
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On the effectiveness of cache partitioning in hard real-time systems

Altmeyer, S.; Douma, R.; Lunniss, W.; Davis, R.I.
DOI
10.1007/s11241-015-9246-8
Publication date
2016
Document Version
Final published version
Published in
Real-Time Systems
License
CC BY

Link to publication

Citation for published version (APA):
Altmeyer, S., Douma, R., Lunniss, W., & Davis, R. I. (2016). On the effectiveness of cache
partitioning in hard real-time systems. Real-Time Systems, 52(5), 598-643.
https://doi.org/10.1007/s11241-015-9246-8

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1007/s11241-015-9246-8
https://dare.uva.nl/personal/pure/en/publications/on-the-effectiveness-of-cache-partitioning-in-hard-realtime-systems(bdd6ab63-ed08-4833-8221-99508a173a29).html
https://doi.org/10.1007/s11241-015-9246-8

Real-Time Syst (2016) 52:598–643
DOI 10.1007/s11241-015-9246-8

On the effectiveness of cache partitioning in hard
real-time systems

Sebastian Altmeyer1 · Roeland Douma1 ·
Will Lunniss2 · Robert I. Davis2

Published online: 6 January 2016
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In hard real-time systems, cache partitioning is often suggested as a means
of increasing the predictability of caches in pre-emptively scheduled systems: when a
task is assigned its own cache partition, inter-task cache eviction is avoided, and timing
verification is reduced to the standard worst-case execution time analysis used in non-
pre-emptive systems. The downside of cache partitioning is the potential increase in
execution times. In this paper,we evaluate cache partitioning for hard real-time systems
in terms of overall schedulability. To this end, we examine the sensitivity of (i) task
execution times and (ii) pre-emption costs to the size of the cache partition allocated
and present a cache partitioning algorithm that is optimal with respect to taskset
schedulability. We also devise an alternative algorithm which primarily optimises
schedulability but also minimises processor utilization. We evaluate the performance
of cache partitioning compared to state-of-the-art pre-emption cost analysis based on
benchmark code and on a large number of synthetic tasksets with both fixed priority
andEDF scheduling. This allows us to derive general conclusions about the usability of
cache partitioning and identify taskset and systemparameters that influence the relative
effectiveness of cache partitioning. We also examine the improvement in processor

B Sebastian Altmeyer
sealtmeyer@gmx.de; altmeyer@uva.nl

Roeland Douma
r.j.douma@uva.nl

Will Lunniss
wl510@york.ac.uk

Robert I. Davis
rob.davis@york.ac.uk

1 University of Amsterdam, Amsterdam, The Netherlands

2 University of York, York, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-015-9246-8&domain=pdf

Real-Time Syst (2016) 52:598–643 599

utilization obtained using an alternative cache partitioning algorithm, and the tradeoff
in terms of increased analysis time.

Keywords Timing verification · Cache partitioning · WCET analysis · Real-time
scheduling

Extended version

This paper builds upon and extends the ECRTS 2014 paper on Evaluation of Cache
Partitioning for Hard Real-Time Systems (Altmeyer et al. 2014) as follows:

– The evaluation now covers both fixed priority and EDF scheduling.
– We examined how the schedulability of a group of tasks sharing a partition depends
upon partition size.

– Wepresent an alternative cachepartitioning algorithmwhichboth optimises schedu-
lability and minimises processor utilization. We examine the improvement in
processor utilization obtained using this algorithm as compared to the original
cache partitioning algorithm, and the tradeoff in terms of increased analysis time.

1 Introduction

Cache partitioning is often suggested as a means of increasing the predictability of
caches in pre-emptively scheduled hard real-time systems. The rationale behind this
argument is that when a task is assigned its own cache partition, inter-task cache evic-
tion is avoided, and timing verification is reduced to the standard worst-case execution
time (WCET) analysis used in non-pre-emptive systems. Cache partitioning comes
at a cost. The reduced amount of cache available to each task potentially increases
intra-task cache conflicts, trading an increase in (non-pre-emptive) execution times
for reduced cache related pre-emption delays (CRPD).

Despite the wealth of publications on cache partitioning for real-time systems, little
work has been done on the effectiveness of cache partitioning compared to systems
where tasks make unconstrained use of the cache. Pre-emptive multi-tasking systems
with unconstrained caches were considered unpredictable. Given recent advances in
the analysis of cache related pre-emption delays, we consider this view outdated.

In this paper, we evaluate cache partitioning for hard real-time systems in terms of
overall schedulability. To this end, we first determine the sensitivity of task execution
times to the size of the available cache partition using application code from real-time
benchmarks. Contrary to the implicit assumptions in prior work, the worst-case exe-
cution time of a task is not necessarily monotonic in the partition size. We show how
the monotonicity property can be re-established using a monotonic upper bound func-
tion for the execution times. We then present a cache partitioning algorithm that aims
at optimizing taskset schedulability. Under the assumption of monotonic execution
times, the algorithm is optimal in the sense that it finds a schedulable cache parti-
tioning whenever one exists. The algorithm is based on a branch-and-bound approach
and is agnostic with respect to the schedulability test used, i.e., it is valid for any,
sustainable schedulability test (Baruah and Burns 2006) and scheduling algorithm.
Further, we introduce an alternative branch-and-bound algorithm which optimizes

123

600 Real-Time Syst (2016) 52:598–643

schedulability as its primary concern and minimizes processor utilization as a sec-
ondary concern. This algorithm is optimal under the same conditions, in the sense
that it finds a schedulable cache partitioning with the minimum processor utilization
whenever a schedulable partitioning exists.

We evaluate the performance of cache partitioning vs. a non-partitioned cache,
using state-of-the-art pre-emption cost aware schedulability analysis, based on two
different benchmark sets (PapaBench and Mälardalen Benchmark Suite) and on a
large number of synthetic tasksets. The evaluation using synthetic tasksets enables
us to derive results that are valid in general, and not just for a small selection of
use-cases. In addition, we identify how different parameter settings affect the relative
performance of the partitioned vs. non-partitioned approaches. We also evaluate the
improvement in processor utilization obtained using the alternative cache partitioning
algorithm as compared to the original cache partitioning algorithm, and the tradeoff
in terms of increased analysis time. Finally, we quantify the error margin introduced
by the assumption of monotonic execution times.

We focus on a completely analytical approach,wherewe compare the schedulability
of real-time systems assuming pre-emptive scheduling under either a fixed priority or
EDF scheduling policy, with a direct mapped cache. In both cases, partitioned and
non-partitioned cache, we rely on bounds on the execution times obtained via WCET
analysis, and in the non-partitioned case, also on analytical bounds on the CRPD.

The paper is structured as follows: In Sect. 2, we introduce the required terminology
and notation and in Sect. 3we present the schedulability tests for fixed priority andEDF
scheduling. In Sect. 4, we review existing approaches to cache partitioning. Section 5
explains the sensitivity of the worst-case execution times of tasks with respect to the
size of their allocated cache partitions. The optimal cache partitioning algorithms are
presented in Sect. 6, the results of the case study in Sect. 7 and the evaluation based
on synthetic tasksets in Sect. 8. Section 9 concludes with a summary and discussion
of future work.

2 System model, terminology and notation

We consider both fixed priority pre-emptive scheduling and EDF (pre-emptive)
scheduling of a set of sporadic tasks (or taskset) on a single processor. Each taskset
� comprises n tasks � = {τ1, . . . , τn}, where n is a positive integer. We assume a
discrete time model, where all task parameters are positive integers.

Each task τi is characterized by its bounded worst-case execution time Ci obtained
assuming no pre-emption (i.e. not including any cache related pre-emption delays),
minimum inter-arrival time or period Ti , and relative deadline Di . Each task τi there-
fore gives rise to a potentially unbounded sequence of invocations or jobs, each of
which has an execution time upper bounded by Ci , an arrival time at least Ti after the
arrival of its previous job, and an absolute deadline that is Di after its arrival. In an
implicit-deadline taskset, all tasks have Di = Ti , in a constrained-deadline taskset,
all tasks have Di ≤ Ti while in an arbitrary-deadline taskset, task deadlines are inde-
pendent of their periods. In this paper, we assume constrained deadline tasksets. The
tasks are assumed to be independent and so cannot block each other from executing

123

Real-Time Syst (2016) 52:598–643 601

by accessing mutually exclusive shared resources, with the exception of the proces-
sor. (We note that this restriction is only made to simplify comparisons between the
different approaches, resource sharing can be accounted for by schedulability analysis
that incorporates CRPD as shown by Altmeyer et al. 2011, 2012).

The utilization Ui , of a task is given by its execution time divided by its period
(Ui = Ci/Ti). The total utilization U of a taskset is the sum of the utilizations of all
of its tasks, i.e.

U =
∑

i

Ci/Ti . (1)

2.1 Static timing analysis

The paper is set in the context of static timing analysis as used for many safety-critical
hard real-time applications. Thismeans thatwederive theworst-case execution timeCi

of each task τi using a static analysis, in our case, the aiT Timing analyzer (Ferdinand
and Heckmann 2004).

Static timing analyses offer higher reliability compared to measurement-based
approaches, as exhaustive measurements are considered infeasible for modern archi-
tectures. The higher confidence in the correctness of the execution time estimates
comes at the cost of system restrictions, which must be fulfilled in order to apply
static timing analyses. Foremost the restriction to static instead of dynamic memory
allocation and write-through data caches.

2.2 Pre-emption costs

We now extend the sporadic task model to include pre-emption costs. To this end,
we need to explain how pre-emption costs can be derived. To simplify the following
explanation and examples, we assume direct-mapped caches.

The additional execution time due to pre-emption is mainly caused by cache evic-
tion: the pre-empting task evicts cache blocks of the pre-empted task that have to be
reloaded after the pre-empted task resumes. The additional context switch costs due
to the scheduler invocation and a possible pipeline-flush can be upper-bounded by
a constant. We assume that these constant costs are already included in Ci . Hence,
from here on, we use pre-emption cost to refer only to the cost of additional cache
reloads due to pre-emption. This cache-related pre-emption delay (CRPD) is bounded
by g × BRT where g is an upper bound on the number of cache block reloads due to
pre-emption and BRT is an upper-bound on the time necessary to reload a memory
block in the cache (block reload time).

To analyse the effect of pre-emption on a pre-empted task, Lee et al. (1998) intro-
duced the concept of a useful cache block: A memory blockm is called a useful cache
block (UCB) at program point P , if (i) m may be cached at P and (ii) m may be
reused at program pointQ that may be reached fromP without eviction of m on this
path. In the case of pre-emption at program point P , only the memory blocks that (i)
are cached and (ii) will be reused, may cause additional reloads. Hence, the number of
UCBs at program point P gives an upper bound on the number of additional reloads

123

602 Real-Time Syst (2016) 52:598–643

due to a pre-emption at P . The maximum possible pre-emption cost for a task is
determined by the program point with the highest number of UCBs. Note that for each
subsequent pre-emption, the program point with the next smaller number of UCBs
can be considered. Thus, the j-th highest number of UCBs can be counted for the
j-th pre-emption. A tighter definition is presented by Altmeyer and Burguière 2009;
however, in this paper we need only the basic concept.

The worst-case impact of a pre-empting task is given by the number of cache blocks
that the task may evict during its execution. Recall that we consider direct-mapped
caches: in this case, loading one block into the cache may result in the eviction of
at most one cache block. A memory block accessed during the execution of a pre-
empting task is referred to as an evicting cache block (ECB). Accessing an ECB may
evict a cache block of a pre-empted task.

In this paper, we represent the sets of ECBs and UCBs as sets of integers with the
following meaning:

s ∈ UCBi ⇔ τi has a useful cache block in cache-set s

s ∈ ECBi ⇔ τi may evict a cache block in cache-set s

Separate computation of the pre-emption cost is restricted to architectures without
timing anomalies (Lundqvist and Stenström 1999) but is independent of the type of
cache used, i.e. data, instruction or unified cache.

In the case of set-associative LRU caches1, a single cache-set may contain several
useful cache blocks. For instance,UCB1 = {1, 2, 2, 2, 3, 4}means that task τ1 contains
3 UCBs in cache-set 2 and one UCB in each of the cache sets 1, 3 and 4. As one ECB
suffices to evict all UCBs of the same cache-set (Burguière et al. 2009), multiple
accesses to the same set by the pre-empting task does not need to appear in the set of
ECBs. Hence, we keep the set of ECBs as used for direct-mapped caches. A bound
on the CRPD in the case of LRU caches due to task τi directly pre-empting τ j is thus
given by the intersection UCB j ∩′ ECBi = {m|m ∈ UCB j : m ∈ ECBi }, where
the result is also a multiset that contains each element from UCB j if it is also in
ECBi . A precise computation of the CRPD in the case of LRU caches is given by
Altmeyer et al. (2010). In this paper, we assume direct-mapped caches. Note that all
equations provided within this paper are for direct-mapped caches, they are also valid
for set-associative LRU caches with the above adaptation to the set-intersection.

3 Schedulability tests

In this section, we present schedulability tests for fixed-priority scheduling using
response time analysis and for EDF scheduling using processor demand analysis. Both
analyses are sustainable (Baruah and Burns 2006) in the sense that any taskset that
was deemed schedulable by the test remains schedulable if the parameters “improve”,
e.g., if the execution times decrease or periods increase.

1 The concept of UCBs and ECBs cannot be applied to FIFO or PLRU replacement policies as shown
by Burguière et al. (2009)

123

Real-Time Syst (2016) 52:598–643 603

3.1 Fixed priority pre-emptive scheduling

We now recapitulate the exact (sufficient and necessary) schedulability test for fixed
priority pre-emptive scheduling of constrained-deadline tasksets based on response
time analysis (Audsley et al. 1993; Joseph and Pandya 1986; Davis et al. 2008).
Subsequent work on integrating cache related pre-emption delays into schedulability
analysis for fixed priority pre-emptive systems is based on this analysis. The basic
form given below assumes that pre-emption costs are zero.

We assume that the index i of task τi represents its priority, hence τ1 has the highest
priority, and τn the lowest. We use the notation hp(i) (and lp(i)) to mean the set
of tasks with priorities higher than (and lower than) i , and the notation hep(i) (and
lep(i)) to mean the set of tasks with priorities higher than or equal to (lower than or
equal to) i .

The worst-case response time Ri of a task τi is given by the longest possible time
from release of a job of the task until it completes execution. Thus task τi is schedulable
if and only if Ri ≤ Di , and a taskset is schedulable if and only if all of its tasks are
schedulable.

The response time Ri of a task necessarily contains its execution time Ci , and in
addition, τi may suffer interference and be pre-empted by tasks with higher priority
than i . Let τ j be such a task. Within the response time Ri of τi , task τ j executes at

most
⌈
Ri
Tj

⌉
times, each time for at most C j . Hence, the response time Ri of task τi is

given by:

Ri = Ci +
∑

∀ j∈hp(i)

⌈
Ri

Tj

⌉
C j (2)

where hp(i) denotes the set of tasks with higher priority than i . The response time
Ri of task τi appears on both the left-hand side and the right-hand side of (2). As the
right-hand side is a monotonically non-decreasing function of Ri , then a solution may
be found via fixed-point iteration:

Rx+1
i = Ci +

∑

∀ j∈hp(i)

⌈
Rx
i

Tj

⌉
C j (3)

Iteration starts with an initial value, typically R0
i = Ci , and ends when either R

x+1
i >

Di in which case the task is unschedulable, or when Rx+1
i = Rx

i , in which case the
task is schedulable, with a worst-case response time Rx+1

i . We note that convergence
may be speeded up using the techniques described by Davis et al. (2008).

3.1.1 Pre-emption cost aware schedulability test

To integrate pre-emption costs into response time analysis, Busquets-Mataix
et al. (1996) extended (2) by adding a term γi, j representing the pre-emption cost
of a job of task τ j executing during the response time of task τi (with j ∈ hp(i)):

123

604 Real-Time Syst (2016) 52:598–643

Ri = Ci +
∑

∀ j∈hp(i)

⌈
Ri

Tj

⌉
(C j + γi, j) (4)

An alternative approach was taken by Petters and Farber (2001) and later Staschulat
et al. (2005), who based their analyses on the following equation:

Ri = Ci +
∑

∀ j∈hp(i)

(⌈
Ri

Tj

⌉
C j + γ̂i, j

)
(5)

The value γ̂i, j denotes the pre-emption cost of all jobs of task τ j executing during

the response time of task τi (again with j ∈ hp(i)). It is given by the
⌈
Ri
Tj

⌉
-highest

pre-emption costs of a job of task τ j executing during Ri . Although the difference
with respect to (4) is subtle, more precise analysis can be obtained by using γ̂i, j as
a bound on the overall impact of all jobs of τ j on the response time Ri instead of a
bound on the impact of just one job of τ j .

We note that when pre-emption costs are considered explicitly, the worst-case sce-
nario is not necessarily given by a synchronous release of all higher priority tasks
(Meumeu Yomsi and Sorel 2007) and hence (4) and (5) provide sufficient, but not
exact schedulability tests.

3.1.2 Pre-emption cost computation

The value γi, j can be computed in a number of different ways, which are described in
detail by Altmeyer et al. (2012), here, we restrict our explanations to the two dominant
approaches: ECB-Union and UCB-Union.

UCB-Union Tan and Mooney (2007) analysed the pre-emption cost via an upper
bound on the number of useful cache blocks (of all pre-empted tasks) that a pre-
empting task τ j may evict. As it is only the eviction of useful cache blocks belonging
to tasks with equal or higher priority than task τi that may increase the response time
of task τi , only tasks with intermediate priorities in the set aff(i, j) = hep(i) ∩ lp(j),
need be considered.

γUCB−U
i, j = BRT ·

∣∣∣∣∣∣

⎛

⎝
⋃

k∈aff(i, j)
UCBk

⎞

⎠ ∩ ECB j

∣∣∣∣∣∣
(6)

Here, γUCB−U
i, j represents the worst-case impact a job of task τ j can have on all (useful

cache blocks of) tasks with lower priority than task τ j down to task τi . We refer to this
approach as UCB-Union.

ECB-Union Instead of considering the precise set of ECBs of a pre-empting task and
bounding all possibly affected UCBs (as UCB-Union does), ECB-Union (Altmeyer et
al. 2011, 2012) considers the precise number of UCBs of the pre-empted task. It then
assumes that the pre-empting task τ j has itself already been pre-empted by all tasks
with higher priority. This nested pre-emption of the pre-empting task is represented

123

Real-Time Syst (2016) 52:598–643 605

by the union of the ECBs of all tasks with higher or equal priority than task τ j :

γ ECB−U
i, j = max

∀k∈aff(i, j)

⎧
⎨

⎩

∣∣∣∣∣∣
UCBk ∩

⎛

⎝
⋃

h∈hep(j)
ECBh

⎞

⎠

∣∣∣∣∣∣

⎫
⎬

⎭ (7)

The UCB-Union and ECB-Union approaches are incomparable in that there are tasks
that may be deemed schedulable using one approach but not the other and vice-versa.

Multiset approaches The UCB-Union and ECB-Union can be lifted to the so-called

Multiset approaches to be used within Eq. (5) to account for the
⌈
Ri
Tj

⌉
-highest pre-

emption costs of a job of task τ j executing during Ri instead of accounting for the

highest pre-emption costs of a job
⌈
Ri
Tj

⌉
times. To simplify our equations, we introduce

Ek(Ri) to denote the maximum number of jobs of task τk that can execute during
response time Ri , i.e.:

Ek(Ri) =
⌈
Ri

Tk

⌉

The pre-emption cost γ ECB−M
i, j is then computed as follows, recognising the fact

that task τ j can pre-empt each intermediate task τk atmost E j (Rk)Ek(Ri) times during
the response time of task τi . We form a multiset M that contains the cost

∣∣∣∣∣∣
UCBk ∩

⎛

⎝
⋃

h∈hp(j)∪{ j}
ECBh

⎞

⎠

∣∣∣∣∣∣
(8)

of τ j pre-empting task τk E j (Rk)Ek(Ri) times, for each task τk ∈ aff(i, j). Hence:

M =
⋃

k∈aff(i, j)

⎛

⎝
⋃

E j (Rk)Ek (Ri)

∣∣∣∣∣∣
UCBk ∩

⎛

⎝
⋃

h∈hp(j)∪{ j}
ECBh

⎞

⎠

∣∣∣∣∣∣

⎞

⎠ (9)

γ ECB−M
i, j is then given by the E j (Ri) largest values in M.

γ ECB−M
i, j = BRT ·

E j (Ri)∑

l=1

|Ml | (10)

where Ml is the l-th largest value in M . We note that by construction, the ECB-Union
Multiset approach dominates the ECB-Union approach.

The pre-emption cost γUCB−M
i, j is computed as follows, recognising the fact that task

τ j can pre-empt each intermediate task τk directly or indirectly at most E j (Rk)Ek(Ri)

times during the response time of task τi . First, we form a multi-set Mucb
i, j containing

E j (Rk)Ek(Ri) copies of the UCBk of each task k ∈ aff(i, j). This multi-set reflects

123

606 Real-Time Syst (2016) 52:598–643

the fact that during the response time Ri of task τi , task τ j cannot evict a UCB of task
τk more than E j (Rk)Ek(Ri) times. Hence:

Mucb
i, j =

⋃

k∈aff(i, j)

⎛

⎝
⋃

E j (Rk)Ek (Ri)

UCBk

⎞

⎠ (11)

Next, we form a multi-set Mecb
j containing E j (Ri) copies of the ECB j of task τ j .

This multi-set reflects the fact that during the response time Ri of task τi , task τ j can
evict ECBs in the set ECB j at most E j (Ri) times.

Mecb
j =

⋃

E j (Ri)

(ECB j) (12)

γUCB−M
i, j is then given by the size of the multi-set intersection of Mecb

j and Mucb
i, j

γUCB−M
i, j = BRT ·

∣∣∣Mucb
i, j ∩ Mecb

j

∣∣∣ (13)

We note that by construction, the UCB-Union Multiset approach dominates the UCB-
Union approach.

The UCB-UnionMultiset and the ECB-UnionMultiset approach are incomparable
in that there are tasks that may be deemed schedulable using one approach but not
the other and vice-versa. More precise analysis can therefore be achieved by using a
combination of both approaches as follows:

Ri = min
(
RECB−M
i , RUCB−M

i

)
(14)

A detailed description of the pre-emption cost aware schedulability tests can be found
in Altmeyer et al. (2012).

3.2 EDF scheduling

We now recapitulate the exact (sufficient and necessary) schedulability test for pre-
emptive EDF scheduling of sporadic tasksets based on processor demand analysis
(Baruah et al. 1990). Subsequent work on integrating cache related pre-emption delays
into schedulability analysis for EDF scheduled systems is based on this analysis. The
basic form given below assumes that pre-emption costs are zero. Pre-emptive EDF
scheduling is optimal among all scheduling algorithms on a uniprocessor (Dertouzos
1974) under the assumption of negligible pre-emption overhead.

A necessary and sufficient schedulability test for EDF and implicit deadlines
(Di = Ti) is given by the processor utilizations (Liu and Layland 1973): a task
set is schedulable, iff

U =
∑

i

Ci

Ti
≤ 1 (15)

123

Real-Time Syst (2016) 52:598–643 607

This test is necessary, but not sufficient if Di 	= Ti .
Baruah et al. (1990) introduced the processor demand function h(t), which denotes

themaximumexecution time requirement of all tasks jobswhich have both their arrival
times and their deadlines in a contiguous interval of length t . Using this they showed
that a taskset is schedulable iff ∀t > 0, h(t) ≤ t where h(t) is defined as:

h(t) =
∑

i=1

max

{
0, 1 +

⌊
t − Di

Ti

⌋}
Ci (16)

As h(t) can only change when t is equal to an absolute deadline, we can restrict the
number of values of t that need to be checked. To place an upper bound on t , and so on
the number of calculations of h(t), the minimum interval in which it can be guaranteed
that an unschedulable taskset will be shown to be unschedulable must be found. For a
general taskset with arbitrary deadlines t can be bounded by La (George et al. 1996):

La = max

{
Di , . . . , Dn,

∑n
i+1(Ti = Di)Ui

1 −U

}
(17)

And an alternative bound, Lb given by the length of the synchronous busy period can
be used (Ripoll et al. 1996), where Lb is computed using the following equation using
fixed point iteration:

wα+1 =
n∑

i=1

⌈
wα

Ti

⌉
Ci (18)

There is no direct relationship between La and Lb, which enables t to be bounded
by L = min(La, Lb). Combined with the knowledge that h(t) can only change at an
absolute deadline, a taskset is therefore schedulable under EDF iff U ≤ 1 and:

∀t ∈ Q, h(t) ≤ t (19)

Where Q is defined as

Q = {dk |dk = kTi + Di ∧ dk < min(La, Lb), k ∈ N} (20)

Zhang andBurns (2009) presented the Quick convergence Processor-demand Analysis
(QPA) algorithm which exploits the monotonicity of h(t) to reduce the number of
required checks.

3.2.1 Pre-emption cost aware schedulability test

In order to account for CRPD using EDF scheduling, Lunniss et al. (2013) include a
component γt, j which represents the CRPD associated with a pre-emption by a single
job of task τ j on jobs of other tasks that are both released and have their deadlines in
an interval of length t . Note, unlike its counterpart in CRPD analysis for fixed priority

123

608 Real-Time Syst (2016) 52:598–643

scheduling, γt, j refers to the pre-empting task τ j and t , rather than the pre-empting
and pre-empted tasks. Including γt, j in (16) a revised equation for h(t) is obtained:

h(t) =
∑

i=1

max

{
0, 1 +

⌊
t − Di

Ti

⌋}
(Ci + γt, j) (21)

The set of affected tasks for EDF is based on the relative deadlines of the tasks:

aff(t j) = {∀τi |t ≥ Di > Dj } (22)

Task τ j can only pre-empt tasks with a larger relative deadline than Dj and only tasks
with a relative deadline Di less than or equal to t need to be accounted for when
calculating h(t)

3.2.2 Pre-emption cost computation

The UCB-Union (see Eq. (23)) and ECB-Union (see Eq. (24)) approaches as used for
fixed-priorities can be adapted as follows:

γUCB−U
t, j = BRT ·

∣∣∣∣∣∣

⎛

⎝
⋃

k∈aff(t, j)
UCBk

⎞

⎠ ∩ ECB j

∣∣∣∣∣∣
(23)

and

γ ECB−U
t, j = max

∀k∈aff(t, j)

⎧
⎨

⎩

∣∣∣∣∣∣
UCBk ∩

⎛

⎝
⋃

h∈hep(j)
ECBh

⎞

⎠

∣∣∣∣∣∣

⎫
⎬

⎭ (24)

The UCB-Union and ECB-Union approaches are incomparable in that there are tasks
that may be deemed schedulable using one approach but not the other and vice-versa.

Similar to Eq. (5) that accounts for the highest n pre-emption costs of a job instead
of the highest pre-emption costs of a job n times, we can adapt Eq. (21) as follows

h(t) =
∑

i=1

(
max

{
0, 1 +

⌊
t − Di

Ti

⌋}
Ci + γt, j

)
(25)

and lift the UCB-Union and ECB-Union approaches to their multiset counterparts.
TheECB-Unionmultiset approach computes the union of all ECBs thatmay affect a

pre-empted task during a pre-emption by task τ j . It accounts for nested pre-emptions
by assuming that task τ j has already been pre-empted by all other tasks that may
pre-empt it. The first step is to form a multiset Mt, j that contains the cost of task τ j
pre-empting task τk repeated Pj (Dk)Ek(t) times, for each task τk ∈ aff(t, j), where
Pj (Dk) denotes the maximum number of jobs of task τ j that can pre-empt a single
job of task τk :

Pj (Dk) = max

(
0,

⌈
Dk − Dj

Tj

⌉)

123

Real-Time Syst (2016) 52:598–643 609

and Ek(t) is defined as

Ek(t) = max

(
0,

⌊
t − Dk

Tk

⌋)

Hence:

M =
⋃

k∈aff(t, j)

⎛

⎝
⋃

Pj (Dk)Ek(t)

∣∣∣∣∣∣
UCBk ∩

⎛

⎝
⋃

h∈hp(j)∪{ j}
ECBh

⎞

⎠

∣∣∣∣∣∣

⎞

⎠ (26)

γ ECB−M
t, j is then given by the E j (t) largest values in M.

γ ECB−M
t, j = BRT ·

E j (t)∑

l=1

|Ml | (27)

The pre-emption cost γUCB−M
t, j for EDF scheduling is computed similarly to the

UCB-Union Multiset approach for fixed-priority scheduling: Task τ j can pre-empt
each intermediate task τk directly or indirectly at most Pj (Dk)Ek(t) times within the
deadline of task τi . First, we form a multi-set Mucb

t, j containing Pj (Dk)Ek(t) copies
of the UCBk of each task k ∈ aff(t, j) reflecting the fact that within time t , task τ j
cannot evict a UCB of task τk more than Pj (Dk)Ek(t) times. Hence:

Mucb
t, j =

⋃

k∈aff(t, j)

⎛

⎝
⋃

Pj (Dk)Ek (t)

UCBk

⎞

⎠ (28)

Next, we form a multi-set Mecb
j containing E j (t) copies of the ECB j of task τ j . This

multi-set reflects the fact that during t , task τ j can evict ECBs in the set ECB j at most
E j (t) times.

Mecb
j =

⋃

E j (t)

(ECB j) (29)

γUCB−M
i, j is then given by the size of the multi-set intersection of Mecb

j and Mucb
i, j

γUCB−M
i, j = BRT ·

∣∣∣Mucb
i, j ∩ Mecb

j

∣∣∣ (30)

We note that the UCB-UnionMultiset and the ECB-UnionMultiset approach for EDF
are also incomparable and hence, a combined approach can be defined as follows:

h(t) = min
(
h(t)ECB−M, h(t)UCB−M

)
(31)

As the multiset approaches effectively inflate the execution time of task τ j by the
CRPD that it can cause in an interval of length t , the upper bound L , used for calculating
the processor demand h(t), must be adjusted. This is achieved by calculating an upper

123

610 Real-Time Syst (2016) 52:598–643

bound on the utilisation due to CRPD that is valid for all intervals of length greater than
some value Lc. This CRPDutilisation value is then used to inflate the taskset utilisation
and thus compute an upper bound Ld on the maximum length of the synchronous busy
period. This upper bound is valid provided that it is greater than Lc , otherwise the actual
maximum length of the busy period may lie somewhere in the interval [Ld , Lc], hence
we can use max(Lc, Ld) as a bound. We refer the reader to (Lunniss et al. 2013) for
a detailed explanation.

3.3 Optimal task layout

The precise cache mapping, i.e., the mapping of memory block to cache sets strongly
influences the pre-emption costs. Consider for instance the extreme situation where
all tasks are aligned to the first cache-set: Each task will definitely evict cache blocks
of another task. If tasks’ code is instead aligned sequentially in the cache, the pre-
emption costs are very likely to be smaller. Lunniss et al. (2012) showed how to
optimize the task layout with respect to the taskset schedulability and the pre-emption
costs. The technique used determines the order in which the code for each task is
placed sequentially in memory, without leaving any gaps. Optimizing the task layout
does not require any changes to the source code or the compilation and is completely
transparent to the user. Only the linker file is adapted. The optimzation changes the
addresses of the code and data in the binary, but not the code/data itself, hence an
appropriate layout can only improve performance.

4 Review of cache partitioning for real-time systems

Cache partitioning (Mueller 1995; Plazar et al. 2009) is a technique to reduce or
even completely avoid cache-related pre-emption delays, aimed at increasing the pre-
dictability of real-time systems. Cache partitioning trades inter-task for intra-task
cache conflicts, i.e. it trades off reduced cache-related pre-emption delays against
potentially increasedworst-case execution times. Partitioning techniques can be imple-
mented either in hardware (Kirk and Strosnider 1990) or in software (Mueller 1995;
Plazar et al. 2009). Modern common-off-the-shelf processors may provide native
hardware support for partitioning, as for instance the OMAP-L138 DSP from Texas
Instruments.2 A native software-based solution can be implemented using page col-
oring (Ye et al. 2014) when virtual memory management is used. If no such support
is available, the realization of cache partitioning is more compilcated: Mueller (1995)
and later Plazar et al. (2009) proposed a partitioning-aware compiler, asserting that
each task only accesses its own cache partition. This comes at the cost of often sub-
stantial changes to the code and data layout, which further increases task execution
times; however, as no additional hardware is needed, thememory access delays remain
unchanged. This is in contrast to hardware-based solutions where an additional map-
ping layer from code/data to main memory is needed.

2 http://www.ti.com/product/omap-l138.

123

http://www.ti.com/product/omap-l138

Real-Time Syst (2016) 52:598–643 611

Despite the wealth of publications on cache partitioning for real-time systems, little
work has been done on evaluating the effects of cache partitioning, and in particular, its
effectiveness compared to systems where tasks make unconstrained use of the cache.
The previously cited papers either focus on the implementation of cache partitioning
(Muller 1995; Plazar et al. 2009; Puaut and Decotigny 2002), or compare partitioned
systemswith systemswithout cache (Vera et al. 2007). The rationale behind this limited
evaluation is the belief that pre-emptive systems that make unconstrained use of cache
are unpredictable. Given recent advances in the analysis of cache related pre-emption
delays, this view can now be considered somewhat outdated.

Studies on general usability of cache partitioning have been conducted by
Busquets-Mataix and Wellings (1997) (to a limited extent), and more recently by
Bui et al. (2008). Busquets-Mataix and Wellings based their evaluation on simplistic
models of task execution times and pre-emption costs. The execution time varia-
tion was modelled according to Higbee (1990), favouring efficiency over precision,
and only delivers rough estimates. The authors also assume that each evicting cache
block causes an additional pre-emption cost, which is a very pessimistic assumption
(Altmeyer et al. 2012).

Bui et al. (2008) based their evaluation on high-level execution time models (Wolf
1992) to estimate the execution time variation and pre-emption cost overhead. We rely
on the results of state-of-the-art static timing analysis (both for theWCET bounds and
the pre-emption costs) as used in safety-critical hard real-time systems, which provide
firm guarantees.

Since finding an optimal cache partitioning is NP-hard (Bui et al. 2008), previous
approaches employed heuristics either to minimize the number of cache misses, or to
minimize the processor utilization (Kirk and Strosnider 1990; Busquets-Mataix and
Wellings 1997; Bui et al. 2008; Plazar et al. 2009).

The research that we present in this paper differs in the following aspects: As
schedulability is the key criterion in verifying the temporal correctness of hard real-
time systems, we focus on taskset schedulability as opposed to utilization. A cache
partitioning may be schedulable even though the task utilization is not the minimum
that could be obtained. Similarly, minimizing the utilization does not necessarily opti-
mize schedulability. We present partitioning algorithms which are optimal under the
assumption that the worst-case execution time of each task is monotonic in the size
of the partition allocated to that task. We aim at deriving general statements about
the usability and efficiency of cache partitioning compared to a non-partitioned cache
analysed using state-of-the-art pre-emption cost analyses.

5 Partition-size sensitivity

5.1 Partition-size sensitivity (task level)

In this section, we evaluate the sensitivity of the worst-case execution times of tasks
with respect to the size of their allocated cache partitions. The aim of this sensitivity
analysis is to form simple yet accurate execution time functions that are parametric
in the size of the cache partition allocated to the task. These functions provide the
information required by the optimal partitioning algorithm described in Sect. 6.

123

612 Real-Time Syst (2016) 52:598–643

We perform sensitivity analysis by computing WCET bounds for varying cache
partition sizes using static analysis. Based on these values, we can deduce typical
variations in execution time depending on the code size of the task and the size of
the cache partition allocated to it. The rationale behind this empirical evaluation is
twofold: First, we are interested in the behaviour of a set of real examples, and second,
we want to use realistic models of execution-time as a function of cache partition size
to determine an effective partitioning of the cache between tasks. We note that with
hardware support for cache partitioning, partitions are typically restricted to being a
power of 2 in size e.g. 8,16,32 cache sets etc.; whereas software methods (Mueller
1995) can support cache partitions of any arbitrary number of sets. In the remainder
of the paper, we assume that the number of cache sets in a partition may take any
arbitrary value; however, we note that the techniques introduced are easily adapted to
the case were partition sizes come from a restricted set of hardware-supported values.

The target architecture is an ARM7 processor3 with direct-mapped cache of size
4 kB with a line size of 16 Bytes (and thus, 256 cache sets), a block reload time of
8 µs and a clock rate of 100 MHz. The cache uses a write-through policy to enable
a constant block reload time, required for the static timing analysis. The values are
derived from an example configuration of the ARM7 as used in previous work (see
Altmeyer et al. 2011). As benchmarks, we used PapaBench (Nemer et al. 2006) and
the Mälardalen benchmark suite (Gustafsson et al. 2010). We used the aiT Timing
analyzer (Ferdinand and Heckmann 2004) to compute WCET bounds, and evaluate
the sensitivity of execution time with respect to cache partition size.

Figures 1 and 2 show the normalized WCET bounds for the benchmark tasks with
varying cache partition sizes and cache types. Each line denotes the execution time
for one benchmark. The y-axis depicts the normalized execution time with the value
1 representing the largest WCET bound (which typically corresponds to the smallest
cache partition size i.e. zero). The x-axis depicts the normalized cache partition size
with the value 1 representing the code-size/maximum memory usage of the task.
Increasing the size of the cache partition beyond the code size/memory footprint does
not improve the execution time any further. The graphs are best viewed online in colour.

A perfect data (or instruction) cache means that all data (or instruction) accesses
are served instantaneously. Even though this assumption is unrealistic, it removes
possible noise and and allows us to fully concentrate on the effects of pre-emption and
partitioning. We have also performed experiments with instruction cache but without
data cache and also with data cache but without instruction cache. The results are
very similar to the evaluation shown for perfect caches, but less accentuated.

We can see that variation in the execution times is stronger in the case of instruction
cache compared to data cache. This behaviour is as expected since each instruction
results in an instruction cache access, but not necessarily in a data cache access.
Similarly, the variation in the execution times is amplified by the assumption of a
perfect data/instruction cache. Note we do not assume any implementation cost for
cache partitioning. Additional delays to implement cache partitioning only occur if no
native support for partitioning is available.

3 http://www.arm.com/products/processors/classic/arm7.

123

http://www.arm.com/products/processors/classic/arm7

Real-Time Syst (2016) 52:598–643 613

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 W
C

E
T

B
ou

nd

Normalized Cache Usage

I4
I5
I6
I7

T5
T6

T7
T8
T9

T10
T11
T12

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 W
C

E
T

B
ou

nd

Normalized Cache Usage

I4
I5
I6
I7

T5
T6

T7
T8
T9

T10
T11
T12

(b)

Fig. 1 WCETs depending on the cache partition size (PapaBench, see Table 1). aDirect mapped instruction
cache, perfect data cache. b Direct mapped data cache, perfect instruction cache

5.1.1 Monotonicity

We observe from Figs. 1 and 2 that the execution time bounds are not necessarily
monotonic with respect to the cache partition size.

This counter-intuitive behaviour can be explained by differences in the mapping of
memory blocks to the cache sets. Assuming a direct-mapped cache with a line size of
16 bytes and a task that exhibits the following access sequence

123

614 Real-Time Syst (2016) 52:598–643

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 W
C

E
T

B
ou

nd

Normalized Cache Usage

adpcm
compress

edn
fir

jfdctint
ns

nsichneu

statemate
cruise_control
flight_control

digital_stopwatch
pilot

es_lift
robodog

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 W
C

E
T

B
ou

nd

Normalized Cache Usage

adpcm
compress

edn
fir

jfdctint
ns

nsichneu

statemate
cruise_control
flight_control

digital_stopwatch
pilot

es_lift
robodog

(b)

Fig. 2 WCETs depending on the cache partition size (Mälardalen and SCADE Benchmarks, see Table 3).
a direct mapped instruction cache, perfect data cache, b direct mapped data cache, perfect instruction cache

0x00030 → 0x00080 → 0x00030

If we assign this task a cache partition of size 4, memory block 0x00030 maps to
set 3 of this partition and 0x00080 maps to set 0. The last access to 0x00030 therefore
results in a cache hit. In contrast, in a larger cache partition of size 5, memory blocks
0x00030 and 0x00080 both map to cache set 3 and the last access to 0x00030 is a

123

Real-Time Syst (2016) 52:598–643 615

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 W
C

E
T

B
ou

nd

Normalized Cache Usage

Upper bound
basic function
Lower bound

Fig. 3 Over-/underapproximations of theWCET function (statemate benchmark, directmapped data cache,
perfect instruction cache)

cache miss. Hence, for this trivial example, the performance with 5 cache sets is worse
than that for 4 cache sets.

We note that the assumption of monotonic execution time bounds is both common
and often not explicitly stated in work on cache partitioning for real-time systems
(Bui et al. 2008; Busquets-Mataix and Wellings 1997; Kirk and Strosnider 1990;
Mueller 1995; Plazar et al. 2009).

The impact of these effects is however limited, and so we can replace the actual
execution time function with monotonic over/under-approximations without signif-
icant loss of precision, as shown in Fig. 3. Here, the basic function (black line) is
non-monotonic, while the upper bound (blue line) and the lower bound (red line)
are monotonically non-increasing functions of cache partition size. We thus establish
monotonicity of the WCET with respect to the cache partition size and can use this
property in our approach to partitioning the cache. In Sect. 8.5, we quantify the error
introduced by this approximation.

5.2 Partition-size sensitivity (task group level)

In this section, we examine the sustainability of a group of tasks sharing a cache par-
tition with respect to the partition size. The rational behind a shared cache partition
is that a subset of the complete taskset can be grouped together, either to improve
performance or to implement spatial isolation between several task groups for safety
reasons—as often used in hierarchical scheduling. Optimality of the partitioning algo-
rithm described in Sect. 6 can only be guaranteed for shared cache partitions, if the
schedulability tests are sustainable with respect to the size of a cache partition.

123

616 Real-Time Syst (2016) 52:598–643

0s

16.5s
W

C
E

T
B

ou
nd

WCET

0

 30

0 32 64 96 128 160 192 224 256

#U
se

fu
l C

ac
he

 B
lo

ck
s

Partition Size

UCBs

Fig. 4 WCET and number of UCBs depending on the cache partition size (statemate benchmark, direct
mapped data cache, perfect instruction cache)

In case of a shared cache partition, two opposing factors influence the system’s
performance: the execution time bounds and the pre-emption costs. Whereas the exe-
cution time bounds typically increase when the size of the assigned cache partition is
reduced, the pre-emption costs decrease. A smaller cache results in a higher number
of intra-task conflicts and hence, in fewer cache hits without pre-emption. Figure 4
depicts this behaviour. We note that a change in the maximum number of useful cache
blocks always co-incides with a change in the execution time bound, whereas a change
in the execution time bound does not necessarily imply a change in themaximumnum-
ber of useful cache blocks. Furthermore under the hardware restrictions assumed in
this paper (set-based partitioned, LRU or direct-mapped caches), the impact of the
execution time limits the impact of the pre-emption costs: The pre-emption costs can
only increase, if the number of cached and re-used memory blocks increases, which
means that the execution time decreases. The decrease in the execution time always
dominates the increase in the pre-emption costs. When the number of potentially
evicted memory blocks increases, then the execution time decreases at least by the
time to reload these additional memory blocks times how often these memory blocks
need to be reloaded. A large number of pre-emptions will then at most cancel out the
decrease in the execution time, but never exceed it.

However, the dominance relation between the execution time bound and the pre-
emption costs is not necessarily reflected in these schedulability analyses: The terms
γi, j in (4) and γi, j in (21) representing the pre-emption costs–and thus the number of
UCBs—may contributemore often to the response time/demand bound than they actu-
ally occur in practice. Consequently, the schedulability tests presented in Sect. 3 are not

123

Real-Time Syst (2016) 52:598–643 617

sustainable for taskgroups, even under the assumption of monotonic execution times.
This unsustainability of the schedulability tests means that the algorithms described
in Sect. 6 would not retain their optimality if extended to the case where groups of
tasks share partitions: False negatives are possible in the sense that no feasible shared
cache partition is found although one may exist.

6 Optimal cache partitioning

In this section, we derive an optimal cache partitioning algorithm, which makes use of
the monotonic upper bound execution time functions of cache partition size described
in the previous section. We assume a direct-mapped cache of size S. A cache parti-
tioning P is a tuple of non-negative integers describing for each task τi , the size pi of
its allocated cache partition:

P = (p1, p2, . . . , pn) : N × · · · × N︸ ︷︷ ︸
n

(32)

We assume that each task has a dedicated cache partition which is not shared with
any other tasks (we return to this point in Sect. 9). A cache partitioning is valid, if the
total size of the cache partitions does not exceed the overall size S of the cache (i.e. if∑

i pi ≤ S).

6.1 Schedulability

We are interested in the schedulability of a taskset, as this is the main optimization
criterion for hard real-time systems. We therefore say that a cache partitioning algo-
rithm is optimal, iff it finds a cache partitioning whereby the tasks are schedulable,
whenever such a partitioning exists. Note that this is different from minimizing the
utilization of a taskset, since taskset utilization is only a rough indicator of system
schedulability.

To compute an optimal cache partitioning, we use a branch-and-bound approach
(see Algorithm 1) which is certain, under the assumption of monotonic execution time
functions, to find a feasible cache partitioning if one exists. To this end, we exploit
the sustainability of the schedulability test with respect to execution times and the
monotonicity of the execution time function with respect to the cache partition size to
prune the search space.

The algorithm is implemented using a recursive function checkPartition. This func-
tion takes as its input the current task index i , a partially defined partitioning P and
the remaining cache size s. The partitioning is defined up to index i and the remain-
ing cache size s is given by S minus the sum of the sizes of the first i partitions i.e.
s = S −∑i

j=1 pi .
The initial input to the function is the first task index 1, an arbitrary partitioning P

and the overall cache size S. If the last task index is reached, the partitioning is fully
defined and the result is determined by the function isSchedulable, which checks the
schedulability of the taskset for the defined partitioning. Note, here we employ the

123

618 Real-Time Syst (2016) 52:598–643

basic schedulability tests without pre-emption costs (see Sect. 3) given by (2) and
(16), as the cache partitioning prevents any cache-related pre-emption delays.

In the next step, the algorithm checks taskset schedulability under (a) the optimistic
assumption that each not yet specified task partition is of size s and (b) under the
pessimistic assumption that each not yet specified task partition is given an equal
share of the remaining cache size, i.e., s/(n − i + 1)�. This enables effective pruning
of the search in the case where (a) schedulability is disproved for any extensions to
the current partial partitioning, and early exit in the case (b) schedulability is proven
assuming that all further tasks are schedulable with a cache partition of equal size.

The last construct of the algorithm, the while loop, implements the branching. The
partition size of cache partition pi is varied from 0 up to the remaining cache size s
and each possible partitioning is evaluated using a recursive function call. This is done
using the function nextStep which computes the next partition size for task τi . Due to
the monotonicity of the execution time functions with respect to cache partition size,
nextStep jumps directly to the next partition size where the execution time changes.
All intermediate partition sizes with the same execution time can be safely ignored.
In the worst-case, up to nS different cache partitionings must be evaluated, where n
is the number of tasks and S the number of cache sets. In practice, the runtime is
substantially lower due to early exits and the reduced number of partition sizes which
give different execution times.We return to this point in the following section. Further,
in the case where hardware support is provided for a limited number of partition sizes,
the runtime is further reduced due to the restricted number of partition sizes supported.

123

Real-Time Syst (2016) 52:598–643 619

6.2 Schedulability and minimal utilization

Algorithm1 can be extended tofind a schedulable cache partitioningwith theminimum
processor utilization (see Algorithm 2). Schedulability is usually the dominating cri-
terion for hard real-time systems but a reduced processor utilization typically reduces
the energy consumption and the response times and thus improves the overal perfor-
mance of the system.

Theglobal variableminUtil is initially set to 1.1 to indicate that no schedulable cache
partitioning has been found yet. As soon as the algorithm encounters a schedulable
partitioning, the utilization is computed and compared to minUtil (which is updated
if necessary).

Algorithm 2 also differs in the abort conditions.We are no longer allowed to stop the
algorithm once we have found a schedulable partitioning (see line 9 in Algorithm 1),
as only one of the two optimization criteria has at that point been fulfilled. Instead,
we can bound the search when the current value of minUtil is less than or equal to
the utilization of the cache partitioning where each not yet specified task partition is
given the complete remaining size s (see line 16). This step is valid as the processor
utilization (1) is monotonically non-decreasing in the tasks’ execution times. Due to

123

620 Real-Time Syst (2016) 52:598–643

the weaker abort-condition of Algorithm 2, a significantly higher number of cache
partitionings must be evaluated when a schedulable partitioning exists. When no such
partitioning exists, both algorithm consider exactly the same number of partitionings.
We evaluate the difference in the average processor utilization and analysis time for
the two algorithms in Sect. 7.3.

7 Case study

In this section, we evaluate the partitioning algorithms based on PapaBench (Nemer
et al. 2006), the Mälardalen benchmark suite (Gustafsson et al. 2010) and a set of
SCADE4 tasks (partially provided by SCADE, partially from our own SCADE mod-
els). Besides the effectiveness of the cache partitioning algorithms, we are interested in
(i) the precision of the simplified execution time model, (ii) the runtime performance
of the algorithms, and (iii) the difference between the two partitioning algorithms with
respect to the minimum utilization obtained.

For the case study, the target architecture is an ARM7 processor (with a 4 kB direct-
mapped write-through cache, line size of 16 Bytes, 256 cache sets, block reload time
8 µs, clock rate of 100 MHz). The execution time bounds were derived using the aiT
Timing analyzer (Ferdinand and Heckmann 2004). The values are derived from an
example configuration of the ARM7 as used in previous work (see Altmeyer et al.
2011).

Papabench provides two different tasksets (fbw and autopilot) with deadlines and
periods (except for the interrupts I4 to I7) (seeTables 1 and 2).With the initial processor
frequency of 100 MHz, both tasksets are schedulable both with and without cache
partitioning. The other benchmarks only provide code and do not form a meaningful
taskset. We therefore randomly selected tasks from (i) Tables 1 and 2, and (ii) Table 3
and 4 (together with execution times, the execution time variations, codes size and
UCBs/ECBs).

The remaining task and taskset parameters used in our experiments were randomly
generated as follows:

– The default taskset size was 10.
– Task utilizations were generated using the UUnifast (Bini and Buttazzo 2005)
algorithm.

– Task periods were set based on the utilization and execution times: Ci = Ui · Ti .
– Task deadlines were implicit,5 i.e., Di = Ti .
– For fixed priority scheduling, priorities were assigned in Rate Monotonic priority
order.

The tasks are indexed and processed by the partioning algorithms in decreasing priority
order.

In each experiment the taskset utilization not including pre-emption cost was varied
from 0.025 to 0.975 in steps of 0.025. For each utilization value, 1000 tasksets were

4 Esterel SCADE http://www.esterel-technologies.com/.
5 Evaluation for constrained deadlines, i.e., Di ∈ [2Ci ; TI] gave broadly similar results although fewer
tasksets were deemed schedulable.

123

http://www.esterel-technologies.com/

Real-Time Syst (2016) 52:598–643 621

Table 1 Execution times and number of UCBs and ECBs for the PapaBench benchmarks

Description UCBs ECBs WCET1 WCET2 Period

I4 Interrupt-modem 2 10 303 µs 520 µs –

I5 Interrupt-spi-1 1 10 251 µs 447 µs –

I6 Interrupt-spi-2 1 4 151 µs 228 µs –

I7 Interrupt-gps 3 26 283 µs 493 µs –

T5 Altitude-control 20 66 1478 µs 1660 µs 250 ms

T6 Climb-control 1 210 5429 µs 6241 µs 250 ms

T7 Link-fbw-send 1 10 233 µs 471 µs 250 ms

T8 Navigation 1 256 44, 42 ms 54, 35 ms 50 ms

T9 Radio-control 0 256 15, 6 ms 21, 1 ms 50 ms

T10 Receive-gps-data 22 194 5987 µs 6659 µs 25 ms

T11 Reporting 2 256 12, 22 ms 5 ms 100 ms

T12 Stabilization 11 194 5681 µs 6654 µs 50 ms

Data cache with perfect instruction cache (WCET 1) and without data cache (WCET 2)

generated and the schedulability of those tasksets was determined using the cache
partitioning algorithms or pre-emption cost aware analysis with either sequential or
optimal task layout (Lunniss et al. 2012). We thus compared the results for cache
partitioning against those for (i) no partitioning with a sequential task layout, (ii) no
partitioning with an optimized task layout, (iii) analysis ignoring pre-emption costs,
but assuming that all the tasks shared the cache; (iv) naive cache partitioning with all
tasks allocated the same size partition S/n; (v) no cache. The sequential task layout
reflects the basic un-optimized cache mapping, i.e., where the code for each task is
placed consecutively in memory. In case of unconstrained cache usage, we used the
combined multiset approaches for fixed-priority (14) and for EDF scheduling (31) to
compute the schedulability of the tasksets.

For fixed priority scheduling, we were able to compute the schedulability of all
tasksets (42,000 tasksets per case study) in less than 10 min on a 2.6-GHz Quadcore
processor—despite the exponential worst-case behaviour of the cache partitioning
algorithm (Algorithm 1). For EDF scheduling, the computation for the same config-
urations took about 60 min. This shows a more than acceptable analysis time for the
partitioning algorithm, with a strong dependency on the runtime of the schedulability
test that it uses.

7.1 PapaBench

Most tasks from Tables 1 and 2 have rather short execution times, leading to relatively
high pre-emption costs. These tasks are simple, short control tasks with limited com-
putations and data accesses. Figure 5a and c for fixed priorities and Fig. 6a and c for
dynamic priorities show the success ratio; the number of tasksets based on Papabench
that were schedulable at the various levels of utilization. In the case of instruction

123

622 Real-Time Syst (2016) 52:598–643

Table 2 Execution times and number of UCBs and ECBs for the PapaBench benchmarks

Description UCBs ECBs WCET1 WCET2 Period

I4 Interrupt-modem 3 10 335 µs 790 µs –

I5 Interrupt-spi-1 2 10 287 µs 644 µs –

I6 Interrupt-spi-2 1 4 135 µs 338 µs –

I7 Interrupt-gps 3 26 278 µs 712 µs –

T5 Altitude-control 2 66 654 µs 3860 µs 250 ms

T6 Climb-control 5 210 2375 µs 14, 21 µs 250 ms

T7 Link-fbw-send 2 10 298 µs 634 µs 250 ms

T8 Navigation 10 256 23, 38 ms 138 ms 50 ms

T9 Radio-control 14 256 10, 2 ms 51 ms 50 ms

T10 Receive-gps-data 4 194 3058 µs 20, 5 ms s 25 ms

T11 Reporting 6 242 12, 8 ms 32 ms 100 ms

T12 Stabilization 6 194 2711 µs 16, 1 ms s 50 ms

Data cache with perfect instruction cache (WCET 1) and without instruction cache (WCET 2)

caches (Figs. 5b and 6b), optimal partitioning has similar performance to sequential
task layout with no partitioning, while optimal task layout with no partitioning results
in improved performance. Optimal cache partitioning was only able to improve per-
formance over sequential task layout with no partitioning in a few cases. In the case
of data caches(Figs. 5d and 6d), optimal partitioning outperforms optimal task layout
with no partitioning. The variation of the execution times in this case is rather low,
while the number of UCBs is comparably high. We thus note that the two approaches
are incomparable. Almost no tasksets were schedulable with no cache, except for the
case of data cache with perfect instruction cache as the impact of the data cache alone
is limited.

With respect to the scheduling policy, i.e. fixed priority vs. EDF, there was no sig-
nificant difference in the relative performance of the various approaches. As expected,
the schedulability tests for EDF deem consistently more tasksets schedulable (for all
approaches) than those for fixed priority scheduling.

7.2 Mälardalen and SCADE benchmarks

In contrast to the first case study, the execution times of the tasks from Tables 3 and 4
for the Mälardalen and SCADE Benchmarks are comparably high, and thus the pre-
emption costs relatively low. These tasks exhibit a low locality of memory accesses
but high amounts of computation. In this case, the low cache related pre-emption
delays result in significantly better performance if the cache is not partitioned. Here,
cache partitioning was unable to improve performance over the simple sequence task
layout with no partitioning, as illustrated in Figs. 7a and 8a. Note that in this case there
are no major differences for data and instruction caches, the results of the different
approaches are just more (instruction caches) or less (data caches) accentuated.

123

Real-Time Syst (2016) 52:598–643 623

Table 3 Mälardalen benchmark suite (M) and SCADE benchmarks (S)

Description UCBs ECBs WCET1 WCET2

M Adpcm 24 226 5541 s 6521 s

M Compress 25 114 3664 s 8426 s

M Edn 56 98 244, 8 ms 458, 2 ms

M Fir 28 50 21, 52 ms 497 ms

M Jfdctinit 40 162 13, 89 ms 32, 98 ms

M Ns 17 26 73, 38 ms 168 ms

M Nsichneu 53 256 77, 96 ms 163 ms

M Statemate 3 256 9757 s 20, 07 s

S Cruise control system 25 107 1959 s 3548 s

S Flight control system 70 256 2138 s 4083 s

S Navigation system 45 82 1409 s 3712 s

S Stopwatch 58 130 3786 s 5533 s

S Elevator simulation 40 114 1586 s 2917 s

S Robotics systems 68 256 4311 s 6377 s

Data cache with perfect instruction cache (WCET 1) and without data cache (WCET 2)

Table 4 Mälardalen benchmark suite (M) and SCADE benchmarks (S)

Description UCBs ECBs WCET1 WCET2

M Adpcm 7 242 5856 s 43, 17 s

M Compress 6 242 9740 s 25, 26 s

M Edn 5 98 518, 9 ms 1422 s

M Fir 5 50 42, 65 ms 121 ms

M Jfdctinit 8 242 23, 2 ms 73, 63 ms

M Ns 3 26 133, 7 ms 466, 9 ms

M Nsichneu 8 242 66, 74 ms 178, 3 ms

M Statemate 30 242 8143 s 22, 45 s

S Cruise control system 15 98 1, 77 s 6207 s

S Flight control system 12 242 3, 24 s 11, 02 s

S Navigation system 3 82 2, 96 s 7566 s

S Stopwatch 9 130 4417 s 25, 03s

S Elevator simulation 4 114 1863 s 5432 s

S Robotics systems 5 242 3427 s 22, 45 s

Data cache with perfect instruction cache (WCET 1) and without instruction cache (WCET 2)

7.3 Utilization versus analysis time

The first cache partitioning algorithm (Algorithm 1) only optimizes for schedulability
and ignores the processor utilization. In this section, we evaluate the consequences
of this simplified optimization: how much further can the processor utilization be
reduced and what is the analysis time needed to compute a schedulable partitioning

123

624 Real-Time Syst (2016) 52:598–643

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

(a)

(b)

(c)

(d)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0

 50

 100

 150

 200

 250

 300

 350

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

Fig. 5 Evaluation of PapaBench benchmarks (fixed priority scheduling). a Number of tasksets deemed
schedulable at the different total utilizations (instruction cachewith perfect data cache), b number of tasksets
deemed schedulablewith one approach and not another (instruction cachewith perfect data cache), c number
of tasksets deemed schedulable at the different total utilizations (data cache with perfect instruction cache),
d number of tasksets deemed schedulable with one approach and not another (data cache with perfect
instruction cache)

123

Real-Time Syst (2016) 52:598–643 625

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

(a)

(b)

(c)

(d)

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0

 50

 100

 150

 200

 250

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0

 100

 200

 300

 400

 500

 600

 700

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

Fig. 6 Evaluation of PapaBench benchmarks (EDF scheduling). a Number of tasksets deemed schedulable
at the different total utilizations (instruction cache with perfect data cache), b number of tasksets deemed
schedulable with one approach and not another (instruction cache with perfect data cache), c number of
tasksets deemed schedulable at the different total utilizations (data cache with perfect instruction cache),
d number of tasksets deemed schedulable with one approach and not another (data cache with perfect
instruction cache)

123

626 Real-Time Syst (2016) 52:598–643

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

(a)

(b)

(c)

(d)

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

Fig. 7 Evaluation of Mälardalen benchmarks (fixed priority scheduling). a Number of tasksets deemed
schedulable at the different total utilizations (instruction cachewith perfect data cache), b number of tasksets
deemed schedulablewith one approach and not another (instruction cachewith perfect data cache), c number
of tasksets deemed schedulable at the different total utilizations (data cache with perfect instruction cache),
d number of tasksets deemed schedulable with one approach and not another (data cache with perfect
instruction cache)

123

Real-Time Syst (2016) 52:598–643 627

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

(a)

(b)

(c)

(d)

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0

 50

 100

 150

 200

 250

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

Fig. 8 Evaluation ofMälardalen benchmarks (EDF scheduling). a Number of tasksets deemed schedulable
at the different total utilizations (instruction cache with perfect data cache), b number of tasksets deemed
schedulable with one approach and not another (instruction cache with perfect data cache), c number of
tasksets deemed schedulable at the different total utilizations (data cache with perfect instruction cache),
d number of tasksets deemed schedulable with one approach and not another (data cache with perfect
instruction cache)

123

628 Real-Time Syst (2016) 52:598–643

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

in
cr

ea
se

d
ut

ili
za

tio
n

(%
)

nominal utilization

FP with optimized utilization
FP without optimized utilization

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 0.2
 0.4

 0.6
 0.8

 1

an
al

ys
is

 ti
m

e
(s

ec
on

ds
)

nominal utilization

(a)

(b)

FP with optimized utilization
FP without optimized utilization

Fig. 9 Evaluation of the average utilization PapaBench benchmarks (fixed priority scheduling, instruction
cache with perfect data cache). a Average utilization of schedulable tasksets per nominal utilization, b total
analysis time for 1000 tasksets

with minimum utilization. To this end, we compare the results and analysis times
of both algorithms presented in Sect. 6, i.e. with and without optimizing minimum
processor utilization as a secondary concern.

The results of this comparison are shown in Figs. 9 and 10 for the PapaBench
benchmark suite and in Figs. 11 and 12 for the Mälardalen benchmark suite. Sub-
figures (a) show the average percentage increase in processor utilization (i.e. with
the execution time overhead due to cache partitioning) of schedulable tasksets with
respect to the nominal utilization (i.e. without execution time overhead due to cache
partitioning). Subfigures (b) show the analysis time for all 1000 tasksets generated
per utilization level. The blue line representes the optimal cache paritioning algorithm
without optimized utilization (Algorithm 1) and the pink line with optimized utiliza-
tion (Algorithm 2). We have omitted the results for data cache with perfect instruction
cache as they resemble the results for instruction cache with perfect data cache, with
a less significant difference.

The minimum utilization of a schedulable cache partitioning is at most 1% above
the nominal utilization. The average difference of the results of the two algorithms
is also limited. Mälardalen benchmarks with instruction cache/perfect data cache—
irrespective of the priority assignment—exhibits the largest relative difference in
utilization of around 7% at a utilization level of 0.8, (i.e. an absolute difference in
utilization of less than 0.056). In the case of data caches with perfect instruction cache,
the difference is always below 2%.

123

Real-Time Syst (2016) 52:598–643 629

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2
 0.4

 0.6
 0.8

 1

in
cr

ea
se

d
ut

ili
za

tio
n

(%
)

nominal utilization

EDF with optimized utilization
EDF without optimized utilization

(a)

 0

 50

 100

 150

 200

 250

 0 0.2
 0.4

 0.6
 0.8

 1

an
al

ys
is

 ti
m

e
(s

ec
on

ds
)

nominal utilization

EDF with optimized utilization
EDF without optimized utilization

(b)

Fig. 10 Evaluation of the average utilization PapaBench benchmarks (EDF scheduling, instruction cache
with perfect data cache). aAverage utilization of schedulable tasksets per nominal utilization,b total analysis
time for 1000 tasksets

In contrast to the processor utilization, the difference in the total analysis time is
noticable in all cases, especially if the nominal processor utilization is above 0.8. This
indicates that the algorithm to optimize the processor utilization requires a significant
amount of time to either find an improved cache partitioning or to show the optimality
of the current candidate.We conclude that a small but nevertheless useful improvement
in utilization can be obtained using Algorithm 2; however, that this comes at a cost in
terms of increased runtime of the analysis.

We note that the average increase in utilization which occurs using Algorithm 1 is
similar for both fixed priority and EDF scheduling with the only difference beeing that
the increase drops at a lower nominal utilization for fixed-priority scheduling (0.8) than
for EDF scheduling (0.85). This is because EDF has a schedulable utilization bound
of 1 (much higher than that for fixed priority scheduling), thus a careful tuning of the
partition size to achieve a schedulable partitioning is only required at higher nominal
utilizations. The reduced difference in the nominal utilization also coincides in both
cases (fixed-priority and EDF) with an increase in the analysis time of Algorithm 1.

Note, as both algorithms behave similar in case no schedulable cache partition-
ing exists, the differences in the analysis time are only due to the optimization of
schedulable partitionings.

123

630 Real-Time Syst (2016) 52:598–643

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2
 0.4

 0.6
 0.8

 1

in
cr

ea
se

d
ut

ili
za

tio
n

(%
)

nominal utilization

FP with optimized utilization
FP without optimized utilization

(a)

(b)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.2
 0.4

 0.6
 0.8

 1

an
al

ys
is

 ti
m

e
(s

ec
on

ds
)

nominal utilization

FP with optimized utilization
FP without optimized utilization

Fig. 11 Evaluation of the average utilization ofMälardalen benchmarks (fixed priority scheduling, instruc-
tion cache with perfect data cache). a Average utilization of schedulable tasksets per nominal utilization, b
total analysis time for 1000 tasksets

8 Synthetic tasksets

We also evaluated the effectiveness of cache partitioning on a large number of syn-
thetic tasksets with varying cache configurations and varying task parameters. Our
aim here was to identify those parameters that have a significant influence on the rela-
tive effectiveness of cache partitioning versus a non-partitioned cache. The evaluation
using randomly generated tasksets enables us to fully control all relevant parameters,
which is not possible using the benchmark tasks directly.

The task parameters used in our experiments were randomly generated as follows:

– The default taskset size was 10.
– Task utilizations were generated using the UUnifast (Bini and Buttazzo 2005) algo-
rithm.

– Task periods were generated according to a log-uniform distribution with a factor
of 1000 difference between the minimum and maximum possible task period and
a minimum period of 5 ms. This represents a spread of task periods from 5 ms to 5
s, thus providing reasonable correspondence with real systems.

– Task execution times were set based on the utilization and period selected: Ci =
Ui · Ti .

– Task deadlines were implicit

123

Real-Time Syst (2016) 52:598–643 631

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2
 0.4

 0.6
 0.8

 1

in
cr

ea
se

d
ut

ili
za

tio
n

(%
)

nominal utilization

EDF with optimized utilization
EDF without optimized utilization

(a)

(b)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 0.2
 0.4

 0.6
 0.8

 1

an
al

ys
is

 ti
m

e
(s

ec
on

ds
)

nominal utilization

EDF with optimized utilization
EDF without optimized utilization

Fig. 12 Evaluation of the average utilization of Mälardalen benchmarks (EDF scheduling, instruction
cache with perfect data cache). a Average utilization of schedulable tasksets per nominal utilization, b total
analysis time for 1000 tasksets

– For fixed priority scheduling, priorities were assigned in Deadline Monotonic pri-
ority order.

Tomodel the variation in the execution time,we randomly selected one of the execution
time functions from our benchmarks (see Tables 1 and 3 and Figs. 1 and 2). Note that
this only affects the variation of the execution time for different partition-sizes and Ci

refers to the base execution time when τi can use the complete cache. The tasks are
indexed and processed by the partioning algorithms in decreasing priority order.

The following parameters affecting pre-emption costs were also varied, with default
values given in parentheses:

– The number of cache-sets (CS = 256).
– The block-reload time (BRT = 8µs)
– The cache usage of each task, and thus, the number of ECBs, were generated
using the UUnifast (Bini and Buttazzo 2005) algorithm (for a total cache utilization
CU = ∑

i |ECB|/CS = 4). UUnifast may produce values larger than 1 which
means a task fills the whole cache.

– For each task, the UCBswere generated according to a uniform distribution ranging
from 0 to the number of ECBs times a reuse factor: [0, RF · |ECB|]. The factor
RF was used to adapt the assumed reuse of cache-sets to account for different types
of real-time applications, for example, from data processing applications with little
reuse up to control-based applications with heavy reuse (default RF = 0.3).

123

632 Real-Time Syst (2016) 52:598–643

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

(b)

Fig. 13 Evaluation for the base configuration, fixed priority scheduling. a Number of tasksets deemed
schedulable at the different total utilizations, b number of tasksets deemed schedulable with one approach
and not another

The parameters of the base configuration were chosen according to the actual values
observed in the case studies of the PapaBench benchmarks 7.1 and the Mälardalen
benchmarks 7.2. The results (Figs. 13 and 14) lie between those of the case studies
(Figs. 5a and 7a for fixed priority scheduling, and Figs. 6a and 8a for EDF scheduling
respectively).

Overall, cache partitioning and pre-emption cost analysis with a sequential, un-
optimized task layout have similar performance; however, we note that there are also
a large number of tasksets that can only be scheduled with one of the two approaches,
but not with the other. This shows that cache partitioning is a viable alternative in some
scenarios and detrimental in others. However, we also observe that the optimal task
layout with no partitioning has a clear advantage over optimal partitioning in terms of
the number of schedulable tasksets (see Figs. 13b and 14b).

The choice of scheduling policy has a limited influence on the relative performance
of the various approaches. Under EDF cache partitioning showed improved perfor-
mance relative to no partitioning and a sequential task layout, most likely due to the
higher imprecision in the cache-aware schedulability test for EDF.

Exhaustive evaluation of all combinations of cache and taskset configuration para-
meters is not possible. We therefore fixed all parameters except one and varied the
remaining parameter in order to see how performance depends on this value. The para-
meters we examined were: (i) the pre-emption cost as determined by the block reload

123

Real-Time Syst (2016) 52:598–643 633

0

200

400

600

800

1000

 0.5
 0.6

 0.7
 0.8

 0.9
 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout
optimal cache partitioning

naive cache partitioning
no cache

 0

 50

 100

 150

 200

 250

 300

 0.5
 0.6

 0.7
 0.8

 0.9
 1

N
r.

of
 T

as
ks

et
s

Utilization

with no partitioning - optimal task layout and not with optimal cache partitioning
with optimal cache partitioning and not with no partitioning - sequential layout

with optimal cache partitioning and not with no partitioning - optimal task layout

(b)

(a)

Fig. 14 Evaluation of the base configuration, EDF scheduling. aNumber of tasksets deemed schedulable at
the different total utilizations, b number of tasksets deemed schedulable with one approach and not another

time (BRT) and a scaling factor applied to task periods; (ii) the cache utilization, (iii)
the number of tasks, and (iv) the cache size.

The graphs show the weighted schedulability measure Wy(q) (Bastoni et al. 2010)
for schedulability test y as a function of parameter q. For each value of q, this measure
combines data for all of the tasksets τ generated for all of a set of equally spaced
utilization levels. Let Sy(τ, q) be the binary result (1 or 0) of schedulability test y for
a taskset τ and parameter value q then:

Wy(q) =
(
∑

∀τ

u(τ) · Sy(τ, q)

)
/
∑

∀τ

u(τ) (33)

where u(τ) is the utilization of taskset τ . Thisweighted schedulabilitymeasure reduces
what would otherwise be a 3-dimensional plot to 2 dimensions (Bastoni et al. 2010).
Weighting the individual schedulability results by taskset utilization reflects the higher
value placed on being able to schedule higher utilization tasksets.

8.1 Pre-emption costs

Pre-emption costs are determined by several parameters. Among those, the dominant
factors are the block reload time (BRT) and the range of task execution times. Figure 15

123

634 Real-Time Syst (2016) 52:598–643

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 6 8 10 12 14 16 18 20

W
ei

gh
te

d
M

ea
su

re

Block Reload Time

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 6 8 10 12 14 16 18 20

W
ei

gh
te

d
M

ea
su

re

Block Reload Time

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout

optimal cache partitioning
naive cache partitioning

(b)

Fig. 15 Weighted schedulability measure; varying block reload time from 1 to 20 µs (assuming constant
worst-case execution times). a Fixed priority scheduling, b EDF scheduling

shows the weighted schedulability measure for different block reload times. In our
setting, the break-even point is at a block reload time of about 10μs. For larger block
reload times cache partitioning becomes themore effective approach, while for smaller
block reload times a non-partitioned cache is more effective.

In Fig. 16, we varied the scaling factor w from 0.5 to 10 and hence the range of
task periods given by w[1, 100]ms. Given that the block reload time is constant in
this experiment, the ratio of pre-emption costs to taskset utilization decreases as the
task periods, deadlines and execution times are all scaled up. A lower scaling factor
resembles tasks with shorter execution times (as in Tables 1 and 2), a higher scaling
factor resembles taskswith higher execution times and commensurately longer periods
(as in Tables 3 and 4).

The results indicate that cache partitioning is useful for control-oriented tasks with
short execution times and very short periods and thus relatively high pre-emption
costs compared to their WCET. When the pre-emption costs are low compared to the
WCET, cache partitioning typically does not pay off.

Note that increasing the block reload time typically also leads to increased (non-
pre-emptive) execution times. In these experiments, we have fixed the execution times
to vary only the relation between pre-emption costs and execution time bounds.

The impact of the scheduling policy, i.e. fixed priority vs. EDF, on the relative
performance of the various approaches remains limited.

123

Real-Time Syst (2016) 52:598–643 635

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

W
ei

gh
te

d
M

ea
su

re

Period Generation: w[1ms;100ms]

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

W
ei

gh
te

d
M

ea
su

re

Period Generation: w[1ms;100ms]

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout

optimal cache partitioning
naive cache partitioning

(b)

Fig. 16 Weighted schedulability measure; varying the scale of task periods w[1, 100] from w = 0.5 to
w = 10. a Fixed priority scheduling, b EDF scheduling

8.2 Cache utilization

The cache utilization determines the ratio between the total code size of all the tasks
and the overall cache size. Increasing the cache utilization leads to higher pre-emption
costs, and higher execution times in the case of cache partitioning. Cache partitioning;
however, suffers less from increased cache utilization as can be seen in Fig. 17a.

The results for the non-partitioned system suffer somewhat from the over-
approximation of the UCB/ECB analysis and the pre-emption cost aware response
time analysis: This assumes additional cache misses due to pre-emption even though
the misses have already been accounted for by a prior pre-emption, providing more
pessimistic results at high cache utilization levels.

8.3 Number of tasks

We also conducted experiments varying the number of tasks. Note that it is an unre-
alistic assumption to change the number of tasks without also changing the cache
utilization. This would mean the cache usage of each individual task decreasing as
more tasks are added to the system. Realistically, cache utilization increases with the
number of tasks. Figure 18a shows the results of the evaluation if we increase the
number of tasks and the cache utilization, while keeping the per task cache utilization
constant.

123

636 Real-Time Syst (2016) 52:598–643

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

W
ei

gh
te

d
M

ea
su

re

Cache Utilization

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

W
ei

gh
te

d
M

ea
su

re

Cache Utilization

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout

optimal cache partitioning
naive cache partitioning

(b)

Fig. 17 Weighted schedulability measure; varying cache utilization from 0 to 20. a Fixed priority schedul-
ing, b EDF scheduling

Here, we see that the performance of the non-partitioned approach gradually
degrades with increasing taskset size due to pessimism in the analysis of a large
number of pre-emption levels. We also notice a quicker decline in the case of EDF
compared to fixed priority scheduling. This validates our assumption that the relative
difference is due to a larger imprecision in the cache-aware schedulability test for EDF.

8.4 Cache size

If we only adapt the cache size without changing the relation between the execution
time and the pre-emption costs (or the cache utilization), we would penalise the pre-
emption cost computation: if there are more cache sets, there are also more UCBs
and thus, higher pre-emption costs. The results of the cache partitioning, though, does
not change. To avoid this discrimination, we have increased the number of sets, while
keeping the relation of cache utilization to cache size (CU/CS) constant. The results
are shown in Fig. 19a. For small cache, the partition sizes are very small which leads to
high execution times and thus low schedulability for the paritioning approaches. For
larger caches, the performance of partitioned and non-partitioned systems converge
as the cache utilization decreases.

We note that small caches also lead to a reduced pre-emption overhead as the
number of UCBs is upper bounded by the number of sets: The delay of additional

123

Real-Time Syst (2016) 52:598–643 637

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

W
ei

gh
te

d
M

ea
su

re

Number of Tasks

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

W
ei

gh
te

d
M

ea
su

re

Number of Tasks

no pre-emption cost
no partitioning - optimal task layout

no partitioning - sequ. task layout

optimal cache partitioning
naive cache partitioning

(b)

Fig. 18 Weighted schedulability measure; varying the number of tasks from 2 to 24 with constant ratio of
number of tasks to cache usage. a Fixed priority scheduling, b EDF scheduling

cache reloads that would otherwise contribute to the pre-emption overhead is included
in the non-pre-emptive execution time bound. The performance of the non-partitioned
approaches thus declines from 32 to 128 sets (where the pre-emption overhead is
maximal) as we use the task utilization (without pre-emption costs) as the baseline for
each experiment.

8.5 Precision of the simplified execution-time model

To evaluate the precision of the simplified execution time model, and so obtain a
measure of the pessimism introduced in order to obtain monotonicity of execution
times, we computed for each taskset an optimal cache partitioning (using Algorithm 1)
(i) assuming upper bounds (Fig. 3 blue upper line) and (ii) optimistic lower bounds on
the execution times (Fig. 3 red lower line). The difference in the results—the number
of tasksets that were deemed schedulable using the lower but not the upper bounds—
provides a measure of the imprecision of the simplified execution time model. In the
first case study (PapaBench) 0.21%of all tasksetswere deemed schedulable only using
lower bounds, and 1.21% (Mälardalen and SCADE) for the second case study. Note
that these percentages refer to the uncertainty due to the assumedmonotonicity and not
due to the cache partitioning algorithm. Also note that this does not necessarily mean
that 0.21%, resp. 1.21%, of the tasksets have been falsely deemed not schedulable,
rather these are upper bounds on the imprecision.

123

638 Real-Time Syst (2016) 52:598–643

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128
256

512
1024

W
ei

gh
te

d
M

ea
su

re

Number of CacheSets

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128
256

512
1024

W
ei

gh
te

d
M

ea
su

re

Number of CacheSets

no pre-emption cost
pre-emption cost analysis - optimal task layout

pre-emption cost analysis - sequ. task layout

optimal cache partitioning
naive cache partitioning

no cache

(b)

Fig. 19 Weighted schedulability measure; varying the number of cache sets 64 to 1024 with constant ratio
(CU/CS). a Fixed priority scheduling, b EDF scheduling

9 Conclusions and future work

In this paper, we evaluated the relative performance, in terms of taskset schedulability,
of partitioning the cache on a per task basis versus allowing all tasks to share the entire
cache. Our research contrasts with previous work in this area, in that we used system
schedulability as the performance metric, effective techniques for analysis of cache
related pre-emption delays, and code from real benchmarks as the foundation of our
empirical evaluation.

The main contributions of this paper are as follow:

– Sensitivity analysis ofWCETwith respect to partition size, showing how the precise
WCET bound as a function of the size of the partition can be effectively upper and
lower bounded by monotonic functions.

– Sensitivity analysis of the schedulability of groups of tasks with respect to the size
of a shared partition, showing that the precise schedulability of the task group is
sustainable with respect to the size of the partition whereas the schedulability tests
are not sustainable.

– The introduction of optimal algorithm for cache partitioning which finds a schedu-
lable partioning whenever such a partitioning exists. This algorithm makes use of
the monotonic WCET functions.

– The introduction of an optimal algorithm for cache partitioning which finds
a schedulable partitioning with the minimum processor utilisation whenever a

123

Real-Time Syst (2016) 52:598–643 639

schedulable partitioning exists. This algorithm also makes use of the monotonic
WCET functions.

– A thorough evaluation of the relative performance of optimal per task cache parti-
tioning versus no partitioning for static and dynamic priority assignment.

– An evaluation of the trade-off of mininal processor utilization against increased
analysis time.

Our results showed that for simple, short control tasks such as those from Papabench,
where the pre-emption costs are relatively high compared to the WCET, the perfor-
mance of partitioned and non-partitioned approaches were similar, with the use of
an optimal task layout providing the non-partitioned approach with a small perfor-
mance advantage. By contrast, tasks from the Mälardalen benchmark suite exhibited
lower locality of memory accesses and higher amounts of computation, with larger
WCETs compared to the associated cache related pre-emption delays. For tasksets
based on this benchmark, the non-partitioned approach (with and without cache layout
optimization) outperformed optimal partitioning. These results indicate that in most
cases, the increased predictability of a partitioned cache, in terms of eliminating cache
related pre-emption delays, does not compensate for the performance degradation in
the WCETs.

Our extended evaluation using synthetic benchmark tasksets showed that the key
parameters affecting the relative effectiveness of cache partitioning versus no partition-
ing are: (i) The ratio of pre-emption costs to the overall WCET (partitioning does not
pay offwhen this ratio is small). (ii) TheBlockReloadTime (partitioning ismost effec-
tive when the BRT is large increasing pre-emption costs). (iii) Cache utilization (the
non-partitioned approach suffers from pessimism at high values of cache utilization).
(iv) The number of tasks (with no partitioning the analysis suffers from increasing
pessimism in the computation of pre-emption costs as the number of tasks increases).
Further, we found that the relative performance of the two approaches was largely
unaffected by the number of cache sets. The scheduling policy had a comparably lim-
ited impact on the overall results; however, the increased pessimismof the cache-aware
schedulability analysis for EDF slightly improved the relative performance of cache
partitioning in this case.

Cache partitioning often increases the utilization of the tasksets by allocating each
task a partition which is less than the size of the cache, thus inflating the WCET. We
found that Algorithm 2 which minimizes utilization as a secondary criterion makes
small but useful gains in the average taskset utilization obtained over Algorithm 1
which only optimizes for the primary criteria of schedulability. These gains, however,
come at a cost in terms of an increased runtime for the analysis. For high utilization
tasksets, the differences in the utilization obtained is small, since few partitionings are
schedulable and both algorithms tend towards producing very similar results.

Our evaluation shows that static cache and CRPD analyses are sufficiently precise
to justify unconstrained cache usage; Cache partitioning to increase predictability
is often not required but instead is detrimental to the provable system performance.
Spatial isolation which reduces the certification costs and enables the integration of
independently developed system components remains a strong point in favour of cache
partitioning.

123

640 Real-Time Syst (2016) 52:598–643

This paper compares two extremes, either all of the tasks share the entire cache, or
every task has an individual cache partition. It is clear that between these two extremes,
there is an approach which subsumes and dominates both. This intermediate approach
involves allocating groups of tasks to appropriately sized cache partitions, and then
controlling the layout of those tasks in memory (Lunniss et al. 2012) to enhance
schedulability through a reduction in cache related pre-emption delays within each
partition.

The intermediate approach in between cache partitioning and unconstrained cache
usage is also fundamental for spatial isolation. Isolation is typically required between
groups of tasks constituting a system component, and not in between individual tasks.
The CRPD analysis has recently been extended to hierarchical scheduling to imple-
ment temporal isolation (Lunniss et al. 2014, 2015), but the integration with cache
partitioning, and in particular the optimization of the cache partitioning in this con-
text, to achieve full temporal and spatial isolation is future work.

Recentwork byWang et al. (2015) investigates an alternative intermediate approach
where groups of tasks share a partition and also a preemption threshold (Wang and
Saksena 1999; Saksena and Wang 2000), hence ensuring that tasks using the same
partition cannot preempt each other, thus avoiding CRPD. (Analysis of CRPD has also
been integrated into fixed priority scheduling with preemption thresholds assuming
that the cache is shared Bril et al. 2014).

Our analysis and evaluation is restricted to a single level of cache. This restriction
was necessary to single out the effect of cache partitioning and unconstrained cache
usage and to reduce noise due to interferences from other parts of the cache hierarchy.
Broadening the view to several cache levels, a combination of the predictability of
cache partitioning on one cache level with the performance of unconstrained cache
usage on another one is likely to provide optimal performance.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Altmeyer S, Burguière C (2009) A new notion of useful cache block to improve the bounds of cache-related
preemption delay. In: ECRTS, pp 109–118

Altmeyer S, Maiza C, Reineke J (2010) Resilience analysis: tightening the crpd bound for set-associative
caches. In: LCTES, pp 153–162

Altmeyer S, Davis RI, Maiza C (2011) Cache related pre-emption aware response time analysis for fixed
priority pre-emptive systems. In: RTSS, pp 261–271

Altmeyer S, Davis RI, Maiza C (2012) Improved cache related pre-emption delay aware response time
analysis for fixed priority pre-emptive systems. Real-Time Syst 48(5):499–526

Altmeyer S, Douma R, Lunniss W, Davis RI (2014) Evaluation of cache partitioning for hard real-time
systems. In: ECRTS, pp 15–26

Audsley N, Burns A, Richardson M, Tindell K, Wellings AJ (1993) Applying new scheduling theory to
static priority pre-emptive scheduling. Softw Eng J 8:284–292

Baruah S, Burns A (2006) Sustainable scheduling analysis. In: RTSS, pp 159–168

123

http://creativecommons.org/licenses/by/4.0/

Real-Time Syst (2016) 52:598–643 641

Baruah SK, Mok AK, Rosier LE (1990) Preemptively scheduling hard-real-time sporadic tasks on one
processor. In: Proceedings of the 11th real-time systems symposium. IEEE Computer Society Press,
Los Alamitos, pp 182–190

Bastoni A, Brandenburg B, Anderson J (2010) Cache-related preemption and migration delays: empirical
approximation and impact on schedulability. In: OSPERT, pp 33–44

Bini E, Buttazzo G (2005) Measuring the performance of schedulability tests. Real-Time Syst 30:129–154
Bril RJ, Altmeyer S, van den Heuvel M, Davis R, BehnamM (2014) Integrating cache-related pre-emption

delays into analysis of fixed priority scheduling with pre-emption thresholds. In: RTSS’ 14
Bui BD, Caccamo M, Sha L, Martinez J (2008) Impact of cache partitioning on multi-tasking real time

embedded systems. In: RTCSA, pp 101–110
Burguière C, Reineke J, Altmeyer S (2009) Cache-related preemption delay computation for set-associative

caches—pitfalls and solutions. In: WCET
Busquets-Mataix JV, Wellings A (1997) Hybrid instruction cache partitioning for preemptive real-time

systems. In: RTS
Busquets-Mataix JV, Serrano JJ, Ors R, Gil P, Wellings A (1996) Adding instruction cache effect to schedu-

lability analysis of preemptive real-time systems. In: RTAS, pp 204–212
Davis R, Zabos A, Burns A (2008) Efficient exact schedulability tests for fixed priority real-time systems.

IEEE Trans Comput 57:1261–1276
Dertouzos ML (1974) Control robotics: the procedural control of physical processes. In: IFIP Congress, pp

807–813
Ferdinand C, Heckmann R (2004) aiT: worst case execution time prediction by static program analysis. In:

IFIP, pp 377–384
George L, Voluceau DD, BLCC (France) (1996) Preemptive and non-preemptive real-time uni-processor

scheduling
Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Mälardalen WCET benchmarks—past, present

and future. In: WCET, pp 137–147
Higbee L (1990)Quick and easy cache performance analysis. SIGARCHComputArchit News 18(2):33–44.

doi:10.1145/88237.88241
Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395
Kirk DB, Strosnider JK (1990) Smart (strategic memory allocation for real-time) cache design. In: RTSS,

pp 322–330
Lee CG, Hahn J, Seo YM,Min S, Ha R, Hong S, Park CY, LeeM, Kim CS (1998) Analysis of cache-related

preemption delay in fixed-priority preemptive scheduling. IEEE Trans Comput 47(6):700–713
Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.

J ACM 20:46–61
Lundqvist T, Stenström P (1999) Timing anomalies in dynamically scheduled microprocessors. In: RTSS,

pp 12–21
Lunniss W, Altmeyer S, Davis RI (2012) Optimising task layout to increase schedulability via reduced

cache related pre-emption delays. In: RTNS, pp 161–170
Lunniss W, Altmeyer S, Maiza C, Davis R (2013) Integrating cache related pre-emption delay analysis into

edf scheduling. In: RTAS, pp 75–84
Lunniss W, Altmeyer S, Lipari G, Davis RI (2014) Accounting for cache related pre-emption delays in

hierarchical scheduling. In: RTNS’ 14
Lunniss W, Altmeyer S, Guiseppe L, Davis RI (2015) Cache related pre-emption delays in hierarchical

scheduling. J Real-Time Syst
Meumeu Yomsi P, Sorel Y (2007) Extending rate monotonic analysis with exact cost of preemptions for

hard real-time systems. In: ECRTS, pp 280–290
Mueller F (1995) Compiler support for software-based cache partitioning. SIGPLAN Not 30(11):125–133
Nemer F, Cassé H, Sainrat P, Bahsoun JP, Michiel MD (2006) Papabench: a free real-time benchmark. In:

WCET. http://drops.dagstuhl.de/opus/volltexte/2006/678
Petters SM, Farber G (2001) Scheduling analysis with respect to hardware related preemption delay. In:

Workshop on real-time embedded systems
Plazar S, Lokuciejewski P, Marwedel P (2009)Wcet-aware software based cache partitioning for multi-task

real-time systems. In: WCET. http://drops.dagstuhl.de/opus/volltexte/2009/2286
Puaut I, Decotigny D (2002) Low-complexity algorithms for static cache locking in multitasking hard

real-time systems. In: RTSS, pp 114–124. http://dl.acm.org/citation.cfm?id=827272.829141

123

http://dx.doi.org/10.1145/88237.88241
http://drops.dagstuhl.de/opus/volltexte/2006/678
http://drops.dagstuhl.de/opus/volltexte/2009/2286
http://dl.acm.org/citation.cfm?id=827272.829141

642 Real-Time Syst (2016) 52:598–643

Ripoll I, Crespo A, Mok AK (1996) Improvement in feasibility testing for real-time tasks. Real-Time Syst
11(1):19–39

Saksena M, Wang Y (2000) Scalable real-time system design using preemption thresholds. In: RTSS’ 10
Staschulat J, Schliecker S, Ernst R (2005) Scheduling analysis of real-time systems with precise modeling

of cache related preemption delay. In: ECRTS, pp 41–48
TanY,MooneyV (2007) Timing analysis for preemptivemulti-tasking real-time systemswith caches. Trans

Embed Comput Syst 6(1):7
Vera X, Lisper B, Xue J (2007) Data cache locking for tight timing calculations. ACMTrans Embed Comput

Syst 7(1):4:1–4:38
Wang C, Gu Z, Zeng H (2015) Integration of cache partitioning and preemption threshold scheduling to

improve schedulability of hard real-time systems. In: ECRTS
Wang Y, Saksena M (1999) Scheduling fixed-priority tasks with pre-emption threshold. In: RTCSA, pp

328–338
Wolf JL, Stone HS, Thiébaut D (1992) Synthetic traces for trace-driven simulation of cache memories.

IEEE Trans Comput 41(4):388–410. doi:10.1109/12.135552
Ye Y, West R, Cheng Z, Li Y (2014) Coloris: a dynamic cache partitioning system using page coloring.

In: Proceedings of the 23rd international conference on parallel architectures and compilation, PACT
’14, pp 381–392

Zhang F, Burns A (2009) Schedulability analysis for real-time systems with edf scheduling. IEEE Trans
Comput 58(9):1250–1258

Sebastian Altmeyer is an NWO Veni laureate at the Univer-
sity of Amsterdam and a post-doctoral researcher at University of
Luxembourg. He has received his PhD in Computer Science in 2012
from Saarland University in Saarbrücken, Germany with a thesis
on the analysis of pre-emptively scheduled hard real-time systems.
His research interests are the analysis and verification of hard real-
time systems in general, with a particular focus on worst-case timing
analysis and real-time scheduling.

Roeland Douma is a PhD Student at the Computer Systems Archi-
tecture Group at University of Amsterdam, where he obtained his
BSc (2008) and MSc (2011) in Computer Science. He is working
on high level design space exploration for embedded systems with
caches.

123

http://dx.doi.org/10.1109/12.135552

Real-Time Syst (2016) 52:598–643 643

Will Lunniss was awarded an EngD in Computer Science from
the University of York in 2014. His thesis focused on the effects of
cache related pre-emption delays in embedded real-time systems. He
is currently a Software Engineer at Rapita Systems Ltd. A spin out
company from the University of York, specialising in the verifica-
tion of embedded real-time systems for the aerospace and automotive
industries.

Robert I. Davis is a Senior Research Fellow in the Real-Time Sys-
tems Research Group at the University of York, UK, and an INRIA
International Chair with the AOSTE team at INRIA, Paris, France.
He received his DPhil in Computer Science from the University of
York in 1995. Since then he has founded three start-up companies, all
of which have succeeded in transferring real-time systems research
into commercial products. His research interests include the follow-
ing aspects of real-time systems: scheduling algorithms and analysis
for single processor, multiprocessor and networked systems; analy-
sis of cache related pre-emption delays, mixed criticality systems, and
probabilistic hard real-time systems.

123

	On the effectiveness of cache partitioning in hard real-time systems
	Abstract
	Extended version
	1 Introduction
	2 System model, terminology and notation
	2.1 Static timing analysis
	2.2 Pre-emption costs

	3 Schedulability tests
	3.1 Fixed priority pre-emptive scheduling
	3.1.1 Pre-emption cost aware schedulability test
	3.1.2 Pre-emption cost computation

	3.2 EDF scheduling
	3.2.1 Pre-emption cost aware schedulability test
	3.2.2 Pre-emption cost computation

	3.3 Optimal task layout

	4 Review of cache partitioning for real-time systems
	5 Partition-size sensitivity
	5.1 Partition-size sensitivity (task level)
	5.1.1 Monotonicity

	5.2 Partition-size sensitivity (task group level)

	6 Optimal cache partitioning
	6.1 Schedulability
	6.2 Schedulability and minimal utilization

	7 Case study
	7.1 PapaBench
	7.2 Mälardalen and SCADE benchmarks
	7.3 Utilization versus analysis time

	8 Synthetic tasksets
	8.1 Pre-emption costs
	8.2 Cache utilization
	8.3 Number of tasks
	8.4 Cache size
	8.5 Precision of the simplified execution-time model

	9 Conclusions and future work
	References

