
In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS
2003), pages 25–36, Cancun, Mexico, December 3–5 2003.c 2003 IEEE.

Evolving real-time systems
using hierarchical scheduling

and concurrency analysis

John Regehr Alastair Reid Kirk Webb Michael Parker Jay Lepreau
School of Computing, University of Utah

Abstract

We have developed a new way to look at real-time and
embedded software: as a collection of execution environ-
ments created by a hierarchy of schedulers. Common sched-
ulers include those that run interrupts, bottom-half han-
dlers, threads, and events. We have created algorithms for
deriving response times, scheduling overheads, and block-
ing terms for tasks in systems containing multiple execution
environments. We have also created task scheduler logic,
a formalism that permits checking systems for race condi-
tions and other errors. Concurrency analysis of low-level
software is challenging because there are typically several
kinds of locks, such as thread mutexes and disabling inter-
rupts, and groups of cooperating tasks may need to acquire
some, all, or none of the available types of locks to create
correct software. Our high-level goal is to create systems
that are evolvable: they are easier to modify in response
to changing requirements than are systems created using
traditional techniques. We have applied our approach to
two case studies in evolving software for networked sensor
nodes.

1. Introduction

By focusing on a single abstraction for concurrency, such
as events or threads, traditional models for real-time and
embedded software ignore a great deal of the richness and
complexity that is present in actual systems. For example,
in a typical embedded system based on an off-the-shelf real-
time operating system (RTOS),

� interrupts are prioritized by a preemptive scheduler
that is implemented in hardware,

� bottom-half handlers (a.k.a. tasklets, software inter-
rupts, or deferred procedure calls) are scheduled non-
preemptively in software,

� threads are scheduled preemptively by the RTOS, and

� lightweight events are run by schedulers implemented
within individual OS-supported threads.

Each of these schedulers creates a uniqueexecution envi-
ronment— a context for running code that has particular
performance characteristics and restrictions on actions that
can be taken inside it. Furthermore, each pair of interacting
execution environments has rules that need to be followed to
implement mutual exclusion between tasks running in them.

Multiple execution environments exist because develop-
ers can exploit their diverse properties by mapping each task
to an appropriate environment. For example, interrupt han-
dlers incur very little overhead but provide an inconvenient
programming model: blocking is not permitted and long-
running interrupts unnecessarily delay other tasks. Threads,
on the other hand, are more flexible and can block, but incur
more time and space overhead.

The concurrency structure of a system is largely deter-
mined by the execution environments that it supports and
by the way that tasks are mapped to these environments.
For example, consider a pair of cooperating tasks. If both
tasks are mapped to an event-driven execution environment
then the tasks are mutually atomic — they run to completion
with respect to each other, regardless of whatever preemp-
tion occurs in other parts of the system. On the other hand,
if the tasks are mapped to separate threads, then the tasks
can potentially preempt the other; they must each acquire
a mutex before accessing any shared resources. Finally, if
one task is mapped to a thread and the other is mapped to an
interrupt handler, then the preemption relation is asymmet-
rical — the interrupt can preempt the thread, but not vice
versa. In this case, the thread must disable interrupts when
accessing a resource shared by the two tasks, but the inter-
rupt does not need to take any special action.

Systems tend to evolve over time as features and require-
ments accumulate, and as the underlying platform changes
to accommodate newer and better hardware. Also, all too
often systems are designed in an exploratory way where
code is initially structured in a simple, apparently adequate
way, and then it is generalized several times before an en-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tirely working system can be created. As systems evolve
it is commonplace for a task to be moved into a new exe-
cution environment. However, small changes such as mov-
ing a task from an event into its own preemptive thread, or
from a thread into an interrupt, can easily break a previ-
ously correct system. For example, if code that is moved
to interrupt context accesses a blocking lock, the new sys-
tem risks crashing because it is illegal to block in interrupt
mode. It is often far from obvious whether it is possible for a
given piece of code to transitively call a blocking function.
Similarly, if code that is moved from an event to a thread
shares a resource with another event that had been run by
the same scheduler, then the new system contains a poten-
tial race condition. These problems are often difficult to
detect: a small change to the structure of execution environ-
ments in system, which might be implemented by changing
a few lines of code, suddenly requires that the concurrency
assumptions made by many thousands of lines of code be
reexamined and modified.

This paper makes three main contributions to the engi-
neering and analysis of real-time systems. First, in Sec-
tion 2, we elevate execution environments to a first-class
concept that can be used to better understand and vali-
date real-time software. Previous work on real-time sys-
tems focused on a single execution environment, usually
one based on preemptive multithreading — other environ-
ments, if present, were distinctly second-class. We present a
framework for making generalized adjustments to the map-
ping of tasks to execution environments in order to help
tasks meet deadlines. Our emphasis is on using real-time
techniques to guide system design, as opposed to traditional
real-time analysis that returns a binary result about schedu-
lability. In particular, we are trying to createevolvablesys-
tems: those that are flexible and can gracefully adapt when
faced with the changes in requirements that are inevitable
as time passes.

Our second contribution, in Section 3, is to develop anal-
yses for collections of execution environments. We show
that it is feasible to compute response times, dispatching
overheads, and blocking terms for tasks in real-time sys-
tems that are based on a hierarchy of preemptive and non-
preemptive priority schedulers. We have also developed
task scheduler logic (TSL): a formalism that can be used
to derive and check rules for concurrency both within and
across execution environments.

Our third contribution, in Section 4, is an empirical eval-
uation of our approach: we use it to solve two problems in
meeting real-time deadlines in software for networked sen-
sor nodes.

IRQ

process

CPU

high

low

low

high

p3
p2
p1

mouse
disk
network
clock

FIFO
network_bh
disk_bh

Figure 1. Scheduling hierarchy for a UNIX-like
operating system. Clock, network, etc. are
interrupt handlers, network bh and disk bh
are bottom-half handlers, and p1–p3 are pro-
cesses.

2. Hierarchical execution environments

Most real-time and embedded software is structured as
a collection of execution environments. In this section, we
explain this point of view and describe why it is useful. Our
definition ofexecution environmentis informal — it is the
set of properties created by an instance of a scheduler and
its global context that are of interest to developers.

2.1. An example

Because its structure is familiar to most readers, we
use a generic UNIX-like scheduling hierarchy as an ex-
ample; it is depicted in Figure 1. In this and subsequent
figures, preemptive schedulers are in a bold, oblique font,
non-preemptive schedulers in an oblique font, and non-
scheduler entities in the hierarchy in the standard font. At
the top of the UNIX hierarchy, the root scheduler, CPU,
runs interrupts whenever possible; at all other times it runs
a process scheduler in its user-mode context. Interrupts
are prioritized by the IRQ scheduler that is implemented
in hardware, with a software interrupt running at the low-
est priority. The software interrupt handler contains its
own scheduler that uses a FIFO scheduling policy: it runs
bottom-half handlers to completion. The scheduling hierar-
chies found in many real-time operating systems are nearly
identical to the one shown here.

2.2. Why execution environments?

Viewing a system as a hierarchy of execution environ-
ments is useful for several reasons. First, it facilitates under-
standing and reasoning about scheduling and concurrency
relations. Second, we have found the hierarchical schedul-
ing view of a system to be a useful and general notation — it
can succinctly describe many different system architectures

2

and helps focus attention on the important similarities and
differences between systems. For example:

� RTLinux [20] virtualizes the CPU’s interrupt con-
troller, adding a new root and a new thread scheduler
to the scheduling hierarchy.

� TinyOS [9] contains execution environments equiva-
lent to the bottom half of a traditional operating sys-
tem, lacking a preemptive thread scheduler.

� Many applications extend the scheduling hierarchy by
running new schedulers in a process or thread context.
For example, an event-driven web server adds a new
non-preemptive scheduler to the hierarchy, and a sci-
entific application might add a preemptive user-level
thread scheduler. Also, UNIX processes have an im-
plicit signal scheduler that can preempt the main flow
of control.

The diversity of execution environments in UNIX that
Figure 1 illustrates is of little consequence to the majority
of programmers who only write code that runs in a process
context. However, people developing embedded and real-
time applications frequently have the opportunity to write
code for all available execution environments in order to
create code that meets timeliness and efficiency goals.

The hierarchies discussed in this paper are superficially
similar to our previous work on hierarchical CPU schedul-
ing in HLS [15]: both are concerned with modular reason-
ing about compositions of schedulers. However, the work
described in this paper differs in that it addresses hetero-
geneous mixes of execution environments and safety issues
such as race conditions. The previous work, on the other
hand, focused on guarantees about the availability of CPU
time using reservation-like semantics. It did not address
concurrency issues and was concerned only with a preemp-
tive multithreading execution environment. Another signif-
icant difference is that while HLS specified a uniform inter-
face for connecting schedulers, our current work is aimed at
describing hierarchical schedulers as they “naturally” occur
in existing systems. In practice, interfaces between sched-
ulers tend to be non-uniform, are somewhat blurred by at-
tempts to optimize systems, and may even be implemented
in hardware.

2.3. Properties of hierarchical schedulers

To reason about hierarchical schedulers, we require that
scheduler and task behavior is restricted in certain ways.
The scheduling operations performed by a task are limited
to:

1. Taking or releasing a lock.

2. Relinquishing control to its parent. This encompasses
termination of a task instance as well as voluntary
blocking.

3. Releasing a task that is run by a scheduler somewhere
else in the hierarchy. For example, the clock inter-
rupt handler in an RTOS might release a thread that
is blocked waiting for a timer to expire.

4. Parameterizing schedulers; for example, a task re-
questing that its priority be raised.

A task that acts as a scheduler has access to two additional
operations:

1. Dispatching a child task.

2. Suspending the currently running child task and saving
its state.

We are working towards formalizing these restrictions; for
now they remain intuitive. Real systems conform to them
without modification, in our experience. However, our
model cannot yet cope with exotic inter-scheduler protocols
such as scheduler activations [1].

With a single exception, schedulers only receive con-
trol of the CPU from their parent or from one of their
children. The exception makes preemption possible: con-
trol can be taken away from the currently running task and
given to the root scheduler by the arrival of an interrupt.
The root scheduler can then pass control down the hierar-
chy; if any scheduler along the way takes the opportunity
to change its scheduling decision, it must save the context
of its previously running task before it can dispatch a new
one. Obviously, only preemptive schedulers can do this —
non-preemptive schedulers must always wait for their cur-
rently running task to return control before making another
scheduling decision.

To see how this works in practice, assume there is a ma-
chine that is running the hierarchy in Figure 1, that pro-
cess p1 is currently running, and p2 is blocked awaiting
data from the network. When a network interrupt arrives,
p1 stops running and the root scheduler gives control to the
IRQ scheduler, which saves a minimal amount of machine
state and then dispatches the network interrupt handler. The
network interrupt handler is designed to run very quickly;
it acknowledges the interrupt and then releases the network
bottom-half handler by first adding an element to the queue
of tasks to be run by the FIFO scheduler and second, post-
ing a software interrupt. When the network interrupt returns
control to its parent, the IRQ scheduler finds that there is an-
other interrupt pending — the software interrupt. The IRQ
scheduler dispatches the FIFO scheduler, which dequeues
and dispatches the network bottom-half handler. Now, as-
sume that the packet being processed by the bottom-half
handler is one that the blocked process p2 is waiting for,

3

and so the network bottom-half handler releases task p2 by
calling into the process scheduler. After the software inter-
rupt returns, the CPU scheduler gives control to the process
scheduler which, instead of running p1, saves the state of p1
and dispatches the now-ready process p2.

In a system with hierarchical schedulers and execution
environments, each lock is provided by a particular sched-
uler. Locks have the effect of preventing a scheduler from
running certain tasks, effectively blocking sub-trees of the
scheduling hierarchy. Therefore, taking a lock higher in the
hierarchy potentially blocks more tasks than does a lock
lower in the hierarchy. So, although root-level locks (like
disabling interrupts) are often very cheap, holding them for
too long can easily cause unrelated tasks to miss deadlines.
This is an instance of the fundamental tension in real-time
systems between creating code that makes efficient use of
resources and code that reliably meets real-time deadlines.

2.4. Heuristics for evolving systems

A basic premise of this paper is that as systems evolve,
it is sometimes necessary to restructure them so that tasks
can meet real-time deadlines. Furthermore, we claim that
the mapping of tasks to execution environments can usually
be modified more easily than can other aspects of a system
such as its algorithms, requirements, or underlying hard-
ware.

As a first approximation, problems in meeting real-time
deadlines can be caused bytransient overload, where the
CPU has spare cycles on average, or bysustained overload
where the offered load over a long period of time is more
than the CPU can handle. In either case, it may be possi-
ble to solve the problem by adjusting the mapping of tasks
to execution environments using the strategies outlined in
Figure 2.

Transient overload For a system that is suffering from
transient overload, developers must identify a task that is
missing deadlines and also the task or tasks that cause the
delay. There are then three options: “promote” the code
that is missing deadlines so that it runs in a higher prior-
ity execution environment, “demote” the code that is caus-
ing deadlines to be missed, or adjust priorities within a sin-
gle execution environment. In Section 4 we give examples
of applying both promotion and demotion in a real system.
Promoting code that is already running in an interrupt envi-
ronment can be accomplished by virtualizing the interrupt
controller, a technique used in RTLinux [20].

Sustained overload When there is sustained overload,
the CPU cannot keep up. This is a more difficult problem
than transient overload because it cannot be solved solely

promote
time−critical
tasks

demote
long−running
tasks

interrupt

bottom half

threadthread

event

aggregate tasks
with short WCET
or similar periods

Figure 2. Movement of tasks between execu-
tion environments in an RTOS

by adjusting priorities: it can only be dealt with by reduc-
ing system overhead. Overhead can be reduced by moving
a task to a place in the scheduling hierarchy where it will be
dispatched by a scheduler that has less overhead than its cur-
rent scheduler, or by moving a task to a place where it incurs
less synchronization overhead. For example, processing in-
coming network packets in thread context requires frequent,
expensive thread dispatches. This overhead can be reduced
by running network code in a bottom-half handler, and in
fact this is what real operating systems like Linux do. An-
other example concerns two tightly coupled tasks, each ex-
ecuting in its own thread. These might benefit from being
co-located in the same thread in order to avoid the overhead
of acquiring locks when accessing shared resources.

3. Reasoning about execution environments

There are two main challenges in building, analyzing,
and evolving systems containing hierarchies of execution
environments. In Section 3.1 we address real-time analysis
of restricted scheduling hierarchies. Key issues are “flatten-
ing” the scheduling hierarchy into a form where it can be
analyzed using traditional real-time analysis and deriving a
blocking term for each task in the system. In Section 3.2 we
address concurrency issues — how can we help developers
create systems that are free of race conditions? The problem
is difficult because there are often several choices of lock
implementation, such as thread mutexes and disabling in-
terrupts. For some critical sections only one choice of lock
is correct. In other cases there are several valid choices,
each with different performance characteristics. For exam-
ple, disabling interrupts instead of taking a thread mutex

4

may increase overall throughput but also increase the num-
ber of missed deadlines.

3.1. Response time analysis for hierarchical priority
schedulers

This section shows how to “flatten” a scheduling hier-
archy into a form where it can be analyzed using a stan-
dard static priority analysis [2, 11], and informally argues
that our algorithms are correct. Since the goal is to encom-
pass real-time systems as they are typically built — that is,
primarily using priorities — the analysis that we propose is
simple when compared to more general frameworks for rea-
soning about hierarchical scheduling such as PShED [12] or
HLS [15].

Algorithm 1: Preemptive priority schedulers This al-
gorithm applies to hierarchies containing only preemptive
static priority schedulers. It assigns priorities0::n � 1 to
a hierarchy withn tasks at the leaves, assuming that zero
is the highest priority and that schedulers consume negligi-
ble CPU time. View the scheduling hierarchy as a directed
acyclic graph and perform a depth-first traversal, visiting
the children of each scheduler in order of highest to lowest
priority. The algorithm maintains a counter that initially has
value zero. Each time the traversal visits a leaf of the hier-
archy, it assigns a priority to the task equal to the value of
the counter, and then increments the counter.

To see that this algorithm is correct, consider what would
happen if, initially, all tasks were runnable. The scheduler
at the root of the hierarchy would select its highest priority
child and so on until a leaf task was reached. Notice that this
task is the first task that would be visited by our algorithm,
and hence the task that is assigned priority 0. Next, consider
what would happen if the highest-priority task completes or
blocks: the hierarchy selects the next-highest priority task
and runs it. This task corresponds to the second task visited
by our algorithm. The argument can be repeated until all
tasks have been visited.

Algorithm 2: Adding support for non-preemptive
FIFO and priority schedulers Many operating systems,
such as Windows 2000, Linux, and TinyOS, use a non-
preemptive scheduler to run tasks that run for too long to be
placed in interrupt context, but that still require lightweight
dispatching. These schedulers typically use a FIFO dis-
cipline to avoid starvation, but may also support prior-
ities (e.g., the Windows 2000 kernel supports a hybrid
priority/FIFO discipline for scheduling deferred procedure
calls). Our second algorithm supports analysis of schedul-
ing hierarchies containing non-preemptive schedulers with
the restriction that these schedulers only run leaf tasks, not
other schedulers.

We make use of the response time analysis developed
to analyze task sets scheduled with preemption thresh-
olds [17]; it is useful because it permits analysis of a
structured mix of preemptive and non-preemptive schedul-
ing. For preemptive priority schedulers, proceed as for Al-
gorithm 1, additionally assigning each task a preemption
threshold equal to its priority. For each FIFO scheduler, all
tasks are assigned the same priority, and preemption thresh-
olds are set to the same value. For each non-preemptive
priority scheduler, assign priorities as for preemptive sched-
ulers, but set the preemption threshold for each task to the
value of the highest priority of any task run by that sched-
uler.

Since this algorithm degenerates to Algorithm 1 when
all schedulers are preemptive, we will only argue the cor-
rectness of handling non-preemptive schedulers. First, no-
tice that, at worst, a task scheduled by a FIFO scheduler is
queued up behind one instance of each other task run by
that scheduler. This situation can be modeled by assigning
the same priority to all tasks. However, it is necessary to
make a small change to Saksena and Wang’s response time
analysis for task sets with preemption thresholds since they
assumed that priorities are assigned uniquely. This can be
accomplished in the same way that it has been accomplished
in other response time analyses: by ensuring that the anal-
ysis accounts for interference from same-priority tasks in
addition to interference from higher priority tasks. Second,
notice that for non-preemptive priority schedulers, priorities
are assigned in a continuous range and that their preemption
threshold is set to the highest priority in that range. This
gives us two key properties. First, within the set of tasks
run by a non-preemptive priority scheduler no preemption
is possible because when a task starts to run its priority is
elevated to its preemption threshold, which is too high to
permit any other task run by that scheduler to preempt it.
Second, the presence of a non-preemptive scheduler does
not affect preemption relations anywhere else in the sys-
tem. To see this, notice that while the effect of elevated
preemption thresholds is to suppress preemption relations,
no task has a preemption threshold high enough to cause it
to interfere with a task run by another scheduler.

The example scheduling hierarchy in Figure 3 shows the
priority and preemption threshold that would be computed
for each task using Algorithm 2.

Accounting for scheduling overhead In priority-based
systems context switch overhead is accounted for by
“charging” the cost of two context switches to each instance
of a real-time task. This concept extends straightforwardly
to hierarchies of priority schedulers. To compute the con-
text switch cost, add up the costs of a context switch per-
formed by each scheduler between the root of the schedul-
ing hierarchy and the given task. So, for example, an in-

5

e1 (6, 6)

e3 (8, 6)
e2 (7, 6)

IRQ

CPU FIFO

thread
t1 (5, 5)

event

high

high

high

high

low

low

low

low

disk_bh (4, 4)
network_bh (4, 4)

clock (0, 0)
network (1, 1)
disk (2, 2)
mouse (3, 3)

Figure 3. Priorities and preemption thresh-
olds computed by Algorithm 2

terrupt handler is charged only for the cost of the interrupt
prologue and epilogue, but event handler e1 in Figure 3 is
charged for the cost of scheduling a thread and also dis-
patching an event.

Computing blocking terms Blocking terms [18] account
for the worst-case duration of priority inversion in a real-
time system, and they are significant in practice because
different schedulers may have radically different block-
ing terms. For example, empirical evidence suggests that
the Linux kernel can delay the execution of high-priority
threads by up to 50 ms [13], while RTLinux [20] claims
to have worst-case scheduling latency about three orders of
magnitude less than this.

To compute the blocking term for a task in a system
with hierarchical scheduling, observe that each scheduler
between the task and the root of the scheduling hierarchy
has an opportunity to block the task. Label each edge in the
hierarchy with the blocking term contributed by its parent
scheduler. The overall blocking term for any task is the sum
of the blocking terms of all edges between it and the root of
the hierarchy.

3.2. Concurrency analysis

This section describes TSL, a formal system we have
created to address locking concerns in systems with multi-
ple execution environments where it is possible to statically
identify tasks, resources, and locks. Many embedded and
real-time systems are static in this sense. TSL is based on
two main ideas. First, a conservative estimation of the exe-
cution environment or environments that each function may
execute in can be found by examining the call graph for a
system. Second, the relationships between execution envi-
ronments can be expressed in terms of hierarchical schedul-
ing and asymmetrical preemption relations.

Tasks Tasks are sequential flows of control through a sys-
tem. Some tasks finish by returning control to the scheduler
that invoked them; other tasks encapsulate an infinite loop
and these never finish — control only returns to their sched-
uler through preemption. Some tasks act as schedulers by
passing control to tasks running below them in the hierar-
chy. Familiar examples of tasks are interrupt handlers, event
handlers, and threads.

Schedulers and preemption Schedulers are responsible
for sequencing the execution of tasks. TSL models sched-
ulers in a modular way by specifying the preemption rela-
tions that the scheduler induces between tasks that it sched-
ules. Preemption relations are represented asymmetrically:
we write t1 t2 when taskt2 may preempt taskt1 in some
execution of the system. That is, if we cannot rule out the
possibility thatt2 can start to run aftert1 begins to exe-
cute but beforet1 finishes. This simple definition suits our
present needs because it is directly related to preemption, a
main concern of TSL. In the future, to support multipro-
cessors and other hardware-based forms of concurrency, we
will likely adopt a definition of atomicity based on sequen-
tial consistency.

The simplest scheduler, a non-preemptive event sched-
uler, does not permit any child to preempt any other
child. For any two childrent1 andt2 of such a scheduler,
:(t1 t2) ^ :(t2 t1). On the other hand, a generic pre-
emptive scheduler, such as a UNIX time-sharing scheduler,
potentially permits each child task to preempt each other
child task. That is, for any two children of such a sched-
uler, t1 t2 ^ t2 t1. A third type of scheduler commonly
found in systems software is a strict priority scheduler such
as the interrupt controller in a typical PC. It schedules a
number of taskst1::tn and it is the case thattj ti only when
i < j. Most software-based priority schedulers are not strict
— they permit priority inversion due to blocking.

Locks Preemption can lead to race conditions, and locks
are used to eliminate problematic preemption relations.
Tasks in TSL hold a (possibly empty) set of locks at each
program point. We writet1 l t2 if parts of a taskt2
that hold a lockl can start to run while a taskt1 holds
l (t1 t2 should be read as shorthand fort1 ? t2). For
example, consider two threads that can usually preempt
each other. If holding a thread locklk blocks a taskt2
from entering critical sections int1 protected bylk, then
(t1 ? t2) ^ :(t1 lk t2).

Every lock is provided by some scheduler; the kinds of
locks provided by a scheduler are part of its specification.
We write t(l if a schedulert provides a lockl, and re-
quire that each lock be provided by exactly one scheduler.
There are two common kinds of locks. First, locks that re-
semble disabling interrupts: they prevent any task run by

6

a particular scheduler from preempting a task that holds the
lock. Second, locks that resemble thread mutexes: they only
prevent preemption by tasks the hold the same instance of
the type of lock. Some tasks, such as interrupt handlers, im-
plicitly hold locks when they start running. Accounting for
these locks is a matter of specification and needs no special
support in TSL.

Resources At each program point a task is accessing a
(possibly empty) set of resources. We writet !L r if a
task t potentially uses a resourcer while holding a set of
locksL. Resources represent data structures or hardware
devices that must be accessed atomically.

Races The definition of a race condition is as follows:

race(t1; t2; r)
def
= t1 !L1

r

^ t2 !L2
r

^ t1 6= t2
^ t1 L1\L2

t2

That is, a race can occur if two different taskst1 andt2 use a
common resourcer with some common set of locksL1\L2,
and if t2 can preemptt1 even whent1 holds those locks.
For example, if some taskt1 uses a resourcer with locks
fl1; l2; l3g and another taskt2 usesr with locksfl2; l3; l4g
then they hold locksfl2; l3g in common and a race occurs
if and only if t1 fl2;l3gt2.

Hierarchical scheduling Each scheduler is itself a task
from the point of view of a scheduler one level higher in
the hierarchy. For example, when an OS schedules a thread,
the thread is considered to be a task regardless of whether
or not an event scheduler is implemented inside the thread.
We write t1 C t2 if a schedulert1 is directly above task
t2 in the hierarchy;C is theparentrelation. Similarly, the
ancestorrelationC+ is the transitive closure ofC. TSL’s
definition of “task” is slightly more general than the sense
usually used by the real-time community, which does not
encompass scheduling code.

TSL gains much of its power by exploiting the properties
of hierarchies of schedulers. First, the ability or lack of abil-
ity to preempt is inherited down the scheduling hierarchy:
if a taskt1 cannot preempt a taskt2, thent1 cannot preempt
any descendent oft2. A useful consequence is that if the
nearest common schedulerin the hierarchy to two tasks is
a non-preemptive scheduler, then neither task can preempt
the other.

When a task that is the descendent of a particular sched-
uler requests a lock, the scheduler may have to block the
task. When this happens, the scheduler does not directly
block the task that requested the lock, but instead blocks its

currently running child, which must be transitively schedul-
ing the task that requested the lock. If a task attempts to
acquire a lock that is not provided by one of its ancestors in
the scheduling hierarchy then there is no child task for the
scheduler to block — an illegal action has occurred. Us-
ing TSL, we can check for this generalized version of the
“blocking in interrupt” problem by ensuring that tasks only
acquire blocking locks provided by their ancestor sched-
ulers. We formalize this generalization as follows:

illegal(t; l)
def
= 9 t1: t1(l

^ :(t1 C
+ t)

^ t!L r

^ l 2 L

^ blocking(l)

Execution environments An execution environment is a
context for running application code that is created by an
instance of a scheduler. Our operating definition ofexecu-
tion environmentis informal: a list of attributes of the en-
vironment that are of practical significance to software de-
velopers. The properties of an environment are determined
primarily by its scheduler, but also by the rest of the sys-
tem and even the underlying hardware platform. For exam-
ple, consider an execution environment created by a non-
preemptive event scheduler that runs in interrupt context:

� The non-preemptive parent scheduler implies that
tasks in the environment cannot preempt each other.

� The lack of an ancestor scheduler that supports block-
ing implies that tasks cannot block.

� The details of the compiler and underlying hardware
platform determine the number of microseconds of
overhead in taking an interrupt and dispatching an
event.

� The longest WCET of any task in the environment,
added to the longest duration that any task in the sys-
tem disables interrupts for, determines the worst-case
scheduling latency for the highest-priority event in the
environment.

Reasoning about systems In this paper we assume that
the code used to build a system is annotated with TSL prop-
erties such as accesses to resources and specifications for
schedulers. We currently do this mostly by hand, but in
the future we plan to develop better tool support for de-
riving facts about code. To verify that a system does not
contain any race conditions or illegal blocking we run the
TSL checker, a lightweight automatic theorem prover. The
domain of TSL facts is finite, so simple algorithms can be
used; our current TSL checker is a forward-chaining evalu-
ator written in Haskell.

7

One of our chief goals with TSL is to enable modular,
reusable specifications of schedulers, tasks, and applica-
tions. TSL as it currently exists comes reasonably close
to this goal but there are two places where we have expe-
rienced problems. First, on adding a new task to a sched-
uler, one must add any preemption relations between the
task and its sibling tasks. In raw TSL this would require
that we modify the scheduler specifications as the applica-
tion changes, or the application specifications as the sched-
uler hierarchy changes — neither approach is very modu-
lar. To avoid this, the TSL checker provides direct support
for common types of schedulers, automatically generating
the necessary preemption relations. Second, TSL does not
account for the ability of tasks to release other tasks. For
example, although schedulers implement time-slicing using
timer interrupts, TSL misses the fact that disabling inter-
rupts suppresses time slicing. At present one needs to add
non-modular details about task releases to TSL models to
keep it from returning too many false positives — potential
race conditions that cannot actually happen. We are work-
ing on adding support for causality in task releases to make
it possible to infer these properties from first principles.

In previous work [14] we focused onsynchronization in-
ference: the automatic derivation of an appropriate lock im-
plementation for each critical section in a system. However,
in this paper we focus on using TSL only to look for prob-
lems in a system, relying on the developer to fix these prob-
lems. TSL reports the presence of illegal locking or race
conditions; when doing so it provides a list of problematic
lock acquisitions or preemption relations.

4. Evolving a real system

This section demonstrates and validates our approach
to creating evolvable real-time systems by solving prob-
lems meeting real-time deadlines in TinyOS [9], a simple
component-based operating system for networked sensor
nodes. TinyOS runs on “motes,” small microcontroller-
based systems equipped with a wireless packet radio. We
consider two changes to the base system:

Adding long running tasks: We show how to support
long-running sections of code without disrupting on-
going computations.

Meeting radio deadlines: We solve a design problem in
TinyOS where critical sections cause blocking that in-
terferes with reliable radio reception.

4.1. TinyOS and the ping/pong application

The TinyOS scheduling hierarchy, shown in Figure 4, is
analogous to the bottom half of an RTOS or general-purpose

IRQ

AVR

calc_crc
packet_sent
packet_received

FIFO

AM_send_tasklow

high

spi
output_compare

adc

Figure 4. The TinyOS scheduling hierarchy:
interrupts are scheduled preemptively by the
CPU while tasks are scheduled in software
and have run-to-completion semantics

operating system. It runs in a single address space and con-
tains two execution environments: interrupt handlers run-
ning at high priority and tasks that are scheduled in FIFO
order at low priority. Tasks provide a level of deferred pro-
cessing, reserving interrupt context for short, time-critical
sections of code. In the context of TinyOS,taskhas a more
restricted meaning than its usual definition: it does not refer
to interrupt handlers or scheduling code.

Our motivating application is simple, but exercises the
entire functionality of the TinyOS network stack. The ap-
plication runs on a pair of motes: the first sends out packets
and counts replies; the second returns any packet it receives
to the first. The performance metric of interest is overall
throughput: an important factor for networked sensors.

Modeling the application in TSL Since embedded sys-
tems typically have a relatively small number of schedulers
and tasks, it is straightforward to develop a model of the
scheduling aspects of an application. In fact, the figures
we have used to illustrate scheduling hierarchies contain al-
most all of the required information. The main remaining
challenge in developing a TSL model is tracking the use
of resources and locks inside the code. One approach is to
annotate every critical section with which locks it uses and
which resources it accesses, and then to use a tool that we
have developed to perform a simple source-code analysis to
extract the callgraph of the application. This is quite feasi-
ble; for example, the authors of TinyOS have developed a
new C-like language nesC [7] in which critical sections are
explicitly identified; it would take little more effort from the
programmer to identify which resources are used by each
critical section. This approach works best if it is applied as
the code is written and is maintained with the code. Since
we did not write most of our application code and wish to
be able to track future changes with little effort, we judged
that manually annotating the code in this fine-grained way
was not desirable.

8

As an engineering compromise, we developed a coarse-
grained model of the system based entirely on the schedul-
ing hierarchy, with the goal of detecting race conditions in-
troduced by evolving the system, but without the ability to
detect race conditions that are in the original system. Our
model consists of a single resource used by all interrupt
handlers and all TinyOS tasks when they have interrupts
disabled, and a single resource used by all TinyOS tasks
that have interrupts enabled. This is a very coarse-grained
model so it is worth pointing out that coarse-grained mod-
els are actually more sensitive to race conditions than are
fine-grained models, since any approximations made must
be safe ones. As one would expect, when using this simple
model TSL reported no race conditions in the base applica-
tion.

Experimental setup All experiments were run on
TinyOS version 0.6. We used Mica motes based on
the Atmel ATmega103 8-bit microcontroller running at
4 MHz with 4 KB of RAM and 128 KB of flash memory.
These motes have a radio theoretically capable of sending
115 kbps; TinyOS drives it at 40 kbps. Timing measure-
ments were taken by setting output pins on the AVR and
observing the results using a logic analyzer.

4.2. Supporting long-running tasks

In this experiment, we investigate how we can add long-
running tasks while maintaining high radio throughput.
This is a desirable feature as mote hardware becomes capa-
ble of running sophisticated algorithms such as those sup-
porting signal processing and cryptography.

The experiment We used a timer interrupt to post a long-
running task four times per second. The task is synthetic:
it makes a copy of the packet most recently received over
the radio and then spins for the rest of its execution time.
The experimental procedure was to vary the run-time of the
long-running task while measuring network throughput.

The “original TinyOS” data points in Figure 5 show how
the long-running task interferes with throughput. We do not
have data points for 10 and 25 ms because the TinyOS net-
work subsystem consistently crashes in those experiments
due to a bug, or at 200 ms because no packets were reliably
returned at (or beyond) this point.

Our hypothesis was that the drop in throughput was pri-
marily caused by a delay in returning the packet to the
sender. We believed that most packet transmission and re-
ceipt processing runs in interrupt context. Since code run
in interrupt context is not affected by our long-running task,
the data clearly indicate that some part of packet processing
runs as a task. By examining the code, we quickly con-
firmed that the pong application posts tasks as part of send-

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

R
ou

nd
 T

ri
ps

 p
er

 S
ec

on
d

Task Execution Time (ms)

Original TinyOS
TinyOS with added preemption

Figure 5. Impact of posting a long-running
task four times per second

ing and receiving packets. Since TinyOS schedules tasks
non-preemptively, transmission of the packet will be de-
layed until the load task completes if the load task is running
when the packet arrives.

Restructuring the scheduling hierarchy We now illus-
trate how to apply our method for restructuring a system;
it was described in Section 2.4. The goal is to prevent
TinyOS radio tasks from missing their deadlines. To see
where the problems begin, we performed response time
analysis for the four TinyOS radio tasks and a variable-
length CPU-intensive task that are run by TinyOS’s non-
preemptive FIFO scheduler. This analysis showed that if
the long-running task runs for more than 3.68 ms it can-
not be run in a standard version of TinyOS without caus-
ing missed radio deadlines. To avoid missed deadlines, the
long-running task must be demoted or the radio tasks must
be promoted.

We decided not to promote radio code into interrupt
context because the TinyOS task that computes the CRC
field for an outgoing packet runs for too long: more than
3 ms. Rather, we demoted the long-running task, necessi-
tating significant changes to the structure of execution en-
vironments in TinyOS. To make these changes, we multi-
instantiated the TinyOS task scheduler and then ran each
scheduler instance in a separate preemptive thread provided
by the AvrX [3] operating system. Unlike TinyOS, which
does not support threads, AvrX is a typical RTOS: it pro-
vides preemptive multithreading, mutual exclusion, timers,
message queues, etc.

The resulting scheduling hierarchy is depicted in Fig-
ure 6. It contains two task schedulers: a foreground sched-
uler that runs high-priority network tasks and a background
scheduler that runs long-running tasks (of which there is
only one in our experiment). Tasks running on each sched-

9

IRQ

AVR

AvrX

calc_crc
packet_sent
packet_received

AM_send_task

background1
background2

low

high

high

low

FIFO1

FIFO2

spi
adc

output_compare

Figure 6. TinyOS scheduling hierarchy after
demoting long-running tasks

uler retain run-to-completion semantics with respect to each
other, but a foreground task can preempt a background task.

Validating the changed system There are two compo-
nents to validating the system after making a change to its
execution environments: checking that the real-time prob-
lem that motivated the change was fixed, and ensuring that
race conditions were not added to the system. We hypothe-
sized that network throughput would be restored to its origi-
nal level if we could avoid delaying the execution of TinyOS
tasks that support packet processing, and this hypothesis is
confirmed in Figure 5.

To check for race conditions we modeled the new
scheduling hierarchy and the long-running task in TSL.
Since we wrote the long-running task ourselves, it seemed
reasonable to use a finer-grained model of resources and
so we added an additional resource representing the packet
buffer and noted that it was accessed by both the long-
running task and a task in the TinyOS network stack. We
then ran the TSL checker over the modified system; it told
us that there was, in fact, a race condition caused by the new
preemption relation between the radio tasks and the long-
running task. After fixing this race by protecting the access
with a mutex and updating the model, TSL was not able to
find any more errors.

4.3. Meeting radio deadlines

The original mica radio stack [9] transferred data from
the radio hardware one bit at a time. Recent TinyOS ver-
sions use the serial peripheral interface (SPI) hardware to
implement byte-level transfers from the radio to the host
CPU, increasing link speed and reducing CPU overhead.
However, interrupts signaled by the SPI have an extremely
short deadline: if the SPI interrupt is not handled within 22
CPU cycles (5.5�s) of its arrival, a byte of radio data is

 0

 5

 10

 15

 20

 25

 10 100 1000 10000

R
ou

nd
 T

ri
ps

 p
er

 S
ec

on
d

Tasks Posted per Second

Original TinyOS
TinyOS with virtualized SPI

Figure 7. Posting tasks interferes with radio
reception in the standard TinyOS kernel

lost. Furthermore, losing a byte is almost certain to force
an entire packet to be lost because it defeats the SEC/DED
payload-encoding scheme that can tolerate a single cor-
rupted bit per byte. A consequence of this extremely tight
real-time deadline is that posting a TinyOS task, which dis-
ables interrupts for a few cycles in order to be safely callable
from both interrupt and non-interrupt environments, can
cause the SPI deadline to be missed. Experiments show
that posting a task a few hundred times per second causes
a significant drop in radio performance, as demonstrated in
Figure 7.

Changing the hierarchy To maintain radio throughput
while posting tasks we promote part of the SPI interrupt
handler by performing a lightweight virtualization of the in-
terrupt handling structure of TinyOS in a manner analogous
to what was done in RTLinux [20]. The virtualization has
two aspects. First, by default TinyOS enforces mutual ex-
clusion by disabling interrupts, or in other words, taking
a lock provided by the scheduler at the root of the hierar-
chy. As we saw in Section 3.1, this contributes a blocking
term to every task in the system. To avoid applying a large
blocking term to the SPI interrupt handler, mutual exclusion
in TinyOS must be implemented using a lock provided by
a scheduler one level lower in the scheduling hierarchy —
the virtual interrupt scheduler. This change is shown in Fig-
ure 8; it can be effected by modifying several macros in the
TinyOS header files.

Second, the SPI interrupt handler must be split into two
parts: one that reads a byte from the SPI register and an-
other that integrates this byte into the ongoing computation.
The first part is time critical and must proceed without de-
lay no matter what the rest of the system is doing. The
second part interacts with the rest of the system and there-

10

IRQ

AVR

calc_crc
packet_sent
packet_received

FIFO

AM_send_tasklow

high

spi

vIRQ soft_spi
adc

output_compare

Figure 8. Virtualizing the interrupt scheduler
exempts the SPI interrupt from being disabled
by critical sections, and hence it is able to
reliably meet real-time deadlines

fore it must be synchronous with respect to TinyOS as a
whole. It is not time critical. The implementation that we
chose is for the time critical part of the SPI interrupt handler
to trigger a software interrupt. If an SPI interrupt arrives
while TinyOS is not in a critical section, then the software
interrupt handler runs immediately after the SPI interrupt
handler returns. However, if an SPI interrupt arrives while
TinyOS is in a critical section, then the execution of the soft
interrupt will be delayed until the critical section is finished.
The important property of this hierarchy is that interrupts
run by the vIRQ scheduler are disabled by critical sections
in TinyOS code, while interrupts run by the IRQ scheduler
are not.

Validating the changed system Again, to validate the
changed system we must show that the real-time problem
has been solved and that no new concurrency errors have
been added. Since posting a task in our modified TinyOS
kernel cannot cause missed SPI interrupts, radio throughput
should not vary as a function of the frequency at which tasks
are posted. The data points in Figure 7 that correspond to
the modified kernel show that this is the case.

By introducing many new preemption relations we have
made a potentially serious change to the scheduling hier-
archy. Indeed, TSL detected a race condition in the modi-
fied system. The problem is that the new software interrupt
handler can be preempted by the SPI interrupt handler and
they share a small amount of state. Since these two tasks
are causally related — the software interrupt is triggered
by the hardware interrupt — we reasoned that this was a
false alarm since the race condition can only occur if the
software interrupt is delayed for 200�s: long enough for
another byte to arrive. Since the packet will be lost anyway
in this case, we opted not to eliminate the race condition by
protecting accesses to the shared variable — this would add
overhead without providing any benefit.

5. Related work

A number of research projects have used hierarchical
scheduling techniques to create flexible real-time systems.
These include PShED [12], the open environment for real-
time applications in Windows NT [4], hierarchical fixed-
priority scheduling [16], hierarchical virtual real-time re-
sources [5], and our own HLS [15]. These previous projects
proposed new hybrid scheduling algorithms that provide
new and useful reservation-like guarantees to real-time ap-
plications and collections of applications in open systems
where task characteristics are not always known in advance.
Our current work, on the other hand, is fundamentally dif-
ferent: its goal is to describe and analyze the hierarchical
priority schedulers that are already present in essentially
all real-time and embedded systems. It focuses on closed,
static systems where task characteristics are known in ad-
vance, and it supports concurrency analysis.

The trend towards inclusion of concurrency in main-
stream language definitions such as Java and towards strong
static checking for errors is leading programming language
research in the direction of providing annotations [8] or ex-
tending type systems to model locking protocols [6]. These
efforts, however, have not addressed the possibility of mul-
tiple execution environments as we have in TSL.

Several RTOSs such as RTLinux [20] and TimeSys
Linux/GPL [19] have restructured scheduling hierarchies,
or altered the mapping of tasks to schedulers, in order to
help software meet real-time deadlines. While these efforts
have focused on implementing or evaluating a single trans-
formation, we have developed a general framework and ac-
companying analyses for restructuring systems code to fix
problems in meeting real-time deadlines. We have also
made the execution environments created by the hierarchi-
cal schedulers in a system into a first-class concept, which
had not been done before.

Some aspects of multiple execution environments have
been addressed by previous research. For example, it has
long been known that static priority analysis permits ho-
mogeneous analysis of the ability of interrupts and threads
to meet real-time deadlines. Jeffay and Stone analyzed the
schedulability of a mix of interrupt handlers and threads
scheduled using EDF [10]. Saksena and Wang showed
how to use preemption threshold scheduling to map abstract
tasks onto both preemptive threads and non-preemptive
user-level events [17], allocating a minimal number of pre-
emptive threads. However, these efforts have focused on
a limited set of execution environments, and none of them
have addressed the concurrency issues created by a diversity
of execution environments, as we have with TSL.

11

6. Conclusion

We have made several contributions towards the creation
of evolvable real-time systems. First, we have shown that
it is useful to look at a system as a collection of execution
environments with different properties that can be exploited
by developers. We have also provided heuristics for map-
ping tasks to execution environments in such a way that
real-time deadlines are likely to be met. Our second con-
tribution is two novel algorithms that make it possible to
perform real-time analysis of hierarchies of schedulers con-
taining priority and FIFO schedulers. Third, we have shown
that a whole-program concurrency analysis based on task
scheduler logic can be used to detect race conditions and
other concurrency errors resulting from changing the map-
ping of tasks to environments. Finally, we have validated
our approach to evolving real-time systems using two case
studies that evolve the structure of networked sensor node
software.

Acknowledgments: The authors would like to thank
Eric Eide, Mike Hibler, and the reviewers for their helpful
comments on this paper.

This work was supported, in part, by the National Sci-
ence Foundation under awardCCR-0209185 and by the
Defense Advanced Research Projects Agency and the Air
Force Research Laboratory under agreements F30602-99-
1-0503 and F33615-00-C-1696.

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler Activations: Effective kernel support for
the user-level management of parallelism. InProc. of the
13th ACM Symp. on Operating Systems Principles (SOSP),
pages 95–109, Pacific Grove, CA, Oct. 1991.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings. Applying new scheduling theory to static
priority pre-emptive scheduling.Software Engineering
Journal, 8(5):284–292, Sept. 1993.

[3] L. Barello. The AvrX real time kernel.
http://barello.net/avrx .

[4] Z. Deng, J. W.-S. Liu, L. Zhang, S. Mouna, and A. Frei. An
open environment for real-time applications.Real-Time
Systems Journal, 16(2/3):165–185, May 1999.

[5] X. Feng and A. K. Mok. A model of hierarchical real-time
virtual resources. InProc. of the 23rd IEEE Real-Time
Systems Symp. (RTSS), Austin, TX, Dec. 2002.

[6] C. Flanagan and M. Abadi. Types for safe locking. In
S. Swierstra, editor,ESOP’99 Programming Languages and
Systems, volume 1576 ofLecture Notes in Computer
Science, pages 91–108. Springer-Verlag, Mar. 1999.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to

networked embedded systems. InProc. of Programming
Language Design and Implementation (PLDI), pages 1–11,
San Diego, CA, June 2003.

[8] A. Greenhouse and W. L. Scherlis. Assuring and evolving
concurrent programs: Annotations and policy. InProc. of
the 24th Intl. Conf. on Software Engineering (ICSE), pages
453–463, Orlando, FL, May 2002.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. InProc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 93–104, Cambridge, MA, Nov.
2000.

[10] K. Jeffay and D. L. Stone. Accounting for interrupt
handling costs in dynamic priority task systems. InProc. of
the 14th IEEE Real-Time Systems Symp. (RTSS), pages
212–221, Raleigh-Durham, NC, Dec. 1993.

[11] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour.A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate-Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers, 1993.

[12] G. Lipari, J. Carpenter, and S. K. Baruah. A framework for
achieving inter-application isolation in multiprogrammed
hard real-time environments. InProc. of the 21st IEEE
Real-Time Systems Symp. (RTSS), pages 217–226, Orlando,
FL, Nov. 2000.

[13] J. Regehr. Inferring scheduling behavior with Hourglass. In
Proc. of the USENIX Annual Technical Conf. FREENIX
Track, pages 143–156, Monterey, CA, June 2002.

[14] J. Regehr and A. Reid. Lock inference for systems software.
In Proc. of the Second AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software
(ACP4IS), Boston, MA, Mar. 2003.

[15] J. Regehr and J. A. Stankovic. HLS: A framework for
composing soft real-time schedulers. InProc. of the 22nd
IEEE Real-Time Systems Symp. (RTSS), pages 3–14,
London, UK, Dec. 2001.

[16] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein.
Analysis of hierarchical fixed-priority scheduling. InProc.
of the 14th IEEE Euromicro Conf. on Real-Time Systems,
Vienna, Austria, June 2002.

[17] M. Saksena and Y. Wang. Scalable real-time system design
using preemption thresholds. InProc. of the 21st IEEE
Real-Time Systems Symp. (RTSS), Orlando, FL, Nov. 2000.

[18] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization.IEEE
Transactions on Computers, 39(9):1175–1185, Sept. 1990.

[19] TimeSys Linux/GPL.http://timesys.com .

[20] V. Yodaiken. The RTLinux manifesto. InProc. of The 5th
Linux Expo, Raleigh, NC, Mar. 1999.

12

