199 research outputs found

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Quantitative Verification and Synthesis of Resilient Networks

    Get PDF

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Towards QoS provisioning in a heterogeneous carrier-grade wireless mesh access networks using unidirectional overlay cells

    Get PDF
    Proceedings of: 6th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, QShine 2009 and 3rd International Workshop on Advanced Architectures and Algorithms for Internet Delivery and Applications, AAA-IDEA 2009, Las Palmas, Gran Canaria, November 23-25, 2009The visibility and success ofWireless Mesh Network (WMN) deployments has raised interest among commercial operators in this technology. Compared to traditional operator access networks WMNs have the potential to offer easier deployment and flexible self-reconfiguration at lower costs. A WMN-type architecture considered as an alternative for an operator access network must meet similar requirements such as high availability and guaranteed QoS in order to support triple-play content provisioning. In this paper we introduce an architecture of such a Carrier-grade Wireless Mesh Access Network (CG-WMAN). We then present our contribution, an approach to seamlessly integrate unidirectional broadcast cells (i.e. DVB-T) into such a CG-WMAN. This allows higher layer protocols to utilize broadcast cells like regular mesh links, where beneficial for a given payload and receiver distribution. We then present a typical use case and discuss for which combinations of traffic type, user distribution and QoS requirements the use of longer range broadcast technologies can help to improve the overall CG-WMAN performance in terms of throughput and reliability.European Community's Seventh Framework ProgramPublicad

    Scalability and Resilience Analysis of Software-Defined Networking

    Get PDF
    Software-defined Networking (SDN) ist eine moderne Architektur für Kommunikationsnetze, welche entwickelt wurde, um die Einführung von neuen Diensten und Funktionen in Netzwerke zu erleichtern. Durch eine Trennung der Weiterleitungs- und Kontrollfunktionen sind nur wenige Kontrollelemente mit Software-Updates zu versehen, um Veränderungen am Netz vornehmen zu können. Allerdings wirft die Netzstrukturierung von SDN neue Fragen bezüglich Skalierbarkeit und Ausfallsicherheit auf, welche in dezentralen Netzstrukturen nicht auftreten. In dieser Arbeit befassen wir uns mit Fragestellungen zu Skalierbarkeit und Ausfallsicherheit in Bezug auf Unicast- und Multicast-Verkehr in SDN-basierten Netzen. Wir führen eine Komprimierungstechnik für Routingtabellen ein, welche die Skalierungsproblematik aktueller SDN Weiterleitungsgeräte verbessern soll und ermitteln ihre Effizienz in einer Leistungsbewertung. Außerdem diskutieren wir unterschiedliche Methoden, um die Ausfallsicherheit in SDN zu verbessern. Wir analysieren sie auf öffentlich zugänglichen Netzwerken und benennen Vor- und Nachteile der Ansätze. Abschließend schlagen wir eine skalierbare und ausfallsichere Architektur für Multicast-basiertes SDN vor. Wir untersuchen ihre Effizienz in einer Leistungsbewertung und zeigen ihre Umsetzbarkeit mithilfe eines Prototypen.Software-Defined Networking (SDN) is a novel architecture for communication networks that has been developed to ease the introduction of new network services and functions. It leverages the separation of the data plane and the control plane to allow network services to be deployed solely in software. Although SDN provides great flexibility, the applicability of SDN in communication networks raises several questions with regard to scalability and resilience against network failures. These concerns are not prevalent in current decentralized network architectures. In this thesis, we address scalability and resilience issues with regard to unicast and multicast traffic for SDN-based networks. We propose a new compression method for inter-domain routing tables to address hardware limitations of current SDN switches and analyze its effectiveness. We propose various resilience methods for SDN and identify their key performance indicators in the context of carrier-grade and datacenter networks. We discuss the advantages and disadvantages of these proposals and their appropriate use cases. Finally, we propose a scalable and resilient software-defined multicast architecture. We study the effectiveness of our approach and show its feasibility using a prototype implementation

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    SODALITE: SDN wireless backhauling for dense 4G/5G Small Cell networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Dense deployments of Small Cells are key to fulfill the capacity requirements of future 5G networks. However, two roadblocks to the adoption of Small Cells are i) the limited availability and the cost of sites with wired backhaul resources, and ii) the complexity to manage a dense deployment of wireless backhaul nodes. Towards these challenges we propose SODALITE, a novel system that applies Software Defined Networking (SDN) to a wireless backhaul network. We present how SODALITE can be integrated to 3GPP’s 4G and 5G architectures, and show the feasibility of SODALITE through LTE network testbed experiments. We substantiate the scalability of SODALITE through stochastic studies using real-life traffic traces from an LTE network and discuss the effects of cell densification and 5G system architecture on these studies. Further, a reliable backhauling solution for wireless links is introduced in SODALITE through SDN-enabled mechanisms that are capable of reconfiguring the data plane upon a link failure detection. Its reliability is shown through experiments on a LTE network testbed, and studied thoroughly via rigorous simulations and network emulator evaluations. As a result, we claim that SODALITE is a promising carrier-grade system to manage a wireless Small Cell backhaul.Postprint (author's final draft
    • …
    corecore