
Reachability Problems for Systems

with Linear Dynamics

by

Shang Chen

A Doctoral Thesis

Submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

Supervised by Dr Paul Bell

Dr Lisa Jackson

21th March 2016

Copyright 2016 Shang Chen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288371197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis deals with reachability and freeness problems for systems with linear

dynamics, including hybrid systems and matrix semigroups. Hybrid systems are

a type of dynamical system that exhibit both continuous and discrete dynamic

behaviour. Thus they are particularly useful in modelling practical real world sys-

tems which can both flow (continuous behaviour) and jump (discrete behaviour).

Decision questions for matrix semigroups have attracted a great deal of attention

in both the Mathematics and Theoretical Computer Science communities. They

can also be used to model applications with only discrete components.

For a computational model, the reachability problem asks whether we can reach

a target point starting from an initial point, which is a natural question both in

theoretical study and for real-world applications. By studying this problem and

its variations, we shall prove in a formal mathematical sense that many problems

are intractable or even unsolvable. Thus we know when such a problem appears

in other areas like Biology, Physics or Chemistry, either the problem itself needs

to be simplified, or it should by studied by approximation.

In this thesis we concentrate on a specific hybrid system model, called an

HPCD, and its variations. The objective of studying this model is twofold: to

obtain the most expressive system for which reachability is algorithmically solv-

able and to explore the simplest system for which it is impossible to solve. For

the solvable sub-cases, we shall also study whether reachability is in some sense

“easy” or “hard” by determining which complexity classes the problem belongs to,

such as P, NP(-hard) and PSPACE(-hard). Some undecidable results for matrix

semigroups are also shown, which both strengthen our knowledge of the structure

of matrix semigroups, and lead to some undecidability results for other models.

Acknowledgements

I would like to especially acknowledge my main supervisor, Dr Paul C. Bell,

for guiding and supporting me over the past three and one half years. He has been

incredibly patient and kind and of course, could always come up with interesting

research ideas. Without his help, the completion of my Ph.D would not have been

possible.

I would also given a huge thanks to my second supervisor, Dr Lisa M. Jackson,

for her useful suggestions which has helped me work more efficiently during my

Ph.D study.

The Department of Computer Science at Loughborough University has been

an excellent place to conduct research and all members of staff here have been

friendly and helpful. I would also like to kindly thank the Graduate School for

funding my postgraduate studies.

Last but no least, to my mum Fan Zhang and dad Weiyou Chen, an eternal

gratitude for both financial and spiritual support not only over the past three and

one half years, but since the beginning of my life. I would feel your love even it

has been thousands miles away.

Contents

1 Introduction 1

1.1 Background and Known results . 1

1.1.1 Hybrid Automata . 1

1.1.2 Matrix Semigroups . 10

1.2 Overview of the Thesis . 12

2 Preliminaries 15

2.1 Definitions . 16

2.1.1 Computability and Complexity 16

2.1.2 Algebra, Groups, Matrices and Words 19

2.1.3 Hybrid Systems . 21

2.1.4 Discrete Computational Models and Problems 26

2.2 Computational Problems . 33

2.2.1 Reachability Type Problems for Hybrid Automata 33

2.2.2 Reachability Type Problems in Matrix Semigroups 35

2.2.3 Summary of Problems . 38

3 Reachability Problems for HPCDs 41

3.1 Restrictions of 2-HPCDs . 42

3.2 Higher dimensional RHPCDs . 48

3.3 1-PAM and 1-PRM . 53

3.4 Extensions of RHPCDs . 60

3.5 Summary of Chapter . 63

4 Mortality Problems for HPCDs 65

4.1 Higher dimensional RHPCDs . 66

iii

4.2 Extensions of RHPCDs . 68

4.3 Stability for HPCDs . 70

4.4 Summary of Chapter . 72

5 Scalar Ambiguity and Freeness Problems 75

5.1 Matrix Semigroups . 76

5.2 Matrix Semigroup over Bounded Languages 79

5.3 PFA on Bounded Languages . 85

5.4 Summary of Chapter . 88

6 Conclusion 89

References 95

List of Figures

1.1 An example of Hybrid Automaton - Thermostat Control 2

2.1 An example of an invalid HPCD . 25

2.2 Two examples of the definition of mortality 34

3.1 Lemma 1 Step 2: map (s, t)× {c} to (t′, s′)× {0}. 43

3.2 Idea of Theorem 6: map every two adjacent intervals into one interval 44

3.3 The 1-PAM with its equivalent 2-HPCD 46

3.4 The 2-PCDs of the 2-HPCD in Figure 3.3b (transition guards in

bold). 46

3.5 Reachability for 3-RHPCD (location I actually represents 3 loca-

tions I1, I2 and I3) . 49

3.6 3-RHPCD encoding simultaneous incongruences problem (only loc-

ation P and location Q are shown) 49

3.7 2-HPCD simulating simultaneous incongruences problems 54

3.8 A system generating a Cantor set 58

3.9 Nondeterministic 2-RHPCD simulating bounded 1-counter machine 62

4.1 Edge-to-edge and edge-to-point mappings 67

v

List of Tables

1.1 Summary of decidability status of the reachability problem for 2-

RHPCDs when certain conditions are allowed (X) or disallowed

(×). Starred results are contributions of this thesis. 9

3.1 Reachability problem for 3-RHPCD 51

3.2 2-HPCD encoding simultaneous incongruence problems 56

3.3 An unbounded 3-RHPCD simulating the Minsky machine M for

counter c1, where R = [0,∞)× [0,∞)× [0, 1] 61

4.1 Mortality problem for 3RHPCD . 67

vii

Notation Glossary

Basic Notation

N - The set of natural numbers ({0, 1, 2, . . .}).

Z - The ring of integers.

Q - The field of rational numbers.

F - Arbitrary ring of numbers.

f t(x) = f(f(. . . f(x) . . .))︸ ︷︷ ︸
t

- The t times iteration of function f .

Group Theory Notation

A ∪B - The union of two sets A and B.

A ∩B - The intersection of two sets A and B.

|A| - The cardinality of the set A.

〈G〉 - The semigroup generated by a set of square matrices G.

S - A matrix semigroup.

Λ(G) - The set of scalars generated by a set of square matrices G and two given

vectors.

Matrix Notation

M[i,j] - The element in the i’th row and j’th column of matrix M .

0 - The zero matrix with appropriate dimensions.

M ⊕N - The direct sum of matrices M and N .

Word Notation

ε - The empty word.

u · v = uv = u1u2 · · ·unv1v2 · · · vm - The concatenation of u and v, where

u = u1u2 · · ·un and v = v1v2 · · · vm.

|u| - The length of word u.

A∗ - The set of all words over finite set of letters A.

A+ - The set of nonempty words over finite set of letters A.

Chapter 1

Introduction

1.1 Background and Known results

In this thesis we shall study two types of systems with linear dynamics: linear

hybrid automata and matrix semigroups. We will mainly focus on the reachability

problem and some related problems like mortality and freeness on these systems.

We start with an introduction to hybrid automata.

1.1.1 Hybrid Automata

Hybrid automata are an important class of mathematical model allowing one to

capture both discrete and continuous dynamics in the same framework. There is

currently much interest in hybrid systems, since they can be used to model many

practical real-world systems in which we have a discrete controller acting in a

continuous environment. Their analysis has a huge range of potential applications,

such as aircraft traffic management systems, aircraft autopilots, automotive engine

control [8], chemical plants [10] and automated traffic systems for example.

Hybrid systems are described by a state-space model given by the Cartesian

product of a discrete and continuous set. The system evolves over time accord-

ing to a set of defined rules, such as differential equations or differential inclu-

sions for example, until some condition is satisfied. At this point a discrete, non-

continuous event occurs. Such an event can cause an update to certain variables

and change the continuous dynamics of the continuous variables. See Section 2.1.3

of Chapter 2 for formal definitions.

1

2 CHAPTER 1. INTRODUCTION

.

Off On

T=−T T=−T+30

T>=28

T<=30T>=20

T<=22

.

Figure 1.1: An example of Hybrid Automaton - Thermostat Control

The example in Figure 1.1 shows a thermostat control modelled by a hybrid

automaton. There is a set containing two discrete states: “on” and “off”, repres-

enting the states of the thermostat control being turned on or shut off, respectively.

If the thermostat control is at “off” state, the temperature T will drop continu-

ously at rate −T according to the given differential equation Ṫ (t) = −T (t). The

condition T ≥ 20 is formally called an invariant, restricting that the thermostat

control can be kept off only if the temperature is above 20 degrees. The condi-

tion T ≤ 22 is formally called a guard, indicating the thermostat control can be

switched to “on” state whenever the temperature in below 22 degrees. Note that

when T is between 20 and 22, the system can either be in the “on” or “off” state,

so it is a nondeterministic system.

As reported in [26], in the past it was common to suppress the hybrid nature

of systems by converting them into purely discrete or purely continuous systems,

to allow the more richly developed analysis and control techniques of these ‘pure’

systems to be employed. Yet the trend towards ever more complex embedded

systems mean that formal techniques for analysing hybrid systems are becoming

ever more crucial.

In this thesis we will concentrate on hybrid systems with linear dynamics. The

reason is, hybrid systems with linear dynamics are expressive enough to be able

to model a rich variety of real-world systems and even for hybrid systems with

some simple dynamics, many decision problems will become undecidable. They

are therefore a useful model to explore the frontiers of decidability for reachability

problems. We will give examples of hybrid systems with simple dynamics later on.

But before that, the reader should first understand the concept of undecidability.

In Theoretical Computer Science, some of the most important research areas

are: automata theory, computability theory and complexity theory. The study

1.1. BACKGROUND AND KNOWN RESULTS 3

of Theoretical Computer Science often begins with automata theory, as we must

know how a “computer” is formally defined. Automata theory is an area that deals

with the definitions and properties of abstract “computers” which are formally

called mathematical computational models. From automata theory, we know that

different computational models are defined according to different purposes. For

example, a well-known model in Theoretical Computer Science is that of a finite

automaton. A finite automaton is defined to model devices that have a finite

amount of memory and can be used in applied areas like the text processing,

compilers and hardware design. Another famous model is the Turing machine,

which is a very powerful model with infinite and unrestricted memory and is able

to solve every problem that can be done by a real computer, according to the

Church-Turing thesis.

However, even though Turing machines are extremely powerful abstract com-

putational models (equivalent in power to real-world computers, in a formal sense),

there are still problems that can not be solved by them. This is why, before con-

sidering the computational resources (such as time and space) required to solve a

problem, as is carried out in complexity theory, we first need to answer the ques-

tion: whether this problem can be solved at all? We call this area computability

theory.

More formally speaking, by “solving” a problem we mean that for a decision

problem (to which the answer is yes or no) it is possible to construct a single

algorithm that always leads to a correct yes-or-no answer. If it can be proven

that for a decision problem such an algorithm does not exist, then the problem is

called undecidable; if such an algorithm does exist, then the problem is said to be

decidable.

The reader may be surprised to know that there are problems that can not

be solved by a “computer”. But in fact, there are many such problems known.

For instance, the undecidable problems that are used in this thesis including the

halting problem, generalised Collatz problem, Hilbert’s tenth problem, and Post’s

correspondence problem. See Section 2.1 for their definitions and more details. In

computability theory, research usually goes to two aspects: exploring the most

complex conditions that keep decidability and the simplest conditions that lead to

4 CHAPTER 1. INTRODUCTION

undecidability. We call this exploring the frontiers of decidability for a particular

problem. By studying computability theory, if we know a problem is undecidable,

then it must be simplified in some way before we can find an algorithmic solution.

When a problem is known to be solvable (formally called decidable), we can

study whether it is a “hard” or “easy” problem and what properties make a prob-

lem more difficult than others. The research area that deals with such problems

is called complexity theory. The problems are classified by time, memory or other

computational resources required to solve them. We specify the number of re-

quired resources in terms of the input size to the problem. Usually, we consider

the worst-case complexity of the problem: in other words, what is the maximum

number of resources required for the problem, by any instances of some size n.

The most common complexity classes include P, NP, PSPACE and EXPTIME.

Generally speaking, the classes P and NP are the problems that can be solved in

polynomial time by a deterministic or nondeterministic Turing machine, respect-

ively. The class EXPTIME are those problems that can be solved in exponential

time by a deterministic Turing machine. These three classes are classified with

respect to the worst-case time complexity of a problem. The class PSPACE is

classified with respect to worst-case memory space ,which contains all the prob-

lems that are solvable in a polynomial amount of space on a (deterministic or

nondeterministic) Turing machine. The relationships of the above four classes

are P ⊆ NP ⊆ PSPACE ⊆ EXPTIME, and at least one of the containments is

proper. Although many researchers believe that all the containments are proper,

no one has proven them yet. Also note that, even though some problems may be

decidable theoretically such as the problems in EXPTIME, it may be impossible

to solve them in practice since even for relatively small input sizes, the amount

of time required to give a solution may be prohibitively expensive. As the input

size of the problem grows, the time required grows extremely fast. See [59] for a

detailed discussion about automata theory, computability theory and complexity

theory.

1.1. BACKGROUND AND KNOWN RESULTS 5

Reachability for Hybrid Systems

A fundamental question concerning hybrid systems is that of reachability : does

there exist a trajectory starting from some initial state (or set of states) which

evolves to reach a given final state (or set of states) in finite time (defined formally

in Section 2.1.3, Chapter 2)? Related questions, such as convergence (does there

exist a state, or periodic set of states, towards which the system converges for any

initial state) or control problems (given an input, can the system be controlled to

avoid some ‘bad’ set of states?), are also important, see [23], for example. But we

will not consider them in this thesis.

Unfortunately, as mentioned above, many reachability problems are undecid-

able, even for very restricted hybrid systems [4, 7, 22, 39]. Studying the boundary

of decidability for reachability problems on classes of hybrid systems thus allows

us to define what is algorithmically achievable. The objective of studying the

decidability boundary is twofold; to obtain the most expressive system for which

reachability is decidable and to study the simplest system for which it is undecid-

able. For hybrid systems with more complex dynamics, since the decidability for

which are high likely to be undecidable, people often use the method of approx-

imation to study them, see [1] for example.

One well-known hybrid system with simple dynamics is that of a Timed Auto-

mata (TA). A timed automaton is a nondeterministic hybrid system such that all

continuous variables have derivative 1 (so they are also called clocks), all resets are

constants, guards are non-comparative (i.e. they do not contain conditions like

x > 2y) and all invariants are constants intervals, see [3] for full details. Timed

automata and their variants are widely studied and a lot of results are known.

The reachability problem for timed automata is decidable [3]. However, releasing

some restrictions on timed automata may lead to undecidability. For example,

allowing guards of the form x = 2y makes reachability problem for timed auto-

mata undecidable [3]. The reachability problem for stopwatch automata (timed

automata that the rate of clocks can be either 0 or 1) is also undecidable [38].

Some complexity problems related to reachability in timed automata have also

been studied. In [48] it was proven that for timed automata with one clock,

reachability is NLOGSPACE-complete, and for timed automata with two clocks,

6 CHAPTER 1. INTRODUCTION

the problem is NP-hard. In [30] it was also shown that for timed automata with

three clocks, reachability becomes PSPACE-complete.

Rectangular Automata (RA) are another well-known hybrid system model with

simple dynamics. They can be seen as an extension model of timed automata.

The only difference is that in rectangular automata, the derivatives of variables

are bounded by constant intervals instead of being equal to 1. A rectangular

automaton is called initialised if a variable is reset to a constant whenever its flow

changes. The initialisation is a necessary condition for a decidable reachability

problem. It was proven in [3] that the initialised rectangular automata can be

translate into timed automata, thus the reachability problem is decidable, and

is also known to be PSPACE-complete [2, 54]. However, the problem becomes

undecidable for a uninitialised rectangular automaton with only one clock of rate

1 and some other constant k [38].

Hierarchical Piecewise Constant Derivative (HPCD) Systems

From the above, we can see timed automata and rectangular automata are two

hybrid systems lying aside the boundary between decidability and undecidability.

In this thesis, however, we will study another hybrid system with linear dynamics

that is called a Hierarchical Piecewise Constant Derivative (HPCD) system. To

understand the concept of an HPCD, we first introduce an important and intuitive

model of hybrid system called a Piecewise Constant Derivative (PCD) system.

In a PCD, we partition the continuous state space into a finite number of

nonempty regions, each of which is assigned a constant derivative defining the

dynamics of a point within that region (see Section 2.1.3, Chapter 2 for full de-

tails). It was proven in [49] that reachability for PCD systems in two dimensions

(2-PCD) is decidable, but for three dimensions (3-PCD), the problem becomes

undecidable [4]. One of the important properties of a PCD, which leads to its

reachability problem being decidable in dimension two, is that trajectories can

never ‘cross’ each other since each region has a constant derivative assigned. It

can be proven that the trajectories are either periodic, or else form an expand-

ing or contracting spiral which can be proven using geometric arguments on the

edge-to-edge successor function (also called the Poincaré map) of a 2-PCD.

1.1. BACKGROUND AND KNOWN RESULTS 7

In [6], a related model named an HPCD was introduced. An HPCD is a 2-

dimensional hybrid automaton where the dynamics in each discrete location is

given by a 2-PCD (formal details are given in Section 2.1.3, Chapter 2). Certain

edges in the HPCD are called (transition) guards and cause the HPCD to change

location if ever the trajectory reaches such an edge. When transitioning between

locations, an affine reset rule may be applied. If all regions of the underlying PCDs

are bounded, then the HPCD is called bounded. This model can thus be seen as

an extension of a 2-PCD.

The reason why we are interested in the HPCD system not only because it

is an extension of a 2-PCD and thus is an intermediate model lying between the

decidable 2-PCD and the undecidable 3-PCD, but also as it links the continuous

PCD model to an important simple discrete 1-dimensional system called the 1-

dimensional Piecewise Affine Map (1-PAM). A 1-PAM is a piecewise function

which is applied to the 1-dimensional real line, such that the function within

each interval of the real line is affine (see Section 2.1.4 for details). Though the

1-PAM looks like a simple system, our understanding of it is quite limited. The

reachability problem for 1-PAMs is stated as an open problem in [5, 19, 20, 43,

45], but it becomes undecidable in the 2-dimensional case with fewer than 800

intervals [43]. However, our knowledge of reachability for 1-PAMs is so lacking

that even for a 1-PAM with only two intervals, the problem remains open to the

author’s knowledge.

In [45], 1-PAMs are proven to be equivalent to a 2-dimensional system called a

planar pseudo-billiard system, also known as a “strange billiards” model in bifurc-

ation and chaos theory [56] (see ‘simulations ’ under Section 2.1.3 for the defin-

itions of equivalence and simulation). Some decidable results are known under

restricted cases. In [5], it is proven that reachability is decidable for 1-dimensional

Onto PAMs, which is a model such that every interval in the PAM can be exactly

mapped to another. In [19], it is shown that for 1-PAMs over the integers (where

all coefficients, the initial point and the final point are integers), the reachability

problem is PSPACE-complete, which implies that reachability for rational 1-PAMs

is at least PSPACE-hard. If PAMs are replaced by polynomials, the decidability

of the reachability problem is open for any dimension [6]. If PAMs are replaced

8 CHAPTER 1. INTRODUCTION

by piecewise rational maps, the reachability problem is undecidable even for di-

mension one [45]. Point to set reachability for two interval PAMs is considered

in [17]. The density of orbits in PAMs is studied in [46].

In the above we mentioned that the HPCDs link the PCDs to 1-PAMs because

reachability for bounded 1-PAMs was shown to be equivalent to that of reachab-

ility for bounded HPCDs with either: i) comparative guards, identity resets and

elementary flows in Proposition 3.20 of [5] or else ii) affine resets, non-comparative

guards and elementary flows in Lemma 3.4 of [5] (See Section 2.1.3 for definitions).

Related to the reachability problem is the mortality problem. The mortality

problem is the problem of determining if the trajectories starting from all initial

points/configurations eventually halt (defined formally in Section 2). The mor-

tality problem has been studied in many different contexts [15, 19, 20, 24, 35] and

has connections with program verification, especially in a discrete setting. Similar

to the case of reachability, the mortality for 1-PAMs is also stated as an open

problem in [19, 20], and undecidability also starts at dimension two, in both the

integer case [19], and for the rational case [20]. Global convergence is also known

to be undecidable in dimension two [20], although both problems are decidable in

dimension one when the piecewise affine function is continuous. The author of [19]

also shows Π0
2-completeness for the integer case.

However, neither reachability nor mortality is a superclass of the other. For

the mortality problem, we must prove that all initial points will eventually halt,

or else the system can be called immortal (meaning that the system may diverge,

become periodic or quasi-periodic for example). Mortality for 1-PAMs over the

integers is known to be PSPACE-complete [19]. Whether the undecidability results

in dimension two still hold for a fixed number of intervals is unknown, in both the

rational and integer cases.

Similarly to [5], we also aim to study the following question: “What is the

simplest class of hybrid systems for which reachability is intractable or undecid-

able?” To this end, we define the model of Restricted HPCD (RHPCD), which is

a deterministic bounded HPCD with (1) elementary flows (derivatives of all con-

tinuous variables come from {0,±1}), (2) identity resets and (3) non-comparative

guards and is thus a simpler form of HPCD. Certain power subset of these re-

1.1. BACKGROUND AND KNOWN RESULTS 9

strictions on HPCDs have been considered in [5]. These restrictions on the resets,

derivatives and guards seem natural ones to consider. For example, restricting to

identity resets means the trajectory will not have discontinuities in the continuous

component, which is similar to a PCD trajectory. Restricting the derivatives to

elementary flows ({0,±1}) has similarities to a stopwatch automaton, for which

all derivatives are from {0, 1}. Restricting the guards to be non-comparative gives

strong similarities to the guards of a rectangular automaton [38], as well as the

diagonal-free clock constraints of an updatable timed automaton [25].

∞ num. Linear Affine Comparative Arbitrary Num. of
of regions resets resets guards const. flows locations

Decidable
× × × × × N <∞ *
× × × X X 1 [49]

1-PAM
× × × × X dlog2 ne+ 3 *

equivalent
× × × X × 4n [5]
× × X × × 1 [5]
× X × × × dlog2 ne+ 3 *

Undecidable X × × × × 1 [5]

Table 1.1: Summary of decidability status of the reachability problem for 2-
RHPCDs when certain conditions are allowed (X) or disallowed (×). Starred
results are contributions of this thesis.

We prove that a bounded 1-PAM can also be simulated by an RHPCD with

arbitrary constant flows or with linear resets. Together with the results in [5], the

reachability problem for bounded HPCDs is thus shown to be equivalent to that

of bounded 1-PAMs when the HPCD only has one of the following: comparative

guards, linear resets (or affine resets) or arbitrary constant flows, see Table 1.1 for

an overview.

We then consider an n-dimensional analogue of RHPCDs, which we denote n-

RHPCDs. We show that reachability is decidable (and in PSPACE) for bounded

n-RHPCDs and mortality is decidable for bounded 2-RHPCDs. We show a lower

bound that reachability and mortality for bounded 3-RHPCDs is co-NP-hard.

We also extend the n-RHPCD model with nondeterminism and unbounded-

ness. If the 2-RHPCD model is endowed with a nondeterministic transition func-

tion between locations, then the reachability problem becomes PSPACE-hard.

Furthermore, we show that the reachability and mortality problems for unboun-

ded 3-RHPCDs is actually undecidable by an encoding of a Minsky machine.

10 CHAPTER 1. INTRODUCTION

Note that the reachability problem for a 3-HPCD is undecidable, even with only

one location, since HPCDs are a superclass of 3-PCDs for which reachability is

undecidable [4].

1.1.2 Matrix Semigroups

Matrices are one of the fundamental objects in Mathematics. They are used in

a wide variety of areas of mathematics, such as representing linear equations,

graphs, Markov chains and probability distributions. Matrices are also crucial for

real-world applications, for instance computer graphics; a world without matrices

would be a world without video games.

In this thesis we concentrate on matrix semigroups, which are semigroups gen-

erated by a finite set of square matrices, together with the operation of matrix

multiplication (see Section 2.1.2 for formal definition). Similar to the hybrid sys-

tem part, we will also study reachability type problems for matrix semigroups.

Firstly, we should mention one of the most basic and natural problems for

matrix semigroups - the membership problem, which is to determine whether a

given element (a matrix) M is contained within a matrix semigroup S. Reach-

ability type problems for matrix semigroups are related to, or can be regarded as

the variation of the membership problem. The vector reachability problem asks

given two vectors x, y and a matrix semigroup S, whether exists a matrix M ∈ G

such that Mx = y. The scalar reachability problem is the question to determine

given two vectors x, y, a matrix semigroup S and a value k, whether there exists

a matrix M ∈ S such that xTMy = k. The mortality and identity problems ask

if the zero matrix or identity matrix belong to the matrix semigroup, respectively

(in fact, they are special cases of the membership problem).

The freeness problem is to determine whether a semigroup generated by a finite

set of matrices is free, or in other words, if every matrix in the semigroup has a

unique factorisation over elements of the generator. The vector ambiguity problem

asks given a vector x and a matrix semigroup S, if it is true that Mx = Nx leads

to M = N for all M,N ∈ S. Besides, we can ask these questions over bounded

languages, i.e., instead of generating a matrix M arbitrarily, we require M to be

generated by a fixed order of elements of the generator (see section 2.2.2 for full

1.1. BACKGROUND AND KNOWN RESULTS 11

details).

A lot of research has been done and many results are known for reachability

type problems for matrix semigroups. Undecidability generally starts from dimen-

sion three or four over rational numbers, for example, the membership problem

(including the identity and mortality problem), vector reachability problem, scalar

reachability problem and freeness problem [11, 18, 24, 37]. Dimension two is the

challenging part and many problems remain open. The known results are usually

based on a different semi-ring, for example, for 2 × 2 matrices, the membership

and vector reachability problems are undecidable over quaternions [18], and the

identity problem is decidable over the integers [28].

In this thesis we will introduce two new reachability type problems in mat-

rix semigroups called Scalar Ambiguity and Scalar Freeness problems. These are

related to the uniqueness of factorizations of a set of scalar values of the form

{ρTMτ |M ∈ S}, where S is a finitely generated matrix semigroup (see Sec-

tion 2.2.2 for details). We show that these two problems are also undecidable

both in general case and over bounded languages, by reductions from Post’s cor-

respondence problem and Hilbert’s tenth problem.

In Chapter 4, we also study a related ambiguity problem for Probabilistic Finite

Automata (PFA), defined in Section 2.1.4. The reachability problem for PFA (or

emptiness problem) is known to be undecidable [55], even in a fixed dimension

[21, 42]. The reachability problem for PFA defined on a bounded language (i.e.

where input words are from a bounded language which is given as part of the

input), was also shown to be undecidable [16].

Associated with each input word is the probability of that word being accepted

by the PFA. In this thesis, we show that determining whether every probability

is unique is undecidable over a bounded language. In other words, to determine

if there exists two input words which have the same probability of being accepted

is undecidable. This is a similar concept to the threshold isolation problem shown

in [21] to be undecidable, where we ask if each probability can be approximated

arbitrarily closely.

12 CHAPTER 1. INTRODUCTION

1.2 Overview of the Thesis

We now illustrate how the thesis is organised. In Chapter 2, “Preliminaries”, we

first briefly talk about two general type problems we will look at in this thesis,

the decidability and complexity problems. The proof technique of “reducibility”

is also introduced, as it is used throughout this thesis. We then try to give all

the formal definitions needed in this thesis for both hybrid systems and matrix

semigroups.

In the hybrid systems part, we introduce the concept of “simulation”, as it

is a crucial method used in Chapter 3 to show some reachability results and it

is important to carefully define what it means for one computational model to

“simulate” another. We also list some known undecidable or complexity results,

like generalized Collatz problem, Hilbert’s tenth problem and simultaneous incon-

gruences, so they can be used to prove our undecidable or hardness results by

reduction or simulation. Finally we define the reachability type problems formally

for both hybrid systems and matrix semigroups, together with examples to aid

understanding.

Chapter 3, “Reachability Problem for HPCDs” deals with the reachability

problem for HPCDs and its variations. We start with the two-dimensional case,

summarise the computational powers of 2-HPCD formally and extend the results

in [5]. This result and other relative results were presented in [12]:

• P. C. Bell, S. Chen, Reachability problems for hierarchical piecewise constant

derivative systems, in: Reachability Problems, Vol. 8169 of Lecture Notes

in Computer Science, 2013, pp. 46-58.

We then study the n-dimensional but restricted version of HPCD system called

n-RHPCD. We are able to show the computational power of such a system is

quite limited and the reachability problem for it is decidable. Hence we are more

interested in complexity results. We show a lower bound for the 3-dimensional case

and a upper bound for the general case. Also, we have a discussion about 1-PAM

and a more general model of Piecewise Rational Maps 1-PRM, not only because 1-

PAM has a close relation to 2-HPCD, but also 1-PAM and 1-PRM themselves are

interesting models. At the end of this chapter, we show some results for RHPCD

1.2. OVERVIEW OF THE THESIS 13

with extensions. Some of the results mentioned above were presented in [13]:

• P. C. Bell, S. Chen, L. M. Jackson, Reachability and mortality problems

for restricted hierarchical piecewise constant derivatives, in: Reachability

Problems’14, Vol. LNCS 8762, 2014, pp. 32-45.

In Chapter 4, “Mortality Problem for HPCDs”, mortality problems for dif-

ferent dimensional HPCDs are studied. In contrast to reachability problem, the

mortality problem deals with the behaviour of trajectories starting with all valid

configurations of HPCDs. We show a lower bound of the 2-dimensional case, a

upper bound of a 3-dimensional case and also the unbounded case. The results

shown in this chapter were also published in the above paper [13].

In Chapter 5,“Scalar Ambiguity and Freeness Problems”, we introduce two

new reachability type problems for matrix semigroups named scalar ambiguity

and scalar freeness and show that they are undecidable, both in the general case

and over bounded languages. The proof for the general case is shown by reducing

from a variation of Post’s correspondence problem called Mixed Modification PCP

(MMPCP) (defined in Section 2.1.4), and the undecidability starts from dimension

three and four, just like many other problems for matrices. For the problems

over bounded languages, we prove the undecidablility results by an encoding of

Hilbert’s tenth problem, which is related to finding zeros of Diophantine equations.

Reductions using Hilbert’s tenth problem often require higher dimensions. Later

in this chapter we also use the similar proof technique to study an ambiguity

problem for PFA. The results in this chapter were presented in [14]:

• P. C. Bell, S. Chen, L. M. Jackson, Scalar ambiguity and freeness in matrix

semigroups over bounded languages, in: Language and Automata Theory

and Applications: 10th International Conference, LATA 2016, Prague, Czech

Republic, March 14-18, 2016, Proceedings, Vol. 9618, Springer, 2016, p. 493.

Most of the results in this thesis were presented at 7th International workshop

on Reachability Problems (RP2013), 8th International workshop on Reachabil-

ity Problems (RP2014) and Language and Automata Theory and Applications

(LATA2016).

14 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we outline all the concepts and problems that will appear in this

thesis. They are either given by full definitions for completeness or refer to the

literature.

We first briefly introduce the fundamental concept of decidability in computab-

ility and then explain how decidable problems are classified in complexity theory,

as all results shown in this thesis will be decidability and complexity results. We

also illustrate how the proof technique of reducibility works, as it will be used

throughout this thesis.

We then list all the specific definitions and divide them into three parts: the

“Algebra, Group, Matrix and Words” part, which includes some common defin-

itions in the areas of algebra, matrix, groups and words; the “Hybrid Systems”

part, which includes the definition of general hybrid automata and some specific

models such as PCDs, HPCDs and RHPCDs; and the “Discrete Computational

Models” part, which includes the definitions of some well-known discrete models

that are related to this thesis, such as 1-PAM, generalised Collatz function and

Minsky machine, etc, as well as some known results for them.

Finally we shall formally define some reachability type problems that will be

studied in this thesis both for hybrid systems with linear dynamics and for mat-

rix semigroups. These problems include the reachability problem, the mortality

problem, the scalar ambiguity problem and the scalar freeness problem.

15

16 CHAPTER 2. PRELIMINARIES

2.1 Definitions

In this thesis we use R,Q,Z,N to denote the set of real numbers, rational numbers,

integer numbers and natural numbers, respectively. Also define big-O notation

f(n) = O(g(n)) if there exist positive integers c and n0 such that for functions f

and g, f(n) ≤ cg(n) for every integer n ≥ n0.

2.1.1 Computability and Complexity

A decision problem performs a calculation of an instance of a problem on a com-

putational device (such as Turing machine) and always returns a “yes” or “no”

answer.

A Turing machine is a tuple (Q,Σ,Γ, δ, q0, qa, qr), where

(1) Q is the finite set of states,

(2) Σ is the finite set of input alphabet not containing the special blank symbol 2,

(3) Γ is the finite set of tape alphabet where 2 ∈ Γ and Σ ⊆ Γ,

(4) δ : Q× Γ→ Q× Γ× {L,R} is the transition function,

(5) q0 ∈ Q is the initial state,

(6) qa is the accept state,

(7) qr is the reject state where qa 6= qr.

A Turing machine M starts with some finite input word w ∈ Σ∗ written onto

the tape, in the initial state q0 ∈ Q and with its ‘read/write head’ positioned

at the left hand end of the tape on the first cell. At each discrete time step,

the machine uses the transition function δ to determine what to do, based on its

current state, and the current symbol that the read/write head is on. Given a

rule such as δ(qi, a) = (qj, b, R) for example, means that if we are in state qi ∈ Q,

reading symbol ‘a’ ∈ Γ, then the machine will change to state qj, replace the

symbol ‘a’ with ‘b’ at the current tape position, and then move the read/write

head one position to the right (R).

2.1. DEFINITIONS 17

If M reaches the accept state qa, then machine M is said to accept word w and

the computation halts. If M ever reaches the reject state qr, then the machine

M is said to reject word w and the computation halts. We may assume that the

machine cannot move left of position 1 of the tape, but the tape to the right of

the initial input word is infinite (with blank symbols).

The Turing machine we defined here is single-tape and deterministic which

means it operates on a single tape, and for each (qi, c) ∈ Q × Γ, there exists

at most one (qj, c
′, D) ∈ Q × Γ × {L,R} such that δ(qi, c) = (qj, c

′, D), thus

it always performs the same computation for the same given input. See a full

explanation and variants of Turing machines (multi-tape, nondeterministic) in [59].

A Turing machine is nondeterministic if the transition function above is of the form

δ : Q × Γ → P(Q × Γ × {L,R}), where P denotes the power set, and there are

more than one (qj, c
′, D) satisfy δ(qi, c) = (qj, c

′, D) for at least one (qi, c). These

variants have the same computational power as the one we defined here, and they

all can solve every problem that can be done by a real computer according to the

Church-Turing thesis.

A decision problem is said to be decidable if it is possible to construct a single

algorithm such that after some finite amount of time it always returns the correct

“yes” or “no” answer to the problem for any given legitimate input. If it can be

proven that such an algorithm does not exist, the problem is called undecidable.

For decidable problems, we distinguish them by different complexity classes.

It is not easy to formally define these classes in a few words, we only give a brief

introduction here, see [59] for details. In the following definitions, we always con-

sider the worst-case time complexity of the problems, for example the maximum

amount of time or space required by an algorithm when taken over all inputs of

some size n. We first need the following definitions:

A language of a machine M (for example, finite automaton, Turing machine)

is the set of all strings accepted by M (also see Section 2.1.2).

Let t : N→ N be a function. Define the time complexity class TIME(t(n)) to

be TIME(t(n)) = {L|L is a language decided by an O(t(n)) time Turing machine},

where an O(t(n)) time Turing machine is a Turing machine that halts on all inputs

and has running time at most O(t(n)).

18 CHAPTER 2. PRELIMINARIES

Now we can define the class P as P =
⋃
k∈N TIME(nk). In other words, a

problem is in the class P if it can be solved by a deterministic algorithm that runs

in polynomial time.

Let NTIME(t(n)) = {L|L is a language decided by an O(t(n)) time non-

deterministic Turing machine}. We define the class NP as NP =
⋃
k∈N NTIME(nk).

The class NP captures those problems for which it may be difficult to find a solu-

tion, but for which verifying the solution is reasonably efficient.

A problem is in the class co-NP if its complement is in the class NP. Just as

NP can be considered to be the class of problems with a succinct “yes” verifier,

co-NP can be considered to be the class of problems with a succinct “no” verifier.

Let t : N → N be a function. Define space complexity classes SPACE(f(n))

to be SPACE(f(n)) = {L|L is a language decided by an O(f(n)) space Turing

machine}, where an O(f(n)) space Turing machine halts on all inputs and scans

a maximum number O(f(n)) of tape cells on any input of length n.

We define the class PSPACE as PSPACE =
⋃
k∈N SPACE(nk). In other words,

a problem is in the class PSPACE if it can be solved by a deterministic algorithm

that uses an amount of space which is polynomial in the size of its input. It is not

difficult to see that P ⊆ PSPACE, because any machine that runs in time T uses

at most T space since at most one new memory cell can be visited at each step of

computation. Also, we have NP ⊆ PSPACE since NP ⊆ NPSPACE for a similar

reason and NPSPACE = PSPACE, but we omit the definition of NSPACE here,

see [59] for more information.

A decision problem Q is said to be complete for a set of decision problems

S if: (i) Q is a member of S and (ii) every problem in S can be reduced to Q

in polynomial time (see the definition of reducibility in the following part). For

example, if a problem Q is PSPACE-complete, then Q must be in PSPACE and

every problem Q′ in PSPACE is polynomial time reducible to Q. If Q merely

satisfies condition (ii), we say that Q is PSPACE-hard.

In this thesis, we will show a number of computability and complexity results.

The primary method that is widely used in proving such problems is called redu-

cibility . A reduction is a way of converting problem A into problem B in such a

way that a solution to problem B can be used to solve problem A. We say problem

2.1. DEFINITIONS 19

A is reducible to problem B, if there exists a reduction from A to B, i.e., we can

solve A by a solution to B. An intuitive example can be reducing the problem of

solving a system of linear equations to the problems of inverting a matrix.

If a problem A is reducible to problem B in an efficient way (for example,

in a polynomial time or space, see the following paragraph), then we know B is

at least as “hard” as A. In computability theory, the “hardness” can refer to

decidability. If we know A is undecidable and A is reducible to B, then B must

also be undecidable (otherwise the solution to B can also solve A which gives a

contradiction). It is also clearly that for undecidable problems the reduction is

transitive. Some well-known examples include the first known undecidable prob-

lem, halting problem for Turing machine, is reducible to other problems like the

halting problems for Minsky machine, Post’s correspondence problem, etc (defined

later in this chapter). The later problems are more often used in undecidable proof

due to their properties.

In complexity theory, the “hardness” can refer to the complexity class the

problem belongs to. For instance, if A is known to be in class NP-hard and A is

polynomial time reducible to B, then B is at least NP-hard. We do not formally

define “polynomially reducible ” here, readers can understand this as saying that

the description size of A and B are almost the same (up to a polynomial difference).

There are many different examples of proofs shown by reducibility, see [33] for a

thorough discussion.

2.1.2 Algebra, Groups, Matrices and Words

In this section we briefly introduce some basic concepts in algebra, group theory,

matrix theory and words. Though the definitions are mostly related to Chapter 5,

some of them are very basic and thus also needed in Section 2.1.3 and Section 2.1.4.

A set is a collection of distinct objects (called the elements of a set). Given

two sets A and B, the union of A and B, denoted by A ∪ B, is the set of all

elements that either belong to A or B. The intersection of A and B, denoted

by A ∩ B, is the set of all elements that both belong to A and B. The relative

complement of B in A, denoted by A \ B, is the set of all elements that belong

to A but do not belong to B. For example, let A = {a, b}, B = {b, c}, then

20 CHAPTER 2. PRELIMINARIES

A ∪B = {a, b, c}, A ∩B = {b}, A \B = {a}.

A semigroup (S, ◦) is a set S together with a binary operation ◦ that satisfies

the associative property - (a◦b)◦c = a◦ (b◦c), such that if a, b ∈ S, then a◦b ∈ S

holds. It is a standard abuse of notation to refer to the semigroup itself by S.

A semigroup homomorphism is defined as a mapping γ : A→ B between two

semigroups A and B if the equation

γ(a � b) = γ(a) ◦ γ(b)

holds for all a, b ∈ A, where � is the binary operator of A and ◦ is the binary

operator of B. In this thesis we will simply call this a homomorphism or morphism,

unless otherwise stated.

We denote an m × n matrix M over a semi-ring F by M ∈ Fm×n. We use

M[i,j] to denote the element in the i’th row and j’th column of M . We use I

and 0 to denote the identity matrix and zero matrix with appropriate dimensions,

respectively, i.e.,

I =

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 ,0 =

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 ,

if they do not cause any confusion. Given square matrices M ∈ Fm×m and N ∈

Fn×n, we define the direct sum M ⊕N of M and N by:

M ⊕N =

M 0

0 N

 .

Given a finite set of matrices G ⊆ Fn×n, 〈G〉 is the semigroup generated by G.

Let A = {x1, x2, . . . , xk} be a finite set of letters called an alphabet. A word

w is a finite sequence of letters from A, the set of all words over A is denoted A∗

and the set of nonempty words is denoted A+. The empty word is denoted by ε.

We use |u| to denote the length of a word u, i.e. how many letters the word u

contains. Also we have |ε| = 0. For two words u = u1u2 · · ·ui and v = v1v2 · · · vj,

2.1. DEFINITIONS 21

where u, v ∈ A∗, the concatenation of u and v is denoted by u · v (or by uv for

brevity) such that

u · v = u1u2 · · ·uiv1v2 · · · vj.

Given a word u = u1u2 · · ·ui, a prefix of u is any word u = u1u2 · · ·uj, where

j ≤ i. A subset L of A∗ is called a language. A language L ⊆ A∗ is called a

bounded language if and only if there exist words w1, w2 . . . , wm ∈ A+ such that

L ⊆ w∗1w
∗
2 · · ·w∗m.

For a semigroup (S, ·), where · denotes the operation of concatenation, and a

subset G ′ ⊆ S, we say that G ′ is a code if x1 · · ·xk1 = y1 · · · yk2 , where xi, yi ∈ G ′

implies that k1 = k2 and xi = yi for 1 ≤ i ≤ k1. Alternatively stated, G ′ is not

a code if and only if some element of S has more than one factorization over G ′.

We call G ′ a prefix code if no w1 ∈ G ′ is a prefix of another word w2 ∈ G ′. Given

a set G ⊆ Fn×n, the freeness problem is to determine if G is a code for S = 〈G〉.

2.1.3 Hybrid Systems

We start this section by formally defining the most general model that is used to

describe a hybrid system.

Definition 1. [HA] An n-dimensional Hybrid Automaton (HA) [1] is a tuple

H = (X , Q, f , I0, Inv, δ) consisting of the following components:

(1) A continuous state space X ⊆ Rn. Each x ∈ X can be written x = (x1, . . . , xn),

and we use variables x1, . . . , xn to denote components of the state vector.

(2) A finite set of discrete locations Q.

(3) A function f : Q→ (X → Rn), which assigns a continuous vector field on X

to each location. In location l ∈ Q, the evolution of the continuous variables

is governed by the differential equation ẋ = fl(x). The differential equation is

called the dynamics of location l.

(4) An initial condition I0 : Q → 2X assigning initial values to variables in each

location.

22 CHAPTER 2. PRELIMINARIES

(5) An invariant Inv: Q → 2X . For each l ∈ Q, the continuous variables must

satisfy the condition Inv(l) in order to remain in location l, otherwise it must

make a discrete transition or halt.

(6) A set of discrete transitions δ. Every tr ∈ δ is of the form tr = (l, g, γ, l′),

where l, l′ ∈ Q, g ⊂ X is called the guard, defining when the discrete transition

can occur, γ ⊂ X × X is called the reset relation applied after the transition

from l to l′.

An HA is deterministic if it has at most one solution for its differential equation

in each location and the guards of all the outgoing discrete transitions for each

location are mutually exclusive (i.e. the intersection of any two such guards is

empty). We consider deterministic HAs, unless otherwise stated. The size of an

HA is its description size, i.e. the amount of space required to store a description

of the HA under a reasonable encoding scheme (for example storing elements of

Rn using a binary encoding). A configuration of an HA is a pair from Q × X .

A trajectory of a hybrid automaton H over a time interval [0, T] and starting

from configuration (l0,x0) where l0 ∈ Q,x0 ∈ X is a pair of functions πl0,x0 =

(λl0,x0(t), ξl0,x0(t)) such that there exists a sequence of times t0 = 0 < t1 < t2 <

. . . < tk = T and

(1) λl0,x0(t) : [0, T)→ Q is a piecewise function constant on every interval [ti, ti+1).

(2) ξl0,x0(t) : [0, T) → Rn is a piecewise differentiable function and in each piece

ξl0,x0 is càdlàg (right continuous with left limits everywhere).

(3) ξl0,x0(t) ∈ Inv(λl0,x0(ti)) for all t < T , where t ∈ [ti, ti+1).

(4) On any interval [ti, ti+1) where λl0,x0 is constant and ξl0,x0 is continuous,

ξl0,x0(t) = ξl0,x0(ti) +

∫ t

ti

fλl0,x0 (ti)(ξl0,x0(τ))dτ

for all t ∈ [ti, ti+1).

(5) For any ti, there exists a transition (l, g, γ, l′) ∈ δ such that

(i) λl0,x0(ti) = l and λl0,x0(ti+1) = l′;

2.1. DEFINITIONS 23

(ii) ξ−l0,x0
(ti+1) ∈ g where ξ−l0,x0

(t) means the left limit of ξl0,x0 at t;

(iii) (ξ−l0,x0
(ti+1), ξl0,x0(ti+1)) ∈ γ.

If (λl0,x0(t), ξl0,x0(t)) is defined over [0,∞), then the trajectory is called infinite.

Given a trajectory πl0,x0 = (λl0,x0(t), ξl0,x0(t)) with sequence of times t0 = 0 < t1 <

t2 < . . . < tk = T , we denote by λl0,x0(t0), λl0,x0(t1), . . . , λl0,x0(tk) the symbolic

dynamics of the trajectory, which will be unique for a deterministic HA (and can

be infinite). This gives the sequence of locations that the HA visits during the

trajectory from time 0 to T .

In the following we define a specific model of hybrid system, and it is a natural

and intuitive model in two and three dimensions. Later on we will define and

study a model that can be seen as its extension.

Definition 2. [n-PCD] An n-dimensional Piecewise Constant Derivative (n-

PCD) system [4] is a pair H = (P,F) such that:

(1) P = {Ps}1≤s≤k is a finite family of nonoverlapping polytopes in Rn with

nonempty interiors, where each Ps ⊆ Rn is defined as the intersection of

finitely many open or closed halfspaces. We also call Ps a region.

(2) F = {cs}1≤s≤k is a family of vectors in Rn.

(3) The dynamics are given by ẋ = cs for x ∈ Ps.

An n-PCD H = (P,F) can equivalently be defined as a restricted type of HA

which has n continuous variables, for which there is a location for each Ps ∈ P,

which has corresponding invariant Ps and all derivatives are constant in each

location. The guards correspond to the boundary edges between polytopes and

no reset is allowed during a transition. We thus see that a PCD is a partitioning

of P into finitely many regions, each of which has an assigned constant derivative

or slope. The trajectories are therefore broken lines, with breakpoints at the

boundaries of regions. Points along the trajectory follow the derivative of the

region they lie inside.

An n-PCD is called bounded if for its regions P = {Ps}1≤s≤k, there exists

r ∈ Q+, such that for all Ps, we have that Ps ⊆ B0(r), where B0(r) is an origin-

24 CHAPTER 2. PRELIMINARIES

centered open ball of radius r of appropriate dimension. We define the support

set of a PCD H as SuppPCD(H) =
⋃

1≤s≤k Ps.

In the following we slightly modify the definition of HPCD [5] to allow different

dimensions to be studied.

Definition 3. [n-HPCD] An n-dimensional Hierarchical Piecewise Constant De-

rivative (n-HPCD) system is a hybrid automaton H = (X , Q, f , I0, Inv, δ) such

that Q and I0 are defined as in Definition 1, with the dynamics at each l ∈ Q given

by an n-PCD and for each transition tr = (l, g, γ, l′): (1) its (transition) guard

g ⊆ Rn, defined below, is a convex region of dimension (n− 1); and (2) the reset

relation γ is an affine function of the form: x′ = γ(x) = Ax+ b, where A ∈ Rn×n

and b ∈ Rn.

We denote the internal guards of an HPCD location to be the boundary edges

of the underlying PCD regions which can cause a change of dynamics when they

are reached. The transition guards are the guards used in transitions between

locations. The Invariant (Inv) for a location l is defined to be SuppPCD(l), minus

the transition guard for that location, where SuppPCD(l) is the support set of the

underlying PCD on l. If all the PCDs are bounded, then the n-HPCD is said to

be bounded.

It can thus be seen that n-HPCDs are in fact n-dimensional linear hybrid

automata. The definition of 2-HPCD, as described by [5], is given to emphasise

the fact that the trajectory of a 2-HPCD “mostly behaves likely a PCD, with a few

reset induced discontinuities”. Therefore, the definitions of trajectories, symbolic

dynamics and the reachability/mortality problems (defined in Section 2.2.1), can

also be defined on HPCD and can be understood in terms of the representation

as a two-dimensional linear Hybrid Automaton.

Note that we should avoid the case shown in Figure 2.1 when we define an

HPCD system. We denote the interval by I which is the dot line segment in the

example. The guard of location P is g1 = I, jump to location Q and the guard of

location Q is g2 = I, jump to location P . Thus we have

Inv(P) = SuppPCD(P)− I;

Inv(Q) = SuppPCD(Q)− I.

2.1. DEFINITIONS 25

Clearly, interval I is contained in neither invariant of P nor invariant of Q. So a

trajectory cannot take a transition from P to Q or the other way around as it is

not right continuous (see definition of trajectory above).

P Q

g = I
1

g = I
2

Figure 2.1: An example of an invalid HPCD

In this thesis, we are interested in a restricted form of n-HPCD. We first define

three restrictions on an n-HPCD:

1. Under the HPCD model, when transitioning between locations, we may

apply an affine reset to non-continuously modify the current point. An

n-HPCD has identity (or no) resets if for every transition tr = (l, g, γ, l′),

γ(x) = x for all points x ∈ Rn. This means that starting from any initial

configuration (l0,x0), for the trajectory πl0,x0 = (λl0,x0(t), ξl0,x0(t)) we have

that ξl0,x0(t) is a continuous function of t. Note that the trajectory for a

PCD is also continuous, and thus this seems to be a natural restriction.

2. An n-HPCD system has elementary flows if the derivatives of all variables

in each location are from {0,±1}, otherwise it has arbitrary constant flows .

3. Guards are used to change the derivative being applied within a location

(internal guards), or to change which location we are in (transition guards)

and can be described by Boolean combinations of atomic formulae (linear

inequalities). If each atomic formula contains only one variable, then the

guard is called non-comparative (meaning the guard is aligned with ones

of the axes). An n-HPCD has non-comparative guards if all guards (both

internal and transition) are non-comparative, e.g., for a 3-RHPCD, 3
2
≤ x ≤

7 ∧ y = −1 ∧ 2 ≤ z ≤ 7 is a non-comparative guard, but 0 ≤ x ≤ 1 ∧ 0 ≤

y ≤ 1
2
∧ z = 5 ∧ x = 2y is a comparative guard (due to the term x = 2y).

Under these restrictions we can now define our restricted version of n-HPCD.

26 CHAPTER 2. PRELIMINARIES

Definition 4. [n-RHPCD] An n-dimensional Restricted Hierarchical Piecewise

Constant Derivative System (n-RHPCD) is a bounded n-HPCD with identity re-

sets, non-comparative guards and elementary flows. See Figure 3.6a and Fig-

ure 3.6b for an example of a 3-RHPCD.

In Section 3.1 we extend the results of [5] regarding simulations of 1-PAMs by

2-HPCDs. We follow the similar approach for the definition of simulation used

in [4, 5]. We define a simulation with respect to reachability. This means that if

a model A can be simulated by a model B, then it implies that if the reachability

problem for B is decidable (or undecidable), then it must also be decidable (or

undecidable) for A. Since we will show simulations of both 1-PAMs and Minsky

machines (defined below), we give the definition in terms of a simulation of an

arbitrary deterministic transition system, which is a pair A = (S, δ′), where S is

a set of states and δ′ is a transition function δ′ : S → S.

Definition 5. [Simulation] We say that a deterministic transition system A,

with initial configuration c0 and final configuration cf , can be simulated by a 2-

HPCD H with respect to the reachability problem if (1) configuration c0 (resp.

cf) of A is encoded by a configuration (l0,x0) (resp. (lf ,xf)) of H; (2) every

configuration of A is encoded by a unique configuration of H; (3) a one-step com-

putation of A given by δ′(qk) = qk′ is represented by a trajectory segment from

(λl0,x0(t), ξl0,x0(t)) to (λl0,x0(t′), ξl0,x0(t′)) for some 0 ≤ t < t′ < ∞ on H, where

(λl0,x0(t), ξl0,x0(t)) is the encoding of qk, (λl0,x0(t′), ξl0,x0(t′)) is the configuration

encoding qk′ and (λl0,x0(t′′), ξl0,x0(t′′)) is not the encoding of any configuration of

A for t < t′′ < t′.

2.1.4 Discrete Computational Models and Problems

The following model is the class of 1-dimensional Piecewise Affine Maps (1-PAM).

Our approach in Section 3.1 follows a similar style to [5] where we show various

classes where reachability is equivalent to that of a 1-PAM.

Definition 6. [1-PAM] A 1-dimensional Piecewise Affine Map (1-PAM) is a

function f : R→ R (See Figure 3.3a for an example) such that:

(1) Domain of f : dom(f)=
⋃
Ii, where Ii are disjoint rational intervals.

2.1. DEFINITIONS 27

(2) ∃ai, bi ∈ Q such that ∀x ∈ Ii, f(x) = aix+ bi.

(3) f is closed, i.e., range(f) ⊆ dom(f).

A 1-PAM is called bounded if none of its intervals is infinite. In the sequel we

will write 1-PAM refer to bounded 1-PAM unless otherwise stated.

We now state a problem for 1-PAMs, which looks easy at first glance, but is

actually a longstanding open problem [5,19,20,43,45].

Open Problem 1. [1-PAM Reachability] Given a 1-dimensional Piecewise

Affine Map f , an initial point x ∈ Q and a final point y ∈ Q, does there exist

t ∈ N, such that f t(x) = y? 1

If we replace affine functions above by rational functions (a ratio of two poly-

nomials), we can define a more general class of 1-dimensional piecewise maps.

Definition 7. [1-PRM] A 1-dimensional Piecewise Rational Map (1-PRM) is a

function f : R→ R such that:

(1) Domain of f : dom(f)=
⋃
Ii, where Ii are disjoint rational intervals.

(2) There exist polynomials Pi(x), Qi(x) such that ∀x ∈ Ii, f(x) = Pi(x)
Qi(x)

, where

Qi(x) 6= 0.

(3) f is closed, i.e., range(f) ⊆ dom(f).

A 1-PRM is called bounded if none of its intervals is infinite. A 1-PRM is said to

be of degree k if max{D(Pi)−D(Qi)} = k, where D(Pi), D(Qi) denotes the degree

of polynomials Pi, Qi. In the sequel we will write 1-PRM refer to bounded 1-PRM

unless otherwise stated.

It was proven in [44, 45] that reachability for 1-PRM is undecidable. Later in

Section 3.3 we will use a different method from [45] to show the same result but

slightly improve the conditions required.

The following function is first defined by Conway [29].

1f t(x) denotes f(f(. . . f(x) . . .))︸ ︷︷ ︸
t

28 CHAPTER 2. PRELIMINARIES

Definition 8. [GCF] A function g : N+ → N+ is called a Generalised Collatz

Function (GCF) if there exists a positive integer m together with a set of positive

integers {ai}1≤i≤m and a set of non-negative integers {bi}1≤i≤m, such that whenever

x ≡ i (mod m), then g(x) = ai(x− i)/m+ bi.

A standard representation of g is a set {m, a1, . . . , am, b1, . . . , bm}.

We can introduce a type of reachability problem for GCFs below, which was

shown to be undecidable. This result can help us show the undecidability of

1-PRM reachability.

Problem 1. [GCP] Generalized Collatz Problem (GCP) is the problem of decid-

ing, given a standard representation of g(x), whether starting from an arbitrary

point k, the trajectory of g(x) reaches 1.

Theorem 1. [47] GCP is undecidable.

We now introduce bounded 1-counter automaton, the reachability of which is

known to be PSPACE-complete and hence can help in the proof of our PSPACE-

complete result in Section 3.4.

Definition 9. [1-Counter Automaton] A bounded 1-counter automaton [32,34]

is a tuple (Q, b, δ, l0) such that

(1) Q is a finite set of locations.

(2) b ∈ N is a global counter bound. The value of the counter cannot exceed b in

any location.

(3) δ is a set of transitions. Each transition tr ∈ δ is of the form (l, p, g1, g2, l
′),

where l, l′ ∈ Q are locations, p ∈ {i ∈ Z| − b ≤ i ≤ b} specifies the value that

should be added or subtracted from the counter c, and g1 and g2 is the lower

and upper bound of the guard, respectively, where g1, g2 ∈ {i ∈ Z|0 ≤ i ≤ b}.

(4) l0 ∈ Q is the initial location.

A state of the bounded 1-counter automaton is of the form (l, c), where l ∈ Q

and c ∈ {i ∈ Z|0 ≤ i ≤ b}. We say there is a transition between (l, c) and (l′, c′),

if there is a transition tr = (l, p, g1, g2, l
′) ∈ δ such that g1 ≤ c ≤ g2 and c′ = c+ p.

2.1. DEFINITIONS 29

Note that the bounded 1-counter automaton is a nondeterministic model, which

means there may exist more than one transition between two locations, and from

one location it can jump to more than one locations.

The reachability problem for bounded 1-counter automaton asks, starting from

the initial state (l0, 0), whether the automaton can reach a final state (lf , cf).

Theorem 2 ([32]). The reachability problem for bounded 1-counter automata is

PSPACE-complete.

In order to prove our undecidability result for an unbounded 3-RHPCD later

in the thesis, we will require the following well-known computational model.

Definition 10. [Minsky machine] Informally speaking, a Minsky machine is

a two-counter automaton that can increment and decrement counters by one and

test them for zero. It is known that a two-counter Minsky machine represents

a universal model of computation [52]. Due to their simple structure, Minsky

machines are often convenient for proving undecidability results.

We can represent a counter machine as a simple imperative program M con-

sisting of a sequence of instructions labelled by natural numbers from 1 to some

L ∈ N. Any instruction is one of the following forms:

l: Add 1 to ck; goto l′;

l: If ck 6= 0 then subtract 1 from ck; goto l′;

else goto l′′;

l: Halt;

where k ∈ {1, 2} and l, l′, l′′ ∈ {1, . . . , L}.

The machine M starts executing with some initial nonnegative integer values

in counters c1 and c2 and the control at instruction labelled 1. We assume the

semantics of all above instructions is clear. Without loss of generality, one can

suppose that every machine contains exactly one instruction of the form l : Halt

which is the last one (l = L). It should be clear that the execution process (run)

is deterministic and has no failure. Any such process is either finished by the

execution of L : Halt instruction or lasts forever.

30 CHAPTER 2. PRELIMINARIES

As a consequence of the universality of Minsky machines, their halting problem

is undecidable:

Theorem 3 ([52]). It is undecidable whether a two-counter Minsky machine halts

when both counters initially contain 0.

In order to show the complex results In Section 3.2, Section 3.3 and Section 4.1,

we will require the following simultaneous incongruences problem, which is known

to be NP-complete [33,60].

Problem 2. [Simultaneous incongruences] Given a set {(a1, b1), . . . , (an, bn)}

of ordered pairs of positive integers with ai ≤ bi for 1 ≤ i ≤ n. Does there exist an

integer k such that k 6≡ ai (mod bi) for every 1 ≤ i ≤ n?

We introduce another well-known undecidable problem.

Problem 3. [Hilbert’s Tenth Problem (HTP)] The following problem was

stated as part of 23 open problems for the 20th century by David Hilbert in his

1900 address:

“Given a Diophantine equation with any number of unknown quantities and

with rational integral numerical coefficients: To devise a process according to which

it can be determined by a finite number of operations whether the equation is

solvable in rational integers”.

To use a more modern terminology, Hilbert’s tenth problem is to determine

if there exists n1, n2, . . . nk ∈ N such that P (n1, n2, . . . , nk) = 0, where P is a

Diophantine equation (i.e. P is a polynomial with integer coefficients).

The undecidability of Hilbert’s tenth problem was shown in 1970 by Yu. Matiy-

asevich building upon earlier work of many mathematicians, including M. Davis,

H. Putman and J. Robinson. For more details of the history of the problem as

well as the full proof of its undecidability, see the excellent reference [50]. We

may restrict all the variables of the problem to be natural numbers without loss

of generality, see [50, p.6].

Finally, we give the definitions of Post’s correspondence problem and its vari-

ations, and probabilistic finite automaton. Since they are used in Chapter 5 re-

lated to the words and matrix, some concepts used to define them can be found

in Section 2.1.2.

2.1. DEFINITIONS 31

Problem 4. [PCP] Given a finite set of letters Σ, a binary alphabet ∆, and a

pair of homomorphisms h, g : Σ∗ → ∆∗, the Post’s correspondence problem (PCP)

is to determine whether there exist a word w ∈ Σ+ such that h(w) = g(w).

Post’s correspondence problem is a crucial problem in theoretical computer

science. It was first introduced and shown to be undecidable by Emil Post [57].

The result was later improved in [51] that the undecidability still holds when

|Σ| = 7, and it is decidable when |Σ| = 2 [31]. A recent result also claimed

that for |Σ| = 5, PCP is also undecidable [53]. If the result is correct, then the

decidability status when 3 ≤ |Σ| ≤ 4 are currently open problems. PCP is widely

used in undecidable proofs of problems for matrix semigroups (and elsewhere) due

to its nondeterministic property. We give the following example of an instance of

PCP.

Example 1. PCP can be described as a type of puzzle over dominoes (or tiles).

Let an individual domino contain a pair of words, one on top, one on bottom,

which looks like, for example [
b

ab

]
.

Now given a collection of dominos,

{[
bba

b

]
,

[
ab

b

]
,

[
ba

aabbaa

]}
,

the task of the puzzle is to use the above dominos to find a match, or in other

words, to make a list of these dominos (repetitions permitted) such that the word

on the top is equal to the word on the bottom. In this example, we can find a

match like [
bba

b

] [
ab

b

] [
ba

aabbaa

] [
ab

b

]
,

as both top and bottom containing the word “bbaabbaab”.

Many variations of PCP have been studied and some of them are also undecid-

able. We will require the following variant undecidable problem for proving later

results.

Problem 5. [MMPCP] Given a finite set of letters Σ, a binary alphabet ∆, and

a pair of homomorphisms h, g : Σ∗ → ∆∗, the Mixed Modification PCP (MMPCP)

32 CHAPTER 2. PRELIMINARIES

asks to determine whether there exists a word w = x1 . . . xk ∈ Σ+, xi ∈ Σ such that

h1(x1)h2(x2) . . . hk(xk) = g1(x1)g2(x2) . . . gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that hj 6= gj.

Theorem 4. [27] - The Mixed Modification PCP is undecidable for |Σ| ≥ 9.

It will later be useful to slightly modify the definition of this problem. As with

other variants of Post’s correspondence problem, the proofs of undecidability of

the MMPCP often have the property that potential solution words are of the form

w = s1x2x3 · · ·xk−1s|Σ|, where x2, . . . , xk−1 ∈ Σ− {s1, s|Σ|}, i.e. potential solution

words must start with letter s1, end with letter s|Σ|, and all other letters are not

equal to s1 or s|Σ|. An instance of the (MM)PCP which has this property is called

a Claus instance of the problem. In fact all known proofs of the undecidability

of (MM)PCP seem to have this property [35]. Claus instances can be useful for

decreasing the resources required for showing certain undecidability results, and

we use this property later in Chapter 5.

Theorem 5. [35] - The Mixed Modification PCP is undecidable for Claus in-

stances, when |Σ| ≥ 9.

To define and understand probabilistic finite automata, we first need several

concepts. A vector y ∈ Qn is a probability distribution if its elements are non-

negative and sum to 1 (y has an L1 norm of 1). Matrix M is called a column

stochastic matrix if each column is a probability distribution, a row stochastic

matrix if each row is a probability distribution and it is called a doubly stochastic

matrix if it is both row and column stochastic. For any row stochastic matrix M ,

if y is a probability distribution, then so is yTM , since M preserves the L1 norm

on vectors and is nonnegative. The product of two row/column/doubly stochastic

matrices is also row/column/doubly stochastic (respectively) as is not difficult to

verify.

Definition 11. [PFA] A Probabilistic Finite Automaton (PFA, see [21, 55] for

further details) over an alphabet A is a triplet (u, ϕ, v), where u ∈ Qn is the initial

probability distribution, ϕ : A∗ → Qn×n is a monoid homomorphism whose range

2.2. COMPUTATIONAL PROBLEMS 33

is the set of n-dimensional row stochastic matrices and v ∈ Qn is the final state

vector whose ith coordinate is 1, if state i is final, and 0 otherwise.2

For a given PFA denoted R = (u, ϕ, v) and a word w ∈ A∗, we can define a

function fR : A∗ → [0, 1], where:

fR(w) = uTϕ(w)v ∈ [0, 1] ; w ∈ A∗.

This is the probability of R being in a final state after reading word w ∈ A∗.

2.2 Computational Problems

2.2.1 Reachability Type Problems for Hybrid Automata

In this section we will define reachability and mortality problems for Hybrid Auto-

mata. The definition of reachability problem for HA is straightforward and easy

to understand. The mortality, however, can be interpreted in different ways. We

first define the reachability problem.

Problem 6. [Reachability for HA] Given an HA H, an initial configuration

c = (l0,x0) and a final configuration c′ = (lf ,xf), the reachability problem is to

determine if there exists a time 0 < t <∞ such that λl0,x0(t) = lf and ξl0,x0(t) =

xf .

Now we define the mortality problem for HA. Note that when we consider the

mortality problem, we care about whether starting from any valid initial configur-

ations, all the trajectories are “finite”. By the word “finite” here we can define the

trajectories halting within finite time or finite transitions. Also for all the finite

trajectories, we can ask whether all the trajectories halt at the same configuration.

Hence there is more than one possible way to define the mortality problem for HA.

Let us consider four different ways below:

(1) All immortal trajectories are the ones that keep moving (the trajectories keep

changing) with respect to time; all the others are the mortal trajectories which

2The definition of a PFA in the literature often interchanges the roles of u and v from our
definition and requires column stochastic matrices, but the two can easily be seen to be equivalent
by transposing all matrices and interchanging u and v.

34 CHAPTER 2. PRELIMINARIES

halt in finite time.

(2) All the mortal trajectories are the ones that halt at one pre-defined configur-

ation (the mortal configuration) in finite time; all the others are the immortal

trajectories, which include the ones halting at some other configurations and

the infinite ones with respect to time.

(3) All immortal trajectories are the ones that keep moving and have infinite

transitions; all the others are the mortal trajectories which halt within a finite

number of transitions.

(4) All the mortal trajectories are the ones that halt at one pre-defined mortal con-

figuration within a finite number of transitions; all the others are the immortal

trajectories, which include the ones halting at some other configurations and

the ones having infinite transitions.

All these four ways make some sense. In (1) and (2) we differ finiteness and

infiniteness by time while (3) and (4) we do this by the number of transitions. In

(2) and (4) we define one particular mortal configuration while in (1) and (3) we

do not.

(-0.9,-1)

(1,-1) (1,1)

(-1,1)

O

(a)

A B

(b)

Figure 2.2: Two examples of the definition of mortality

See the example in Figure 2.2(a). In this system trajectories starting from

any points will converge to the point O = (0, 0) in finite time but with infinite

transitions. So if we let O be the mortal point, in (1) and (2) it is a mortal

system, but in (3) and (4) it is not. Then see the example in Figure 2.2(b), all

2.2. COMPUTATIONAL PROBLEMS 35

the trajectories will halt at the boundary AB. In (1) and (3) it is a mortal system

while in (2) and (4) it is immortal.

As the main model studied in this thesis is the HPCD system, which is similar

to the PCD model, we believe it is reasonable to define the case in Figure 2.2(b)

being called mortal. Also we decide to define mortality problem with respect to

time instead of transitions. As for dynamical systems, the mortality problem can

be regarded as a finite case of the stability problem [20] (see Section 4.3 for more

details about stability). So in this thesis we will define the mortality problem for

HA by the first way mentioned above:

Problem 7. [Mortality for HA] An HA H is called immortal if there exists at

least one initial configuration c = (l0,x0) for which there is an infinite trajectory

starting at c, and such that for any 0 < t < ∞, there exist t < t1 < ∞ such that

ξl0,x0(t) 6= ξl0,x0(t1). Otherwise, H is called mortal, in which case we say all the

trajectories halt. The mortality problem is to determine if a given HA is mortal.3

However, the other ways to define mortality also make sense. For example,

to define a particular mortal configuration is similar to the mortality problem

for Minsky Machine, which is to decide whether starting from any valid initial

configuration, the machine will eventually halt at the mortal configuration [20].

Also stability problem for dynamical systems is defined based on an equilibrium

point which is similar to a mortal configuration (see Section 4.3). On the other

hand, defining the problem with respect to transitions instead of time will actually

lead the study to an area called Zeno behaviour, which is a unique phenomenon

to hybrid systems where a trajectory takes an unbounded number of discrete

transitions in finite time, see [40] for example.

2.2.2 Reachability Type Problems in Matrix Semigroups

In this section we define two reachability type problems in matrix semigroups,

called the scalar ambiguity problem and the scalar freeness problem. We first

define them in the general case, and then we show a more restricted version over

a bounded language of matrices.

3We call the problem mortality instead of immortality as it is common to call similar problems
mortality for matrix semigroup and other dynamic systems [15,19,20,24].

36 CHAPTER 2. PRELIMINARIES

Consider a finite set G = {G1, G2, . . . , Gk} ⊂ Fn×n, generating a semigroup of

matrices S = 〈G〉 and two column vectors ρ, τ ∈ Fn. Let Λ(G) be the set of scalars

such that Λ(G) = {λ : λ = ρTMτ |M ∈ S}. If for λ ∈ Λ(G) there exists a unique

matrix M ∈ S such that λ = ρTMτ , then we say that λ is unambiguous with

respect to G, ρ, τ . Λ(G) is called unambiguous if every λ ∈ Λ(G) is unambiguous.

If for λ ∈ Λ(G) there exists a unique product Gi1Gi2 · · ·Gim ∈ S, with each Gil ∈ G

such that λ = ρTGi1Gi2 · · ·Gimτ , then we say that λ is free with respect to G, ρ, τ .

Λ(G) is called free if every λ ∈ Λ(G) is free.

Problem 8. [Scalar Ambiguity] Is Λ(G) unambiguous with respect to G, ρ, τ?

Problem 9. [Scalar Freeness] Is Λ(G) free with respect to G, ρ, τ?

Problem 8 and Problem 9 look similar at first glance. However, the scalar

ambiguity problem concentrates more on the properties of the semigroup S while

the scalar freeness problem cares more about the properties of the set G. A fact one

can see from the definitions is that if the identity matrix I is contained in set G,

then the corresponding scalar set Λ(G) is not free, but the same property does not

hold for the scalar ambiguity problem. Also, we define the scalar freeness problem

in a similar way of the matrix semigroup freeness problem. See the following two

examples for further discussion.

Example 2. Given a semigroup of matrices S = 〈G〉 generated by a finite set

G =

1 1

0 1

 ,

1 0

1 1

 and two vectors ρ = τ = (1, 0)T , it is well-known that

S is a free semigroup [27]. However, since

1 =

1

0

T 1 1

0 1

1

0

 =

1

0

T 1 0

1 1

1

0

 ,

then scalar 1 is ambiguous with respect to G, ρ, τ and thus Λ(G) is ambiguous and

not free even though G is free.

Example 3. Given a semigroup of matrices S = 〈G〉 generated by a finite set

G =

2 0

0 1

 ,

3 0

0 1

 , and two vectors ρ = τ = (1, 0)T , it is not difficult to

2.2. COMPUTATIONAL PROBLEMS 37

verify that for k ∈ N :

2 0

0 1

k

=

2k 0

0 1

 and

3 0

0 1

k

=

3k 0

0 1

 .

As the vectors ρ and τ will only calculate the element M[1,1] for the matrix

M ∈ 〈G〉, every scalar in the set Λ(G) is of the form 2m3n, where m,n ∈ N and

m+ n 6= 0. The only way to generate such a scalar by a single matrix is

2m3n =

1

0

T 2m3n 0

0 1

1

0

 ,

thus Λ(G) is unambiguous. However, since the two matrices in the set G are

commutative, the semigroup S is clearly not free, and

2m3n =

1

0

T2 0

0 1

m3 0

0 1

n1

0

 =

1

0

T3 0

0 1

n2 0

0 1

m1

0

 ,

which indicates that Λ(G) is also not free. Notice that if we select a different pair

of vectors, for example ρ = (1, 1)T , τ = (0, 1)T , the scalar set Λ(G) can become

neither free nor unambiguious.

Example 2 shows that a scalar set Λ(G) can be ambiguous and not free even

if S = 〈G〉 is a free semigroup. Example 3 shows that even if a scalar set Λ(G)

itself and the corresponding matrix semigroup G are not free, the scalar set can

be unambiguous or not, depending on the vectors given. The links between the

scalar ambiguity problem, scalar freeness problem and matrix semigroup freeness

problem are illustrated by Proposition 3 in Section 5.1, Chapter 5.

We now restrict the the above two problems over a bounded language of

matrices. Given a finite set of matrices {M1, . . . ,Mk} ⊆ Qn×n, we define a bounded

language of matrices to be of the form:

{M j1
1 · · ·M

jk
k |ji ≥ 0 where 1 ≤ i ≤ k}.

So we can define the restricted versions of these two problems as:

38 CHAPTER 2. PRELIMINARIES

Problem 10. [Scalar Ambiguity over a Bounded Language] Given k matrices

M1,M2, . . . ,Mk ∈ Qn×n, generating bounded language M = M∗
1M

∗
2 · · ·M∗

k , and

two vectors ρ, τ ∈ Zn, whether there exist l1,l2,. . . ,lk,r1,r2,. . . ,rk ∈ N such that

ρTM l1
1 M

l2
2 . . .M lk

k τ = ρTM r1
1 M

r2
2 . . .M rk

k τ,

where M l1
1 M

l2
2 . . .M lk

k 6= M r1
1 M

r2
2 . . .M rk

k .

Problem 11. [Scalar Freeness over a Bounded Language] Given k matrices

M1,M2, . . . ,Mk ∈ Qn×n, generating bounded language M = M∗
1M

∗
2 · · ·M∗

k , and

two vectors ρ, τ ∈ Zn, whether there exist l1,l2,. . . ,lk,r1,r2,. . . ,rk ∈ N such that

ρTM l1
1 M

l2
2 . . .M lk

k τ = ρTM r1
1 M

r2
2 . . .M rk

k τ,

where lj 6= rj for at least one j.

2.2.3 Summary of Problems

We list the problems studied in the thesis below:

• Reachability problem for

– bounded 2-HPCDs;

– nondeterministic 2-RHPCDs;

– 3-RHPCDs;

– unbounded 3-RHPCDs;

– n-RHPCDs;

– 1-PAM;

– 1-PRM;

• Mortality problem for

– 2-RHPCDs;

– 3-RHPCDs;

– unbounded 3-RHPCDs;

2.2. COMPUTATIONAL PROBLEMS 39

• Lyapunov and asymptotic stability problem for 4-HPCD;

• Scalar ambiguity problem for matrix semigroups

– general case and over bounded languages;

• Scalar freeness problem for matrix semigroups

– general case and over bounded languages.

40 CHAPTER 2. PRELIMINARIES

Chapter 3

Reachability Problems for

HPCDs

In this chapter we shall explore the reachability problem for variant HPCD systems

(mostly in low dimensions). As stated in Section 1.1.1, our purpose is to find out

the most powerful HPCD systems for which the reachability is decidable and the

least powerful ones for which the reachability is undecidable.

We start with the 2-dimensional case, as that is how the HPCD was origin-

ally defined in [5]. We summarise the computational powers of 2-HPCD (see

Section 2.1.3 for details) and show some complement results to the ones in [5].

We then study the reachability problem for a restricted version of HPCD sys-

tems. As the new model is highly restricted, we extend it to the n-dimensional

case. Even so, we are still able to decidability for the reachability problem, and

thus some complexity results are also given.

We show that a proof technique used in the complexity result for 3-RHPCDs

can also be applied to show a complexity result for reachability for 1-PAM. Though

the result itself is not new, the method might be interesting and we write it down

for the interested reader. A more general class of 1-dimensional piecewise maps

called 1-PRM is also discussed.

Finally we add unboundedness and nondeterminism to RHPCD systems, re-

spectively, and different results are shown.

41

42 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

3.1 Restrictions of 2-HPCDs

In this section, we add some restrictions to the model of 2-HPCDs and explore the

decidability of reachability problems for them. Our starting point is the model of

2-dimensional Restricted HPCD (2-RHPCD, see Section 2.1.3 for definitions). We

first prove that a 2-RHPCD endowed with arbitrary constant flows can simulate

a 1-PAM.

Before we stating a technical lemma, we introduce a terminology that will be

used in this section:

Mappings - A well-known technique for the analysis of PCDs is to study the edge-

to-edge successor function [4], also called the Poincaré map [41] of the system. We

will use a related concept in this section for HPCDs. Given an HPCD H and two

line segments L = [p1,p2] and L′ = [p′1,p
′
2], where p1,p2,p

′
1,p

′
2 ∈ R2. We say

that H maps L to L′ in location l if for any 0 ≤ α ≤ 1, there exists a t ≥ 0 such

that for the trajectory defined over [0, t], ξl,(p1+(p2−p1)α)(t) = (p′1 + (p′2 − p′1)α)

and if the symbolic dynamics of the trajectory is the same for any such choice of

0 ≤ α ≤ 1. Note that L′ = [p′1,p
′
2] = [p′2,p

′
1] and so the definition of mapping

holds if we can map L to one of these two representations. A similar definition

holds for when L is an open or half-open interval, mutatis mutandis. We call L and

L′ intervals by abuse of notation (if there is no confusion with rational intervals).

Lemma 1. Given a 1-dimensional interval I = (s, t), an affine function f(x) =

ax + b and a value m, where a, b,m, s, t ∈ Q are constants. Then there exists a

2-RHPCD system with arbitrary constant flows which maps I × {0} to {f(I) +

m} × {0}.

Proof. We prove this lemma by 3 steps.

Step 1 - Interval I × {0} can be mapped to interval I × {c}, where c ∈ Q+, by a

bounded 2-PCD with non-comparative guards using flow (0, 1).

Step 2 - Suppose we have an affine function f(x) = ax+ b, and the 1-dimensional

rational interval I = (s, t). For any constant t′ where t′ ≥ t > s, define g =

f(t) − f(s) and s′ = t′ + |g|. Assume that c > |g| + |b| > 0. Then we show the

interval I × {c} can be mapped to I ′ × {0} = (t′, s′)× {0} by a bounded 2-PCD

system with non-comparative guards, see Figure 3.1. We need to consider 2 cases,

3.1. RESTRICTIONS OF 2-HPCDS 43

(t’+|g|, 0)

(s, c) (t, c)

(t’, 0)

(a) a > 0

(t’+|g|, 0)

(s, c) (t, c)

(t’, 0)

(b) a < 0

Figure 3.1: Lemma 1 Step 2: map (s, t)× {c} to (t′, s′)× {0}.

a > 0 and a < 0. Note the ‘orientation’ of the interval will be reversed after the

mapping.

1. a > 0. See Figure 3.1(a). We use flows (1, a), (1, 0), (1,−1) and (0,−1) to map

interval (s, t)× {c} to (t′, t′ + |g|)× {0}.

2. a < 0. See Figure 3.1(b). We use flows (1, a), (1, 0), (1,−1) and (0,−1) to

map (s, t) × {c} to (t′, t′ + |g|) × {0}. As we assume c > |g| + |b| > 0, so

c−|g| > |b| > 0, which means the rectangle {(x, y)|t < x < t′, c−|g| < y < |g|}

does not intersect with the x-axis.

Step 3 - Using a similar idea we can show the interval I ′ × {0} = (t′, s′) × {0}

can be mapped to {f(I) + m} × {0}, where {f(I)} = (f(s), f(t)) if a > 0 and

{f(I)} = (f(t), f(s)) if a < 0, by a bounded PCD system with non-comparative

guards. We can use only the upper or lower half plane of the 2-PCD. Here we

only prove the case when a > 0 and f(t) + m < t′ by using the lower half plane,

other cases can be proven similarly.

(i) Use flow (−1,−1) to map (t′, s′)×{0} to {1
2
(t′+f(t)+m)}× (−1

2
|t′−f(t)−

m| − |g|,−1
2
|t′ − f(t)−m|);

(ii) Use flow (−1, 1) to map {1
2
(t′+ f(t) +m)}× (−1

2
|t′− f(t)−m|− |g|,−1

2
|t′−

f(t)−m|) to (f(s) +m, f(t) +m)× {0}.

Combining Steps 1, 2 and 3 we get the result of the lemma using a 2-location 2-

RHPCD with arbitrary constant flows and non-comparative guards. In location 1

we realize Step 1 and jump to location 2, i.e., the guards are si ≤ x < ti∧y = c. In

location 2 we realize Step 2 and Step 3 together because Step 2 only uses the upper

plane of a 2-PCD and Step 3 only requires the lower plane of a 2-PCD. A similar

proof holds for when I is an open or half-open interval, mutatis mutandis.

44 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

Figure 3.2: Idea of Theorem 6: map every two adjacent intervals into one interval

Theorem 6. A 1-PAM with n intervals can be simulated by a 2-RHPCD with

dlog2 ne+ 3 locations such that one of the variables has arbitrary constant flows.

Proof. Suppose 1-PAM A is defined by f(x) = aix + bi if x ∈ Ii, with 1 ≤ i ≤ n

and Ii are rational intervals. In the sequel, we assume all the intervals Ii in A are

left closed and right open. Other cases can be proved similarly. Let the left and

right endpoints of Ii be si and ti respectively. First, we show that this 1-PAM can

be simulated straightforwardly by an (n + 1)-location 2-RHPCD with arbitrary

constant flows. We need a single location p as the global state and n locations qi

for each interval Ii, 1 ≤ i ≤ n.

1. In location p, we define the corresponding points of the 1-PAM A on interval

[s1, tn) × {0}. We then map each Ii × {0} to the interval Ii × {c}, where

c = |max{|ai|}(tn− s1)|+ max{|bi|}. (See Lemma 1, Step 1). The transition

guards of p are: si ≤ x < ti ∧ y = c, in which we jump to qi.

2. In location qi, map Ii×{c} to {f(Ii)}× {0} (see Lemma 1, Step 2&3). The

transition guard of qi is: s1 ≤ x < tn ∧ y = 0, with a jump to location p.

The above method requires n+ 1 locations for a 1-PAM with n intervals. We

now give an improved method using a 2-RHPCD with only dlog2 ne+ 3 locations.

Suppose the 1-PAM A contains n intervals. For every n 6= 2d, d ∈ N, there

exists a minimum integer k ∈ N such that log2(n + k) = dlog2 ne. The 1-PAM A

can be expanded to A′ such that f(x) = aix + bi if x ∈ Ii, where i ∈ {1, . . . , n}.

For every i ∈ {n+ 1, . . . , n+ k}, the length of each new added interval is given by

|Iεi | = ε, and the corresponding affine function is f(x) = x. This expansion does

not change the dynamics of the 1-PAM A, thus we assume n = 2d, d ∈ Z.

Again, let the left endpoint and the right endpoint of Ii be si and ti respectively.

Define c to be c = |max{|ai|}(tn − s1)|+ max{|bi|} and l to be l = |tn − s1|.

Step 1 Define the 1-PAM on interval [s1, tn) × {0}. For every i ∈ {1, 2, ..., n},

map Ii × {0} to interval Ii × {2(n− i + 1)c}. (See Lemma 1, Step 1). In

3.1. RESTRICTIONS OF 2-HPCDS 45

this step each interval is mapped to a different height y = 2(n − i + 1)c.

There is a 2c-length ‘gap’ between every two intervals Ii and Ii+1 and Ii is

‘higher’ than Ii+1. In Lemma 1 Step 2 this clearly prevents intersections

in the following step.

Step 2 Map each interval Ii × {2(n − i + 1)c} to {f(Ii) + 2(n − i + 1)l} × {0}.

(See Lemma 1, Step 2). Then between every two intervals there is a ‘gap’

whose length is l.

Step 3 For i from 1 to n
2
, let j = 2i−1, we can find an undefined interval between

{f(Ij)+2(n− j+1)l}×{0} and {f(Ij+1)+2(n− j+2)l}×{0} of length l.

By the proof of Lemma 1 (Step 3), we can map {f(Ij)+2(n−j+1)l}×{0}

using the upper plane and {f(Ij+1) + 2(n− j + 2)l} × {0} using the lower

plane to this interval.

Step 4 Repeat Step 2 for log2(n) times until only 1 interval, If , remains.

Step 5 If the orientation of If is ‘reversed’ with respect to the initial interval of

the 1-PAM A, then map If to this initial interval; otherwise, we reverse it

before mapping it to the initial interval.

Step 1, 2 and 5 each requires 1 location. Step 3 and Step 4 require log2 n locations,

thus (log2 n) + 3 locations are required.

In this method every point w in the 1-PAM A is encoded by a point (w, 0)

in the interval [s1, tn) × {0} in the location of Step 1, including the initial and

final points, and a one-step computation of A from point w to f(w) = w′ is

represented by a trajectory segment of the 2-RHPCD from point (w, 0) to (w′, 0)

in the location of Step 1, calculated from Step 1 to Step 5. Thus it is a simulation

and the statement of the theorem holds.

The difficulty of simulating a 1-PAM by a 2-PCD is that regions cannot overlap

in a 2-PCD, i.e., one region has only one deterministic constant flow. Thus it

is impossible to map several different intervals into a single interval under a 2-

PCD, which suggests that to improve the lower bound Ω(log2 n) of the number of

locations required to simulate an n-interval 1-PAM by a 2-RHPCD with arbitrary

constant flows might be difficult.

46 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

x’=−x+20 21x’=2x

(a) A 1-dim. Piecewise Affine
Map

^

 A−1 A−2

 A−3 A−4

ε

ε

ε

ε

 x

 x

x

x

[0,1] y=24;^
[1,2] y=12^

[8,10] y=0;

[4,5] y=0
[0,2] y=0ε x ^

^

 x ε ^[6,8] y=0

(b) 2-RHPCD with arbitrary con-
stant flows

Figure 3.3: The 1-PAM with its equivalent 2-HPCD

24

0 1 2

12

(a) A-1

4

12

11

24

26

0 1 2 8 105

(b) A-2

 104 5 6 8

2

−2

0

(c) A-3

80

−3

3

2 3

4 6

(d) A-4

Figure 3.4: The 2-PCDs of the 2-HPCD in Figure 3.3b (transition guards in bold).

Example 4. We give an example of a 1-PAM below and show how to simulate it

by a 2-RHPCD with arbitrary constant flows in Figures 3.3, 3.4.

f(x) =

 2x, if x ∈ [0, 1)

−x+ 2, if x ∈ [1, 2]

Let the initial point be x0. The initial location of the 2-HPCD is A-1, with variables

(x, y) = (x0, 0). 2-PCD A-1 corresponds to Theorem 6, Step 1. 2-PCD A-2

separates each interval onto the x axis (Theorem 6, Step 2). 2-PCD A-3 combines

together these two intervals (Theorem 6, Step 3). Finally, in A-4, as the final

interval [6, 8] has the same orientation as the initial interval [0, 2], we reverse it

before mapping it back to the initial interval (Theorem 6, Step 5).

We now show that a 2-RHPCD with linear resets can simulate a 1-PAM.

Lemma 2. The interval I×{0} can be mapped to {f(I)+m}×{0} by a 2-RHPCD

3.1. RESTRICTIONS OF 2-HPCDS 47

system with linear resets, where f(x) = ax + b is an affine function, I = (s, t) is

a 1-dimensional interval and a, b,m, s, t ∈ Q are constants.

Proof. The proof is similar to the proof of Lemma 1.

Step 1 First map the interval I×{0} to the interval I×{c} by flow (0, 1). Define

the transition guard to be I × {c}, which jumps to location 2 with linear

reset: x′ = |a|x, y′ = y.

Step 2 Using the similar idea in Lemma 1 Step 2, we can map the interval |a|I×{c}

to the interval (t′, t′ + |g|)× {0} by the flows (1, 1) if (a > 0) or (1,−1) if

a < 0, (1, 0), (1,−1) and (0,−1), where t′ and g are defined the same as

in Lemma 1.

Step 3 Exactly the same as Lemma 1 Step 3.

Theorem 7. A 1-PAM with n intervals can be simulated by a 2-RHPCD contain-

ing dlog2 ne+ 3 locations with linear resets.

Proof. Apply Lemma 2 instead of Lemma 1 in the proof of Theorem 6.

Corollary 1. A 2-RHPCD with linear resets and a 2-RHPCD with affine resets

can simulate each other.

Proof. Immediately from the results of [5] and Theorem 7.

Definition 12. [1-POM] Let f be a 1-PAM. We call f a 1-dimensional piecewise

offset map (1-POM) if f(x) = x+ bi for all x ∈ Ii.

Corollary 2. A 1-POM can be simulated by a 2-RHPCD, and a 2-RHPCD can

be simulated by a 1-POM.

Proof. The first part follows immediately from Theorem 6. As any coefficient of

the linear part of a 1-POM is 1, only elementary flows are required for simulating

a 1-POM by a 2-RHPCD. The second part is from [5].

The following theorem shows a relationship between the additional computa-

tional powers of affine resets and arbitrary constant flows.

Theorem 8. A k-location 2-RHPCD with arbitrary constant flows can be simu-

lated by a k-location 2-RHPCD with affine resets for any k ≥ 1.

Proof. Immediately from Lemma 1, Lemma 2 and Corollary 1.

48 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

3.2 Higher dimensional RHPCDs

In this section, we start by showing that reachability is co-NP-hard for 3-RHPCDs

by an encoding of the simultaneous incongruences problem (see Problem 2). Al-

though this bound may seem quite limited, recall that the system is deterministic,

which substantially limits its power. We also show how the proof technique can

be used in a complexity result for 1-PAM, and an undecidable result for a related

model 1-PRM is given. We later show that reachability is in PSPACE for bounded

n-RHPCDs, for any n ≥ 1. We start with a technical lemma.

Lemma 3. There exist solutions for the simultaneous incongruences problem with

a collection {(a1, b1), . . . , (an, bn)} if and only if there exists a solution k such that

0 < k ≤ ρ, where ρ = lcm(b1, . . . , bn) and lcm(b1, . . . , bn) is the least common

multiple of b1, . . . , bn.

Proof. The sufficient part is trivial. We show the necessary part. Given an in-

stance {(a1, b1), . . . , (an, bn)}, let ρ = lcm(b1, . . . , bn). Then for every 1 ≤ i ≤ n,

ρ ≡ 0 (mod bi).

For every integer k > ρ, we can rewrite k as k = k0 + mρ, where 0 < k0 ≤ ρ

and m ∈ N. Suppose there exists a solution ks > ρ. According to the simultaneous

incongruences problem, we know that ks 6≡ ai (mod bi) for all i, where 1 ≤ i ≤ n.

So we can find a k0, where 0 < k0 ≤ ρ, and a positive integer m such that

ks ≡ k0 +mρ 6≡ ai (mod bi),

for every i, where 1 ≤ i ≤ n. But ρ ≡ 0 (mod bi) for all 1 ≤ i ≤ n, thus

k0 6≡ ai (mod bi)

for all 1 ≤ i ≤ n, thus k0 is the solution we want.

Theorem 9. The reachability problem for bounded 3-RHPCDs is co-NP-hard.

Proof. Consider an instance of the simultaneous incongruences problem with n

pairs. We will encode the instance into a reachability problem for a 3-RHPCD.

Starting from k = 1, we test whether k mod bi 6= ai holds for each pair (ai, bi). If

3.2. HIGHER DIMENSIONAL RHPCDS 49

it does hold for every i, then the current value of k is the solution. If for some

i we find k mod bi = ai, then the current value of k is not a potential solution.

We increase the value of k by 1 and start the testing all over again. By Lemma 3

there are at most ρ integers to test.

Simulation of modulo operations

P QI

k := k+1

k is not
a solution Performance of modulo operations

Figure 3.5: Reachability for 3-RHPCD (location I actually represents 3 locations
I1, I2 and I3)

(x)

(y)

(z)

0

!

!

s1 s2 s3

G1

(1,1,-1)

(0,-1,-1)

(1,1,1)

(0,-1,1)

G2

X1+

X2-
F1-

F2+

G3 G4

X3+

F3-

F4+

(a) Location P

(z)
!

0 (x)

(y)
!

(-1,0,0)

(1,0,0)

s1 s2 s3

X0+

X1-

X2+

X3-

(b) Location Q

Figure 3.6: 3-RHPCD encoding simultaneous incongruences problem (only loca-
tion P and location Q are shown)

We construct the corresponding 3-RHPCD in the following way. We define 5

locations P,Q, I1, I2 and I3. Locations P and Q together can ‘perform’ the modulo

operation test for a certain value of k and every pair of (ai, bi). Locations I1, I2 and

I3 can increase the value of k by 1 when we find the current k is not a potential

solution. See Figure 3.5. Define regions Ai and Bi in locations P and Q :

Ai = (si−1, si)× (0, ρ)× (0, ρ);

Bi = (si−1, si)× (0, ρ)× (−ρ, 0),

where i ∈ {1, 2, ..., n}, s0 = 0, si =
∑i

1 bi for 1 ≤ i ≤ n, and ρ = lcm(b1, . . . , bn).

50 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

We call a region odd (resp. even) Ai or Bi if i is odd (resp. even). We also define

surface O :

O = [0, sn]× [0, ρ]× {0}.

To carry out the modulo operation for a certain pair (ai, bi), we use the regions odd

Ai and even Bi in both locations P and Q. Define the derivative to be (1, 1,−1) in

odd Ai in P ((1, 1, 1) in even Bi in P) and (−1, 0, 0) in both odd Ai and even Bi in

Q. See Figure 3.6. Intuitively, we arrange the regions alternately above and below

the O surface instead of stacking them together. This is to avoid them sharing a

common surface, which may cause nondeterminism when we define a (transition)

guard on that surface.

For a point (x, y, z), we use the z coordinate to represent the current value

of k and the y coordinate as a memory. Assuming i is odd (see Table 3.1 for

full details of both odd and even cases), we start at point x0 = (si−1, 0, k) in P

and move according to the flow ẋ = (1, 1,−1). While |z| > 0, every time when

x = bi + si−1 = si, we jump to Q. In Q we keep variables y and z unchanged,

simply reset x to 0 by the flow ẋ = (−1, 0, 0) and jump back to P. Each time the

trajectory goes from P to Q and jumps back to P, the absolute value of variable

z will be subtracted by bi. So when the trajectory hits the O surface (i.e., z = 0),

the value of x will be equal to si−1 + (k mod bi). Since y and z in P change at

the same rate, when the absolute value of z drops from k to 0, the value of y will

increase from 0 to k.

If k mod bi 6= ai, we reset y to 0 and |z| to k by switching the value of these

two variables, and enter region B(i+1) to test whether k mod bi+1 6= ai+1. To do

this, we use the regions odd Bi and even Ai in both locations P and Q. Define

the derivative to be (0,−1,−1) in odd Bi in P ((0,−1, 1) in even Ai in P) and

(1, 0, 0) in both odd Bi and even Ai in Q. By the flows in P the value of y and |z|

are switched. When y = 0 we jump to Q and reset x to si, and then jump back

to P to start testing the case of pair (ai+1, bi+1).

If k mod bi = ai, which means that the current value of k is not a potential

solution, we jump to locations I1, and then I2 and I3, (defined in Table 3.1) which

moves the trajectory to point (0, 0, k + 1) and ‘restarts’ in location P to test

3.2. HIGHER DIMENSIONAL RHPCDS 51

whether the new value k + 1 is a correct solution 1. A correct solution k should

satisfy that the trajectory starts from point (0, 0, k) in location P and can finally

reach some point (in location P) on the surface (sn−1, sn) × (0, ρ) × {0} with

x 6∈ (sn−1 + an − ε
2
, sn−1 + an + ε

2
).

Location Support Set Flows Guards

P

Ai (i is odd): (1, 1,−1)

Xi+ (i = 1, 3, ..., n− 1),

Ai ∪ Fi+ (i is even): (0,−1, 1)

Xi− (i = 2, 4, ...n),

Bi ∪ Fi− (i is odd): (0,−1,−1)

Fi+ (i = 2, 4, ..., n),
A ∪B

Bi (i is even): (1, 1, 1)

Fi− (i = 1, 3, ..., n− 1) :
jump to Q

Gi :
jump to I1

Q A ∪B

Ai (i is odd): (−1, 0, 0)
Ai ∪ Fi+ (i is even): (1, 0, 0)

Xi+ (i = 0, 2, ..., n− 2),

Bi ∪ Fi− (i is odd): (1, 0, 0)
Xi− (i = 1, 3, ..., n− 1) :

Bi (i is even): (−1, 0, 0)
jump to P

I1 A (−1, 0, 0)
x = 0

jump to I2

I2 A (0, 0, 1)
z = 1

jump to I3

I3 A (0,−1, 1)
y = 0

jump to P

Table 3.1: Reachability problem for 3-RHPCD

We now give the formal details of this construction. Without loss of generality,

we assume n is even. Define 2 regions A and B :

A = ∪n1Ai;

B = ∪n1Bi.

Also define four types of surfaces Fi+, Fi−, Xi+ and Xi− :

Fi+ = (si−1, si)× {0} × (0, ρ), i = 1, 2, ..., n;

Fi− = (si−1, si)× {0} × (−ρ, 0), i = 1, 2, ..., n;

Xi+ = {si} × (0, ρ)× (0, ρ), i = 0, 1, 2, ..., n;

Xi− = {si} × (0, ρ)× (−ρ, 0), i = 0, 1, 2, ..., n.

1Note that here in the guards we do not require exactly x = ai + si−1, but allow some
error ε, so tiny perturbations will not affect our result. The same analysis can be applied to
Theorem 13. This implies that the system has robust reachability and mortality problems, but
we do not expand on the details here. See more details about robustness in [39].

52 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

Finally, we define a set of ε-width strips Gi:

Gi = (si−1 + ai − ε
2
, si−1 + ai + ε

2
)× [0, ρ]× {0}, i = 1, 2, ..., n;

With the help of these notations, we construct the 3-RHPCD in Table 3.1.

The number of regions and guards in the constructed 3-RHPCD is clearly

polynomial in the number of pairs of the simultaneous incongruences problem.

Furthermore, the points defining each such region can be represented in binary and

are therefore polynomial in the description size of the simultaneous incongruences

problem.

Proposition 1. The reachability problem for bounded n-RHPCDs is in PSPACE.

Proof. Given an n-RHPCD H, an initial configuration (q0,x0) and a final config-

uration (qf ,xf), we first show that starting from (q0,x0), the trajectory will hit the

internal and transition guards finitely many times before either reaching (qf ,xf),

or detecting a cycle, or hitting some endpoints (at which time the calculation

halts), thus ‘convergence’ to a point is not possible.

By the definition of n-RHPCD (see Definition 3, 4), the guards of H are of the

form (∧
1≤i≤n∧ i 6=j

(ai ≺ xi ≺′ bi)

)
∧ (xj = cj)

where j ∈ {1, . . . , n}, xi, xj, ai, bi, cj ∈ Q, and ≺,≺′∈ {<,≤}.

By definition, the components of x0 = (x01 , . . . , x0n) and xf = (xf1 , . . . , xfn) are

rational numbers, i.e., x0,xf ∈ Qn. Define γ to be the least common multiple of all

the denominators of the constants appearing in the description the n-RHPCD H

(i.e. the guards, invariants, initial and final points) and the continuous components

of the initial and final configurations x0,xf . Multiply all such constants by γ ∈ N,

i.e., let

Ai = γai, Bi = γbi, Cj = γcj,X0 = γx0,Xf = γxf .

Thus, Ai, Bi, Cj ∈ Z and X0,Xf ∈ Zn. Define a new n-RHPCD H′ with initial

configuration (q0,X0) and final configuration (qf ,Xf) by replacing ai, bi, cj, x0,xf

by Ai, Bi, Cj,X0,Xf . Clearly, H reaches xf iff H′ reaches Xf , and H′ is described

by integer values only.

3.3. 1-PAM AND 1-PRM 53

For H′, the trajectory starts at integer configuration X0, and the guards of H′

are defined by integers. Since all the flows of H′ are chosen from the set {0, 1,−1},

when one variable xi of a point of the trajectory, Xt, changes its value from one

integer to another, any other variable xj of Xt remains an integer. So every time

the trajectory hits a guard, i.e., the condition (
∧

1≤i≤n∧ i 6=j(Ai ≺ xi ≺′ Bi))∧(xj =

Cj) is satisfied by the components of Xt, Xt will have integer components.

We now prove that the problem can be solved in PSPACE. Note that the

representation size of γ is clearly polynomial in the representation size of H, thus

so is the size of H′. We now show that the representation size of the number of

possible transition configurations (the configuration when the trajectory hits the

guard and takes transition) of H′ is also polynomial in the size of H.

Let k > 0 be the number of locations of H′. Since H is bounded, we can

calculate τ ∈ N to be the maximal absolute value of the endpoint of any invariant

of H over all locations. Thus the range of variables of H′ is contained within

[−γτ, γτ]. Since we have n variables, the maximal number of transition config-

urations of H′, starting at initial configuration (q0,X0) is thus k(2γτ)n, which

can be represented in size polynomial in the size of H, since it requires at least

k log((γτ)n) = nk log(γτ) space to store H and

log(k(2γτ)n)

nk log(γτ)
=

log(k) + n log(2γτ)

nk log(γτ)
< c

for some computable constant c > 0. We can use a counter to keep track of

the number of transitions the trajectory of H′ makes, starting from (q0,X0). As

each transition is taken, we can determine if the final configuration was reached

since the last transition. Otherwise, we increment the counter and proceed. If

the counter reaches k(2γτ)n, then the configurations must be periodic and we can

halt. Hence the reachability problem is in PSPACE.

3.3 1-PAM and 1-PRM

In this section we first show reachability problem for 2-HPCD is co-NP-hard by

encoding of an instance of a simultaneous incongruences problem. Thus reachabil-

ity for 1-PAM is also co-NP-hard, since the reduction from a 2-HPCD to a 1-PAM

54 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

can be done in polynomial time and space [5]. Though it is known in [19] that the

reachability for 1-PAM over integers is PSPACE-hard, which is a stronger result,

we still think our encoding method is interesting and worth to show.

Theorem 10. The reachability problem for bounded 2-HPCD is co-NP-hard.

Proof. Given an instance of the simultaneous incongruences problem with n pairs

{(a1, b1), . . . , (an, bn)}, we encode the instance into a reachability problem for a

2-HPCD. For an initial integer k, we test whether k mod bi 6≡ ai holds for each

pair (ai, bi) by the corresponding location Pi in the 2-HPCD. If the inequation

does hold for every i for the current value k, then a trajectory of the 2-HPCD

starting from P1 is able to go through every location Pi and Qi (which is used to

reset the value of current k) and reach the final location Y, which means there

exists a solution for the problem. If the incongruence does not hold for some i,

then the current k is not a potential solution. We goes to location R, decrease the

value of k by 1 and start the test all over again (see Fig. 3.7).

Let ρ = lcm(b1, . . . , bn), by Lemma 3 starting from integer ρ there are at most

ρ integers to test.

P1 P2

Q2Q1

R

… Pn

YN

Figure 3.7: 2-HPCD simulating simultaneous incongruences problems

In the 2-HPCD we use the x-coordinate to store the current value of k and the

y-coordinate as a timer. To avoid losing the value of k after the modulo opera-

tion in location Pi, we also encode k into the fractional part of the x-coordinate.

Suppose ρ has m bits in its binary representation, we encode k as (1 + 2−m)k.

The 2-HPCD consists of 2n + 3 locations, labelled R,N, Y and Pi, Qi for 1 ≤

i ≤ n. Intuitively, Y is the Yes location (solution found), N is the No location (no

solution found). Location Pi is used to test whether for x = (1 + 2−m)k, we have

3.3. 1-PAM AND 1-PRM 55

that k 6≡ ai mod bi. Qi is used to reset l+ 2−mk (where l ≤ bi) to (1 + 2−m)k for

the next test. Finally, R is the reset location to reset x to (1 + 2−m)(k − 1) and

start the procedure again, if k was not a solution.

In location Pi, the trajectory starts from point ((1 + 2−m)k, 0), with derivative

(0, 1). When y = 1, the guard is activated and if x ∈ [bi, ρ+ 1), then we subtract

bi from the x-coordinate by the reset x := x−bi and y := 0. Eventually, we hit the

guard y = 1 and x ∈ [0, bi), at which point we determine whether k mod bi 6≡ ai

by testing whether x ∈ [ai, ai + 1) or not.

If x is not in the interval [ai, ai+1), it means the current value of k is a potential

solution. This is because x was initially (1 + 2−m)k and in Pi we have calculated

that (1 + 2−m)k mod bi 6∈ [ai, ai + 1), which implies that k mod bi 6≡ ai. We

should thus test it for the next pair (ai+1, bi+1). Before starting the next test we

reset k in location Qi. In Qi, we start at some point (x, 0). When the guard y = 1

is activated, if x ∈ [1,max{bi}) then we subtract 1 from x. When x is in the

interval [0, 1), we reset the value of k by the function x := (2m + 1)x and jump to

location Pi+1.

If x is in the interval [ai, ai + 1), then the current value of k we are testing is

not a potential solution. This is because we have calculated that k mod bi ≡ ai.

We thus jump to location R to reset k to k − 1 and start the next round of tests

for the new value. Location R is similar defined as location Qi except that the

(affine) reset function is x := (2m + 1)x− (1 + 2−m), which then jumps to location

P1.

Clearly, all components of the 2-HPCD has a size polynomial in the instance

size of the simultaneous incongruence problem, since they are based on either m

or n.

We now describe the full details of the 2-HPCD in Table. 3.2 by the following

56 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

notations:

Ai := [ai, ai + 1)× {1}

Bi := [bi, ρ+ 1]× {1}

Ci := [0, bi) \ [ai, ai + 1)× {1}

D := (0, 1)× {1}

E := [1,max{bi} × {1}

U := [0, ρ+ 1]× [0, 1]

V := [0,max{bi}]× [0, 1].

Location Support Set Flows Guards & Resets

Pi U (0, 1)

Bi : (x, y) := (x− 1, 0), jump to Pi
Ci : jump to Qi

Cn : jump to Y (for Pn)
Ai : jump to R

Qj V (0, 1)
E : (x, y) := (x− 1, 0), jump to Qi

D : (x, y) := (10m + 1)x, 0), jump to Pi+1

R V (0, 1)

E : (x, y) := (x− 1, 0), jump to R
D : (x, y) := ((2m + 1)x− (1 + 2−m), 0),

jump to P1

x = 0 : jump to N

Table 3.2: 2-HPCD encoding simultaneous incongruence problems

Corollary 3. The reachability problem for 1-PAM is co-NP-hard.

NOTE: It should be noticed that we could not adapt this method to make it

work for a proof that shows co-NP-hardness of mortality for 1-PAM (whether all

points eventually reach some fixed point, for example the origin). This is due to

the following reason. To show mortality is co-NP-hard, we need to build a similar

model as above with a few adaptions, such that a loop occurs during the run if and

only if there exists a valid solution to the corresponding simultaneous incongru-

ences problem, and all other ‘wrong answers’ will lead to a mortal location where

the calculation halts. In the reachability proof, we use a fixed length fractional

part to help us store the value of k we are testing. This is because in the reachabil-

ity problem, we can choose the initial configuration to start with. However, in the

mortality problem, the calculation could begin with any valid point, which means

the length of the fractional part could be arbitrarily long. If the same method is

3.3. 1-PAM AND 1-PRM 57

used again, it is not difficult to find a counterexample which does not encode the

correct answer for the simultaneous incongruences problem but still cause a loop.

Unfortunately, we don’t know how to fix this problem.

Further discussion: It is well known that the decidability of reachability

and mortality for 1-PAM is a longstanding open problem [5, 19, 20, 43, 45]. From

the above discussion we know that even proving co-NP-hardness of mortality for

1-PAM is difficult. The example below highlights the difficulty.

The failure of the proof of the co-NP-hardness of mortality for 1-PAM comes

from the arbitrary length and value of fractional part or the input rational num-

ber. One may wonder if this can be solved by showing that, for a 1-dimensional

piecewise system, whether a periodic point can lead to a periodic dense interval.

Or, formally speaking, whether the following assumption is true:

Problem 12. Let A be a periodic point in a 1-dimensional piecewise system, does

there exist an ε > 0, such that all points in (A − ε, A] or [A,A + ε) are also

periodic?

Unfortunately, we can find a counterexample to show that it is not true. See

the example below:

h(x) =

rx, if x ∈ [0, 1

2
)

−r(x− 1), if x ∈ [1
2
, 1]

−1, otherwise

where r > 2 can be any rational number. Let h(n)(x) denotes the function h(x)

being applied for n iterations, and s1 and s2 (assume s1 < s2) denote the two

roots of the function h(x) = 1. It is easy to verify that s1, s2 ∈ [0, 1]. Then we can

see that all the points in the intervals I1 = [0, s1] and I2 = [s2, 1] will be mapped

back to [0, 1] by h(x), and all the other points in [s1, s2] will be mapped to −1.

See Fig. 3.8. Let

Λ = {x|h(n)(x) ∈ [0, 1]},

where n ∈ N. Then Λ represents the set of all points remaining in the interval [0, 1]

after n times of iterations. As n→∞, Λ forms a Cantor set. From the properties

58 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

1

0 1s1 s2�1 �2 x

h(x)

Figure 3.8: A system generating a Cantor set

of a Cantor set [9], we know:

(i) Λ is a closed, bounded set containing no intervals of nonzero length.

(ii) h(n)(x) has 2n periodic points with period n.

(iii) The periodic points of h(n)(x) are dense in [0, 1].

Clearly, h(x) is a counterexample of the assumption above. It suggests that finding

a decidability or a complexity result of mortality for the 1-dimensional piecewise

systems is not easy. We may need an alternative method to eventually solve this

problem.

1-Piecewise Rational Maps

It was shown in [45] that the reachability for 1-dimensional piecewise rational

maps is undecidable. The proof is done by an encoding of a Minsky machine,

which requires a 1-PRM of degree 2 (i.e. containing the term x2) with a finite

number of intervals defined on the entire real line (−∞,+∞). Here we show

the same result using a different method - by encoding the Generalised Collatz

Problem. By this method we still require a 1-PRM of degree 2 but defined on the

non-negative real line (0,+∞) only.

Note that here we use a slightly different definition from [19, 47], where the

GCP is defined as whether every trajectory of g reaches 1. However, from the

proof techniques used in [29,47], we can see that Theorem 1 still holds.

Theorem 11. The reachability for 1-PRM is undecidable.

3.3. 1-PAM AND 1-PRM 59

Proof. Given a GCP of standard representation {m, a1, . . . , am, b1, . . . , bm}, the

problem asks starting from an arbitrary positive integer k, whether the trajectory

reaches 1. We will construct a 1-PRM with m+2 intervals such that starting from

the point k+ 1
k
, the trajectory of the 1-PRM reaches 1 if and only if the trajectory

of the corresponding GCP reaches 1 starting from 1.

First we encode k into the point k + 1
k

in the 1-PRM. To encode the modulo

operation that is applied on k in the GCP, in the 1-PRM we define the function

to be fm+1(x) = x−m on the interval (m+ 1,+∞). In other words, if k is greater

than m+ 1, we keep subtract m from k until the new value is smaller than m+ 1,

which simulate the modulo operation. The fractional part is used as a memory to

store the value of k. After a finite number of steps, the trajectory will leave the

interval (m + 1,+∞), reaches a point i + 1
k
, 1 ≤ i ≤ m, which falls into one of

the intervals (i, i+ 1). In the interval (i, i+ 1), we need to simulate the operation

gi(x) = ai(x− i)/m+ bi of the generalise Collatz Function g(x), as well as encode

the new value of x into the fractional part. This can be done by:

fi(x) =
ai((x− i)−1 − i)

m
+ bi + (

ai((x− i)−1 − i)
m

+ bi)
−1

The x− i term maps i + 1
k

to 1
k
, then we take the reverse of it and get the value

of k, for which we apply the function gi(x). Clearly the last term encodes the

new value into the fractional part. Under some computation, we can rewrite the

function as:

fi(x) =
cx+ d

m(x− 1)
+
m(x− i)
cx+ d

=
(c2 +m2)x2 + 2(cd+me)x+ d2 + e2

cmx2 + (dm+ ce)x+ de
,

where c = −i · ai, d = m · bi and e = −i ·m · bi. Then the corresponding 1-PRM

f(x) can be defined as:

f(x) =

x, if x ∈ (0, 1];

fi(x), if x ∈ (i, i+ 1);

x−m, if x ∈ (m+ 1,+∞);

60 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

where 1 ≤ i ≤ m, fi(x) is defined as above. Clearly, if starting from the point

k+ 1
k
, the trajectory of the 1-PRM can reach the point 1, then the corresponding

GCP has a solution. Thus the reachability for 1-PRM is undecidable.

3.4 Extensions of RHPCDs

Theorem 12. The reachability problem is undecidable for unbounded 3-RHPCDs.

Proof. Consider a two counter (Minsky) machineM, with set of instructions {pi}

and two counters c1 and c2. For configuration (pi, c1, c2), we define two locations

Pi and Ti in an unbounded 3-RHPCD to encode instruction pi. There are 3 ‘types’

of instruction, where ck represents a counter (k ∈ {1, 2}):

Type I - pi: Add 1 to ck; goto pj;

Type II - pi: If ck 6= 0 then subtract 1 from ck; goto pj1 ;

else goto pj2 ;

Type III - pi : Halt.

Given a vector x = (x, y, z) in an unbounded 3-RHPCD, we use variable x

to represent the counter c1, y to represent the counter c2 and z as a timer which

ensures x or y increases or decreases by exactly 1 at each step.

To encode a Type I instruction pi on c1, (resp. c2), we start from point (c1, c2, 0)

in location Pi, define the flow in Pi to be ẋ = (1, 0, 1) (resp. ẋ = (0, 1, 1)) and

the guard to be z = 1, jump to Ti. Then in Pi the value of counter c1 (resp. c2)

is increased by 1. In Ti we define the flow ẋ = (0, 0,−1) and guard z = 0 to reset

the timer z to 0 and jump to Pj.

For a Type II instruction when k = 1, the flow in Pi is defined as ẋ = (−1, 0, 1)

with guards: (1) x = 0 ∧ z < 1, jump to Pj2 ; (2) z = 1, jump to Ti. In this case,

we immediately test whether x = 0 when entering Pi and jump to Pj2 if it is

true. Otherwise, for one time unit we apply derivative (−1, 0, 1), which decreases

counter c1 by 1 (the x-coordinate) and increase the timer by 1 (the z-coordinate),

at which point guard (2) is true. We then go to Ti, define the flow ẋ = (0, 0,−1)

and guard z = 0 to reset the timer z to 0 and jump to Pj1 . A similar encoding can

be defined when k = 2 mutatis mutandis.

3.4. EXTENSIONS OF RHPCDS 61

We may assume without loss of generality that the machine only halts when

both counters have value zero and the (single) halting instruction is denoted pH .

The reachability problem starts at point (x, y, 0) in initial location P0 and the

problem is to determine if the 3-RHPCD ever reaches point (0, 0, 0) in location

PH . Note that the defined region for the 3-RHPCD is unbounded in the x and

y coordinates in all locations, since these coordinates store the counters c1 and

c2 respectively. The number of regions is bounded. Full details are shown in

Table 3.3.

Minsky machine M 3-RHPCD
pi Pi Ti

Add 1 to c1; goto pj

support set: R support set: R
flow: ẋ = (1, 0, 1) flow: ẋ = (0, 0,−1)

guard: z = 1, go to Ti guard: z = 0, go to Pj

If c1 6= 0 then c1 := c1 − 1; goto pj1 ;
support set: R support set: R

flow: ẋ = (−1, 0, 1) flow: ẋ = (0, 0,−1)
else goto pj2 guard: z = 1 go to Ti guard: z = 0, go to Pj1

x = 0 ∧ z < 1, go to Pj2

Table 3.3: An unbounded 3-RHPCD simulating the Minsky machine M for
counter c1, where R = [0,∞)× [0,∞)× [0, 1]

As any configuration (pi, c1, c2) of M including the initial point is encoded

by the point (c1, c2, 0) in location Pi in the 3-RHPCD, the halting configuration

(pH , 0, 0) of M is encoded by the point (0, 0, 0) in location PH in the 3-RHPCD,

and a one-step computation from (pi, c1, c2) to (pj, c
′
1, c
′
2) in M is encoded by

the trajectory segment from point (c1, c2, 0) in location Pi to the point (c′1, c
′
2, 0)

in location Pj, thus a 3-RHPCD can simulate a two counter machine and the

reachability problem for a 3-RHPCD is undecidable.

We now show a lower bound for nondeterministic 2-RHPCDs. A nondetermin-

istic RHPCD can potentially have more than one possible discrete transition avail-

able within a location.

Corollary 4. The reachability problem for bounded nondeterministic 2-RHPCDs

is PSPACE-hard.

Proof. It was shown in [32] that the reachability (i.e. halting) problem for a non-

deterministic bounded 1-counter machineM is PSPACE-complete when the value

62 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

of the counter is bounded by a constant c ∈ N and when the machine may add or

subtract an arbitrary constant p ∈ [0, c] to the counter in each transition. Trans-

itions are endowed with guards, which are intervals [g1, g2] with 0 ≤ g1 ≤ g2 ≤ c,

defining that a transition may be taken when the counter lies within the interval.

An instruction k, defining a transition between locations pi and pj is written in

the form k = (pi, p, g1, g2, pj). See [32] for full details.

Theorem 12 shows a simulation of an (unbounded) 2-counter machine by an

unbounded 3-RHPCD, where the x and y coordinates store the values of the

two counters c1 and c2 (respectively) and the z coordinate is a timer, bounded

in the interval [0, 1] and used to add/subtract one from a counter. We use a

similar construction in dimension two to simulate M. The x coordinate is used

to store the counter and the y coordinate is used as the timer to add or subtract

an arbitrary amount from [0, c] to the counter in each location. To simulate an

0 b

p p

0 bg g

(1,1)
(0,-1)

(guard)

(guard)1 2

(a) Location Pk

0 b

p

b

0 bg g

(1,1) (0,-1)

(guard)

(guard)1 2

(b) Location Tk

Figure 3.9: Nondeterministic 2-RHPCD simulating bounded 1-counter machine

instruction k = (pi, p, g1, g2, pj), we first define a location Pk. See Figure 3.9. Let

I = [0, c]×(0, c] and then define the invariant of Pk to be I∪([g1, g2]×{0}), thus Pk

is only defined when the y coordinate is positive, or equal to 0 with the x coordinate

in [g1, g2]. The derivative of Pk is (1, 1) if p > 0 or else (−1, 1) and the transition

guard to location Tk is defined at [0, c]×{p} (we thus remove [0, c]×{p} from the

invariant of the location since they should not overlap). Therefore, starting from

a point (g, 0) in location Pk, where g ∈ [g1, g2], the trajectory hits the guard at

point (g ± p, p), depending on whether we added or subtracted p.

Tk works as in Theorem 12 to zero the timer (y coordinate), with derivative

(0,−1) and invariant [0, b]× (0, b]. Thus configuration (g, 0) in Pk will reach point

3.5. SUMMARY OF CHAPTER 63

(g ± p, 0) in location Tk. The transition guard of Tk is defined at [0, b]× {0} and

nondeterministically transitions to any location Pk′ where k′ is an instruction of

the form (lj, p
′, g′1, g

′
2, l
′
j) for some p′, g′1, g

′
2, l
′
j. Note that we define the invariant of

Tk to be [0, b] × (0, b] so that Tk can be used in all simulations of instructions k

which have the same target location lj, hence the number of locations required is

reduced. However, we need one location Pk for one instruction k.

The initial configuration of the 2-RHPCD is point (0, 0) in location P1. De-

termining if M ever reaches the halting state (lH , 0) is PSPACE-complete, which

proves the PSPACE-hardness of reaching point (0, 0) in location PH of the 2-

RHPCD since the above construction simulates the operations of machine M

when started in the initial configuration.

Clearly the description size of the 2-RHPCD is polynomial is the size of M.

The initial configuration of the 2-RHPCD is point (0, 0) in location P1. Determ-

ining ifM ever reaches the halting state pH with counter 0 is PSPACE-complete,

which proves the PSPACE-hardness of reaching point (0, 0) in location PH of the

2-RHPCD since the above construction simulates the operations of machine M

when started in the initial configuration and the reduction fromM is polynomial

time.

Corollary 5. The reachability problem for bounded nondeterministic 2-RHPCDs

is PSPACE-complete.

Proof. Proposition 1 can clearly be seen to still hold even when the system is

nondeterministic, since the description size of the number of configurations is still

bounded by a polynomial. Thus, by Proposition 1 and Corollary 4 the corollary

holds.

3.5 Summary of Chapter

In this chapter we first showed a 2-RHPCD with arbitrary constant flows can

simulate a bounded 1-PAM. Then together with some known results, we know

a 2-RHPCD with any one of the three computational powers: arbitrary constant

flows, comparative guards and affine resets, is equivalent to a bounded 1-PAM with

respect to the reachability problem. Then we showed the reachability problem for

64 CHAPTER 3. REACHABILITY PROBLEMS FOR HPCDS

n-RHPCDs is in SPACE, and in the 3-dimensional case it is co-NP-hard to decide.

When we add nondeterminism to the model, the problem for the nondeterministic

2-RHPCD becomes PSPACE-complete. If we allowed unboundedness, we can

show the problem is undecidable. We also showed the reachability problem for

1-PAM is co-NP-hard and for 1-PRM is undecidable. See the list below.

• Reachability problem for

– bounded 2-HPCDs (1-PAM equivalent);

– nondeterministic 2-RHPCDs (PSPACE-complete);

– 3-RHPCDs (co-NP-hard);

– unbounded 3-RHPCDs (undecidable);

– n-RHPCDs (in PSPACE);

– 1-PAM (co-NP-hard);

– 1-PRM (undecidable);

The questions that remain to be answered are: whether the reachability prob-

lem for 2-HPCD is decidable; whether the same problem for 2-RHPCD is in NP;

whether the reachability for 3-RHPCD is in NP, or in PSPACE?

Chapter 4

Mortality Problems for HPCDs

In this chapter we shall explore the mortality problem for variant HPCD systems.

As we stated earlier, the mortality problem can be seen as a variation of the

reachability problem. From this chapter the readers will see that, on one hand,

most results we showed in Chapter 3 also hold for mortality; on the other hand,

as mortality deals with all the trajectories, in most cases the proof of mortality

seems a bit more difficult than the case of reachability.

We first show mortality for bounded 3-RHPCD is also co-NP-hard, by a sim-

ilar idea of encoding simultaneous incongruences problem. Then instead of the

n-dimensional case of reachability, we show mortality problem for bounded 2-

RHPCD is in PSPACE. When extended to unbounded case, mortality for 3-

RHPCD is also undecidable by encoding a halting problem for Minsky machine.

Finally, we shall discuss about a similar but more general property for hybrid

systems compared to mortality called stability. Unlike mortality dealing with the

behaviours of all trajectories in finite time, stability is a property studying infinite

time. As stability is only studied in Section 4.3, we given the related definitions

within the section instead of in the preliminaries part.

65

66 CHAPTER 4. MORTALITY PROBLEMS FOR HPCDS

4.1 Higher dimensional RHPCDs

Theorem 13. The mortality problem for bounded 3-RHPCDs is co-NP-hard.

Proof. We use a similar approach as in the proof of Theorem 9. The notations used

in this proof are the same defined as in the proof of Theorem 9 unless otherwise

stated. We encode an instance of the simultaneous incongruences problem into a

3-RPHCD. We construct our 3-RHPCD in such a way that the system is mortal if

and only if there is no solution for the corresponding simultaneous incongruences

problem, otherwise the system is immortal.

For a pair (ai, bi) in the simultaneous incongruences problem, the derivatives

of the associated regions Ai and Bi in locations P and Q are defined the same as

in the proof of Theorem 9. In contrast to Theorem 9, in the mortality problem,

we are not only concerned about some trajectories starting from certain points

(0, 0, k), 0 < k ≤ ρ, but want to know whether all the trajectories halt.

In the following part we assume i is odd, similar analysis can be applied to

the case when i is even. According to the flow ẋ = (1, 1,−1) of an odd region Ai

in location P, there are 2 boundaries the trajectories will eventually reach: the O

surface and the y = ρ surface (some trajectories may also reach the X i+ or X i−

surface, but they will jump to location Q and jump back, then reach either one

of the above two surfaces at the end). In odd Ai in P, all the trajectories which

reach the y = ρ surface or reach the strip Gi on the O surface are considered

as mortal trajectories and will jump to location M, in which all the trajectories

will eventually halt. The trajectories which reach the O surfaces but do not reach

the strip Gi are considered as the potential solution trajectories and move on by

following the flows for a further check.

In contrast to the proof of Theorem 9, in region An (or Bn depending on

whether i is odd or even) if any trajectory reaches the surface O but does not

reach the strip Gn, we do not conclude that we find a solution k. Instead, we keep

moving in P until we reach the guard, jump to location T, reset the trajectory

to the point (0, 0, k) and go to location P to start the test again. If k indeed is

a correct solution to the corresponding simultaneous incongruences problem, the

system will loop forever; otherwise the trajectory will go to location M at some

4.1. HIGHER DIMENSIONAL RHPCDS 67

Location Support Set Flows Guards

P

Ai (i is odd): (1, 1,−1)

Xi+ (i = 1, 3, ..., n− 1),

Ai ∪ Fi+ (i is even): (0,−1, 1)

Xi− (i = 2, 4, ...n),

Bi ∪ Fi− (i is odd): (0,−1,−1)

Fi+ (i = 2, 4, ..., n),
A ∪B

Bi (i is even): (1, 1, 1)

Fi− (i = 1, 3, ..., n− 1) :
jump to Q
y = ρ,Gi :
jump to M

Q A ∪B

Ai (i is odd): (−1, 0, 0) Xi+ (i = 0, 2, ..., n− 2),
Ai ∪ Fi+ (i is even): (1, 0, 0) Xi− (i = 1, 3, ..., n− 1) :
Bi ∪ Fi− (i is odd): (1, 0, 0) jump to P
Bi (i is even): (−1, 0, 0) Xn+ : jump to T

T A ∪B (−1, 0, 0)
x = 0 :

jump to P

M A ∪B (−1, 0, 0) None

Table 4.1: Mortality problem for 3RHPCD

A

B

A’

B’ A

B

C C’

(a) AB is mapped
onto A′B′

A

B

A’

B’ A

B

(b) AB “col-
lapses” to
A

Figure 4.1: Edge-to-edge and edge-to-point mappings

region odd Ai or even Bi in location P . In location M , we have no outgoing

transitions and follow derivative (−1, 0, 0). Since the support set is bounded, any

trajectory which reaches M will thus eventually halt. Full details are shown in

Table 4.1.

Proposition 2. The mortality problem for bounded 2-RHPCDs is in PSPACE.

Proof. Given an n-RHPCD H, using a similar approach as in the proof of Proposi-

tion 1, we can show that the mortality problem for 2-RHPCDs is also in PSPACE.

According to the constants in the description of H, we can use a similar method

as in the reachability proof to find a γ′ which allows us to define a new 2-RHPCD

H′′ such that H′′ is mortal iff H is mortal, where H′′ is described by integer coef-

ficients. From the reachability result above we know it is possible to enumerate

every integer configuration of H′′, as H′′ is bounded, and check whether every

trajectory halts starting from integer configuration of H′′ in PSPACE.

68 CHAPTER 4. MORTALITY PROBLEMS FOR HPCDS

Intuitively, if we connect every adjacent integer point in a 2-PCD (a location) of

H′′, then each 2-PCD is tessellated by squares of length 1 and the corner points of

all squares are integer points since they are the integer configurations of H′′. Also

each square has exactly one dynamic vector where ẋ1, ẋ2 ∈ {0, 1,−1}. We name

this technique a rectilinear tessellation. An edge of a square will either be mapped

onto another edge, or “collapse” to a single point. See Figure 4.1 for example. In

the first case, the local coordinates of the points on an edge are preserved after

the mapping. In other words, if point C is on edge AB and C ′ on edge A′B′ is

the image of C after the mapping, then |AC|
|CB| = |A′C′|

|C′B′| . Thus all points on the same

edge have the same symbolic dynamics. Hence for the mortality problem, we only

need to consider the corner points of all squares (all the integer points), as well

as the middle points of all the edges (in the case the edge is defined by an open

set and the end points does not belong to the edge), and all other points will

have the same symbolic dynamics as them. To check the middle points of edges

simply double the size of γ′ and all the points become integers. As long as all the

trajectories halt starting from the integer points and the middle points of all the

edges, we can conclude that the whole system is mortal. According to the result

above, clearly this can be done in PSPACE.

Note that the PSPACE result of mortality only holds for 2-RHPCD, as the

local coordinates of points are not preserved in higher dimensions.

4.2 Extensions of RHPCDs

Theorem 14. The mortality problem is undecidable for unbounded 3-RHPCDs.

Proof. It was proven in [20] that determining if a Minsky machine, M′, is mortal

(i.e. if it halts on all possible configurations) is undecidable. Our approach will be

to encode such a Minsky machineM′ using an unbounded 3-RHPCD in a similar

way to the proof of Thenrem 12. The problem arises however that for mortality,

we must prove that every initial configuration will eventually halt. We now define

a variant of simulation which is required for this proof.

Previously, we defined simulation in terms of reachability, but now we use a

similar notion in terms of mortality. Given a Minsky machine M′, we say that

4.2. EXTENSIONS OF RHPCDS 69

an HPCD H simulates M′ with respect to mortality if properties (2) and (3) of

Definition 5 are true, and for any configuration c of H, the trajectory of c will,

in finite time, either reach a configuration c′ which is the unique encoding of a

configuration mc′ ofM′, after which H behaves as a simulation of mc′ , or else halt

before reaching such a configuration. Note under this definition that we do not

have an initial configuration of M′ or H. Thus H is mortal if and only if M′ is.

If there exists an immortal run of the machine M′, then there also exists an

infinite trajectory of the 3-RHPCD by the above proof. Assume by contradiction

that machineM′ is mortal but there exists an infinite trajectory of the 3-RHPCD.

We will deal with points not reaching the halting location first.

Assume first that such a trajectory starts in a location Pi or Ti where i is

not the halting instruction. Then, by the construction, after a finite number of

transitions, the system will reach some location Pj at point (x, y, 0). Assuming

that x, y > 1, then clearly (x, y, 0) starting in location Pj has a similar dynamics

as (bxc, byc, 0) starting in location Pj until either x < 1 or y < 1. This is because

the length of time between transitions will always be 1 until this point by the use

of timer z and the derivatives of all variables always come from {0,±1}.

We now deal with the case where x < 1 or y < 1 at some point, corresponding

to a counter being (almost) zero. We slightly modify the 3-RHPCD so that for

Type II instructions, if the second guard is true (x = 0 ∧ z < 1), we will first

zero the z-coordinate (using a new location similar to Ti), before transitioning to

Pj2 . This means that after such a transition, z, as well as one or both of x, y

will be zero. This means that again, (x, y, 0) behaves the same as (bxc, byc, 0)

in this location. Therefore, any initial configuration corresponds to some initial

configuration of M′ and therefore will eventually have zero in both counters and

jump to the halting instruction which we define next.

In a similar way to the proof of Theorem 13, we define a ‘mortal location’ lM .

We define the invariant of lM as the cube [0, 1)× [0, 1)× [0, 1) and the derivative of

this cube to be (−1,−1,−1); thus any trajectory reaching lM halts. Since a correct

encoding of M′ will only reach the halting state if both counters are zero, we see

that (0, 0, 0) in location lM is the unique encoding of the halting configuration of

M′.

70 CHAPTER 4. MORTALITY PROBLEMS FOR HPCDS

4.3 Stability for HPCDs

In this section we will discuss about a property similar to mortality but in a more

general sense called stability. Stability is one of the key properties of dynamical

systems and has been widely studied. Intuitively, a dynamical system is stable

means every trajectory starting near to some equilibrium point (formally defined

below) will stay close to it (Lyapunov stability) and converge to that point in the

limit (asymptotic stability). In [58] it was proven that Lyapunov and asymptotic

stability are undecidable for PCD in 5 dimensions. Here we adapt their method

to show Lyapunov and asymptotic stability for bounded 4-HPCD systems are

decidable if and only if reachability for 1-PAM is decidable, based on the fact

that reachability for 1-PAM is equivalent to reachability for bounded 2-HPCD.

We start with some definitions:

Definition 13. [Equilibrium Point] An equilibrium point of an HPCD system

is a point 0 such that any trajectory starting at 0 remains at 0.

Without loss of generality, we set the equilibrium point to be the origin. Also,

we define the equilibrium point with respect to the continuous part and regardless

of the discrete locations. This is because for stability we care more about the

property of the continuous part, and an HPCD system changing its locations can

also be seen as a PCD system changing underlying dynamics. Now we define two

types of stability:

Definition 14. [Lyapunov Stability] An HPCD system is said to be Lyapunov

stable if for every ε > 0, there exists a δ > 0 such that for every trajectory ξ with

ξ(0) ∈ B0(δ), where B0(δ) origin-centered open ball of radius δ of appropriate

dimension, then ξ(t) ∈ B0(ε) holds for every t > 0.

Definition 15. [Asymptotic Stability] An HPCD system is called asymptotic-

ally stable if it is Lyapunov stable and there exists a δ > 0 such that every infinite

trajectory ξ with ξ(0) ∈ B0(δ) converges to 0.

We now following the construction in [58] to proving the following result:

Theorem 15. Lyapunov and asymptotic stability for bounded 4-HPCD systems

are decidable if and only if reachability for 1-PAM is decidable.

4.3. STABILITY FOR HPCDS 71

Proof. From previous results ([5], Theorem 6) we know for a given 1-PAM, we

can construct a bounded 2-HPCD the reachability for which is equivalent. Also

we can let the corresponding final point to be the halting configuration of the

2-HPCD, so starting from the initial configuration the computation halts (i.e. the

trajectory is finite) only if the final point in the 1-PAM can be reached, otherwise

the computation keeps running (i.e. the trajectory is infinite).

To prove this result, we will construct a bounded 4-HPCD for the corresponding

bounded 2-HPCD and reduce the reachability problem in the 2-dimensional case

to the stability problem in 4 dimensions. We denote the 2-HPCD and 4-HPCD by

H2 and H4, respectively. Also as shown in Section 3.1, for reachability a 2-RHPCD

with any one of the three computational powers: affine resets, comparative guards

and arbitrary constant flows has the same computational power, so without loss

of generality, we assume the given bounded 2-HPCD has comparative guards,

elementary flows and has no resets.

For a given H2 with initial point (x0, y0) and final point (xf , yf), we first

extend it to a 3-dimensional HPCD H3. We know the guards of H2 are of the

form ax + by ≺ c, where a, b ∈ R and ≺∈ {<,≤,=}. We will define the guards

of the corresponding H3 as ax + by ≺ cz where z is the third variable, and any

flow (p, q) in H2 will be extended to (p, q, 0) with the third dimension being 0.

Intuitively, H3 is constructed by stacking uncountable many copies of a scaled H2

in the third dimension. So if point (xf , yf) is reachable from point (x0, y0) in time

t in H2, then (zxf , zyf) can be reached from (zx0, zy0) in time zt for any value of

z.

Finally we construct H4 by adding one more dimension working as a clock. So

every flow (p, q, 0) in H3 is extended to (p, q, 0, 1) and all the guards are the same

as the ones in H3, i.e., the coefficients associate with the fourth dimension is always

0. The initial partition of H4 is an infinite set of points {(x0, y0, z, 0)|z ≥ 0}.

Now we show the following statements are equivalent:

(1) Starting from (x0, y0), the trajectory will eventually reach (xf , yf) in H2.

(2) H4 is Lyapunov stable.

(3) H4 is asymptotically stable.

72 CHAPTER 4. MORTALITY PROBLEMS FOR HPCDS

(1) to (2): Assume (xf , yf) is reachable from (x0, y0) in H2. As H2 is bounded,

there exists a ball B0(d) containing H2 for some d > 0. Thus every point (x0, y0, z)

is contained in a dz-ball centred at point (x0, y0, z) in dimension 3 and hence

every point (x0, y0, z, 0) is contained in a
√
d2z2 + z2-ball around the origin in

dimension 4. Let the time for a trajectory starting from (x0, y0) and eventu-

ally reaching (xf , yf) in H2 be bounded by some T > 0. Then it takes at most

zT time for a trajectory starting from (x0, y0, z, 0) in H4 to reach the corres-

ponding final point. Thus, any trajectory starting from (x0, y0, z, 0) is contained

in a
√
d2z2 + z2 + z2T 2-ball centred at origin 0. Now let δ < ε√

d2+1+T 2 , it can

be seen that every trajectory starting from (x0, y0, δ
′, 0) where δ′ ≤ δ remains

within the ε-ball. We also have all the points within the δ-ball are a subset of

{(x0, y0, δ
′, 0)|δ′ ≤ δ}. Therefore, every trajectory starting from the points within

a δ-ball centred at origin is contained in an ε-ball centred at origin, which implies

H4 is Lyapunov stable.

(1) to (3): From (1) we know H4 is Lyapunov stable, and it is easy to see there

are no infinite trajectories. Hence it is also asymptotically stable.

(2) to (1): Assume H4 is Lyapunov stable but (xf , yf) is not reachable from

(x0, y0) in H2. Then starting from the initial configuration the trajectory in H2

will be infinite, which lead to the fourth variable in H4 which is time growing

unboundedly, and thus H4 can not be Lyapunov stable, which is a contradiction.

(3) to (2): Directly from the definition of asymptotic stability.

4.4 Summary of Chapter

We first showed mortality for bounded 3-RHPCD is co-NP-hard. Then we showed

mortality problem for bounded 2-RHPCD is in PSPACE. When extended to the

unbounded case, mortality for 3-RHPCD becomes undecidable. Finally, we dis-

cussed the stability property for HPCDs and showed both Lyapunov and asymp-

totic stability problems for 4-HPCD can be reduced to the reachability problem

for 2-HPCD, and hence is equivalent to the reachability for 1-PAM. See the list

below.

4.4. SUMMARY OF CHAPTER 73

• Mortality problem for

– 2-RHPCDs (in PSPACE);

– 3-RHPCDs (co-NP-hard);

– unbounded 3-RHPCDs (undecidable);

• Lyapunov and asymptotic stability problem for 4-HPCD (1-PAM equival-

ent);

The questions that remain to be answered are: whether the mortality problem

for 2-RHPCD is in NP; whether the same problem in dimension three is PSPACE-

complete; whether the mortality problem for 1-PAM is decidable, or at least NP-

hard (see the discussion in Chapter 3)?

74 CHAPTER 4. MORTALITY PROBLEMS FOR HPCDS

Chapter 5

Scalar Ambiguity and Freeness

Problems

In this chapter we shall explore two reachability type problems, or more precisely,

freeness type problems for matrix semigroups, called scalar ambiguity and scalar

freeness problems.

We first show, in the general case, like many other decision problems for matrix

semigroups, the undecidability for these two problems also start from dimension

three or four. We use a common method for undecidability proof for matrix

semigroups, encoding an instance of PCP problem (in fact we use a variation of

classic PCP called MMPCP) into matrices.

We then study the above two problems over bounded languages of matrices,

which means the matrices used must be in a fixed order. We are able to show

the problems are still undecidable under this restriction, by a reduction from the

Hilbert’s tenth problem. However, the results holds only for the higher dimensional

case due to the method applied.

Finally, from the connection between matrices and Probabilistic Finite Auto-

mata (PFA), we shall study a related ambiguity problem for PFA. Associated with

each input word is the probability of that word being accepted by the PFA. We

show that determining whether every probability is unique is undecidable over a

bounded language. In other words, to determine if there exists two input words

which have the same probability of being accepted is undecidable. This is a similar

concept to the threshold isolation problem shown in [21] to be undecidable, where

75

76 CHAPTER 5. SCALAR AMBIGUITY AND FREENESS PROBLEMS

we ask if each probability can be approximated arbitrarily closely.

5.1 Matrix Semigroups

We start this section by exploring the connections between the scalar ambiguity

problem, the scalar freeness problem and the matrix semigroup freeness problem.

Proposition 3. Given a semigroup of matrices S generated by a finite set G, and

two column vectors ρ and τ, let Λ(G) be a set of scalars generated by G, ρ and τ.

Then the following relations hold:

(1) If Λ(G) is ambiguous, then Λ(G) is not free.

(2) if Λ(G) is free, then S is free.

Proof. (1) Suppose Λ(G) is ambigious, then by definition there exist two matrices

M1,M2 ∈ S,M1 6= M2 such that ρTM1τ = ρTM2τ. If M1,M2 are different, then

their factorisations must be different. Thus, there exists factorizations M1 =

Gi1Gi2 . . . Gim1
6= Gj1Gj2 . . . Gjm2

= M2, where each Gi, Gj ∈ G and so Λ(G) is not

free.

(2) We proceed by contradiction. Suppose Λ(G) is free but S is not. If S is

not free, there exists Gi1Gi2 . . . Gim1
= Gj1Gj2 . . . Gjm2

∈ S, where Gi, Gj ∈ G,

and for at least one k, Gik 6= Gjk , or m1 6= m2. Thus, clearly it also holds that

ρTGi1Gi2 . . . Gim1
τ = ρTGj1Gj2 . . . Gjm2

τ, which contradicts the definition of scalar

freeness.

It can be seen that by answering the scalar freeness problem, one can ‘partly’

answer the scalar ambiguity problem and the matrix semigroup freeness problem.

However, neither problem is a sub-problem of the other, and it seems there is no

direct connection between the scalar ambiguity problem and the matrix semigroup

freeness problem. We are now ready to prove the main result of this section.

Theorem 16. The Scalar Freeness Problem is undecidable over G ⊆ Q3×3 and

the Scalar Ambiguity Problem is undecidable over G ′ ⊆ Q4×4, when |G|, |G ′| ≥ 16.

Proof. We prove the result by encoding an instance of the MMPCP problem. The

basic idea is inspired by [27]. We start by showing the undecidability of the scalar

5.1. MATRIX SEMIGROUPS 77

freeness problem. We construct a finite set of matrices G, generating a matrix

semigroup S and two fixed vectors ρ and τ such that the encoded MMPCP instance

has a solution if and only if the scalar set Λ(G) is not free. In other words, there

exists a scalar λ ∈ Λ(G) such that λ = ρTGi1Gi2 . . . Gim1
τ = ρTGj1Gj2 . . . Gjm2

τ ,

where Gi, Gj ∈ G and some Gik 6= Gjk or m1 6= m2.

Let Σ = {x1, x2, . . . , xn−2} and ∆ = {xn−1, xn} be distinct alphabets and h, g :

Σ∗ → ∆∗ be an instance of the mixed modification PCP. The naming convention

will become apparent below. We define two injective mappings α, β : (Σ∪∆)∗ → Q

by:

α(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)m−j,

β(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)j−m−1,

and α(ε) = β(ε) = 0. Thus α represents xi1xi2 · · ·xim as an (n + 1)-adic number

and β represents xi1xi2 · · ·xim as a fractional number (0.xim · · · xi2xi1)(n+1) (e.g. if

n = 9, then x1x2x3 is represented as α(x1x2x3) = 12310 and β(x1x2x3) = 0.32110,

where subscript 10 denotes base 10). Note that ∀w ∈ (Σ ∪ ∆)∗, α(w) ∈ N and

β(w) ∈ (0, 1)∩Q. It is not difficult to see that ∀w1, w2 ∈ (Σ∪∆)∗, (n+1)|w2|α(w1)+

α(w2) = α(w1w2) and (n+ 1)−|w2|β(w1) + β(w2) = β(w1w2).

Define γ′ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → Q3×3 by

γ′(u, v) =

(n+ 1)|u| 0 α(u)

0 (n+ 1)−|v| β(v)

0 0 1

 .

It is easy to verify that γ′(u1, v1)γ′(u2, v2) = γ′(u1u2, v1v2), i.e., γ′ is a homomorph-

ism. Define two more matrices T and T−1 :

T =

1 1 0

0 1 0

0 0 1

 , T−1 =

1 −1 0

0 1 0

0 0 1

 .

78 CHAPTER 5. SCALAR AMBIGUITY AND FREENESS PROBLEMS

We now define γ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → Q3×3:

γ(u, v) = Tγ′(u, v)T−1 =

(n+ 1)|u| (n+ 1)−|v| − (n+ 1)|u| α(u) + β(v)

0 (n+ 1)−|v| β(v)

0 0 1

 .

We can now verify that, γ(u1, v1)γ(u2, v2) = Tγ′(u1, v1)TT−1γ′(u2, v2)T−1 = Tγ′(u1u2, v1v2)T−1 =

γ(u1u2, v1v2), hence γ is a homomorphism.

Let G = {γ(xi, g(xi)), γ(xi, h(xi))|xi ∈ Σ, 1 ≤ i ≤ n − 2}, S = 〈G〉, ρ =

(1, 0, 0)T and τ = (0, 0, 1)T . Assume that there exist M1 = Gi1Gi2 · · ·Git ∈ 〈G〉

and M2 = Gj1Gj2 · · ·Gjt′
∈ 〈G〉 such that t 6= t′ or else at least one Gip 6= Gjp

where 1 ≤ p ≤ t and λ = ρTM1τ = ρTM2τ . We see that:

λ = ρTM1τ = (M1)[1,3] = α(xi1xi2 · · ·xit) + β(f1(xi1)f2(xi2) · · · ft(xit)),

λ = ρTM2τ = (M2)[1,3] = α(xj1xj2 · · ·xjt′) + β(f ′1(xj1)f
′
2(xj2) · · · f ′t′(xjt′)),

where each fi, f
′
i ∈ {g, h}. Since α(w) ∈ N and β(w) ∈ (0, 1) ∩ Q, ∀w ∈

(Σ ∪ ∆)∗, injectivity of α and β implies that if ρTM1τ = ρTM2τ , then t = t′

and ik = jk for 1 ≤ k ≤ t. Furthermore, if ρTM1τ = ρTM2τ , we have that

β(f1(xi1)f2(xi2) · · · ft(xit)) = β(f ′1(xi1)f
′
2(xi2) · · · f ′t(xit)) and since at least one

fp 6= f ′p for 1 ≤ p ≤ t by our above assumption, then this corresponds to a

correct solution to the mixed modification PCP instance (h, g). On the other

hand, if there does not exist a solution to (h, g), then β(f1(xi1)f2(xi2) · · · ft(xit)) 6=

β(f ′1(xi1)f
′
2(xi2) · · · f ′t(xit)), and injectivity of β implies that ρTM1τ 6= ρTM2τ .

By Theorem 4, this implies that the result holds for |G| ≥ 18 since the MMPCP

is undecidable over an alphabet of size 9. We now prove that the result holds for

|G| ≥ 16. By Theorem 5 above, we may assume that h, g : Σ∗ → ∆∗ is a Claus

instance of the MMPCP problem, and that |Σ| ≥ 9. Let then Σ = {x1, x2 . . . , x9}.

Since h, g is a Claus instance, then any potential solution word w is of the form

w = x1w
′x9, with w′ ∈ (Σ−{x1, x9})∗. By symmetry, we may assume that h1 = h

and by the proof in [35], gi = g and hi = h for all 1 ≤ i ≤ t. Clearly then, one of

h(x1) and g(x1) is a proper prefix of the other (assume h(x1) is a prefix of g(x1)),

otherwise a shorter solution must exist. Similarly one of h(x9) and g(x9) is a

proper suffix of the other (assume that g(x9) is a suffix of h(x9); the opposite case

5.2. MATRIX SEMIGROUP OVER BOUNDED LANGUAGES 79

is similar). Now, we redefine ρ′T = ρTγ(x1, h(x1)) and τ ′ = γ(x9, g(x9))τ . Finally

we remove the matrices corresponding to h(x1) and g(x9) from G and redefine the

matrices corresponding to g(x1) and h(x9) by g′(x1) = γ(x1, h(x1)−1g(x1)) and

h′(x9) = γ(x9, h(x9)g(x9)−1) respectively. Since h(x1) is a proper prefix of g(x1),

then h(x1)−1g(x1) is the suffix of g(x1) after removing the common prefix with

h(x1) (similarly for h(x9)g(x9)−1). Then, we see that

h1(xi1)h2(xi2) · · ·ht−1(xit−1)ht(xit) = g1(xi1)g2(xi2) · · · gt−1(xit−1)gt(xit)

⇔ h(x1)h(xi2) · · ·h(xit−1)h(x9) = g(x1)g(xi2) · · · g(xit−1)g(x9)

⇔ h(xi2) · · ·h(xit−1)h
′(x9) = g′(x1)g(xi2) · · · g(xit−1)

This completes the proof of the scalar freeness problem for 16 rational matrices

of dimension 3.

We now show the undecidability of the scalar ambiguity problem. The above

encoding has the property that if some λ = ρTM1τ = (M1)[1,3] = ρTM2τ =

(M2)[1,3], then it implies that M1 = M2. If there exists a solution to the PCP

instance, then some matrix M ∈ S has two distinct factorizations as above, one

using morphisms from h, the other using morphisms from g (see the proof of the

undecidability for Claus instances of MMPCP, [35]). We increase the dimension

of γ by 1 to store an additional element. Each matrix of the form γ(xi, g(xi)) ∈ G

is modified to γ(xi, g(xi))⊕3 ∈ Q4×4 and each matrix of the form γ(xi, h(xi)) ∈ G

is modified to γ(xi, h(xi))⊕ 5 ∈ Q4×4. We modify ρ to ρ⊕ 0 and τ to τ ⊕ 0, which

have an additional dimension which does not select this new element (of the form

3t or 5t). A solution to the MMPCP instance will now have two different factor-

izations, and the corresponding matrices will differ in one component. Therefore

the ambiguity problem is undecidable for 16 matrices over Q4×4.

5.2 Matrix Semigroup over Bounded Languages

We now study the concept of scalar ambiguity and scalar freeness for a bounded

language of matrices, showing that these problems are undecidable. We start with

80 CHAPTER 5. SCALAR AMBIGUITY AND FREENESS PROBLEMS

the following corollary, which can be found in [16], or from the proof construction

shown in [15].

Corollary 6. [16] - Given an integer polynomial P (n1, n2, . . . , nk), one can con-

struct two vectors ρ = (1, 0, . . . , 0)T ∈ Nn and τ = (0, . . . , 0, 1)T ∈ Nn, an alphabet

Σ = {x1, x2, . . . , xk} and a homomorphism µ : Σ∗ → Zn×n, such that for any word

of the form w = xy11 x
y2
2 . . . xykk ∈ Σ+ :

ρTµ(w)τ = P (y1, y2, . . . , yk)
2,

and ρTµ(ε)τ = 0 for the empty word ε. The triple (ρ, µ, τ) is a linear representation

of a Z-regular formal power series Z ∈ N〈〈Σ〉〉.

We will also require the following lemma.

Lemma 4. Given two integer polynomials P1 and P2 over variables (x1, . . . , xk)

and with integer coefficients. It is undecidable to decide whether there exist integers

(y1, . . . , yk) such that P 2
1 (y1, . . . , yk) = P 2

2 (y1, . . . , yk).

Proof. Let P (x2, . . . , xk) be an instance of Hilbert’s tenth problem, i.e. a polyno-

mial with integer coefficients and variables. Define P1(x1, x2, . . . , xk) = (x2
1 + 1)P

and P2(x1, x2, . . . , xk) = (x2
1 + 2)P . Since 0 < x2

1 + 1 < x2
1 + 2, we see that

P 2
1 (x1, x2, . . . , xk) = P 2

2 (x1, x2, . . . , xk) ⇔ P1 = P2 = 0, which implies that

P (x2, . . . , xk) = 0, which is undecidable to determine. This result holds for any

value of x1 since x2
1 + 1 6= x2

1 + 2. We will use this property in the later proof.

Now we show the main result of this section.

Theorem 17. The Scalar Freeness Problem over a bounded language is unde-

cidable. In other words, given k matrices M1,M2, . . . ,Mk ∈ Qn×n, generating

bounded language M = M∗
1M

∗
2 · · ·M∗

k , and two vectors ρ, τ ∈ Zn, it is undecidable

to decide if there exist l1, l2, . . . , lk, r1, r2, . . . , rk ∈ N such that

ρTM l1
1 M

l2
2 . . .M lk

k τ = ρTM r1
1 M

r2
2 . . .M rk

k τ,

where lj 6= rj for at least one j.

5.2. MATRIX SEMIGROUP OVER BOUNDED LANGUAGES 81

Proof. We prove this theorem by 4 steps.

We will define a set of matrices {Mi, Ni|0 ≤ i ≤ k + 1} for some k + 1 > 0,

which will define the bounded language of matrices

M = M∗
0M

∗
1M

∗
2 · · ·M∗

kM
∗
k+1N

∗
0N
∗
1N
∗
2 · · ·N∗kN∗k+1.

The matrices {Mi} will encode a polynomial P1 and matrices {Ni} will encode

a separate polynomial P2. The proof will show that if ρTA1τ = ρTA2τ , where

A1, A2 ∈ M and A1, A2 have different factorizations, then we must have A1 =

M j0
0 M

j1
1 M

j2
2 · · ·M

jk
k M

jk+1

k+1 and A2 = N
j′0
0 N

j1
1 N

j2
2 · · ·N

jk
k N

j′k+1

k+1 (or vice versa). We

will show that this implies that P 2
1 (j1, · · · , jk) = P 2

2 (j1, · · · , jk), the determination

of which was shown to be undecidable in Lemma 4.

Step 1. Given two integer coefficient polynomials P1 and P2 of same number of

variables, from Corollary 6, we can construct an alphabet Σ = {x1, x2, . . . , xk},

two vectors ρ′ = (1, 0, . . . , 0)T , τ ′ = (0, . . . , 0, 1)T ∈ Nn, and two homomorphisms

µ1, µ2 : Σ∗ → Zn×n such that:

ρ′Tµi(w)τ ′ =

 Pi(y1, y2, . . . , yk)
2, if w ∈ L\{ε};

0, if w = ε;

where i ∈ {1, 2} and L is the bounded language L = x∗1x
∗
2 . . . x

∗
k ⊂ Σ∗.

Step 2. Given alphabets K = {0, 1, . . . , k, k+ 1} and Ω = K ∪ {#, ∗}, define left

and right desynchronizing morphisms l and r : K∗ → Ω∗ by

l(0) = #0, l(1) = ∗1, l(i) = #i, l(k + 1) = #(k + 1)#,

r(0) = #0∗, r(1) = 1#, r(i) = i#, r(k + 1) = (k + 1)#,

where 2 ≤ i ≤ k. In the sequel, by abuse of notation, we use lj, rj to represent

the words derived from the morphisms l(j), r(j), 0 ≤ j ≤ k + 1. We define a word

u ∈ Ω∗ as ‘free’ if there is a unique factorization of u over {lj, rj}.

Let L′ = l∗0l
∗
1 · · · l∗k+1r

∗
0r
∗
1 · · · r∗k+1 ∈ Ω∗. We shall now prove that any word

u = lj00 l
j1
1 · · · l

jk+1

k+1 r
j′0
0 r

j′1
1 · · · r

j′k+1

k+1 ∈ L′ is not free if and only if all ji = 0 or all j′i = 0

where 1 ≤ i ≤ k.

Note that no element of Γ = {lt, rt|0 ≤ t ≤ (k + 1)} is a prefix of any other

82 CHAPTER 5. SCALAR AMBIGUITY AND FREENESS PROBLEMS

word from the set, except for l0 which is a prefix of r0. Thus, Γ \ {l0} is a prefix

code. If u does not begin with l0 to some nonzero power, then by the definition

of L′, word u thus has a unique factorization.

If u has a prefix #0, but not #0∗, then the prefix only matches with l0, not

r0 and this prefix can be extracted from u since it has only a single possible

factorization. We can continue this argument iteratively, until we reach u which

begins with #0∗. Thus assume that u begins with #0∗. Let u = l0u1 = r0v1 be

the two possible factorizations. Since u1 must start with ∗, then u1 = l1u2. This

implies that v1 starts with symbol ‘1’, which implies v1 = r1v2 since r1 is the only

word with prefix 1. Now, u2 must be of the form lpu3 for some 2 ≤ p ≤ k. Then

v2 must be of the form rpv3. This matching continues iteratively, until eventually

we reach (k+ 1), at which point we must use lk+1 for the u-word and rk+1 for the

v-word.

At this point we have the two factorizations u = l∗0l0l1l
j2
2 · · · l

jk
k lk+1r

∗
k+1 and

u = l∗0r0r1r
j2
2 · · · r

jk
k rk+1r

∗
k+1 as the only possibilities. An example of this follows:

u = #0 ∗ 1#3#5#(k + 1)# = l0l1l3l5lk+1 = #0 · ∗1 ·#3 ·#5 ·#(k + 1)#

= r0r1r3r5rk+1 = #0 ∗ ·1# · 3# · 5# · (k + 1)#

Step 3. We now encode the words li and rj (0 ≤ i, j ≤ k+1) into rational numbers

in the interval (0, 1). For simplicity we first define a mapping σ : Ω → X, where

X = {x0, x1, . . . , xk+3} such that

σ(z) =

xz if z ∈ {0, 1, . . . , k + 1};

xk+2 if z = #;

xk+3 if z = ∗.

We can extend σ to be a homomorphism σ : Ω∗ → X∗. We then define a homo-

morphism β : X∗ → (0, 1) ∩Q in a similar way as in the proof of Theorem 16:

β(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)j−m−1,

and β(ε) = 0, where n = |X| = k + 4. Moreover, we use a similar definition as

in the proof of Theorem 16 for γ, but only on a single word v ∈ X∗, such that

5.2. MATRIX SEMIGROUP OVER BOUNDED LANGUAGES 83

γ : X∗ → Q2×2 :

γ(v) =

(n+ 1)−|v| β(v)

0 1

 .

It can be verified that γ(v1v2) = γ(v1)γ(v2), and thus γ is a homomorphism.

Finally, we define γl, γr : K∗ → Q2×2 by γl(i) = γ(σ(li)) and γr(i) = γ(σ(ri)),

where 0 ≤ i ≤ k+1. It can be seen that ρ′′Tγlτ
′′ and ρ′′Tγrτ

′′ are two homomorph-

isms from K∗ to (0, 1), where ρ′′ = (1, 0)T and τ ′′ = (0, 1)T , mapping the words

derived from left and right desynchronizing morphisms l and r to (0, 1) ∩Q.

Step 4. In step 1 we showed how to encode an integer polynomial into a matrix.

In step 2 and 3 we defined left and right desynchronizing morphisms and wrote

them into matrix form. We now combine these steps together by defining a set of

matrices {Mi, Ni} ⊂ Q(n+2)×(n+2):

M0 = I ⊕ γl(0), Mi = µ1(xi)⊕ γl(i), Mk+1 = I ⊕ γl(k + 1),

N0 = I ⊕ γr(0), Ni = µ2(xi)⊕ γr(i), Nk+1 = I ⊕ γr(k + 1),

where 1 ≤ i ≤ k, and I is the n × n identity matrix. Then we let a scalar λ be

written as:

λ = ρTMp0
0 Mp1

1 . . .M
pk+1

k+1 N
q0
0 N

q1
1 . . . N

qk+1

k+1 τ

= ρ′Tµ1(w1)µ2(w2)τ ′ + ρ′′Tγl(v1)γr(v2)τ ′′,

where ρ = (ρ′T , ρ′′T)T , τ = (τ ′T , τ ′′T)T , w1, w2 ∈ L, v1, v2 = 0∗1∗ . . . (k + 1)∗ ∈ K∗.

It can be seen that scalar λ contains two parts, one part consists of the homo-

morphisms µ1, µ2 we constructed in step 1 related to the polynomials, which is the

integer part; the other part consists of the homomorphisms γl, γr we constructed

in step 3 related to the desynchronizing morphisms, which is the fractional part.

We now show that scalar λ is not free if and only if there exists some nonzero

integer variables (y1, . . . , yk) such that P 2
1 (y1, . . . , yk) = P 2

2 (y1, . . . , yk).

If λ is not free, by definition there must be integers p0, . . . , pk+1, q0, . . . , qk+1

and p′0, . . . , p
′
k+1, q

′
0, . . . , q

′
k+1 such that

λ = ρTMp0
0 . . .M

pk+1

k+1 N
q0
0 . . . N

qk+1

k+1 τ = ρTM
p′0
0 . . .M

p′k+1

k+1 N
q′0
0 . . . N

q′k+1

k+1 τ,

84 CHAPTER 5. SCALAR AMBIGUITY AND FREENESS PROBLEMS

where pt 6= p′t or qt 6= q′t for at least one 0 ≤ t ≤ k + 1. Since the value of the

fractional part of λ only depends on the desynchronizing morphisms, l, r, and the

fractional parts are identical in both factorizations, from step 2 we have

pi = q′i and qi = p′j = 0, for 1 ≤ i, j ≤ k, or

pi = q′i = 0 and qj = p′j, for 1 ≤ i, j ≤ k.

We only consider the first case, the second case can be analysed in a sim-

ilar way. As the integer parts of λ in both factorizations are also identical, and

M0,Mk+1, N0, Nk+1 are defined in a way that the value of p0, pk+1, q0, qk+1 and

p′0, p
′
k+1, q

′
0, q
′
k+1 do not affect the value of the integer part, we have

ρ′Tµp11 (x1) . . . µpk1 (xk)τ
′ = ρ′Tµp12 (x1) . . . µpk2 (xk)τ

′,

which implies that P 2
1 (p1, . . . , pk) = P 2

2 (p1, . . . , pk). So (p1, . . . , pk) is a solution.

If λ is free, we show there is no solution such that P 2
1 = P 2

2 by contradic-

tion. Assume there is a nonzero solution (y1, . . . , yk), such that P 2
1 (y1, . . . , yk) =

P 2
2 (y1, . . . , yk). From the way we construct P1 and P2 in Lemma 4, we know the

value of y1 can be any integer value without changing the equality. Thus it

must be true that P 2
1 (1, y2, . . . , yk) = P 2

2 (1, y2, . . . , yk), and there exists a word

w = x1x
y2
2 . . . xykk ∈ L∗ such that

ρ′Tµ1(w)τ ′ = ρ′Tµ2(w)τ ′,

which implies that

ρ′Tµ1(x1)µy22 (x2) . . . µykk (xk)τ
′ = ρ′Tµ1(x1)µy22 (x2) . . . µykk (xk)τ

′.

Since

Mi = µ1(xi)⊕ γl(i),

Ni = µ2(xi)⊕ γr(i),

for 1 ≤ i ≤ k, we can set v = 0 · 1 · 2y2 · · · kyk · (k+ 1), and scalar λ can be written

5.3. PFA ON BOUNDED LANGUAGES 85

as

λ = ρ′Tµ1(w)τ ′ + ρ′′Tγl(v)τ ′′ = ρTM0M1M
y2
2 · · ·M

yk
k Mk+1τ

= ρ′Tµ2(w)τ ′ + ρ′′Tγr(v)τ ′′ = ρTN0N1N
y2
2 · · ·N

yk
k Nk+1τ.

This shows that λ has two different factorizations, which is a contradiction. Thus

we showed that scalar freeness problem can be reduced to the problem stated in

Lemma 4, which is undecidable.

Theorem 18. The Scalar Ambiguity Problem over a bounded language is unde-

cidable.

Proof. We can use the same idea as in the proof of Theorem 16, increasing the

dimension of matrices Mi, Ni constructed in the proof of Theorem 17 to store an

additional word which is unique for each matrix. Vectors ρ, τ are modified with

an additional zero-value dimension such that the value of scalar λ is not affected.

Hence in the case λ = ρTM1τ = ρTM2τ , we must have M1 6= M2.

Corollary 7. Vector ambiguity over a bounded language is undecidable.

Proof. Immediately from Theorem 18 in the case when only one vector τ is con-

sidered.

5.3 PFA on Bounded Languages

Finally, we show a result related to probabilistic finite automata.

Problem 13. [PFA Ambiguity] Given a PFA R = (u, ϕ, v) over a bounded lan-

guage L ∈ A∗, do there exist two different words w1, w2 ∈ L such that uTϕ(w1)v =

uTϕ(w2)v?

Corollary 8. Ambiguity for PFA over a bounded language is undecidable.

Proof. In this proof, we will construct a PFA (u, ϕ, v) over a bounded language

L on an alphabet A. We will show that the problem to decide if there exist two

different words w1, w2 ∈ L such that uTϕ(w1)v = uTϕ(w2)v, can be reduced to the

scalar freeness problem and hence is undecidable. The proof uses a modification

of the construction in [61]; see also [16,42].

86 CHAPTER 5. SCALAR AMBIGUITY AND FREENESS PROBLEMS

Define {M ′
i , N

′
i |0 ≤ i ≤ k + 1} ⊆ Z(t−3)×(t−3) and ρ′, τ ′ ∈ Zt−3 to be the

extended integer version of the matrices {Mi, Ni|0 ≤ i ≤ k + 1} and vectors ρ, τ

defined in the proof of Theorem 17, where t > 3 is the appropriate dimension.

We increase the dimension of each M ′
i , N

′
i and ρ′, τ ′ by one by defining M ′′

i =

tM ′
i ⊕ 1, N ′′i = tN ′i ⊕ 1, for each 0 ≤ i ≤ k + 1 and ρ′′ = ρ′ ⊕ 1, τ ′′ = τ ′ ⊕ 1.

Define the morphism ζ : A = {a0, a1, . . . , a2k+3} → {M ′′
i , N

′′
i } by

ζ(aj) =

 M ′′
j if 0 ≤ j ≤ k + 1;

N ′′j−(k+2) if k + 2 ≤ j ≤ 2k + 3.

Then for a word w ∈ A∗, we have

ρ′′T ζ(w)τ ′′ = t|w|ρ′TX ′wτ
′ + 1 = t|w|λ+ 1,

where X ′w is the matrix generated by M ′
i , N

′
i according to the word w and λ =

ρ′TX ′wτ
′ ∈ Z.

We then extend the dimension of the matrix ζ(aj) to t by defining ζ ′ → Zt×t :

ζ ′(aj) =

0 0 0

pj ζ(aj) 0

rj qTj 0

 ,

where pj, qj ∈ Z(t−2) and rj ∈ Z are chosen such that, for each ζ ′(aj), the row

and column sums of ζ ′(aj) are all 0 (note that these values are well defined and

unique).

We now modify ζ ′(aj) so that every entry is positive. To do this we let ∆ be

the matrix of dimension t with all elements being 1. Let c ∈ Z+ be chosen so

that ζ ′(aj) + c∆ is a strictly positive matrix for all 1 ≤ j ≤ 2k + 3, and define

ζ̂ : A∗ → Zt×t+ as

ζ̂(aj) = ζ ′(aj) + c∆ ∈ Nt×t
>0 .

Finally, let ϕ : A∗ → [0, 1]t×t be

ϕ(aj) =
1

ct
ζ̂(aj) =

1

ct
ζ ′(aj) +

1

t
∆.

5.3. PFA ON BOUNDED LANGUAGES 87

Since row and column sums of ζ ′(aj) are all 0, and ∆ is a matrix of dimension t

with all elements being 1, it can be verified that all ϕ(aj) are stochastic matrices.

Then let u = (0, 1
3
ρ′′T , 0)T and v = (0, 1

3
τ ′′T , 0)T , we have constructed a PFA

(u, ϕ, v) over a bounded language L = a∗0a
∗
1 . . . a

∗
2k+3 ⊆ A∗. Note that u, v have an

L1 norm of 1.

To see that the scalar ambiguity problem for PFA (u, ϕ, v) is undecidable, we

note that ∆n = tn−1∆ (as ∆2 = t∆), and by the definition of ζ ′(aj), it holds that

ζ ′(aj) ·∆ = ∆ · ζ ′(aj) = 0 (the zero matrix). Thus,

uTϕ(w)v = uT

((
1

ct

)|w|
ζ ′(w) +

(
1

t

)|w|
∆|w|

)
v

=

(
1

ct

)|w|
(
1

9
ρ′′T ζ(w)τ ′′) + uT

(
∆

t

)
v ; (since ∆|W | = t|W |−1∆)

=
1

9

(
1

ct

)|w|
(t|w|λ+ 1) +

1

t

Now assume there exist two different words w1, w2 ∈ L such that uTϕ(w1)v =

uTϕ(w2)v. Then we have

1

9

(
1

ct

)|w1|

(t|w1|λ1 + 1) +
1

t
=

1

9

(
1

ct

)|w2|

(t|w2|λ2 + 1) +
1

t
(5.1)

If |w1| = |w2|, since c and t are all fixed, we immediately get λ1 = λ2, which

implies the corresponding scalar freeness problem has a solution.

If |w1| 6= |w2|, without lose of generality, we assume |w1| = y1 < y2 = |w2|.

Then we get

cy2−y1ty2λ1 + (ct)y2−y1 = ty2λ2 + 1,

But, cy2−y1ty2λ1 + (ct)y2−y1 mod t ≡ 0 and ty2λ2 + 1 mod t ≡ 1, which gives a

contradiction.

If there exist words w1, w2 ∈ L such that ρ′′T ζ(w1)τ ′′ = ρ′′T ζ(w2)τ ′′ (thus the

scalar freeness problem has a positive solution), then by the proof of Theorem 16,

we know that |w1| = |w2| and λ1 = λ2, therefore Equation (5.1) holds and therefore

the PFA (u, ϕ, v) is not free. Hence the freeness problem for PFA over a bounded

88 CHAPTER 5. SCALAR AMBIGUITY AND FREENESS PROBLEMS

language is undecidable, where the number of states of PFA is a fixed but large

number depending on the instance given in Corollary 6

5.4 Summary of Chapter

We showed both the scalar ambiguity and freeness problems for matrix semigroups

are undecidable, both in the general case or over bounded languages of matrix

semigroups. However in the general case the undecidability starts in a small

dimension (3 for freeness and 4 for ambiguity over rational numbers) while the

bounded language case requires a large dimension. In the end we showed the

ambiguity problem for a PFA over bounded languages is undecidable. See the list

below.

• Scalar ambiguity problem for matrix semigroups

– general case and over bounded languages (undecidable);

• Scalar freeness problem for matrix semigroups

– general case and over bounded languages (undecidable);

• Ambiguity problem for PFA over bounded languages (undecidable).

The questions that remain to be answered are: in the general case, whether

the scalar ambiguity and freeness problems are decidable or not in dimension two;

can we reduce the dimensions required in the bounded language case for matrix

semigroups?

Chapter 6

Conclusion

New results

In this thesis we studied several decision problems, or more precisely reachability

type problems, for hybrid systems with linear dynamics and on matrix semigroups.

Both computability and complexity results are shown. In other words, we tried to

explore what types of systems for which the reachability problem and its variations

are algorithmically solvable and what are not. For those problems which can be

solved by algorithms, we also attempted to find the upper and lower bounds of

time and memory that are required to solve the problems as tightly as we can.

The model of hybrid systems that we concentrated on in this thesis is a sys-

tem called a hierarchical piecewise constant derivative (HPCD) systems. In the

chapters of the Introduction and Preliminaries we explained why it is an interest-

ing model. Firstly, the originally defined two dimensional HPCD can be seen as an

intermediate model lying between two and three dimensional piecewise constant

derivative (PCD) systems. It is known that the reachability for 2-PCD is decid-

able but the problem for 3-PCD is undecidable. So studying 2-HPCD can help to

understand the boundary of decidability of reachability for PCDs. Also, the reach-

ability for 2-HPCD is known to be equivalent to the reachability for 1-dimensional

piecewise affine maps (1-PAM), a well-known discrete model for which the reach-

ability is a longstanding open problem. So we expected the study of HPCD could

help to know more about 1-PAM reachability.

In our study we first formally summarise the computability powers of HPCD

89

90 CHAPTER 6. CONCLUSION

as three aspects: arbitrary constant flows, comparative guards, and affine resets

(see full definitions in Section 2.1.3). We then defined a restricted model called

RHPCD, and HPCD can be viewed as RHPCD endowed with these three compu-

tational powers. We started with the two dimensional case and proved in [12] that

an RHPCD with arbitrary constant flows can simulate a 1-PAM. Then together

with the results form [5], we know the reachability problem for an 2-RHPCD with

any one of these three computational powers above is equivalent to the reachabil-

ity for 1-PAM, which is a longstanding open problem. By a similar techniques we

also got a branch of other related results shown in [12].

As we knew the 2-RHPCD with any one of three computational powers above

lies on the boundary between decidability and undecidability for reachability, we

studied further about the models on the decidable side and explored what exten-

sions lead to undecidability. We first showed a lower bounded for 3-RHPCD that

the reachability is co-NP-hard by encoding an simultaneous incongruences prob-

lem. We then showed even for the n-dimensional case, the reachability problem

is decidable and can be solved in PSPACE. The proof was done based on the

fact that the trajectory starting from the initial configuration will either reach

the final configuration or reach a finite number of integer configurations that we

can conclude the final configuration can never be reached. We also studied some

extensions for RHPCDs. We found out the unboundedness allow 3-RHPCD to

encode a Minsky machine hence the reachability becomes undecidable. The non-

determinism gives 2-RHPCD the power to encode a nondeterministic model called

one-counter machine and the reachability is PSPACE-complete. The above results

were present in [13].

In this thesis we showed the method of encoding the simultaneous incongru-

ences problem can also be used to show the reachability for 1-PAM is co-NP-hard.

Though the result in [19] is stronger, which proved that the reachability for 1-PAM

over integers is PSPACE-complete, we found this technique might be interesting

and present it here. We also slightly improved the undecidable result about reach-

ability for 1-dimension piecewise rational maps in [45] by encoding a generalised

Collatz problem.

For HPCD systems we also considered a problem similar to reachability, called

91

mortality problem. The mortality problem is also studied in other areas like

matrix semigroup, which is to determine whether the zero matrix is in a given

matrix semigroup, or discrete dynamical systems like 1-PAM, which is to determ-

ine whether some “mortal” point can be reached starting form every point in that

system. So unlike reachability, the mortality problem deals with every possible

trajectories in a system. As we discussed in Section 2.2.1, there might different

ways to define mortality problem for hybrid systems, and we gave our reason why

it is proper to define a hybrid system being immortal if it has an infinite trajectory

and mortal if all trajectories halts. Under our definition, and using a similar prov-

ing technique, we were able to show the mortality for 3-RHPCD is co-NP-hard

and can be solved in PSPACE in the two dimensional case. Also the problem

becomes undecidable for unbounded 3-RHPCD. These results were also present

in [13]. We then studied a more general property than mortality called stability.

We gave two types of stability definitions, Lyapunov stability and asymptotic sta-

bility, and proved to decide whether a bounded 4-HPCD has these two properties

is equivalent to solve the reachability problem for 1-PAMs.

Finally we studied two reachability types, or more precisely, freeness like prob-

lems named scalar ambiguity and scalar freeness problems. The study of these

problems were inspired by matrix semigroup freeness and vector ambiguity prob-

lems. But instead of a matrix or a vector, we care about whether there exists a

unique factorizations of a scalar generated by two vectors and a matrix semigroup.

We showed in [14] these two problems are undecidable in dimension three and four

respectively by encoding a variant of Post’s corresponding problem. Because of the

nondeterministic property of PCP, it is a useful tool in proving undecidable results

for matrix semigroups which also has nondeterminism. We then studied these two

problems over bounded languages for matrices, in other words we require the order

of matrices to be fixed. We were able to show under this restriction the problems

are still undecidable, A large number of dimensions are required, however, due to

the technique we used for this case is encoding an instance of a Hilbert’s tenth

problem. At last, as the close connection between matrices and probabilistic finite

automata, we showed an undecidable result for PFA.

92 CHAPTER 6. CONCLUSION

Open Problems

There are still a lot of work to be carried out for both hybrid systems and matrix

semigroups. We shall now list some open problems. Some of them are famous

and have been standing open for a long time, so they are difficult and to solve

them might need some new ideas. Some others might be easier and a variant of an

existing method may work. Nonetheless, all the problems are worth to be studied.

By solving the easier ones we could have a better understanding of the structure

of the models being studied, and may bring a breakthrough method for the more

difficult ones. We start with the open problem already mentioned in Chapter 2:

Open Problem 2. [1-PAM Reachability] Given a 1-dimensional Piecewise

Affine Map f , an initial point x ∈ Q and a final point y ∈ Q, does there exist

t ∈ N, such that f t(x) = y?

This may be the most important open problem in this thesis. As the motivation

of the study of HPCD are based on the fact that bounded 2-HPCDs are lying on

the boundary between decidability and undecidability and it is 1-PAM equivalent.

So knowing the decidability of reachability for 1-PAM can giving us a much better

understanding of PCDs and of course 1-PAM itself. If we may make an (educated)

guess, we would say that reachability for 1-PAMs is decidable. As either form

2-HPCD or 1-PAM itself, the lack of computational powers seems to make it

impossible to simulate a Minsky machine. It will not be surprising that proving

the decidability (if it is true) of reachability for 1-PAM is not easy, as even for

1-PAM over integers, reachability is already PSPACE-complete [19].

Open Problem 3. [n-RHPCD mortality] Is the mortality problem for n-

RHPCD in PSPACE, or even decidable for n > 2?

Open Problem 4. [1-PAM mortality] Is the mortality problem for 1-PAM

undecidable, or at least NP-hard?

Either from our proofs for HPCDs, or from the discussions about 1-PAM mor-

tality, it looks that dealing with mortality problem for HPCDs and 1-PAMs are

sometimes more difficult than the reachability problem. In this thesis, some tech-

niques work for reachability problem are not suitable for mortality problem due

93

to the fact that all trajectories must be considered, and the issues existing in the

mortality proofs seems difficult to overcome. We wonder if we can find some new

methods to solve the above problems.

Open Problem 5. [The 3 × 3 Scalar Ambiguity] Is the scalar ambiguity

problem problem decidable in dimension three, or even in two?

Open Problem 6. [The 2× 2 Scalar Freeness] Is the scalar freeness problem

problem decidable in dimension two?

Like many other problems, the scalar ambiguity and freeness problems are also

difficult in dimension two. A method that is able to solve these two problems are

very likely to be be helpful in solving problems like membership problem, vector

and scalar reachability problems and freeness problem. Also due to the technique

we used, the undecidability result of scalar ambiguity requires dimension four. It

is interesting to see if it can be reduced to dimension three.

Open Problem 7. [Skolem’s Problem] Does a given linear recurrence sequence

uk+n = a1uk+n−1 + a2uk+n−2 + · · ·+ akun have a zero?

The Skolem’s problem is a famous open problem and a lot of work has been

devoted to it. It is known that this problem is decidable for size 4 [36]. It is

well-known that Skolem’s problem can be defined by a matrix and two vectors

with appropriate dimensions. Thus we believe the following freeness type problem

is interesting to be studied:

Open Problem 8. Is the scalar ambiguity problem decidable over a single matrix?

94 CHAPTER 6. CONCLUSION

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H Ho, X. Nicol-

lin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid

systems. Theoretical Computer Science, 138(1):3–34, 1995.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and Pei-Hsin Ho. Hybrid auto-

mata: An algorithmic approach to the specification and verification of hybrid

systems. Springer, 1993.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[4] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical sys-

tems having piecewise constant derivatives. Theoretical Computer Science,

138:35–65, 1995.

[5] E. Asarin, V.P. Mysore, A. Pnueli, and G. Schneider. Low dimensional hybrid

systems - decidable, undecidable, don’t know. Information and Computation,

211:138–159, 2012.

[6] E. Asarin and G. Schneider. Widening the boundary between decidable and

undecidable hybrid systems. In CONCUR’02, volume 2421 of LNCS, pages

193–208. Springer, 2002.

[7] E. Asarin, G. Schneider, and S. Yovine. Algorithmic analysis of polygonal

hybrid systems, part I: Reachability. Theoretical Computer Science, 379:231–

265, 2007.

95

96 REFERENCES

[8] A. Balluchi, L. Benvenuti, M.D. di Benedetto, C. Pinello, and A.L.

Sangiovanni-Vincentelli. Automotive engine control and hybrid systems: chal-

lenges and opportunities. Proceedings of the IEEE, 88(7):888–912, 2000.

[9] J. Banks, V. Dragan, and A. Jones. Chaos: a mathematical introduction.

Cambridge University Press, 2003.

[10] N. Bauer, S. Kowalewski, and G. Sand. A case study: Multi product batch

plant for the demonstration of control and scheduling problems. In ADPM,

pages 969–974, Dortmund, Germany, 2000.

[11] P. C. Bell. Computational problems in matrix semigroups. PhD thesis, The

University of Liverpool, 2007.

[12] P. C. Bell and S. Chen. Reachability problems for hierarchical piecewise

constant derivative systems. In Reachability Problems, volume 8169 of Lecture

Notes in Computer Science, pages 46–58, 2013.

[13] P. C. Bell, S. Chen, and L. M. Jackson. Reachability and mortality prob-

lems for restricted hierarchical piecewise constant derivatives. In Reachability

Problems’14, volume LNCS 8762, pages 32–45, 2014.

[14] P. C. Bell, S. Chen, and L. M. Jackson. Scalar ambiguity and freeness in mat-

rix semigroups over bounded languages. In Language and Automata Theory

and Applications: 10th International Conference, LATA 2016, Prague, Czech

Republic, March 14-18, 2016, Proceedings, volume 9618, page 493. Springer,

2016.

[15] P. C. Bell, V. Halava, T. Harju, J. Karhumäki, and I. Potapov. Matrix

equations and Hilbert’s tenth problem. International Journal of Algebra and

Computation, 18:1231–1241, 2008.

[16] P. C. Bell, V. Halava, and M. Hirvensalo. Decision problems for probabilistic

finite automata on bounded languages. Fundamenta Informaticae, 123(1):1–

14, 2012.

[17] P. C. Bell and I. Potapov. On undecidability bounds for matrix decision

problems. Theoretical Computer Science, 391(1-2):3–13, 2008.

REFERENCES 97

[18] P. C. Bell and I. Potapov. Reachability problems in quaternion matrix and ro-

tation semigroups. Information and Computation, 206(11):1353–1361, 2008.

[19] A. M. Ben-Amram. Mortality of iterated piecewise affine functions over the

integers: Decidability and complexity. In 30th Int. Symp. on Theoretical

Aspects of Comp Sci. (STACS 2013), volume 20, pages 514–525, 2013.

[20] V. Blondel, O. Bournez, P. Koiran, C. Papadimitriou, and J. N. Tsitsiklis.

Deciding stability and mortality of piecewise affine dynamical systems. The-

oretical Computer Science, 255(1-2):687–696, 2001.

[21] V. Blondel and V. Canterini. Undecidable problems for probabilistic auto-

mata of fixed dimension. Theory of Computing Systems, 36:231–245, 2003.

[22] V. Blondel and J. Tsitsiklis. When is a pair of matrices mortal? Information

Processing Letters, 63:283–286, 1997.

[23] V. Blondel and J. N. Tsitsiklis. A survey of computational complexity results

in systems and control. Automatica, 36:1249–1274, 2000.

[24] O. Bournez and M. Branicky. On the mortality problem for matrices of low

dimensions. Theory of Computing Systems, 35(4):433–448, 2002.

[25] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata.

Theoretical Computer Science, 321(2):291–345, 2004.

[26] M. S. Branicky. Studies in hybrid systems : modeling, analysis, and control.

PhD thesis, MIT, 1995.

[27] J. Cassaigne, J. Karhumäki, and T. Harju. On the decidability of the freeness

of matrix semigroups. Technical report, Turku Centre for Computer Science,

1996.

[28] C. Choffrut and J. Karhumäki. Some decision problems on integer matrices.

Informatics and Applications, 39:125–131, 2005.

[29] J. Conway. Unpredictable iterations. In Proceedings of the 1972 Number

Theory Conference, pages 49–52. University of Colorado, Boulder, Colorado,

1972.

98 REFERENCES

[30] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems

in real-time systems. Formal Methods in System Design, 1(4):385–415, 1992.

[31] A. Ehrenfeucht, J. Karhumäki, and G. Rozenberg. The (generalized) post

correspondence problem with lists consisting of two words is decidable. The-

oretical Computer Science, 21(2):119–144, 1982.

[32] J. Fearnley and M. Jurdzinski. Reachability in two-clock timed automata

is PSPACE-complete. In Automata, Languages and Programming, volume

LNCS 7966, pages 212–223, 2013.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Co. New York, NY,

USA, 1979.

[34] C. Haase, J. Ouaknine, and J. Worrell. On the relationship between reach-

ability problems in timed and counter automata. In Reachability Problems,

pages 54–65. Springer, 2012.

[35] V. Halava, T. Harju, and M. Hirvensalo. Undecidability bounds for integer

matrices using Claus instances. International Journal of Foundations of Com-

puter Science (IJFCS), 18,5:931–948, 2007.

[36] V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s problem -

on the border between decidability and undecidability. In TUCS Technical

Report Number 683, 2005.

[37] T. Harju. Post correspondence problem and small dimensional matrices. Lec-

ture Notes in Computer Science, LNCS 5583:39–46, 2009.

[38] T. Henzinger, P. Kopka, A. Puri, and P. Varaiya. What’s decidable about

hybrid automata? In 27th ACM STOC, pages 373–382. ACM Press, 1995.

[39] T. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid

systems. In Hybrid Systems: Computation and Control, volume 1790, pages

145–159, 2000.

REFERENCES 99

[40] M. Heymann, F. Lin, G. Meyer, and S. Resmerita. Analysis of zeno behaviors

in a class of hybrid systems. Automatic Control, IEEE Transactions on,

50(3):376–383, 2005.

[41] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and

Linear Algebra. Academic Press, New York, 1974.

[42] M. Hirvensalo. Improved undecidability results on the emptiness problem of

probabilistic and quantum cut-point languages. SOFSEM 2007: Theory and

Practice of Computer Science, Lecture Notes in Computer Science, Springer,

4362:309–319, 2007.

[43] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional

dynamical systems. Theoretical Computer Science, 312(1):113–128, 1994.

[44] O. Kurganskyy and I. Potapov. Computation in one-dimensional piecewise

maps and planar pseudo-billiard systems. In Unconventional Computation,

pages 169–175. Springer, 2005.

[45] O. Kurganskyy, I. Potapov, and F. Sancho-Caparrini. Reachability problems

in low-dimensional iterative maps. International Journal of Foundations of

Computer Science, 19(04):935–951, 2008.

[46] Oleksiy Kurganskyy and Igor Potapov. Reachability problems for pams. In

International Conference on Current Trends in Theory and Practice of In-

formatics, pages 356–368. Springer, 2016.

[47] S. A. Kurtz and J. Simon. The undecidability of the generalized collatz

problem. In Theory and Applications of Models of Computation, pages 542–

553. Springer, 2007.

[48] F. Laroussinie, N. Markey, and Ph Schnoebelen. Model checking timed auto-

mata with one or two clocks. In CONCUR 2004-Concurrency Theory, pages

387–401. Springer, 2004.

[49] O. Maler and A. Pnueli. Reachability analysis of planar multi-linear systems.

In CAV93, volume LNCS 697, pages 194–209. Springer-Verlag, 1993.

100 REFERENCES

[50] Yuri Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.

[51] Yuri Matiyasevich and Geraud Senizergues. Decision problems for semi-thue

systems with a few rules. In Logic in Computer Science, 1996. LICS’96.

Proceedings., Eleventh Annual IEEE Symposium on, pages 523–531. IEEE,

1996.

[52] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall Inter-

national, Englewood Cliffs, 1967.

[53] T. Neary. Undecidability in binary tag systems and the post correspondence

problem for five pairs of words. In LIPIcs-Leibniz International Proceedings in

Informatics, volume 30. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2015.

[54] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the de-

scription and analysis of hybrid systems. In Hybrid Systems, pages 149–178.

Springer, 1993.

[55] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.

[56] K. Peters and U. Parlitz. Hybrid systems forming strange billiards. Interna-

tional Journal of Bifurcation and Chaos, 13(09):2575–2588, 2003.

[57] E. Post. a variant of a recursively unsolvable problem. Bulletin of the Amer-

ican Mathematical Society, pages 264–268, 1946.

[58] P. Prabhakar and M. Viswanathan. On the decidability of stability of hy-

brid systems. In Proceedings of the 16th international conference on Hybrid

systems: computation and control, pages 53–62. ACM, 2013.

[59] M. Sipser. introduction to the theory of computation. PWS Publishing Com-

pany, 1997.

[60] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential

time. In Proceedings of the Fifth Annual ACM Symposium on Theory of

Computing, STOC ’73, pages 1–9, ACM, 1973.

REFERENCES 101

[61] P. Turakainen. Generalized automata and stochastic languages. Proceedings

of the American Mathematical Society, 21:303–309, 1969.

	Introduction
	Background and Known results
	Hybrid Automata
	Matrix Semigroups

	Overview of the Thesis

	Preliminaries
	Definitions
	Computability and Complexity
	Algebra, Groups, Matrices and Words
	Hybrid Systems
	Discrete Computational Models and Problems

	Computational Problems
	Reachability Type Problems for Hybrid Automata
	Reachability Type Problems in Matrix Semigroups
	Summary of Problems

	Reachability Problems for HPCDs
	Restrictions of 2-HPCDs
	Higher dimensional RHPCDs
	1-PAM and 1-PRM
	Extensions of RHPCDs
	Summary of Chapter

	Mortality Problems for HPCDs
	Higher dimensional RHPCDs
	Extensions of RHPCDs
	Stability for HPCDs
	Summary of Chapter

	Scalar Ambiguity and Freeness Problems
	Matrix Semigroups
	Matrix Semigroup over Bounded Languages
	PFA on Bounded Languages
	Summary of Chapter

	Conclusion
	References

