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Abstract This paper introduces analyses of write-back caches integrated into

response-time analysis for fixed-priority preemptive and non-preemptive scheduling.

For each scheduling paradigm, we derive four different approaches to computing the

additional costs incurred due to write backs. We show the dominance relationships

between these different approaches and note how they can be combined to form a

single state-of-the-art approach in each case. The evaluation explores the relative

performance of the different methods using a set of benchmarks, as well as making

comparisons with no cache and a write-through cache. We also explore the effect of

write buffers used to hide the latency of write-through caches. We show that depending

upon the depth of the buffer used and the policies employed, such buffers can result in

domino effects. Our evaluation shows that even ignoring domino effects, a substantial

write buffer is needed to match the guaranteed performance of write-back caches.
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Extended version

This paper builds upon and extends the RTNS 2016 paper Analysis of Write-Back

Caches under Fixed-Priority Preemptive and Non-preemptive Scheduling (Davis et al.

2016) as follows:

– Worked examples have been added, in Sects. 4.3 and 5.4, illustrating the incom-

parability and dominance relationships between the different analysis methods.

– A brief discussion of the sustainability of the analysis is given in Sect. 6.

– Additional experiments have been added, in Sect. 7.1, exploring how the perfor-

mance of the various analysis methods is impacted by changes in the number of

tasks and by the memory delay.

– A discussion and evaluation of the impact of write buffers on the performance of

write-through caches has been added in Sect. 8. Here we show that depending on

the precise policies employed, write buffers may result in domino effects, severely

affecting guaranteed performance.

– Finally, while data-cache analysis is not the main focus of the paper, we review

related work in this area in the Appendix.

1 Introduction

During the last two decades, applications in aerospace and automotive electronics have

progressed from deploying embedded microprocessors clocked in the 10’s of MHz

range to higher performance devices operating in the 100’s of MHz to GHz range.

The use of high-performance embedded microprocessors has meant that access times

to main memory have become a significant bottleneck, necessitating the use of caches

to tackle the increasing gap between processor and memory speeds.

Caches may be classified according to the type of information that they store, thus we

have data caches, instruction caches, and unified caches which store both instructions

and data. In this paper, we are interested in the behaviour of single-level data and

unified caches. The behaviour of these caches is crucially dependent on the write

policy used. Two policies are commonly employed: write back and write through. In

caches using a write-through policy, writes immediately go to memory, thus multiple

writes to the same location incur an unnecessarily high overhead. In caches using the

write-back policy, writes are not immediately written back to memory. Instead, writes

are performed in the cache and the affected cache lines are marked as dirty. Only upon

eviction of a dirty cache line are its contents written back to main memory. This has

the potential to greatly reduce the overall number of writes to main memory compared

to a write-through policy, as multiple writes to the same location and multiple writes

to different locations in the same cache line can be consolidated.

Evictions of dirty cache lines are a source of interference between different tasks

sharing a cache. The execution of a task may leave dirty cache lines in the cache

that will have to be written back during the execution of another task, delaying that

task’s execution. A read which is a cache miss and evicts a dirty cache line may incur

approximately twice the delay compared to evicting a non-dirty line, since the former

requires both a read from memory and an additional write back of the dirty line. This
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may occur with non-preemptive as well as with preemptive scheduling, and dirty cache

lines left by low priority tasks may impact the response time of higher priority tasks

and vice-versa. This is in contrast to the impact of evictions with a write-through

cache, which only affect other tasks under preemptive scheduling, and then only tasks

of lower priority. In this paper, we discuss different ways of soundly accounting for

write backs, and show how to integrate these costs into response-time analysis for

both fixed-priority preemptive and non-preemptive scheduling. We also consider the

use of write buffers as a way of hiding the write latency inherent in a write-through

cache. We show that the use of such buffers can potentially lead to domino effects.

1.1 Related work

1.1.1 Accounting for overheads in schedulability analysis

Early work on accounting for scheduling overheads in fixed-priority preemptive sys-

tems by Katcher et al. (1993) and Burns (1994) focused on scheduler overheads and

context switch costs. Subsequent work on the analysis of Cache Related Preemption

Delays (CRPD) and their integration into schedulability analyses used the concepts

of Useful Cache Blocks (UCBs) and Evicting Cache Blocks (ECBs), see Sect. 2.1

of (Altmeyer and Maiza 2011) for a detailed description. A number of methods have

been developed for computing CRPD under fixed-priority preemptive scheduling.

Busquets-Mataix et al. (1996) introduced the ECB-Only approach, which consid-

ers just the preempting task; while Lee (1998) developed the UCB-Only approach,

which considers just the preempted task (s). Both the UCB-Union approach (Tan and

Mooney 2007), and the ECB-Union approach (Altmeyer et al. 2011) consider both

the preempted and preempting tasks. As does an alternative approach developed by

Staschulat et al. (2005). These approaches were later superseded by multiset based

methods (ECB-Union Multiset and UCB-Union Multiset) which dominate them (Alt-

meyer et al. 2012). These methods have been adapted by Lunniss et al. (2013, 2014a)

to EDF scheduling and to hierarchical scheduling with local fixed-priority (Lunniss

et al. 2014b) and EDF (Lunniss et al. 2016) schedulers. They have also been integrated

into a response time analysis framework for multicore systems (Altmeyer et al. 2015).

Cache partitioning is one way of eliminating CRPD; however, this results in inflated

worst-case execution times due to the reduced cache partition size available to each

task. Altmeyer et al. (2014, 2016) derived an optimal cache partitioning algorithm

for the case where each task has its own partition. They compared cache partitioning

and cache sharing accounting for CRPD, concluding that the trade off between longer

worst-case execution times and CRPD often favours sharing the cache rather than

partitioning it.

Preemption thresholds (Wang and Saksena 1999; Saksena and Wang 2000) pro-

vide an alternative means of reducing CRPD by making certain groups of tasks

non-preemptable with respect to each other. Bril et al. (2014) integrated CRPD into

analysis for fixed-priority scheduling with preemption thresholds. Further work in this

area by Wang et al. (2015) showed that by using preemption thresholds, groups of tasks
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can share a partition while still avoiding CRPD. This results in a hybrid approach that

can outperform the approach of Altmeyer et al. (2014).

As far as we are aware, all of the prior work on integrating CRPD into schedulability

analysis assumes write-through caches. In this paper, we explore the impact of using

write-back caches instead.

With write-through caches, non-preemptive scheduling provides a simple means

of eliminating CRPD without increasing worst-case execution times, since each task

can still utilise the entire cache. However, with write-back caches, non-preemptive

scheduling is insufficient to eliminate all cache-related interference effects. In this

paper, we therefore consider the effects of write-back caches under both fixed-priority

preemptive scheduling and fixed-priority non-preemptive scheduling. As this is the

first such study of the impact of write backs, we restrict our attention to direct-mapped

caches (examples of microprocessors that implement such caches are given in Sect. 2).

In future, we aim to extend the techniques to set-associative caches and replacement

policies such as LRU using the methodology given by Altmeyer et al. (2011).

1.1.2 Write-back caches in worst-case execution time (WCET) analysis

Ferdinand and Wilhelm (1999) introduced an analysis of write-back caches to deter-

mine for each memory access, which cache lines may have to be written back. The

basic idea is to track for each potentially dirty memory block whether it must or may

be cached; however, this analysis has neither been integrated into a WCET analysis nor

has it been experimentally evaluated. Sondag and Rajan (2010) implement a similar

idea in the context of multi-level cache analysis, where the write-back behaviour of

the first-level cache influences the contents of the second-level cache. While potential

write backs from the first- to the second-level cache are correctly accounted for, the

cost of write backs to main memory does not seem to be taken into account within their

WCET analysis. We note that both approaches (Ferdinand and Wilhelm 1999; Sondag

and Rajan 2010) are not particularly suited to precisely bound the number of write

backs, as imprecisions in the may- and must-analyses yield many potential write backs

for a single write back in a concrete execution. To analyze a program’s WCET, Li et al.

(1996) proposed to capture both the software and the microarchitectural behaviour via

integer linear programming (ILP). Their analysis is able to cover write-back caches,

however, scalability is a major concern. The key distinction between the work pre-

sented in this paper and previous research is that our work focuses on the open problem

of integrating write-back costs into schedulability analysis. Data cache analysis is not

per-se the focus of the work in this paper, nevertheless we provide a discussion of

related work in that area in the appendix. For readers interested in cache analysis

techniques, a recent survey is given by Lv et al. (2016).

1.2 Organisation

The remainder of the paper is organized as follows. Section 2 discusses caches, differ-

ent write policies and a classification of write backs, as well as how a task’s write-back

behaviour can be characterized. Section 3 sets out the task model used and recaps on

123



Real-Time Syst

existing response-time analysis techniques. Sections 4 and 5 derive analyses bounding

the cost of using write-back caches under fixed-priority non-preemptive and fixed-

priority preemptive scheduling respectively. Section 6 discusses the sustainability of

the analysis presented in those sections. Section 7 provides an evaluation of the per-

formance of the different analyses for write-back caches, as compared to no cache

and a write-through cache. Section 8 discusses the use of write buffers to improve

the performance of write-through caches, and evaluates the effectiveness of different

sized buffers. Section 9 discusses how information characterising write-back cache

behaviour can be obtained. Finally, Sect. 10 concludes with a summary and a discus-

sion of how the work in this paper may be extended. The appendix provides a brief

review of related work on data cache analysis.

2 Caches

Caches are fast but small memories that store a subset of the main memory’s contents

to bridge the difference in speed between the processor and main memory. To reduce

management overhead and to profit from spatial locality, data is not cached at the

granularity of words, but at the granularity of so-called memory blocks. To this end,

main memory is logically partitioned into equally-sized memory blocks. Blocks are

cached in cache lines of the same size. The size of a memory block varies from one

processor to another, but is usually between 32 and 128 bytes.

When accessing a memory block, the cache logic has to determine whether the

block is stored in the cache, a cache hit, or not, a cache miss. To enable an efficient

look-up, each memory block can only be stored in a small number of cache lines

referred to as a cache set. Thus caches are partitioned into a number of equally-sized

cache sets. The size of a cache set is called the associativity of the cache.

The placement policy determines the cache set a memory block maps to. Typically,

the number of cache sets is a power of two, and modulo placement is employed,

where the least significant bits of the block number determine the cache set that a

memory block maps to. Since caches are usually much smaller than main memory, a

replacement policy is used to decide which memory block to replace on a cache miss.

As stated earlier, we limit our attention to direct-mapped caches, where each cache

set consists of exactly one cache line. In this case, the only possible action on a cache

miss is to replace the memory block currently stored in the cache line that the accessed

memory block maps to.

In this paper, we assume a timing-compositional architecture (Hahn et al. 2013),

i.e. the timing contribution of cache misses and write backs can be analyzed separately

from other architectural features such as the pipeline behaviour.

2.1 Write policies

Data written to the cache needs to eventually also be written to main memory. When

exactly the data is written to main memory is determined by the write policy. There

are two basic write policies: With a write-through policy, the write to main memory is

requested at the same time as the write to the cache. With a write-back policy, the write
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to main memory is postponed until the memory block containing the data is evicted

from the cache, it is then written back to main memory in its entirety.

Write through is simpler to implement than write back, but may result in a signifi-

cantly larger number of accesses to main memory. If a cached memory block is written

to multiple times before being evicted, under write back only the final write needs to

be performed to main memory. The drawback of write-back caches is that additional

dirty bits are required to keep track of which cache lines have been modified since

they were fetched from main memory, the writes are delayed, and the logic required

to implement the cache is more complex.

Due to the potential performance advantages of write-back caches they are often

preferred in embedded microprocessor designs. Alternatively, caches may be con-

figurable as write back or write through. Examples include: Infineon Tricore TC1M

(separate data and instruction caches, LRU replacement policy, write back); Freescale

MPC740 (separate data and instruction caches, PLRU replacement policy, config-

urable for write back or write through); Renesas SH7705 (unified data and instruction

cache, LRU replacement policy, configurable for write back or write through); Rene-

sas SH7750 (separate instruction and data caches, direct mapped, configurable for

write back or write through); NEC VR4181 and VR4121 (separate instruction and

data caches, direct mapped, write back).

A second question to answer when designing a cache is what happens on a write

to a memory block that is not cached. There are two write-miss policies: With write

allocate a cache line is allocated to the memory block containing the word that is

being written, which is fetched from main memory, then the write is performed in the

cache. With no-write allocate the write is performed only in main memory, and no

cache line is allocated. In principle, each write policy can be used in conjunction with

each write-miss policy; however, usually, write through is combined with no-write

allocate, and write back is combined with write allocate. In this paper we assume a

cache employing write back and write allocate, which minimizes the total number of

accesses to main memory.

2.2 Classification of write backs

For analysis purposes, it is useful to classify write backs into three categories:

Job-internal write backs. These are write backs of dirty cache lines previously

written to by the same job. We assume that the cost of job-internal write backs is

included in the WCET of a task, since it does not depend on the scheduling policy

used.

Carry-in write backs. These are write backs of dirty cache lines that were not written

to by the job itself and that were present in the cache when the job was dispatched.

We assume that the cost of carry-in write backs is not included in the WCET of a task,

since it depends on the scheduling policy used. (The WCET is instead determined

assuming an arbitrary, but clean initial cache state). Carry-in write backs can be further

distinguished depending on whether they emanate from a job that is still active or not:

Carry-in write backs from jobs that are still active can only come from lower priority

preempted tasks. We refer to these as “lp-carry-in” write backs. Carry-in write backs
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a

Write backs:

c∗

b∗

d d∗

a b

a d f fb d

carry-in job-

internal

preemption-

induced

f∗

d d∗c∗

f∗

a∗

c

Task τ1

Task τ2

Task τ3

c

Fig. 1 Example illustrating different kinds of write backs

from finished jobs can emanate from both lower and higher priority tasks. We refer to

these as “finished-carry-in” write backs.

Preemption-induced write backs. These are write backs of dirty cache lines that

were not written to by the task itself and that were introduced by a preempting task.

Preemption-induced write backs can only come from higher priority jobs that are

finished.

Consider Fig. 1 for an example schedule of three tasks containing the three types of

write backs described above. In the example, x∗ denotes a write to memory block x ,

whereas just x denotes a read from memory block x . Memory blocks a, c and b, d, f

map to the same cache sets, and hence cache lines, respectively.

The first write to memory block a of task τ3, causes the eviction of c, which was

written to by a finished job of task τ2, thus it causes a finished-carry-in write-back. On

the other hand, the access to c in the second job of τ2, causes an lp-carry-in write back

of a. The first access to b within task τ1 evicts f , which was previously modified in the

same job, thus causing a job-internal write back. Finally, the read of d in the second job

of task τ2 causes a preemption-induced write back of f which was previously written

to by task τ1. Similarly, the reads of a and b in task τ3 result in preemption-induced

write backs of c and d, previously written to by task τ2.

2.3 Characterizing a task’s write backs

We assume that job-internal write backs are accounted for within WCET analysis. To

bound carry-in write backs, and in the case of preemptive scheduling, preemption-

induced write backs, we need to characterize the memory-access behaviour of each

task. To do so, we introduce the following concepts:

An Evicting Cache Block (ECB) of task τi is a memory block that may be accessed

by task τi . We denote the set of cache lines that evicting cache blocks of task τi map to

by EC Bi . Note ECBs have previously been considered in the analysis of cache-related

preemption delays (Altmeyer et al. 2012).

A Dirty Cache Block (DCB) of task τi is a memory block that may be written to

by task τi . We denote the set of cache lines that dirty cache blocks of task τi map to

by DC Bi .
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A Final Dirty Cache Block (FDCB) of task τi is a DCB that may still be cached at

completion of the task. We denote the set of cache lines that final dirty cache blocks

of task τi map to by F DC Bi . (By definition, F DC Bi ⊆ DC Bi ⊆ EC Bi ).

By evicting dirty cache lines, ECBs may cause both carry-in and preemption-

induced write backs. In preemptive scheduling, lp-carry-in write backs may occur due

to DCBs, while preemption-induced and finished-carry-in write backs can only be

due to FDCBs. In non-preemptive scheduling, preemption-induced write backs do not

occur, and carry-in write backs are necessarily finished-carry-in write backs, and can

thus only be due to FDCBs. With both scheduling paradigms, job-internal write backs

can occur and carry-in write backs can occur due to jobs of all tasks, including the

previous job of the same task.

3 Task model and basic analysis

In this section, we set out the basic task model used in the rest of the paper, and

recapitulate existing response-time analyses for fixed-priority preemptive scheduling

(FPPS) and fixed-priority non-preemptive scheduling (FPNS).

3.1 Task model

We consider a set of sporadic tasks scheduled on a uniprocessor under either FPPS or

FPNS. A task set Ŵ comprises a static set of n tasks {τ1, τ2, . . . , τn}. Each task has

a unique priority, which without loss of generality is given by its index. Thus task τ1

has the highest priority and task τn the lowest. Each task τi gives rise to a potentially

unbounded sequence of jobs separated by a minimum inter-arrival time or period Ti .

Each job of task τi has a bounded worst-case execution time Ci , and relative deadline

Di . Deadlines are assumed to be constrained, i.e. Di ≤ Ti . Note Ci is the worst-case

execution time in the non-preemptive case, starting from an arbitrary clean cache.

Thus Ci does not include the cost of reloading cache lines evicted due to preemption,

or additional write backs that may be required when loading memory blocks into dirty

cache lines. On the other hand, it does include the cost of job-internal write backs.

The worst-case response time Ri of task τi is given by the longest time from the

release of a job of the task until it completes execution. If the worst-case response time

is not greater than the deadline (Ri ≤ Di ), then the task is said to be schedulable. The

utilization Ui of a task τi is given by Ui =
Ci

Ti
and the utilization of the task set is the

sum of the utilizations of the individual tasks U =
∑n

i=1 Ui .

We use hp(i) and hep(i) to denote respectively the set of indices of tasks with

priorities higher than, and higher than or equal to that of task τi (including τi itself).

Similarly, we use lp(i) and lep(i) to denote respectively the set of indices of tasks

with priorities lower than, and lower than or equal to that of task τi .
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3.2 Schedulability analysis for FPPS

For task sets with constrained deadlines scheduled using FPPS, the exact response time

of task τi may be computed according to the following recurrence relation (Audsley

et al. 1993; Joseph and Pandya 1986):

R P
i = Ci +

∑

j∈hp(i)

⌈

R P
i

T j

⌉

C j (1)

Iteration starts with R P
i = Ci and ends either on convergence or when R P

i > Di in

which case the task is unschedulable.

3.3 Schedulability analysis for FPNS

Determining exact schedulability of a task τi under FPNS requires checking all of the

jobs of task τi within the worst-case priority level-i busy period (Bril et al. 2009).

(This is the case even when all tasks have constrained deadlines).

The worst-case priority level-i busy period starts with an interval of blocking due

to a job of the longest task of lower priority than τi . Just after that job starts to execute,

jobs of task τi and all higher priority tasks are released simultaneously, and then re-

released as soon as possible. Finally, the busy period ends at some time t when there

are no ready jobs of priority i or higher that were not released strictly before time t .

In this paper, we make use of the following sufficient schedulability test for FPNS,

applicable only to constrained-deadline task sets. It is based on a test originally given

for non-preemptive scheduling on Controller Area Network (CAN) (Davis et al. 2007).

This schedulability test considers two scenarios. Either the worst-case response time

for task τi occurs for the first job in the priority level-i busy period, or for a subsequent

job. The start time W N P
i,0 of the first job q = 0 of task τi in the worst-case priority

level-i busy period can be computed using the following recurrence relation:

W N P
i,0 = max

k∈lp(i)
Ck +

∑

j∈hp(i)

(⌊

W N P
i,0

T j

⌋

+ 1

)

C j (2)

and hence its worst-case response time is given by:

RN P
i,0 = W N P

i,0 + Ci (3)

Subsequent jobs of task τi may be subject to push-through blocking due to non-

preemptive execution of the previous job of the same task. Let the jobs of task τi be

indexed by values of q = 0, 1, . . ., where q = 0 is the first job in the busy period. We

consider job q + 1, assuming that job q is schedulable (we return to this point later).

Since job q is schedulable it completes by its deadline at the latest and therefore also

by the release of job q + 1. Consider the length of the time interval from when job q

starts executing to when job q + 1 starts executing. Note when job q starts executing
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there can be no jobs of higher priority tasks that are ready to execute. In the worst-

case, jobs of all higher priority tasks may be released immediately after job q starts to

execute. Thus an upper bound on the length W N P
i,q+1 of this interval can be computed

using the following recurrence relation:

W N P
i,q+1 = Ci +

∑

j∈hp(i)

(⌊

W N P
i,q+1

T j

⌋

+ 1

)

C j (4)

Since we assume that job q completes by its deadline and deadlines are constrained

(Di ≤ Ti ), then the interval W N P
i,q+1 must also upper bound the time from the release

of job q + 1 until it starts to execute. As job q + 1 takes time Ci to execute, an upper

bound on its worst-case response time is given by:

RN P
i,q+1 = W N P

i,q+1 + Ci (5)

Assuming that job q = 0 is schedulable according to (2) then schedulability of the

second and subsequent jobs in the busy period can be determined by induction using

(5).

We note the similarity between (2) and (4), and also between (3) and (5). Thus we

may combine them obtaining an upper bound for the response time of task τi , under

FPNS. This upper bound may be compared with the task’s deadline to determine

schedulability.

W N P
i = max

k∈lep(i)
Ck +

∑

j∈hp(i)

(⌊

W N P
i

T j

⌋

+ 1

)

C j (6)

RN P
i = W N P

i + Ci (7)

The analysis expressed in (5) can be improved by noting that the start time of job q

must be at least Ci before the release of job q + 1, hence the response time upper

bound given in (5) may be reduced by Ci . In this paper, for ease of presentation, we

make use of the simpler test embodied in (6) and (7).

4 Write backs under FPNS

In this section, we extend the sufficient schedulability test for FPNS for constrained-

deadline task sets given in (6) and (7) to account for carry-in write backs. In non-

preemptive scheduling only job-internal and finished-carry-in write backs may occur.

As discussed earlier, we assume that job-internal write backs are accounted for within

WCET analysis.

We identify two methods of accounting for finished-carry-in write backs, which

are illustrated in Fig. 2. In the first method, we associate with each job of a task, the

carry-in write backs that occur within the job. This method is used in the ECB-Only and

FDCB-Union approaches described in Sect. 4.1. By contrast, in the second method we

123



Real-Time Syst

Task τj

Task τi

Task τk

(a)

Task τj

Task τk

Task τi

(b)

Fig. 2 Carry-in write backs may be accounted for either, a within the job of the task τi under analysis, or

b in subsequent jobs of both higher (e.g. τ j ) and lower (e.g. τk ) priority tasks

associate with each job of a task the carry-in write backs that occur in subsequent jobs

due to dirty cache lines left by the job itself. This method is used in the FDCB-Only

and ECB-Union approaches described in Sect. 4.2.

4.1 Carry-in write backs within the job

4.1.1 ECB-Only approach

The number of ECBs provides an upper bound on the number of carry-in write backs a

task suffers.1 Thus, assuming timing compositionality (Hahn et al. 2013), the WCET

of task τi , including the cost of write backs, is bounded by

C ′
i = Ci + W BT · |EC Bi | (8)

where W BT is an upper bound on the time to perform one write back. Replacing Ci

by C ′
i as defined above (and similarly Ck and C j ), (6) and (7) can be used to derive

worst-case response times accounting for write backs.

1 Note that this holds for direct-mapped caches as well as for set-associative caches with LRU replacement.

This is different from additional cache misses, which are not directly bounded by the number of ECBs

(Burguière et al. 2009).
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4.1.2 FDCB-Union approach

The ECB-Only approach can be improved upon by taking into account which cache

lines may be dirty when a job is started. In non-preemptive execution, dirty cache lines

at a job’s start are the final dirty cache lines left by other jobs.

When analyzing τi ’s response time, we distinguish two types of finished-carry-in

write backs: Those that are due to dirty cache lines introduced before τi ’s release by

tasks with lower or equal priority to τi , represented by δi , and those that are due to

dirty cache lines introduced before and after τi ’s release by tasks of higher priority

than τi , represented by γ wb
i, j .

Each final dirty cache line of a task with priority lower than or equal to that of task

τi may result in at most one write back during τi ’s response time, excluding write

backs that occur during the blocking time. Write backs of these dirty cache lines can

only occur within the response time of task τi if the cache lines are accessed by (i.e.

in the EC Bk) some task τk of priority i or higher. The term δi accounts for these write

backs. Note that we exclude from δi cache lines that may be dirty due to higher priority

tasks as such cache lines are accounted for by the γ wb
i, j term introduced next, thus:

δi = W BT ·

∣

∣

∣

∣

⎛

⎝

⋃

k∈lep(i)

F DC Bk \
⋃

k∈hp(i)

F DC Bk

⎞

⎠ ∩

⎛

⎝

⋃

k∈hep(i)

EC Bk

⎞

⎠

∣

∣

∣

∣

(9)

The number of finished-carry-in write backs that can be made during the execution

of one job of task τ j due to dirty cache lines introduced by tasks of higher priority

than τi is upper bounded by γ wb
i, j . Note that only cache lines accessed by task τ j (i.e.

in EC B j ) can be written back during the execution of a job of τ j .

γ wb
i, j = W BT ·

∣

∣

∣

∣

∣

∣

⎛

⎝

⋃

k∈hp(i)

F DC Bk

⎞

⎠ ∩ EC B j

∣

∣

∣

∣

∣

∣

(10)

We now adapt (6) and (7) to include the write backs (γ wb
n+1,b) that can occur within

one job of a blocking task τb; the write backs (δi ) that can occur during jobs other than

that of a blocking task, due to dirty cache lines left by tasks of lower priority than τi

before the start of the busy period; and finally, the write backs (γ wb
i, j and γ wb

i,i ) that can

occur within each of the other jobs that contribute to the response time of task τi , due

to dirty cache lines introduced by tasks of higher priority than τi .

W N P
i,W B = max

b∈lep(i)

(

Cb + γ wb
n+1,b

)

+ δi

+
∑

j∈hp(i)

(⌊

W N P
i,W B

T j

⌋

+ 1

)

(

C j + γ wb
i, j

)

(11)

RN P
i,W B = W N P

i,W B +
(

Ci + γ wb
i,i

)

(12)
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In the γ wb
n+1,b term, n + 1 denotes a priority that is lower than that of any task, thus

γ wb
n+1,b accounts for all carry-in write backs that may occur during the execution of a

blocking task τb due to cache lines left dirty by previous jobs of any task. In contrast,

γ wb
i, j and γ wb

i,i need only cover write backs due to dirty cache lines from tasks of higher

priority than τi , since all other write backs are accounted for in δi .

The ECB-Only approach pessimistically assumes that each time a task is executed

the cache is full of dirty cache lines. The FDCB-Union approach improves upon this

by more precisely modeling which cache lines could actually be dirty. FDCB-Union

strictly dominates ECB-Only, meaning that any task set that is deemed schedulable

according to the ECB-Only approach is guaranteed to be deemed schedulable using

the FDCB-Union approach. This can be seen by first considering the C j + γ wb
i, j terms

in (11) and (12). From (10), it follows that C j + γ wb
x, j cannot be greater than the

value of C ′
j used in (8) for any task τ j and index x , and hence cannot exceed the

inflated WCET values used in the ECB-Only approach. Second, we must consider the

additional contributions in the δi term. For an FDCB to contribute to δi , then from

(9), that FDCB cannot be in F DC Bk of any task τk with a priority higher than that of

task τi . Also, it must be in the EC Bi of task τi or the EC Bk of some higher priority

task τk . If it is in EC Bi and contributes to δi then from (10) it is not included in the

γ wb
i,i term in (12), thus the inflated WCET C ′

i in the ECB-Only approach covers both

this contribution to δi and the γ wb
i,i term in (12). Similarly, if the FDCB is in EC B j

and contributes to δi then it is not included in the γ wb
i, j term in (11), thus the inflated

WCET C ′
j in the ECB-Only approach again covers both this contribution to δ and γ wb

i, j .

Finally, it serves only to consider a system with no FDCBs to see that FDCB-Union

strictly dominates ECB-Only. At the other extreme, if all ECBs are also FDCBs, then

FDCB-Union reduces to ECB-Only (with δi = 0).

4.2 Carry-in write backs in subsequent jobs

4.2.1 FDCB-Only approach

Instead of using γ wb
i, j to mean the cost of carry-in write backs that occur within the

execution of a job of task τ j , we can re-define γ wb
i, j to cover the write backs that occur

in subsequent jobs due to dirty cache lines left by a job of task τ j . This is achieved by

assuming that all of these cache lines may be evicted by the subsequent jobs:

γ wb
i, j = W BT ·

∣

∣F DC B j

∣

∣ (13)

With this approach, δ needs to account for all carry-in write backs due to cache lines

that were dirty prior to τi ’s release:

δ = W BT ·

∣

∣

∣

∣

∣

⋃

k

F DC Bk

∣

∣

∣

∣

∣

(14)
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Finally, the final dirty cache lines that τi leaves do not affect its own response time.

As a consequence (12) can be simplified as follows (with (11) unchanged):

RN P
i,W B = W N P

i,W B + Ci (15)

4.2.2 ECB-Union approach

The above approach can be improved by taking into account which of the dirty cache

lines may actually be evicted by subsequent jobs of tasks which may execute within

τi ’s response time (i.e. by also considering the cache lines (EC Bk) accessed by each

task τk of priority i or higher).

γ wb
i, j = W BT ·

∣

∣

∣

∣

∣

∣

F DC B j ∩

⎛

⎝

⋃

k∈hep(i)

EC Bk

⎞

⎠

∣

∣

∣

∣

∣

∣

(16)

Similarly, in the δb,i term, we need only account for those dirty cache lines that may

be evicted during τi ’s response time. This depends on the blocking task τb:

δb,i = W BT ·

∣

∣

∣

∣

∣

∣

(

⋃

k

F DC Bk

)

∩

⎛

⎝

⋃

j∈hep(i)∪{b}

EC B j

⎞

⎠

∣

∣

∣

∣

∣

∣

(17)

Hence we include δb,i in the blocking term resulting in the following adaptation of

(11):

W N P
i,W B = max

b∈lep(i)
(Cb + γ wb

i,b + δb,i

)

+
∑

j∈hp(i)

(⌊

W N P
i,W B

T j

⌋

+ 1

)

(C j + γ wb
i, j )

(18)

The ECB-Union approach strictly dominates the FDCB-Only approach. This can

be seen by comparing the γ wb
i, j terms and the δb,i terms. Comparing the γ wb

i, j terms in

(13) and (16) we note that surprisingly there is no advantage gained by ECB-Union,

since F DC B j ⊆ EC B j and i ∈ lep( j) in all uses of this term, hence (16) effectively

reduces to (13). Considering the δb,i terms, if there are a number of lower priority

tasks with FDCBs that are not present in the ECBs of tasks with priorities higher than

or equal to τi then (17) can improve upon (14), with dominance apparent from the set

intersection.

We note that the ECB-Union and FDCB-Union approaches are incomparable, and

hence we may form a combined approach by taking the minimum response time

computed by either approach. By construction, this combined approach dominates

both ECB-Union and FDCB-Union. Since it can be applied on a per task basis, the

combined approach classifies more task sets as schedulable than can be found by using

the ECB-Union and FDCB-Union approaches individually on each task set. Figure 3

illustrates these relationships via a Hasse diagram.
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Fig. 3 Hasse diagram

illustrating the dominance

relationships between different

approaches to account for write

backs under fixed-priority

non-preemptive scheduling

Combined

FDCB-Union

ECB-Only

ECB-Union

FDCB-Only

Table 1 Example task set

Task C T ECB DCB FDCB

τ1 100 1000 {1, 4, 5} {1} {1}

τ2 100 1000 {2, 3, 4, 5} {2, 3, 4} {2, 3}

τ3 100 1000 {2, 3, 5} {2, 3, 5} {2, 3}

τ4 100 1000 {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} {1}

4.3 Worked example

Below, we present a worked example illustrating the various approaches to analysing

write backs under fixed-priority non-preemptive scheduling and their differences in

performance. Table 1 gives the task set parameters.

For ease of presentation, we assume a write-back delay of 1 and choose task param-

eters so that only one job of each task may be released during another task’s response

time. The sets of UCBs are assumed to be empty (i.e. we focus on write backs and do

not consider CRPD due to cache misses).

4.3.1 ECB-Only

The ECB-Only approach (8) effectively increases the tasks’ execution times by W BT ·

|EC B|: C ′
1 = 103, C ′

2 = 104, C ′
3 = 103, C ′

4 = 106. The response time is then

computed using (6) and (7) giving R1 = 209, R2 = 313, R3 = 416, and R4 = 522.

4.3.2 FDCB-Union

The FDCB-Union approach extends the ECB-Only approach by taking into account

which cache lines may be dirty when a job is started. The term δi accounts for dirty

cache lines of lower or equal priority tasks and is computed using (9): δ1 = 1, δ2 =

2, δ3 = 0, δ4 = 0. The term γ wb
i, j accounts for write backs due to higher priority tasks

and is computed using (10):

γ wb
i, j 1 2 3

2 1 − −

3 1 2 −

4 1 2 2
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Further, we have: γ wb
5,1 = 1, γ wb

5,2 = 2, γ wb
5,3 = 2, γ wb

5,4 = 3 and γ wb
1,1 = 0, γ wb

2,2 = 0,

γ wb
3,3 = 2, γ wb

4,4 = 3. The response time is then computed using (11) and (12) giving

R1 = 204, R2 = 306, R3 = 408, and R4 = 511.

Note that the FDCB-Union approach dominates ECB-Only and results in shorter

response times in this example.

4.3.3 FDCB-Only

The FDCB-Only approach accounts for write backs in subsequent jobs, instead of

write backs in the execution of the job itself. Hence, the term δ accounts for dirty

cache lines prior to the release of the task under analysis and is given by (14) thus

δi = 3. The γ wb
i, j term is given by (13):

γ wb
i, j 1 2 3

2 1 − −

3 1 2 −

4 1 2 2

Further, γ wb
5,1 = 1, γ wb

5,2 = 2, γ wb
5,3 = 2, γ wb

5,4 = 1. The response time is then computed

using (11) and (15) giving R1 = 205, R2 = 306, R3 = 408, and R4 = 509.

4.3.4 ECB-Union

The ECB-Union approach only differs from FDCB-Only in the δ terms. This dif-

ference, although technically possible, is neither visible in this example, nor in the

evaluation. Instead, the ECB-Union approach results in the same response times as

the FDCB-Only approach.

We observe that this example suffices to highlight the incomparability between

ECB-Union and FDCB-Union. The response time for task τ1 is smaller with FDCB-

Union (204 vs. 205), while the response time for task τ4 is smaller with ECB-Union

(509 vs. 511). The combined approach, taking the minimum response times (204, 306,

408, 509) thus dominates all others.

5 Write backs under FPPS

Response-time analysis for FPPS has previously been extended to account for

preemption-related cache misses (Altmeyer et al. 2011, 2012) by introducing a term

γi, j into the response-time equation for task τi as follows:

R P
i = Ci +

∑

j∈hp(i)

⌈

R P
i

T j

⌉

(C j + γi, j ) (19)
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To also account for additional write backs in preemptive scheduling, we extend the

recurrence relation as follows:

R P
i = δi + Ci +

∑

j∈hp(i)

⌈

Ri

T j

⌉

(

C j + γ miss
i, j + γ wb

i, j

)

(20)

Here, δi is used to account for write backs due to cache lines that were already dirty

on release of τi and are written back within its response time. Additional cache misses

due to preemptions are captured by γ miss
i, j . Any of the existing techniques, for example

those introduced by Altmeyer et al. (2012), can be used to account for such misses.

Finally, γ wb
i, j is used to account for carry-in and preemption-induced write backs of

cache lines that were written to after τi ’s release.

We further sub-divide γ wb
i, j into γ

wb-lp
i, j and γ wb-fin

i, j , such that γ wb
i, j = γ

wb-lp
i, j +γ wb-fin

i, j ,

where γ
wb-lp
i, j accounts for lp-carry-in write backs and γ wb-fin

i, j accounts for finished-

carry-in and preemption-induced write backs (see Sect. 2.2 for their definitions). In the

following we introduce four different ways of computing γ
wb-lp
i, j . These combine with

the analysis derived for δi and γ wb-fin
i, j to give the DCB-Only, ECB-Union, ECB-Only

and DCB-Union approaches for analysing write backs under FPPS.

5.1 Initially dirty cache line write backs

We first consider which cache lines may be dirty when the priority level-i busy period

starts that leads to the worst-case response time of a job of task τi . Only tasks of lower

priority than τi may be active immediately before the start of this busy period, so the

cache lines in
⋃

j∈lp(i) DC B j may all be in the cache and dirty. Further, the cache

lines in
⋃

k∈hep(i) F DC Bk may have been left dirty by finished jobs of higher priority

tasks. Among all the dirty cache lines, we need only account for those that may be

evicted within τi ’s response time. As only τi and higher priority tasks can run during

this interval, these are
⋃

k∈hep(i) EC Bk , hence we obtain the following formula for δi :

δi = W BT ·
∣

∣

∣

∣

∣

∣

⎛

⎝

⋃

j∈lp(i)

DC B j ∪
⋃

k∈hep(i)

F DC Bk

⎞

⎠ ∩

⎛

⎝

⋃

k∈hep(i)

EC Bk

⎞

⎠

∣

∣

∣

∣

∣

∣

(21)

5.2 Lower priority carry-in write backs

To bound lp-carry-in write backs (γ
wb-lp
i, j ) due to preempted tasks, we identify two

methods, both illustrated in Fig. 4.

(a) the lp-carry-in write backs of dirty cache lines introduced by the job immediately-

preempted by a job of τ j that occur within the response time of τ j , i.e. either

executing τ j or a higher priority task.
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Task τj

Task τi

Task τj

Task τi

(a)

(b)

Fig. 4 Methods of accounting for lp-carry-in write backs. a Effect of immediately-preempted task (light

grey) on all preempting tasks (dark grey). b Effect of preempted tasks (light grey) on immediately preempting

task (dark grey)

(b) the lp-carry-in write backs of dirty cache lines introduced by any preempted lower

priority tasks that occur within the execution of a job of τ j .

Using method (a), we define the DCB-Only and ECB-Union approaches, and with

method (b), the ECB-Only and DCB-Union approaches.

5.2.1 DCB-Only approach

Using method (a), any task that could be active during the response time of task τi and

has a lower priority than task τ j (i.e. a task in the set aff(i, j) = hep(i)∩ lp( j)) could

be immediately preempted by task τ j , thus we obtain the following upper bound on

the cost of write backs γ
wb-lp
i, j associated with jobs of task τ j :

γ
wb-lp
i, j = W BT · max

h∈aff(i, j)
|DC Bh | (22)

Note, when using this DCB-Only approach we assume that (21) is simplified ignoring

the ECBs.

δi = W BT ·

∣

∣

∣

∣

∣

∣

⋃

j∈lp(i)

DC B j ∪
⋃

k∈hep(i)

F DC Bk

∣

∣

∣

∣

∣

∣

(23)

5.2.2 ECB-Union approach

The DCB-Only approach can be refined by noting that we are only interested in write

backs of these dirty cache lines due to execution of tasks while the job of task τ j is
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active, i.e. due to execution of τ j or a higher priority task (see Fig. 4) thus:

γ
wb-lp
i, j = W BT · max

h∈aff(i, j)

∣

∣

∣

∣

∣

∣

DC Bh ∩
⋃

l∈hep( j)

EC Bl

∣

∣

∣

∣

∣

∣

(24)

5.2.3 ECB-Only approach

Using method (b), the lp-carry-in write backs of dirty cache lines introduced by any

preempted lower priority tasks that occur within the execution of τ j are upper bounded

by the ECBs of τ j :

γ
wb-lp
i, j = W BT ·

∣

∣EC B j

∣

∣ (25)

Note, when using this ECB-Only approach we assume that (21) is simplified ignoring

the DCBs.

δi = W BT ·

∣

∣

∣

∣

∣

∣

⋃

k∈hep(i)

EC Bk

∣

∣

∣

∣

∣

∣

(26)

5.2.4 DCB-Union approach

The ECB-Only approach can be refined by noting that we are only interested in write

backs of dirty cache lines introduced by preempted lower priority tasks (see Fig. 4).

Note, that we do not need to account for lp-carry-in write backs due to dirty cache

lines of tasks of lower priority than τi as these are already accounted for in δi .

γ
wb-lp
i, j = W BT ·

∣

∣

∣

∣

∣

∣

⎛

⎝

⋃

h∈aff(i, j)

DC Bh

⎞

⎠ ∩ EC B j

∣

∣

∣

∣

∣

∣

(27)

5.3 Finished-carry-in write backs

A job of task τ j can leave |F DC B j | dirty cache lines, which may have to be written

back within τi ’s response time. This yields the following simple bound on the cost of

finished-carry-in and preemption-induced write backs:

γ wb-fin
i, j = W BT · |F DC B j |. (28)

One might assume that this bound can be improved by taking into account the

evicting cache blocks of other tasks; however, as F DC B j ⊆ EC B j , then without

further information, we must assume that the next job of task τ j will have to clean up

the final dirty cache lines left by the previous job of the same task, thus no improvement

is possible.

123



Real-Time Syst

Fig. 5 Hasse diagram

illustrating the dominance

relationships between

approaches to account for write

backs under fixed-priority

preemptive scheduling

Combined

DCB-Union

ECB-Only

ECB-Union

DCB-Only

By construction, the ECB-Union approach dominates DCB-Only, and the DCB-

Union approach dominates ECB-Only. Further, since ECB-Union and DCB-Union

are incomparable we may form a combined approach that takes the smallest response

time computed by either approach, and hence dominates both. Figure 5 illustrates

these relationships via a Hasse diagram.

In some cases there could be pessimism in the analysis for FPPS as a result of write

backs that are counted as both job-internal write backs in the WCET of a task, and also

as carry-in write backs that occur when a task is preempted and a cache line is written

back by the preempting task. As an example consider the sequence of accesses c∗, c∗,

c∗, d where memory blocks c and d are mapped to the same cache line, and ∗ indicates

a write. Here the read of d causes a job-internal write back of c. Preemption between

the final write to c and the read of d could result in the preempting task writing back c

(a carry-in write back), but no job-internal write back. In this case the analysis would

over-approximate the total number of write backs. However, preemptions between the

writes to c could induce a further carry-in write back in addition to the job-internal

one. While there is some over-approximation in the analysis, our evaluations, in the

next section, show that this over-approximation is small, with the combined approach

close to the upper bound computed without write-back costs.

5.4 Worked example

Below, we present a worked example illustrating the various approaches to analysing

write backs under fixed-priority preemptive scheduling and their differences in per-

formance. Table 2 gives the task set parameters. (Note the example task set is the same

as that used in Sect. 4.3. It is repeated here for ease of reference).

For ease of presentation, we again assume a write-back delay of 1 and choose task

parameters so that only one job of each task may be released during another task’s

response time. The sets of UCBs are assumed to be empty.

In the case of fixed-priority preemptive scheduling, all four approaches use the same

response time equation (20), and the same γ wb-fin
i, j terms to account for the finished

carry-in write backs (28): γ wb-fin
_,1 = 1, γ wb-fin

_,2 = 2, γ wb-fin
_,3 = 2, γ wb-fin

_,4 = 1. The

approaches only differ in the δi terms to account for initially dirty cache lines and the

γ
wb-lp
i, j terms.
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Table 2 Example task set

Task C T ECB DCB FDCB

τ1 100 1000 {1, 4, 5} {1} {1}

τ2 100 1000 {2, 3, 4, 5} {2, 3, 4} {2, 3}

τ3 100 1000 {2, 3, 5} {2, 3, 5} {2, 3}

τ4 100 1000 {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} {1}

5.4.1 DCB-Only

Uses (23) to compute: δ1 = 6, δ2 = 6, δ3 = 6, δ4 = 3.

γ
wb-lp
i, j 1 2 3

2 3 − −

3 3 3 −

4 6 6 6

R1 = 106, R2 = 210, R3 = 315, R4 = 426.

5.4.2 ECB-Union

Uses (21) to compute: δ1 = 3, δ2 = 5, δ3 = 5, δ4 = 3.

γ
wb-lp
i, j 1 2 3

2 1 − −

3 1 3 −

4 3 5 5

R1 = 103, R2 = 207, R3 = 312, R4 = 421.

5.4.3 ECB-Only

Uses (26) to compute: δ1 = 3, δ2 = 5, δ3 = 5, δ4 = 6.

γ
wb-lp
i, j 1 2 3

2 3 − −

3 3 4 −

4 3 4 3

R1 = 103, R2 = 209, R3 = 315, R4 = 421.
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5.4.4 DCB-Union

Uses (21) to compute: δ1 = 3, δ2 = 5, δ3 = 5, δ4 = 3.

γ
wb-lp
i, j 1 2 3

2 1 − −

3 2 3 −

4 3 4 3

R1 = 103, R2 = 207, R3 = 313, R4 = 418.

The example shows the dominance relationships of ECB-Union over DCB-Only

and DCB-Union over ECB-Only, as well as the incomparability between ECB-Union

and DCB-Union. The response time for task τ3 is smaller with ECB-Union than with

DCB-Union (312 vs. 313). Vice versa, the response time for task τ4 is smaller with

DCB-Union than with ECB-Union (418 vs. 421). The combined approach, taking the

minimum response times (103, 207, 312, 418) thus dominates all others.

6 Sustainability of the analysis

The analysis given in this paper builds upon response-time analyses for FPPS and

FPNS (see Sects. 3.2 and 3.3 respectively), integrating the effects of write-back costs.

The response-time analyses used for FPPS and FPNS are both sustainable (Baruah

and Burns 2006), meaning that a system that is deemed schedulable by the schedu-

lability test used will not become unschedulable or be deemed unschedulable by the

test if the task parameters are improved. These improvements include (i) reduced exe-

cution times, (ii) increased periods or minimum inter-arrival times, and (iii) increased

deadlines.

We note that with the integration of write-back costs and CRPD given in Sects. 4 and

5, sustainability still holds with respect to the above parameters. Further, the analysis

is sustainable with respect to improvements in the sets of cache lines considered, i.e.

ECBs, DCBs, and FDCBs. (Here, by improvement we mean removal of one or more

elements from a set, such that the new set is a subset of the old). This can be seen

from the formulaes involved, since the response times computed are monotonically

non-decreasing with respect to increases (addition of elements) to any of these sets. In

all of the equations given in Sects. 4 and 5, for the overheads of write backs, the ECBs,

DCBs, and FDCBs are combined using union, intersection, and cardinality operators.

Thus the overheads are monotonically non-decreasing with respect to the content of

those sets, and so any response time R′
i computed using EC B ′

j , DC B ′
j , F DC B ′

j is

no smaller than Ri computed using EC B j , DC B j , F DC B j where EC B ′
j ⊇ EC B j ,

DC B ′
j ⊇ DC B j , and F DC B ′

j ⊇ F DC B j . The only exception that requires further

consideration occurs in the FDCB-Union approach (Sect. 4.1) where (9) makes use of

the set subtraction operator. Here, any reduction in the value of δi due to an additional

element in F DC Bk where k ∈ hp(i) is matched by an increase in γ wb
i, j given by (10)

for at least one of the higher priority tasks in hp(i). Since each γ wb
i, j term for a higher

123



Real-Time Syst

priority task is included in the response time equation (11) at least once, the computed

response time cannot decrease with the addition of any element to F DC B j .

7 Experimental evaluation

In this section, we evaluate the performance of the different analyses introduced

in Sects. 4 and 5 for write-back caches under fixed-priority preemptive and non-

preemptive scheduling, as compared to no cache and a write-through cache. For both

write-back and write-through caches, we assumed a write-allocate policy. Preliminary

experiments showed that the difference between write allocate and no-write allocate

for a write-through cache were minimal, with the former giving slightly better perfor-

mance on the benchmarks studied.

We assume a timing-compositional processor with separate instruction and data

caches. Each cache is direct-mapped and has 512 cache lines of size 32 bytes. Thus

both caches have a capacity of 16 KB. Further, we assume a write-back latency W BT

of 10 cycles. Cache misses also take 10 cycles, while non-memory instructions and

cache hits take 1 cycle.

As a proof-of-concept for the analysis techniques, we obtained realistic estimates

for WCETs and the sets of DCBs and ECBs, from the Mälardalen benchmark suite

(Gustafsson et al. 2010) and the EEMBC Benchmark suite (EEMBC 2016) (Sect. 9

explains how this was done). Table 3 shows the WCETs (without inter-task interfer-

ence) assuming a write-back cache (Cwb), a write-through cache (Cwt), and no data

cache (Cnc) for the selected benchmarks. Table 4 shows the number of UCBs, ECBs,

DCBs, and FDCBs. We note that these stand-alone WCETs are a substantial factor

of 1.4 to 3.0 times lower with a write-back cache than with write through, and 2 to 9

times lower than with no data cache. Since we assume a separate instruction and data

cache, the UCB and ECB values are shown separately for each cache.

We note that fixed-priority non-preemptive scheduling suffers from the long task

problem, whereby task sets that contain some tasks with short deadlines and others with

long WCETs are trivially unschedulable due to blocking. To ameliorate this problem,

we only selected benchmarks for Table 4 where the stand-alone WCETs were in the

range [7000:70,000] cycles. This interval corresponds to the most populated range

where the smallest and largest WCETs differ by a factor of 10. This restriction has

little effect on the results for FPPS, while also providing task sets that can actually be

scheduled using FPNS.

We evaluated the guaranteed performance of the various approaches on a large

number of randomly generated task sets (10,000 per utilization level for the baseline

experiments, and 200 per level for the weighted schedulability (Bastoni et al. 2010))

experiments. The task set parameters were generated as follows:

– The default task set size was 10.

– Each task was assigned data from a randomly chosen row of Table 4, corresponding

to code from the benchmarks.

– The task utilizations (Ui ) were generated using UUnifast (Bini and Buttazzo 2005).

– Task periods were set based on utilization and the stand-alone WCET for a write-

back cache, i.e., Ti = Cwb
i /Ui .
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Table 3 Data from the Mälardalen and EEMBC benchmarks used for evaluation

Name |UC B I | |EC B I | |UC B D | |EC B D | |DC B| |F DC B|

cnt 12 82 21 68 28 28

compress 21 71 53 103 60 60

countneg 15 77 59 103 66 66

crc 19 89 25 73 40 39

expint 16 76 11 42 13 13

fdct 52 144 15 48 19 19

fir 22 83 17 57 17 16

jfdctint 46 145 17 53 23 23

loop3 7 309 9 42 12 12

ludcmp 38 128 21 61 28 28

minver 103 213 18 71 33 33

ns 14 70 9 116 13 11

nsichneu 345 494 52 95 54 53

qurt 61 132 14 49 17 17

select 47 124 10 49 16 16

sqrt 51 102 11 48 16 16

statemate 92 167 25 68 21 20

a2time 16 122 8 100 69 67

aifirf 25 141 33 188 161 54

basefp 11 88 15 512 507 467

canrdr 8 40 9 371 195 186

iirflt 35 288 28 259 147 138

pntrch 24 38 20 237 176 70

puwmod 3 50 5 512 307 275

rspeed 8 53 7 122 71 70

tblook 12 115 14 125 71 71

– Task deadlines were implicit Di = Ti .

– Task priorities were in deadline-monotonic order.

– Tasks were placed in memory sequentially in priority order, thus determining the

direct mapping to cache.

Figures 6 and 7 show the baseline results for FPPS and FPNS respectively (the

graphs are best viewed online in colour). Table 5 summarises these results using the

weighted schedulability measure (Bastoni et al. 2010).

Additional experimental results showing how this measure varies with the number

of tasks and with the memory latency are given in the next subsection on weighted

schedulability.

The lines in the figures correspond to the four different approaches, plus the com-

bined approach, along with results for a write-through data cache and a system with

no data cache. The first line refers to an optimistic upper bound where we assumed
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Table 4 WCETs from the Mälardalen and EEMBC benchmarks used for evaluation

Name Cwb Cwt Cwt/Cwb Cnc Cnc/Cwb

cnt 9325 13485 1.44 24565 2.63

compress 10673 18713 1.75 43443 4.07

countneg 36180 57250 1.58 114340 3.16

crc 68889 133909 1.94 272859 3.96

expint 9268 15208 1.64 31098 3.35

fdct 7883 16793 2.13 38423 4.87

fir 8328 18998 2.28 43668 5.24

jfdctint 9711 18621 1.91 39181 4.03

loop3 14189 28729 2.02 57929 4.08

ludcmp 10058 15948 1.58 39668 3.94

minver 18976 30616 1.61 54746 2.88

ns 27464 37674 1.37 98634 3.59

nsichneu 18988 24458 1.28 66808 3.51

qurt 10473 16003 1.52 23573 2.25

select 8981 17031 1.89 30331 3.37

sqrt 27667 40537 1.46 59117 2.13

statemate 64638 195778 3.02 581908 9.00

a2time 12655 22975 1.81 53815 4.25

aifirf 44898 86768 1.93 181698 4.04

basefp 50491 92221 1.82 213771 4.23

canrdr 32641 65211 1.99 156611 4.79

iirflt 29995 56995 1.90 127605 4.25

pntrch 23887 43137 1.80 109257 4.57

puwmod 48782 97072 1.98 239752 4.91

rspeed 10913 21393 1.96 51713 4.73

tblook 12533 25493 2.03 58813 4.69

the stand-alone WCETs for write-back caches, but without any cost for write backs.

This line upper bounds the performance of any sound analysis for write-back caches,

and thus gives an indication of the precision of the analyses introduced in this paper.

The line write-back flush corresponds to a pessimistic analysis for write-back

caches. In the case of FPNS, this analysis assumes that the entire cache is dirty and is

flushed (written back) at the start of each task. To account for this, the WCET for each

task is increased by N · W BT , where N is the number of caches lines (e.g. 512) and

W BT is the time to write back one cache line (e.g. 10 cycles). In the case of FPPS,

not only could the entire cache be dirty and require writing back at the start of each

preempting task, it could also be dirty at the end of each preemption and so also require

writing back by the preempted task. The write-back flush analysis for FPPS therefore

assumes that the entire cache is dirty and is flushed (written back) at both the start

and at the end of each task. To account for this, the WCET for each task is increased
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Fig. 6 Number of schedulable task sets (FPPS)

Fig. 7 Number of schedulable task sets (FPNS)

Table 5 Weighted

schedulability measure for

FPNS and FPPS

Approach FPPS FPNS

Write-back (upper bound) 0.793458 0.445750

Combined 0.693003 0.412270

(F)DCB-Union 0.692087 0.411087

ECB-Union 0.672489 0.396159

(F)DCB-Only 0.561542 0.396159

ECB-Only 0.581876 0.365523

Write-back (flush) 0.304987 0.305039

Write-through 0.249231 0.112666

No data cache 0.052548 0.021463
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by 2N · W BT . The results for write-back flush lower bound any useful analysis for a

write-back cache.

For preemptive scheduling, in all cases, we include the cost of additional cache

misses due to CRPD using the UCB-Union approach (Altmeyer et al. 2012).

The results shown in Figs. 6 and 7 indicate that the guaranteed performance obtained

for write-back caches using the analyses introduced in this paper exceeds that which

can be obtained for write-through caches. The new methods also provide a substantial

improvement over the pessimistic write-back flush analysis, which in turn has an

advantage over analysis for write-through caches. This shows that the gain from using a

write-back cache comes from a combination of reduced WCETs and accurate analysis.

Further, the upper bound line indicates that the combined approaches used to anal-

yse write-back cache offer a high degree of precision.

In Figs. 6 and 7 the ECB-Union approaches are outperformed by DCB-Union and

FDCB-Union respectively. We note that this is not always the case as shown by the

worked example in Sects. 5.4 and 4.3. In our experiments, the performance of the

DCB-Union approach for FPPS and the FDCB-Union approach for FPNS is close

to that of the associated combined approach. The reason for this is the relatively

weak performance of the ECB-Union approach in each case. This occurs because the

sets of ECBs for the benchmark tasks are substantially larger than the sets of DCBs

and FDCBs. This degrades the relative performance of the ECB-Union approaches,

particularly for low priority tasks which are the most critical to task set schedulability.

(For a low priority task, the union of ECBs over all higher priority tasks may well

cover all of the cache).

7.1 Weighted schedulability

The weighted schedulability measure Wy(p) for a schedulability test y and parameter

p, combines results for all task sets generated for a set of equally spaced utilization

levels (e.g. from 0.025 to 0.975 in steps of 0.025). Let Sy(τ, p) be the binary result (1

or 0) of schedulability test y for a task set τ assuming parameter p .

Wy(p) =

(

∑

∀τ

u(τ ) · Sy(τ, p)

)

/
∑

∀τ

u(τ ) (29)

where u(τ ) is the utilization of task set τ . Weighting the results by task set utilization

reflects the higher value placed on being able to schedule higher utilization task sets.

Figures 8 and 9 show how the weighted schedulability measure varies with task

set size for FPPS and FPNS respectively. With preemptive scheduling, the relative

performance of the different approaches remains consistent, with an overall gradual

decline in schedulability as the number of tasks increases. This is due to an increase

in the number of tasks increasing the number of preemptions and to some degree also

their cost. (With FPPS, it is also simply harder to schedule task sets with increasing

numbers of tasks, even without considering overheads).

With FPNS, as the number of tasks increases, the WCET of each task in relation to its

period and deadline tends to decrease. This enables an overall increase in schedulability
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Fig. 8 Weighted schedulability versus number of tasks (FPPS)

Fig. 9 Weighted schedulability versus number of tasks (FPNS)

with a write-back cache; however, at the very low level of schedulability achieved by

write-through cache and no cache, schedulability is more dependent on a random

choice of tasks with similar WCETs and hence similar deadlines, which avoid the

long task problem. This becomes rarer with more tasks counteracting the previous

effect.

Figures 10 and 11 show how the weighted schedulability measure varies with mem-

ory delay (time for write back or write through) for FPPS and FPNS respectively. Both

figures show that as expected, increasing the memory delay has a detrimental effect on

schedulability. As the memory delay increases, the larger number of writes to memory

with a write-through cache becomes more heavily penalized and the relative perfor-

mance of that approach (and no cache) deteriorates rapidly. We observe that for the

benchmarks studied in our experiments, the guaranteed performance obtained with a

write-back cache under FPPS was similar to that for a write-through cache when the

latter was used on a higher performance system with one quarter of the memory delay
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Fig. 10 Weighted schedulability versus memory latency (FPPS)

Fig. 11 Weighted schedulability versus memory latency(FPNS)

(e.g. 20 vs. 5 cycles, 40 vs. 10 cycles, or 80 vs. 20 cycles). For FPNS, where long task

execution times have an increased impact on schedulability, the difference was even

more stark, with the guaranteed performance obtained with a write-back cache with a

memory delay of 40 cycles similar to that with a write-through cache with a delay of

5 cycles.

8 Write buffers

In this section, we discuss write buffers and their use, predominantly in improving the

performance of write-through caches. At the end of the section we discuss the use of

write buffers for write-back caches.

The key performance issue with a write-through cache is that the processor can

potentially stall each time there is a write access, i.e. it may have to wait until the write

to memory completes before continuing with subsequent instructions. This problem
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can, to a large extent, be remedied via the use of a write buffer. A write buffer is a

small buffer that operates between the cache and main memory. It holds data that is

waiting to be written to memory. When a write occurs, the address and data (block)

are placed in the write buffer. This allows the processor to continue with subsequent

instructions, while the write to memory occurs in parallel via the write buffer.

Write buffers are characterized by a depth (indicating the number of entries), and

a width (which is typically the same as a cache line), as well as the policies defining

their operation. These policies include: (i) the local-hazard policy, which determines

what happens when a read access occurs to an address that is currently in the write

buffer; (ii) the coalescence policy, which determines what happens when a write access

occurs to an address that is currently in the write buffer, and finally (iii) the retirement

policy, which determines when write buffer entries are retired, i.e. written to memory.

We discuss these policies in more detail below. (The interested reader is also referred

to the work of Skadron and Clark (1997), which discusses write buffer design from

the perspective of improving average-case performance).

8.1 Local hazard policy

Care is needed in the design of a write buffer, since a naive design could potentially

result in data inconsistency, termed a local hazard, as follows: If a read occurs which

is a cache miss, but the data is in the write buffer waiting to be written to memory,

then reading from memory could result in an inconsistent value being obtained. To

avoid this hazard there are two possible options that we consider (i) read from the write

buffer or (ii) full flush of the write buffer and then read from memory. (More complex

schemes are possible, such as flushing the write buffer only as far as necessary to

write the required data to memory, or flushing only the specific item. They are not

considered here).

8.2 Coalescence policy

Entries in a write buffer consist of an address and a block of data. The latter is typically

the same size as a cache line. When a write occurs and there are no entries in the write

buffer, then the block of data is copied to the write buffer and the specific word that

is being written is marked as valid via a flag bit. The flag bit indicates that the word

should later be written to memory.

If a write occurs to an address that is already in an entry in the write buffer then it

could potentially be coalesced. In this case the entry containing the address is found in

the buffer and the appropriate word of data is updated and marked as valid. We refer

to this mechanism as write merge. Merging writes in this way has the advantage that

it enables multiple writes to the same address or to the same block to be coalesced,

resulting in fewer writes to memory. The write-merge mechanism has similarities to a

write-back cache, in that it takes advantage of the spacial locality of writes. Merging

writes also makes better use of the limited capacity of the write buffer.

The alternative to merging writes is to simply add a new entry to the write buffer on

each write. This still facilitates latency hiding, since the processor is able to continue
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with other instructions while writes to memory take place; however, it does not take

advantage of spacial locality. We refer to this approach as no-write merge. While

the average-case performance of no-write merge is typically worse than write merge,

it has some advantages in terms of timing composition and guaranteed worst-case

performance.

8.3 Retirement policies

The retirement policy determines when entries are retired from the write buffer,

i.e. written to memory. Entries in a write buffer are typically processed in FIFO order.

The two main approaches are: (i) eager retirement where write-buffer entries are

written to memory as soon as possible, and (ii) lazy retirement where write-buffer

entries are written to memory as late as possible. (With lazy retirement, no entries are

written back until the buffer becomes full and a write occurs that needs a new entry

in the buffer). Eager retirement has the advantage that it keeps the buffer as empty

as possible, with the aim of avoiding processor stalls due to a write to a full buffer.

However, it has the disadvantage that, as data stays in the buffer for the minimum

amount of time, there is little opportunity to take advantage of reads from the write

buffer or write merging. Lazy retirement has the advantage that it keeps entries in

the buffer as long as possible, maximising the potential for write merging and reads

from the buffer, assuming that those mechanisms are employed. Lazy retirement has

the disadvantage that once the buffer is full it stalls the processor on every write that

requires a new buffer entry. In short, lazy retirement makes the write buffer behave in

a similar way to a small FIFO cache.

There are a number of more complex options that are possible. For example, only

retiring the oldest entry in the buffer when the number of entries exceeds half the

buffer size. This approach aims to avoid the buffer becoming full and stalling writes,

while also allowing entries to persist in the buffer with the advantages that brings.

Other mechanisms retire entries when they get to a certain age measured in processor

cycles. In this paper we only consider eager and lazy retirement.

8.4 Timing composition

It is important when analysing the worst-case performance of caches and associated

buffering mechanisms that the results obtained are timing compositional, that is the

local worst-case behaviours can be summed up to give a bound on the overall worst-

case performance. It is known that certain designs, for example FIFO and PLRU

caches, exhibit behaviours whereby a small change in cache contents due to preemption

can result in an unbounded increase in the number of cache misses (see pp. 56–57 of

(Altmeyer 2013) for worked examples). Such designs are not timing compositional

and present a substantial challenge in terms of analysing their worst-case performance.

They have performance that is dependent on the initial state, with an empty cache not

necessarily representing the worst-case.

In this subsection, we explore how certain combinations of the policies defining

write-buffer operation can result in domino effects. These effects mean that it is not
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possible to bound the write buffer related preemption delay with a constant value. This

effectively prevents an integrated analysis with fixed-priority preemptive scheduling

(Schneider 2000).

8.5 Domino effects

We now show that some combinations of policies can result in domino effects.

8.5.1 Reading from the write buffer combined with lazy retirement

Let the write buffer comprise just one slot (entry) that can hold an address and a word

of data. Further, lazy retirement is used. Note, the write merge / no-write merge policy

is irrelevant to this example.

Consider the following sequence of memory accesses, where ∗ indicates a write:

a∗, b, a, b, a, b, a, b, a, . . ., and a and b are mapped to the same set in a direct mapped

cache. Executing this sequence of accesses results in the following behaviour. On the

first access, a is placed in the cache and copied to the write buffer. Due to lazy retirement

a remains in the write buffer for the rest of the sequence. Each read access to b then

evicts a from the cache. Each subsequent read access to a is then serviced from the

write buffer, but nevertheless evicts b from the cache. The result is that all accesses to

b are misses and need to be serviced from memory, while all accesses to a except the

first are hits, serviced from the write buffer.

Now consider what happens if there is a preemption between accesses a∗ and b,

assume that the preemption makes a write access c∗. This write stalls the processor

while a, which is in the write buffer, is written to memory. The write buffer now

contains c. Returning to the preempted sequence, we see that every access to a has

now become a miss. It can no longer be serviced from the write buffer, and instead

must be serviced from memory.

Trivially, this domino effect extends to buffers of size 1 or more. We note that

with eager retirement the effect cannot persist indefinitely, since entries are written to

memory as soon as possible.

8.5.2 Write merge combined with lazy retirement

Let the write buffer be of depth 2, with each slot able to hold an address and a word

of data. Further, lazy retirement is used. The local hazard policy is irrelevant to this

example, since there are no reads.

Consider the following sequence of memory accesses all of which are writes:

a∗, b∗, b∗, a∗, c∗, b∗, a∗, c∗, b∗, a∗, . . . (i.e. repeating with further sub-sequences of

c∗, b∗, a∗).

The write buffer contents are depicted in Fig. 12a for execution without preemption,

Fig. 12b for execution with preemption and Fig. 12c for execution without preemption,

starting from a non-empty buffer.

Without preemption (see Fig. 12a), every second write in the final repeating sub-

sequence c∗, b∗, a∗ is merged into the write buffer and therefore does not cause a stall.
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(a)

(b)

(c)

Fig. 12 Domino effect with write merge and lazy retirement. Note b̄ indicates a write merge to address

b in the write-buffer. a Execution without preemption. b Execution with preemption. c Execution without

preemption, starting with a non-empty write buffer

Such merged writes are marked with a bar in the figure, e.g. b̄∗. However, if preemption

occurs after the initial writes a∗, b∗ (see Fig. 12b), altering the write buffer contents to

x and y then this results in every write in the final repeating sub-sequence c∗, b∗, a∗

causing a stall, since it is not to an address in the buffer. This effect persists indefinitely,

giving a potentially unbounded increase in execution time.

Figure 12c illustrates what happens when execution is not preempted, but starts

from a non-empty write buffer containing b. This has the effect of switching the order

of a and b in the write buffer, which causes every write in the final repeating sub-

sequence c∗, b∗, a∗ to cause a stall. This example illustrates that an empty write buffer

does not necessarily result in the worst-case behaviour.

We note that these domino effects extend to buffers of size 2 or more by using

longer sub-sequences.

8.5.3 Write merge combined with eager retirement

Let the write buffer be of depth 3, with each slot able to hold an address and a word of

data. Further, the buffer operates as follows: Writes are retired from the buffer as soon

as possible in FIFO order. The time to retire an entry from the buffer is substantially

longer than the time for an access that does not go to memory. While an entry is being

retired, it cannot be merged into by another write, for example if the write buffer

contains entries a, b, and d, then while d is being retired, a and b can be merged into,

but d cannot. The local hazard policy is irrelevant to this example, since there are no

reads.

We modify the example given in Sect. 8.5.2 for lazy retirement by adding a further

write d∗ at the beginning of the sequence. Now in the case without preemption, shown

in Fig. 13a, d immediately starts being retired, meanwhile, writes a∗, and b∗ fill the

rest of the buffer. At this point, a and b can be merged into but d cannot. The next two

writes b∗ and a∗ both merge into the buffer. The write access to c∗ then stalls until

retirement of d to memory is complete. Once that happens, the buffer contains c, b,

and a, and a starts being retired and so becomes unavailable for merges. It is easy to

see that as the sequence progresses, the entries available for merging are identical to

those shown for a buffer of size 2 in Fig. 12a, with a further entry that is in the process

of being retired and is therefore not available for merging. As before, every second
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(a)

(b)

(c)

Fig. 13 Domino effect with write merge and eager retirement. Note b̄ indicates a write merge to address

b in the write-buffer. a Execution without preemption. b Execution with preemption. c Execution without

preemption, starting with a non-empty write buffer

write in the final repeating sub-sequence c∗, b∗, a∗ is merged into the write buffer and

therefore does not cause a stall.

The case with preemption is shown in Fig. 13b. As with eager retirement, every

write access results in a stall while an entry is written to memory, with the effect

persisting indefinitely.

Finally, Fig. 13c illustrates what happens when execution is not preempted, but

starts from a non-empty write buffer containing b, d, and z, where z is being retired.

This has the effect of switching the order of a and b in the write buffer, which causes

every write in the final repeating sub-sequence c∗, b∗, a∗ to cause a stall. This example

shows that, similar to the case with lazy retirement, an empty write buffer does not

necessarily result in the worst-case behaviour.

We note that these domino effects extend to buffers of size 3 or more by using

longer sub-sequences.

8.6 Analysis of write merge

In the previous subsection, we showed that write merge can result in domino effects

with both eager and lazy retirement. This is problematic since write merge is effective

in taking advantage of spacial locality. Reading from the write buffer on local hazards

(i.e. read access to an address in the buffer) also introduces domino effects. In the

following, we therefore assume that local hazards result in a full flush of the write

buffer.2

We note that sound, compositional analysis for write merge can be provided under

certain specific configurations. These are, (i) with a write buffer of depth 1, and (ii) for

fixed-priority non-preemptive scheduling with a write buffer of arbitrary but known

depth. In both cases, we require full flush of the buffer on local hazards.

With a write buffer of depth 1, read accesses to the buffer flushing the contents, and

lazy retirement of entries, there can be no domino effects. In this case, sound analysis

for FPNS can be achieved simply by assuming that the buffer contains junk at the start

2 This is the policy used in the ARM 9 architecture.
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of each job. This junk will need to be written to memory before a further write access

can make use of the buffer. Since the address of the junk is assumed to be unknown,

any read is also assumed to flush the junk to memory. With FPPS, we also need to

account for an additional preemption cost that equates to flushing the buffer. Since

the write buffer only holds one entry, this additional per-job overhead has very little

impact on schedulability.

We now explain why this additional preemption cost provides a sound upper bound

on the write buffer related preemption delay (WBRPD) that needs to be included,

per preempting job, in the response time computation for the preempted task. The

only benefit that can be obtained with a write buffer of depth 1 is when one (or

more) subsequent writes merge into the buffer. Since the buffer is of depth 1, this

can only happen when consecutive writes occur to the same block. For example in

the sequence: r1, r2, w1∗, r3, w1∗, r4, w1∗, w2∗, consecutive accesses to the same

block are labelled w1∗, r x represent reads to different addresses, and w2 is a write to

a different address. Preemption between the writes to w1 either does not replace w1

in the buffer, in which case the bound on the preemption cost trivially holds, or it does

replace w1. If it replaces w1, then the preempting job has already paid for the write of

w1 to memory within its own execution time (as the junk assumed to be in the buffer

when it started to execute). The preempted job has an additional cost of writing the

junk left in the buffer by the preempting task so that the second write access to w1

can reside in the buffer. Any subsequent write access to w1 would then merge into the

buffer as before. Note the additional cost may be incurred either via a read to the same

address as the junk, thus flushing the buffer, or by the write access w1 itself. Either

way, the extra cost is at most a single write to memory, and is covered by the WBRPD.

An alternative for FPNS: with FPNS and a write buffer of depth > 1, domino

effects relating to initial buffer contents can be avoided by ensuring that each new job

starts execution with an empty write buffer. This can be achieved by each job flushing

the write buffer on completion. We note that some architectures, including the ARM

9, provide an instruction that flushes the write buffer. Sound analysis for FPNS could

in this case be obtained by assuming such an instruction at the end of the code for each

task. This would enable analysis of FPNS with a write buffer of arbitrary but known

depth.

We note that write merge with a buffer of depth greater than 1 is challenging for

analysis of real systems, since a single write to an unknown address has the potential

to set up a domino effect.

8.7 Analysis of no-write merge

In this subsection, we provide analysis for no-write merge and full flush on local hazard,

a combination which does not suffer from domino effects. Since the application of

these two policies means that there is nothing to be gained from entries that are in the

write buffer, the optimum retirement policy to use in conjunction with them is eager

retirement.

With its operation defined by the above policies, the only advantage that the write

buffer conveys is to hide the latency of writes. It follows that the maximum write

123



Real-Time Syst

buffer related preemption delay (WBRPD) that can occur is when a preempting job

delivers a full write buffer back to the preempted job. The preempted job then suffers

a delay while these entries are retired, for example as a consequence of making a read

to one of them. The WBRPD thus equates to the product of the buffer depth M and the

Write Back Time W BT for one entry in the buffer. The WBRPD can be modeled by

inflating the execution time of each preempting task by this amount. Since we assume

that there may also be junk in the write buffer at the start of each job, the baseline

execution times also need to include the time to flush the write buffer at the start of

each job. Thus a simple analysis for no-write merge can be obtained by inflating all

execution times by 2M · W BT .

We note that since the write buffer depth is typically only 1–4 entries, this overhead

has only limited impact on schedulability. (A more detailed analysis is left for future

work; however, it is unlikely that substantial improvement can be obtained, since the

number of DCBs and FDCBs is typically much larger than the depth of the write

buffer).

8.8 Write buffers and write-back caches

While write buffers are most useful in improving the performance of write-through

caches, they can also be used to improve the performance of write-back caches.

In theory, the domino effects noted previously with a write buffer and a write-

through cache also apply in the case of write-back caches. The precise sequences

needed to show this behaviour differ however, since writes first have to be evicted from

the cache before they are written to the buffer. This can be achieved by interspersing

reads to other addresses that share the same cache set as the write that needs to be

evicted.

In practice, since a write-back cache already captures the spacial locality of writes,

there is little advantage to be gained from using a write buffer with a depth of more

than 1, since that is already sufficient to provide latency hiding. For example, the

Renesas SH7705, SH7750, and the AM1806 ARM low power microprocessor (based

on the ARM926EJ-S) all have a write buffer of depth 1 to improve performance in

write-back cache configurations. In the following, we therefore only consider write

buffers of depths either 0 or 1 for a write-back caches.

8.9 Evaluation with write buffers

In this subsection, we examine the analysable performance of write-back caches with

write buffers of depths 0 and 1, and write-through caches with write buffers of depths

0, 1, 2, and 4. (The Renesas SH7750 and AM1806 ARM have write buffers of depths

2 and 4 respectively for write-through cache configurations). In the case of write-back

caches, we assume full flush on local hazards, and eager retirement. We assume that

the buffer contents immediately start to be retired, and that a write cannot be merged

while the contents are being retired, hence no-write merge. In the case of write-through

caches, we assume write merge, full flush on local hazards, and lazy retirement. Worst-

case execution time estimates for the EEMBC and Mälardalen benchmarks are given
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Table 6 Execution times estimates for the Mälardalen and EEMBC benchmarks used for evaluation

Name Cwb−0 Cwb−1 Cwt−0 Cwt−1 Cwt−2 Cwt−4 Cnc

cnt 9325 9325 13485 9815 9745 9695 24565

compress 10673 10673 18713 16963 16403 14863 43443

countneg 36180 36180 57250 56500 48450 37260 114340

crc 68889 68869 133909 79469 79419 69759 272859

expint 9268 9268 15208 12548 9508 9448 31098

fdct 7883 7883 16793 11403 10203 9253 38423

fir 8328 8318 18998 13718 8858 8548 43668

jfdctint 9711 9711 18621 14141 12291 11601 39181

loop3 14189 14189 28729 26909 14369 14349 57929

ludcmp 10058 10048 15948 13178 11628 10828 39668

minver 18976 18976 30616 23226 22276 20026 54746

ns 27464 27444 37674 27704 27644 27624 98634

nsichneu 18988 18954 24458 20068 20028 19988 66808

qurt 10473 10473 16003 12293 11483 10873 23573

select 8981 8971 17031 12181 11251 9961 30331

sqrt 27667 27667 40537 34607 31037 28147 59117

statemate 64638 64628 195778 120958 102918 96858 581908

a2time 12655 12468 22975 22825 12645 12635 53815

aifirf 44898 41638 86768 77528 41508 41508 181698

basefp 50491 49822 92221 91421 50801 50651 213771

canrdr 32641 32372 65211 64811 33261 33141 156611

iirflt 29995 29845 56995 54845 34445 32865 127605

pntrch 23887 22519 43137 42447 22627 22627 109257

puwmod 48782 48184 97072 96702 48642 48592 239752

rspeed 10913 10893 21393 21213 12103 11933 51713

tblook 12533 12503 25493 22383 19923 13573 58813

in Table 6 assuming these policies. The ratios between the worst-case execution time

estimates for the different policies are given in Table 7.

To recap, analysis for write merge can be obtained by assuming (i) the write buffer

is full of junk at the start of each job, and (ii) the WBRPD equates to a full flush

of the buffer. While this analysis is sound for a write buffer of depth 1, it is poten-

tially optimistic due to domino effects for larger buffers. Nevertheless, given that

the main focus of this paper is on the analysis and evaluation of the guaranteed

performance of write-back caches, it is interesting to use this potentially optimistic

analysis to make indicative comparisons with write-through caches with larger write

buffers.

In Figs. 14, 15, 16, 17, 18, and 19, we examine the performance of write-through

caches with a write buffer of depths 0 (= no write buffer) and 1 with sound analysis,

as well as depths 2 and 4 with potentially optimistic analysis; the latter indicated by
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Table 7 Ratios of execution

time estimates for the

Mälardalen and EEMBC

benchmarks used for evaluation

Name Cwb−1

Cwb−0
Cwt−0

Cwb−0
Cwt−1

Cwb−0
Cwt−2

Cwb−0
Cwt−4

Cwb−0
Cnc

Cwb−0

cnt 1.00 1.44 1.05 1.04 1.03 2.63

compress 1.00 1.75 1.58 1.53 1.39 4.07

countneg 1.00 1.58 1.56 1.33 1.02 3.16

crc .99 1.94 1.15 1.15 1.01 3.96

expint 1.00 1.64 1.35 1.02 1.01 3.35

fdct 1.00 2.13 1.44 1.29 1.17 4.87

fir .99 2.28 1.64 1.06 1.02 5.24

jfdctint 1.00 1.91 1.45 1.26 1.19 4.03

loop3 1.00 2.02 1.89 1.01 1.01 4.08

ludcmp .99 1.58 1.31 1.15 1.07 3.94

minver 1.00 1.61 1.22 1.17 1.05 2.88

ns .99 1.37 1.00 1.00 1.00 3.59

nsichneu .99 1.28 1.05 1.05 1.05 3.51

qurt 1.00 1.52 1.17 1.09 1.03 2.25

select .99 1.89 1.35 1.25 1.10 3.37

sqrt 1.00 1.46 1.25 1.12 1.01 2.13

statemate .99 3.02 1.87 1.59 1.49 9.00

a2time .98 1.81 1.80 .99 .99 4.25

aifirf .92 1.93 1.72 .92 .92 4.04

basefp .98 1.82 1.81 1.00 1.00 4.23

canrdr .99 1.99 1.98 1.01 1.01 4.79

iirflt .99 1.90 1.82 1.14 1.09 4.25

pntrch .94 1.80 1.77 .94 .94 4.57

puwmod .98 1.98 1.98 .99 .99 4.91

rspeed .99 1.96 1.94 1.10 1.09 4.73

tblook .99 2.03 1.78 1.58 1.08 4.69

dashed lines. These results are compared to sound analysis for write-back caches with

write buffers of depths 0 (= no write buffer) and 1. The experimental configurations

used are otherwise identical to those presented in Figs. 6, 7, 8, 10, 9, and 11. For write-

back caches, the analysis used is the combined approach which is the most effective

of all the methods presented in this paper. Note the graphs are best viewed online in

colour.

We observe in Table 6 that the worst-case execution time estimates for the bench-

marks used in the evaluation are substantially better with a write-back cache than with

a write-through cache when no write buffers are employed. Adding a write buffer of

depth 4 to the write-through cache appears to be sufficient to close the performance

gap, relative to a write-back cache with no write buffer. This observation is born out

by the schedulability analysis results. Figures 14, 15, 16, 17, 18, and 19, show that

while adding a write buffer improves the performance of the write-through cache con-

figuration, the guaranteed performance with a buffer of depth 1 is well below that of a
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Fig. 14 Number of schedulable task sets (FPPS)

Fig. 15 Weighted schedulability versus number of tasks (FPPS)

Fig. 16 Weighted schedulability versus memory latency (FPPS)
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Fig. 17 Number of schedulable task sets (FPNS)

Fig. 18 Weighted schedulability versus number of tasks (FPNS)

Fig. 19 Weighted schedulability versus memory latency (FPNS)
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write-back cache. This gap is reduced with a write buffer of depth 2 and closed with a

write buffer of depth of 4; however, we caution that the results given for buffer depths

of 2 and 4 (dashed lines) are potentially optimistic due to domino effects, which have

been ignored in computing those indicative-only results.

By contrast, the addition of a write buffer of depth 1 has little effect on the results for

a write-back cache. Here, the ratio of worst-case execution time estimates with/without

a write buffer vary from 0.92 to 1.0 for the different benchmarks (see Table 7). This

is because the write-back cache is already effective at hiding the write latency.

Note, two upper bounds are shown on the graphs, these are for a write-back cache

with/without a write buffer, but ignoring the overheads of all write backs except for

job internal ones. Thus the difference between these lines reflects the difference in the

worst-case execution time estimates shown in Table 6.

Recall that our simple analysis of write buffers assumes that the write buffer is full

of junk that has to be written back at the start of each job. This assumption of a dirty

write buffer has a negligible impact on task execution times, since the differences

in the number of write-backs between an initially dirty buffer and an initially empty

buffer are bounded by the buffer size. We validated this assumption by repeating our

experiments comparing an empty and a dirty write buffer, both of size 4. There was no

observable difference in the results, hence we only show the results for a dirty write

buffer in the graphs.

9 WCET, ECB, DCB, and FDCB analysis for write-back caches

This paper focusses on the integration, into response-time analysis, of the overheads

due to write backs. As a proof-of-concept, to evaluate the response-time analysis

techniques, we obtained the WCETs and the sets of DCBs and ECBs from a trace

of accesses obtained for each of the programs in the Mälardalen (Gustafsson et al.

2010) and EEMBC (EEMBC 2016) benchmark suites. Due to the simplicity of the

benchmarks, and the provision of input data, this was possible for both single-path

and multi-path examples. The code for each benchmark was first compiled using the

GCC ARM cross-compiler, and included statically-linked library calls. A single trace

for each benchmark was then generated, using the gem5 instruction set simulator

(Binkert 2011), using the input data specified as part of the benchmark. For each

benchmark, the trace was used to obtain the sets of UCBs, ECBs, DCBs and FDCBs

via cache simulation. These values and the WCET bounds obtained were therefore

exact. Obtaining the sets of values in this way enables a like-for-like comparison

between the different analyses for write-back, write-through, and no cache. More

complex programs would require the use of static analysis techniques to generate

these sets.

Write-back caches are a popular choice in embedded microprocessors as they

promise higher performance than write-through caches. So far, however, their use

in hard real-time systems has been prohibited by the lack of adequate worst-case exe-

cution time (WCET) analysis support. The development and implementation of such

techniques is the subject of ongoing work.
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Blaß et al. (2017) introduced an effective method of statically analysing write-back

caches.3 Previous work in this area looked at the problem from an eviction-focussed

perspective, analysing if a cache miss could result in a write back. Blaß et al. (2017)

complemented this with analysis from a store-focussed perspective, considering if a

write could dirty a clean cache line and thus result in a write back occurring later

on. Their evaluation showed that large improvements in precision can be obtained by

combining analyses from the two different perspectives. Blaß et al. (2017) thus showed

that for most of the Malardalen and Scade benchmarks considered, the WCET bounds

are smaller for write-back than for write-through caches. This was the case for 34

out of 36 benchmarks studied, and 32 out of 34 when a write buffer was added to

the write-through cache. The ratio of WCETs for write-back versus write-through

caches varied from 58 to 114%. Note, since these figures assume an LRU replacement

policy, they are not directly comparable with the figures in this paper, which assume a

direct-mapped cache. From the work of Blaß et al. (2017), we conclude that write-back

caches provide a substantial opportunity to improve performance when static analysis

is used to obtain WCETs.

We now sketch how to derive the set of evicting cache blocks (ECB), dirty cache

blocks (DCB), and final dirty cache blocks (FDCB) using static analysis techniques.

In all cases, we are interested in conservative approximations in the sense that the sets

may only be over- but never be under-approximated. For the set of ECBs, it is sufficient

to accumulate all cache lines accessed across all paths during program execution, and

for the set of DCBs, it is sufficient to accumulate all cache lines written to during

program execution. This can be accomplished by a simple data-flow analysis. In the

case of data caches, a challenge is to precisely determine which cache lines may be

accessed at a particular program point. Since by construction, the set of FDCBs is a

subset the set of DCBs, a DCB analysis provides a sound but pessimistic approximation

of the set of FDCBs. A more precise approximation can be obtained using may-cache

analysis (Ferdinand and Wilhelm 1999). This computes for each program point an

over-approximation of the cache contents, i.e., the memory blocks that may be cached

in each cache set. May-cache analysis can be extended to keep track of the dirty state

of each cache line, as shown by Ferdinand and Wilhelm (1999), again in a conservative

fashion: each potentially dirty cache line is considered to be dirty. The set of FDCBs

is then given by the set of dirty cache lines in the may cache at the final program point.

We assume that the software programs being analysed are designed for use in critical

real-time systems. Thus they make minimal use of pointers, do not include recursion,

and statically allocate all data structures. (This is inline with design principles set out

in ISO26262 that must be complied with: no dynamic objects, no recursion, limited

use of pointers, single entry and single exit point for functions, no hidden data flow or

control flow). Further, we assume that the operating system uses a separate fixed stack

location for each task, thus stack variables created in every function calling context

can have their addresses fully resolved at compilation / linking time, along with all

global variables and other data structures. Difficulties remain in resolving precisely

which memory locations are accessed inside loops; however, loop unrolling provides a

3 Note publication of (Blaß et al. 2017) followed 6 months after this paper was submitted.
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potential solution to this problem. Nevertheless, we recognise that there are a number

of sources of pessimism that can potentially impact the accuracy of a static cache

analysis leading to imprecision in the sets of DCBs and FDCBs, examples include

accesses to locations that are dependent on input data. Refining the representation of

ECBs, DCBs, and FDCBs to capture this uncertainty while avoiding undue pessimism

in the analysis is the subject of our ongoing research.

10 Conclusions and future work

In this paper, we showed how to account for the costs of using a write-back cache in

response-time analysis for fixed-priority preemptive and fixed-priority non-preemptive

scheduling. Thus we introduced, for the first time, an effective method of bounding

these overheads and therefore guaranteeing schedulability in fixed-priority systems

using write-back caches. We introduced the concepts of Dirty Cache Blocks (DCBs),

and Final Dirty Cache Blocks (FDCBs) and classified the different types of write back

which can occur due to a task’s internal behaviour, carry-in effects from previously

executing tasks, and preemption effects. For each scheduling paradigm, we derived

four approaches to analysing the worst-case number of write backs that can occur

within the response time of a task. We showed the dominance relationships that hold

between these different approaches and formed state-of-the-art combined approaches

for both fixed-priority preemptive and non-preemptive scheduling based on them.

Our evaluation using data from the Mälardalen and EEMBC benchmark suites

showed that the approaches derived are highly effective, resulting in guaranteed per-

formance with a write-back cache which significantly exceeds that obtained using a

write-through cache. These results show that the commercial preference for write-

back caches due to their better average case performance extends to their analysable

real-time performance. This conclusion is backed up by recent research (Blaß et al.

2017) providing an effective WCET analysis for systems with write-back caches.

We also extended our work to consider write buffers which can be used to improve

efficiency, particularly with write-through caches. Here we showed that with write-

through caches, large write buffers are necessary to achieve comparable performance

to write-back caches. Further, compositional analysis for write-buffers of size > 1

may incur timing anomalies (domino effects) and result in unsafe bounds.

This paper represents an important first step in the integration of analysis for write-

back caches into schedulability analysis. It necessarily makes some simplifications,

most notable of which is the focus on direct-mapped caches. We intend to extend

our work in this area to include the analysis of set-associative caches, with the least-

recently-used (LRU) policy, and a resilience-like (Altmeyer et al. 2010) notion for

dirty cache blocks.

Other avenues we aim to explore include; the effect of bypassing the cache on stores

where there is no re-use, i.e. streaming stores; the effect of flushing the cache (forcing

write backs) at certain points in the code to improve predictability, for example by

forcing write backs at job termination; and the effect of memory layout on performance,

similar to what has previously been done to reduce cache-related preemption delays

(Lunniss et al. 2012).
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Our proof-of-concept evaluation relies on measurements and simulation to deter-

mine the WCET and the sets of ECBs, UCBs, DCBs, and FDCBs for each benchmark

task. For the analysis techniques introduced in this paper to be used on real systems,

this information needs to be provided via static analysis. Subsequent research (Blaß

et al. 2017) (published after this paper was submitted) has now provided an effective

method of WCET analysis for write-back caches with an LRU replacement policy.

In future we aim to build upon this analysis. We note that uncertainty / imprecision

in the sets of ECBs, UCBs, DCBs, and FDCBs challenges the precision of analysis

for both write-through and write-back caches. This is an area that requires further

study, and is the subject of our ongoing work. In this paper, we have shown that pes-

simistic analysis (write-back flush) which assumes the entire cache is written back at

the start of each task still provides a substantial improvement over analysis for write

through caches, hence even an imprecise static analysis can reasonably be expected to

provide considerable improvements over the guaranteed performance obtained with

a write through cache. Finally, another interesting area to explore is the analysis of

multi-level write-back caches (Zhang et al. 2017).
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Appendix: Related work on data cache analysis

Data cache analysis is more difficult than instruction cache analysis. There are two

reasons for this. Firstly, absolute data addresses are more difficult to obtain via static

analysis than instruction addresses. Data flow analysis is required, and the program is

restricted to having no dynamic data structures. In some cases, it may be impossible to

determine the data address due to dependence on input values, or it may be determined

only within a certain range. Secondly, the address accessed by a particular read/write

instruction in the code may change during execution of the program, for example the

elements of an array that are accessed sequentially. The problem of determining stack

frames can be resolved if each function call is considered as a separate instance, and

their are no recursive calls. Access to scalar global variables can also be resolved.

Early work on static analysis for data caches by Kim et al. (1996) categorized

read/write instructions as either static or dynamic, the latter meaning that the address

may change. For dynamic accesses, they assumed a cost of two cache misses, equating

to the access itself and the eviction of another block that might otherwise have resulted

in a cache hit. For array accesses in a loop, Kim et al. (1996) used a method based
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on the pigeonhole principle. For each loop, they compute (i) the maximum number

of accesses from each instruction, and (ii) the maximum number of distinct memory

locations accessed. Subtracting (ii) from (i) gives the number of data cache hits for the

loop, assuming there are no other conflicting accesses, and the data accesses within

a loop fit in the cache. This method assumes that the size of each data access is the

same size as a cache block.

Li et al. (1996) proposed a data cache analysis divided into two stages data flow

analysis which determines the absolute addresses of the read/write instructions (single

addresses, a range of possible values, or a set of addresses accessed sequentially), and

data cache conflict analysis which involves building Cache Conflict Graphs (CCG)

for direct mapped caches, or Cache State Transition Graphs (CSTG) for set associative

caches, deriving constraints and then solving an ILP. Li et al. show how ranges of pos-

sible address values can be modelled in the constraints; however, a separate constraint

is needed for each possible access in a given range, which produces a large number of

constraints for large arrays.

White et al. (1997) presented an approach that uses data flow analysis within a

compiler to determine a range of addresses for each access. Categorisation of the

accesses is then done via a static cache simulator, providing Always Hit, Always

Miss, First Hit, and First Miss classification. This information is then used as part

of a pipeline WCET analysis to determine the WCET for each loop and function in

the program. Experiments for a direct mapped data cache of 16 lines showed that

the method is effective, with accurate results for many of the programs studied. The

method was also extended to set associative caches.

Ferdinand and Wilhelm (1998) presented a persistence analysis for LRU caches,

indicating which memory blocks are guaranteed to persist in the cache and therefore

result in cache hits on their subsequent access. The persistence analysis is extended

to cover the case where memory addresses are not full resolved, and thus may take

a range of values. Ferdinand and Wilhelm (1998) note that Must and May analysis

can be used to determine the data cache behaviour if the addresses of access can be

statically determined. They note that with array accesses, although in the general case

it may not be possible to resolve the behaviour on each access, in many programs, the

way in which array elements are accessed is very simple (affine in the loop variables)

and a system of linear equations can be constructed that allows the cache behaviour to

be determined. Solving these equations exactly can however be computationally very

expensive.

Ghosh et al. (1999) introduced a Cache Miss Equation (CME) framework. This

method generates a set of Diophantine equations4 that describe the behaviour of the

data cache for code in loops. Solving these equations is computationally complex;

however, approximations and constrained methods can be used to reduce this com-

plexity. The CME approach produces an estimate of the number of misses in nested

loops. There are a number of restrictions on the code that can be analysed in this way:

loops must be rectangular, and strictly nested, expressions for array indices and loop

bounds must be affine combinations of loop variables known at compile time. Fur-

4 Equation in two or more unknown values where only integer solutions are sought.
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ther, no input dependent conditionals are permitted. Ramaprasad and Mueller (2005)

extended the CME approach to handle more general loops via forced loop fusion, to

handle data-dependent conditionals, and to accurately handle scalar variables. Their

method produces exact data cache reference patterns, giving the position of misses in

a sequence of references.

Lundqvist and Stenstrom (1999), proposed a method of improving precision in the

analysis of data caches. Their method involves placing unpredictable data structures

in uncached regions of memory. First, during WCET analysis, memory accesses are

classified as predictable or unpredictable depending on whether the address referenced

is known during the analysis. Data structures with unpredictable accesses are marked

as unpredictable and subsequently allocated to memory areas that are not cached. For

example, the linker can be used to place individual data structures in cached/uncached

regions of memory. This method leaves only predictable accesses to the data cache,

improving analysis precision. Uncached data structures incur a miss penalty on each

access; however, that is lower than the potential double miss penalty that has to be

conservatively assumed if the data structure were placed in cached memory.

Lundqvist and Stenstrom (1999) categorized accesses based on the storage type:

global, stack or heap, and the access type: scalar, regular array, irregular but input

independent, and input dependent. They observed that most accesses are in fact pre-

dictable, with only input-dependent accesses being always unpredictable. Accesses

via the heap could be made predictable if the allocation policy always resulted in the

same memory address for a given object. (We note that in many hard real-time systems

only static memory allocation is permitted).

Chatterjee et al. (2001) developed an exact analysis of the cache behaviour of nested

loops based on the use of Presburger formulas. This method classifies misses as either

interior misses that do not depend on the cache state at the start of a program fragment

(e.g. loop nest), and boundary misses which may be a miss or a hit depending on

the cache state when the fragment starts to execute. This classification has the useful

property that it is composable. The method determines the cache state at the start of each

fragment and from that, the exact number of misses. The method handles imperfect

nests, a variety of array layouts, and a modest level of associativity (examples are given

for an associativity of 2). The computational complexity of the method, which relates

to the static structure of the loop nests not their dynamic iteration count, is however

very high. Quantifier elimination in the Presburger formulas is super-exponential with

worst-case upper and lower bounds that are O(22n
). Nevertheless, the method is shown

to be effective for a number of examples of loop nesting, with computation times from

less than 1 second to 4 minutes. The method was validated against simulation and

found to determine precisely the number of misses. The authors suggest that the

method could be used in conjunction with cache simulation, allowing a simulator to

rapidly skip over loop nests which would otherwise consume much of the running

time. They note; however, that the handling of associativity is incomplete and does

not scale.

Staschulat and Ernst (2006) investigated the problem of data cache analysis where

there are dependencies on inputs. They identify Single Data Sequences (SDS) where

the memory blocks accessed and the control flow are both independent of inputs. The

cache behaviour for SDS can then be determined by a simple cache simulation. For
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data accesses that are not in SDS, persistence analysis is used. This does not however

capture array access patterns.

Sen and Srikant (2007) presented an approach that combines automatic executable

analysis to determine the addresses accessed and a Must analysis for determining cache

behaviour, both using Abstract Interpretation. The overall problem is divided into four

sub-problems: address analysis, cache analysis, access sequencing, and worst-case

path analysis. The latter is solved using an ILP formulation. Sen and Srikant (2007)

use Circular Linear Progressions (CLPs) to provide a strided linear approximation of

the discrete set of memory addresses that may be accessed by a particular instruction.

CLPs enable more precise evaluation of the sequence of locations accessed. They are

used by the cache analysis to determine bounds on the age of each block in the cache,

and hence if an access should be classified as always hit or not classified. The access

sequencing problem is handled via the partial unrolling of loops using an expansion

mode (virtual unrolling) and a summary mode. Experimental results were obtained

for an ARM7TDMI assuming LRU cache. These showed improvements in precision

with more loop expansion. The virtual loop unrolling is however expensive in terms

of analysis time.

Huynh et al. (2011) introduced a method which takes into account the scope in which

certain memory accesses may occur. Instructions that access memory may access

different memory locations in different temporal scopes. The method of Huynh et al.

(2011) captures the temporal scope (i.e. loop iterations) where a particular memory

block is accessed for a given read/write instruction. These temporal scopes are then

used to provide more precise abstract cache state modelling. Persistence analysis is

extended to determine, on a per scope basis, if a memory block persists in the cache.

Further memory blocks accessed in mutually exclusive scopes do not conflict with each

other. The authors showed that their method fully captures the temporal locality of array

traversal made in row-major order (as the array is laid out in memory), achieving much

tighter results than persistence analysis without temporal scope information. Huynh

et al. (2011) also fixed a problem in the original persistence analysis.

Herter et al. (2011) introduced CAMA, a cache-aware dynamic memory allocator.

The use of CAMA enables static analysis of the data-cache behaviour of programs

using dynamic memory allocation.

Wegener (2012) described a method of determining the same block relation indi-

cating whether two memory accesses target the same block and thus may result in a

cache hit. The method focusses on establishing same block relations for array accesses

within a loop. It uses loop peeling and loop unrolling to provide more information to

the analysis. Results for the Malardalen benchmarks show that this relational analysis

increases precision for most of the programs, with a few showing no improvement

due to compiler optimisations splitting loops into nested ones or due to bit operations

destroying the relational information.

Hahn and Grund (2012) introduced relational cache analysis. This approach does

not require absolute address information, but rather reasons based on the relative

addresses of different memory accesses. This enables cache hit predictions for some

accesses that are dependent on unknown static pointers, or input values. Relational

cache analysis uses symbolic names to abstract away from absolute addresses. A

congruence analysis is used to reason about the relations between pairs of symbolic
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names. Relational Cache Analysis is then used to classify memory references using

the relational information about the symbolic names. (Cache information, for example

age bounds are attached to the symbolic names). The congruence analysis establishes

relations between symbolic names such as: same block, same cache set but different

block, and different cache set. It also establishes approximations that are useful such

as: same block or different set (which excludes evictions). Congruence information

also includes interval analysis, global value numbering, octagon analysis, and value

set analysis. In their evaluation, Hahn and Grund (2012) show how the relational cache

analysis can provide significantly improved results for examples with stack-relative

accesses, array accesses within a loop iteration, and input-dependent accesses. In

fact the analysis is claimed to always dominate the abstract interpretation method of

Ferdinand and Wilhelm (1998), since it is at least as precise. Hahn and Grund (2012)

note that prior works that make use of address information as a description of memory

blocks in abstract cache states cannot model imprecisely determined addresses. Also,

there is excessive information loss, for example when m accesses occur to the same, but

unknown memory block, cached blocks must be aged by m. Further, to regain precision,

prior analyses have to be highly context dependent increasing analysis runtime.

Schoeberl et al. (2013) proposed splitting the data cache into different data areas,

i.e. different small data caches. This ensures that accesses to unknown addresses, due

for example to heap allocated data, do not pollute information about the cache for

other simple, easy to predict areas e.g. for static data. The different data caches are

optimized for their data area. A cache for the stack and constants is direct mapped,

while the stack for heap allocated data has high associativity. For heap allocated data,

Schoeberl et al. (2013) present a scope-based persistence analysis.
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