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The application of object-oriented design methods to real-time embedded systems is
seriously hindered by the lack of existing real-time scheduling techniques that can be
seamlessly integrated into these methods. Preemption threshold scheduling (PTS) enables
a scalable real-time system design and thus has been suggested as a solution to this
problem. However, direct adoption of PTS may lead to long priority inversion since object-
oriented real-time systems require synchronization considerations in order to maintain
consistent object states. In this paper, we propose the dual ceiling protocol (DCP) in order
to solve this problem. While DCP exploits both priority ceilings and preemption threshold
ceilings, this is not a straightforward integration of existing real-time synchronization
protocols for PTS. We present the rationale for the locking conditions of DCP and show
that it leads to the least blocking and response times by comparison with other real-
time synchronization protocols. We also present its blocking properties and schedulability
analyses. We implemented PTS and DCP in a real-time object-oriented CASE tool and
present the associated experimental results, which show that the proposed protocol is a
viable solution that is superior to other real-time synchronization protocols for PTS.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Real-time embedded systems are becoming extremely complex and sophisticated with the broadening of their application
domain, due to the rapid convergence of automotive, consumer electronics, telecommunication, and computer technologies.
In order to meet the enhanced safety, reliability, and performance requirements of such real-time embedded systems, it
is inevitable that real-time embedded system developers will exploit well-founded systematic methods for system design,
synthesis, and tuning at various stages of system development. Particularly, in the late stages, real-time embedded sys-
tem developers need rigorous design analysis and implementation techniques including real-time scheduling theory and
run-time system modeling, since violations of performance requirements and resource constraints in complex real-time
embedded systems often appear in the late phases of system development. Without those rigorous techniques, real-time
embedded system developers must resort to a series of labor intensive and erroneous system tuning processes. Such pro-
cesses include hand-tweaking of task code, re-assigning task priorities, and re-implementing problematic tasks as a last
resort.

Recently, preemption threshold scheduling (PTS) [1–5] has attracted the attention of real-time system practitioners, since
it facilitates system tuning processes. PTS is an extension of preemptive fixed-priority scheduling; each task has an extra
scheduling attribute, called a preemption threshold, in addition to a priority. The preemption threshold of a task is its run-
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time priority, which is maintained from when the task is dispatched until its execution terminates, so it regulates the degree
of preemptiveness in fixed priority scheduling. If the threshold of each task is the same as its original priority, then PTS is
equivalent to preemptive fixed priority scheduling, and if each task has the highest threshold in a system, it is equivalent
to non-preemptive scheduling. PTS is very effective in system tuning processes, since it enhances real-time schedulability,
eliminates unnecessary preemptions, reduces the number of tasks since a group of non-preemptive tasks can be regarded
as a single task, and enables a scalable real-time system design [1].

However, PTS cannot be directly used in complex real-time embedded systems, since real-time synchronization prob-
lems remain unsolved. To solve this problem, we proposed various real-time synchronization protocols while investigating
various real-time synchronization problems under PTS [2]. Specifically, we integrated the priority ceiling protocol (PCP) [3]
into PTS. Since tasks in PTS have dual scheduling attributes, it is not obvious how these two scheduling attributes should
be used for locking conditions. We proposed two protocols, namely PC-PCP (PCP with priority ceiling) and PTC-PCP (PCP
with preemption threshold ceiling) [2]; the former employs priority ceilings while the latter employs preemption threshold
ceilings. We also showed that PC-PCP is better than PTC-PCP in terms of task response times, since the latter may incur
unnecessary blockings [2].

In this paper, we propose a more advanced but still practical real-time synchronization protocol, namely dual ceiling
protocol (DCP). DCP exploits both priority ceilings and preemption threshold ceilings but it is not a straightforward integra-
tion of PC-PCP and PTC-PCP. We present the rationale for the locking conditions of DCP by comparison with those of other
protocols, and obtain insights into the underlying principles of real-time synchronization protocols. We show that DCP leads
to the least blocking and minimum response times compared to other real-time synchronization protocols. We also provide
its blocking properties and schedulability analyses based on worst-case response time analyses.

We implemented PTS and DCP in a real-time object-oriented CASE tool and present the associated experimental results.
The implementation established that the implementation complexity is the same as that of PC-PCP and PTC-PCP. The run-
time overhead is also the same as that of the other protocols. As a task set application, we used an industrial private branch
exchange (PBX) system [4,5], which was also implemented in a real-time object-oriented language based on UML 2.0 [6].
The results show that DCP leads to least blocking times for tasks and also leads to reduced response times of higher priority
tasks.

1.1. Related work

The notion of preemption thresholds was introduced by Lamie and a complete scheduler mechanism was implemented in
the ThreadX kernel from Express Logic [7] and the SSX kernel from REALOGY [8]. Saksena and Wang formulated PTS with its
schedulability analysis and accompanying characteristics such as a non-preemptive relationship [1,9]. As PTS became known
as an effective scheduling policy that can solve the scalability problem of preemptive fixed priority scheduling, there were
various research activities that aimed to apply PTS to real-time embedded systems. Representative examples are solution
space search for priorities and preemption thresholds [10], fault tolerance mechanisms [11], low-power scheduling [12], and
application to SoC [13].

Real-time synchronization protocols under PTS were addressed in [13] and in our previous work [2]. While [13] applied
the stack-based resource allocation policy (SRP) [14] to PTS in the context of dynamic-priority scheduling, this protocol
reduces to PC-PCP and PTC-PCP of our previous work [2] when it is applied to fixed-priority scheduling. In dynamic-
priority scheduling, there is no fixed priority for each task and thus there is no way to determine the mutex ceilings.
To solve this problem, SRP exploits the preemption level, which must be assigned to each task as a kind of virtual fixed
priority. Preemption levels are defined such that a task with a lower preemption level cannot preempt a task with a higher
one [14]. According to this definition, either priorities or preemption thresholds in PTS can be used as preemption levels.
Consequently, if priorities are allowed to be preemption levels, then SRP becomes equivalent to PC-PCP; if preemption
thresholds are allowed to be preemption levels, then SRP becomes equivalent to PTC-PCP. On the other hand, PC-PCP and
PTC-PCP [2] are also inferior to the protocol proposed in this paper, since they lead to more blockings and larger response
times; this is investigated in this paper.

The protocol proposed in this paper, namely DCP, is an extension of the effective priority inheritance protocol (EPI) in [2].
EPI is an adapted version of the basic priority inheritance protocol (BPI) in [3] for PTS. While EPI solves the uncontrolled
priority inversion problem in PTS, as shown in [2], it can lead to deadlocks as with BPI. DCP is also an extension of the
priority ceiling protocol (PCP) in [3] for PTS. To the best of our knowledge, PCP has been extended for PTS only in our
previous work [2].

There have been several research activities directed towards integrating schedulability analysis techniques into object-
oriented design methodologies [15–17] based on the ROOM (real-time object oriented modeling) methodology [18]. The goal
of such integration is the automated synthesis of implementations that adhere to timing constraints from real-time object
models. Saksena, et al. proposed a method that uses a one-to-one mapping between objects and tasks for schedulability [19]
and improved the performance via PTS to reduce the adverse effects of context switching in the automated implementa-
tion [17]. In our previous work, we presented a systematic schedulability-aware method that can generate a multi-thread
implementation from a given real-time object-oriented design model [4,5]. Unlike the aforementioned approaches, the map-
ping relationship between objects and tasks is not biased to many-to-one or one-to-one in our approach. Instead, feasible
task sets are automatically identified from a set of objects. Since such an approach is primarily based on real-time synchro-
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Table 1
Summary of notations for the task model.

Notation Description

τi A task
Ti The period of task τi

Ci The worst-case execution time of task τi

pi The fixed-priority of task τi

pti The preemption threshold of task τi

epi The effective priority of task τi

Mi A mutex (binary semaphore)
P (Mi), V (Mi) Indivisible lock and unlock operation of mutex Mi

p(Mi) The priority ceiling of mutex Mi

pt(Mi) The preemption threshold ceiling of mutex Mi

M A mutex with the largest priority ceiling of all mutexes that are currently locked by any tasks except the currently running task

M A mutex with the largest preemption threshold ceiling of all mutexes that are currently locked by any tasks except the currently
running task

di,k The worst-case execution time of the critical section of task τi protected by mutex Mk

Bi The worst-case PTS blocking time of task τi

βi The worst-case synchronization blocking time of task τi

Li Priority level-i busy period
Si(q) The start time of (q + 1)-th instance of task τi in Li

Fi(q) The finish time of (q + 1)-th instance of task τi in Li

Ri The worst-case response time of task τi

nization under PTS, it needs to be comprehensively addressed. Note that an object-oriented design produces a number of
object locks to maintain the consistency of object states and the run-to-completion semantics of the finite state machine
for each object.

The remainder of the paper is organized as follows. Section 2 describes the task model and presents the necessary defi-
nitions for the discussion. Section 3 describes the protocol specification of DCP and Section 4 shows the blocking properties
of DCP. In Section 5, we present the rationale for the locking conditions of DCP by comparison with those of other real-
time synchronization protocols. Section 6 presents the schedulability analysis algorithm for the proposed protocol. Section 7
describes the results of an empirical study to evaluate our analyses. We conclude the paper in Section 8.

2. Task model

The task model is the same as the one used in traditional real-time scheduling [3,9,20] except that each task has a pre-
emption threshold as its scheduling attribute, in addition to its priority. Specifically, we assume a uniprocessor environment
and we allow only properly nested mutexes. We also assume a system with a fixed set of tasks, each of which has a fixed
period, a known worst-case execution time, a fixed priority, and a preemption threshold. A higher priority is denoted by a
larger value, as befits the intuitive meaning of a higher threshold. The notations and associated descriptions used in this
paper are summarized in Table 1.

Under PTS, each task τi has a preemption threshold pti , in addition to its regular priority pi . Note that it is meaningful to
assign a task a preemption threshold not less than its regular priority, since a preemption threshold is used as an effective
run-time priority to control unnecessary preemptions. Since the effective priority of a task is changed at run-time, due to
priority inheritance and task dispatching under PTS, a precise definition is desirable. Conceptually, the effective priority epi
of a task τi is the priority that is used by the kernel scheduler for selecting a task to be dispatched. Under PTS, effective
priorities vary according to task states. It has the following operational definition:

Effective priority epi of task

τi = pi if τi is released in its period and not yet dispatched;

otherwise, max(pti, p1, p2, . . . , p j) such that τ1, τ2, . . . , τ j are tasks blocked by τi .

In traditional priority-based preemptive scheduling, tasks may experience blocking due to synchronization. Under PTS, tasks
may encounter another type of blocking which we name PTS blocking. Task τi is said to be in PTS blocking if it is blocked
by a lower priority task with a preemption threshold higher than pi . We denote the duration of PTS blocking by Bi while
we denote the duration of synchronization blocking by βi .

3. Protocol specification of DCP

We define DCP under PTS with priority ceilings by combining an offline ceiling protocol and three online protocols in a
similar manner to that described in [21].
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Fig. 1. (a) Uncontrolled priority inversion in the existing priority recovery protocol [2,3,22,23], (b) corrected effective priority recovery in DCP.

Protocol DCP.

• Offline ceiling protocol. Each mutex Mi is assigned a priority ceiling p(Mi) and a preemption threshold ceiling pt(Mi) as
follows:

p(Mi) = max{p j | τ j is such a task that may require mutex Mi}
pt(Mi) = max{pt j | τ j is such a task that may require mutex Mi}.

• Online effective priority inheritance protocol. When the currently executing task τi is blocked by task τ j , the effective
priority of task τi is set as follows:

epi = ep j .

• Online effective priority recovery protocol. When the currently executing task τi exits its critical section, the effective
priority of task τi is set as follows:

epi = max(pti, epk)

where task τk is any task that is still blocked by task τi .
• Online locking protocol. When the currently executing task τi tries to lock an unlocked mutex, the following rule is

applied; let mutex M be a mutex with the maximum priority ceiling of all mutexes that are currently locked by any
tasks except task τi . Task τi is allowed to lock a mutex only when the following condition is true:

C1 ∨ C2

where C1: p(M) < pi and

C2: pt(M) < pti .

If the condition is false, then task τi is blocked by the task that has locked mutex M .

The second and third parts of DCP are the effective priority inheritance protocol (EPI) that we previously proposed in [2].
We have shown that EPI can prohibit the uncontrolled priority inversion problem under PTS in [2]. Note that the online
effective priority recovery protocol is different from the one presented in [2], which corrects for the following anomaly: all of
the existing priority recovery protocols in [2,3,22,23] state that when task τi exits from a critical section, task τi recovers the
priority that “it had before entering that critical section”. This statement is problematic since any higher priority task may
have been blocked after task τi entered that critical section. In such a case, the effective priority of task τi may have been
raised to more than the priority it had before entering that critical section, thus such a raised priority must be maintained
after task τi exits that critical section. Fig. 1(a) shows this case. At time t6 when task τ1 exits its critical section, task τ1
recovers its priority at time t2, which is ep1. Then, task τ2 preempts task τ1 while task τ3 is still waiting for task τ1 to
unlock mutex M1, thus there is an uncontrolled priority inversion [3] after time t6. Fig. 1(b) illustrates how DCP prevents
such a priority inversion.
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Fig. 2. (a) Deadlock in the effective priority inheritance protocol (EPI), (b) deadlock prevention in DCP.

The online locking protocol does not use the notion of the system ceiling mentioned in [2,14]. The system ceiling is
defined as a system-wide scheduling attribute that is dynamically set to the maximum priority ceiling of all currently locked
mutexes in the system. If we adopt the notion of a system ceiling, we can introduce a system priority ceiling and a system
preemption threshold ceiling; the system priority ceiling is defined in the same manner as the system ceiling in [2] and the
system preemption threshold ceiling is defined similarly by replacing priority ceilings with preemption threshold ceilings.
The left term p(M) of condition C1 is in fact the system priority ceiling. However, note that the left term pt(M) is not
the system preemption threshold ceiling. This is because mutex M may not be the mutex with the maximum preemption
threshold ceiling of all currently locked mutexes. As will be discussed in Section 5, this is the reason that DCP is superior
to the existing ceiling protocols for PTS.

4. Blocking properties of DCP

In this section, we discuss the blocking properties of DCP. As with other real-time synchronization protocols such as PC-
PCP and PTC-PCP, DCP prevents deadlock and multiple synchronization blockings. We prove these properties in the following
subsections.

4.1. Prevention of deadlock

While EPI can effectively solve the uncontrolled priority inversion problem [2], it can incur a deadlock situation, as
illustrated in Fig. 2(a). In this example, both tasks τ1 and τ2 require mutex M1, both tasks τ2 and τ3 require mutex M2, and
both tasks τ3 and τ1 require mutex M3. As shown, task τ3 waits for task τ2 to release mutex M2 at time t6, task τ2 waits
for task τ1 to release mutex M1 at time t7, and task τ1 waits for task τ3 to release mutex M3 at time t8, while tasks τ1, τ2,
and τ3 are holding M1, M2, and M3, respectively. Therefore, circular waiting occurs at time t8 and thus a deadlock occurs.
Fig. 2(b) shows how DCP prevents such a deadlock. The following theorem proves that DCP always prevents a deadlock.

Theorem 1. DCP prevents deadlock.

Proof. We show that circular waiting cannot occur in DCP. Circular waiting cannot occur if each task does not enter its
critical section until all mutexes it can use are unlocked. If any mutex that task τi can use is locked, it follows that p(M) � pi
and pt(M) � pti . That is, both conditions C1 and C2 are false and thus C1 ∨ C2 is also false. This means that each task does
not enter its critical section while any mutex it can use is locked in DCP. Therefore, circular waiting cannot occur and thus
deadlock is prevented. �
4.2. Prevention of multiple synchronization blockings

Fig. 3(a) shows an example of multiple synchronization blockings in EPI. In this example, both tasks τ3 and τ4 are
blocked by task τ1 during period (t6, t7) and they are also blocked by task τ2 during period (t9, t10). Note that multiple
synchronization blockings refer to a situation where a task is blocked by more than two tasks which execute their critical
sections. Fig. 3(b) shows how DCP prevents such multiple synchronization blockings where both tasks τ3 and τ4 are blocked
only by task τ1 during period (t6, t7). The following theorem proves that DCP always prevents multiple synchronization
blockings.
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Fig. 3. (a) Multiple synchronization blockings in EPI, (b) multiple synchronization blockings prevention in DCP.

Theorem 2. DCP prevents multiple synchronization blockings.

Proof. We prove the theorem by contradiction. Suppose that a task encounters twice the synchronization blocking in DCP.
Without the loss of generality, suppose that after task τi has arrived, two lower priority tasks τ1 and τ2 sequentially execute
their critical sections for mutexes M1 and M2. Tasks τ1 and τ2 can execute after task τi has arrived only when they inherit
the effective priority of a task τ j such that p j � pi . This involves two cases: 1) task τ2 inherits ep j and then τ1 inherits ep j

transitively and 2) tasks τ1 and τ2 inherit ep j independently.
Case 1: transitive effective priority inheritance. This case implies that task τ2 locks mutex M2 and then tries to lock

mutex M1. When task τ2 locks mutex M2, mutex M1 has been locked by task τ1 and thus it flows that p(M) � p2 and
pt(M) � pt2. That is, both conditions C1 and C2 are false and thus C1 ∨ C2 is also false. Accordingly, task τ2 cannot lock
mutex M2. This is a contradiction.

Case 2: independent effective priority inheritance. This case implies that task τ j with p j � pi requires mutexes M1

and M2. When task τ2 locks mutex M2, mutex M1 has been locked by task τ1 and thus it follows that p(M) � p j and
pt(M) � pt j . That is, both conditions C1 and C2 are false and thus C1 ∨ C2 is also false. Accordingly, task τ2 cannot lock
mutex M2. This is a contradiction. �
5. Rationale for DCP locking conditions

It is not obvious why we used both priority and preemption threshold to define ceilings of mutexes in DCP. Nor is it
obvious why DCP does not exploit the notion of system ceilings as in [2,14]. In fact, we can use only a priority ceiling or
only a preemption threshold ceiling while exploiting the notion of system ceilings for this purpose. The former protocol
with a priority ceiling is PC-PCP, and the latter one with a preemption threshold ceiling is PTC-PCP, as presented in [2]. In
this section, we show that DCP is superior to both PC-PCP and PTC-PCP, since DCP results in the least blocking.

The weaker the locking condition, the lower the blocking probability. This is because the locking condition allows any
currently running task to successfully proceed with its execution without blocking. Consider the simple locking condition
C0, which is that any mutex is not locked. This locking condition is trivial, since there is no reason for a task to be blocked
if no mutex is locked. In fact, the locking condition C0 was introduced in a real-time synchronization protocol named
NPCS (non-preemptive critical section) [24]. As a real-time synchronization protocol, NPCS prevents deadlock and multiple
synchronization blockings [3]. However, this protocol is sub-optimal in that the probability of unnecessary blocking is too
high. Thus, PCP was introduced, such as in [3]. In fact, the real-time synchronization protocol has evolved to have a weaker
locking condition, while still preventing deadlock and multiple synchronization blockings.

The locking conditions of NPCS, DCP, PC-PCP, and PTC-PCP are as follows:

• NPCS: C0,
• DCP: C1 ∨ C2,
• PC-PCP: C1,
• PTC-PCP: C3,
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Fig. 4. Relationships of locking conditions: C0 for NPCS, C1 for PC-PCP, C1, C2 for DCP, and C3 for PTC-PCP.

Fig. 5. (a) Unnecessary blocking in PC-PCP and PTC-PCP, (b) prevention of unnecessary blocking in DCP.

where C0: any mutex is not locked,

C3: pt(M) < pti and mutex M is the mutex with the maximum preemption threshold

ceiling of all mutexes that are currently locked by any tasks except task τi .

Fig. 4 shows the relationships of these locking conditions. Note that C3 ⇒ C2 since pt(M) � pt(M). Fig. 4 shows that
DCP has the weakest locking condition of all other protocols. Accordingly, it implies that DCP results in lesser blocking than
both PC-PCP and PTC-PCP. We can introduce a new locking condition C1 ∨ C3 by directly integrating PC-PCP and PTC-PCP.
However, Fig. 4 also implies that this condition causes more blocking, since C1 ∨ C3 is a subset of the locking conditions of
DCP.

Fig. 5 illustrates how DCP prevents unnecessary blockings in PC-PCP and PTC-PCP. Fig. 5(a) shows that task τ2 is blocked
by task τ1 during period (t3, t4) since mutex M1 is locked in PC-PCP or PTC-PCP. Although mutex M1 is required by task
τ3 that has a higher priority than task τ2, pt3 is no higher than p3 and thus task τ3 cannot preempt task τ2. Therefore,
blocking task τ2 is entirely unhelpful in preventing deadlock or multiple synchronization blockings. This blocking also causes
unnecessary context switches between task τ2 and τ1 and increases the response time of task τ2. Since there is no decrease
in the response time of task τ1 while the response time of task τ2 increases, this kind of unnecessary blocking increases
the average response times of tasks. Fig. 5(b) shows how DCP prevents such unnecessary blocking.

6. Schedulability analysis

In this section, we present schedulability analysis algorithms for DCP based on the worst-case response time analy-
sis [25]. In DCP, the worst-case response time Ri is always less than or equal to the value calculated from the following
equations:

Bi = max{C j | ∀τ j, pt j � pi > p j} (1)

βi = max
{

d j,k
∣∣ (∀τ j, pt j < pi) ∧ {∀Mk,

(
p(Mk) � pi

) ∧ (
pt(Mk) � pti

)}}
(2)

Li = Bi + βi +
∑

∀ j, p j�pi

⌈
Li

T j

⌉
· C j (3)

q = 0,1, . . . ,

⌊
Li

⌋
(4)
Ti
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Si(q) = Bi + βi + q · Ci +
∑

∀ j, p j>pi

(
1 +

⌊
Si(q)

T j

⌋)
· C j (5)

Fi(q) = Si(q) + Ci +
∑

∀ j, p j>pi

{⌈
Fi(q)

T j

⌉
−

(
1 +

⌊
Si(q)

T j

⌋)}
· C j (6)

Ri = max
{

Fi(q) − q · Ti
}

(7)

where Li is a busy period [25] of task τi and d j,k is the worst-case execution time of the critical section of task τ j protected
by mutex Mk .

The schedulability analysis for the worst-case task response time under PTS without synchronization blocking was pre-
sented in [9] and its error was corrected in [11]. If we set the worst-case synchronization blocking time βi to zero in the
above equations, then the equations reduce to those presented in [11]. Therefore, we only show the formulations regard-
ing βi : how it is formulated and how βi is included in the other equations.

First, we show why βi is formulated as in Eq. (2). From Theorem 2, at most one task τ j blocks task τi during one outer-
most critical section d j,k . Since task τi must be able to preempt τ j , it follows that ∀τ j , pt j < pi . Task τi can be blocked in
two different ways. (1) Directly, when it tries to enter a critical section or (2) transitively, via task τh that task τi cannot
preempt, since pth � pi . Let the mutex locked by task τ j that is causing blocking of task τi be Mk . Then, the condition
for the former case is (p(Mk) � pi) ∧ (pt(Mk) � pti), while that of the latter case is (p(Mk) � ph) ∧ (pt(Mk) � pth). Since
ph > pti , it follows that ph > pi and pth > pti . Therefore, it follows that (p(Mk) � pi) ⇐ (p(Mk) � ph) and (pt(Mk) � pti) ⇐
(pt(Mk) � pth). That is, the former case includes the latter case, which implies Eq. (2).

Here, we show why βi is included as in the above equations. The calculation of the worst-case response time Ri involves
four steps. Step 1 is to calculate the busy period Li via Eqs. (1)–(3). Step 2 is to calculate the possible values of q, which is
the index number of task execution instances in busy period Li , via Eq. (4). Step 3 is to iteratively calculate the start time
Si(q) via Eq. (5) and the finish time Fi(q) via Eq. (6) for each q value. Step 4 is to get the last value Ri via Eq. (7). Here,
steps 2 and 4 are independent of βi and thus we only need to consider step 1 for Li in Eq. (3) and step 3 for Si(q) and
Fi(q) in Eqs. (5) and (6).

We first consider how βi is included in Eq. (3). By Theorem 2, task τi encounters at most one synchronization blocking
as PTS blocking. Accordingly, the blocking duration of task τi is composed of one PTS blocking time and one synchronization
blocking time. Therefore, βi is included in the same manner as Bi , which implies Eq. (3).

Lastly, we consider how βi is included in Eqs. (5) and (6). Task τi can be blocked by at most one task, due to the locked
mutexes, by Theorem 2. If task τi is blocked by task τ j before starting its execution, task τi cannot start its execution
while task τ j is blocking it. Therefore, task τi can encounter a synchronization blocking either before or after starting its
execution. Then, we need to find the worst case with respect to the response time of task τi , which is the former case due
to Theorem 3.

Theorem 3. If a task is blocked for a given duration under PTS, the worst-case response time when it is blocked before starting its
execution is always longer than when it is blocked after starting its execution.

Proof. We show that the set of tasks that can preempt task τi before task τi starts its execution is a superset of the set of
tasks that can preempt task τi after task τi starts its execution. Let the former task set be A and the latter be B . A task τ j
from A is a task that satisfies p j > pi while a task τk from B is a task that satisfies pk > pti . Since each task τi satisfies
pti � pi under PTS, it flows that A ⊃ B and thus the theorem has been proved. �

Therefore, βi is transitively included in Fi(q), since it is included in Si(q) and Si(q) is included in Fi(q). Since PTS
blocking and synchronization blocking can occur independently, βi should be added independently with Bi , which implies
Eqs. (5) and (6).

7. Experimental evaluation

In this section, we evaluate the blocking and response time performance of DCP. We compare DCP with other real-
time synchronization protocols, which are specifically PC-PCP and PTC-PCP [2]. We integrated PTS and PC-PCP, PTC-PCP, and
DCP into a real-time object-oriented CASE tool, which is IBM Rational RoseRT [26]. The integration established that the
implementation complexity of DCP is the same as that of PCP, which proves that DCP is practical. Specifically, the condition
C1 is implemented in the same manner as in PC-PCP. The condition C2 is implemented with a system threshold ceiling as
in PTC-PCP; its value is set only when the system priority ceiling is updated to p(Mi), while its value is set to pt(Mi).

As a task set application, we used an industrial private branch exchange (PBX) system, which was presented in [4,5].
The system was implemented in a real-time object-oriented language based on UML 2.0 [6], and the development environ-
ment was IBM Rational RoseRT [26]. To simplify the presentation, we use a simplified task set; only three wireless phone
extensions were supported. The task set is presented in Table 2; the preemption thresholds were assigned according to the
maximum preemption threshold assignment algorithm presented in [9].
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Table 2
Task Set for PBX system.

Task ID Period Deadline WCET Priority Threshold Mutex accesses

1 8000 8000 400 1 2 {P (M3), V (M3)}
2 8500 8500 420 2 2 {P (M4), V (M4), P (M2), V (M2)}
3 5000 5000 300 3 3 {P (M3), V (M3)}
4 4000 4000 500 4 8 {P (M3), V (M3)}
5 10000 10000 400 5 8 {P (M4), V (M4)}
6 6000 3000 900 6 6 {P (M1), V (M1), P (M2), V (M2)}
7 6000 2500 900 7 7 {P (M1), V (M1), P (M2), V (M2)}
8 6000 2000 900 8 8 {P (M1), V (M1), P (M2), V (M2)}

Fig. 6. (a) Average blocking times, (b) average response times, (c) maximum blocking times, and (d) maximum response times.

Fig. 6 (a) and (b) show the average blocking and response time of each task. The results show that the average blocking
and response times of higher priority tasks 5–8 were reduced in DCP by comparison with the other protocols. Specifically,
the average blocking times of higher priority tasks 5–8 were reduced by 39.4% and 42.8% by comparison with PC-PCP and
PTC-PCP, respectively. The average response times of these tasks were also reduced by 13.2% and 14.7% by comparison with
PC-PCP and PTC-PCP, respectively. On the other hand, we can see that the average response time of task 4 was increased by
72.4%. This is because the lower priority tasks experience a greater interference time, since the higher priority tasks in DCP
are less blocked and thus they interfere with the lower priority tasks more.

Fig. 6 (c) and (d) show the maximum blocking and response time of each task. The results are similar to the average
blocking and response time of each task. The major difference is that the maximum response time of task 4 was dramatically
increased by 168% in DCP by comparison with both PC-PCP and PTC-PCP. This is because it is inevitable that the response
times of the lower priority tasks increase as the response times of the higher priority tasks decrease, as in our explanation
of the average case.

8. Conclusion

Although object-oriented design methods are widely used in contemporary software development, their application to
real-time embedded systems has been limited due to the lack of traditional real-time scheduling techniques that can be
seamlessly integrated into these methods. Preemption threshold scheduling (PTS) has been suggested as a solution since it
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improves both run-time overhead and schedulability. However, direct adoption of PTS may lead to long priority inversion
since object-oriented real-time systems require synchronization considerations to maintain consistent object states.

We proposed the dual ceiling protocol (DCP) to solve this problem. DCP is a real-time synchronization protocol for PTS,
which leads to least blocking and worst-case response times by comparison with known real-time synchronization protocols
for PTS. DCP exploits both priority ceilings and preemption threshold ceilings, but it is not a straightforward integration of
PC-PCP and PTC-PCP, which are existing real-time synchronization protocols for PTS. We presented the rationale for the
locking conditions of DCP by comparison with the locking conditions of other protocols. We also provided its blocking
properties and schedulability analyses based on worst-case response time analyses.

We have implemented PTS and DCP in a real-time object-oriented CASE tool and presented the associated experimental
results. This work is based on our previous implementation of a CASE tool that is capable of deriving tasks from an object-
oriented design model [4,5]. This tool is an extension of the RoseRT CASE tool [26]. We showed that the implementation
complexity of DCP is the same as that of PC-PCP and PTC-PCP and the run-time overhead is the same as that of the other
protocols. The experimental results showed that DCP leads to least blocking times for tasks, which also leads to reduced
response times of higher priority tasks.
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