
Vertically integrated analysis and transformation for embedded software

John Regehr
School of Computing, University of Utah

Abstract

Program analyses and transformations that are more ag-
gressive and more domain-specific than those traditionally
performed by compilers are one possible route to achiev-
ing the rapid creation of reliable and efficient embedded
software. We are creating a new framework for Vertically
Integrated Program Analysis (VIPA) that makes use of in-
formation gathered at multiple levels of abstraction such
as high-level models, source code, and assembly language.
This paper describes our approach and shows how and why
it will help create better embedded software.

1 Introduction

Embedded software needs to meet stringent require-
ments such as high reliability, minimal use of resources,
and short development time. The problem is that these re-
quirements are not only individually difficult, but are also in
tension. This position paper describes Vertically Integrated
Program Analysis (VIPA), a partial solution to this prob-
lem. VIPA is a new framework that supports high-level op-
timizations and analyses that are more aggressive and more
domain specific than those traditionally performed by com-
pilers. Its distinguishing features are:

• Integration of tools operating at multiple levels of ab-
straction: the model level, source code level, and bi-
nary level.

• Extraction of as much information as possible from
each tool, as opposed to the common practice of using
program analyses separately to produce binary results,
e.g., “the network acceptor thread has the potential for
stack overflow.”

• Support for coarse-grain transformations such as
merging many logically concurrent activities into a
few physical threads, rather than traditional fine-grain
compiler optimizations.

• The developer gets to keep using a standard embedded
toolchain — we are not proposing to replace or even
modify the compiler, linker, etc.

Embedded software needs high-level transformations not
because they can be used to create systems that are more ef-
ficient than one-off software written by domain experts, but
rather because optimizations permit developers who are not
necessarily domain experts to create straightforward, un-
tuned code while being confident that the eventual runtime
system will be efficient. For example, consider a scenario
where a developer wants to call a useful library routine, for
example one that is part of a signal processing suite. This
developer should not have to worry that (1) a lot of dead
code will be linked in along with the called routine, (2)
synchronization code in the library will lead to inefficiency
even when the routine cannot access any shared data, (3)
new and unexpected failure modes will be created due to
the possibility of numeric overflow, underflow, or divide-
by-zero, or (4) the routine contains latent bad behaviors not
likely to be discovered during testing, such as executing for
much longer than the expected run time when an iterative al-
gorithm fails to converge quickly. Appropriate static analy-
ses and transformations can eliminate the potential for each
of these errors and inefficiencies. Figure 1 provides a few
more examples of useful analyses and transformations that
we hope to eventually incorporate into VIPA.

In the next section we provide further motivation for
VIPA; Section 3 describes our approach in more detail. Sec-
tion 4 gives several examples of vertically integrated pro-
gram analysis. In Section 5 we outline several research
challenges that we are addressing. Section 6 compares
VIPA to related efforts and Section 7 concludes.

2 Motivation

Our work is driven by four main observations.
First, information is both lost and gained at each of the

three levels of abstraction — model, source code, and ex-
ecutable system. For example, time constraints and mutu-
ally exclusive modes that are apparent at the model level are
lost in the source code. Similarly, modern compilers have a
great deal of flexibility in the translation they perform, mak-
ing it difficult or impossible to tightly bound execution time
or memory requirements without examining compiler out-
put. This gain and loss of information implies that analysis
at all levels is unavoidable. For example, it is generally not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


system
software
and 
libraries

algorithms
and data
structures

executable
system

worst−case execution time
worst−case stack usage
code and data size

bit−width requirements

memory system usage
code compression
software thread integration
software fault isolation

thread minimization
eliminating component overhead
memory reuse for exclusive modes

eliminating indirection

lock elimination
lock merging / breaking

bitwidth reduction
polling insertion

source code

implementation

and linker
compiler

modes
component boundaries
time constraints
task mapping constraints
criticality and fault tolerance
performance requirements

information flow

callgraphs
indirect control flow
type information
synchronization
unhandled exceptions
event causality

Analyses Optimizations and
other transformations

Design and implementation

models

Figure 1. Program analyses and optimizations at multiple levels of abstraction

the case that an extremely sophisticated analysis operating
at the model level can supplant an analysis that is properly
performed on source code, or vice versa.

Second, software analysis techniques are most often
used separately to answer binary questions, e.g. “is the sys-
tem schedulable?” or “is stack overflow possible?” Al-
though these results are useful, we claim that significant ad-
ditional benefit can be extracted from analyses by finding
ways to interpret them quantitatively. For instance, in ear-
lier work [12] we demonstrated that real-time schedulabil-
ity can be quantified using arobustnessmetric that indicates
the likelihood of deadline misses in the presence of software
timing anomalies. Robustness was directly useful in evalu-
ating the desirability of an otherwise useful program trans-
formation: running many logically concurrent activities in a
small number of physical threads. Similarly, in another pa-
per [14] we showed that instead of merely using worst-case
stack depth information to determine whether a system was
vulnerable to stack overflow, this information could also be
used to drive a whole-program optimization.

A basic observation is that there is a strong connection
between analysis and transformation tools. For example, a
tool that detects potential race conditions can be (crudely)
turned into a tool for eliminating unnecessary synchroniza-
tion by attempting to remove, in turn, each lock in a system
and testing for races after each removal. Clearly this would
not be desirable if the tool were unsound, a topic we return
to in Section 5.2.

Third, any program transformation that is performed to
improve some aspect of a system usually has side effects on

other aspects. For example, representing boolean variables
as bits instead of words saves memory but reduces effi-
ciency, and inlining function calls improves efficiency while
increasing code size. Furthermore, transformations not only
affect metrics of interest, but also potentially enable other
transformations. For example, merging two logically con-
current activities into a single thread may expose opportuni-
ties to eliminate synchronization operations. Individual em-
bedded projects have particular prioritizations among goals
such as minimizing memory requirements, maximizing bat-
tery lifetime, etc., motivating our flexible approach to anal-
ysis and transformation: it should be easy to make flexible
connections between tools, and to change the structure of
feedback loops easily, to conform to the changing needs of
individual projects.

The final motivation for our work is that program anal-
ysis tools are rapidly becoming more useful and practical.
This trend is amplified by the large and growing asymmetry
between the speed of the typical workstation and the speed
of the typical embedded processor. We will enable further
exploitation of this asymmetry by developing ways to use
multiple analyses and transformations together and in feed-
back loops.

3 Approach

The VIPA framework begins with standard tools — we
do not believe that embedded developers are ready to sacri-
fice well-understood and well-tested development methods.
At the top level, software models are specified using tradi-



tional formalisms such as sets of concurrent tasks with peri-
ods and deadlines [7], collections of components [16], and
hierarchical state machines [5]. Source code implement-
ing the models is written by hand, reused from libraries,
and generated by tools such as Simulink. Finally, standard
compilers, linkers, runtime libraries, and operating systems
are used to create executable systems. In the traditional de-
velopment method, program analyses may be used to find
errors in models, sources, or binaries. Typically these re-
sults are interpreted by humans rather than being fed back
into the development process.

VIPA augments the standard development process by
providing infrastructure for connecting analyses and trans-
formations in feedback loops. This section describes our
approach in more detail.

3.1 Exchange formats

Since the idea of a “universal intermediate format” is
probably unworkable, we are developing some simple, open
formats for exchanging analysis information between tools.
Exchange formats will be customized for particular pur-
poses.

One is based on the callgraphs in a system — typically
there is a callgraph per entry point. For example, here is the
callgraph starting atmain for a simple embedded system
where the colon denotes the “is called by” relation:

pulse_task : main
process_char : main
hexdigit : process_char
init_pulse : main
init_timer : main
putc : hexdigit

We will augment callgraphs as appropriate to support other
information such as lock acquisitions and releases, mem-
ory requirements, worst-case execution times, etc. A vari-
ant of the callgraph format is our Task Scheduler Logic
(TSL) [15], which relates callgraphs, schedulers, and syn-
chronization for a system using a set of axioms about pre-
emption and hierarchical scheduling. TSL can also be used
to abstract over locking primitives [13], allowing software
components to be agnostic, for example, about whether they
are called in interrupt context or in a process context.

Other analysis interchange formats that we believe will
be useful will describe:

• The task decomposition of a program from the real-
time point of view: at what frequencies are various
computations invoked at, what are their deadlines,
what are their dependencies, etc.?

• The software component view, relating components
and their connectors [16].

• The modal view of the system: which components are
mutually exclusive and hence can share reusable re-
sources like memory, and cannot cause race conditions
with each other?

We will also develop a library of “helper tools” that will
make it easier to track entities (objects, components, func-
tion calls, etc.) across multiple levels of abstraction.

3.2 Adapting analyses

In our early experience making tools work together, we
found that it was fairly easy to connect existing analyses
and transformations. For example, minimizing the stack
memory requirements for embedded codes (see Section 4)
required work in three steps:

1. Making a stack bounding tool output a list of call-
graph edges that are contributors to the worst-case
stack depth.

2. Making a global inlining tool accept a list of edges to
inline, rather than relying on its built-in heuristics.

3. Writing a script to drive the feedback loop between the
two tools, including making calls to the C compiler to
generate a binary program to analyze at each iteration
of the loop.

This simple feedback loop took a day or two to imple-
ment, and would be nearly trivial using the infrastructure
that we propose in this paper since each tool would already
understand a common data format.

3.3 Changes to the development process

In some cases, such as our experiment in minimizing
stack depth, application code does not need to be modi-
fied to make use of VIPA. However, the developer does
have to create a cost function describing how to trade off
between metrics of interest (code size vs. stack depth in
our case), and to set up a feedback loop involving several
tools. In the long run we envision using a tool similar to
VISTA, which was developed by Kulkarni et al. [10] to find
effective sequences for compiler optimizations. However,
while VISTA is used to parameterize a single compiler, our
tool will have to know how to call a multitude of analysis
and transformation tools, evaluate the results, and repeat the
process until a termination condition is satisfied.

Other analyses and transformation in VIPA will require
changes to application source code. For example, to take
advantage of optimizations that map many concurrent activ-
ities to a few OS-supported threads, software must be writ-
ten to use a specific “virtual thread” interface, so that they
can be linked a non-preemptive application-level scheduler



running in each thread. Similarly, to take advantage of con-
currency analysis and optimization techniques, use of locks
must be visible to analysis tools.

4 Examples

Figure 2 shows two examples of applying vertically in-
tegrated analysis and transformation. Figure 2(a) illustrates
the example we mentioned earlier where stack depth infor-
mation drives a whole-program function inlining tool. The
feedback loop operates by running the stack analyzer, which
identifies the path of function calls leading to the worst-case
stack depth — the inliner then tries to inline calls on this
path. This transformation often leads to a new program with
a different path to the worst-case stack depth, and so the pro-
cedure repeats until no further improvements can be found.
It was very successful in practice: on a collection of pro-
grams for networked sensor nodes, it reduced stack memory
requirements to 68% of the requirement when compared to
an aggressive inlining policy that is intended to increase per-
formance, and to 40% of the requirement of systems com-
piled without any function inlining. Furthermore, these ben-
efits were achieved without greatly increasing code size, the
usual price of aggressive inlining.

We did not measure the speedup or slowdown produced
by the inlining, but we hypothesize that there was modest
speedup: unlike code running on general-purpose operat-
ing systems, where code bloat due to inlining may cause
slowdown due to increased paging or cache misses, code
running on microcontrollers should show uniform speedup
due to inlining since each inlined function call avoids a sub-
stantial number of pushes and pops. The feedback loop in
Figure 2(a) could be easily extended to optimize for a third
parameter such as code speed. This would require a method
for estimating execution times using profile data or the out-
put of a worst-case execution time tool. A slightly more
sophisticated variant of this optimization strategy would as-
sign each piece of code a weight equal to its execution fre-
quency, where worst-case frequencies are extracted from
the real-time model for a system. This would have the effect
of preferentially speeding up frequently-called code, such
as interrupt handlers. An even more sophisticated approach
would be to integrate a real-time schedulability analysis into
the feedback loop. This would cause VIPA to preferentially
optimize sections of code that are impediments to schedu-
lability, such as non-preemptive critical sections that con-
tribute large blocking terms to other tasks in the system.

Figure 2(b) illustrates a more ambitious integrated analy-
sis and optimization that we have not yet implemented. The
input is a collection of tasks — logically concurrent entities
that can be mapped to a smaller number of physical threads.
Each task is compiled and subjected to an analysis that de-
termines its worst-case execution time (WCET), an analysis

equivalent to finding the longest executable path through the
task. Each task is also subjected to a concurrency analysis at
the source code level to determine which shared resources
it uses and how frequently. The task mapping phase is re-
sponsible for mapping at least one task to each preemptible
thread instantiated by the embedded operating system. Its
criteria for doing so could be

• minimizing the number of threads [18],

• jointly minimizing threads and maximizing the robust-
ness of the system in the presence of timing faults [12],

• minimizing total stack memory consumption, or

• maximizing the number of (static or dynamic) syn-
chronization operations that can be eliminated.

Whatever the policy, it is likely that thread mapping will
enable some synchronization operations to be eliminated
because all tasks accessing some shared resource will be
running in the same thread, and hence sequentially. Syn-
chronization elimination, in turn, changes the structure of
the problem by reducing the execution times of some tasks.
Therefore, more passes through the thread mapper should
permit the task mapping to be refined. Another degree of
freedom can be added to the optimization process by sup-
porting lock coarsening [2] — the combination of several
short critical sections into one long one. Lock coarsening
trades off between responsiveness and efficiency: coalesc-
ing several critical sections removes overhead, but also po-
tentially increases synchronization delays experienced by
other tasks.

We have presented two examples of vertically integrated
analysis: one that we have already shown to be successful
and one that we believe will be useful based on our previous
experience with thread minimization [12] and concurrency
analysis [15], but that we have not yet tried. These exam-
ples barely scratch the surface: between the analyses and
optimizations listed in Figure 1 and the many others that we
did not list, we believe that there are many opportunities for
exploring the benefits of vertically integrated analysis.

5 Research challenges

This section describes several research challenges faced
by Vertically Integrated Program Analysis.

5.1 Maintaining invariants

Program annotations stored in the exchange formats are
fragile in the sense that they may be invalidated during the
build process. As a simple example, almost any transfor-
mation can change a program’s worst-case execution time
and worst-case stack depth. However, only a few high-level



whole−program
inlining (source)

C compiler
(source)

worst−case 
stack depth
(binary)

(a) Iteratively reducing stack
depth

C compiler
(source)

task mapping
(model)

tasks (model)

synchronization
elimination (source)

worst−case
execution time
(binary)

synchronization
analysis (source)

(b) Using synchronization patterns and WCET to drive task
mapping

Figure 2. Two examples of vertically integrated analysis and transformation. Analyses are boxed and
transformations are circled.

transformations such as lock elimination, lock coarsening,
and thread minimization affect the concurrency structure of
a system; other tools such as C compilers and tree height
reducers [8] should never affect concurrency. The problem
boils down to one of characterizing the behavior of “rea-
sonable” code transformation tools. As a first approxima-
tion, we will find the set of annotations might be reasonably
affected by each transformation, and invalidate them each
time that transformation is called. If this turns out to be
too conservative then more sophisticated approaches will
be necessary, such as spending more effort figuring out if a
particular run of a tool invalidates a particular annotation.

A related issue is ensuring that legacy tools can be
trusted to behave in certain ways, or to perform certain
transformations. For example, our stack-minimization ex-
ample relies on the C compiler to inline a function call when
asked. The GNU C compiler is reasonable in this sense:
it can usually be coerced into respecting a set of inlining
requests. Similarly, C compilers are generally reasonable
in that they preserve function names across the translation.
C++ compilers are slightly less reasonable — to track func-
tions between C++ and assembly, VIPA will need to under-
stand name mangling conventions.

5.2 Avoiding bloat in the trusted computing base

Together, the compiler, libraries, operating system, and
target hardware form the trusted computing base for an em-
bedded system — a bug in any of these elements can af-
fect the correctness of a product. Embedded developers are

rightfully suspicious of new versions of trusted tools such
as compilers may be buggy, or may expose latent applica-
tion bugs through apparently innocuous changes. Asking a
developer to add a new tool to the trusted computing base
is asking a lot, and for this reason many advanced analysis
tools (RacerX, for example [4]) operate opportunistically:
they find bugs but do not attempt to guarantee the absence
of even simple classes of bugs.

In specific cases tools can be shown to be correct, or their
results can be validated externally, but in general developers
are probably just going to have to start trusting more soft-
ware. Unfortunately, it does not seem likely that there is a
general technical solution to this problem. In the end the
tradeoff is economic: if the net value provided by a tool is
positive, developers are likely to eventually adopt it.

5.3 Avoiding long build times

Fast machines and incremental compilation schemes en-
sure that waiting for compilers is not usually a problem for
developers. However, aggressive analysis and transforma-
tion techniques threaten to make compilation into a batch,
rather than interactive, activity. For example, our early ex-
perience with stack minimization showed that connecting
an inlining tool, a stack analysis tool, and a C compiler in a
feedback loop resulted in a discouraging slowdown — stack
minimization took as long as about an hour in some cases.
However, our feedback loop was crude: it explored a large
solution space, learned only a single fact from each trial
compilation, and made no attempt to predict tool behavior.



Clearly we need strategies for speeding build times; we plan
to develop techniques for:

• Caching previous analysis and transformation results
and invalidating them only when necessary.

• Categorizing analyses and transformations into those
that can be performed online, while a developer waits,
and those that should only be performed rarely, such
as on a nightly test build of a system.

• Predicting the effects of transformations. For example,
in the stack minimization example, if we could have
accurately predicted the effect of a function inlining
decision on code size and stack depth, the run time
would have been reduced to at most a few seconds.

Predicting the effects of optimizations is not always easy,
and in fact this has been the topic of recent research [21].
We have made progress towards predicting the effect of
function inlining on code size using an empirical approach
based on least-squares estimation. Early results indicate
that while it is difficult to accurately predict the effect of
inlining a single call, it is possible to achieve aggregate
accuracy across a number of inlining decisions. On the
other hand, predicting the effect of inlining on stack depth
appears to be more difficult: we saw a number of cases
where inlining a particular function call would dramatically
increase the amount of stack memory consumed along a
particular path. We hypothesize that this happened when
the compiler’s register allocator became overloaded and
stopped performing well.

5.4 Predictability and errors

There are several levels at which predictability is impor-
tant to embedded developers. First, systems must be pre-
dictable in the sense that timing effects can be understood
and accounted for. For example, caches and preemption
make systems less predictable in this respect. Second, tools
must be predictable — developers must be able to under-
stand when and why a tool was able to make a particu-
lar transformation, and also why a particular transformation
could not be made. For example, consider a performance-
critical loop in a hypothetical system based on an advanced
type-safe programming language:

Early prototypes showed that the compiler could
eliminate array bounds checks within the loop,
permitting a product to be based on a cheap, slow
CPU. Then, much later in development it became
clear that a slightly more sophisticated algorithm
needed to be used in the critical loop. Due to
added variable aliasing, the compiler then failed
to eliminate the bounds check. At this point, de-
velopers had some unattractive options: turn off

the bounds check (assuming the compiler permits
this), revise the hardware to include a faster pro-
cessor, or back off to the old algorithm in the crit-
ical loop.

This is an example of afragile optimization: one that was
not robust with respect to perfectly reasonable changes in
the code. Possible strategies for dealing with this problem
include:

• Using restricted language constructs that do not have
the fragile optimization problem. For example, Kow-
shik et al. [9] restrict loop indices to always have an
affine relation to array sizes, guaranteeing the success
of static array-bounds elimination.

• Keeping developers informed as to the true costs of
their code, so that they will be aware of potentially
fragile optimizations in time- or memory-critical code.

We will also develop ways for chains of tools to pro-
vide developers with coherent, high-level descriptions of er-
rors and other analysis results. We believe that development
time can be reduced by providing error messages at the right
level of abstraction — errors at the wrong level can be very
difficult to understand. Providing good error messages can
be extremely difficult: the problem stems from the intrinsic
difficulty of getting a machine to answer a “why” question:
the proper answer may depend on the questioner’s state of
mind. However, by keeping track of causal relations be-
tween actions taken by different analysis and transforma-
tion tools, we hope that the VIPA infrastructure will be able
to provide some “why” answers.

6 Related work

There is a large body of existing research on analysis
and optimization of embedded software, and there are also
a number of research projects that perform analyses and
transformations at multiple levels of abstraction. For exam-
ple, the Spring operating system [19] used a sophisticated
suite of tools for analyzing and transforming real-time code,
and software thread integration [1] combines high-level tim-
ing requirements with low-level software representations to
compile away fine-grained concurrency. Even so, to the best
of our knowledge, our approach is a new one: its goal is to
provide an open framework for many different analyses and
optimizations, not just a few predetermined ones. This will
make it possible for individual project managers and devel-
opers to select the analyses and transformations that make
sense for particular systems.

A problem similar to the one that we are trying to solve
is found inside modern compilers, where there are several
program representations at different levels of abstraction.
Compiler writers face the difficult problem of performing



analyses and optimizations at the correct place, in phas-
ing optimizations in such a way that the maximum bene-
fit is obtained with reasonable compile times, and in mov-
ing semantic information between different parts of a com-
piler. These problems have motivated a number of research
projects such as semantics retention [11], VISTA [10], and
Gospel/Genesis [20]. There are significant differences be-
tween problems faced by VIPA and problems faced inside
of compilers. First, while a compiler can specify and mod-
ify all code representations, we choose to treat the compiler
and some other tools as black boxes. The second signifi-
cant difference is that while a compiler typically deals with
a high level language, an intermediate representation, and
machine code, our work addresses the larger semantic gap
between models and machine code.

Model-based design of embedded software [6] has goals
similar to ours — it aims to look at software from multiple
points of view, and to apply multiple analyses. The differ-
ence is that model-based design can be viewed as “horizon-
tally integrated analysis,” leaving out many useful analyses
that occur at low levels of abstraction. As we have shown,
low-level analyses such as stack usage and worst-case ex-
ecution time can usefully feed back into high-level models
and analyses.

Finally, a plausible alternative way to achieve the ben-
efits that we hope to provide with VIPA would be to cre-
ate a sophisticated compiler infrastructure that is capable
of meeting many conflicting goals such as those summa-
rized by Dutt et al. [3]. This compiler would almost cer-
tainly need to be extensible because Robison’s argument
that “boutique optimizations” are not economically feasi-
ble in production compilers [17] applies strongly to embed-
ded systems, where quirky hardware and highly specialized
codes are the rule rather than the exception. In the long run
an extensible compiler may be the right solution because
it permits aggressive, domain-specific fine-grain transfor-
mations in addition to the coarse-grain transformations that
VIPA facilitates. However, VIPA has the significant advan-
tage of permitting developers to keep using popular, time-
tested embedded compilers such as gcc.

7 Conclusion

By allowing developers to create efficient software with-
out expensive and error-prone manual specialization and
optimization, VIPA will make it easier to rapidly develop
efficient and reliable embedded software.

Acknowledgments

The author would like to thank Alastair Reid, Ganesh
Gopalakrishnan, and Wilson Hsieh for their help in dis-
cussing and refining the ideas in this paper.

References

[1] Alexander Dean. Compiling for concurrency: Planning and
performing software thread integration. InProc. of the 23rd
IEEE Real-Time Systems Symp. (RTSS), Austin, TX,
December 2002.

[2] Pedro C. Diniz and Martin C. Rinard. Lock coarsening:
Eliminating lock overhead in automatically parallelized
object-based programs.Journal of Parallel and Distributed
Computing, 49(2):218–244, March 1998.

[3] Nikil Dutt, Alexandru Nicolau, Hiroyuki Tomiyama, and
Ashok Halambi. New directions in compiler technology for
embedded systems. InProc. of the Asia and South Pacific
Design Automation Conf., Yokohama, Japan, January 2001.

[4] Dawson Engler and Ken Ashcraft. RacerX: Effective, static
detection of race conditions and deadlocks. InProc. of the
19th ACM Symp. on Operating Systems Principles (SOSP),
Bolton Landing, NY, October 2003.

[5] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli,
Michal Politi, Rivi Sherman, Aharon Shtull-Trauring, and
Mark Trakhtenbrot. STATEMATE: A working environment
for the development of complex reactive systems.IEEE
Transactions on Software Engineering, 16(4), April 1990.

[6] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted
Bapty. Model-integrated development of embedded
software.Proc. of the IEEE, 91(1):145–164, January 2003.

[7] Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and
Michael Gonz̀alez Harbour.A Practitioner’s Handbook for
Real-Time Analysis: Guide to Rate-Monotonic Analysis for
Real-Time Systems. Kluwer Academic Publishers, 1993.

[8] David J. Kolson, Alexandru Nicolau, and Nikil Dutt.
Integrating program transformations in the memory-based
synthesis of image and video algorithms. InProc. of the
IEEE Intl. Conf. on Computer-Aided Design (ICCAD), San
Jose, CA, November 1994.

[9] Sumant Kowshik, Dinakar Dhurjati, and Vikram Adve.
Ensuring code safety without runtime checks for real-time
control systems. InProc. of the Intl. Conf. on Compilers
Architecture and Synthesis for Embedded Systems (CASES),
Grenoble, France, October 2002.

[10] Prasad Kulkarni, Wankang Zhao, Hwashin Moon,
Kyunghwan Cho, David Whalley, Jack Davidson, Mark
Bailey, Yunheung Paek, and Kyle Gallivan. Finding
effective optimization phase sequences. InProc. of the 2003
Conf. on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 12–23, San Diego, CA, June 2003.

[11] Steven Novack, Joseph Hummel, and Alexandru Nicolau. A
simple mechanism for improving the accuracy and
efficiency of instruction-level disambiguation. InProc. of
the 8th Intl. Workshop on Languages and Compilers for
Parallel Computing (LCPC), pages 289–303, Columbus,
OH, August 1995.

[12] John Regehr. Scheduling tasks with mixed preemption
relations for robustness to timing faults. InProc. of the 23rd
IEEE Real-Time Systems Symp. (RTSS), Austin, TX,
December 2002.



[13] John Regehr and Alastair Reid. Lock inference for systems
software. InProc. of the 2nd AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software
(ACP4IS), Boston, MA, March 2003.

[14] John Regehr, Alastair Reid, and Kirk Webb. Eliminating
stack overflow by abstract interpretation. InProc. of the 3rd
Intl. Conf. on Embedded Software (EMSOFT), pages
306–322, Philadelphia, PA, October 2003.

[15] John Regehr, Alastair Reid, Kirk Webb, Michael Parker, and
Jay Lepreau. Evolving real-time systems using hierarchical
scheduling and concurrency analysis. InProc. of the 24th
IEEE Real-Time Systems Symp. (RTSS), Cancun, Mexico,
December 2003.

[16] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau,
and Eric Eide. Knit: Component composition for systems
software. InProc. of the 4th Symp. on Operating Systems
Design and Implementation, pages 347–360, San Diego,
CA, October 2000. Springer Verlag.

[17] Arch D. Robison. Impact of economics on compiler
optimization. InProc. of the Joint ACM Java
Grande/ISCOPE 2001 Conf., pages 1–10, Palo Alto, CA,
June 2001.

[18] Manas Saksena and Yun Wang. Scalable real-time system
design using preemption thresholds. InProc. of the 21st
IEEE Real-Time Systems Symp. (RTSS), Orlando, FL,
November 2000.

[19] John A. Stankovic, Krithi Ramamritham, Douglas Niehaus,
Marty Humphrey, and Gary Wallace. The Spring system:
Integrated support for complex real-time systems.
Real-Time Systems Journal, 16(2/3):223–251, May 1999.

[20] Deborah L. Whitfield and Mary Lou Soffa. An approach for
exploring code-improving transformations.ACM
Transactions on Programming Languages and Systems,
19(6):1053–1084, November 1997.

[21] Min Zhao, Bruce Childers, and Mary Lou Soffa. Predicting
the impact of optimizations for embedded systems. InProc.
of the 2003 Conf. on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 1–11, San Diego, CA,
June 2003.


	Introduction
	Motivation
	Approach
	Exchange formats
	Adapting analyses
	Changes to the development process

	Examples
	Research challenges
	Maintaining invariants
	Avoiding bloat in the trusted computing base
	Avoiding long build times
	Predictability and errors

	Related work
	Conclusion

