracy than traditional method. To demonstrate its efficiency and practicality, SIE-MoM technique is applied to analysis of the rain event containing significant percentage of the oscillating drops recorded by 2D video disdrometer. An excellent agreement with previously-obtained radar measurements has been established providing the benefits of accurately modeling precipitation particles

    Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics

    Get PDF
    An experimental and analytical program was conducted to investigate heat transfer and pressure losses in rotating multipass passages with configurations and dimensions typical of modern turbine blades. The objective of this program is the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. As part of this overall program, a technique is developed for computational fluid dynamics. The specific objectives were to: select a baseline CFD computer code, assess the limitations of the baseline code, modify the baseline code for rotational effects, verify the modified code against benchmark experiments in the literature, and to identify shortcomings in the code as revealed by the verification. The Pratt and Whitney 3D-TEACH CFD code was selected as the vehicle for this program. The code was modified to account for rotating internal flows, and these modifications were evaluated for flow characteristics of those expected in the application. Results can make a useful contribution to blade internal cooling

    MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion

    Get PDF
    International audienceUnraveling the mechanisms that govern the formation and function of invadopodia is essential towards the prevention of cancer spread. Here, we characterize the ultrastructural organization, dynamics and mechanical properties of collagenotytic invadopodia forming at the interface between breast cancer cells and a physiologic fibrillary type I collagen matrix. Our study highlights an uncovered role for MT1-MMP in directing invadopodia assembly independent of its proteolytic activity. Electron microscopy analysis reveals a polymerized Arp2/3 actin network at the concave side of the curved invadopodia in association with the collagen fibers. Actin polymerization is shown to produce pushing forces that repel the confining matrix fibers, and requires MT1-MMP matrix-degradative activity to widen the matrix pores and generate the invasive pathway. A theoretical model is proposed whereby pushing forces result from actin assembly and frictional forces in the actin meshwork due to the curved geometry of the matrix fibers that counterbalance resisting forces by the collagen fibers

    Magnetic Domains and Domain Wall Oscillations in Planar and 3D Curved Membranes

    Get PDF
    This dissertation presents a substantial contribution to a new field of material science, the investigation of the magnetic properties of 3D curved surfaces, achieved by using a self-assembled geometrical transformation of an initially planar membrane. Essential magnetic properties of thin films can be modified by the process of transforming them from a 2D planar film to a 3D curved surface. By investigating and controlling the reasons that influence the properties, it is possible to improve the functionality of existing devices in addition to laying the foundation for the future development of microelectronic devices based on curved magnetic structures. To accomplish this, it is necessary both to fabricate high-quality 3D curved objects and to establish reliable characterization methods based on commonly available technology. The primary objective of this dissertation is to develop techniques for characterizing the static and dynamic magnetic properties of self-assembled rolled 3D geometries. The second objective is to examine the origin of shape-, size- and strain/curvature-induced effects. The developed approach based on anisotropic magnetoresistance (AMR) measurement can quantitatively define the rolling-induced static magnetic changes, namely the induced magnetoelastic anisotropy, thus eliminating the need for microscopic imaging to characterize the structures. The interpretation of the AMR signal obtained on curved stripes is enabled by simultaneous visualization of the domain patterns and micromagnetic simulations. The developed approach is used to examine the effect of sign and magnitude of curvature on the induced anisotropies by altering the rolling direction and diameter of the 'Swiss-roll'. Furthermore, a time-averaged imaging technique based on conventional microscopies (magnetic force microscopy and Kerr microscopy) offers a novel strategy for investigating nanoscale periodic domain wall oscillations and hence dynamic magnetic characteristics of flat and curved structures. This method exploits the benefit of a position-dependent dwell time of periodically oscillating DWs and can determine the trajectory and amplitude of DW oscillation with sub-100 nm resolution. The uniqueness of this technique resides in the ease of the imaging procedure, unlike other DW dynamics imaging methods. The combined understanding of rolling-induced anisotropy and imaging DW oscillation is utilized to examine the dependence of DW dynamics on external stimuli and the structure's physical properties, such as lateral size, film thickness, and curvature-induced anisotropy. The presented methods and fundamental studies help to comprehend the rapidly expanding field of 3-dimensional nanomagnetism and advance high-performance magneto-electronic devices based on self-assembly rolling

    Ultrasound for Knee Osteoarthritis Screening: A Panoramic Reconstruction of the Knee Joint

    Get PDF
    Osteoarthritis (OA) is a significant and growing disease. Ultrasound (US) imaging provides an accessible method of imaging soft and hard tissue in the assessment of musculoskeletal morphology, particularly in screening for OA. The team created a device, protocol, and reconstruction software to acquire images of and measure the knee articular cartilage thickness, a proxy for joint space width. The resulting device can be used to detect and monitor progress of joint space narrowing. Using the device, the femoral articular cartilage thickness was measured with up to 5 mm of resolution as compared to that of the gold standard, MRI

    Self-assembly as a tool to study microscale curvature and strain-dependent magnetic properties

    Get PDF
    The extension of 2D ferromagnetic structures into 3D curved geometry enables to tune its magnetic properties such as uniaxial magnetic anisotropy. Tuning the anisotropy with strain and curvature has become a promising ingredient in modern electronics, such as flexible and stretchable magnetoelectronic devices, impedance-based field sensors, and strain gauges, however, has been limited to extended thin films and to only moderate bending. By applying a self-assembly rolling technique using a polymeric platform, we provide a template that allows homogeneous and controlled bending of a functional layer adhered to it, irrespective of its shape and size. This is an intriguing possibility to tailor the sign and magnitude of the surface strain of integrated, micron-sized devices. In this article, the impact of strain and curvature on the magnetic ground state and anisotropy is quantified for thin-film Permalloy micro-scale structures, fabricated on the surface of the tubular architectures, using solely electrical measurements
    corecore