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ABSTRACT 
 
 
 

ELECTROMAGNETIC MODEL SUBDIVISION AND ITERATIVE SOLVERS FOR 

SURFACE AND VOLUME DOUBLE HIGHER ORDER NUMERICAL METHODS AND 

APPLICATIONS 

 
 

Higher order methods have been established in the numerical analysis of electromagnetic 

structures decreasing the number of unknowns compared to the low order discretization. In order 

to decrease memory requirements even further, model subdivision in the computational analysis 

of electrically large structures has been used. The technique is based on clustering elements and 

solving/approximating subsystems separately, and it is often implemented in conjunction with 

iterative solvers. This thesis addresses unique theoretical and implementation details specific to 

model subdivision of the structures discretized by the Double Higher Order (DHO) elements 

analyzed by i) Finite Element Method - Mode Matching (FEM-MM) technique for closed-region 

(waveguide) structures and ii) Surface Integral Equation Method of Moments (SIE-MoM) in 

combination with (Multi-Level) Fast Multipole Method for open-region bodies. Besides standard 

application in decreasing the model size, DHO FEM-MM is applied to modeling communication 

system in tunnels by means of Standard Impedance Boundary Condition (SIBC), and excellent 

agreement is achieved with measurements performed in Massif Central tunnel. To increase 

accuracy of the SIE-MoM computation, novel method for numerical evaluation of the 2-D surface 

integrals in MoM matrix entries has been improved to achieve better accuracy than traditional 

method. To demonstrate its efficiency and practicality, SIE-MoM technique is applied to analysis 

of the rain event containing significant percentage of the oscillating drops recorded by 2-D video 



iii 

disdrometer. An excellent agreement with previously-obtained radar measurements has been 

established providing the benefits of accurately modeling precipitation particles. 
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INTRODUCTION 

Higher order curvilinear elements conform to arbitrary shapes enabling accurate modeling 

of the geometry. Higher order basis functions model the unknown enabling the element size to be 

of the order of the wavelength, unlike the low order discretization which is limiting element size 

to a tenth of the wavelength. Both of these features decrease the number of unknowns (i.e. 

memory) needed for the computer simulation of the electromagnetic phenomena. With the current 

demand to analyze electrically large, finely structured and complex systems of electromagnetic 

bodies, domain decomposition and approximate methods, decreasing the computational 

complexity, have found the vast development and use in computational sciences. Model 

subdivision, i.e. element grouping of the model under analysis, plays the key role decreasing the 

memory load even further. This dissertation includes details specific to model subdivision of the 

double higher order discretization applied to Finite Element Method (FEM) for closed-region 

(waveguide) structures computing electric field vector as the unknown in the volume elements and 

Surface Integral Equation Method of Moments (SIE-MoM) for open-region bodies computing 

equivalent current vector on the surface elements. The closed (waveguide) structure is divided into 

subdomains that are analyzed separately and Generalized Scattering Matrix (GSM) for each 

subdomain is obtained. GSM is computed using Mode Matching (MM) technique in conjunction 

with 3-D FEM, with the modal forms at the subdomain ports being computed by double higher 

order 2-D FEM analysis solving the eigenvalue problem solved by Krylov subspace iterative 

process Lanczos method. The subdomains are then connected into the original structure via GSM 

concatenation. The open region structures are divided using Octree grid and analyzed using SIE-

MoM in conjunction with Fast Multipole Method and its’ Multi-Level version enabling fast matrix 

vector multiplication in the Krylov subspace iterative solver implementation (Generalized minimal 
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residual method). Both, volumetric and surface, methods decrease the memory needed for the 

computer simulation and enable large models to be analyzed on a personal computer. Extraction 

method for 2-D surface integration used in calculating entries in MoM matrix has been previously 

developed in order to precisely compute near-field 2-D integrals [42]. Unlike the traditional 

extraction techniques, novel method takes into account curvature of the basis element as well as 

higher order of the basis functions in the computation of the integrals evaluated over parallelogram. 

The extension of the work presented in [42] is presented. SIE - MoM technique was also applied 

to the 100 minute rain event recorded by 2-D video disdrometer. The recorded rain event contained 

significant percentage of the oscillating drops which surface models were obtained using the nodes 

output by the reconstruction process. Scattering calculations of radar variables were computed and 

compared to the values measured by radar, showing advantage of accurately modeling asymmetric 

water precipitation particles.  

This dissertation is organized as follows. Double higher order two dimensional Finite 

Element Method is presented in the first chapter following the Generalized Scattering Matrix 

computation by double higher order three dimensional Finite Element Method and Mode Matching 

Technique. The novel extraction integration technique is presented in the third chapter followed 

by the Multi-Level Fast Multipole Method applied to double higher order Surface Integral 

Equation in the fourth chapter. The dissertation is concluded following the Integral Equation 

application to scattering calculations for asymmetric rain drops during a line convection event 

presented in the fifth chapter. 
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1 TWO DIMENSIONAL FINITE ELEMENT METHOD FOR EIGENVALUE SOLUTION 

OF THE WAVEGUIDE CROSS SECTION 

1.1 Introduction 

Two dimensional (2-D) solution of Wave equation computed by Finite Element Method 

(FEM) has been established as a general tool in applied electromagnetic area especially in analysis 

of waveguide cross-sections with arbitrary geometry to obtain propagation coefficients [53]-[62] 

and modal field distribution which notably impacts General Scattering Matrix (GSM) computation 

for passive waveguide structures, Chapter 2, [71],[74]-[80],[90]-[104]. 2-D FEM analysis of 

waveguide structures has been established with tangential vector finite elements [54]-[57], [63], 

covariant-projection elements [58], and higher order field approximations [58]-[62], all leading to 

accurate and efficient solutions. The higher order basis functions enable large domain modeling 

i.e. element size is of the order λ in each dimension (λ is wavelength in medium) [62], unlike low 

order modeling where element size is limited to λ/10. In [62], higher order Lagrange-type 

curvilinear quadrilateral elements with higher order hierarchical polynomial curl-conforming 

vector basis functions show p-refinement advantages over h-refinement. 

The work in this chapter resumes the method established in [62] using the same higher 

order geometrical and electric field modeling. The transformation from [56] is used to obtain final 

system of equation enabling TE and TM mode computation of waveguide cross-sections enclosed 

by means of perfect electric conductor (PEC). The details of the method are described in Section 

1.2 and 1.3. The variable transformation is utilized leading to purely real system of equations for 

non-lossy medium enclosed by perfect electric conductor (PEC), which is solved by Lancosz 

method, outlined in Section 1.4, leading to excellent isolation of the modes with the same 

eigenvalue as well as decreasing the solution time by computing only requested number of modal 
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results. Results for PEC enclosed waveguides are presented in Section 1.5 while Sections 1.6 and 

1.7 illustrate the solution for the waveguides enclosed by walls with finite conductivity, enabled 

by Standard Impedance Boundary Condition (SIBC) [148],[153]. The system of equation is 

changed to include SIBC enabling tunnel modeling by means of 3-D FEM in Chapter 2. 

1.2 Two dimensional Wave equation Finite Element Method 

In order to compute electric field distribution in waveguide cross section, vector wave 

equation is solved:  

-1 2
r 0 r  (μ    )  ε   0k     E E

,           (1.1) 

where E is electric field modal solution, k0
2 is eigenvalue solution for air-filled waveguide 

containing information of modal cut-off wave number, and  μr and εr are permeability and 

permittivity of the material respectively. It is assumed that the waveguide structure is infinitely 

long and geometry variation depends just on two transversal dimensions (x and y) i.e. no variation 

is assumed along dimension normal to the geometry of the waveguide cross-section (z-axis), 

yielding following notation for electric field vector and dell operator[56],[62]: 

zzt
γz)yx,( iEEE Ee  

,            (1.2) 

              (1.3)
 

where Et represents components tangential to geometry and Ez is the component perpendicular to 

the geometry (i.e. in the direction of mode propagation), iz is unit vector along z-axis and γ is the 

wave propagation constant. 

Substituting equation (1.2) into (1.1), and using identity in (1.3), followed by moving k0
2 

dependencies to the right hand side and dividing equation components into parallel and transversal 

to the geometry, equations below are obtained: 

zt γi
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-1 -1 2
t r t t r t z t 0 r t(μ ) γμ ( γ ) k εE       E E E ,           (1.4) 

-1 2
t r t z t z 0 r z z(μ ( γ ) ) k εE E     E i i .           (1.5) 

Applying transformation from [56]: tt γEe   and zz Ee   ( zzt iee e ) to (1.4)-(1.5) and 

multiplying them by γ and γ2 respectively, equations to be solved yield: 

-1 2 2
t r t t t z t 0 r t

r

1
(μ ) γ ( ) k ε

μ
e       e e e ,          (1.6) 

2 -1 2 2
t r t z t z 0 r z zγ (μ ( ) ) γ k εe e     e i i ,                (1.7) 

where 
22

c
2
0 γkk  is eigenvalue solution and e is corresponding eigenvector, kc is cut off wave 

number and γ is propagation coefficient given as an input parameter. 

Unknown vector is represented through the expansion of higher order hierarchical 

polynomial curl-conforming vector basis functions (f) with u and v being local transversal 

components that are mapped to x and y coordinates, while z is component perpendicular to the 

geometrical cross-section of the waveguide. Applying Galerkin testing procedure (i.e. testing 

functions are the same as basis functions), assuming that medium is non-magnetic and the 

waveguide walls are represented by means of perfect electric conductor (PEC) final system of 

equations becomes: 

-1 2 -1 2 -1 2
r t t t t r t t z r t t 0 r t t

ˆ ˆ ˆ ˆμ ( ) ( )d γ μ d γ μ d k ε d
S S S S

S e S S S             f e f f e f e ,      (1.8) 

2 -1 2 -1 2 2
t z r t z z t z r t z 0 r z z z

ˆ ˆ ˆγ ( )  μ ( )d γ ( )  μ ( )d γ k ε  d
S S S

e S S e S             f i f e i f i ,     (1.9) 

where S is area of the waveguide cross-section, t/zf̂  represents testing functions transversal / normal 

to the waveguide geometry. The integrals in (1.8) and (1.9) are mapped to the local u-v domain 
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and evaluated numerically using Gauss-Legendre quadrature with NGLu and NGLv being the input 

parameters representing number of integration points along u and v local coordinates respectively. 

1.3 Higher-Order Geometrical Elements and Basis Functions  

A generalized hexahedron and quadrilateral in Fig. 1.1 are used as the tessellation unit for 

geometry approximation of the 3-D and 2-D structures respectively. The curvilinear hexahedron 

or quadrilateral is determined by M = (Ku+1)(Kv+1)(Kw+1) arbitrarily positioned points, with Ku, 

Kv and Kw (Ku, Kv, Kw  1) being geometrical orders of the element along u-, v- and w- parametric 

coordinates, mapping the element into parametric cube or square [70],[62], respectively. 

Therefore, position vector of the points in the element can be defined as follows: 


  


u v wK

k

K

l

K

m

mlk

klm

M

i

ii wvuwvupwvu
0 0 01

),,(),,( rrr , 1,,1  wvu ,     (1.10) 

where r1, r2, …, rM are the position vectors of the interpolation points and pi(u,v,w) are Lagrange-

type interpolation polynomials. The parametric coordinates uj, vj and wj represent the local 

locations of the j-th node, and rklm are constant vector coefficients derived from r1, r2 … rM.  

Curl-conforming hierarchical polynomial vector basis functions (f) are defined as 

),,( 
),,(

)()(
),,(

),,( 
),,(

)()(
),,(

),,( 
),,(

)()(
),,(

,

,

,

wvu
wvuJ

wvPuP
wvu

wvu
wvuJ

wPvuP
wvu

wvu
wvuJ

wPvPu
wvu

w

j

ji

wijk

v
k

j

i
vijk

u

kj

i

uijk

af

af

af







,    


















odd ,3,

even ,2,1

1,1

0,1

)(

iuu

iu

iu

iu

uP

i

ii ,    1,,1  wvu ,   (1.11) 

where Nu, Nv and Nw are the degrees of the polynomial electric field approximation [70]. The 

reciprocal unitary vector au
’ in (1.11) is calculated as 

),,(

),,(),,(
),,(,

wvuJ

wvuwvu
wvu wv

u

aa
a


 , where 

u

wvu
wvuu 




),,(
),,(

r
a ,      (1.12) 
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au being unitary vector, with r given by equation (1.10), and J(u,v,w) is the Jacobian of the 

covariant transformation:  

  ),,(),,(),,(),,( wvuwvuwvuwvuJ uvu aaa  .        (1.13) 

 
Fig. 1.1. A generalized parametric hexahedron and quadrilateral conforming to one of its sides. 

 
Unknown electric field vector in the 3-D structure is represented through following 

expansion [70]: 


 







 



  


u v wu v wu v w N
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N
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N

i

N
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N

i

N

j

N

k
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0 0

1

00

1

0 0

1

0 0 0

),,(  ),,(  ),,(  fffE  .      (1.14)  

The 2-D unknown is represented as [62]: 


 







 


u vu vu v N

i

N

j

zijzij

N

i

N

j

vijvij

N

i

N

j

uijuij vuvuvu
0 00

1

0

1

0 0

),( ),( ),( fffe  ,     (1.15)  

where α represents eigenvectors from the eigenvalue problem solution and ),,(),( wvuvu wijkzij ff   

for Kw = 0, w = 0 and au = iz. The mixed-order arrangement in (1.14) and (1.15), where the 

expansion orders in different directions are intentionally left uneven, is in agreement with the 

reduced-gradient criterion. 
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1.4 Lanczos method – eigenvalue problem solution 

The system of equations in (1.8) - (1.9) has a form of generalized eigenvalue problem: 

   λA x B x ,           (1.16) 

where [B] matrix is positive definite and both [A] and [B] matrices are real and symmetric, λ and 

x represent eigenvalue and corresponding eigenvector [64]. Eigenvalues and eigenvectors solution 

to (1.16) are computed iteratively using Lanzcos method, an orthogonal projection method onto 

Krylov subspace [65] that reduces dense matrix into Hessenberg form. In the case of real 

symmetric matrices, Hessenberg matrix is symmetric, real and tridiagonal with ζj and ξj being 

diagonal and sub diagonal elements. The eigenvalue problem in (1.16) is a good candidate to obtain 

the solution by shift and invert Lanczos algorithm [66] that solves a standard eigenvalue problem 

formulation described as: 

   ssBAB θσ 1  
,           (1.17) 

where σ is a shift, θ and s represent eigenvalue and corresponding eigenvector relating to the 

original eigenvalue problem in (1.16) as λ = σ+θ-1 and x = [W]s, where [W] is [B] orthogonal 

Krylov subspace basis functions. The shift updating is implemented to decrease the execution time 

having in mind known feature of the algorithm that the smallest eigenvalues converge first (i.e. 

eigenvalues of the original problem that are closest to the shift will be computed). 

The Algorithm 1.1 [64] shows the steps in the algorithm for generalized eigenvalue 

problem for real and symmetric matreces. wj and vj represent j-th columns of [W] and [V] matrices 

that represent [B] and [B]-1 orthogonal Krylov subspace basis functions respectively. Starting 

vector r is chosen such that elements corresponding to the transversal components have value one 

and elements correlating to the component normal to the geometry are zero valued [60] which 

enables TE/TM mode isolation for the same eigenvalue solution. 
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Algorithm 1.1 Shift and invert Lanczos algorithm for generalized real symmetric eigenvalue 
problem. 

1. Choose starting vector r. Compute q = [B]r and ξ0 = |qTr|1/2 
2. For j = 1,2,…, until convergence, 
3. wj = r/ξj-1, vj = q/ξj-1 
4. r = [A - σB]-1vj  
5. r = r - wj-1ξj-1 
6. ζj = vj

Tr 
7. r = r - wj ζj 
8. Apply Gram-Schmidt orthogonalization process until vector r is [B] orthogonal to [V] 

matrix and to all converged eigenvectors. 
9. multiply q = [B]r 
10. ξj = |qTr|1/2 
11. compute approximate eigenvalues 
12. test for convergence 
13. end for 
14. compute approximate eigenvectors 

 

1.5 Numerical Results and Discussion for 2-D PEC waveguides 

1.5.1 Cross-section of the circular waveguide filled with air 

The cylindrical waveguide cross-section with 1 mm radius is modeled by one and five 

second order elements. For the one element model, the basis orders are set to Nu = Nv = 8 (1.15) 

and Gauss Legendre integration points in each dimension are NGLu = NGLv = 20, while Nu = Nv = 

4 and NGLu = NGLv = 8 for the five element model. In both cases inputs to Lancosz algorithm 

(Section 1.4) are γ = j1000 m-1 and σ = 106 m-1. Dominant mode electric field vector pattern is 

given in Fig. 1.2. 

1.5.2 Cross-section of the rectangular waveguide filled with air 

The model of the air-filled waveguide cross-section with a = 6 m and b = 4 m is modeled 

by six square elements. Numerical parameters are set to Nu = Nv = 6 with 589 of unknowns. Inputs 

to Lancosz algorithm (Section 1.4) are γ = j1 m-1, σ = 1 m-1 and error marking convergence in the 

Algorithm 1.1 is 10-14. The relative error of the lowest fifteen eigenvalue solutions versus its values 

is represented in Fig. 1.3.  
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Fig. 1.2. Transversal electric field vector for TE11 (dominant) mode in the circular waveguide 
cross-section modeled with one (left) and five (right) second order geometrical elements. 

 

 
Fig. 1.3. Eigenvalue relative error. 

 
The field pattern results, obtained from eigenvector solution and illustrated in Fig. 1.4 show 

TE modal solution perfectly isolated from the TM mode with the same eigenvalue. This is achieved 

by executing algorithm twice, obtaining only eigenvalue solutions in the first run. When the 

algorithm is executed for the second time, it is restarted often and the shift is updated with using 

the information about eigenvalues from the initial run. In the case when multiple TE modes have 

the same eigenvalue solution, example given in Fig. 1.5, the error of zero components is lower 

than 10-8. 



11 

 

 
a) 

 
b) 

Fig. 1.4. Modal patterns for rectangular PEC waveguide for (a) TE22, (b) TM22 modes. 

 

 
a) 

 
b) 

Fig. 1.5. Modal patterns for rectangular PEC waveguide for (a) TE30, (b) TE02 modes. 
 

1.6 Conductive waveguide walls and Standard Impedance Boundary condition 

In the case where waveguide walls cannot be represented by perfect electric conductor 

(PEC), the computational domain is truncated by means of Standard Impedance Boundary 

Condition (SIBC). This is simple, i.e. first order, impedance boundary condition and it assumes 

that electromagnetic fields are confined to a layer with small thickness, much smaller than the 
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thickness of the conductive medium. SIBC connects tangential components of the magnetic and 

electric field inside and at the surface of the conductive material, so called Leontovich impedance 

boundary condition [148],[149],[153]: 

( )Z f    n n E n H ,                (1.18) 

where n is outward normal at the conductive surface, i.e. the normal is directed from the discretized 

element into the conductive material. Z(f) is impedance of the wall and it is defined as 

CW 0 w w( ) j2π μ (σ j2π ε )Z f C f f  , where σw and εw are respectively conductivity and 

dielectric permittivity of the wall material and CCW is coefficient describing the corrugation of the 

surface between wall and air [149].  

The equations (1.8) and (1.9) are then expanded to include line (boundary) integral of the 

magnetic field which is introduced after Galerkin testing and transfer of the curl operator from 

basis to testing function. They are represented in the following form: 

 
I

2 -1 -1 2
r t t z t r t t t t 0 r t t 0 t t
ˆ ˆ ˆ ˆγ μ d μ ( ) ( )d k ε d j ( ) ( )d

S S S l

e S S S k R l                 f e f e f e n f n e , (1.19) 

I

2 -1 2
t z r t z t z 0 r z z z 0 z z

ˆ ˆ ˆγ ( )  μ ( ) d k ε  d j ( ) ( )d 0
S S l

e S e S k R l
 

             
 
  f e i f i n f n e ,   (1.20) 

where R is frequency dependent coefficient and represents the ratio between air impedance and 

the waveguide wall impedance. The new system of equations in (1.19)-(1.20) in the form of (1.16) 

gives propagation coefficient (γ) as unknown (eigenvalue) while [B] matrix is positive definite and 

both [A] and [B] matrices are complex and symmetric. 
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1.7 Numerical Results and Discussion for 2-D waveguides enclosed by SIBC 

1.7.1 Cross-section of the rectangular waveguide filled with air 

Rectangular waveguide cross-section with a = 4 m and b = 3 m dimensions is modeled by 

first order elements with 1 m2 area. Operating frequency is 1 GHz and orders of the basis functions 

are Nu = Nv = 8 with number of Gauss-Legendre integration points NGLu = NGLv = 12. The 

waveguide wall material is represented via SIBC with conductivity σw = 0.01 S/m, relative 

dielectric constant εrw = 0, and corrugation coefficient CCW = 1, i.e. walls are smooth. The twenty 

lowest eigenvalue solutions are compared with the results obtained by HFSS using SIBC in Fig. 

1.6 and the absolute value of electric field modal solutions for first three dominant modes is 

displayed in Fig. 1.7. 

 
Fig. 1.6. Propagation constant comparison for the 20 most dominant modes. 
 

1.7.2 Massif Central tunnel cross-section  

In order to verify the method by comparing results with HFSS ANSYS [106], the tunnel 

walls are represented by SIBC with σw = 0.01 S/m, εrw = 0 and smooth walls at 900 MHz. The 

FEM model for the curved geometry of the arched tunnel in Fig. 1.8(a) is tasseled with 40 air filled 

2nd order geometrical elements. Basis functions orders per element are Nu = Nv = 4, with integration 

parameters NGLu = NGLv = 8, giving overall number of 2-D unknowns to be 2001. Twenty lowest 

propagation coefficients, derived from eigenvalue solutions, are compared to results obtained by 
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HFSS in Fig. 1.9. Arched line of model 1 in HFSS is modeled as part of the circle approximated 

by as 50 straight sections, while the approximation of arch in model 2 is twice refined. It can be 

noted that FEM results compare better to the model 2 than model 1 results, as expected. 

 
Fig. 1.7. Absolute value of electric field modal solutions at waveguide cross-section for the 3 most 
dominant modes, left to right. 
 

       
a)                                                              b) 

Fig. 1.8. Geometry of the models representing cross-section of arched tunnel (a) 40 element model 
(b) 722 element model. 
 

To accurately model Massif Central tunnel cross-section, the walls are represented via 

SIBC with σw = 0.01 S/m and εrw = 5 [151]. The curved geometry of the tunnel is modeled with 

722 2nd order geometrical elements, shown in Fig. 1.8(b) with basis function orders per element 

being Nu = Nv = 2. Derived from eigenvalue solutions, the twenty lowest propagation coefficients 
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are graphed in Fig. 1.10 at operating frequencies 450 and 900 MHz, for two different values of 

corrugation factor which represents corrugation of the tunnel wall. Implicitly, it can represent the 

correction factor for the values of conductivity and dielectric permittivity of the wall material in 

the case of the smooth wall. Accuracy and appropriate computation of eigenvalue solutions in the 

tunnel model leads to correct estimation of the attenuation of the signal. At 450 MHz, absolute 

value of the electric field modal solutions obtained from eigenvectors of the three most dominant 

modes are plot in Fig. 1.11, showing similar pattern behavior to the solutions in rectangular cross 

section in Fig. 1.7, especially in the central area of the cross-section. This is the reason it is a 

common practice to model arched tunnels by means of rectangular cross-section, but it does not 

provide satisfactory accuracy when modeling electric field close to the edge of the tunnel. 

 
Fig. 1.9. Propagation coefficient comparison for arched tunnel. 
 

    
a)                                                                              b) 

Fig. 1.10. Eigenvalue solutions at (a) 450 MHz, (b) 900 MHz for two different corrugation factors. 
 



16 

1.8 Conclusion 

Double Higher Order 2-D FEM eigenvalue solver has been developed for waveguides with 

both PEC and finite conductivity boundaries, with the purpose of utilizing it in GSM computation 

detailed in Chapter 2. The results have been verified with both analytic, Figs. 1.2-1.5, and industrial 

standard (ANSYS HFSS [106]) employing low order geometrical elements, Fig. 1.6 and Fig. 1.9. 

Lanczos method has been implemented for generalized real symmetric eigenvalue problems and 

its’ benefits have been demonstrated in isolation of TE from TM modes in PEC waveguides. 

   
Fig. 1.11. Absolute value of electric field modal solutions for the three most dominant modes, left 
to right at 450 MHz and CCW = 0.83. 
 



17 

2 GENERALIZED SCATTERING MATRIX COMPUTATION FOR WAVEGUIDE 

STRUCTURES USING FINITE ELEMENT MODELING AND MODE MATCHING 

TECHNIQUE 

2.1 Introduction 

Design, analysis and optimization of the three-dimensional waveguide-type microwave 

devices highly depends on accurate full wave numerical simulations of the electric/magnetic field 

distribution inside the structure. Method of moments (MoM), finite difference time domain 

(FDTD) and mode matching (MM) are widely used in the area. Finite element method (FEM) has 

shown powerful capabilities in analyzing waveguide structures with inhomogeneous, dielectric 

and metallic arbitrarily shaped discontinuities [69]. In order to decrease the memory needed for 

the analysis of large waveguides, segmentation of the structure’s domain was proposed [74]. Many 

research groups base their waveguide segmentation method on multimode multiport matrix that 

describes each subdomain and connects them into the original structure. Each subdomain is 

analyzed by FEM and the Generalized Scattering Matrix (GSM) is computed via mode matching 

(MM).  

Low order elements, e.g. tetrahedral/triangular elements, are widely present in waveguide 

modeling discretizing FEM domain [96]-[98], which is then applied in FEM/MM method to 

waveguide discontinuities and filters. During previous decade [99],[100], 2-D solution for modal 

expansion (Lanczos solution) and arbitrarily shaped waveguides giving theoretical background for 

analysis of inhomogeneous cross-sections were developed leading to employing hybrid MM 

methods in conjunction with FEM / MoM / Finite Difference(FD). In [104], edge-based Whitney’s 

vector functions are employed. Scattering from 3-D cavities in [92],[93] uses FEM or MoM to 

compute GSM in different subdomains using integral equation method with Rao–Wilton–Glisson 
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(RWG) basis functions for the exterior unbounded domain while interior bounded part is solved 

with FEM that is modeled by means of tetrahedral curl conforming edge-element functions 

(Nedelec). In tetrahedral elements tree-cotree splitting obtained improvement in the efficiency and 

the stability of the adaptive mesh refinement process [55],[57],[101], later work using hierarchical 

higher order basis functions. Additionally to Mode Matching method combined with FEM and 

MoM obtaining GSM/GAM, there are advances in FDTD/MM area [102]-[103]. 

Curvilinear elements are used in [71], i.e. covariant projection elements discretize FEM 

domain to compute Generalized Admittance Matrix (GAM) using FEM-MM. They applied the 

symmetric Padé via Lanczos process [75],[76],[79] to obtain reduced-order model of the transfer 

function, the GAM can be evaluated at any frequency, reducing the computational time. Selleri 

analyzes horn antenna using FEM-MM and planar wave expansion to compute GSM [87] using 

curved triangular and tetrahedral elements that are defined by rational Bézier mapping and higher 

order interpolatory vector basis functions [88],[89]. In [103], hierarchical higher order basis 

functions are used with the inexact Helmholtz decomposition and tree-cotree splitting to improve 

the efficiency and the stability of the adaptive mesh refinement process. 

Antenna design with spherical mode expansion on the absorbing boundaries has been 

popularly utilized [76]-[78],[80],[82]-[85],[94],[95]. By introducing Floquet mode expansion to 

the method [94],[95] analyzing antenna arrays or periodic structures becomes less expensive. 

Floquet-Bloch decomposition enabled infinite periodic structures analysis [81]. Domain 

decomposition coupled with GSM computation enables faster technique for the analysis of 

microwave devices [90],[91],[94]. 

Additionally to waveguide segmentation, FEM/MM enables accurate and efficient solution 

to short waveguide structures with discontinuities. In order to obtain dominant or multi-mode 
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solution for short structures, where the discontinuities are close to the ports, higher modes need to 

be included in the computation for appropriate boundary condition. 

In this chapter hierarchical polynomial vector basis functions of arbitrarily high orders have 

been used to model the electric field in the domain of interest, as well as Lagrange-type curved 

hexahedral finite elements of higher geometrical orders for modeling the arbitrarily shaped 

structures [67],[68]. The technique shows to be highly efficient and accurate for a small number 

of curved hexahedral elements leading to the reduced number of unknowns compared to low-order 

discretization. 

The idea behind presented technique, based on already developed higher order finite 

element method [68], is to decrease the memory usage needed for solving FEM matrix system that 

describes large waveguide structures by decomposing the structure into smaller waveguide forms. 

The original waveguide system is divided into a number of arbitrarily shaped subsystems analyzed 

completely independently reducing the memory required for the computation. The result of 

analysis is Generalized Scattering Matrix (GSM) computation and storage for each subdomain 

separately. The GSM relations of all subsystems are combined into a system of linear equations 

that gives solution to the original waveguide and electromagnetic field inside the structure can be 

computed if needed. 

This chapter is organized as follows. The details of the methodology are given in Section 

2.2 and 2.3. Method verification and the benefits of Double Higher Order (DHO) modeling are 

outlined in Section 2.4, presenting the results for PEC enclosed waveguides. Sections 2.5 illustrates 

the results for the waveguides enclosed by boundary with finite conductivity, enabled by Standard 

Impedance Boundary Condition (SIBC) in order to model mines and underground tunnels. Long 

rectangular tunnel (waveguide) is modeled and results are compared to commonly used Vector 
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Parabolic Equation in order to verify the implementation. Benefits of DHO FEM-MM-GSM over 

other commonly used methods in tunnel modeling are used in simulating electromagnetic field, 

mainly the fact that model can be subdivided and sections separately simulated. The other benefit 

is higher order modeling, elements approximating curved and arched geometries fairly accurately 

while broadly used methods usually use rectangular approximations. These advantages are 

presented in modeling communication system in Massif Central tunnel. 

2.2 Segmentation of the waveguide structure 

Consider a 3-D N-port waveguide structure with arbitrarily shaped metallic and/or 

dielectric discontinuities in Fig. 2.1. Dividing the structure into waveguide subdomains 

(subsystems) by introducing fictitious planar surfaces, Si, between two subsystems, enables 

analysis of each subdomain separately. Same kinds of surfaces are introduced at the actual ports 

of the waveguide system which truncates the domain of computation obtaining the closed structure 

[69]. In the same manner, the planar surfaces (which can be viewed as subsystem ports) are part 

of the bound of one subsystem making it a closed structure that can be analyzed using previously 

developed technique for waveguide structures [68],[69],[70].  In Fig. 2.1 first N fictitious planar 

surfaces are modeling subsystem ports that are also ports related to original waveguide structure, 

while the other fictitious surfaces are used to connect subsystems into the structure. 

The closed structure of one subsystem (e.g. n-th subsystem shown in Fig. 2.2) is tessellated 

using generalized Lagrange-type curved parametric hexahedra of higher geometrical orders [68] 

shown in Fig. 1.1 and defined in (1.10). The electric field inside each of the hexahedra is expanded 

(1.14) using curl conforming higher order basis functions described in Section 1.3. 
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Fig. 2.1 Generic 3-D N-port waveguide structure divided into NSB number of subsystems (Sbs). 
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Fig. 2.2 Structure of n-th subsystem of the waveguide structure in the Fig. 2.1. 
 

For the general subsystem in Fig. 2.2 that has the same properties as general waveguide 

structure [69], we invoke the curl-curl electric-field vector wave equation given in (1.1). A 

standard weak form of discretization yields [69]: 

 
S

kji

V

kji

V

kji
SZkVkV d jd d )()( ˆˆ̂00ˆˆ̂r

2
0ˆˆ̂

-1
r HnfEfEf ,                                   (2.1) 

where V is the volume of a generalized hexahedron, 
kji ˆˆˆf  stands for testing functions 

kjiu ˆˆˆf , 
kjiv ˆˆˆf  or 

kjiw ˆˆ̂f which are au, av or aw directed respectively. Note that testing functions are the same as basis 

functions i.e. Galerkin testing procedure is used [70]. Surface S in (2.1) is the boundary surface of 

the hexahedron, and n is the outward unit normal (dS=ndS). Due to the continuity of the 

tangential component of the magnetic field intensity vector, nH across the interface between 
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any two finite elements in the FEM model, the right-hand side term in (2.1) contains the surface 

integral over the overall boundary surface of the subsystem, and not over the internal boundary 

surfaces between the individual hexahedra in the model, which for the subsystem of waveguide 

problem in Fig. 2.2 reduces to the surface integral across the artificially introduced planar surfaces 

(subsystem ports) and metallic/conductive walls of the waveguide. Right hand side in (2.1) is 

represented as 

P

ˆ ˆ ˆ0 0 0 0 0ˆ̂ ˆ̂ ˆ̂j  d j ( ) ( )d j d
I

ijk ijk ijk
S S S

k Z S k R S k Z S           f n H n f n Ε f n H ,      (2.2) 

where SI represent surfaces of the hexahedron where Standard Impedance Boundary Condition 

(SIBC) is applied to the conductive walls in order to truncate the computational domain, details 

given in Section 1.6, and SP represents surfaces of the ports. R is frequency dependent coefficient 

and represents the ratio between air impedance and the waveguide wall impedance (Section 1.6). 

In the case waveguide walls are modeled by PEC, first integral in the right hand side of (2.2) 

becomes zero. 

In order to correctly introduce boundary condition at the ports of n-th subsystem, modal 

expansion method [69],[73] is applied. The tangential electric and magnetic fields at each of the 

subsystem ports are represented through linear combination of the incident and reflected modes 

existing at each of the cross-section. The expansion of the fields at one of the subsystem ports 

yields: 





m

1
t ),()(

N

m

mmm vuba eE ,    



m

1
t ),()(

N

m

mmm vuab hH ,                                         (2.3) 

where em and hm represent the transversal (tangential to the fictitious surface) electric and magnetic 

field components of the m-th mode on the given subsystem port, while am and bm stand for the 

amplitudes ingoing and outgoing waves, respectively.  
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The electric filed vector modal forms at the subsystem ports are computed by 2-D higher-

order eigenvalue FEM for waveguide cross-sections of arbitrary shapes (Chapter 1),[62], while 

magnetic field vector modal forms are computed from the electric filed modal pattern. The modal 

forms are obtained for all NP planar surfaces and then matched accordingly to the outward normal 

of each subsystem containing considered port surface, saving computational time. 

Correlation between sets of a and b coefficients of the n-th subsystem is to be derived. Two 

following matrix equations are obtained by means of (2.1)-(2.3):  

      2
0 0[ ] [ ] j [ ] [ ] [ ]A k B k R S P a P b     ,            [ ] [ ] [ ]C D a D b   ,     (2.4) 

where the first matrix equation is based on substituting the 3-D electric-field expansion from (1.14) 

and 2-D magnetic-field modal expansion from (2.3) into (2.1) having in mind (2.2). The second 

equation in (2.4) is composed by imposing the continuity of the tangential electric field component 

expressed through 3-D FEM discretization (1.14) and modal expansion in (2.3) over the ports 

enclosing n-th subsystem and testing the electric field with modal forms. The elements of matrices 

[A] , [B] and [S] are computed as [70]: 

 
V

ijkkjiijkkji
Va d )()( ˆˆ̂

-1
rˆˆ̂ ff ,  

V

ijkkjiijkkji
Vb d ˆˆ̂rˆˆ̂ ff , ˆ ˆˆ̂ ˆ̂( ) ( ) d

IBC

ijkijkijk ijk

S

s S    n f n f      (2.5) 

where V is the volume of a generalized hexahedron and ijkf  stands for the basis functions of any 

direction ( uijkf , vijkf  or wijkf ). The elements of matrices [P], [C], and [D] are obtained as [69]: 

 
S

mkjimkji
SZkp d )(j ˆˆ̂00ˆˆ̂ hnf ,  

S

ijkmijkm Sc d ˆˆ fe  and  
S

mmmm Sd d ˆˆ ee ,                 (2.6) 

where the domain of integration (S) either coincides with a side of the generalized hexahedron 

belonging to the subsystem’s port surface (in the first two integrals) or corresponds to the entire 

subsystem port (in the third integral). Integrals p and c in (2.6) are nonzero for testing/basis 



24 

functions that are nonzero at the subsystem port of interest. The integrals in (2.5) and (2.6) are 

mapped to the local u-v-w domain and evaluated numerically using Gauss-Legendre quadrature 

with NGLu, NGLv and NGLw being the number of integration points along u, v and w local 

coordinates respectively. 

2.3 Generalized Scattering Matrix 

From sets of equations in (2.4), it is possible to obtain relation between outgoing (b) and 

ingoing (a) coefficients corresponding to analyzed subsystem. By representing α coefficients in 

the first equation as:         12
0 0[ ] [ ] j [ ] [ ] [ ]A k B k R S P a P b


      and substituting it in the 

second equation in (2.4), we obtain: 

          12
0 0[ ] [ ] [ ] j [ ] [ ] [ ] [ ] [ ]C A k B k R S P a P b D a D b


       .                            (2.7) 

Generalized scattering matrix ({b}=[GSM]{a}) correlating amplitudes of all incident and reflected 

waves associated with the n-th subsystem is computed as following: 

1 1 1 1[ ] ([ ][ ] [ ] [ ]) ([ ][ ] [ ] [ ])n
GSM C FEM P D C FEM P D

      ,                                     (2.8) 

where 
2
0 0[ ] [ ] [ ] j [ ]FEM A k B k R S   . Note that [GSM] in (2.5), (2.6) and (2.7) depends on the 

frequency. Matrices needed for evaluation of [GSM] are computed without frequency dependence 

and stored. They are recalled, for each frequency, to compute [GSM] for each subsystem. All 

subsystems being solved, response of the original waveguide structure can be analyzed. 

Ingoing waves of a subsystem are correlated just to the outgoing waves of the same 

subsystem via [GSMn], subscript referring to the n-th subsystem. In order to compute Generalized 

Scattering Matrix of the original N-port structure in Fig. 2.1, all subsystems’ coefficients need to 

be set in the system of equations. In Fig. 2.1, fictitious surface SN+1 is the boundary between the 

first and the n-th subsystems, meaning that outgoing waves at SN+1 from the first subsystem will 
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be equal to the ingoing waves to the n-th subsystem at SN+1 and vice versa. By representing all 

ingoing wave coefficients at the fictitious surfaces, that are not original waveguide ports, as 

outgoing wave coefficients of another subsystem and moving them to the left hand side of the 

equation, we obtain the system similar to the one in (2.9). These mathematical manipulations lead 

to all the values of the right hand side of the equation in (2.9) being zero, except coefficient values 

that correspond to the original waveguide ports. Final matrix equation, in (2.9), is obtained for 

each frequency where {an} and {bn} are vectors of modes coefficients of the n-th subsystem.  
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The system matrix in (2.9) is the size Nm x Nm, where Nm is the number representing the 

sum of modes at each subdomain, which is much smaller then number of α coefficients in the field 

expansion over all elements of the original N-port waveguide structure. After solving matrix 

equation in (2.9) for b (outgoing wave) coefficients, it is straightforward to find all unknown a 

(ingoing wave) coefficients. The electric field distribution inside the waveguide (inside any 

subdomain) can be computed, if needed, by solving the first equation in (2.4) for α coefficients of 

that subdomain. 

2.4 Numerical Results for 3-D waveguides enclosed by perfect electric conductor 

2.4.1 Air-filled rectangular waveguide 

The models in Fig. 2.3 are representing geometry with parameter values m 2.0a , 

m 1.0b , m 1.0l . The results in tables are obtained at frequency f = 1600MHz having the 

largest element size slightly larger than wavelength in air. Each subsystem is modeled by one 3-D 
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element with numerical parameters Nu=8, Nv=Nw=4, NGLu=NGLv=NGLw=20, with u, v and w 

having direction of x, y and z respectively. Each port contains one 2-D element with Nu=Nv=6 and 

NGLu=NGLv=20 numerical parameters. For all the structures in Fig. 2.3, the port one (P1) is 

excited with TE01 and TE11 modes with unit amplitude. The outgoing coefficients at ports 2 to 4 

(P2 – P4) for the structures in Fig. 2.3 (a) to (c) are given in Tables 2.1-2.3, respectively. The 

reflection coefficients at port 1 for both modes and all three structures, which are analytically 

evaluated to be zero, are computed to be less than 1E-3. The results are obtained for refined model 

of the structure in Fig. 2.3(a) divided along x direction, containing two cubical elements. Each port 

is modeled by two elements as well, with 3-D numerical parameters: Nu=Nv=Nw=4, 

NGLu=NGLv=NGLw=14, and 2-D parameters, Nu=Nv=6 and NGLu=NGLv=20 showing the same 

accuracy as the result for non-refined model excited by TE10. 
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Fig. 2.3. Air filled rectangular waveguide models with (a) one, (b) two, and (c) three subsystems 
of length l. 
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TABLE 2.1. TE10 and TE11 mode outgoing coefficients at the port 2 with excitations at port 1 for 

the structure at Fig. 2.3(a).  
mode b coefficients 4 digit analytical values 

TE10 -0.983992215849992 - i0.178211255564046 -0.9840 - i0.1779 

TE11 0.387665181844883 - i0.921800251944533 0.3876 - i0.9218 

 

TABLE 2.2. TE10 and TE11 mode outgoing coefficients at the port 3 with excitations at port 1 for 

the structure at Fig. 2.3(b).   
mode b coefficients 4 digit analytical values 

TE10 0.936481378306431 + i0.350716932186018 0.9367 + i0.3502 

TE11 -0.699431411222472 - i0.714699726888540 -0.6995 - i0.7146 

 

TABLE 2.3. TE10 and TE11 mode outgoing coefficients at the port 4 with excitations at port 1 for 

the structure at Fig. 2.3(c).   
mode b coefficients 4 digit analytical values 

TE10 -0.858988618505138 - i0.511994136553759 -0.8594 - i0.5113 

TE11 -0.929955594830773 + i0.367671852713859 -0.9299 + i0.3678 

 

2.4.2 Verification for model with dominant mode boundary condition  

For the verification purposes, the results obtained by FEM method supporting only 

dominant mode rectangular waveguide analysis in [73],[62] were repeated by the FEM-MM 

method computing GSM for two structures given in Figs. 2.4 and 2.6. WR-62 waveguide structure 

in Fig. 2.4 is modeled by eight 2nd order elements and two first order buffer elements at the ports. 

WR-90 waveguide structure in Fig. 2.6 is modeled by seven 1st order elements. In both models, 

each port contains one first order 2-D element. Numerical parameters are: Nu=Nv=6 and 

NGLu=NGLv=20. The 3-D numerical parameters were kept equal to the FEM analysis in [62]. S-

parameter results were compared in Figs. 2.5 and 2.7 and excellent agreement is achieved.  
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Fig. 2.4. Two crossed posts in a WR-62 waveguide (a = 15.7988 mm, b = 7.8994 mm, c1 = 2.5 
mm, c2 = 4 mm, d = 3 mm, and e = 11.51 mm).  
 

 

Fig. 2.5. Comparison of S-parameters for the dominant mode analysis of the model in Fig. 2.4 
obtained by FEM and FEM-MM. 
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a) 
 

b) 
Fig. 2.6. Dielectric ( 2.8r  ) post discontinuity in a WR-90 waveguide: (a) definition of the 

structure geometry ( mm 86.22a , mm 16.10b , mm 12c , and mm 6d ) and (b) first order 
large-domain volumetric mesh of the structure using generalized hexahedra ( mm 72.45e  and 

mm 24g ). 

 

 
Fig. 2.7. Comparison of S-parameters for the dominant mode analysis of the model in Fig. 2.6 
obtained by FEM and FEM-MM. 
 

2.4.3 Short WR-90 with cylindrical metallic post 

The dominant mode regime analysis of the waveguides containing an embedded structure 

close to the port needs to take into account higher modes in the port boundary condition due to 
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generation of the evanescent modes. Short waveguide structure in Fig. 2.8 is described by 

geometrical parameters: mm 4l , mm 86.22a  and mm 16.10b , with cylindrical post of 

radius mm 1r  in the middle of the structure. Due to specific geometry of the structure, just 

TEm0 modes, for odd values of m, are needed for the correct boundary condition analysis when the 

structure is excited by the dominant mode. h- and p- refinement analysis along x and z directions 

is done, while the parameters along y axis are kept constant, and the results are presented. For the 

comparison purpose, results are obtained in ANSYS HFSS [106] for the same waveguide but of 

the length mm 10l , so all evanescent modes at the port boundary have dissipated. HFSS basis 

functions that are used in analysis are of the 2nd order. 

 
Fig. 2.8. Short WR90 waveguide with cylindrical metallic post. 
 

Fig. 2.9 shows four element model of the second geometrical order in the a) part and with 

the orders of the polynomial approximation in the b) part. The model is constructed such that u, v 

and w local coordinates are x, y and z directed at the edges of the model, respectively. Each port is 

modeled by one 2-D element. Modes are obtained from 2-D FEM analysis for Nu=10, Nv=1, while 

3-D FEM results are computed for Nu= Nv =N and Nv=1, where N varies between 2 and 10. Number 

of Gauss-Legendre points used in the integration process is computed as NGLu/v/w=Nu/v/w+4. 

Scattering parameters and absolute error compared to the HFSS results given in Fig. 2.10 are 
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computed taking into account TE10, TE30, TE50 and TE70 modes when evaluating GSM matrix. 

Accuracy increases with higher order basis functions and the absolute error increases at higher 

frequencies which can be expected having in mind that wavelength in the waveguide decreases. 

The absolute error averaged over frequency taking into account one, two, three or four modes is 

given in Fig. 2.11. Note that the averaged error decreases with increasing N when higher modes 

are taken into account. 
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Fig. 2.9. Large-domain meshing (a) 2nd geometrical order model with four elements around the 
post. (b) Orders of the polynomial field approximation. 
 

Fig. 2.12 shows (a) six element model of the second geometrical order and (b) the orders 

of the polynomial approximation. The model is constructed such that u, v and w local coordinates 

are x, y and z directed at the straight edges of the elements, respectively. Each port is modeled by 

three 2-D element. Modes and results are obtained for the same basis function order values per 

element as for the previous model, Fig. 2.9. Scattering results and error analysis are shown in Figs. 

2.13-2.14. The error averaged over frequency decreases with increasing N when taking higher 

modes into account, and higher accuracy than in the previous model for the same number of 

unknowns is observed. 
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c)                                                                         d) 

Fig. 2.10. Scattering parameters as a function of frequency computed for different values of N for 
the waveguide model in Fig. 2.9. (a) Reflection coefficient in dB, (b) Transmission coefficient in 
dB, (c) Absolute |S11|error in dB, (d) Absolute |S21| error in dB.  
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a)                                                                          b) 

Fig. 2.11. Error in dB averaged over frequency range from 8 to 12.4 GHz computed for (a) 
Reflection coefficient, (b) Transmission coefficient for the structure in Fig. 2.9. 
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a)                                                                    b) 

Fig. 2.12. Large-domain meshing (a) 2nd geometrical order model with four elements around the 
post and two added on the side. (b) Orders of the polynomial field approximation. 
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c)                                                                         d) 

Fig. 2. 13. Scattering parameters as a function of frequency computed for different values of N for 
the waveguide model in Fig. 2.12. (a) Reflection coefficient in dB, (b) Transmission coefficient in 
dB, (c) Absolute |S11|error in dB, (d) Absolute |S21| error in dB. 
 

Figs. 2.15 and 2.17 show second geometrical order models with 16 and 36 elements, with 

ports being modeled by six and ten 2-D elements, respectively. Modes and results are obtained for 
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the same numerical integration parameter and basis order values per element as in for the model 

from Fig. 2.9. Error analysis is shown in Figs. 2.16 and 2.18 for the two models in Figs. 2.15 and 

2.17, error decreasing with higher values of N, when taking higher modes into account. 
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a)                                                                          b) 
Fig. 2.14. Error in dB averaged over frequency range from 8 to 12.4 GHz computed for (a) 
Reflection coefficient, (b) Transmission coefficient for the structure in Fig. 2.12. 
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Fig. 2.15. 2nd geometrical order model with eight elements around the post and eight added on the 
side with orders of the polynomial field approximation. 
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a)                                                                          b) 

Fig. 2.16. Error in dB averaged over frequency range from 8 to 12.4 GHz computed for (a) 
Reflection coefficient, (b) Transmission coefficient for the structure in Fig. 2.15. 
 

 
Fig. 2.17. 2nd geometrical order model with 36 elements with orders of the polynomial field 
approximation. 
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a)                                                                          b) 

Fig. 2.18. Error in dB averaged over frequency range from 8 to 12.4 GHz computed for (a) 
Reflection coefficient, (b) Transmission coefficient for the structure in Fig. 2.17. 
 

From the analysis presented, it is noted that higher modes need to be considered in order 

to accurately model short waveguides containing an embedded structures in the vicinity of the port. 

The geometry of waveguide structure with cylindrical post in Fig. 2.8 and different model 

discretization provided in Figs. 2.9, 2.12, 2.15 and 2.17 and corresponding results show that h-

refined around the metallic post brings improvement of accuracy but that large domain elements 

and p-refinement are better choice. For the best error - number of unknown balance, the large 

domain model with refinement around the post in Fig. 2.12 is the choice showing excellent error 

averaged over frequency for 94 unknowns. 

2.5 Numerical Results for 3-D waveguides enclosed by SIBC 

2.5.1 Long 3-D rectangular waveguide model excited by TE10 mode 

Consider an air filled rectangular waveguide in Fig. 2.3(b) with a = 4 m, b = 3 m and overall 

length 1000m. Smooth wall parameters are σw = 0.01 S/m, εrw = 5 and operating frequency is 1 

GHz. Port 1 is excited by TE10 mode with the peak value of 1V/m. The long waveguide is modeled 

in two sections (subsystems). The first section of the length l includes port 1, and it is short and 

modeled by means of FEM-MM-GSM with Nm modes approximating field at the port 2. The 
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electromagnetic behavior of the second section, which includes the rest of the waveguide, is 

modeled by the means of 2-D FEM where electric field in the plane at z’+l away from the port 1, 

i.e. z’ away from the end of the first section (port 2), is assumed to be superposition of propagating 

modes: 

  γ '
1( , , ' ) ,m m

N z

m mm
x y z l C x y e


 Ε e ,                                                                (2.10) 

where Cm is the magnitude of the mth mode existing at port 2 and is computed from GSM-FEM-

MM simulation of the first section. This approximation assumes reflection coefficients in the 

second subsystem are zero. 

Port 1 is modeled by 48 first order square elements - every element is 0.25 m2. The 3-D 

structure of the first section is then constructed with elements conforming to the 2-D elements of 

the waveguide port and are 0.25 m long along z-axis. First half of the meter of the subsection is 

enclosed by PEC walls in order to generate TE10 waveguide mode excitation at port 1. The walls 

of the rest of the waveguide are enclosed by the material with finite conductivity. Model 1 is 1 m 

long, having 192 3-D elements. Basis function orders per element are Nu = Nv = Nw = 3, NGLu = 

NGLv = NGLw = 8, giving overall number of 3-D unknowns to be 16386. Model 2 is 1.5 m long, 

having 288 3-D elements. Basis function orders per element are the same as for model 1 giving 

overall number of 3-D unknowns to be 24672.  

Fig. 2.19 shows results at the center of the waveguide as a function of the distance (d) from 

the excited port. For the verification purposes of the method including SIBC, waveguide with finite 

conductivity walls is analyzed by means of Vector Parabolic Equation (VPE) method1 which 

discretizes the whole length of the waveguide, unlike FEM-MM-GSM. The y component of the 

electric field vector is compared for two models and different number of modes (Nm) 

                                                 
1 VPE results are provided by Dr. Slobodan Savić, collaborator from University of Belgrade, Belgrade, Serbia 



38 

approximating field at port 2. It can be noted that for the shorter model, boundary condition at port 

2 needs to include higher number of modes (cyan line in Fig. 2.19) in order to compare accurately 

with the reference VPE result. On the other hand, for the longer model, lower number of modes at 

the port 2 approximates well the field at boundary. This can be explained by attenuation of higher 

modes in the extra length in model 2. 

 
Fig. 2.19. Electric field at the center of the waveguide cross-section as a function of the distance 
from the excited port. 
 

2.5.2 Communication system in Massif Central tunnel 

Modeling of electromagnetic field in tunnels has been in high-demand for decades, 

especially with underground transportation development and improvement of mining 

environment. Measurement operations in tunnels, which are commonly employed 

[150],[151],[155][156], are cumbersome and simulation assisted communication design is highly 

appreciated. In tunnel modeling, Vector Parabolic Equation (VPE) [158]-[159], Ray tracing (RT) 

[161]-[163] and hybrid [164]-[166] methods have been popularly employed. VPE methods are 

very efficient in analyzing long straight sections of the tunnel, but approximate arched structures 

with rectangular cross-section. RT method, which is not employing full wave analysis, is excellent 

in providing signal attenuation characteristics of complex structures, but computational time 
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depends on number of reflections on the ray path, which is increasing with length of the tunnel. 

Hybrid methods seem to take advantage of both of these methods, but rectangular approximation 

of the arched cross-section has been mainly used, providing accurate power estimation just in the 

central area [159]. This can be a satisfactory trade-off especially when the optimization for the 

communication placement needs to be performed, but very few papers report on the results for 

antenna placed in the vicinity of the tunnel boundary [160]. It has been well known that tunnels 

can be modeled as waveguides with lossy dielectric walls [154],[151],[168], but mainly 

rectangular and circular cross-sections have been used giving limited accuracy representations 

[157]. We are exploring the benefits of higher order waveguide modeling to accurately model 

geometry of the arched tunnel cross-section and precisely estimate field variation even close to the 

wall.  

Vertically polarized transmitting and receiving antenna are positioned inside the Massif 

Central tunnel at distance 2l+z from each other [151], at xA and yA away from the center and bottom 

of the tunnel, respectively. The tunnel walls are represented via SIBC with σw=0.01 S/m and εrw=5 

[150],[151], and the curved geometry of the tunnel is modeled with 2nd order geometrical elements. 

Corrugation coefficient is chosen to be CCW=0.83, in order to obtain correct attenuation and pseudo 

periodicity in the tunnel, having in mind results in Fig 1.9. The tunnel is modeled in 3 sections 

(subsystems).  

The first and third sections, in Fig. 2.20, containing transmitting and receiving antenna 

respectively, are geometrically the same and are modeled by the means of FEM-MM-GSM. The 

computational domain of the section is truncated by tunnel walls modeled via SIBC (in light pink 

in Fig. 2.20), waveguide port and absorbing boundary situated on opposite sides of the antenna 

along z axis. Port is colored in light blue, absorbing boundary in blue and antenna is depicted in 
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black. In the section containing transmitting antenna, the port is placed towards the receiving 

antenna and it is at distance l away from the transmitting antenna, while the absorbing boundary 

is placed away from the receiving antenna at l’ distance from the transmitting antenna. 

The field at transmitting antenna terminal is represented by single mode while the field at 

the waveguide (tunnel) port truncating the domain expands Nm modes. Matrix (GSMPA) relating 

the outgoing modes at the port and the ingoing mode of transmitting antenna is then of Nmx1 size, 

P standing for the first port and A for the antenna. The transpose of this matrix (GSMAP) connects 

the mode received by the antenna with the ingoing modes of the tunnel port. 

 
Fig. 2.20. Section of the Massif Central tunnel with antenna. 
 

The second tunnel section, of the length z, is placed between two previously mentioned 

subsystems and encompassed by ports of both sections with antennas. It is modeled by the means 

of 2-D FEM where electric field is assumed to be superposition of propagating modes (2.10). The 

part of GSM connecting ingoing and outgoing modes at two ports at the ends of this section is 

diagonal with 
γ2D( , ) mz

GSM m m e
 . 

The GSM representing the whole system is computed by formulas for the cascaded 

subsystems as in [152], and it is 2x2 square matrix, representing the communication link between 

transmitting and receiving antenna. The received power is then defined as the function of distance 

between two antennas (z+2l):  
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sys 2
R T( , , 2 ) | (2,1) |P x y z l GSM P  ,                     (2.11) 

where PT is the input power of the transmitting antenna and the part of the system GSM needed 

for the computation is defined as: 

 sys AP 2D PA(2,1)GSM GSM GSM U GSM            ,                                                     (2.12) 

where      1
PP 2D PP 2D

U I GSM GSM GSM GSM


                 , I is diagonal unit matrix and 

GSMPP represents the correlation between outgoing and ingoing modes of the tunnel port 1 in the 

section in Fig. 2.20. 

GSM results of the whole system are compared to measurements [151] with the antennas 

excited by 34 dBm and the received power measured in dBm. Two dipole antennas are utilized for 

measurements at 450 MHz frequency, while horn antennas with 7dBi gain are used at 900 MHz 

operating frequency. Both transmitting and receiving antennas are placed 2 m away horizontally 

from the center and 2 m away vertically from the lowest points of the tunnel [150],[151].  

For the FEM-MM-GSM models at operating frequency of 900 MHz, xA = 2 m and yA = 2 

m. The horn antenna is designed to have 7 dBi gain and it is 0.41 m long with 240 mm x 120 mm 

waveguide feed which is excited by the dominant mode. The antenna is modeled by means of 

perfect electric boundaries and the space around it is finely discretized. The models are enclosed 

by Absorbing Boundary at l’ = 1.58 m away from the antenna, while the port is located at the 

opposite side at the same distance, 57895 3-D elements discretized the subsystem and Nu = Nv = 

Nw = N = 1.  

For the FEM-MM-GSM model at operating frequency of 450 MHz, Nm = 100, xA = 1.95 m 

and yA = 2 m. Absorbing boundary (ABC) in Fig 2.20 is exchanged to another tunnel (waveguide) 

port. The dipole wires are modeled by means of perfect electric boundaries, the space around it is 
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finely discretized and the dipole is excited by ingoing TEM wave across the terminal. Distance of 

the ports to the antenna is l = l’ = 0.54 m and 11922 3-D elements discretized the subsystem and 

Nu = Nv = Nw = N = 1. The coarser model is obtained by 202 2-D elements at port at l = 0.66 m 

distance from the antenna and ABC behind the antenna at the same distance. The 3-D structure is 

modeled by 2390 second order elements and basis functions parameters Nu = Nv = Nw = N = 2 and 

number of 3-D unknowns is 60756. The model is labeled as MC in the Fig. 2.21. 

It is observed in Fig. 2.21 that, for higher frequency, with increase of number of modes at 

the boundary from 100 to 300, results correspond better to the measurements, as expected. For the 

lower frequency, 100 modes model achieves excellent comparison with measurements. For the 

results labeled N2D = 2, the field at port is expanded Nu = Nv = 2 order of the basis functions, further 

confirming the results precision. 

Relative received power in dB [150] has different signal level from measurements in dBm 

in [151], which authors in [150] explain is due to insertion loss of the antennas. We account for 

the difference when presenting our results. Results in Fig. 2.21 are computed using formula in 

(2.11), with insertion loss included, which is evaluated to decrease received power by 13 dB.  

 
Fig. 2.21. Received Power as a function of distance between transmitting and receiving antenna. 
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Variation of y component of the electric field vector over the tunnel cross-section, 

computed as sum of the modes, is shown in Fig. 2.22 at the 450 MHz operating frequency. The 

two cross-section are at 0.54 m and 500 m away from the transmitting antenna and the dipole is 

excited by ingoing TEM wave with 1.29 V across the terminal. 

   
a)                                                                          b) 

Fig. 2.22. Field pattern at a) 0.54 m and b) 500 m away from the antenna. 
 

Relative received power measured in dB in Fig. 2.23 are computed using formula in (2.11) 

and port refinement as in Fig. 2.20. They are compared with measurements for both horizontally 

(HH) and vertically (VV) positioned transmitting and receiving dipole antennas [150], showing 

excellent agreement for both amplitude variation and pseudo periodicity, unlike commonly used 

equivalent rectangular model of the tunnel. The results for vertical polarization are shifted by 52 

dB to match the power representation in the figure. Operating frequency is 510 MHz, Nm = 150, 

yA = 2 m and antenna is horizontally situated 1.2 m away from the wall of the tunnel, i.e. xA = 3.1 

m. 3-D FEM model of the subsystem with antenna is similar to the one in Fig. 2.20. Distance of 

the port to the antenna is l = 0.48 m and absorbing boundary is placed at the same distance on the 

other side of the antenna. The subsystem is discretized by 7590 3-D elements. Order of the basis 

functions per element is Nu = Nv = Nw = N = 1 and number of 3-D unknowns is 25096.  
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Fig. 2.23. Relative received power for the antenna situated in the vicinity of the wall. 
 

2.6 Conclusion 

Double Higher Order FEM-MM computation of GSM is developed using modal forms and 

propagation coefficient from eigenvalue solution of 2-D FEM analysis in Chapter 1. The method 

is verified with one mode large domain model analysis and compared to purely FEM waveguide 

analysis for dominant mode excitation. p- and h- refinement analysis is operated on short W-90 

with cylindrical post by multi-mode GSM computation showing the benefits of large domain 

discretization and multimode boundary condition at the ports truncating the domain of 

computation. SIBC is implemented and methodology is verified by comparing results of the 

rectangular waveguide model with lossy dielectric walls to Vector Parabolic Equation method. 

Massif Central tunnel with the geometry accurately presented by second geometrical order 

elements is analyzed by means of DHO FEM-GSM-MM with SIBC modeling the tunnel walls. 

Communication system in Massif Central tunnel is simulated at operating frequencies of 450, 510 

and 900 MHz and excellent agreement with measurements is achieved when using large number 

of modes for field expansion, even near the wall of the tunnel. 
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3 EXTRACTION METHOD FOR NEAR-FIELD SINGULAR AND HYPERSINGULAR 

INTEGRALS FOR THE DOUBLE HIGHER ORDER SURFACE INTEGRAL EQUATION 

METHOD OF MOMENTS 

3.1 Introduction 

Precise and computationally efficient matrix entry determination for the method of 

moments (MoM), applied to the surface integral equation (SIE) formulation in the frequency 

domain, highly depends on the evaluation of the integrals defined on the surface elements, which 

is especially complicated for near-singular integrals, i.e. for the elements in close proximity. The 

techniques improving the integral precision for small distances between testing and basis elements 

in the MoM matrix entries computation are mainly categorized into singularity extraction (i.e. 

subtraction methods) [40],[42] and singularity cancellation (i.e. coordinate transformation 

methods) [43]-[44]. The benefits of treating source and testing integrals simultaneously (so called 

4-D integral) have been reported [46],[47] and are proving to be the best choice for specific mutual 

spatial position of elements. This chapter is about novel extraction integration technique that 

mitigates 2-D singularity on the basis patch and can be utilized on testing and basis elements in no 

specific mutual spatial position, also taking into account higher order basis function approximating 

equivalent currents defined over higher order elements which adds complexity to the problem [42]. 

In general, MoM-SIE method solves electromagnetic response of the structures with both metallic 

and dielectric/magnetic features. This increases the singularity of the integrated function so the 

method needs to alleviate both types of singularities. 

This chapter is organized as follows. Section 3.2 gives an overview of the Double Higher 

Order (DHO) Surface Integral Equation (SIE) Method of Moments (SIE). Section 3.3 gives 

overview of novel singularity extraction technique [42], with the introduction to the method 
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correction for the low precision cases, which is the main topic of the work presented. In Section 

3.4 numerical results and discussion are provided, followed by the summary in Section 3.5. 

3.2 Double Higher Order Surface Integral Equation Method of Moments  

3.2.1 Surface Integral Equation Formulation  

Let the arbitrary electromagnetic structure be excited by a time-harmonic electromagnetic 

field of Ei and Hi electric and magnetic field intensities of angular frequency . Based on surface 

equivalence principle [1], [2] this structure can be broken into subsystems, where each represents 

a homogeneous dielectric region or a domain. While the medium homogeneity of each domain is 

a requirement, there can be metallic surfaces contained within each medium. The electric and 

magnetic fields, E and H, scattered from the dielectric discontinuities in each domain, can be 

represented as the radiation by the equivalent surface electric JS and magnetic MS currents placed 

on the boundary of the domain.  Only the electric currents (JS) are required for metallic surface 

representation.  

The tangential components of electric and magnetic fields at the boundary surface between 

two dielectric domains yield  

tang22SStangitang11SS )]μ,ε,,([)()]μ,ε,,([ MJEEMJE  ,        (3.1)

 tang22SStangitang11SS )]μ,ε,,([)()]μ,ε,,([ MJHHMJH  ,            (3.2) 

where ε1, µ1 and ε2, µ2 are complex permittivity and permeability of domains 1 and 2. Equations 

(3.1)-(3.2) represent the boundary conditions for the electric and magnetic fields and assume 

excitations to be present only in domain 1. At the surface of the conducting bodies, the above 

mentioned boundary conditions reduce to  

S S 1 1 tang i tang[ ( , ,ε ,μ )] ( ) 0 E J M E .                                  (3.3)  
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The electric and magnetic fields radiated by the equivalent electric and magnetic currents 

in the domain with complex permittivity ε and complex permeability µ are calculated as follows: 

)()( MJ SS MEJEE  ,            (3.4) 

 AJE jω)(J S ,            (3.5) 

1
M ( ) ε

S

  E M F ,                 (3.6) 

)()( JM SS JHMHH  ,                 (3.7) 

US  FMH jω)(M ,            (3.8) 

1
J ( ) μ

S

 H J A .             (3.9) 

In the above expressions, A, F, Φ and U are the magnetic and electric scalar and vector 

potentials, which are computed as 


S

Sgdμ SJA ,           (3.10) 


S

Sgdε SMF ,           (3.11) 

1 1
S Sjω ε d

S

g S
     J ,          (3.12) 

1 1
S Sjω μ d

S

U g S
    M ,          (3.13) 

where integration is performed over the boundary surface of the domain S, with g being the 

homogeneous medium Green’s function  

R
g

R

4

e-γ

 ,      εμjωγ  ,          (3.14) 

γ the propagation coefficient and R the distance between field and source points. 
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The integral expressions for fields E and H in (3.4)-(3.13) plugged in (3.1)-(3.3) represent 

a set of coupled electric/magnetic field integral equations (EFIE/MFIE) with JS and MS as 

unknowns, which are numerically solved by the method of moments (MoM) [2]. 

3.2.2 Method of Moments Generalized Galerkin Impedances 

In the method of moments equivalent electric and magnetic current densities JS and MS, 

are approximated by a linear combination of the basis functions, defined on the geometrical 

elements which tessellate electromagnetic system geometries, where the objective is to determine 

the unknown coefficients of the expansion [2]. The classic approach to the compute these 

unknowns is to test system of equations (3.1)-(3.3) by means of the Galerkin method, where the 

testing functions are identical to the ones used in the current expansion [12]. This procedure results 

in a system of linear equations, comprising of different types of elements, corresponding to the 

various combination of basis and testing functions, which can be expressed as follows  

m

S

nmmn SZ

m

d)( SJS
ee   JEJ ,          (3.15) 

m

S

nmmn SZ

m

d)( SMS
em   MEJ ,          (3.16) 

m

S

nmmn SZ

m

d)( SJS
me   JHM ,          (3.17) 

m

S

nmmn SZ

m

d)( SMS
mm   MHM .         (3.18) 

where JSm, MSm, JSn and MSn are the electric and magnetic current expansion functions defined on 

the mth and nth surface elements (Sm) and (Sn). The matrix entrees defined by equations (3.15)-

(3.18) are called generalized Galerkin impedances. The right hand side of the final matrix equation 

(generalized voltages) are determined by system excitations in the form of incident electric Ei and 

magnetic Hi fields, and are computed as  
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m

S
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Substituting equation (3.5) into (3.15), applying the divergence theorem and expanding

 SS m n
  J , results in the following expressions for electric/electric Galerkin impedances: 
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where nm is the outward facing unit vector normal to the boundary contour Cm of the surface Sm. 

When the divergence-conforming basis functions are used, the latter term in (3.21) is equal to zero 

[12]. Finally, using (3.10) the vector potential An can be expressed in terms of the corresponding 

electric-current basis function JSn defined over surface element (Sn), which results in the following 

expression 

ee 1 1
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Similarly, using vector calculus identity for  gnM  and scalar triple product manipulations, 

(3.6), (3.11) and (3.16) is transformed into mixed electric/magnetic generalized impedances  
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Subsequently, due to the duality principle, the magnetic/electric and magnetic/magnetic Galerkin 

impedances in (3.17) and (3.18) are computed as 
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Therefore the electric and magnetic field integral equations (3.1)-(3.3) by means of MoM 

are transformed into system of linear equations that can be represented in the matrix form as 

follows 
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where α and β are column matrices of the unknown coefficients of the electric and magnetic current 

densities expansions, Zee, Zme , Zem and Zmm are matrices with elements computed by (3.22)-(3.25), 

and Ve and Vm by (3.18)-(3.19). 

The general method of moment technique, however, is not restricted to the type of the 

geometrical subdivision blocks or particular basis functions. Therefore there are many ways to 

obtain system of linear equations (3.26). This work is focused on surface discretization with 

generalized higher-order curvilinear quadrilaterals and current densities approximated by 

divergence-conforming hierarchical polynomial basis functions, which is described in details in 

Section 3.2.3. 

3.2.3 Higher-Order Geometrical Elements and Basis Functions  

A generalized quadrilateral is shown in (Fig. 3.1), which is used as the tessellation unit for 

geometry approximation. The curvilinear quadrilateral is determined by M = (Ku+1)(Kv+1) 

arbitrarily positioned points, with Ku and Kv (Ku, Kv  1) being geometrical orders of the element 

along u- and v- parametric coordinates, mapping it into parametric square [12]. Therefore, 

analytically position vector of the point on the 2-D element is defined as follows 
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where r1, r2, …, rM are the position vectors of the interpolation points and pi(u, v) are Lagrange-

type interpolation polynomials. The parametric coordinates uj and vj represent the local locations 

of the j-th node, and rkl are constant vector coefficients derived from r1, r2, …, rM.  

 
Fig. 3.1. A generalized parametric quadrilateral of geometrical orders Ku and Kv (Ku, Kv  1). 
 

Electric and magnetic surface current densities over every curvilinear quadrilateral are 

expanded as 
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where fmo are maximally orthogonalized higher order basis functions [52] which building blocks 

are divergence-conforming hierarchical polynomial vector basis functions (f) defined as 
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where Nu and Nv are the degrees of the polynomial current approximation [12]. The unitary vectors 

au and av in (3.30) are calculated as  
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with r given by equation (3.27), and ),( vuJ  is the Jacobian of the covariant transformation, 

|),(),(|),( vuvuvuJ vu aa  .           (3.32) 

The mixed-order arrangement in (3.28) and (3.29), where the expansion orders in different 

directions are intentionally left uneven, equalizes the final approximation orders for surface charge 

densities. This has been found to be the most suitable choice for modeling of surface current 

densities and results in the more robust solution. 

3.3 Near-Singular and Near-Hyper-Singular Integrals 

Matrix elements in (3.22)-(3.25) are numerically evaluated such that outer integral over the 

testing surface (Sm) is evaluated by means of Gauss-Legendre numerical integration process. The 

inner integral over the basis surface element (Sn), popularly called two dimensional (2-D) integral, 

is evaluated integrating just the basis element dependent variables while the testing element is only 

considered by means of the Green’s function (3.14) and field point (i.e. integration point of the 

numerically evaluated outer integral). Having in mind that double higher order 2-D surface 

integrals are defined on the Lagrange-type generalized curved parametric quadrilateral elements 

(in Fig. 3.1) and that the unknown currents, Js and Ms in (3.28) and (3.29), are approximated by 

polynomial basis functions of the higher order, building blocks of the two types of singular 2-D 

integrals over the quadrilateral patch, have the following forms respectively  
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where i and j represent arbitrary polynomial orders of the basis functions, γ  is the propagation 

coefficient in the medium on the either side of the element and R is the distance of the source point, 

r(u,v), from the field point, rF, (3.14), s labeling singular and hs hyper-singular integrals which  

constitute Zee/Zmm and Zem/Zme generalized impedances, respectively. If the field point is in the 

proximity to the basis patch, R becomes small and kernels in (3.33) and (3.34) contain weak and 

strong near singularity respectively. In order to efficiently and precisely determine these integrals 

handling of the near-singularity is performed. 

The integral enumeration technique presented here utilizes the singularity extraction 

method which, in general, alleviates the singularity by approximating the integrand as a function 

over parallelogram, in order to be computed analytically. The parallelogram is, as well as 

quadrilateral, defined as parametric surface in u-v domain. The difference between original 

function and the approximation is numerically integrated using Gauss-Legendre quadrature 

formulas.  

Considering that RP(u,v) is the distance of the (u,v) point on the parallelogram from the 

field point and that variable t is defined as t(u,v) = R2(u,v) - Rp
2(u,v), the distance R can be 

represented as: 

2( , ) ( , ) 1 ( , ) ( , )P PR u v R u v t u v R u v  .                                                                   (3.35) 

The approximated singular and hypersingular integrand functions (3.33) and (3.34) defined over 

the parallelogram are represented through Taylor’s expansion series over t(u,v)/RP
2(u,v) having in 

mind (3.35): 
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where An and Bn are expansion coefficients that depend on variable t. In our implementation, the 

infinite expansions (3.36) are truncated such that n takes integer values from -2 to 4 and 5 for the 

singular and hyper singular function, respectively. 

The smaller the ratio t(u,v)/RP
2(u,v) in (3.35) is, the expanded functions in (3.36) better 

approximate the original function at the (u,v) point. Therefore, parallelogram is constructed to be 

similar to the surface of the generalized quadrilateral in the vicinity of the singular point. It also 

needs to be tangential to the quadrilateral at the closest point projection (i.e. cpp point) so the 

analytic integral evaluation is enabled [40],[42]. The parametric surface is obtained by extending 

the element out of its finite bounds ( 1,1  vu ) and the closest distance between the field point 

and the unbounded parametric surface containing the basis element (d) is obtained. The point on 

the unbounded parametric surface closest to the field point is called the closest point projection 

(cpp) and is computed using Newton-Raphson iteration procedure [48] solving the extremal 

problem  

min)),(()),((min||),(|| FFF  vuvuvuR rrrrrr .       (3.37) 

Once close projection point with (u0, v0) coordinate is computed, the position vector (R) of 

the source point (r(u,v)) to the field point (rF) is expressed as 
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where d is the distance of the field from cpp point, n is the unit normal to the (extended) 

quadrilateral surface at the (u0, v0) point, akl represents the kth and lth derivative of the quadrilateral 

surface at the (u0, v0) point with respect to u and v, and du = u - u0 and dv = v - v0 are local coordinate 

distances between (u,v) and cpp point. The square of R is evaluated as: 
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The parallelogram is then constructed at the close point projection as (in Fig. 3.2.):  

2 2 2 2 2 2( , ) d d 2 cos αd d
P u v u v

R u v d b u b v b b u v    ,       (3.40) 

where bu, bv and cos are defined to match the coefficients with same du/dv power in R2 (3.39). 

Variable t(u,v) is a polynomial of du and dv with all terms being the third or higher order which, 

in general, creates well approximated integrands in (3.36). 

 
Fig. 3.2. The parallelogram constructed to be tangential to the quadrilateral element at the close 
point projection. 
 

The ratio t(u,v)/RP
2(u,v) becomes relatively large if RP

2(u,v) is of the order or smaller than 

t(u,v), leading to finite expansion in (3.36) being inferior approximation of the original function. 

This occurs when the term 2bubvcosαdudv becomes negative and close enough in value to the other 

terms in (3.40), i.e. when cosαdudv < 0 and |cosα| is relatively large. Consequently, element 

geometry is constrained to angles between 60o and 120o. i.e. |cosα| ≤ 0.5 over the basis element. 

For the cpp point outside of the element domain where the extension is defined as in (3.27), |cosα| 

might be larger than 0.5 due to the large angle between a10 and a01 in (3.39). In these cases, element 

is extended using the first order parameters (a10 and a01) computed at the point on the patch domain 

closest to the field point, i.e. this is the most singular point on the patch. The close projection point 

is recomputed and parallelogram is constructed as previously. Note that now parallelogram and 
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quadrilateral coincide outside of the finite patch, so t(u,v) = 0 at the most singular point on the 

patch and t(u,v) is not the polynomial function of the third order. The results computed in this 

manner and presented in Section 3.4 are labeled “corrected”. 

Integrals of the expanded functions (3.36) are computed as a sum of the analytically 

determined integrals over the parallelogram and are of the following form [42]: 
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qpn vuRvuI dd,,
,          (3.41) 

where n takes values of odd integer between 3 and -9,  p and q values depend on Nu and Nv orders 

(3.28) of the basis function and geometrical Ku and Kv orders of the quadrilateral having in mind 

that unitary vectors depend on the quadrilateral geometry (3.31). The parallelogram is divided into 

four triangles, each defined by cpp point and one side of the parallelogram. For some of the n, p, 

q values, integrals have known analytical formula. For other values of parameters, integrals (3.41) 

are recursively computed using the surface gradient identity. Note that the recursive 

implementation can rapidly loose precision which needs to be appropriately addressed. Details of 

the analytical integration over flat triangles with higher order basis functions are given in [40] and 

[42] provides detailed derivation for the higher order polynomial basis function over parallelogram 

extending the formulas in [40] for values of n smaller than -3.  

3.4 Numerical results 

Convergence (δ) of the numerical results presented in this section is computed as:   
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where I represents the value of the integral computed over the surface by NGL number of integration 

Gauss-Legendre points along one dimension, I
~

is integral evaluated at high number of NGL 
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assuming it to be accurate, while Δδ is the difference between precision values computed for the 

new and traditional extraction methods. The traditional extraction method builds parallelogram 

using just the first order geometrical parameters, does not include the variation of the higher order 

basis functions over the patch and limits approximation to RP
-1 and RP

-3 terms from singular and 

hypersingular kernels (3.36), respectively. 

One out of six second order elements in Fig. 3.3 describing sphere of unit radius is tested 

for different values of projection point coordinates and results are provided in Figs. 3.4-3.7. The 

results presented in Figs 3.4-3.5 assume projection points inside element geometry. The integrals 

are computed for i and j in (3.33)-(3.34) taking values between 0 and 6. a) to c) plots present 

convergence of the sample values of i and j while d) plot presents difference in integral 

convergence between new and traditional method for all i and j combinations. Novel method shows 

significant improvement over the traditional method. 

 
Fig. 3.3. Six surface element sphere model of the second geometrical order with radius a. 
 

The results presented in Figs. 3.6-3.7 assume projection points outside element geometry. 

The integrals are computed using new and traditional method, as well as corrected new method. 

The integrals are computed for i and j in (3.33)-(3.34) taking values between 0 and 6. (a) to (c) 

plots present convergence of the example values of i and j while (d) plot presents difference in 

integral convergence between new corrected and traditional method with all i and j combinations. 
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Novel corrected method shows significant improvement over the traditional method, especially for 

the higher order basis functions. 

 
a)                                                                 b) 

 
c)                                                                d) 

Fig. 3.4. Convergence results for the second order element in Fig. 3.3 for a=1m, γ ≈j0.7755rad/m, 

closest projection point coordinates u0=0.1 v0=-0.1 and d=10-5m. (a) i=0, j=0; (b) i=3, j=4; (c) i=6, 
j=6;. (d) Difference in convergence between two methods for iϵ[0,6], jϵ[0,6]. 
 

3.5 Conclusion 

Recently developed novel extraction method [42] incorporated in 2-D integral computation 

of the Double Higher Order Surface Integral Equation Method of Moments is presented with 

precision benefits over the traditional extraction method. This is achieved by incorporating higher 

order basis function and element approximation into computation of the parallelogram and analytic 

integral approximation. Further, method is improved to increase the accuracy in the cases showing 

precision tendencies inferior to the traditional method and results are presented. 
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a)                                                                 b) 

 
c)                                                                d) 

Fig. 3.5. Convergence results for the second order element in Fig. 3.3 for a=1m, γ ≈j0.7755rad/m, 

closest projection point coordinates u0=0.9 v0=0.9 and d=10-5m. (a) i=0, j=0; (b) i=3, j=4; (c) i=6, 
j=6;. (d) Difference in convergence between two methods for iϵ[0,6], jϵ[0,6]. 
 

 
a)                                                                 b) 
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c)                                                                 d) 

Fig. 3.6. Convergence results for the second order element in Fig. 3.3 for a=1m, γ ≈j0.7755rad/m, 

closest projection point coordinates u0=1.1 v0=1.1 and d=10-5m. (a) i=0, j=0; (b) i=3, j=4; (c) i=6, 
j=6;. (d) Difference in convergence between two methods for iϵ[0,6], jϵ[0,6]. 
 

 
a)                                                                 b) 

 
c)                                                                d) 

Fig. 3.7. Convergence results for the second order element in Fig. 3.3 for a=1m, γ ≈j0.7755rad/m, 

closest projection point coordinates u0=1.2 v0=1.2 and d=10-5m. (a) i=0, j=0; (b) i=3, j=4; (c) i=6, 
j=6;. (d) Difference in convergence between two methods for iϵ[0,6], jϵ[0,6]. 
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4 DOUBLE HIGHER ORDER MULTILEVEL FAST MULTIPOLE METHOD FOR 

ELECTRIC FIELD SURFACE INTEGRAL EQUATION 

4.1 Introduction 

The Double Higher Order (DHO) Method of Moments (MoM) techniques have been 

around for number of years [6]-[12], [16]-[22]. The Surface Integral Equation (SIE) based 

techniques [1]-[12] were efficiently used for predominantly homogenous, while Volume Integral 

formulations [13]-[22] for inhomogeneous objects. Aimed at the reduction of a total number of 

unknowns, these methods have demonstrated clear numerical advantages in discretization of the 

electrically large structures. However, due to high density of the final system of linear equations 

and a large condition number, the most popular approach to its solution is a direct LU factorization 

based solver. The memory required for the matrix storage as well as the complexity of the matrix 

solution with iterative solver is O(N2), while LU decomposition complexity is O(N3), where N is 

the number of unknowns. At the same time, due to rigorous inter element multidimensional 

integration of the Green’s function, the matrix filling procedure complexity is O(N3). Therefore, 

at certain point, DHO MoM technique maximally utilizes system capacity and becomes inefficient.  

Another approach to accelerate Integral Equation based solvers is the Fast Multipole 

Method (FMM) [23]-[26] and its multilevel version MLFMM [27]-[39]. In combination with 

iterative solvers [27]-[29], the complexity of this technique can be reduced to O(N3/2) and even 

further to O(NlogN). The base of the FMM approach is a representation of the fields radiated by 

one group of elements using the spherical multipole expansion [24]. Therefore, the interaction 

between two elements located far apart is computed as a combination of the group-to-group and 

intragroup interactions. The MLFMM technique has been proven to be extremely efficient, when 

applied to the lower order MoM-SIE approaches [27]-[32]. However, its benefits have been seldom 
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explored with higher order modeling [33]. This chapter focuses on the unique MLFMM 

implementation with the hierarchical divergence-conforming basis functions (3.30) defined on the 

higher order curvilinear quadrilateral discretization elements (3.27), [12]. 

4.2 Fast Multipole Method and Rokhlin’s Translation 

The foundation of the Fast Multipole Method (FMM) is a geometrical grouping of 

discretization elements, based on their central point location.  The division of the model into groups 

is depicted in Fig. 4.1 as 2-D representation of the actual 3-D problem. The volume of the model 

is divided into 3-D grid, where each element discretizing the model is assigned to the group (grid 

element) containing its center. The matrix elements pertaining to interactions within the group or 

between the groups in the proximity are computed using Double Higher Order MoM-SIE as 

described in Section 3.2.1. However, interactions between the groups of basis functions defined 

on geometrical elements positioned sufficiently far can be approximated by Rokhlin’s transfer 

function [24], which translates radiation pattern of one group to another and is defined as follows 
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where k is the wave number vector having the same direction as unit radial vector at the surface 

of the sphere, ijr  is the vector between the centers of i-th and j-th groups, k̂ and ijr̂ representing 

unitary vectors, and 
)2(

lh and lP  are the spherical Hankel function of second kind and the Legendre 

polynomial of  l-th order respectively. The truncation index L is computed as  
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where dD 3  is the diameter of the group, d is the side length of the group, and 10 is the 

desired relative error [32].  



63 

Using Rokhlin’s translation the Green’s function g in equations (3.22)-(3.25) for 

sufficiently large R can be approximated as  
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where R=|r’-r”|, r’ and r” are position vectors at testing and basis elements, ri and rj are centers 

of i-th and j-th element groups, and integration is performed over the unit sphere. Taking into 

account that the gradient of the Green’s function in the far field zone is R̂jkgg  , integrals in 

equations (3.22) and (3.23) can be represented as follows 
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where m-th and n-th basis/testing functions belong to i-th and j-th group respectively, 
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and rkl
(p) are constant vector coefficients of p-th geometric element (3.27) and n is u directed basis 

function (3.30) with in and jn orders in u and v directions. The integrals in equations (3.24) and 

(3.25) are computed similarly to (4.4)-(4.6).  
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The benefit of the FMM is in faster computation of Eqs. in (3.22-2.25) pronounced in 

conjunction with iterative solver, where matrix vector multiplication complexity is decreased 

because Zmn, for the patches that are far away, is not explicitly computed but the matrix vector 

product. Building blocks enabling acceleration are Iterative solver (Section 4.3) and Aggregation, 

Translation and Disaggregation process described in Section 4.4. 

4.3 Generalized Minimal Residual Method (GMRES) and Block-Diagonal preconditioner 

Iterative solvers are used to compute an approximate solution to the matrix equation 

starting from an initial guess. In the process of solving, they generate the sequence of approximate 

solutions, each obtained from the previous solutions. The stopping criteria of the rounding error 

determines if the last approximate solution can be considered as the result. Iterative solvers are 

mainly used to solve non-linear equations, but employed as well for linear equations with large 

number of unknowns due to lower complexity compared to the direct solvers computing the exact 

solution.  

Krylov subspace methods (e.g. Arnoldi, Lanczos, Conjugate gradient(CG), Generalized 

Minimal Residual Method (GMRES), Biconjugate Gradient Stabilized (BICGSTAB)) are 

commonly used in SIE-MoM ([27]-[29] and Section 1.3) building a linear subspace for the 

approximate solution. The maximum number of iterations will give the exact solution but much 

smaller number of iterations usually gives approximation satisfying needed accuracy, especially if 

appropriate preconditioning is applied. Preconditioner is a matrix multiplying both left and right 

hand side of the matrix equation decreasing the system’s condition number, creating an equivalent 

system which will reach given accuracy in less iterations than original system. The main bottleneck 

in iterative solvers’ application is matrix vector multiplication in the process of building the 

subspace. The matrix vector multiplication (y) is conducted using following notation 
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farnearfarnear ][][][ yyxZxZxZy  ,        (4.10) 

where x is the last approximate solution and interaction between elements in the proximity are 

computed with full MoM-SIE ([12]) labeled with [Znear] (3.22)-(3.25) and far field interactions 

[Zfar] are implicitly computed using FMM group interactions (4.4)-(4.6). Complexity of matrix 

vector multiplication using full matrix storage is O(N2), while using FMM approximation is 

O(N3/2) and O(NlogN) for its multi-level form. We have implemented GMRES for complex 

equation systems [49] and Block-Diagonal preconditioner constructed from blocks of inverse of 

the intragroup interactions.  

4.4 Aggregation and Disaggregation processes 

Fast matrix vector multiplication (4.10) is enabled by FMM’s Aggregation and 

Disaggregation processes explained on the example of interactions between testing and basis 

functions defined on Si and Sj surface elements representing all elements belonging to the i-th 

testing and j-th basis groups respectively. Aggregation assumes the process of summation of 

transmitting radiation patterns (4.7) coming from all source (basis) currents at the j-th group at the 

group’s center for each wave vector k (current coefficients being the last approximate solution x) 


jn Sf

nnjj x
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s )()( kΦkΦ ,            (4.11) 

depicted by green arrows in Fig. 4.1. The transmitting radiation pattern of the j-th group (Φs
j(k)) 

is then translated to the center of the i-th group, for each wave vector k, using Rokhlin’s translation 

(TL(k,rij)), represented by black arrow in Fig. 4.1.  
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Fig. 4.1. 2-D representation of Aggregation (at j-th FMM group) and Disaggregation (at i-th FMM 
group) processes.  
 

Transmitting radiation patterns originating from all the groups that are in the far field zone 

of the i-th group are translated and summed at its center. Disaggregation processes at the i-th group, 

represented by red arrows in Fig. 4.1, computes ym
far coefficient (4.10), where m-th basis/testing 

function belongs to the i-th group, by multiplying far field radiation influences summed at the 

center of i-th group by its receiving radiation pattern Ψmi(k) (4.7) and performing integration over 

the unit sphere (i.e. over k values). The disaggregation process is repeated for each testing function 

defined on the elements of the i-th group. The process of computing the yfar coefficients in (4.10), 

thus can be mathematically described using (4.5)  
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and is employed on the Eqs. (4.4) and (4.6) in the similar fashion. 

The acceleration in the computation comes from the fact that Aggregation process is done 

just once for each group and results are stored. The transmitted far field radiation patterns are than 

translated to the centers of each testing group and summed, followed by disaggregation process to 
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each testing function (done only once per iteration) and integration over the unit sphere ending in 

MVM coefficient computation.  

4.5 Multilevel Fast Multipole Method (MLFMM)  

MLFMM is multi-level version of FMM algorithm that accelerates MVM even further 

using Octree grouping scheme [50], three level grouping is shown in Fig. 4.2. The model domain 

is divided by two in each dimension (the coarsest grouping is boxed in maroon), then each of the 

domain of the first level groups is halved in each dimension to get the second level groups (boxed 

in blue). The third level (the finest grid in this case) groups are boxed in black. For each level, it 

is decided which pairs of groups are in the far field zone and which are in the near field zone. In 

Fig. 4.2., none of the pairs of the coarsest groups can be considered to be in far field zone being 

the neighboring groups. 

Two level FMM is depicted in Fig. 4.2 using black and blue boxed groups for finer (higher) 

and coarser (lower) level FMM approximation, respectively, maintaining the color code with 

group names. Some of the finest level FMM intergroup interaction is computed as explained in 

previous section (e.g. interaction between the i-th and the j-th group as well as between i-th and 

the l-th group in Fig. 4.2). In the case two groups of the highest (finest) level are situated further 

away, their interaction can be computed through the coarser level FMM, e.g. interaction between 

the l-th and the j-th group in Fig. 4.2 can be computed through h-th and f-th groups interaction, 

assuming the coarser groups are in the far-field zone. The transmitting radiation pattern of the j-th 

group is aggregated at its center as in the previous Section. It is then translated to the center of the 

coarser level group (the h-th group) and summed with radiation patterns coming from all other 

finer level groups contained in the h-th group. The h-th group transmitting radiation pattern is then 

translated using Roklin’s translation to the center of the f-th group for each wave vector k as 
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described in previous Section. The radiation pattern received is translated to the center of the l-th 

group and summed with radiation patterns received from interactions in the finest level (e.g. from 

the i-th group). The disaggregation process with integration over unit sphere follows computation 

MVM product. If described process is expanded to the multi-level grouping scheme, it is called 

MLFMM which can achieve O(NlogN) complexity of the method. Note that the integration over 

unit sphere is always done on the finest level having the smallest number of integration points. 

4.5.1 Interpolation, Translation and Anterpolation process 

The multi-level computation is enabled by incorporating Interpolation, Translation and 

Anterpolation processes into inter level transfer of the radiation patterns. Integration over unit 

sphere is computed using Nϕ uniformly chosen samples in ϕ direction and Nθ Gauss-Legendre 

points in θ direction, where Nϕ=2Nθ=2(L+1), where L is given in (4.2). The sampling rate depends 

on the size of the group, entailing more integration points for larger groups, i.e. different FMM 

levels require different number of sampling points on the unit sphere. 

 
Fig. 4.2. 2-D representation of two level FMM and three level Octree scheme.  
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In order to transfer radiation pattern from the finer level to the coarser level, it is computed 

at integration points of the coarser level via two stage 2-D Lagrange interpolation process 

employing 2p x 2p points [51], where p is an input parameter controlling the accuracy. It is then 

translated to the center of the coarser group (rh) by multiplying radiation pattern with 
jhk

e
rk ˆj

, 

where hjjh rrr  . Similar process is done when transferring radiation pattern from the coarser to 

the finer grid level. It is translated from the center of the coarser (rf) group to the finer level group’s 

center (i.e. rl) by multiplying radiation pattern with 
flk

e
rk  ˆj

, where lffl rrr  . The radiation 

pattern then undergoes the anterpolation process (transpose interpolation) to evaluate its values at 

the integration points of the finer level. 

4.6 Numerical Results and Discussion 

4.6.1 PEC sphere modeled with FMM approximation 

Verification example is unit radius PEC sphere with 600 elements divided into 200 FMM 

groups in Fig. 4.3. The sphere is analyzed at 1.2 GHz, so the cube encompassing the structure is 

8λ large, where λ is wavelength in air. Iterative solver achieved 0.1154E-12 error. Size of the FMM 

group is λ and far field is assumed if the distance between group centers is 4λ. Results are compared 

to the full SIE matrix storage and direct solving with LU decomposition. Numerical parameters 

for both methods were kept Nu = Nv = 2 and NGLu = NGLv = 8 for both inner and outer integration 

per element. 

4.6.2 Dielectric sphere modeled with FMM approximation 

Another verification example is unit radius sphere with 600 elements and dielectric 

constant εr = 2.25. The sphere is analyzed at 600 MHz and there is 56 FMM groups. Iterative solver 

achieved 0.824642E-8 error. Size of the FMM group is λ and far field is assumed if the distance 
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between group centers is 4λ. Results, in Fig. 4.4, as a function of azimuthal angle and excitation 

of Eθ=1 V/m at inc = 0o and θinc=90o, are compared to the full SIE matrix storage and direct solver 

with LU decomposition. Numerical parameters for both methods were kept Nu=Nv=2 and 

NGLu=NGLv=10 for both inner and outer integration per element. The cross-polarization error in 

this case comes both from convergence accuracy provided to iterative solver as input as well as 

FMM approximation error.  

       
                      a)                                                                 b) 

Fig. 4.3. (a) Bistatic radar cross-section results for the first order PEC sphere at frequency f=1.2 
GHz. (b) Sphere model with FMM groups in distinctive colors. 
 

4.6.3 Interpolation example 

For the verification purposes, interpolation implementation is tested on the 1 m2 square 

metallic patch at 300 MHz, numerical parameters being Nu=Nv=3 and NGLu=NGLv=20 and the 

distance from the patch is 100 m in the direction normal to the element. Excitation is plane wave 

with θ component of the electric field being 1 V/m and incidence direction of inc = 0o and θinc=90o. 

Consider the sample point close to the pole with coordinates θs = 3.0698 rad and ϕs = 0 rad which 

is part of the finer grid determined by Nϕ=2Nθ=66. In general, the results at points closer to the 

poles of the unit sphere are interpolated with lower accuracy due to coarser point distribution in 

the vicinity of the pole.  
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Fig. 4.4. Bistatic radar cross-section results for the first order dielectric sphere at 600 MHz. 
 

The values of the radiation pattern computed using (4.7) at coarser grid determined for 

Nϕ=2Nθ=40 (blue points in Fig. 4.5), are used to approximate the radiation in the sample point with 

(θs, ϕs) coordinates (red star in Fig. 4.5). The resulting x-component of the original radiation and 

its approximation, computed by means of using 2-D Lagrange interpolation process with p=3, give 

7.2923e-04 and 2.6395e-04 relative error for real and imaginary component, respectively. 

Radiation function computed at coarser grid by means of (4.7) (blue points) and the approximated 

value (red star) are plot in Fig. 4.6 real and imaginary parts in separate plots. 

4.7 Summary and Future Work 

 This chapter presented FMM and its Multi-Level approximation incorporated with double-

higher order SIE-MoM solved by iterative solver (GMRES) and the specific implementation 

details are provided. The accuracy of FMM combined with GMRES is verified on the example of 

a large sphere model and interpolation implementation is tested on a metallic patch example. The 

FMM implementation presented has been used in master thesis and development of Randomized 
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Hierarchical Semi-Separable Structures solver for SIE-MoM [166]. Future work assumes further 

testing that will show O(N3/2) and O(NlogN) complexity is achieved by FMM and its Multi-Level 

approximation respectively. In order to analyze larger structures where the asymptotic behavior 

can be obtained, code needs to be changed for parallel execution, which is well known scalability 

issue for iterative solvers. 

 
Fig. 4.5. Illustration of interpolation grid for red point and p=3 with coarser grid points in blue. 
 

     
a)                                                      b) 

Fig. 4.6. Radiation (4.7) computed at coarser grid points and interpolated value (red star) for the 
example in Fig. 4.5 (a) Real and (b) Imaginary part. 
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5 SCATTERING CALCULATIONS FOR ASSYMETRIC RAIN DROPS DURING A LINE 

CONVECTION EVENT: COMPARISON WITH RADAR MEASUREMENTS2 

5.1 Introduction 

Polarimetric weather radars make use of the oblate shapes and high degree of orientation 

of raindrops in order to better estimate rainfall rates from the retrieved raindrop size distributions 

[135][136]. As a first step, they utilize the differential reflectivity (Zdr) along with the 

conventionally measured co-polar reflectivity (Zh), to reduce uncertainties in estimating the drop 

size distribution within the radar pulse volume [111]. The equilibrium shapes of raindrops are size 

dependent [108] and they are generally approximated by oblate spheroids whose axis ratios (minor 

to major) decrease monotonically with increasing size. Drops with diameters smaller than 0.8 mm 

can be considered almost spherical. For larger drops (>2.5 mm) the concept of dynamic 

equilibrium shape was introduced by Szakáll [137] to describe the time-averaged axis ratios due 

to drop oscillations observed in a wind tunnel which was also confirmed using the concept of ‘most 

probable’ shapes from 2-D video disdrometer (2DVD; [131]) by Thurai et al. [140]. It is now well-

known that axisymmetric drop oscillations dominate the background state with smaller amplitude 

mixed oscillation modes that give rise to asymmetric shapes [109]. However, there is no theoretical 

framework for modeling such asymmetric shapes in natural rainfall. Hence, the common approach 

is to neglect the variance of drop shapes and to relate the mean axis ratio with drop equi-volume 

diameter (Deq) ([108],[110],[139]).   

Asymmetric drops were inferred from 2DVD measurements in a highly-organized line 

convection rain event described in Thurai et al. [143]. During this event a significant fraction of 

                                                 
2 Reprinted, from “Manić, S.B., M. Thurai, V.N. Bringi and B.M. Notaroš, “Scattering Calculations for Asymmetric 

Raindrops during a Line Convection Event: Comparison with Radar Measurements”, J. Atmos. Oceanic Technol., vol. 
35, pp. 1169–1180 ” © American Meteorological Society. Used with permission. 
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drops (around 30%) within the line convection were asymmetric. Eight individual asymmetric 

drops were chosen from the 2DVD measurements to reconstruct their 3D-shapes (Thurai et 

al.[145]) and to determine their individual scattering amplitudes at C-band using the method of 

moments in the surface integral formulation (MoM-SIE) [114]. Scattering calculations for the 

individual asymmetric drops showed that the single particle differential reflectivity (Zdr) values 

differed from those calculated assuming rotationally symmetric shapes. Differences were also seen 

in the case of (single particle) specific differential phase (Kdp factor) as well as linear depolarization 

ratio (LDR).  

Accurate simulations of radar observables require accounting for variance of drop shapes 

which requires computation of drop-by-drop scattering amplitudes and integration of the elements 

of the covariance matrix over a given measurement interval [111]. The aforementioned line 

convection event is analyzed in this manner herein using 3D- reconstruction of drop shapes from 

2DVD disdrometer data. Radar reflectivity, differential reflectivity, copolar correlation coefficient 

and specific differential phase are computed with 1-min time resolution and compared to radar 

measurements extracted over the 2DVD site from the University of Alabama in Huntsville 

Advanced Radar for Meteorological and Operational Research (ARMOR) C-band radar (see 

[128],[116]). The radar is 15 km away from the ground instrument site and the height of the 

resolution volume is around 340 m at the lowest elevation angle of 1.3°. For completeness the 

linear depolarization ratio is also computed even though the radar is not configured for measuring 

LDR. The drop-by-drop scattering simulations are compared with the bulk method which refers to 

the use of the T-matrix scattering code [107] with input being the 1-minute averaged drop size 

distributions from 2DVD, the oblate axis ratios from Thurai et al. [139] with Gaussian canting 

angle distribution [mean=0°, σ=5°]. 
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This paper is organized as follows. Section 5.1 is reserved for the details of raindrop model 

construction, used as input to the scattering code. In Section 5.2, for validation purposes, we 

consider an example of an asymmetric drop that is reconstructed from 2DVD measurements [145] 

and the results obtained by our electromagnetic solver (MoM-SIE) are compared to those using an 

industry standard software. We then consider, in Section 5.5, the line convection event and 

compare radar measurements with scattering simulations using drop-by-drop as well as the bulk 

method. The paper concludes with a short Discussion and Conclusions section. 

5.2 Methodology: numerical solution 

Raindrop scattering calculations assuming oblate (or rotationally symmetric) shapes 

typically use the T-matrix method ([146],[107],[126]) which is widely used by the radar 

meteorology community (see, also, Chobanyan et al. [114] and references therein for a review of 

different scattering methodologies including discrete dipole approximation, surface and volume 

integral formulations used for precipitation particles).  

Scattering calculations are performed herein using a higher order method of moments 

solution to the electric and magnetic field surface integral equations (MoM-SIE) based on 

boundary conditions between air and water dielectric at the rain drop surface, Sa, i.e., the continuity 

of tangential components of total (incident plus scattered) electric/magnetic fields ([127],[12], 

Section 3.2) 

In our current work using the MoM-SIE methodology, a geometrical model is obtained by 

discretization of the raindrop surface using Lagrange-type curved parametric quadrilateral 

elements of arbitrary orders ([12],[114]). The method directly solves for an approximation of 

fictitious surface electric and magnetic current densities, Js and Ms, over the rain drop boundary 
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using hierarchical divergence-conforming polynomial basis functions, defined over quadrilateral 

elements ([12],[114] and Section 3.2). 

For a given incident wave, the scattered electric field is represented as the following 

function of current densities Eq. (3.4): 

 
a a

scat 2
s s 0 s s s a s a( , ,ε) j μ d d

S S

g k g S g S         E J M J J M ,                     (5.1) 

where g ( Rg
kR 4/e-j ) and k (

0εμωk  ), respectively, are Green’s function and wave number 

for the unbounded medium of parameters  = r0 and 0, with R being the distance of the field 

point from the source point, =2πf the angular (radian) frequency, and r the dielectric constant 

of the rain drop (water). Magnetic field is expressed in a similar fashion. 

When the distance R in (1) is zero or relatively small, the singular or near-singular terms 

are extracted and evaluated analytically, and the remaining non-singular integrals are calculated 

numerically using Gauss-Legendre integration formulas. The final matrix equation is obtained 

after the Galerkin testing procedure has been applied to boundary condition equations, which 

assumes another surface integration of the SIEs with testing (weighting) functions being equal to 

the basis functions. 

For verification purposes, another method that utilizes 3-D geometrical discretization is 

considered and results are presented in terms of single particle dual-polarization scattering for three 

different frequency bands. 

5.3 Raindrop modelling 

 Drop shapes recorded by the 2DVD are used for 3D-reconstruction (for Deq > 2 mm) using 

the algorithm in Schönhuber et al. [132]. Drops with Deq < 2 mm are assumed to have oblate 

spheroidal shapes with axis ratio as a function of Deq given in [139]. The 3D-reconstruction 
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procedure give rises to more significant errors for small drops (due to resolution of 170 µm) and 

hence the 2 mm threshold was applied. Note also that the larger drops will have more of an effect 

on Zdr than the small drops. 

Details of the 3D-shape reconstruction of each recorded drop from its images from the two 

orthogonal cameras have been published previously ([132],[134]) hence only a brief summary is 

given here. The 2DVD measures drop contours in two perpendicular planes which can be skewed 

due to horizontal component of the drop velocity (typical in line scan camera systems). For drops 

that possess an axis of symmetry, the contours can be deskewed as described in ([130],[118]); in 

addition, the horizontal velocity can be estimated. In the Appendix of Thurai et al. [145], the 

horizontal drop velocities derived from the deskewing procedure were shown to be in excellent 

agreement with the independent wind sensor measurements, both in magnitude and in direction. 

For deskewing asymmetric drops the horizontal velocity must be estimated. This is achieved from 

the drop horizontal velocities estimated from the deskewed symmetric drops closest in time and 

size to the asymmetric drop (see Section IV of Schönhuber et al. [132]).  One limitation of this 

method for asymmetric drops relates to the uncertainty in the exact drop horizontal velocity 

required as input to the deskewing procedure. However, apart from errors due to rapid fluctuations 

in wind velocities, we expect the reconstructed shapes to be reasonably representative of their true 

‘instantaneous’ shapes. 

The deskewed contours in the two orthogonal planes are sampled at equidistant values 

along the vertical axis and four points are obtained at each height (note that for rotationally 

symmetric drops the thin ‘slices’ along the vertical axis are elliptical and the 3D shape is based on 

stacked ellipses). For asymmetric drops, four different ellipse quarters are constructed for each 

slice having in mind the center point. The points describing the geometry of each slice are obtained 
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by sampling the constructed elliptical quarters in uniform intervals of the azimuth angle. The 

procedure is repeated for each slice in order to create the 3D-reconstructed drop, an example of 

which is shown in Fig. 5.1. In our models, the shapes of the slices are limited to convex shapes, 

i.e. the center point needs to be inside or part of the circumference.  

The model of the drop is created by defining first order (bilinear) quadrilateral elements, 

each between four points of the geometry (Thurai et al. [145]). To define one element, two points 

are chosen with the same coordinate value on the z axis and sequential values on the azimuthal 

coordinate. Two other points are chosen to have the same azimuth angles but different, consecutive 

z axis values compared to the two already chosen points. After creating all the elements by 

connecting pairs of points from groups with consecutive values on the z axis, the elements at the 

top and the bottom of the drop are defined using all four points from the group having the same z 

axis value, the highest and the lowest, respectively, so the entire surface of the drop is discretized. 

The order of the basis functions ([12] and Section 3.2.3) used for the unknown expansion over the 

elements was chosen to comply with Klopf et al. [123]. 

 
Fig. 5.1. Reconstructed drop from 2DVD measurements in natural rain (equi-volume drop 
diameter = 4.81 mm). 
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5.4 Validation of the MoM-SIE method 

The single particle differential reflectivity, Zdr (expressed as a ratio) is given by: 

2

vv

2

hh

dr
S

S
Z  ,                  (5.2) 

where Shh and Svv are the frequency-dependent backscatter amplitudes for horizontal (h) and 

vertical (v) polarizations. Fig. 5.2 shows the calculated Zdr for the reconstructed drop in Fig. 5.1 as 

a function of the (‘look’) azimuthal angle , for S, C, and X bands. In all three cases, the Zdr 

variation with  is significant, whereas for a rotationally symmetric drop the Zdr is -independent, 

with values of 3.0, 3.7, and 3.2 dB, respectively, marked as ‘+’ points. Fig. 5.2 also shows that C-

band variation lies well above the S and X band variations, which can be attributed to this particular 

drop size (Deq = 4.81 mm) lying in the C-band resonance scattering region (e.g., Carey and Petersen 

[113]). The -angle variation at C-band is also slightly higher than those at S and X bands. 

 

Fig. 5.2. Variation of Zdr (in dB) with ‘look angle’ , in horizontal plane, for C, S, and X bands 
shown as dotted lines for the reconstructed drop in Fig. 5.1. The ‘+’ marks represent the 
corresponding Zdr values for the most probable shapes. 
 

Although Fig. 5.2 shows a somewhat periodic variation with the -angle for all three 

frequency bands, the real and imaginary parts of Shh and Svv do not necessarily show the same 
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trend. As an example, Fig. 5.3 shows these variations for C-band. The imaginary part of Shh and 

Svv show non-periodic variations but their amplitudes are considerably lower than the 

corresponding real parts. It turns out that the Zdr variation is much more governed by the variation 

in Re(Shh) and Re(Svv) than by Im(Shh) and Im(Svv). 

 
Fig. 5.3. (a) Real part and (b) imaginary part of C-band back-scatter amplitudes as a function of , 
in horizontal plane,  for h and v polarizations, for the reconstructed drop given in Fig. 5.1. 
Computations using MoM-SIE and HFSS-FEM methods are displayed.  
 

By way of verification of the MoM-SIE based scattering amplitude results, another method 

that uses 3-D discretization, namely, ANSYS HFSS code3 (industry standard utilizing the 

volumetric finite element method – FEM, so numerically very different from the MoM-SIE 

                                                 
3 See: http://www.ansys.com/products/electronics/ansys-hfss 
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approach), is employed. Results by the FEM (HFSS) with the computational region truncated by 

means of a perfectly matched layer (PML) are also included in Figs. 5.3(a) and 5.3(b). As can be 

seen, the resulting scattering amplitudes are very close to the MoM-SIE based results. MoM-SIE 

methods are computationally efficient for electromagnetic problems with small volume to surface 

ratio and when Green’s function can be calculated4. FEM-based codes are widely used in 

computational electromagnetics (in industry), but require discretization of the whole 3 dimensional 

domain as well as region truncation with boundary condition in order to compute far field 

scattering results that are easily computed by the SIE method. 

5.5 Calculation of radar variables and comparisons with radar measurements 

We now consider the rain event which occurred in Huntsville, Alabama on 25 December 

2009. This was a wide spread event with an embedded line convection which traversed the 

disdrometer site (Thurai et al., [143]). The 2DVD measurements for this event showed that a 

significant fraction of the drops within the line convection (around 30%) did not possess any 

rotational symmetry axis (i.e., asymmetric). 

Altogether, 2DVD measurements over a period of 100 minutes were analyzed during which 

there were 114,317 drops recorded by the instrument, out of which 10,233 drops had Deq ≥ 2 mm. 

For all the drops with Deq ≥ 2 mm, the 3D shapes were constructed in the same way as outlined in 

Thurai et al. (2017), and their individual scattering amplitudes were calculated using the MoM-

SIE method. The individual particle Zdr are plotted as time series in Fig. 5.4 for two values of 

incident angle. The top two panels show the Zdr for all drops with Deq ≥ 2 mm for the entire 100-

minute period whilst the two lower panels show the same but for the zoomed in time period. In all 

cases, the drop sizes are color-coded. The variability in Zdr for a given drop size is particularly 

                                                 
4 See: https://en.wikipedia.org/wiki/Computational_electromagnetics 
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evident for the large drops (> 4 mm) and further the dependence on the azimuthal angle is also 

evident. For all drops with Deq < 2 mm, oblate shapes were assumed whose axis ratios were 

determined using the diameter-dependent relationship given in Eq. (2) of Thurai et al. ([139]). For 

these drops, the individual scattering amplitudes were also computed with the MoM-SIE. The 

variability of the single particle Zdr during the line convection passage is evident from Fig. 5.4 (c) 

though some of the variability is due to sampling errors for the larger sizes which are much lower 

in concentration. With this consideration the variability in single particle Zdr for a given Deq reflects 

the variance in shapes due, in part, to the asymmetric drops. The coefficient of variation of Zdr 

(expressed as a ratio) for sizes > 3 mm is around 0.5. The coefficient of variation of the “effective” 

axis ratio is then ≈ 0.2 using the approximate formula from Jameson [119]. The deduced axis ratio 

variability is around twice that found by Thurai et al. [140] due to asymmetric drops.  

From the backscatter amplitudes of each individual drop over a finite time period (1-

minute) and drop-by-drop integration of the relevant covariance matrix elements (Bringi and 

Chandrasekar [111]), the radar reflectivity for horizontal polarization (Zh), differential reflectivity 

(Zdr) and copolar correlation coefficient (hv) were computed, for comparisons with the C-band 

ARMOR radar measurements (see Eqs. 5.3-5.6, later in the text). This method will also be referred 

to as the MoM-SIE. Note that for Kdp calculation the forward scatter amplitudes are used. The 

finite time period chosen here is 1-minute, since for smaller averaging period, the sampling errors 

will be large (Schuur et al. [133]) and for larger averaging period, drop sorting errors will also be 

large (Lee and Zawadzki [124]). Note from Fig. 5.4 (c) and (d) that the line convection passage 

over the disdrometer site took around 15 minutes, from 03:33 UTC to 03:48 UTC.  
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Fig. 5.4. Single particle Zdr for all drops with Deq > 2 mm (a) from 03:00 to 04:40 UTC for  = 50 

degrees; (b) the same as (a) but for  = 180 degrees; (c) and (d) are zoomed in versions of (a) and 
(b) respectively, during the passage of the line convection over the disdrometer site. In all cases, 
the points are color-coded according to the drop size.  
 

Fig. 5.5 shows the PPI (plan position indicator) scan taken with the ARMOR radar [128] 

at an elevation angle of 1.3 deg. The time of the scan was 03:40 UTC. The ‘star’ mark represents 

the location of the 2DVD, and at this time the line convection was directly positioned over the 

disdrometer site. Panels (a) and (b) show the copolar reflectivity and the differential reflectivity 

after correcting for attenuation and differential attenuation, respectively. The correction 

procedures use the specific differential propagation phase based algorithms, using the same 

procedure described in Bringi et al. [112]. Reflectivity values were high at the site (> 50 dBZ) and 

differential reflectivity values were also high (> 4 dB) indicating large drops in the strong 

precipitation shaft. Other PPI scans taken before and after 03:40 UTC can be seen from Fig. 7 in 

Thurai et al. [143]. Panel (c) shows the corresponding copolar correlation coefficient, hv, and 

panel (d) marks the areas within the line convection where hv was less than 0.9. Values of 
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attenuation-corrected Zh and Zdr as well as hv were extracted near and around the radar pixels 

surrounding the 2DVD site (14.5 km radar range, 52.7 degree azimuth) from all the PPI sweeps 

that were taken from 03:00 to 04:40 UTC. For a given elevation angle, each sweep was repeated 

at 5-minute time interval. 

 
 

Fig. 5.5. PPI scans of (a) attenuation-corrected Zh, (b) attenuation-corrected Zdr, and (c) hv, taken 
at (top to bottom) 03:40 UTC when the line convection was directly above the 2DVD site (marked 
with an asterisk sign along azimuth 52° and range 15 km). Panel (d) marks the areas within the 
line convection where hv values were lower than 0.9.  
 

The extracted Zh and Zdr are shown in Figs. 5.6(a) and 5.6(b), respectively, for the 100-

minute period. For a given PPI sweep time, several points are shown which correspond to the 

‘2DVD-pixel’ as well as the ‘immediate adjacent’ pixels in both azimuth and range, covering 

approximately an area of 750 m by 750 m over the 2DVD site. Altogether 20 PPI sweeps were 

used over the entire 100-minute period. Reflectivity and differential reflectivity values reach their 

highest values at 03:40 UTC. Later on, at around 04:30 UTC, reflectivity values again rise but only 
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up to 40 dBZ. Differential reflectivity remains relatively low, indicating that the maximum drop 

sizes were significantly lower at 04:30 than at 03:40 UTC. The measured drop size distributions 

(DSDs) can be seen from Fig. 2(b) in Thurai et al. [143]. At 03:40, the spectra showed the highest 

mass-weighted mean diameter and the highest standard deviation of the mass spectrum (not 

shown). 

Over-plotted in black in Figs. 5.6(a) and 5.6(b) are the Zh and Zdr calculations, based on the 

individual scattering amplitudes of drops (i.e., drop-by-drop integration using MoM-SIE or simply 

MoM-SIE) over each 1-minute period. The radar measurements of Zh and Zdr show good temporal 

correlation and agreement with the MoM-SIE as well as bulk calculations with the radar peak 

values being somewhat larger (60 dBZ and 4 dB) than the simulations perhaps because of 

disdrometer sampling limitations for large drops or the applied smoothing. While the agreement 

between MoM-SIE and bulk methods for Zh is expected, the agreement of Zdr is somewhat 

unexpected given the large variance in individual drop Zdr values in the line convection region (see 

Fig. 5.4(c)) especially for the large drops. The bulk method Zdr is essentially related to the 

reflectivity-weighted mean axis ratio which would equal the drop-by-drop integrated Zdr if the axis 

ratio distribution is narrow ([119],[111]). As discussed earlier, the coefficient of variation of the 

“effective” axis ratio in the line convection is estimated to be around a factor of 2 larger than the 

value from Thurai et al. [140] which is based on data from an artificial rain experiment where 

asymmetric drops were not detected. In spite of this increase, the axis ratio distribution in the line 

convection case is judged to be narrow enough that the drop-by-drop MoM-SIE computed Zdr is 

in good agreement with the bulk method.  
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Fig. 5.6. Polarimetric radar variables comparison between MoM-SIE, bulk method, and radar 
measurements: (a) Reflectivity (Zh), (b) Differential reflectivity (Zdr), (c) Copolar correlation 
coefficient (hv), and (d) Specific differential propagation phase (Kdp).  
 

Note the radar reflectivity for an individual (ith) drop, in a volume of 1 m3, is given by: 

4
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 ,                                        (5.3) 

where λ is the wavelength in air, 2

hh/vvh/v π4η S  is back scatter cross section per unit volume for 

horizontal/vertical (h/v) polarization, Kw = (εr–1)(εr+2)–1 = 0.9631–j0.0111 is the dielectric factor 

of water at C-band with dielectric constant εr = 72.5–j22.43. Over a 1-minute period, the resulting 

reflectivity Z is derived by summing the individual drop reflectivities and is calculated using: 
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 ,                                                                   (5.4) 

where A is the measurement area of the 2DVD, Δt is the averaging time period, and vi is the vertical 

velocity of the ith drop. Equations (5.3) and (5.4) are used to evaluate the overall radar reflectivity 

based on the individual scattering amplitudes for each of the reconstructed rain drops as well as 
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their individual measured fall velocities. The computed Z values for h and v polarizations are 

converted to the conventional dBZ units and the Zdr in dB is obtained from the difference between 

the two.  

Fig. 5.6(c) shows the calculated hv values using: 
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,                            (5.5) 

where vi is the vertical velocity of the ith drop, S represents single drop back-scattering amplitude, 

and the summation is done over all the drops recorded by the 2DVD during the considered time 

interval. From 03:35 to 03:40 UTC, a sharp decrease or dip in hv is seen, reaching as low as 0.8. 

Such low values are consistent with the radar measurement of hv as low as 0.85 in the PPI plot in 

Fig. 5.5(d). For comparison, C-band scattering calculations using the 1-minute averaged DSDs 

and bulk assumptions are included in magenta in Fig. 5.6(c). The lowest value using the bulk 

assumptions is only 0.96. Clearly, the drop-by-drop MoM-SIE based calculations give rise to much 

more accurate hv predictions than the bulk method. This is due to the inability of the bulk method 

to capture the variability of drop shapes during the line convection passage. Note however, that at 

other times, i.e., prior to 03:35 UTC and after 03:45 UTC, both methods predict hv values that are 

close to 1. These values are consistent with radar measurements over the 2DVD site at these other 

times. The measurement accuracy of ρhv is around 1% which is substantially less than the simulated 

change from 0.96 to 0.8-0.85 so the dip should be detectable if the SNR>20 dB or so (Bringi and 

Chandrasekar [111]).  

Fig. 5.6(d) compares the specific differential propagation phase (Kdp) derived from the 

ARMOR range profiles of differential phase (dp) with the corresponding scattering calculations. 
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For the radar-based Kdp values, the finite impulse response (FIR) range filtering technique is used, 

as described in Hubbert and Bringi [117], having the advantage of quantifying and removing any 

backscatter differential phase contribution, which at C-band can become significant when large 

drops or small melting hail are present in the radar pulse volume. However, close examination of 

the phase data showed the backscatter differential phase δ < 3-5° along the line convection which 

discounts the presence of small melting hail for which δ could reach 20° (Meischner et al. [125]). 

For the scattering calculations, as in other panels of Fig. 5.6, the bulk calculations (assuming 

rotational symmetry) are shown in magenta and the MoM-SIE calculations are shown as black 

line. Kdp is calculated from: 

 3 1
dp hh vv

180 1
10 λ Re

π i
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K v S S
A t

 

 ,                                          (5.6) 

where S represents forward scattering amplitudes. The summation is done over all drops recorded 

in the considered time interval. The bulk calculations are in good agreement with the MoM-SIE 

calculations which indicates that Kdp is not dependent on the variance of shapes, rather it is related 

to the mass-weighted mean axis ratio ([120][111]). The radar estimate of Kdp is smaller than the 

calculations due to the range filtering and smoothing methodology used across the compact line 

convection region. 

In Thurai et al. [145], the cross-polar backscatter from asymmetric drops in terms of single-

particle (LDR) was also considered. Here we extend to drop-by-drop MoM-SIE LDR calculations 

as the ratio of the cross-polar reflectivity to the copolar reflectivity and compare that with the bulk 

method as shown in Fig. 5.7. It is immediately clear that during the line convection passage, the 

MoM-SIE method shows much larger LDR than the bulk method (peak of -17 dB versus -26 dB). 

Even outside the line convection, the MoM-SIE LDR is larger by 3-5 dB relative to the bulk 

method. We do not have radar data to compare against as the ARMOR radar is not configured for 
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cross-polar reflectivity measurement. However, it is possible to use an analytical equation relating 

LDR, Zdr, ρhv, δ and standard deviation of the canting angle (σβ) (Jameson [121]) to illustrate the 

consistency between the dip in ρhv and the peak in LDR from MoM-SIE calculations during the 

line convection passage. Using Eq. (3.232) from Bringi and Chandrasekar ([111]) and setting the 

values of Zdr=3 dB, ρhv=0.8, δ=5°and σβ=10° predicts LDR of -19 dB which is consistent with 

MoM-SIE peak LDR of -17 dB coinciding with dip in ρhv to 0.82 (close to radar measured dip of 

0.8). On the other hand under the same conditions, setting LDR in Eq. (3.232) to the bulk peak 

value of -26 dB predicts a much larger ρhv=0.97 (the dip in bulk ρhv is only to 0.96). Thus, assuming 

that the radar measured dip in ρhv to 0.8 is accurate, we can infer that the MoM-SIE calculated 

LDR peak of -17 dB is more consistent with radar dip in ρhv than the bulk peak of -25 dB. It follows 

that the large MoM-SIE LDR values in the line convection are due to enhanced variance in drop 

shapes due to presence of asymmetric drops which cannot be modelled using the bulk method. 

Over the entire 100-minute event, Table 5.1 shows the relative frequency of occurrence of MoM-

SIE and bulk LDR values in 5 dB bins. The modal value (at bin center) of LDR for MoM-SIE and 

bulk method are, respectively, -37.5 and -32.5 dB with the MoM-SIE showing positive skewness.  

TABLE 5.1. Relative frequency of occurrence (in %) of MoM-SIE and bulk LDR values in 5 dB 
bins computed with drop-by-drop MoM-SIE and bulk T-matrix methods. 

Range of LDR, dB T-matrix MoM-SIE 

< -40 21.3 3.96 

-40 to -35 49.2 19.8 

-35 to -30 19.7 46.54 

-30 to -25 9.8 19.8 

-25 to -20 0.0 7.92 

-20 to -15 0.0 1.98 

-15 to -10 0.0 0 

> -10 0.0 0 
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It should also be noted that because the scattering amplitudes for asymmetric drops exhibit 

 dependence, as we saw earlier in Fig. 5.3, it is necessary to choose the correct  angle, 

particularly for the Zdr calculations. In our case, the azimuth angle from the radar to the 2DVD site 

was 52 degrees, and our reconstruction of drops is referenced to the true North (since the 2DVD 

was aligned in such a way that this criterion was met), hence we chose the same value for . In 

Fig. 5.8, we compare the single particle Zdr for  = 50, 110, and 180 degrees. Also shown is the 

[1:1] line. As seen the correlation is high with negligible bias in both plots and as a result any 

significant  dependence would not be expected when the overall Zdr is calculated for all drops 

over a 1-minute integration period. 

A limitation of the drop reconstruction procedure is that for a given z = constant plane, 

there are only four points available from the two orthogonal cameras, and the 4-ellipse quarters 

constructed in this plane can have uncertainties in-between these four points. However, because 

rain drops do not have sharp discontinuities (unlike snow particles), and further they are 

homogeneous, the resulting errors in the corresponding scattering calculations are not likely to be 

significant. Another limitation is that deskewing asymmetric drop shapes relies on the accuracy of 

estimating the horizontal drop speed and direction. In the future we will evaluate if the wind speed 

and direction measured at the height of the 2DVD sensor area can be used to deskew asymmetric 

drops. 
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Fig. 5.7. LDR computation for incident ϕ=50o and 1 minute averaging. 

 
Another possible source of errors when comparing disdrometer-based estimates against 

radar measurements is the different spatial scales of the radar and ‘point’ 2DVD measurements as 

well as the height of the radar pulse volume above the surface (340 m in our case). At short ranges 

considered herein (15 km) the temporal decorrelation between radar and 2DVD is likely to be 

constrained as evident in Fig. 5.6. It is well-known that surface point measurements cannot be 

representative of the radar pixel which is often quantified in terms of point-to-area variance 

([115],[142]) which depends on the spatial correlation function of the observable used in the 

comparison. Other sources of errors include radar-measurement errors and disdrometer-sampling 

errors. However, it is beyond the scope of this paper to quantify the error variances arising from 

such error sources (we refer to Thurai et al. [142] for variance analysis using ARMOR and 2DVD 

data).   
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Fig. 5.8. Single particle Zdr comparison for particles with Deq ≥ 2 mm for  = 50 degrees versus  
= 180 degrees (left) and for  = 50 degrees versus  = 110 degrees (right). The purple dashed line 
represents the [1:1] line.  
 

5.6 Discussion and Conclusions 

The bulk method of simulating radar observables such as [Zh, Zdr, Kdp, ρhv, LDR] in rain 

involves simplifying assumptions, the main one being related to neglecting the effect of variance 

in shapes due to presence of asymmetric drops, if in fact they occur in significant proportion to the 

more ubiquitous equilibrium (axisymmetric) shapes. There are very few computations of radar 

observables that explicitly account for variance in drop shapes. Keat et al. [122] used the data from 

an artificial rain experiment reported in Thurai and Bringi [138] to simulate steady state 

axisymmetric drop oscillations (assuming Gaussian axis ratio pdf) and its effects on ρhv and Zdr 

using gamma distribution of drop sizes (DSD) and Rayleigh-Gans theory. Their goal was to 

retrieve the shape parameter µ of the gamma DSD from radar measurements of [ρhv; Zdr]. Their 

bulk simulations indicated drop oscillations had to be taken into account in order for the radar-

based retrieval of µ to be unbiased. Thurai et al. [141] used 2DVD measurements to simulate drop-

by-drop scattering but assumed symmetric shapes and canting angles derived from the deskewing 

procedure as in Huang et al. [118]. The agreement with ARMOR radar measurements was good 

but they found significant differences in Zdr and ρhv when compared with bulk methods in one 

convective rain event.  
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 To the best of our knowledge this study is the first polarimetric scattering analysis of a 

line convection rain event based on drop-by-drop scattering computations by means of a higher 

order method of moments in a surface integral equation formulation, with asymmetric drop 

geometries being reconstructed from 2DVD measurements. We have compared MoM-SIE surface 

model discretization results for an example asymmetric drop with equi-volume drop diameter 

Deq=4.81 mm (in Fig. 5.1) at S, C, and X bands with volumetric discretization results by an industry 

standard finite element method based code (HFSS), showing excellent agreement between two 

methods. The single particle Zdr values showed variability during the passage of the line convection 

over the 2DVD site with coefficient of variation (when Zdr is expressed as a ratio) of around 0.5 

(for drops > 3 mm) which confirms that the variance of drop shapes due to asymmetric drops can 

be an important factor in this particular case. Note that before and after passage of the line 

convection the shape variability was sharply reduced.  

Drop-by-drop scattering calculations based on 1-minute integration of the covariance 

matrix elements were performed for the 100-minute event passage over the 2DVD site using the 

MoM-SIE and the bulk methods. The simulated radar observables were compared with ARMOR 

radar data extracted from range gates surrounding the 2DVD location. The Zh, Zdr and Kdp were 

found to be in good agreement between the MoM-SIE, the bulk calculations and the extracted 

ARMOR data during the line convection passage as well as before and after the passage. However, 

the bulk method could not simulate the significant lowering of ρhv during the line convection with 

dip to 0.8 as measured by radar. The MoM-SIE calculations were able to simulate the dip to 0.8 

indicating that the lowered values were a result of variance in shapes due to asymmetric drops. 

The radar differential phase data showed no evidence of backscatter differential phase (estimated 
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δ < 3-5°) within the line convection and neither did the single drop MoM-SIE calculations (δ < 

5°), so this effect could not have contributed to the lowering of ρhv.  

We also computed LDR using drop-by-drop MoM-SIE and the bulk method. During the 

line convection passage over the 2DVD the MoM-SIE LDR values peaked to -17 dB whereas the 

bulk LDR was around 8 dB lower (-25 dB). Examination of an analytic expression relating the 

polarimetric variables showed that the MoM-SIE LDR peak of -17 dB was consistent with the dip 

in ρhv to 0.8 (the latter in agreement with the radar observed dip). However, the bulk LDR of -25 

dB was not consistent with the observed ρhv dip, the analytic expression giving a much higher ρhv 

value of 0.97 consistent with the calculated bulk value of 0.96. Since the ARMOR radar was not 

configured for LDR measurements we could not compare with the simulated values. Over the full 

100-minute event the modal MoM-SIE LDR values were around -32 .5 dB whereas it was around 

-37.5 dB for the bulk method. Radars with modest dual-polarized antenna with a system LDR limit 

of -25 dB (e.g., phased-array airborne radars) could easily detect the LDR peak of -17 dB. 

However, to detect LDR of -32.5 dB a well-designed antenna capable of system LDR limit of -36 

dB would be required (the UK C-band operational radars approach the -36 dB system limit and 

they routinely measure LDR to detect wet snow aloft; Sandford et al. [129]).  

As has been mentioned in earlier publications (Thurai et al., [143],[144]), 2DVD data 

examined during most of the rain events showed that the drop shapes conform to the ‘most 

probable’ shapes arising from the steady state axisymmetric oscillation mode which can be 

regarded as the background state. Asymmetric shapes occur when the background state is perturbed 

due to transverse or horizontal modes mixed in which is termed as mixed-mode oscillations (Beard 

et al. [109]). The line convection system considered here is one of the few exceptions where a 

significant proportion (≈30%) of asymmetric drops was only detected within the line convection 



95 

but not outside it. Currently, there is no theoretical framework to identify the conditions under 

which mixed mode oscillations may occur in a persistent manner. For now we have to rely on 

2DVD data to first detect the presence of a significant proportion of asymmetric drops in the rain 

shaft and subsequently to evaluate the conditions under which deviations from the ‘most probable’ 

axisymmetric drop shapes occur. Based on this study the most impact would be on quantitative 

use of ρhv and LDR with much less impact on Zdr and negligible impact on Zh and Kdp. 
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CONCLUSION 

Double Higher Order methods using model subdivision to decrease the memory needed for 

electromagnetic modeling analysis in order to simulate large structures on a personal computer are 

presented. The discretization types are both volumetric, in conjunction with Finite Element 

Method (FEM), and surface, used to model surface encompassing the structure analyzed by means 

of Surface Integral Equation Method of Moments (SIE-MoM). Lagrange type higher order basis 

functions model the unknown for both methods, curl conforming functions in FEM and divergence 

conforming functions in SIE-MoM, enabling the element size to be of the order of the wavelength. 

Model subdivision is applied to closed-region (waveguide) structure FEM model 

computing electric field vector as the unknown. The waveguide structure is divided into 

subdomains, i.e. smaller sized waveguide structures, which are separately analyzed decreasing the 

memory consumption. Generalized Scattering Matrix (GSM) is computed for each subdomain by 

the means of Mode Matching (MM) technique, which is enabled by 2-D FEM iterative eigenvalue 

solver developed to compute modal patterns existing at the waveguide ports. Original structure is 

unified by connecting the subdomains via their ports. The response of the original (large) structure 

is obtained by concatenating computed GSMs into the large matrix connecting all outgoing modes 

existing on the ports of all subdomains to the all ingoing modes. The benefits of large domain 

modeling and inclusion of higher modes in design process are presented. The method is applied to 

computation of the received power in communication system in Massif Central tunnel showing 

benefits of accurately modeling the geometry, especially in the vicinity of the tunnel walls. 

Model subdivision is applied to open-region SIE models computing fictitious surface 

currents as the unknown. Octree grid is used to decompose the model and the solution is obtained 

by the iterative solver. The matrix entries computed for groups of elements in the proximity are 
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obtained by SIE-MoM computation. The interaction between the groups in the far field zone are 

analyzed by Fast Multipole Method (FMM) never computing the actual matrix entries but the 

matrix vector multiplication (MVM) in the iterative solver implementation. This process decreases 

both memory storage and time consumption of the computer simulation. Multi-Level version of 

FMM uses multi-level Octree grid to compute MVMs through multi-level interaction scheme of 

the decomposed model groups decreasing the complexity and memory even further. The method 

was verified but the measurement of the simulation acceleration and memory decrease is part of 

the future work. 

In order to precisely evaluate elements in SIE-MoM matrix entries computation, novel 

extraction method for near-field 2-D surface integrals is developed taking into account higher order 

definition of the basis function and curvature of the quadrilateral element. This is done by 

incorporating quadrilateral curvature into parallelogram definition and developing analytical 

integration formulas to include higher order basis functions in order to mitigate the singularity 

occurring in 2-D integrals [42]. The improved precision of the integral computation over the 

traditional technique is observed even in the cases not reported previously. SIE - MoM technique 

was applied to line convection event with rain drops recorded by 2-D video disdrometer. The SIE 

elements discretizing the model’s surface are described by the nodes obtained after the 

reconstruction is performed on the 2-D video disdrometer measurements. Scattering calculations 

of radar variables computed by the SIE-MoM show improvement over the traditional (bulk) 

modeling when comparing results to the radar measurements, for the event containing significant 

percentage of the oscillating drops. 
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