31 research outputs found

    Freeness Properties of Weighted and Probabilistic Automata over Bounded Languages

    Get PDF
    There has been much research into freeness properties of finitely generated matrix semigroups under various constraints, such as the dimensions of the generator matrices and the semiring over which the matrices are defined. Most freeness problems have been shown to be undecidable starting from dimension three, even for upper-triangular matrices over the natural numbers. There are many open problems still remaining in dimension two. A recent paper has also investigated freeness properties of bounded languages of matrices. We consider a notion of freeness and ambiguity for scalar reachability problems in matrix semigroups and bounded languages of matrices. Scalar reachability concerns the set of scalar values computable from multiplying a fixed row vector by a matrix from a finately generated semigroup and then multiplying by a fixed column vector, of appropriate size. Ambiguity and freeness problems are defined in terms of the uniqueness of factorizations for each scalar. Such problems have also been studied in connection to formal power series. We show various undecidability results and their connections to weighted and probabilistic finite automata

    Scalar Ambiguity and Freeness in Matrix Semigroups over Bounded Languages

    Get PDF
    There has been much research into freeness properties of finitely generated matrix semigroups under various constraints, mainly related to the dimensions of the generator matrices and the semiring over which the matrices are defined. A recent paper has also investigated freeness properties of matrices within a bounded language of matrices, which are of the form M1M2 · · · Mk ⊆ F n×n for some semiring F [9]. Most freeness problems have been shown to be undecidable starting from dimension three, even for upper-triangular matrices over the natural numbers. There are many open problems still remaining in dimension two. We introduce a notion of freeness and ambiguity for scalar reachability problems in matrix semigroups and bounded languages of matrices. Scalar reachability concerns the set {ρ TMτ |M ∈ S}, where ρ, τ ∈ F n are vectors and S is a finitely generated matrix semigroup. Ambiguity and freeness problems are defined in terms of uniqueness of factorizations leading to each scalar. We show various undecidability results

    Reachability problems for systems with linear dynamics

    Get PDF
    This thesis deals with reachability and freeness problems for systems with linear dynamics, including hybrid systems and matrix semigroups. Hybrid systems are a type of dynamical system that exhibit both continuous and discrete dynamic behaviour. Thus they are particularly useful in modelling practical real world systems which can both flow (continuous behaviour) and jump (discrete behaviour). Decision questions for matrix semigroups have attracted a great deal of attention in both the Mathematics and Theoretical Computer Science communities. They can also be used to model applications with only discrete components. For a computational model, the reachability problem asks whether we can reach a target point starting from an initial point, which is a natural question both in theoretical study and for real-world applications. By studying this problem and its variations, we shall prove in a formal mathematical sense that many problems are intractable or even unsolvable. Thus we know when such a problem appears in other areas like Biology, Physics or Chemistry, either the problem itself needs to be simplified, or it should by studied by approximation. In this thesis we concentrate on a specific hybrid system model, called an HPCD, and its variations. The objective of studying this model is twofold: to obtain the most expressive system for which reachability is algorithmically solvable and to explore the simplest system for which it is impossible to solve. For the solvable sub-cases, we shall also study whether reachability is in some sense easy or hard by determining which complexity classes the problem belongs to, such as P, NP(-hard) and PSPACE(-hard). Some undecidable results for matrix semigroups are also shown, which both strengthen our knowledge of the structure of matrix semigroups, and lead to some undecidability results for other models

    Vector Ambiguity and Freeness Problems in SL (2, â„€).

    Get PDF
    We study the vector ambiguity problem and the vector freeness problem in SL(2,Z). Given a finitely generated n×n matrix semigroup S and an n-dimensional vector x, the vector ambiguity problem is to decide whether for every target vector y=Mx, where M∈S, M is unique. We also consider the vector freeness problem which is to show that every matrix M which is transforming x to Mx has a unique factorization with respect to the generator of S. We show that both problems are NP-complete in SL(2,Z), which is the set of 2×2 integer matrices with determinant 1. Moreover, we generalize the vector ambiguity problem and extend to the finite and k-vector ambiguity problems where we consider the degree of vector ambiguity of matrix semigroups

    Acceptance Ambiguity for Quantum Automata

    Get PDF
    We consider notions of freeness and ambiguity for the acceptance probability of Moore-Crutchfield Measure Once Quantum Finite Automata (MO-QFA). We study the distribution of acceptance probabilities of such MO-QFA, which is partly motivated by similar freeness problems for matrix semigroups and other computational models. We show that determining if the acceptance probabilities of all possible input words are unique is undecidable for 32 state MO-QFA, even when all unitary matrices and the projection matrix are rational and the initial configuration is defined over real algebraic numbers. We utilize properties of the skew field of quaternions, free rotation groups, representations of tuples of rationals as a linear sum of radicals and a reduction of the mixed modification Post\u27s correspondence problem

    On injectivity of quantum finite automata

    Get PDF
    We consider notions of freeness and ambiguity for the acceptance probability of Moore-Crutchfield Measure Once Quantum Finite Automata (MO-QFA). We study the injectivity problem of determining if the acceptance probability function of a MO-QFA is injective over all input words, i.e., giving a distinct probability for each input word. We show that the injectivity problem is undecidable for 8 state MO-QFA, even when all unitary matrices and the projection matrix are rational and the initial state vector is real algebraic. We also show undecidability of this problem when the initial vector is rational, although with a huge increase in the number of states. We utilize properties of quaternions, free rotation groups, representations of tuples of rationals as linear sums of radicals and a reduction of the mixed modification of Post's correspondence problem, as well as a new result on rational polynomial packing functions which may be of independent interest.</div

    Polynomially Ambiguous Probabilistic Automata on Restricted Languages

    Get PDF
    We consider the computability and complexity of decision questions for Probabilistic Finite Automata (PFA) with sub-exponential ambiguity. We show that the emptiness problem for non-strict cut-points of polynomially ambiguous PFA remains undecidable even when the input word is over a bounded language and all PFA transition matrices are commutative. In doing so, we introduce a new technique based upon the Turakainen construction of a PFA from a Weighted Finite Automata which can be used to generate PFA of lower dimensions and of subexponential ambiguity. We also study freeness/injectivity problems for polynomially ambiguous PFA and study the border of decidability and tractability for various cases

    Polynomially Ambiguous Probabilistic Automata on Restricted Languages

    Get PDF
    We consider the computability and complexity of decision questions for Probabilistic Finite Automata (PFA) with sub-exponential ambiguity. We show that the emptiness problem for non-strict cut-points of polynomially ambiguous PFA remains undecidable even when the input word is over a bounded language and all PFA transition matrices are commutative. In doing so, we introduce a new technique based upon the Turakainen construction of a PFA from a Weighted Finite Automata which can be used to generate PFA of lower dimensions and of subexponential ambiguity. We also study freeness/injectivity problems for polynomially ambiguous PFA and study the border of decidability and tractability for various cases

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF
    corecore