18 research outputs found

    Vertically integrated analysis and transformation for embedded software

    Get PDF
    Journal ArticleProgram analyses and transformations that are more aggressive and more domain-specific than those traditionally performed by compilers are one possible route to achieving the rapid creation of reliable and efficient embedded software. We are creating a new framework for Vertically Integrated Program Analysis (VIPA) that makes use of information gathered at multiple levels of abstraction such as high-level models, source code, and assembly language. This paper describes our approach and shows how and why it will help create better embedded software

    Dual ceiling protocol for real-time synchronization under preemption threshold scheduling

    Get PDF
    AbstractThe application of object-oriented design methods to real-time embedded systems is seriously hindered by the lack of existing real-time scheduling techniques that can be seamlessly integrated into these methods. Preemption threshold scheduling (PTS) enables a scalable real-time system design and thus has been suggested as a solution to this problem. However, direct adoption of PTS may lead to long priority inversion since object-oriented real-time systems require synchronization considerations in order to maintain consistent object states. In this paper, we propose the dual ceiling protocol (DCP) in order to solve this problem. While DCP exploits both priority ceilings and preemption threshold ceilings, this is not a straightforward integration of existing real-time synchronization protocols for PTS. We present the rationale for the locking conditions of DCP and show that it leads to the least blocking and response times by comparison with other real-time synchronization protocols. We also present its blocking properties and schedulability analyses. We implemented PTS and DCP in a real-time object-oriented CASE tool and present the associated experimental results, which show that the proposed protocol is a viable solution that is superior to other real-time synchronization protocols for PTS

    Evolving real-time systems using hierarchical scheduling and concurrency analysis

    Get PDF
    Journal ArticleWe have developed a new way to look at real-time and embedded software: as a collection of execution environments created by a hierarchy of schedulers. Common schedulers include those that run interrupts, bottom-half handlers, threads, and events. We have created algorithms for deriving response times, scheduling overheads, and blocking terms for tasks in systems containing multiple execution environments. We have also created task scheduler logic, a formalism that permits checking systems for race conditions and other errors. Concurrency analysis of low-level software is challenging because there are typically several kinds of locks, such as thread mutexes and disabling interrupts, and groups of cooperating tasks may need to acquire some, all, or none of the available types of locks to create correct software. Our high-level goal is to create systems that are evolvable: they are easier to modify in response to changing requirements than are systems created using traditional techniques. We have applied our approach to two case studies in evolving software for networked sensor nodes

    Eliminating stack overflow by abstract interpretation

    Get PDF
    ManuscriptAn important correctness criterion for software running on embedded microcontrollers is stack safety: a guarantee that the call stack does not overflow. Our first contribution is a method for statically guaranteeing stack safety of interrupt-driven embedded software using an approach based on context-sensitive dataflow analysis of object code. We have implemented a prototype stack analysis tool that targets software for Atmel AVR microcontrollers and tested it on embedded applications compiled from up to 30,000 lines of C. We experimentally validate the accuracy of the tool, which runs in under 10 sec on the largest programs that we tested. The second contribution of this paper is the development of two novel ways to reduce stack memory requirements of embedded software

    Minimizing stack and communication memory usage in real-time embedded applications

    Get PDF
    In the development of real-time embedded applications, especially those on systems-on-chip, an efficient use of RAM memory is as important as the effective scheduling of the computation resources. The protection of communication and state variables accessed by concurrent tasks must provide real-time schedulability guarantees while using the least amount of memory. Several schemes, including preemption thresholds, have been developed to improve schedulability and save stack space by selectively disabling preemption. However, the design synthesis problem is still open. In this article, we target the assignment of the scheduling parameters to minimize memory usage for systems of practical interest, including designs compliant with automotive standards. We propose algorithms either proven optimal or shown to improve on randomized optimization methods like simulated annealing.</jats:p

    On the effectiveness of cache partitioning in hard real-time systems

    Get PDF
    In hard real-time systems, cache partitioning is often suggested as a means of increasing the predictability of caches in pre-emptively scheduled systems: when a task is assigned its own cache partition, inter-task cache eviction is avoided, and timing verification is reduced to the standard worst-case execution time analysis used in non-pre-emptive systems. The downside of cache partitioning is the potential increase in execution times. In this paper, we evaluate cache partitioning for hard real-time systems in terms of overall schedulability. To this end, we examine the sensitivity of (i) task execution times and (ii) pre-emption costs to the size of the cache partition allocated and present a cache partitioning algorithm that is optimal with respect to taskset schedulability. We also devise an alternative algorithm which primarily optimises schedulability but also minimises processor utilization. We evaluate the performance of cache partitioning compared to state-of-the-art pre-emption cost analysis based on benchmark code and on a large number of synthetic tasksets with both fixed priority and EDF scheduling. This allows us to derive general conclusions about the usability of cache partitioning and identify taskset and system parameters that influence the relative effectiveness of cache partitioning. We also examine the improvement in processor utilization obtained using an alternative cache partitioning algorithm, and the tradeoff in terms of increased analysis time

    Response-time analysis for fixed-priority systems with a write-back cache

    Get PDF
    This paper introduces analyses of write-back caches integrated into response-time analysis for fixed-priority preemptive and non-preemptive scheduling. For each scheduling paradigm, we derive four different approaches to computing the additional costs incurred due to write backs. We show the dominance relationships between these different approaches and note how they can be combined to form a single state-of-the-art approach in each case. The evaluation explores the relative performance of the different methods using a set of benchmarks, as well as making comparisons with no cache and a write-through cache. We also explore the effect of write buffers used to hide the latency of write-through caches. We show that depending upon the depth of the buffer used and the policies employed, such buffers can result in domino effects. Our evaluation shows that even ignoring domino effects, a substantial write buffer is needed to match the guaranteed performance of write-back caches

    Fixed priority scheduling with pre-emption thresholds and cache-related pre-emption delays: integrated analysis and evaluation

    Get PDF
    Commercial off-the-shelf programmable platforms for real-time systems typically contain a cache to bridge the gap between the processor speed and main memory speed. Because cache-related pre-emption delays (CRPD) can have a significant influence on the computation times of tasks, CRPD have been integrated in the response time analysis for fixed-priority pre-emptive scheduling (FPPS). This paper presents CRPD aware response-time analysis of sporadic tasks with arbitrary deadlines for fixed-priority pre-emption threshold scheduling (FPTS), generalizing earlier work. The analysis is complemented by an optimal (pre-emption) threshold assignment algorithm, assuming the priorities of tasks are given. We further improve upon these results by presenting an algorithm that searches for a layout of tasks in memory that makes a task set schedulable. The paper includes an extensive comparative evaluation of the schedulability ratios of FPPS and FPTS, taking CRPD into account. The practical relevance of our work stems from FPTS support in AUTOSAR, a standardized development model for the automotive industry
    corecore