

Aalborg Universitet

Quantitative Verification and Synthesis of Resilient Networks

Schou, Morten Konggaard

DOI (link to publication from Publisher):
10.54337/aau588616986

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Schou, M. K. (2023). Quantitative Verification and Synthesis of Resilient Networks. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau588616986

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 29, 2023

https://doi.org/10.54337/aau588616986
https://vbn.aau.dk/en/publications/a96aef43-1a22-4369-92b6-8575c603433f
https://doi.org/10.54337/aau588616986

M
o

r
ten

 K
o

n
g

g
a

a
r

d
 Sc

h
o

u
Q

u
a

n
titative ver

ific
atio

n
 a

n
d

 Syn
th

eSiS o
f r

eSilien
t n

etw
o

r
K

S

Quantitative verification
and SyntheSiS of

reSilient networKS

by
Morten Konggaard Schou

Dissertation submitteD 2023

Quantitative Verification
and Synthesis of

Resilient Networks

Ph.D. Dissertation

Morten Konggaard Schou

Dissertation submitted August, 2023

Dissertation submitted: August, 2023

PhD supervisor:: Professor Jiří Srba
 Aalborg University

PhD committee: Associate Professor Michele Albano (chair)
 Aalborg University, Denmark

 Associate Professor Laurent Vanbever
 ETH Zürich, Switzerland

 Senior Researcher Nikolaj Bjørner
 Microsoft Research, USA

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-659-1

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Morten Konggaard Schou

Printed in Denmark by Stibo Complete, 2023

Abstract

Computer networks connect people across the world and are a critical infras-

tructure for many of the services that a modern society depends on. With

the rapidly growing use of computer networks, the demand for higher band-

width and lower latency to support a new generation of applications, as well as

the need for failure protection mechanisms to meet the increasingly stringent

dependability requirements, modern computer networks have evolved into

complex heterogeneous systems. These networks are tricky to manage and

operate correctly, and there are many examples of subtle configuration errors

taking down entire networks.

Formal methods have been proposed as a way to reduce the risk of network

outages by creating mathematically well-defined models of the networks and

their behavior and applying algorithmic techniques to verify conformance with

the specifications or synthesize correct-by-construction configurations.

In this thesis, we contribute to the formal treatment of the widely-deployed

MPLS networks with a focus on quantitative properties and resiliency mech-

anisms. We present a formal model of the MPLS network data plane and

use this model to develop a practical technique for increasing the resilience

of MPLS networks by synthesizing loop-free recursive failover protections.

Moreover, we extend prior work on model checking MPLS networks with

failover protections to also consider quantitative properties with shortest and

longest trace analysis. This work builds on the connection between MPLS net-

works and pushdown automata. To address the scalability of MPLS network

model checking, we significantly improve the performance of pushdown au-

tomata reachability checking by developing new on-the-fly algorithms and an

efficient tool implementation. We increase the trustworthiness of the model

checking results by formally proving the correctness of the used algorithms in

the proof assistant Isabelle/HOL, extracting executable code, and performing

differential testing against this formally verified oracle.

Finally, we address the importance of providing accurate data for the formal

models through a case study with a network analytics company, where we

present a robust and efficient method for inferring the otherwise unknown

ratios that the routers use when load balancing traffic among multiple paths.

iii

Resumé
Computernetværk forbinder mennesker over hele verden og er en kritisk in-

frastruktur for mange af de tjenester, som et moderne samfund afhænger af.

Med den hastigt voksende brug af computernetværk, efterspørgslen på højere

båndbredde og lavere latenstid til at understøtte en ny generation af applika-

tioner, samt behovet for fejlbeskyttelsesmekanismer for at opfylde de stadigt

strengere krav til pålidelighed, har moderne computernetværk udviklet sig til

komplekse heterogene systemer. Disse netværk er vanskelige at administrere

og operere korrekt, og der er mange eksempler, hvor subtile konfigurationsfejl

har fået hele netværk til at gå ned.

Formelle metoder er blevet foreslået som en måde at reducere risikoen

for netværksafbrydelser ved at skabe matematisk veldefinerede modeller af

netværkene og deres adfærd, og anvende algoritmiske teknikker til at verificere

overensstemmelse med specifikationerne eller syntetisere konfigurationer, der

er korrekte per konstruktion.

I denne afhandling bidrager vi til den formelle behandling af de vidt

udbredte MPLS-netværk med fokus på kvantitative egenskaber og resistens-

mekanismer. Vi præsenterer en formel model af MPLS-netværkets dataplan

og bruger denne model til at udvikle en praktisk teknik til at øge modstands-

dygtigheden af MPLS-netværk ved at syntetisere fejlbeskyttelse med løkkefri

rekursive reserve-veje. Desuden bygger vi videre på tidligere arbejde med

modelkontrol af MPLS-netværk med fejlbeskyttelse, og udvider til også at veri-

ficere kvantitative egenskaber med analyse af korteste og længste vej. Dette ar-

bejde bygger på forbindelsen mellem MPLS-netværk og pushdown-automater.

For at håndtere skalerbarheden af MPLS-netværksmodelkontrol, reducerer

vi markant køretiden af reachability analyse i pushdown-automater ved at

udvikle nye on-the-fly-algoritmer og en effektiv implementering. Vi øger tro-

værdigheden af resultaterne fra modelkontrollen ved formelt at bevise korrekt-

heden af de anvendte algoritmer i bevis-værktøjet Isabelle/HOL, udtrække en

eksekverbar kode og udføre differentiel testning mod dette formelt verificerede

orakel.

Endeligt arbejder vi med vigtigheden af at levere præcise data til de formelle

modeller gennem et casestudie med et netværksanalysefirma, hvor vi præsen-

terer en robust og effektiv metode til at udlede de ellers ukendte værdier, som

routerne bruger, når de belastningsfordeler data trafik mellem flere veje.

v

Contents

Abstract iii

Resumé v

Preface xi

I Introduction 1
1 Network Verification and Synthesis 4

2 Challenges in Application of Formal Techniques 5

3 Overview of Computer Networks 7

4 Related Work . 8

4.1 Verification of Traditional Networks 9

4.2 Verification of Programmable Networks 10

4.3 Traffic Engineering Optimization 11

4.4 Synthesis of Network Configurations and Updates 12

5 Contributions . 13

6 MPLS Network Resilience . 14

6.1 MPLS Network Model . 14

6.2 Data Plane Generation and Simulation 18

6.3 Recursive Fast Reroute Protection 19

7 Pushdown Automata Reachability 21

7.1 Pushdown Automata Reachability for MPLS Verification 21

7.2 Solving Pushdown Reachability Efficiently 25

7.3 Weighted Pushdown Automata Verification 29

7.4 Formal Correctness of Pushdown Verification 33

8 Measuring Real Networks . 35

9 Conclusion . 38

References . 39

vii

Contents

II Papers 51

A R-MPLS: Recursive Protection for Highly Dependable MPLS Net-
works 53
1 Introduction . 55

2 MPLS Network Model . 57

3 R-MPLS Protection . 60

3.1 Protectable Forwarding Entries 61

3.2 Loop Avoidance . 62

3.3 R-MPLS Algorithm . 63

3.4 Recursive Link and Node Protection 65

3.5 Distributed R-MPLS Implementation 66

3.6 Properties of the R-MPLS Protection 67

4 Evaluation of R-MPLS . 68

4.1 MPLS Generation and Simulation 68

4.2 Methodology . 69

4.3 Results of RSVP Experiments 71

4.4 Results of LDP Experiments 75

5 Discussion . 77

6 Related Work . 77

7 Conclusion . 79

References . 80

A Proofs for Section 3.6 . 84

B Elaboration on Section 4.1 . 86

C Artifact Appendix . 88

B MPLS-Kit: An MPLS Data Plane Toolkit 93
1 Introduction . 95

2 MPLS Network Operation . 97

3 MPLS-Kit Overview . 98

4 MPLS Dataplane Generation . 100

5 MPLS Forwarding Simulation . 103

6 Use cases . 105

7 Conclusions . 107

References . 107

C Faster Pushdown Reachability Analysis with Applications in Net-
work Verification 111
1 Introduction . 113

2 Preliminaries . 115

3 Formal Model of MPLS Networks 116

3.1 MPLS Network Verification 119

3.2 From Query Satisfiability to Pushdown Reachability . . 120

viii

Contents

4 Improving Pushdown System Reachability Analysis 122

4.1 Early Termination of Reachability Algorithms 122

4.2 Combining Forward and Backward Search 123

4.3 Abstraction Refinement for Pushdown System Reachability124

5 Implementation and Experiments 126

6 Conclusion . 128

References . 129

A Appendix . 131

D AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS
Networks 135
1 Introduction . 137

2 MPLS Network Model . 139

2.1 Network definition . 139

2.2 Valid MPLS headers . 140

2.3 Example network . 141

2.4 Network traces . 142

2.5 Query language . 143

3 Quantitative Extension . 144

4 Tool Implementation . 146

4.1 Verification methodology 147

4.2 Tool architecture . 147

5 Performance Evaluation . 149

6 Conclusion . 151

References . 151

A Appendix . 154

E PDAAAL: A Library for Reachability Analysis of Weighted Push-
down Systems 157
1 Introduction . 159

2 Weighted Pushdown Systems and Reachability 160

3 Implemented Algorithms and PDAAAL Architecture 161

4 Comparison with State-of-the-Art 162

5 Applications . 163

6 Conclusion . 164

References . 164

F Differential Testing of Pushdown Reachability with a Formally Ver-
ified Oracle 167
1 Introduction . 169

2 Isabelle/HOL . 172

3 Pushdown Reachability . 174

3.1 Nondeterministic pre∗ Saturation 174

ix

Contents

3.2 Nondeterministic post∗ Saturation 177

3.3 Combined dual∗ Saturation 180

4 Executable Pushdown Reachability 180

5 Differential Testing . 182

5.1 Differential Testing of Pushdown Reachability 183

5.2 Automatic Counter-Example Minimization 184

6 Case Study: Analysis of PDAAAL 185

6.1 Methodology of Test Case Generation 186

6.2 Results . 186

7 Conclusion . 188

References . 188

G Discovery of Flow Splitting Ratios in ISP Networks with Measure-
ment Noise 193
1 Introduction . 195

2 Problem Formalization . 197

2.1 Network, Paths and Flows 198

2.2 Correlation of Traffic Flow and Link Utilization 199

3 Solution to Flow Splitting Ratio Synthesis 200

3.1 Encoding of FSR to a Linear Program 200

3.2 Measurement Noise . 204

4 Dealing with Measurement Noise 204

4.1 Simulation Experiments with Synthetic Traffic 205

5 Scalability Study on Large European ISP 206

6 Conclusion . 207

References . 208

x

Preface

While being a PhD student can sometimes feel like a lonely endeavor, the truth

is that a lot of brilliant people have helped me throughout this journey, and I

believe that a few words of acknowledgement are in order.

First and foremost, I would like to thank my supervisor Jiří Srba for his

guidance and extensive feedback throughout this PhD project.

During my five month in Berlin, thanks to Ingmar Poese, I gained valuable

insight into the practical challenges of working with data from real networks.

I would like to thank all the colleagues at Benocs for quickly making me feel

part of the company and for also joining social activities outside of work.

Stefan Schmid has been involved in my PhD project from the beginning, and

he has throughout provided me with much-needed guidance on networking

research, for which I am grateful. During my stay in Berlin he kindly invited

me to his research group at TU Berlin.

With Juan Vanerio, I have had many fruitful discussions, where the combi-

nation of our different technical backgrounds has provided some interesting

and valuable outcomes. Peter Gjøl Jensen has been a great inspiration, helped

guide my intuition for implementing high-performing algorithms, and showed

me the value of high-quality code. Anders and Dmitriy, thank you for the col-

laboration on formalizing pushdown automata and for making me further

appreciate the art of interactive theorem proving.

I also want to thank my office mates and the lunch group at DEIS for all

the various discussions about life, science, or whatever is currently going on

in the world.

Finally, a huge thank you to my parents, Helle and Henning, who initially

sparked my curiosity for science and technology, have inspired me to explore

my ideas and make a fair effort, and have continuously supported me and

shown interest in my research.

Morten Konggaard Schou

Aalborg University, August 8, 2023

xi

Preface

xii

Part I

Introduction

1

Computer networks, like enterprise networks and in particular the internet,

have become a ubiquitous part of everyday life and a critical component in the

infrastructure of our modern, digital society. Digitalization of core parts of

the society like the economy, media, hospitals, and education depend on reli-

able inter-connection of computers. Even social interaction and entertainment

increasingly flow through these networks of routers and switches connected

across the world by copper or fiber-optic cables.

The last couple of decades have seen a drastic increase in the use of the

internet, and with that an increased demand on the capacity of the networks.

Not only do networks need to transport huge amounts of data packets, they

need also be able to react to sudden increases or shifts in traffic patterns,

as recently witnessed during the COVID-19 lockdowns: people staying at

home caused significant shifts in the usage of internet traffic, with an increase

in applications for remote work and education like video conferencing and

VPN services, as well as entertainment including video-on-demand and online

gaming [52].

Most networks, using the internet protocol, have traditionally been opti-

mized for throughput and resource utilization, with less emphasis on decreas-

ing the latency [24]. However, for many of these new types of networked appli-

cations, the quality of experience depends heavily on the delays that the user

experiences, which in turn brings strict latency requirements on the networks.

Loss of connectivity, even if short-lived, can disrupt the user applications. Next

generation of networked applications like factory automation, robotics, intel-

ligent transport systems, and tele-surgery will place even further demands for

reliability and low latency on modern communication networks [127].

The introduction of these new latency-sensitive applications along with

the need for more bandwidth to serve the increasing amount of traffic pushes

network operators to evolve their networks, gain more fine-grained control,

and steer the traffic flows through the network. With this incremental growth,

computer networks evolve into large heterogeneous systems, where a vari-

ety of different hardware and software run several protocols with complex

configurations—all making the networks difficult to manage and operate cor-

rectly.

There are many examples of network outages, where an erroneous network

configuration update [78, 107, 150, 159] or a latent software or configuration

error being triggered inadvertently under normal operation [8, 132, 139] have

taken down large networks and impacted millions of users as well as critical

services like emergency phone lines [107, 132] and payment systems. These

incidents are often caused by human errors [13, 25, 150] and can even be as

simple as a typo in a command [7]. In some cases, the errors also take down

internal monitoring tools, which extends the outage by making it harder for

the network administrators to locate and fix the issue [8, 78, 107, 132, 159].

To make matters worse, networking equipment is not perfect and will even-

3

tually fail, so given the magnitude of modern networks, equipment failures are

not uncommon. Networks need to be build and configured in a way, so they

are resilient to these failures: the failure of an individual component should

only have a minimal effect on the continued functioning of the network, in-

cluding the quality of service aspects like the latency and bandwidth. Further

adding to the complexity is an increase in failure scenarios that affect multiple

network elements simultaneously [134].

We contribute to the recent efforts to cleverly automate parts of the network

operation and use formal models and algorithms to verify its correctness in

order to reduce the risk of the network outages that regularly impact millions

of people worldwide.

1 Network Verification and Synthesis

One of the basic tools for the management of computer networks is network

monitoring [105], which gives network operators the insight into the current

behavior of the network and allows them to identify issues and reactively

reconfigure the network. A purely reactive and ad-hoc approach to network

operation has the risk of introducing errors that quickly lead to network outage

before the operator is able to react. Instead, operators can use simulation or

emulation to test the configuration changes before deployment [110], inspect

the results, and fix any issues observed in the sandbox environment.

While simulation and testing can catch errors early, it cannot check all

scenarios that the network might experience, so even if the simulation and

testing is done thoroughly, this approach leaves room for implementation and

configuration errors in uncommon scenarios, which may lead to severe failures

during the lifetime of the system.

Formal verification takes a different, complementary approach to system

correctness by constructing a formal, mathematically well-defined model of

the system and its specification. Model checking [36, 37] can then be used

to exhaustively verify that the system satisfies the specification in all possible

situations.

Model checking comes with the problem of state-space explosion, since

most systems have at least an exponential, if not unbounded, number of possi-

ble inputs to check. Much work has been done in the field of formal methods

to tackle this state-space explosion for various different modelling formalisms

by constructing efficient model checking algorithms that still guarantee a full

correctness of the results. This correctness guarantee, however, only holds

if the model checker itself is correct. Confidence in model checking results,

e.g. when used in safety-critical systems, can be increased by certification,

extensive testing, algorithm review or combination with theorem proving ef-

forts [102, 121].

4

2. Challenges in Application of Formal Techniques

Formal synthesis takes it a step further. Instead of verifying the correctness

of a given system model, synthesis takes a specification and generates a system

that is correct by construction. On top of the Boolean correctness according to

a specification, synthesis may further try to optimize quantitative objectives—

creating a system that is not only correct but also efficient.

When it comes to computer networks, the specification of desired proper-

ties can include qualitative correctness and safety properties as well as quan-

titative performance properties. Correctness properties are e.g. that packets

can reach their destination; that all traffic flows through a certain waypoint,

such as a firewall; the absence of forwarding loops; or the absence of “black

holes”, where packets are dropped because the router has no forwarding rule

for it.

Quantitative properties are relevant for the performance of computer net-

works and include for instance the maximum latency experienced by packets

on a given traffic flow, the utilization of each link given typical traffic demands,

and the maximum throughput the network can serve across different traffic

flows given the bandwidth capacities of each link. As traffic patterns change

during the day, many of the quantitative properties change with them, so

network performance measures need to also take this temporal variation into

account.

With the possibility of failures of individual components and the changes

induced by the network’s reaction to a failure, these properties need to be seen

relative to their resilience. Given estimates of the probability of various failures,

we can use the notion of availability to express the probabilistic guarantee that

a given property is met at least a certain percentage of the time.

2 Challenges in Application of Formal Techniques

Developing formal techniques for the modelling, verification, and synthesis of

computer networks is a significant undertaking. We will here consider six of

the major challenges that should be addressed to enable formal verification and

synthesis becoming an essential tool for making modern computer networks

safe, reliable, and efficient.

Network formalization: Errors can happen at different layers, in the con-

figuration of many different protocols, and in their interplay. An error that

manifests in the data plane—the forwarding rules installed at each router,

responsible for forwarding packets—may be caused by an incorrect configu-

ration at the control plane. This indicates that a complete formal model can

become quite complex in order to incorporate all essential elements of a mod-

ern network. Finding the right abstraction and formalization for each part, as

well as creating composable models may be the key to solving this challenge.

Network mining: Precise formal network models alone are not enough to en-

5

able verification and automation; their variables need to also be populated with

concrete values from the running network, and they should be continuously

updated over time. Given the size and heterogeneity of modern networks, it

can often be difficult in practice to gather and correctly interpret all the techni-

cal details about e.g. router configurations; instead, it may be needed to infer

some parameters of the model (at a higher abstraction layer) based on other

measurements. When measuring traffic in a large network, it is often neces-

sary to perform sampling of the traffic and rely on statistical estimates based

on the samples; moreover, with hundreds or even thousands of routers, it is

hard to avoid gaps and errors in the measurements from each router. These

are practical challenges related to mining the data from the network.

Specification: As the formal specification of desirable behavior for a com-

puter network needs to express a variety of properties, including qualitative

correctness and safety properties as well as quantitative performance proper-

ties, the formalisms developed to model the network need to be sufficiently

expressive to model and check these properties. Moreover, the specification

formalisms should be intuitive and easily understandable by non-experts to

ensure clarity of the specification and coherence between the formal property

and the intended behavior.

Optimization of configuration synthesis: While model verification can help

avoid errors and increase the uptime of networks, the full benefit of formal

methods for automating network management and improving network re-

liability and performance comes from being able to synthesize correct and

efficient configurations from a formal specification. The challenge is to effi-

ciently search through the huge state-space of possible configurations and find

one that is both correct and performant.

Resilience: When a failure happens, the network’s resiliency mechanisms

kicks in and alters the forwarding behavior. The network then has a new

data plane that may no longer satisfy the specification. To be able to give

a priori guarantees, the verification and synthesis need to take all possible

failures into account, hence significantly increasing the state-space. When

considering that multiple failures may overlap, the number of possible failure

scenarios becomes exponential. This calls for the development of efficient

model checking algorithms. Further, to compute availability guarantees, the

formal model and algorithms need to take failure probabilities into account.

Deployment: Solving the theoretical and algorithmic challenges is an impor-

tant step for the research, but to become directly applicable in the networking

industry, tools that implement the formal techniques need also be developed

with usability in mind. Tools with excessive run-times can be impractical

for the daily management of networks, so the efficiency of the verification

and synthesis algorithms matters. For verification, a negative result should be

accompanied with a counterexample that explains the property violation. For-

mal methods is not a one-off solution, they need to also address how to manage

6

3. Overview of Computer Networks

and evolve the formal model and specification as the network and its appli-

cations and requirements grow. Finally, the integration of formal tools with

existing network management systems and practices can help the incremental

adoption of formal techniques.

This thesis, to different degrees, contributes to pushing the state-of-the-art

of these challenges.

3 Overview of Computer Networks

Before diving into the research on network verification and synthesis, we

provide an overview of relevant concepts in computer networking.

The internet is composed of many networks, each functioning as an au-

tonomous system (AS) and each typically owned and controlled by a distinct

entity. These networks connect and share routes with each other using the

border gateway protocol (BGP) [137]. This thesis, and much of the related

work, mainly focus on the mechanisms of a single network, i.e. inside a single

AS, and the possible interactions with its neighbors, since this is the scope that

can be fully observed and controlled by a network operator.

Such a computer network can be modelled as a graph of routers and links

called the network topology. The software and hardware elements on each

router can logically be split into the control plane, responsible for computing

and installing paths, and the data plane, responsible for forwarding packets

along the paths computed by the control plane.

Traditionally, networks rely on the internet protocol (IP) [130] to perform

forwarding. Here the packet’s destination IP address is matched against the

router’s forwarding table using longest prefix matching [63]. The intra-AS

routing is computed using an interior gateway protocol (IGP) such as IS-IS [28,

76] or OSPF [120]. These are distributed algorithms for finding the shortest

paths between each pair of routers given some configurable link weights.

Software defined networking (SDN) [97, 117] is an emerging technology

that takes a different approach by centralizing the control plane. The data

plane rules are then pushed out from the central controller to the individual

routers through standardized interfaces like OpenFlow [117]. In this way, SDN

allows operators to program their networks and create sophisticated routing

solutions, such as centralized and frequently adjusted traffic engineering [72,

77], enforcement of security policies [29], and detection of DDoS flooding

attacks [23].

Multiprotocol label switching (MPLS) [140] is a well-established network-

ing technology typically deployed inside a single AS and used for e.g. enter-

prise wide-area networks (WANs) to simplify and generalize traffic engineer-

ing (TE) and virtual private network (VPN). In MPLS networks, packets are

forwarded based on labels rather than network addresses. The labels encode

7

paths to network endpoints and are established by MPLS control plane proto-

cols, where the two main protocols are label distribution protocol (LDP) [10]

and resource reservation protocol with traffic engineering (RSVP-TE) [12].

By encapsulating the packet in a label header, MPLS simplifies the for-

warding table lookup and allows for more explicit engineering of traffic paths.

An MPLS packet can be further encapsulated by another label—effectively

creating a stack of labels, where the top label is used to decide the forwarding.

This allows tunneling packets through a specific path by pushing a label at the

beginning of the path and popping the label at the last hop.

Segment Routing (SR) [53, 54] is an emerging source routing technology,

where the ingress router can encapsulate the packet with a list of segments

used for forwarding. SR works on top of either MPLS, using a stack of MPLS

labels, or IPv6, using a special header with a list of IP addresses.

With the demand of large traffic volumes and the constraints of bandwidth

capacity on individual links, networks may need to balance the traffic load

across different paths through the network. Equal-cost multi-path routing

(ECMP) [73] accomplishes this by splitting traffic among multiple equally

short paths according to the link weights for the IGP.

When the failure of a link or a router is detected by the neighbors in

the network, the control plane protocols start the distributed algorithms that

recompute forwarding paths in the changed network topology. This is not a

fast process, and in the meantime packets are lost. To mitigate this, networks

can make use of fast reroute (FRR) [32, 133] techniques, where the router that

detects the failure makes a local decision to switch the affected traffic onto

a precomputed backup path. Compared to the reconvergence of the control

plane algorithms, this local repair is very fast and hence reduces the number

of packets that are lost due to the failure.

Internet service providers (ISPs) can specify guarantees on quality of ser-

vice (QoS) [68] parameters such as bandwidth and latency as well as service

availability and resilience through service level agreements (SLAs) with their

clients. An SLA often impose a financial penalty on the ISP for breaking the

contract [68].

4 Related Work

Over the past decade, academic research has taken an increasing interest into

the formal treatment of computer networks. This section presents a selection of

important literature in the area covering formalisms and tools for verification

of both traditional and programmable network, optimization techniques for

traffic engineering, and synthesis of network configurations and updates.

8

4. Related Work

4.1 Verification of Traditional Networks
The seminal work in the field of network data plane verification by Xie et

al. [170] proposes algorithms for static reachability analysis of IP networks.

This is followed by work that extends static data plane analysis to more expres-

sive properties and network models: ConfigChecker [4] and FlowChecker [3]

uses binary decision diagrams (BDDs) [26] and CTL logic, Anteater [114] uses

a SAT solver, and header space analysis (HSA) [91] models networks using

bit-vectors and transformation functions. Real-time data plane analysis of rule

updates is introduced using incremental algorithms in the tools Veriflow [92]

and NetPlumber [90]. Further improvements to the scalability and expressive-

ness of real-time data plane analysis are achieved by Libra [178], Delta-net [74],

the AP Verifier [171, 172], and APKeep [180].

More recently, P-Rex [45, 80] verifies MPLS network data planes and models

the behavior of fast reroute for any scenario up to k link failures. P-Rex can

handle the push and pop operations of MPLS networks without restricting the

size of the label stack by using pushdown automata.

Configuration verification moves one abstraction layer up by taking all

data planes that might emerge from the control plane routing protocols into

account in the verification. Batfish [57] simulates the control plane and verifies

properties using the SMT solver Z3 [40]. Batfish is able to parse configu-

ration files from several network vendors. Its performance is improved by

network-optimized datalog (NoD) [112] which extends Z3 Datalog with effi-

cient data structures for modelling header spaces and packet rewrite functions.

Minesweeper [14] extends Batfish with the ability to verify all failure scenar-

ios with up to k failures. Bonsai [15] speeds up verification in Batfish and

Minesweeper by compressing the control plane using abstraction refinement.

Several works attempt to improve the performance of configuration veri-

fication compared to Minesweeper. Both ARC [65] and ERA [50] use Batfish

to parse configuration files and then perform efficient configuration verifica-

tion of specific properties using respectively algorithms on weighted graphs

and BDD operations. To simplify the use of Batfish as a frontend for config-

uration verifiers, NV [67] introduces an intermediate language for network

configuration verification.

Tiramisu [2] creates a graph model of the network and uses different verifi-

cation algorithms for different properties to balance performance and fidelity

of the property, while Plankton [131] uses an executable model of the control

plane protocols with the model checker SPIN [71]. Hoyan [174] combines sim-

ulation with formal verification in order to scale to the practical use in a real

large network. Moreover, Hoyan is able to detect and deal with vendor-specific

behavior in the running devices, hence addressing the correctness of the for-

mal models used for verification. This is further addressed by Metha [18]

that tests the correctness of network verifiers compared to the behavior of

9

real devices using fuzzing and combinatorial testing, and it uses delta debug-

ging for fault localization. To scale network configuration verification further,

Kirigami [161] and Timepiece [5] introduce modular control plane verification

that allows parallel verification.

Real network configurations evolve gradually, so instead of performing

a clean-slate verification on every configuration change, differential network

analysis [179] uses techniques from differential dataflow programming and

incremental verification to efficiently compute the impact in network behavior

of a configuration change. To ease the adoption of network verification, Con-

fig2Spec [19] synthesizes formal network specifications from configurations.

Probabilistic network verification is introduced by NetDice [156] for veri-

fying soft properties that must hold with a certain probability given a proba-

bilistic failure model as a Bayesian network.

Stateful network verification [51, 126, 158, 176] addresses network verifica-

tion in the presence of middleboxes, such as caches and firewalls, that change

forwarding behavior based on the packets they observe. Given the high com-

plexity of a priori verification of stateful network functions, Aragog [173]

proposes to instead use runtime verification. Some verification approaches

are specific to e.g. BGP [169] or datacenters [79, 129].

Much of the work in network verification focuses on qualitative correctness

properties. It has recently been suggested to extend the use of formal methods

to analyze quantitative network performance [11] and e.g. find counterexam-

ples of traffic workloads that will cause bad performance.

4.2 Verification of Programmable Networks
Network programming is made possible by a standardization of the inter-

faces to proprietary routers and switches called OpenFlow [117]. On top

of this, domain-specific SDN programming languages, like the Frenetic fam-

ily [59, 60, 118, 119], give higher-level features for programming modular and

portable network programs. The declarative language Merlin [155] allows pro-

visioning network resources based on high-level policies and specified band-

width constraints. Development of correct-by-construction SDN programs is

addressed by Cocoon [141] using stepwise refinement.

A formal, semantic foundation for the programming of networks is intro-

duced with NetKAT [9, 62] that builds on Kleene algebra with tests (KAT) [96].

NetKAT has a sound and complete equational theory that enables verification

by checking the equivalence between safety properties and the programmed

network behavior—both expressed in NetKAT. To reason about fault toler-

ance and expected congestion, ProbNetKAT [61, 153] extends NetKAT with

probabilistic behavior, and McNetKAT [154] improves the verification perfor-

mance by restricting to history-free probabilistic NetKAT programs. Another

(history-free) probabilistic network programming language is Bayonet [64]

10

4. Related Work

that builds on standard probabilistic programming and inference systems.

WNetKAT [104] is a quantitative extension of NetKAT, but it lacks decision

procedures. The recently proposed Concurrent NetKAT [166] extends NetKAT

for reasoning about concurrency with multiple packets and mutable state.

While the first wave of SDN has allowed programming of a centralized

control plane, switches and routers are now opened up to programmers with

the data plane programming language P4 [21]. This allows implementing

custom switch programs [152] or pushing advanced computations, such as

performance diagnostics [66] or the Paxos consensus protocol [39], onto the

network devices.

This new way of defining the forwarding behavior of networks has spawned

a line of work on verification of P4 programs [111, 123, 157, 162]. The verifi-

cation in Vera [157] uses symbolic execution, and p4v [111] is based on verifi-

cation condition generation and SMT solving. Aquila [162] is practically used

for verification of production-scale programmable data planes.

Recently, the development of formal foundations for the P4 language [43]

has inspired formal reasoning tools for data plane programming based on

interactive theorem proving [6, 44, 128, 167] and dependent type theory [46].

4.3 Traffic Engineering Optimization
Traffic engineering aims at steering the traffic demand efficiently through the

network while satisfying the bandwidth capacity of each link and the latency

requirements of the traffic. A classical approach for traffic engineering in IP

networks [58] configures IGP link weights to minimize the maximum link

utilization (relative to capacity).

More fine-grained control of the traffic paths and load balancing weights

can be gained e.g. using RSVP-TE and weighted ECMP in MPLS networks

or through the use of SDN. If moreover all the traffic demands are known,

the maximum link utilization can be minimized by encoding it as a multi-

commodity flow problem, which is well-studied and can be solved using linear

programming (LP) [163]. In practice, traffic demands change over time and

there might be scalability restrictions on the number of paths. To address the

overhead involved in tearing down and setting up new paths when the traffic

changes, SMORE [101] computes first a diverse set of low-stretch paths without

knowledge of the traffic demands and then dynamically adapts sending rates

based on the actual traffic.

Congestion-free resilience [85, 108, 168] is achieved by including the effect of

failure protection in the optimization problems and guaranteeing congestion-

freedom for certain numbers of failures. In some cases, congestion-free k-

failure resilience is not possible, so more nuanced approaches [20, 31] use a

probabilistic failure model to guarantee e.g. congestion-freedom for a certain

availability target. This allows achieving high utilization while still being

11

congestion-free with high probability [20, 84].

Traffic engineering is being practically used to efficiently steer traffic be-

tween datacenters [72, 77] and even to optimize a large-scale internet back-

bone [98].

4.4 Synthesis of Network Configurations and Updates
Network configuration synthesis tools [1, 16, 17, 47, 48, 122, 135, 142, 160,

175] create correct-by-construction network configurations based on high-level

policies or based on partial configurations with holes that need to be filled out

correctly.

The introduction of SDN, where network programs dynamically send out

updates to the routers, gave rise to a new issue: given that networks are

distributed systems, there is no guarantee that the updates are installed simul-

taneously, so how do we ensure that packets are forwarded correctly while the

update is happening? This is addressed by the notion of consistent network

updates [136], which guarantees that each packet sees a consistent view of

either the initial or final configuration. This strong consistency comes with an

overhead of duplicating the forwarding tables and tagging packets during the

update, so a relaxation is proposed [113] that allows other intermediate states

but requires that they satisfy a set of safety properties.

McClurg et al. [115] and their tool, sometimes referred to as NetSynth,

specifies these properties in LTL and uses incremental model checking to

find safe sequences of rule updates. Not all network update problems can

be solved by a sequences of rule replacements, so FLIP [165] generalizes the

solution space to also contain rule additions in the update sequence and is able

to solve more update problems.

Recent approaches using Petri nets [33, 41, 87] and Stackelberg games [146]

benefit from existing formal models and efficient solvers and address the ef-

ficiency of the synthesized update schedules by finding safe batch updates.

AllSynth [103] uses BDDs to find all update schedules that satisfy an LTL

specification. Quantitative aspects are addressed by zUpdate [109] that syn-

thesizes congestion-free network updates for datacenters and by Dionysus [86]

that reduces update latency by dynamically scheduling the consistent updates

based on the runtime differences of updating each switch. For updating the

configurations of traditional routing protocols, SnowCap [147] finds reconfig-

uration orderings that satisfy an LTL formula of regular path conditions and

among these it optimizes an objective function, such as minimizing the traffic

shift during the safe update.

Foerster et al. [56] gives a comprehensive survey of consistent network

updates.

12

5. Contributions

5 Contributions

This thesis contributes to the formal treatment of network data planes with a fo-

cus on MPLS networks, where the forwarding is based on a label stack. For net-

work verification, we build on the relation between MPLS networks and push-

down automata, where we address quantitative specifications, the scalability

and efficiency of algorithms and implementations, as well as the trustworthi-

ness of answers provided by verification tools. We improve the resilience of

MPLS networks to multi-failure scenarios and synthesize failover protection

that maintains certain properties of the data plane like loop-freedom. Finally,

we address the challenge of obtaining an accurate model of a real network, in

particular with respect to the ratios used when load balancing traffic among

multiple paths.

The following conference publications are part of this thesis.

Paper A R-MPLS: Recursive Protection for Highly Dependable MPLS Networks.

S. Schmid, M. K. Schou, J. Srba, and J. Vanerio. In: Proceedings of the 18th

International Conference on Emerging Networking EXperiments and

Technologies (CoNEXT ’22), pp. 276–292, Association for Computing

Machinery, 2022. [145]

This work led to a patent application (2022-521/10-0946) being filed on

April 26, 2022 by Aalborg University in collaboration with the University

of Vienna. The patent application was later discontinued.

Paper B MPLS-Kit: An MPLS Data Plane Toolkit. J. Vanerio, S. Schmid, M. K.

Schou, and J. Srba. In: IEEE 11th International Conference on Cloud

Networking (CloudNet ’22), pp. 49–54, IEEE, 2022. [164]

(Presented at IEEE Global Internet (GI) Symposium 2022, organized in

conjunction with IEEE CloudNet 2022.)

Paper C Faster Pushdown Reachability Analysis with Applications in Network

Verification. P. G. Jensen, S. Schmid, M. K. Schou, J. Srba, J. Vanerio, and

I. van Duĳn. In: Automated Technology for Verification and Analysis

(ATVA 2021), Lecture Notes in Computer Science, vol. 12971, pp. 170–

186, Springer, 2021. [81]

Paper D AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS

Networks. P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C.

Schrenk, and J. Srba. In: Proceedings of the 16th International Confer-

ence on emerging Networking EXperiments and Technologies (CoNEXT

’20), pp. 474–481, Association for Computing Machinery, 2020. [83]

This paper is a modified version of the master’s thesis [99], compared

to which a new experimental evaluation is performed and the clarity of

presentation improved.

13

Paper E PDAAAL: A Library for Reachability Analysis of Weighted Pushdown

Systems. P. G. Jensen, S. Schmid, M. K. Schou, and J. Srba. In: Automated

Technology for Verification and Analysis (ATVA 2022), Lecture Notes in

Computer Science, vol. 13505, pp. 225–230, Springer, 2022. [82]

Paper F Differential Testing of Pushdown Reachability with a Formally Verified

Oracle. A. Schlichtkrull, M. K. Schou, J. Srba, and D. Traytel. In: Proceed-

ings of the 22nd Conference on Formal Methods in Computer-Aided De-

sign (FMCAD 2022), pp. 369–379, TU Wien Academic Press, 2022. [143]

Paper G Discovery of Flow Splitting Ratios in ISP Networks with Measurement

Noise. M. K. Schou, I. Poese, J. Srba. Under submission, 17 pages (in this

thesis), 2023.

In the following sections, we will present the contributions of the papers in

this thesis—referring to them by their letters above. The papers are inserted in

their entirety in Part II. In Section 6, we first introduce details of MPLS networks

and present our formal model of these. We also describe the tool MPLS-Kit

that is developed to aid the prototyping and evaluation of new ideas for MPLS

networks, and we present one such idea, R-MPLS, for increasing the resilience

of MPLS networks by synthesizing loop-free recursive failover protections.

Section 7 motivates the use of pushdown automata for model checking MPLS

networks and presents our algorithmic improvements as well as an extension

for quantitative verification through the tools PDAAAL and AalWiNes. We

increase the trust in results from these tools by formalizing the pushdown

reachability algorithms in Isabelle/HOL and performing differential testing

against this formally verified oracle. Our method for inferring flow splitting

ratios from noisy measurements of a real network is described in Section 8.

6 MPLS Network Resilience

This section covers work from Paper A and Paper B on modelling, generating

and analyzing MPLS data planes as well as synthesizing low-overhead, loop-

free resiliency schemes for MPLS networks.

6.1 MPLS Network Model
As briefly discussed in Section 3, multiprotocol label switching (MPLS) [140] is

a networking technology, where packets are forwarded based on labels rather

than addresses. MPLS allows encapsulating the packet in a stack of labels,

where each router forwards the packet based on the top label on the stack.

MPLS networks transport packets from an ingress to an egress router.

When a packet enters the network, the ingress router classifies it and deter-

mines its forwarding equivalence class (FEC), which typically represents a

14

6. MPLS Network Resilience

network resource, e.g. a specific router or a traffic engineering tunnel. The

packets belonging to a FEC are forwarded in the same way through the net-

work. The ingress router has a table that maps the FEC to an MPLS label.

It encapsulates the packet in an MPLS header and initializes the stack with

the corresponding label; the packet has now entered the MPLS data plane. In

Paper B we provide a more detailed overview of MPLS networks.

When forwarding an MPLS packet, the router looks up the label on top

of the stack in its forwarding table to find a matching forwarding entry. The

forwarding entry contains a sequence of operations, instructing the router to

modify the label stack, and the next-hop interface, where the packet should

exit the router. Each operation acts on the top of the stack and can either swap,

push, or pop a label.

In Figure 1 we introduce a small running example. Here Figure 1a depicts

a network topology as a directed graph (to simplify the presentation some

links are unidirectional), and Figure 1c lists the forwarding tables of the four

routers. As an example of the forwarding process, consider a packet arriving

at router v1 with label stack 20 ◦ 05, where the left-most label denotes the top

of the stack. A look-up in the forwarding table determines that the header

should be modified by the operation swap(21), resulting in the header 21 ◦ 05,

and then the packet is sent out on link e1 towards router v2.

For the distribution of labels and installation of forwarding rules to encode

desired traffic paths, as we describe in Paper B, the MPLS control plane has

access to information about the network topology and shortest paths obtained

by the IGP. We focus here on two main control plane protocols for MPLS:

• The label distribution protocol (LDP) [10] maps the IP address of each

router and link to a locally recognized MPLS label and installs forwarding

rules to reach this resource. It works by each router allocating local labels

for each resource (FEC) it knows and then broadcasting this information

to its neighbors. They will in turn allocate a local label for each of these

resources, install the corresponding forwarding rules, and broadcast the

new information to their neighbors.

• The resource reservation protocol with traffic engineering extension

(RSVP-TE) [12] can create label-switched paths (LSPs) from ingress to

egress router. It is possible to assign traffic engineering policies on these

paths by e.g. specifying certain waypoints, excluding some links from

the path, or requiring some minimum bandwidth guarantee.

LDP creates basic connectivity in an MPLS network, but it does not allow the

more fine-grained engineering of traffic paths that is possible with RSVP-TE.

MPLS networks can support balancing of the traffic load among multiple

paths through the use of equal-cost multi-path routing (ECMP) [73]. For each

packet, a forwarding rule is chosen pseudo-randomly; either uniformly or

15

v1

v2

v3

v4
in1

in2

out

e1
e2

e4
e5

e3

e6

(a) Network topology.

⟨e3, e2e4e6⟩ ⟨e6, e5e1e3⟩

(b) Protection graph

Router Label Prio. eout Operation

v1 01 1 e1 swap(02)
1 e4 swap(04)

10 1 e4 swap(11)
20 1 e1 swap(21)

v2 02 1 e3 swap(03)
2 e2 swap(03) ◦ push(10)

21 1 e3 pop

v3 04 1 e6 swap(05)
2 e5 swap(05) ◦ push(20)

07 1 e6 swap(08)
2 e5 swap(08) ◦ push(20)

11 1 e6 pop

v4 03 1 out pop

05 1 out pop

08 1 out pop

(c) Forwarding table

(in1, 01)(e1, 02)(e3, 03)(out , ε) F = ∅
(in1, 01)(e1, 02)(e2, 10 ◦ 03)(e4, 11 ◦ 03)(e6, 03)(out , ε) F = {e3}

(d) Two traces through the network. The second uses FRR protection to route around a link failure.

Router Label Prio. eout Operation

v2 21 2 e2 swap(10)

v3 11 2 e5 swap(20)

(e) Problematic forwarding rules introduce the possibility of a loop.

(in1, 01)(e1, 02)(e2, 10 ◦ 03)(e4, 11 ◦ 03)(e5, 20 ◦ 03)(e1, 21 ◦ 03)(e2, 10 ◦ 03) . . . F = {e3, e6}
(f) Looping trace (sequence of link-header pairs) in the failure scenario F using the rules from Figure 1e.

Fig. 1: Example MPLS network data plane with an LSP from v3 to v4 and load balancing between

two LSPs from v1 to v4. Links e3 and e6 have FRR protections using labels (10, 11) resp. (20, 21).

based on a weight [88]. To avoid that packet reordering disrupts the perfor-

mance of the transmission control protocol (TCP) on the transport layer, pack-

ets belonging to the same TCP flow should follow the same paths through the

network. This is accomplishes by computing a hash of the header fields that

identify the flow and using this as the key for selecting the forwarding rule [73].

To model ECMP, we allow the forwarding table to have multiple entries for

a single label. In the running example in Figure 1c, this can be seen at router

v1, where the label 01 has two entries encoding the two different paths to v4
going via either v2 or v3.

When we reason about the possible packet traces through the network, it

is sufficient for the semantics to model that any of the possible entries can

be chosen. When looking at certain quantitative properties of the data plane,

the model needs to include a weight for each entry to indicate the relative

probability that this entry is chosen. Paper G investigates how to obtain these

16

6. MPLS Network Resilience

values in a real network analytics deployment.

Modelling Failures and Fast Reroute Protection

In the event of a failure of a router or a link, the neighboring routers will

detect it and start notifying the rest of the network. This changed view of the

network topology makes the control plane start recomputing shortest paths in

the network. As mentioned in Section 3, this is a comparatively slow process,

and while it unfolds, packets will be dropped at the point of failure. To combat

this, networks can use fast reroute (FRR) [32] techniques to reduce the packet

drop when a link or router fails by redirecting the traffic onto a precomputed

backup path. The decision to redirect traffic happens locally at the router

detecting that its corresponding interface port is down.

There are various techniques for failure detection, ranging from higher layer

methods such as bidirectional forwarding detection [89] to lower layer tech-

niques such as detecting a degradation in the signal quality of optical fibers e.g.

observed by an increase in the bit error rate computed in the process of forward

error correction [30, 75, 149]. We abstract over this by merely assuming the

indication of whether an interface (and the corresponding link) is up or down.

In MPLS networks FRR is supported by RSVP-TE [125]. In its popular

variant, facility protection, the protocol installs a backup tunnel around each

facility, i.e. link or node, along the path to protect. In the case of a failure,

the repairing router pushes the label that encodes the backup tunnel onto the

label stack and the packet is forwarded along the protection path. At the last

hop, the label is popped, and the packet merges back in to its original path,

using the underlying label for forwarding.

We model FRR mechanisms in the MPLS data plane by assigning a priority

to each forwarding table entry. The semantics is now to find the entries with

highest priority among those where the next-hop interface is up. If multiple

entries with equal priority qualify, the semantics for ECMP apply.

Returning to the running example, we see in Figure 1c that if the link e3
is down, packets arriving at router v2 with the label 02 on top of the stack

will have to use the lower priority backup rule that pushes the label 10 on the

stack and sends the packet along the backup path through links e2, e4, and e6.

Figure 1d shows first a packet trace on the primary path through router v2 in

the situation with no failures and then a trace where FRR protects against the

failure of link e3.

Contribution 1 (Paper A)
We present a formal model of MPLS data planes that is capable of modelling

all possible packet traces through the network, including the behavior of

ECMP and fast reroute in case of failures.

17

6.2 Data Plane Generation and Simulation
When performing research of new networking techniques and protocols, it is

imperative to be able to experiment with the new ideas on realistic test cases

to assess performance and to possibly discover unseen issues. While there

exist datasets of network topologies (the graph of routers and links) stemming

from measurements on real-world networks [95], there is a lack of open source

datasets of network data planes and control planes, in particular datasets that

include the routers’ configurations and forwarding tables.

Generating arbitrary forwarding tables is likely to result in data planes that

differ widely from real networks, hence making research results based on these

data planes inaccurate compared to a real deployment. To enable research into

MPLS networks, including the evaluation of formal verification and synthesis

tools, we develop in Paper B the automated tool MPLS-Kit that can gener-

ate realistic MPLS data planes based on a parameterized configuration using

widely-deployed industry-standard control protocols.

MPLS-Kit is implemented as a modular Python library with a command

line interface. It allows specifying which of the supported control plane pro-

tocols to use, including LDP, RSVP-TE with fast reroute, and VPN services, as

well as the parameters for each protocol. These parameters can for instance

include a list of specific traffic engineering tunnels or just a number of random

tunnels to create. This flexibility allows both simple and advanced uses.

Given the specified configuration, MPLS-Kit produces an MPLS data plane

that follows the model presented in the previous section. To efficiently generate

the data plane, the tool abstracts over certain details of the distributed control-

plane algorithms and produces the data plane that would result from the

convergence of this distributed process.

On the generated data plane, MPLS-Kit can perform simple packet-level

simulations, from which packet traces and various statistics can be gathered. In

Paper B we present use cases of MPLS-Kit’s simulation including congestion,

latency, and resilience analysis. The modular and extensible design allows

easy prototyping of new techniques, such as the R-MPLS protection scheme

that we will introduce in the next section.

Contribution 2 (Paper B)
We present MPLS-Kit, an open-source tool for automated and efficient gen-

eration and simulation of synthetic, yet realistic, MPLS data planes based

on parameterized configurations.

18

6. MPLS Network Resilience

6.3 Recursive Fast Reroute Protection
While the fast reroute supported in MPLS networks by RSVP-TE can protect

against single link or node failures, it does not provide resilience to multiple

concurrent failures. The FRR technique installs backup tunnels around vul-

nerable links or nodes to protect the main traffic, but it does not attempt to

protect against failures in the backup paths.

Given that most links and nodes already have protection paths around them

for protecting the main traffic paths, it seems like a low-hanging fruit to increase

the resilience by reusing these paths to protect the protection paths—resulting

in recursive protection. Since applying a facility protection amounts to just

pushing a corresponding label onto the stack, recursive facility protection is a

fast and memory efficient way of providing increased resilience against multi-

failure scenarios.

To understand why existing FRR does not perform this recursive protection,

consider the two rules in Figure 1e that “protect” the backup path e5e1e3 against

of failure of link e3 and similarly for backup path e2e4e6 and the link e6. If

both e3 and e6 are down, e.g. caused by a node failure on v4, the recursive

protection will keep sending packets back and forth between routers v2 and

v3 until the time-to-live (TTL) field of the packets reach zero. This forwarding

loop will quickly exhaust the bandwidth of the impacted links (e1, e2, e4 and

e5), which effectively blocks traffic that would otherwise flow unhindered on

other LSPs from v2 to v3 via v1.

As this example highlights, naïvely applying recursive protection can result

in packets being forwarded in a loop—leading to detrimental performance. We

will now look at how to proactively avoid this and develop the R-MPLS tech-

nique (presented in Paper A) that guarantees loop-free recursive protection.

In the example, we can simply avoid installing the two rules in Figure 1e, but

in general we want to install as many recursive protections as possible while

guaranteeing that no forwarding loops are introduced. The challenge is to

determine which recursive protections are safe to install.

To capture the possible interplay of different protection paths, we define a

graph, where each node is a protection, modelled as a pair of the failing link

and the sequence of links used as the protection path. This protection graph

has a directed edge from p to q if the protection q can be used for recursive

protection somewhere along the path of the protection p. The idea is that a

cycle in this graph corresponds to a possible forwarding loop in the network

under some failure scenario if all these recursive protections are enabled.

Paper A presents the formal definition and further uses certain annotations

of the directed edges in the graph to give a precise characterization of which

cycles in the graph correspond to forwarding loops in the network—details

that we will omit in this overview.

The protection graph for the two protections in the running example, de-

19

R-MPLS RSVP + Standard FRRUnprotected data plane (LDP / RSVP)

0 25 50 75 100 125
Network Topologies

70

80

90

100

Su
cc

es
s

Ra
tio

(%
)

R-MPLS on top of LDP

0 25 50 75 100 125
Network Topologies

80

85

90

95

100

Su
cc

es
s

Ra
tio

(%
)

R-MPLS vs FRR on top of RSVP-TE

Fig. 2: Success rate per topology relative to optimal protection (higher value is better) for R-MPLS

on top of LDP (left) and RSVP-TE (right) compared to the unprotected data plane. For RSVP-TE

we also compare to its standard FRR protection. Plots are from Paper A.

picted in Figure 1b, has a cycle that corresponds to the forwarding loop in the

scenario where links e3 and e6 fail as shown by the trace in Figure 1f.

The loop-avoidance algorithm proceeds by finding cycles in the protection

graph and removing edges until there are no more cycles that correspond to

forwarding loops in the network. When removing an edge (p, q) from the

graph, we add it to a set of disabled protection pairs and make sure that R-

MPLS does not install the recursive protection q for the label that encodes the

protection p. This is how the algorithm determines that the rules in Figure 1e

should not be installed, as they correspond to the two edges forming a cycle

in Figure 1b. In Paper A we prove that R-MPLS, using this loop-avoidance

algorithm, is guaranteed not to introduce any forwarding loops.

Contribution 3 (Paper A)
We present R-MPLS, a recursive fast reroute protection scheme for practi-

cal multi-failure resilience in MPLS networks. R-MPLS uses an algorithm

for proactively avoiding any loops that would otherwise result from recur-

sive application of backup paths. We prove that R-MPLS with this loop-

avoidance algorithm guarantees loop-free protection.

To evaluate R-MPLS, we use MPLS-Kit (Paper B) to generate data planes

on 143 network topologies from the internet topology zoo dataset [95] using

either LDP or RSVP-TE to populate the forwarding tables. On top of these

baseline data planes we run R-MPLS to create recursive protections, and for

RSVP-TE we run its standard FRR with facility protection for comparison.

Next, we enumerate failure scenarios of up to four link failures for each data

20

7. Pushdown Automata Reachability

plane, and we run packet-level simulations to determine how many packets

the data plane successfully forwards in the given failure scenario. Packets

that get physically disconnected from their destination by the failure scenario

are not counted, so a theoretical optimal protection achieves 100% success

rate. In Figure 2 we plot the success rate averaged over all simulated failure

scenarios, where for each curve the topologies are sorted by their success ratio.

On the LDP-based data planes, we see that R-MPLS significantly improves the

resilience compared to the unprotected data plane. The same trend is clear on

the RSVP-TE data planes, where the recursive protection also improves greatly

on the standard FRR that only protects against single failures.

These experiments are presented in more detail in Paper A along with an

analysis showing that R-MPLS induces only a modest overhead in memory

(needed for storing forwarding rules) and communication (between routers

needed for the distributed computation of forwarding tables).

Contribution 4 (Paper A)
We show through extensive experiments that R-MPLS achieves high re-

silience with only a modest memory and communication overhead. R-MPLS

builds upon standard protocols and can be implemented in a distributed way

with existing MPLS hardware.

7 Pushdown Automata Reachability

In this section, we shall introduce our contributions to automated formal ver-

ification of MPLS networks. The work arises from the observation [80, 144]

that the packet forwarding of an MPLS network, with a label stack modified by

push, pop, and swap operations, closely resembles the classical formal model

of a pushdown automaton [151, Chapter 2.2].

Our work extends on a research prototype tool for MPLS network verifica-

tion, P-Rex [80], by adding quantitative verification; further, we propose and

implement several efficiency improvements that combined result in orders of

magnitude speed up, making the MPLS network verification more scalable for

practical use.

7.1 Pushdown Automata Reachability for MPLS Verification
A pushdown automaton (PDA) is a finite-state automaton equipped with an

unbounded stack and rules that can change state and modify the stack if they

match the top symbol on the current stack. Formally, a PDA has a finite set of

control locations P , a finite input alphabet Σ, a finite stack alphabet Γ, and a

21

finite set of rules on the form ⟨p, γ⟩ σ
↪−→ ⟨p′, w⟩ where p, p′ ∈ P , γ ∈ Γ, w ∈ Γ∗

,

and σ ∈ Σ. (Note the use of Kleene star means that Γ∗
is the set of all words

over the alphabet Γ, i.e. sequences of elements from Γ; moreover, let ε denote

the empty word.) The rule says that in control location p, if γ is on top of the

stack, we can move to p′ and replace γ with w.

A configuration in a PDA is a pair ⟨p, w⟩ of a control location p ∈ P and

a stack w ∈ Γ∗
. A trace in the PDA is a sequence of Σ-labelled transitions

between configurations ⟨p0, w0⟩
σ1==⇒ ⟨p1, w1⟩

σ2==⇒ . . .
σn==⇒ ⟨pn, wn⟩ such that for

each step ⟨pi, wi⟩
σi+1
===⇒ ⟨pi+1, wi+1⟩ there is a rule ⟨pi, γ⟩

σi+1

↪−−−→ ⟨pi+1, w⟩ and

a suffix w′ ∈ Γ∗
such that wi = γw′

and wi+1 = ww′
. Note how the rule

must match the current control location and top-of-stack symbol, and that

everything in the stack below the top symbol is unchanged when taking a

step. We sometimes omit the Σ-labels when just talking about the existence of

a trace1.

For example, in a PDA with P = {p, q}, Σ = {x, y, z}, Γ = {a, b}, and

the three rules ⟨p, a⟩ x
↪−→ ⟨q, aa⟩, ⟨q, b⟩

y
↪−→ ⟨p, a⟩, and ⟨q, a⟩ z

↪−→ ⟨q, ε⟩, a possible

trace is ⟨p, ab⟩ x
=⇒ ⟨q, aab⟩ z

=⇒ ⟨q, ab⟩ z
=⇒ ⟨q, b⟩ y

=⇒ ⟨p, a⟩. Notice how the three

rules correspond respectively to push, swap, and pop operations. This PDA is

depicted in Figure 3a and will be used as a running example.

For MPLS network verification, we let Σ be the set of (directed) links in the

network and Γ be the set of MPLS labels. This allows us to model both the

links traversed by a packet and its intermediate MPLS headers. In a failure-

free scenario, the translation from our MPLS data plane model to pushdown

automata follows straightforwardly—details of this translation are presented

in Paper C. We will later discuss how to handle failures and fast reroute, i.e.

lower priority rules in the MPLS data plane model.

Note that this presentation of pushdown automata omits the start config-

uration and accepting control locations that are normally part of a PDA [151],

since there is no clear way to define the start and end of an MPLS network. This

means that we cannot talk about the language accepted by the PDA modelling

the network; instead, we will use a query language to specify a subset of traces

that are of interest.

This query language, which was first introduced by P-Rex [80], specifies net-

work traces by means of an expression on the form ⟨regex I⟩ regexpath ⟨regexF ⟩,
where regexpath is a regular expression over network links, describing traversed

paths, while regex I and regexF are regular expressions over labels, describing

the initial resp. final header of the network trace. This gives a way of express-

ing traces with various properties in an intuitive language. We formalize this

as the following problem:

1Some papers [22, 81, 82, 138, 143, 148] (including Paper C, Paper E, and Paper F) call such a

structure a pushdown system (PDS).

22

7. Pushdown Automata Reachability

p q
a

x−→ aa

b
y−→ a

a
z−→ ε

(a) PDA P1 where rules are arrows between control loca-

tions annotated with stack modification and rule label

s0 s1 s2
y y

x, y, z

(b) NFA A1 for the regular expression y (x|y|z)∗y

q0 p1 q1 p2p0 q2
b→ a

a→ aa

b→ a

a→ ε

b→ a

(c) PDA P2 as the product of P1 in (a) and A1 in (b). E.g. q0 corresponds to q and s0. Rule labels omitted.

⟨q0, bb⟩⇒⟨p1, ab⟩⇒⟨q1, aab⟩⇒⟨q1, ab⟩⇒⟨q1, b⟩⇒⟨p2, a⟩ (1)

⟨q, bb⟩ y
=⇒ ⟨p, ab⟩ x

=⇒⟨q, aab⟩ z
=⇒⟨q, ab⟩ z

=⇒⟨q, b⟩ y
=⇒ ⟨p, a⟩ (2)

s0
y−→ s1

x−→ s1
z−→ s1

z−→ s1
y−→ s2 (3)

(d) A trace (1) through P2 in (c), and corresponding labelled trace (2) in P1, and path (3) in A1

Fig. 3: Example of a PDA P1, NFA A1, and their product construction into a new PDA P2

Problem 1 (Pushdown Query Satisfiability). Given a PDA P and a query

⟨regex I⟩ regexpath ⟨regexF ⟩, return, if it exists, a trace ⟨p0, w0⟩
σ1==⇒ . . .

σn==⇒⟨pn, wn⟩
in P such that σ1 . . . σn matches the regular expression regexpath , w0 matches

regex I , and wn matches regexF .

For the PDA in the running example (see Figure 3a), say for instance we

wish to find traces that start and end with an edge labelled y, the traces can

have any initial header, and the final header must be the single label ’a’. We

can express this as regular expressions with the query ⟨ ·∗⟩ y ·∗y ⟨ a ⟩, where

the symbol ’·’ is a wildcard that matches any symbol in the corresponding

alphabet. It is well known that any regular expression can be transformed into

an equivalent finite automaton [151].

A nondeterministic finite automaton (NFA) consists of a finite set of states

S with some states designated as initial I ⊆ S and final F ⊆ S, an alphabet,

and a transition relation on the form s
σ−→ s′, where s, s′ ∈ S and σ is in the

alphabet. For the path expression in the query, the alphabet is Σ; while for

specifying the headers, the alphabets of the NFA are Γ. A word w = σ1 . . . σn

is in the language of the NFA, if there are states s0, . . . , sn ∈ S such that s0 ∈ I ,

sn ∈ F , and si
σi+1−−−→ si+1 for 0 ≤ i < n. We may also write this as s0

w−→∗ sn and

say that w is accepted by the automaton. A set of words is said to be regular if

it is the language of a finite automaton.

For the running example, Figure 3b shows an NFA for the regular expres-

sion y ·∗y, where s0 is the initial state and s2 is the final state. The word yxyy

23

is accepted by this NFA, while the word xzzy is not.

If a trace in a given PDAPnetwork satisfies a query ⟨regex I⟩regexpath ⟨regexF ⟩,
the labels of the rules in the trace must form a word that is recognized by the

path expression regexpath of the query and the NFA Apath that encodes it. To

find such traces, we combine Pnetwork and Apath into a new PDA Pproduct by

means of a product construction, where each control location in Pproduct is

a pair of a control location from Pnetwork and a state from Apath . The stack

alphabet of Pproduct is the same as in Pnetwork , and the rules of Pproduct are

constructed so that for each rule ⟨p, γ⟩ σ
↪−→ ⟨p′, w⟩ in Pnetwork and transition

s
σ−→ s′ inApath , where the symbol σ matches, the rule ⟨(p, s), γ⟩ σ

↪−→ ⟨(p′, s′), w⟩
is added to Pproduct .

Figure 3c shows, for the running example, the result P2 of the product

construction of the PDA P1 in Figure 3a and the NFA A1 in Figure 3b. The

names of the control locations in P2 are simplified so that e.g. p1 is the pair

(p, s1) of corresponding control location and state from P1 and A1. Any trace

in P2 corresponds to a trace in P1 and a path in A1 with the same Σ-labels. If

the trace starts in either p0 or q0 and ends in either p2 or q2, the corresponding

path in the NFA will be an accepting path. Figure 3d shows an example of

such a trace.

Next, to handle the query’s regular expressions on the initial and final

headers, we translate them into NFA over the stack alphabet Γ. We extend

each of these NFA from specifying a set of stacks to specifying a set of PDA

configurations by letting the control locations of the PDA become initial states

in the NFA. We say that a configuration ⟨p, w⟩ is accepted by this NFA, if p
w−→∗ q

for some final state q in the automaton. This allows us to specify both control

locations and stacks in the same structure, and this special NFA turns out to be

a natural fit for the reachability algorithms used to find traces in the PDA [148],

which helps make this construction efficient.

As shown in Paper C, we have now reduced Problem 1 of finding a PDA

trace that satisfies a given query to the following pushdown reachability prob-

lem:

Problem 2 (Pushdown reachability). Given a PDA and two finite automataA
and A′

, return, if it exist, a trace ⟨p0, w0⟩ ⇒ · · · ⇒ ⟨pn, wn⟩ in the PDA such

that ⟨p0, w0⟩ is accepted by A and ⟨pn, wn⟩ is accepted by A′
.

For the running example, we create an initial NFA A that accepts ⟨p0, w⟩
and ⟨q0, w⟩ for any w ∈ {a, b}∗ and a final NFAA′

that accepts only ⟨p2, a⟩ and

⟨q2, a⟩. Trace (1) in Figure 3d is an example of a solution to this instance of the

pushdown reachability problem, and trace (2) in Figure 3d is the corresponding

PDA trace that satisfies the query ⟨ ·∗⟩ y ·∗y ⟨ a ⟩.

24

7. Pushdown Automata Reachability

Modelling Link Failures by Over-Approximation

The presentation so far has shown how to model MPLS networks in the failure-

free scenario as a pushdown automata and how to specify traces using regular

expressions. The last part of the query language from P-Rex [80] is to specify

a maximal number of link failures k to consider when modelling the behavior

of fast reroute protections. The semantics of the query is to ask whether there

exists a failure scenario with at most k failures, in which there is a possible

network trace that matches the regular expressions in the query.

The possibility of failures is handled by over-approximation: at each router,

we include (in the creation of the network PDA) all forwarding rules that are

active, i.e. may be used, in a failure scenario with at most k failures [80]. As

described above, finding a trace that satisfies the three regular expressions in

the query can be reduced to the pushdown reachability problem. Due to the

over-approximation, when a satisfying trace is found, we need to check that

no more than k links were assumed to be failed for the forwarding entries in

the trace to activate and that each link was consistently assumed to be either

active or failed.

The over-approximation of failures and the idea of using a product con-

struction of the network PDA and the NFA that encodes the path expression

were already part of the solution in P-Rex [80]. The new idea in this translation

from MPLS network verification to pushdown reachability is the direct use of

finite automata to encode the initial and final headers and to constrain the trace

to start and end with the initial resp. final states of the path NFA. This reduces

the size of the pushdown automata compared to the approach in P-Rex [80],

and together with an efficient C++ implementation of the translation it leads to

more efficient verification.

Contribution 5 (Paper C)
We present a direct, efficient translation from the query satisfaction problem

for MPLS network into the pushdown reachability problem.

7.2 Solving Pushdown Reachability Efficiently
After having established the use of pushdown reachability for MPLS network

verification, this section will introduce our improvements to the algorithms

for solving pushdown reachability. First, we will make a brief overview of the

existing algorithms.

For a set of PDA configurations C, the predecessors of C are all config-

urations that have a trace to a configuration in C, and the successors of C

are all configuration that are reachable by a trace from a configuration in C.

25

p q
a→ aa

b→ a

a→ ε

(a) PDA P1 from Figure 3a

p

q

a

(b) NFA A′
accepting {⟨p, a⟩}

p

q

a

a

b

a, b

(c) Saturated NFA A′
pre∗

Fig. 4: Example of applying the pre∗ saturation procedure for PDA P1 on the automaton A′

More formally, this is respectively pre∗(C) = {c | ∃c′ ∈ C. c ⇒∗ c′} and

post∗(C) = {c′ | ∃c ∈ C. c ⇒∗ c′}, where c ⇒∗ c′ indicates the existence of a

trace (with zero or more steps) from c to c′.

The key insight for solving pushdown reachability is that if the set of con-

figurations C is regular, then both pre∗(C) and post∗(C) are regular too [27];

moreover, the corresponding automata can be computed efficiently by adding

transitions to the finite automaton representing C according to certain satura-

tion rules [22, 55, 148]. For instance, pre∗ works by the following saturation

rule: if the PDA has a rule ⟨p, γ⟩ ↪→ ⟨p′, w⟩, and in the current automaton

p′
w−→ ∗ q for some state q, then add the transition p

γ−→ q to the automa-

ton [148]. We will call these algorithms, specifically the versions presented by

Schwoon [148], pre∗ and post∗.

Figure 4 shows, for the PDA in the running example, the result of applying

the pre∗ algorithm on an automaton A′
that accepts just the configuration

⟨p, a⟩. The resulting NFA,A′
pre∗ , in Figure 4c accepts pre∗({⟨p, a⟩}) = {⟨p, a⟩}∪

{⟨p, awb⟩ | w ∈ Γ∗} ∪ {⟨q, wb⟩ | w ∈ Γ∗}.
The next step in solving the pushdown reachability problem from a set

of initial configurations C to a set of final configurations C ′
, is to check if

C intersects with pre∗(C ′) or, symmetrically, if C ′
intersects with post∗(C).

Given that these sets are represented by finite automata, we can use a textbook

product construction for the intersection of two finite automata [151].

In Figure 5 we see the product automaton for the intersection of A′
pre∗ and

an NFA A that accepts ⟨q, ab⟩ and ⟨q, bb⟩. We see that the languages of these

two automata do intersect.

Finally, if reachability is satisfied, we need to return a trace as a witness

of reachability. This can be achieved by annotating the transitions added by

pre∗ or post∗ with metadata that explain why the transition was added [148].

We can then backtrack from a configuration in the intersection and use the

metadata to discover the rule applied at each step.

On-The-Fly Construction of Product Automaton and Bidirectional Search

The first improvement to the algorithms is to terminate as soon as reachability

is determined to be satisfied. This is achieved by constructing on the fly the

26

7. Pushdown Automata Reachability

p

q s

f

a

b

b

(a) NFA A accepts {⟨q, ab⟩, ⟨q, bb⟩}

p

q

f ′

a

a

b

a

b

(b) NFA A′
pre∗ from Figure 4c

p, p

q, q

s,f ′ f,f ′

s, q f, q
a

b

b
b

b

(c) Product automaton of A and A′
pre∗

Fig. 5: With on-the-fly construction of the product automaton of A and A′
pre∗ , the algorithm can

terminate early before adding the dashed arrows to the automata.

product of the two finite automata, encoding C and pre∗(C ′) or encoding

post∗(C) and C ′
, while the pre∗ or post∗ saturation algorithm adds transitions

to the corresponding automata. The algorithm will early terminate when a

non-empty intersection is found.

In the running example with the pre∗ algorithm, only the transitions

marked with solid arrows in Figure 5 have been added when an accepting

path is found in the product automaton in Figure 5c. The algorithm can ter-

minate early without having to add the two transitions with dashed arrows

in Figure 5b that are part of the fully saturated pre∗ automaton. For larger

examples, this early termination can lead to a significant speed-up.

The idea behind the algorithm for on-the-fly construction of the product

automaton, which we present in Paper C, is to keep track of states in the product

automaton that are reachable from an initial state, and when a transition is

added to one of the automata, we efficiently check if there are any matching

transitions in the other automaton that can lead to the addition of a transition

from a reachable state in the product automaton. When a new state becomes

reachable, we recursively check if transitions from this state can be added. If a

final state is reached in the product automaton, we know that we have found

an accepting path, and the algorithm can terminate.

To evaluate the algorithms, we conduct benchmarks on a large set of MPLS

network verification problems. Figure 6 shows the results, where we see that

pre∗ and post∗ have similar performance. In Paper C we show how this is al-

ready an improvement compared to previous implementations. Interestingly,

the two algorithms often perform well on different problem instances (not

shown in the plot), which spark the idea of combining the forward search of

post∗ with the backward search of pre∗.

This leads us to our second algorithmic improvement for the pushdown

reachability problem: bidirectional search, which we in Paper C name dual∗.

The idea with dual∗ is to apply pre∗ on the set of final configurations C ′
and

post∗ on the set of initial configurations C in a way that interleaves the steps of

the saturation procedures. We use the on-the-fly product construction on the

corresponding two automata, where pre∗ adds transitions to one automaton

27

0 10,000 20,000 30,000 40,000 50,000 60,000

Instances

10
−1

10
0

10
1

10
2

C
P

U
t
i
m

e
(
s
)

pre
∗

post
∗

dual
∗

min{dual
∗

, CEGAR}

Fig. 6: Benchmark comparison showing the speed-up of dual∗ and its combination with CEGAR

compared to pre∗ and post∗. For each solver, all 60 800 instances on the x-axis are independently

sorted by the verification time on the logarithmically scaled y-axis. Plot is from Paper C.

and post∗ adds transitions to the other. As soon as a configuration is found

in the intersection between post∗(C) and pre∗(C ′), we know that there is a

trace from C through this configuration to C ′
, and the algorithm can termi-

nate. Moreover, we can terminate the algorithm with a negative answer as

soon as one search saturates without finding an overlap. This means that for

unreachable cases, only the smallest of the two search spaces, post∗(C) and

pre∗(C ′), needs to be exhausted. In Figure 6 we see how the dual∗ algorithm

significantly improves the running time compared to the already optimized

pre∗ and post∗ implementations. Paper C gives the full algorithm.

Our third improvement is the implementation of counterexample-guided

abstraction refinement (CEGAR) [34] for pushdown reachability. The idea

with CEGAR is to reduce the size of the verified PDA by performing an ab-

straction [35] that groups control locations and labels into a smaller number of

abstract control locations and labels. If a trace is found in this smaller PDA, we

efficiently try to reconstruct a corresponding trace in the original PDA using

the method described in Paper C. If this fails, the spurious trace is used as

a counterexample to refine the abstraction so that the spurious trace is not

present in the refined PDA in the next iteration. In some cases this makes

verification much faster, since we are verifying a smaller model; however, in

other cases the abstraction needs to be refined too many times—leading to a

28

7. Pushdown Automata Reachability

longer overall verification time. For this reason, we suggest running CEGAR

in parallel with the dual∗ algorithm to benefit from the cases where CEGAR is

fast without suffering from its bad cases. As we see in Figure 6, this improves

the running time even further and leads to almost an order of magnitude speed

up compared to pre∗ and post∗ on the large instances.

Contribution 6 (Paper C)
We improve the running time of pushdown automata verification by i) an

on-the-fly algorithm for finite automata intersection, ii) a novel bidirectional

search algorithm for reachability of pushdown automata, and iii) the use of

counter-example guided abstraction refinement to decrease the size of the

pushdown automaton. We demonstrate the performance improvements by

benchmarking on a large set of network verification problems.

7.3 Weighted Pushdown Automata Verification
While it can be useful to know whether there exists a trace in an MPLS network

with a given regular pattern, in the positive cases, it might not be enough to

just have an arbitrary example of such a trace. For debugging the network, we

may want to find a trace in a failure scenario with as few failures as possible,

or for traffic engineering we can ask what the worst-case latency from A to B is

when at most two links fail. To answer such questions, we introduce in Paper D

quantitative what-if verification for MPLS networks with the tool AalWiNes.

Specifically, AalWiNes supports assigning weights to each forwarding rule

in the network data plane and finding a query-satisfying trace that has either

the smallest or the largest sum over these weights. The weights can encode

e.g. hop-count, link latency, number of push operations, or the number of

failures needed locally for the forwarding rule to be active. To allow expressing

more advanced weight properties, AalWiNes supports linear combinations

and lexicographically ordered vectors of such weights.

The theoretical foundation of this quantitative verification is weighted

pushdown automaton (WPDA). In general, a WPDA is a pushdown automa-

ton where each rule is assigned a weight. In order to analyze the weight of

traces in a WPDA, the weights must come from a domain that supports two op-

erations and satisfies certain properties like associativity and commutativity.

Specifically, the domain must define an operation for computing the weight

of a trace from the weights of its steps, and it must define an operation for

aggregating over the weights of multiple traces. Formally, we use an algebraic

structure known as an idempotent semiring for the weighted generalization

of pushdown reachability [82, 100, 138]. In AalWiNes and its underlying PDA

library PDAAAL (presented in Paper E), we require the weight domain to

29

Fig. 7: The graphical user interface of AalWiNes showing the result of a longest trace query on a

small example network.

be totally ordered. Other works on WPDA use different relaxations of this

requirement [100, 138].

The domains we use for quantitative MPLS verification are integers and

vectors of integers. The weight of the trace is the (elementwise) sum of the

weights of rules on the trace, and we aggregate over multiple paths by the

(lexicographical) minimum or maximum depending on the whether we are

looking for shortest or longest traces.

To improve usability, AalWiNes features a graphical user interface, shown

in Figure 7, for inspecting the network model, specifying queries and weight

expressions, and visualizing the returned traces.

Contribution 7 (Paper D)
We extend previous work on MPLS network verification to include quanti-

tative verification. In particular we implement an efficient tool, AalWiNes,

that supports shortest and longest trace queries using various configurable

weights such as hop-count or latency.

For solving the (weighted) pushdown reachability problems from Aal-

WiNes, we build in Paper E an efficient open-source C++ library and command-

line tool for (weighted) pushdown automata verification, PDAAAL.

The idea behind extending the pre∗ and post∗ algorithms for pushdown

reachability to finding e.g. shortest traces in WPDA, is that the saturation

procedures not only add transitions to the NFA, they also assign weights to the

transitions in a way so that the weight of a shortest accepting path for a given

30

7. Pushdown Automata Reachability

p q
a

0−→ aa

b
1−→ a

a
2−→ ε

(a) WPDA modified from Figure 3a

with weight annotations on rules

p

q

f ′
a(0)

(b) NFA A′
from Figure 4b

p

q

f ′

a(4)

a(0)

b(1)

a(2)

b(5)

(c) Weights (in brackets) on NFA A′
pre∗

p

q f
a(0)

b(0)

(d) NFA A2 for {⟨q, abk⟩ | k≥0}

p, p

q, q

f,f ′

f, q
a(2)

b(1) b(5)

(e) Intersection of A2 and A′
pre∗

(q, q)
a(2)−−→ (f, q)

b(1)−−→ (f,f ′)

⟨q, ab⟩ 2
=⇒ ⟨q, b⟩ 1

=⇒ ⟨p, a⟩

(f) Shortest path (top) in product au-

tomaton (e) and corresponding trace

(bottom) in the WPDA (a)

(q, q)
a(2)−−→ (f, q)

b(5)−−→ . . .
b(5)−−→ (f, q)

b(1)−−→ (f, f ′)

⟨q, abbk⟩ 2
=⇒

[
⟨q, bbk⟩ 1

=⇒⟨p, abk⟩ 0
=⇒⟨q, aabk⟩ 2

=⇒⟨q, abk⟩ 2
=⇒⟨q, bk⟩

]
. . . ⟨q, b⟩ 1

=⇒⟨p, a⟩

(g) The product automaton (e) has a positive cycle, so the longest path (top) is arbitrarily long (repetition is

shown by ’. . . ’). Corresponding longest trace (bottom) in the WPDA (a) is also unbounded.

Fig. 8: Shortest (f) and longest (g) trace analysis from A2 (d) to A′
(b) through a WPDA (a). In this

particular case, A′
pre∗ (c) is assigned the same weights for both shortest and longest trace analysis.

configuration in the saturated automaton equals the weight of a shortest trace

in the WPDA between that configuration and a configuration in the original

NFA.

Figure 8 presents the execution of a shortest and longest trace analysis for

the running example, where we assign integer weights (0, 1, and 2) to the

rules of the WPDA in Figure 8a. Again we apply pre∗ to the NFA A′
shown

in Figure 8b that accepts only ⟨p, a⟩, but this time the saturation procedure

also computes weights for the transitions in A′
pre∗ as shown in Figure 8c.

Interestingly, in this specific simple example the weights on the transitions

in A′
pre∗ happen to be the same for both the shortest trace and longest trace

analysis. This is not the case in general, where longest trace analysis even

needs a different algorithm than when computing the shortest trace (with

nonnegative weights).

For the shortest trace analysis with totally ordered, nonnegative weights,

we use a priority queue to determine the order in which transitions are added

to the automata in the saturation algorithms, similar to how one may imple-

ment Dĳkstra’s famous algorithm [38, 42] for finding the shortest path in a finite

graph. Schwoon [148] describes this algorithm for post∗, and later work [138]

presents both pre∗ and post∗ algorithms for the more general bounded idem-

31

potent semirings2, where the generality comes with the cost of less efficient

algorithms that must be used in place of the priority queue.

In Paper E, we implement not only pre∗ and post∗ with the efficient priority

queue algorithms, we also generalize dual∗ to work for weighted pushdown

automata. In this setting, the on-the-fly product construction cannot return

immediately when an accepting path is found. It must instead keep track of the

weight of the shortest accepting path and compare this to the smallest weight

in the current priority queues used by pre∗ and post∗.

To complete the running example, we use a set of initial configurations

where the control location is q and each stack matches the regular expression

ab∗ as modelled by the NFA A2 in Figure 8d. The product automaton shown

in Figure 8e encodes the intersection of A2 and A′
pre∗ and assigns weights to

transitions as the sum of the corresponding transitions inA2 andA′
pre∗ . From

the shortest path in the product automaton, we reconstruct in Figure 8f the

shortest trace from A2 to A′
, which has the weight 3. In this example the

longest trace is unbounded, i.e. for any length we can find a longer trace. This

is due to a positive cycle as shown in Figure 8g.

To find the shortest trace when allowing negative weights (and symmetri-

cally to find the longest trace), the problem of infinite traces arise due to the

possibility of negative (and symmetrically positive) cycles. For weighted finite

graphs, this issue is handled in the well known Bellman-Ford algorithm [38]

by relaxing edges, i.e. changing edge weights, a certain number of times after

which any further change is due to a negative cycle. A similar idea is presented

by Kühnrich et al. [100] for WPDA with unbounded weights as a generalization

of the work on bounded weight domains [138].

In PDAAAL, we implement both pre∗ and post∗ for unbounded, totally

ordered weight domains by using a queue with a special token to count the

number of weight relaxations and eventually detect a possible infinite trace.

Unfortunately, these algorithms cannot easily benefit from the early termina-

tion and bidirectional search idea of dual∗. Instead we implement a version

that interleaves the execution of the pre∗ and post∗ algorithms to still benefit

from the observation that often one of the two search spaces are significantly

smaller than the other.

As the example in Figure 8 shows, it can happen that the saturation al-

gorithm terminates without a finding cycle in the pushdown rules, but the

product automaton has a cycle that leads to an arbitrarily long trace. Such a

cycle in the finite automaton is detected by the Bellman-Ford algorithm [38].

To test the performance of PDAAAL, we benchmark against WALi [93], the

state-of-the-art tool for WPDA analysis, on both shortest and longest latency

analysis on a large set of MPLS verification queries. We use AalWiNes as the

2Bounded idempotent semirings are not necessarily totally ordered, but repeated addition must

eventually reach a fixed point.

32

7. Pushdown Automata Reachability

verification frontend and use respectively PDAAAL or WALi for the WPDA

verification backend. Paper E reports the results of the benchmarking and

shows that for both shortest and longest trace verification PDAAAL’s dual∗

algorithm performs best and around two orders of magnitude faster than

WALi.

Contribution 8 (Paper E)
We present PDAAAL, an efficient C++ library and command-line tool for

reachability analysis of weighted pushdown automata including shortest

and longest trace analysis. We generalize the novel dual* technique to the

weighted setting and demonstrate through experimental evaluation a sig-

nificant runtime improvement of two orders of magnitude compared to the

state-of-the-art.

7.4 Formal Correctness of Pushdown Verification
In the preceding sections we have developed a verification approach for MPLS

networks through the formal model of pushdown automata, we have designed

efficient translations and reachability algorithms, and we have constructed the

model checking tool PDAAAL and built AalWiNes on top of it. While formal

verification and model checking promises safe systems by exhaustively check-

ing specifications in all scenarios, the guarantees given by model checking are

only as strong as the model checking tool used; and like all other software,

these tools can be error-prone.

To increase the trust of PDAAAL, we formally verify, in Paper F, the cor-

rectness of the pushdown reachability algorithms using the proof assistant

Isabelle/HOL [124]. Proof assistants like Isabelle/HOL are typically built

around a small trusted proof-checking kernel and a few well-established

mathematical axioms from which rich mathematical theories are built and the

proofs of all lemmas and theorems rigorously verified by the proof-checker.

This structure of machine checkable proofs and a small trusted computing

base provides a high level of trust for the results of these proof assistants.

Isabelle/HOL is an interactive theorem prover—its expressive higher order

logic (HOL) often requires human interaction in constructing the proofs as

opposed to the push-button approaches of model checkers, such as PDAAAL,

and automated theorem provers like e.g. SMT solvers.

Using Isabelle/HOL, we formalize pushdown automata, finite automata,

and the pushdown reachability problem. Next, we formalize and prove the

correctness of the pre∗ and post∗ saturation procedures. We also formalize

finite automata intersection and prove the correctness property of dual∗. Pa-

per F describes the formalization effort involving around 4.400 lines of Isabelle

definitions and proofs, of which a small snippet is shown in Figure 9.

33

inductive pre_star_rule where
(Init p, γ, q) /∈ A −→ (p, γ) ↪→ (p′, w) −→
(Init p′, lbl w, q) ∈ LTS.trans_star A −→
pre_star_rule A (A ∪ {(Init p, γ, q)})

theorem pre_star_rules_correct:

assumes inits ⊆ LTS.srcs A and saturation pre_star_rule A A′

shows lang A′ = pre_star (lang A)

theorem pre_star_exec_language_correct:

assumes inits ⊆ LTS.srcs A
shows lang (pre_star_exec A) = pre_star (lang A)

Fig. 9: Isabelle/HOL definition of pre∗ saturation rule and correctness theorems from Paper F

These formal proofs give us trust that, at a high level, the algorithms used by

PDAAAL for pushdown reachability are correct; however, it does not guarantee

the correctness of the low-level implementation. Efficient model checkers, like

PDAAAL, use various implementation tricks and specialized data structures

to optimize the performance. While it is possible to formally verify efficient

implementations, as witnessed by e.g. the verified C complier CompCert [106]

and the verified OS microkernel seL4 [94], these projects require a large amount

of human labor to develop the formal proofs.

Instead, we take a different approach by using the functional programming

language included in Isabelle/HOL to create a formally verified implementa-

tion of the pre∗ algorithm for pushdown reachability with comparatively little

effort. This is the functional program pre_star_exec in Figure 9. We can then

extract this as an executable program using Isabelle/HOL’s code generation

feature [70]. This correct-by-construction program runs slowly compared to

the efficient C++ implementation in PDAAAL due to less efficient data struc-

tures and e.g. the lack of early termination, but it gives us a formally verified

oracle to compare the results of PDAAAL against.

Contribution 9 (Paper F)
We present a formalization in Isabelle/HOL of pushdown reachability algo-

rithms along with machine checkable correctness proofs of the algorithms

including the novel bidirectional search algorithm. From this, we gener-

ate correct-by-construction code to serve as a formally verified oracle for

pushdown reachability.

To increase the trust in the results produced by PDAAAL’s efficient C++

implementation and possibly find bugs, we execute the same pushdown

reachability problems on PDAAAL and the slow but verified Isabelle/HOL

34

8. Measuring Real Networks

implementation and compare the results—a technique known as differential

testing [49, 69, 116]. Contrary to the standard differential testing of two differ-

ent untrusted implementations, we here compare against a formally verified

implementation, which means we can have a high degree of trust in the cor-

rectness of matching results.

Given that there are infinitely many possible pushdown reachability prob-

lems, differential testing cannot provide complete guarantees of the correctness

of PDAAAL; but with an exhaustive enumeration of (close to 27 million) small

cases and additional tests on a large number of both random test cases and

network verification problems, we gain a good coverage of both corner cases

and real-world cases, and we significantly increase the reliability of PDAAAL.

While PDAAAL showed no discrepancies with the verified oracle on the

network verification problems, the differential testing on the random instances

and the exhaustively enumerated small instances revealed in total three non-

trivial implementation bugs in PDAAAL as reported in Paper F.

From the test cases that show discrepancies in differential testing, we need

to locate and fix the implementation error. To aid in this process, we use delta-

debugging [177] to minimize the test case by removing parts of the test case,

such as pushdown rules, in a structured way and iteratively checking if the

smaller test case still produces a violation. As shown in Paper F, this automatic

technique significantly simplifies the error-revealing test case making it easier

to locate the bug. After fixing the three aforementioned bugs in PDAAAL, the

differential testing finds no more discrepancies with the results of the formally

verified oracle.

Contribution 10 (Paper F)
We develop a methodology for increasing the trust in pushdown automata

model checking tools by means of differential testing against a formally ver-

ified oracle and counterexample minimization. We demonstrate the utility

of the approach by discovering and fixing tricky bugs in the implementation

of the model checker PDAAAL.

8 Measuring Real Networks

In all the experiments with network resilience and verification so far, we have

been using synthetic data planes generated using standard protocols and a

dataset of real network topologies. While this can give reasonable indications

of the possible real-world performance of the developed tools and techniques,

for a real deployment of network verification and synthesis, we need to obtain

the actual parameters of the model from the running network. For quantitative

35

reasoning about e.g. the risk of congestion, we need to know values like link

capacities, load balancing ratios, traffic demand and link utilization, as well as

how they change over time.

In Paper G, we investigate this in collaboration with a network analytics

company, Benocs, and their traffic analytics deployment on a major European

ISP network. It turns out that in their analytics there is a discrepancy be-

tween the predicted amount of traffic from each flow on a link and the actual

measured total traffic on the link—indicating an error in the measurements

or analysis. This type of erroneous data could cause quantitative network

verification and synthesis tools to provide incorrect or suboptimal answers,

and improving the accuracy of scalable traffic analysis is hence a key part of

enabling quantitative network verification and synthesis.

The error in this case is caused by incomplete knowledge of the flow split-

ting ratios that the network uses to load balance traffic among multiple paths,

which in turn affects the traffic flow on each link. In a large and hetero-

geneous network, it is often too difficult to directly access all the technical,

vendor-specific implementation details and router configurations needed to

determine these flow splitting ratios—obtaining this fine-grained information

across the whole network would require a very complex system, and the net-

work analytics company deem it impossible in practice. Instead we propose in

Paper G a technique to estimate the flow splitting ratios from the information

available to the analytics system, i.e. the utilization of links, the demand of

traffic flows from source to destination, and the set of paths used by each flow.

Figure 10 shows a small example of this information. In the network

topology in Figure 10a, links are annotated with their current link utilization,

and Figure 10b lists two flows with their respective demands and set of paths.

Note how the flow f1 splits its traffic among two paths. The problem is now

to determine the ratios by which this traffic is split based on the available

information, i.e. the link utilization, flow demands, and paths.

The solution we propose is to formulate the problem as a quadratic linear

program that finds flow splitting ratios that minimizes the error of estimation.

Figure 10c shows the quadratic program for our small example, where the

optimal solution is that flow f1 sends xf1
e1 = 2/3 of the traffic on link e1 and

xf1
e4 = 1/3 on link e4. This simple example is particularly nice, as there exists

an exact solution with no error. In the real world, this is seldom the case.

In the dataset from the large ISP network, we observe that small-scale noise

is common due to e.g. timing and sampling variance, but we also observe cases

of large (but relatively rare) errors in the flow measurement due to e.g. late

detection of changes in the BGP routing tables. In Paper G, we handle these

errors by filtering out the link constraints in the quadratic program with the

highest errors—assuming that these correspond to erroneous measurements—

as well as combining data from multiple time slots with the assumption that

the flow splitting ratios remain stable over time.

36

8. Measuring Real Networks

v1

v2

v3

v4

e1
4

e4
2

e3
4

e6
5

v1

v2

v3

v4

(a) Part of the network topology from Fig-

ure 1a with link utilizations and flows

Flow Demand Paths

f1 : v1 → v4 6

v1 – v2 – v4
v1 – v3 – v4

f2 : v3 → v4 3 v3 – v4

(b) Two flows through the network and their traffic demands and

paths. The first flow splits its traffic among two different paths.

Define non-negative variables:

xf1
e1 , x

f1
e3 , x

f1
e4 , x

f1
e6 , x

f2
e6 , erre1 , erre3 , erre4 , erre6

Minimize:

(erre1)
2 + (erre3)

2 + (erre4)
2 + (erre6)

2

Subject to:

xf1
e1 + xf1

e4 = 1 xf1
e1 = xf1

e3 xf1
e4 = xf1

e6 xf2
e6 = 1

erre1 · 4 ≥ 6 · xf1
e1 − 4 erre3 · 4 ≥ 6 · xf1

e3 − 4

erre4 · 2 ≥ 6 · xf1
e4 − 2 erre6 · 5 ≥ 6 · xf1

e6 + 3 · xf2
e6 − 5

(c) Quadratic programing formulation for finding flow splitting ratios given link utilizations and flow demands

Fig. 10: Example estimation of flow splitting ratios given link utilizations, flow demands, and

paths

We demonstrate the accuracy and robustness of our method through syn-

thetic experiments, where we can control the flow splitting ratios, and we

show its scalability by application to real traffic data from a large ISP network

with over 3 000 routers and 14 000 links, where flows carrying 99.9% of the

total traffic volume is analyzed in 87 seconds on a standard laptop. The later

experiment shows that flow splitting ratios based on link capacities give more

accurate predictions for the ISP network—an insight now used in production

by the network analytics company.

Finally, the dataset can possibly be used for future experiments with the

performance of quantitative verification and synthesis for networks.

Contribution 11 (Paper G)
We present a technique for estimating the flow splitting ratios that a network

uses to load balance traffic. We show how to handle noisy, incomplete

or erroneous measurements of link utilization, traffic demands, and flow

paths. We demonstrate the accuracy through simulation, and we show the

technique’s applicability on real data from a large ISP network.

37

9 Conclusion

With the work presented in this thesis, we take a step towards the correct

automated operation of efficient and resilient computer networks.

We formalize the widely-deployed MPLS networks with a focus on re-

silience and multipath routing, and we use the formal model in the design

of R-MPLS—a technique for synthesizing loop-free recursive fast reroute pro-

tection for MPLS networks, which provides increased resilience to multiple

failures with only a modest memory and communication overhead.

Prior work [80] implements qualitative verification of MPLS networks using

the connection between MPLS networks and pushdown automata [144] and

a query language based on regular expressions. We extend this approach to

quantitative MPLS network verification with shortest and longest trace analysis

for a variety of possible weights. Moreover, we significantly improve the run-

time efficiency through the development of new on-the-fly algorithms and

efficient C++ implementations in the tools PDAAAL and AalWiNes. This

efficient verification is needed to make the tools usable in practice.

We increase the trust in our pushdown automata model checking tool

PDAAAL by formalizing and rigorously proving in Isabelle/HOL the cor-

rectness of the used algorithms, extracting a verified implementation, and

performing differential testing against it. The methodology includes differen-

tial testing against a formally verified oracle and subsequent counterexample

minimization to ease the bug finding. We successfully apply this to detect and

fix three non-trivial errors in PDAAAL.

Given the lack of publicly available datasets of MPLS network data planes,

we enable realistic experimental evaluation of our ideas through the develop-

ment of the tool MPLS-Kit that can synthesize and simulate MPLS network

data planes using industry-standard protocols.

For practical use of network verification and synthesis, the formal network

models need to be populated with data from the running network; and partic-

ularly for quantitative reasoning, accurate and detailed traffic data is needed.

Traffic measurement solutions need to be scalable and are hence based on sam-

pling at the flow level. We show how to derive flow splitting ratios, which are

otherwise unknown, from link utilizations and the demand and paths of each

traffic flow—even handling the noisy and erroneous measurements found in

a real traffic analytics deployment on a large European ISP network.

Future work: There are several directions of future work from this thesis.

For the quantitative synthesis of protection schemes, it is interesting to extend

the R-MPLS technique with multipath protection and optimize resilience and

link utilization based on expected traffic patterns to get congestion-aware,

loop-free, recursive protection. Another extension of R-MPLS is to apply the

technique to segment routing, where the source routing scheme gives different

38

References

memory trade-offs to consider. Segment routing is also an interesting target

for the pushdown-based network verification in AalWiNes.

Currently AalWiNes supports existential queries: “does there exist a failure

scenario, where there is a trace matching a regular pattern?” An interesting

extension of this asks if for all considered failure scenarios there exist a trace

matching the regular pattern. The quantifier alternation of such queries hints

at the use of alternating pushdown automata, for which reachability algo-

rithms are known [22]. To also perform quantitative analysis of such queries,

investigation into a weighted extension of alternating pushdown automata is

interesting. A natural next step for the Isabelle/HOL formalization of push-

down algorithms is to prove the correctness of the weighted pre∗, post∗, and

dual∗, extract a formally verified implementation, and perform differential

testing on the weighted algorithms in PDAAAL.

To improve the efficiency and robustness of the simulator in MPLS-Kit,

future work could investigate WPDA algorithms for efficiently computing the

link utilizations of flows in an MPLS network with the behavior of stack oper-

ations and possibility of loops. This may require the development of WPDA

algorithms that work on domains where the operation that combines weights

of multiple paths is not idempotent, such as e.g. integer addition, which

current algorithms are not designed for.

References
[1] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “AED: Incrementally

synthesizing policy-compliant and manageable configurations,” in Proc. ACM

CoNEXT, 2020, pp. 482–95.

[2] ——, “Tiramisu: Fast multilayer network verification,” in Proc. USENIX NSDI,

2020, pp. 201–219.

[3] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and verification

of federated OpenFlow infrastructures,” in Proc. ACM Workshop on Assurable and

Usable Security Configuration (SafeConfig), 2010, pp. 37–44.

[4] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Network configuration

in a box: towards end-to-end verification of network reachability and security,”

in IEEE International Conference on Network Protocols, 2009, pp. 123–132.

[5] T. Alberdingk Thĳm, R. Beckett, A. Gupta, and D. Walker, “Modular control

plane verification via temporal invariants,” Proc. ACM Program. Lang., vol. 7, no.

PLDI, article 108, Jun. 2023, 26 pages.

[6] A. Alshnakat, D. Lundberg, R. Guanciale, M. Dam, and K. Palmskog, “HOL4P4:

Semantics for a verified data plane,” in Proc. 5th International Workshop on P4 in

Europe (EuroP4 ’22). ACM, 2022, pp. 39–45.

[7] Amazon Web Services, “Summary of the Amazon S3 service disruption in

the northern virginia (US-EAST-1) region,” https://aws.amazon.com/message/

41926/, 2017.

39

https://doi.org/10.1145/3386367.3431304
https://doi.org/10.1145/3386367.3431304
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://doi.org/10.1145/1866898.1866905
https://doi.org/10.1145/1866898.1866905
https://doi.org/10.1109/ICNP.2009.5339690
https://doi.org/10.1109/ICNP.2009.5339690
https://doi.org/10.1145/3591222
https://doi.org/10.1145/3591222
https://doi.org/10.1145/3565475.3569081
https://doi.org/10.1145/3565475.3569081
https://aws.amazon.com/message/41926/
https://aws.amazon.com/message/41926/

References

[8] ——, “Summary of the AWS service event in the northern virginia (US-EAST-1)

region,” https://aws.amazon.com/message/12721/, Dec. 2021.

[9] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and

D. Walker, “NetKAT: Semantic foundations for networks,” in Proc. ACM POPL,

2014, pp. 113–126.

[10] L. Andersson, I. Minei, and B. Thomas, “LDP specification,” RFC 5036, Oct. 2007.

[11] M. T. Arashloo, R. Beckett, and R. Agarwal, “Formal methods for network per-

formance analysis,” in Proc. USENIX NSDI, 2023, pp. 645–661.

[12] D. O. Awduche, L. Berger, D.-H. Gan, T. Li, D. V. Srinivasan, and G. Swallow,

“RSVP-TE: Extensions to RSVP for LSP tunnels,” RFC 3209, Dec. 2001.

[13] BBC News, “Human error behind network outage, Sure con-

firms,” Feb. 2023. [Online]. Available: https://www.bbc.com/news/

world-europe-guernsey-64511077

[14] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach to network

configuration verification,” in Proc. ACM SIGCOMM, 2017, pp. 155–168.

[15] ——, “Control plane compression,” in Proc. ACM SIGCOMM, 2018, pp. 476–489.

[16] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t mind the

gap: Bridging network-wide objectives and device-level configurations,” in Proc.

ACM SIGCOMM, 2016, pp. 328–341.

[17] ——, “Network configuration synthesis with abstract topologies,” in Proc. ACM

PLDI, 2017, pp. 437–451.

[18] R. Birkner, T. Brodmann, P. Tsankov, L. Vanbever, and M. Vechev, “Metha: Net-

work verifiers need to be correct too!” in Proc. USENIX NSDI, 2021, pp. 99–113.

[19] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Config2Spec: Min-

ing network specifications from network configurations,” in Proc. USENIX NSDI,

2020, pp. 969–984.

[20] J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjørner, A. Valadarsky, and

M. Schapira, “TEAVAR: Striking the right utilization-availability balance in WAN

traffic engineering,” in Proc. ACM SIGCOMM, 2019, pp. 29–43.

[21] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-

independent packet processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,

pp. 87–95, 2014.

[22] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of pushdown au-

tomata: Application to model-checking,” in CONCUR’97, ser. LNCS, vol. 1243.

Springer, 1997, pp. 135–150.

[23] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detection

using NOX/OpenFlow,” in IEEE Local Computer Network Conference, 2010, pp.

408–415.

[24] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang, S. Gjessing,

G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet latency: A survey of

techniques and their merits,” IEEE Communications Surveys & Tutorials, vol. 18,

no. 3, pp. 2149–2196, 2016.

40

https://aws.amazon.com/message/12721/
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.17487/RFC5036
https://www.usenix.org/conference/nsdi23/presentation/tahmasbi
https://www.usenix.org/conference/nsdi23/presentation/tahmasbi
https://doi.org/10.17487/RFC3209
https://www.bbc.com/news/world-europe-guernsey-64511077
https://www.bbc.com/news/world-europe-guernsey-64511077
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/3062341.3062367
https://www.usenix.org/conference/nsdi21/presentation/birkner
https://www.usenix.org/conference/nsdi21/presentation/birkner
https://www.usenix.org/conference/nsdi20/presentation/birkner
https://www.usenix.org/conference/nsdi20/presentation/birkner
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1109/LCN.2010.5735752
https://doi.org/10.1109/LCN.2010.5735752
https://doi.org/10.1109/COMST.2014.2375213
https://doi.org/10.1109/COMST.2014.2375213

References

[25] B. Brown, “Level 3 blames huge network outage on human error,” Network

World, Oct. 2016. [Online]. Available: https://www.networkworld.com/article/

3128104/

[26] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE

Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[27] J. R. Büchi, “Regular canonical systems,” Archiv für mathematische Logik und Grund-

lagenforschung, vol. 6, no. 3-4, pp. 91–111, 1964.

[28] R. Callon, “Use of OSI IS-IS for routing in TCP/IP and dual environments,” RFC

1195, Dec. 1990.

[29] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKeown, and

S. Shenker, “SANE: A protection architecture for enterprise networks,” in Proc.

15th Conf. USENIX Security Symp., vol. 15, 2006, pp. 137–151.

[30] F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G

transport networks,” IEEE Communications Magazine, vol. 48, no. 3, pp. S48–S55,

2010.

[31] Y. Chang, C. Jiang, A. Chandra, S. Rao, and M. Tawarmalani, “Lancet: Better

network resilience by designing for pruned failure sets,” Proc. ACM Meas. Anal.

Comput. Syst., vol. 3, no. 3, article 49, Dec. 2019, 26 pages.

[32] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A survey of fast-

recovery mechanisms in packet-switched networks,” IEEE Communications Sur-

veys and Tutorials (COMST), pp. 1253–1301, 2021.

[33] N. Christensen, M. Glavind, S. Schmid, and J. Srba, “Latte: Improving the latency

of transiently consistent network update schedules,” SIGMETRICS Perform. Eval.

Rev., vol. 48, no. 3, pp. 14–26, Mar. 2021.

[34] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided

abstraction refinement,” in Computer Aided Verification (CAV), ser. LNCS, vol. 1855.

Springer, 2000, pp. 154–169.

[35] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,”

ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–1542, Sep. 1994.

[36] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.

[37] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook of Model

Checking. Springer, 2018.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms,

4th ed. MIT press, 2022.

[39] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilberman, H. Weatherspoon,

M. Canini, F. Pedone, and R. Soulé, “P4xos: Consensus as a network service,”

IEEE/ACM Transactions on Networking, vol. 28, no. 4, pp. 1726–1738, 2020.

[40] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algorithms

for the Construction and Analysis of Systems (TACAS 2008), ser. LNCS, vol. 4963.

Springer Berlin Heidelberg, 2008, pp. 337–340.

41

https://www.networkworld.com/article/3128104/
https://www.networkworld.com/article/3128104/
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/BF01969548
https://doi.org/10.17487/RFC1195
https://www.usenix.net/legacy/events/sec06/tech/full_papers/casado/casado.pdf
https://doi.org/10.1109/MCOM.2010.5434378
https://doi.org/10.1109/MCOM.2010.5434378
https://doi.org/10.1145/3366697
https://doi.org/10.1145/3366697
https://doi.org/10.1109/COMST.2021.3063980
https://doi.org/10.1109/COMST.2021.3063980
https://doi.org/10.1145/3453953.3453957
https://doi.org/10.1145/3453953.3453957
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/TNET.2020.2992106
https://doi.org/10.1007/978-3-540-78800-3_24

References

[41] M. Didriksen, P. G. Jensen, J. F. Jønler, A.-I. Katona, S. D. L. Lama, F. B. Lot-

trup, S. Shajarat, and J. Srba, “Automatic synthesis of transiently correct network

updates via Petri games,” in Application and Theory of Petri Nets and Concurrency

(PETRI NETS 2021), ser. LNCS, vol. 12734. Springer, 2021, pp. 118–137.

[42] E. Dĳkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, pp. 269–271, 1959.

[43] R. Doenges, M. T. Arashloo, S. Bautista, A. Chang, N. Ni, S. Parkinson, R. Peterson,

A. Solko-Breslin, A. Xu, and N. Foster, “Petr4: Formal foundations for P4 data

planes,” Proc. ACM Program. Lang., vol. 5, no. POPL, article 41, Jan. 2021, 32 pages.

[44] R. Doenges, T. Kappé, J. Sarracino, N. Foster, and G. Morrisett, “Leapfrog: Certi-

fied equivalence for protocol parsers,” in Proc. ACM PLDI, 2022, pp. 950–965.

[45] I. v. Duĳn, P. G. Jensen, J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba,

and M. T. Thorgersen, “Automata-theoretic approach to verification of MPLS

networks under link failures,” IEEE/ACM Transactions on Networking, vol. 30,

no. 2, pp. 766–781, 2022.

[46] M. Eichholz, E. H. Campbell, M. Krebs, N. Foster, and M. Mezini, “Dependently-

typed data plane programming,” Proc. ACM Program. Lang., vol. 6, no. POPL,

article 40, Jan. 2022, 28 pages.

[47] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide configu-

ration synthesis,” in CAV’17, ser. LNCS, vol. 10427. Springer, 2017, pp. 261–281.

[48] ——, “NetComplete: Practical network-wide configuration synthesis with auto-

completion,” in Proc. USENIX NSDI, 2018, pp. 579–594.

[49] R. B. Evans and A. Savoia, “Differential testing: a new approach to change

detection,” in ESEC-FSE 2007. ACM, 2007, pp. 549–552.

[50] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and G. Vargh-

ese, “Efficient network reachability analysis using a succinct control plane repre-

sentation,” in Proc. USENIX OSDI, 2016, pp. 217–232.

[51] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “BUZZ: Testing context-

dependent policies in stateful networks,” in Proc. USENIX NSDI, 2016, pp. 275–

289.

[52] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel, D. Wagner,

M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez, O. Hohlfeld, and G. Smarag-

dakis, “The lockdown effect: Implications of the COVID-19 pandemic on internet

traffic,” in Proc. ACM Internet Measurement Conference (IMC), 2020, pp. 1–18.

[53] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois, “The segment

routing architecture,” in 2015 IEEE Global Communications Conference (GLOBE-

COM), 2015, pp. 1–6.

[54] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir,

“Segment routing architecture,” RFC 8402, Jul. 2018.

[55] A. Finkel, B. Willems, and P. Wolper, “A direct symbolic approach to model

checking pushdown systems,” in INFINITY’97, ser. ENTCS, vol. 9. Elsevier,

1997, pp. 27–37.

42

https://doi.org/10.1007/978-3-030-76983-3_7
https://doi.org/10.1007/978-3-030-76983-3_7
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3519939.3523715
https://doi.org/10.1145/3519939.3523715
https://doi.org/10.1109/TNET.2021.3126572
https://doi.org/10.1109/TNET.2021.3126572
https://doi.org/10.1145/3498701
https://doi.org/10.1145/3498701
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1007/978-3-319-63390-9_14
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://doi.org/10.1145/1287624.1287707
https://doi.org/10.1145/1287624.1287707
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/fayaz
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1109/GLOCOM.2015.7417124
https://doi.org/10.1109/GLOCOM.2015.7417124
https://doi.org/10.17487/RFC8402
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1016/S1571-0661(05)80426-8

References

[56] K. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent software-defined

network updates,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp.

1435–1461, 2019.

[57] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan,

and T. Millstein, “A general approach to network configuration analysis,” in

Proc. USENIX NSDI, 2015, pp. 469–483.

[58] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP

routing protocols,” IEEE Communications Magazine, vol. 40, no. 10, pp. 118–124,

2002.

[59] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta, C. Monsanto,

J. Reich, J. Rexford, C. Schlesinger, D. Walker, and R. Harrison, “Languages for

software-defined networks,” IEEE Communications Magazine, vol. 51, no. 2, pp.

128–134, 2013.

[60] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and

D. Walker, “Frenetic: A network programming language,” in Proc. ACM Interna-

tional Conference on Functional Programming (ICFP), 2011, pp. 279–291.

[61] N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva, “Probabilistic

NetKAT,” in Programming Languages and Systems (ESOP 2016), ser. LNCS, vol.

9632. Springer Berlin Heidelberg, 2016, pp. 282–309.

[62] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson, “A coalgebraic

decision procedure for NetKAT,” in Proc. ACM POPL, 2015, pp. 343–355.

[63] V. Fuller and T. Li, “Classless inter-domain routing (CIDR): The internet address

assignment and aggregation plan,” RFC 4632, Aug. 2006.

[64] T. Gehr, S. Misailovic, P. Tsankov, L. Vanbever, P. Wiesmann, and M. Vechev,

“Bayonet: Probabilistic inference for networks,” in Proc. ACM PLDI, 2018, pp.

586–602.

[65] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast control

plane analysis using an abstract representation,” in Proc. ACM SIGCOMM, 2016,

pp. 300–313.

[66] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane performance diag-

nosis of TCP,” in Proc. Symposium on SDN Research (SOSR ’17). ACM, 2017, pp.

61–74.

[67] N. Giannarakis, D. Loehr, R. Beckett, and D. Walker, “NV: An intermediate

language for verification of network control planes,” in Proc. ACM PLDI, 2020,

pp. 958–973.

[68] J. Gozdecki, A. Jajszczyk, and R. Stankiewicz, “Quality of service terminology in

IP networks,” IEEE Communications Magazine, vol. 41, no. 3, pp. 153–159, 2003.

[69] A. Groce, G. J. Holzmann, and R. Joshi, “Randomized differential testing as a

prelude to formal verification,” in ICSE 2007. IEEE Computer Society, 2007, pp.

621–631.

[70] F. Haftmann and T. Nipkow, “Code generation via higher-order rewrite systems,”

in FLOPS 2010, ser. LNCS, M. Blume, N. Kobayashi, and G. Vidal, Eds., vol. 6009.

Springer, 2010, pp. 103–117.

43

https://doi.org/10.1109/COMST.2018.2876749
https://doi.org/10.1109/COMST.2018.2876749
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://doi.org/10.1109/MCOM.2002.1039866
https://doi.org/10.1109/MCOM.2002.1039866
https://doi.org/10.1109/MCOM.2013.6461197
https://doi.org/10.1109/MCOM.2013.6461197
https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.17487/RFC4632
https://doi.org/10.17487/RFC4632
https://doi.org/10.1145/3192366.3192400
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/3050220.3050228
https://doi.org/10.1145/3050220.3050228
https://doi.org/10.1145/3385412.3386019
https://doi.org/10.1145/3385412.3386019
https://doi.org/10.1109/MCOM.2003.1186560
https://doi.org/10.1109/MCOM.2003.1186560
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1007/978-3-642-12251-4_9

References

[71] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on Software Engi-

neering, vol. 23, no. 5, pp. 279–295, 1997.

[72] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wat-

tenhofer, “Achieving high utilization with software-driven WAN,” in Proc. ACM

SIGCOMM, 2013, pp. 15–26.

[73] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992, Nov.

2000.

[74] A. Horn, A. Kheradmand, and M. Prasad, “Delta-net: Real-time network verifi-

cation using atoms,” in Proc. USENIX NSDI, 2017, pp. 735–749.

[75] International Telecommunication Union, “Forward error correction for subma-

rine systems,” ITU-T Recommendation, vol. G.975, 2000.

[76] ISO, “Intermediate system to intermediate system intra-domain routeing ex-

change protocol for use in conjunction with the protocol for providing the

connectionless-mode network service (ISO 8473),” ISO/IEC 10589:2002, Nov.

2002.

[77] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experi-

ence with a globally-deployed software defined WAN,” in Proc. ACM SIGCOMM,

2013, pp. 3–14.

[78] S. Janardhan, “Update about the october 4th outage,” Engineering at

Meta, Oct. 2021. [Online]. Available: https://engineering.fb.com/2021/10/04/

networking-traffic/outage/

[79] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal, A. Bhargava, P.-A. C. Bisson-

nette, S. Foster, A. Helwer, M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi,

H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma, “Validating datacenters at

scale,” in Proc. ACM SIGCOMM, 2019, pp. 200–213.

[80] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T. Thorgersen,

“P-Rex: Fast verification of MPLS networks with multiple link failures,” in Proc.

ACM CoNEXT, 2018, pp. 217–227.

[81] P. G. Jensen, S. Schmid, M. K. Schou, J. Srba, J. Vanerio, and I. van Duĳn, “Faster

pushdown reachability analysis with applications in network verification,” in

Automated Technology for Verification and Analysis (ATVA 2021), ser. LNCS, vol.

12971. Springer, 2021, pp. 170–186.

[82] P. G. Jensen, S. Schmid, M. K. Schou, and J. Srba, “PDAAAL: A library for

reachability analysis of weighted pushdown systems,” in Automated Technology

for Verification and Analysis (ATVA 2022). Springer, 2022, pp. 225–230.

[83] P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk, and J. Srba,

“AalWiNes: A fast and quantitative what-if analysis tool for MPLS networks,” in

Proc. ACM CoNEXT, 2020, pp. 474–481.

[84] C. Jiang, Z. Li, S. Rao, and M. Tawarmalani, “Flexile: Meeting bandwidth objec-

tives almost always,” in Proc. ACM CoNEXT, 2022, pp. 110–125.

[85] C. Jiang, S. Rao, and M. Tawarmalani, “PCF: Provably resilient flexible routing,”

in Proc. ACM SIGCOMM, 2020, pp. 139–153.

44

https://doi.org/10.1109/32.588521
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.17487/RFC2992
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
https://www.itu.int/rec/T-REC-G.975-200010-I
https://www.itu.int/rec/T-REC-G.975-200010-I
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2486001.2486019
https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1007/978-3-030-88885-5_12
https://doi.org/10.1007/978-3-030-88885-5_12
https://doi.org/10.1007/978-3-031-19992-9_14
https://doi.org/10.1007/978-3-031-19992-9_14
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1145/3555050.3569119
https://doi.org/10.1145/3555050.3569119
https://doi.org/10.1145/3387514.3405858

References

[86] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford,

and R. Wattenhofer, “Dynamic scheduling of network updates,” in Proc. ACM

SIGCOMM, 2014, pp. 539–550.

[87] N. S. Johansen, L. B. Kær, A. L. Madsen, K. O. Nielsen, J. Srba, and R. G. Tollund,

“Kaki: Efficient concurrent update synthesis for SDN,” Form. Asp. Comput., Jun.

2023.

[88] Juniper Networks, “IS-IS user guide: Understanding weighted ECMP

traffic distribution on one-hop IS-IS neighbors,” Jan. 2021. [Online].

Available: https://www.juniper.net/documentation/us/en/software/junos/

is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html

[89] D. Katz and D. Ward, “Bidirectional forwarding detection (BFD),” RFC 5880, Jun.

2010.

[90] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte, “Real

time network policy checking using header space analysis,” in Proc. USENIX

NSDI, 2013, pp. 99–111.

[91] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static

checking for networks,” in Proc. USENIX NSDI, 2012, pp. 113–126.

[92] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow: Verifying

network-wide invariants in real time,” in Proc. USENIX NSDI, 2013, pp. 15–27.

[93] N. Kidd, A. Lal, and T. Reps, “WALi: The weighted automaton library,” 2007.

[Online]. Available: https://research.cs.wisc.edu/wpis/wpds/wali/

[94] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood,

“SeL4: Formal verification of an OS kernel,” in Proc. ACM SOSP, 2009, pp. 207–

220.

[95] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet

topology zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp.

1765–1775, 2011.

[96] D. Kozen, “Kleene algebra with tests,” ACM Trans. Program. Lang. Syst., vol. 19,

no. 3, pp. 427–443, May 1997.

[97] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings

of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[98] U. Krishnaswamy, R. Singh, P. Mattes, P.-A. C. Bissonnette, N. Bjørner, Z. Nasrin,

S. Kothari, P. Reddy, J. Abeln, S. Kandula, H. Raj, L. Irun-Briz, J. Gaudette, and

E. Lan, “OneWAN is better than two: Unifying a split WAN architecture,” in

Proc. USENIX NSDI, 2023, pp. 515–529.

[99] D. Kristiansen and M. K. Schou, “Quantitative analysis of MPLS networks in

AalWiNes: Shortest trace reachability analysis of weighted pushdown systems,”

Master’s thesis, Aalborg University, 2020.

[100] M. Kühnrich, S. Schwoon, J. Srba, and S. Kiefer, “Interprocedural dataflow anal-

ysis over weight domains with infinite descending chains,” in FOSSACS’09, ser.

LNCS, vol. 5504. Springer-Verlag, 2009, pp. 440–455.

45

https://doi.org/10.1145/2619239.2626307
https://doi.org/10.1145/3605952
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html
https://doi.org/10.17487/RFC5880
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://research.cs.wisc.edu/wpis/wpds/wali/
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/256167.256195
https://doi.org/10.1109/JPROC.2014.2371999
https://www.usenix.org/conference/nsdi23/presentation/krishnaswamy
https://projekter.aau.dk/projekter/en/studentthesis/quantitative-analysis-of-mpls-networks-in-aalwines(7c21bb2a-82ef-4ca0-9612-a1e45d2b2e2b).html
https://projekter.aau.dk/projekter/en/studentthesis/quantitative-analysis-of-mpls-networks-in-aalwines(7c21bb2a-82ef-4ca0-9612-a1e45d2b2e2b).html
https://doi.org/10.1007/978-3-642-00596-1_31
https://doi.org/10.1007/978-3-642-00596-1_31

References

[101] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L. Lim,

and R. Soulé, “Semi-oblivious traffic engineering: The road not taken,” in Proc.

USENIX NSDI, 2018, pp. 157–170.

[102] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, and K. Heljanko, “Model

checking of safety-critical software in the nuclear engineering domain,” Reliability

Engineering & System Safety, vol. 105, pp. 104–113, 2012.

[103] K. G. Larsen, A. Mariegaard, S. Schmid, and J. Srba, “AllSynth: A BDD-based

approach for network update synthesis,” Science of Computer Programming, vol.

230, article 102992, 2023, 19 pages.

[104] K. G. Larsen, S. Schmid, and B. Xue, “WNetKAT: A weighted SDN program-

ming and verification language,” in 20th International Conference on Principles

of Distributed Systems (OPODIS 2016), ser. LIPIcs, vol. 70. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2017, pp. 18:1–18:18.

[105] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and future,”

Computer Networks, vol. 65, pp. 84–98, 2014.

[106] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM, vol. 52,

no. 7, pp. 107–115, 2009.

[107] J. Li, “Rogers blames massive outage on error during network update,”

CBC News, Jul. 2022. [Online]. Available: https://www.cbc.ca/news/business/

rogers-letter-outage-crtc-1.6530067

[108] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic en-

gineering with forward fault correction,” in Proc. ACM SIGCOMM, 2014, pp.

527–538.

[109] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz, “ZUpdate:

Updating data center networks with zero loss,” in Proc. ACM SIGCOMM, 2013,

pp. 411–422.

[110] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes, A. Rybalchenko,

G. Lu, and L. Yuan, “CrystalNet: Faithfully emulating large production net-

works,” in Proc. ACM SOSP, 2017, pp. 599–613.

[111] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang, C. Caş-

caval, N. McKeown, and N. Foster, “p4v: Practical verification for programmable

data planes,” in Proc. ACM SIGCOMM, 2018, pp. 490–503.

[112] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese, “Checking

beliefs in dynamic networks,” in Proc. USENIX NSDI, 2015, pp. 499–512.

[113] R. Mahajan and R. Wattenhofer, “On consistent updates in software defined

networks,” in Proc. ACM HotNets, 2013, article 20, pp. 1–7.

[114] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King,

“Debugging the data plane with anteater,” in Proc. ACM SIGCOMM, 2011, pp.

290–301.

[115] J. McClurg, H. Hojjat, P. Černý, and N. Foster, “Efficient synthesis of network

updates,” in Proc. ACM PLDI, 2015, pp. 196–207.

46

https://www.usenix.org/conference/nsdi18/presentation/kumar
https://doi.org/10.1016/j.ress.2012.03.021
https://doi.org/10.1016/j.ress.2012.03.021
https://doi.org/10.1016/j.scico.2023.102992
https://doi.org/10.1016/j.scico.2023.102992
https://doi.org/10.4230/LIPIcs.OPODIS.2016.18
https://doi.org/10.4230/LIPIcs.OPODIS.2016.18
https://doi.org/10.1016/j.comnet.2014.03.007
https://doi.org/10.1145/1538788.1538814
https://www.cbc.ca/news/business/rogers-letter-outage-crtc-1.6530067
https://www.cbc.ca/news/business/rogers-letter-outage-crtc-1.6530067
https://doi.org/10.1145/2619239.2626314
https://doi.org/10.1145/2619239.2626314
https://doi.org/10.1145/2486001.2486005
https://doi.org/10.1145/2486001.2486005
https://doi.org/10.1145/3132747.3132759
https://doi.org/10.1145/3132747.3132759
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://doi.org/10.1145/2535771.2535791
https://doi.org/10.1145/2535771.2535791
https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1145/2737924.2737980
https://doi.org/10.1145/2737924.2737980

References

[116] W. M. McKeeman, “Differential testing for software,” Digital Technical Journal,

vol. 10, no. 1, pp. 100–107, 1998.

[117] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “OpenFlow: Enabling innovation in campus networks,”

SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[118] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and run-time

system for network programming languages,” in Proc. ACM POPL, 2012, pp.

217–230.

[119] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing software

defined networks,” in Proc. USENIX NSDI, 2013, pp. 1–13.

[120] J. Moy, “OSPF version 2,” RFC 2328, Apr. 1998.

[121] K. S. Namjoshi, “Certifying model checkers,” in Computer Aided Verification.

Springer, 2001, pp. 2–13.

[122] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure config-

uration synthesis and debugging,” Journal of Network and Systems Management,

vol. 16, no. 3, pp. 235–258, 2008.

[123] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos, “Verification of P4

programs in feasible time using assertions,” in Proc. ACM CoNEXT, 2018, pp.

73–85.

[124] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof Assistant for

Higher-Order Logic, ser. LNCS. Springer, 2002, vol. 2283.

[125] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE for LSP

tunnels,” RFC 4090, May 2005.

[126] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker, “Verifying reachability

in networks with mutable datapaths,” in Proc. USENIX NSDI, 2017, pp. 699–718.

[127] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low

latency towards 5G: RAN, core network and caching solutions,” IEEE Communi-

cations Surveys & Tutorials, vol. 20, no. 4, pp. 3098–3130, 2018.

[128] R. Peterson, E. H. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and

N. Foster, “P4Cub: A little language for big routers,” in Conference on Certified

Programs and Proofs (CPP 2023). ACM, 2023, pp. 303–319.

[129] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Varghese, “Scaling

network verification using symmetry and surgery,” in Proc. ACM POPL, 2016,

pp. 69–83.

[130] J. Postel, “Internet protocol,” RFC 791, Sep. 1981.

[131] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar, “Plankton:

Scalable network configuration verification through model checking,” in Proc.

USENIX NSDI, 2020, pp. 953–967.

[132] Public Safety and Homeland Security Bureau, “FCC report on nationwide

CenturyLink network outage on december 27, 2018,” Federal Communications

Commission, Aug. 2019. [Online]. Available: https://www.fcc.gov/document/

fcc-report-centurylink-network-outage

47

https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2103656.2103685
https://doi.org/10.1145/2103656.2103685
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
https://doi.org/10.17487/RFC2328
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1145/3281411.3281421
https://doi.org/10.1145/3281411.3281421
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.17487/RFC4090
https://doi.org/10.17487/RFC4090
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://doi.org/10.1109/COMST.2018.2841349
https://doi.org/10.1109/COMST.2018.2841349
https://doi.org/10.1145/3573105.3575670
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.17487/RFC0791
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.fcc.gov/document/fcc-report-centurylink-network-outage
https://www.fcc.gov/document/fcc-report-centurylink-network-outage

References

[133] A. Raj and O. C. Ibe, “A survey of IP and multiprotocol label switching fast

reroute schemes,” Computer Networks, vol. 51, no. 8, pp. 1882–1907, 2007.

[134] J. Rak and D. Hutchison, Guide to disaster-resilient communication networks.

Springer Nature, 2020.

[135] S. Ramanathan, Y. Zhang, M. Gawish, Y. Mundada, Z. Wang, S. Yun, E. Lippert,

W. Taha, M. Yu, and J. Mirkovic, “Practical intent-driven routing configuration

synthesis,” in Proc. USENIX NSDI, 2023, pp. 629–644.

[136] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions for

network update,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 323–334,

Aug. 2012.

[137] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),” RFC 4271,

Jan. 2006.

[138] T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted pushdown systems and

their application to interprocedural dataflow analysis,” Science of Computer Pro-

gramming, vol. 58, no. 1-2, pp. 206–263, 2005.

[139] N. Rockwell, “Summary of june 8 outage,” Fastly, Jun. 2021. [Online]. Available:

https://www.fastly.com/blog/summary-of-june-8-outage

[140] E. C. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching

architecture,” RFC 3031, Jan. 2001.

[141] L. Ryzhyk, N. Bjørner, M. Canini, J.-B. Jeannin, C. Schlesinger, D. B. Terry, and

G. Varghese, “Correct by construction networks using stepwise refinement,” in

Proc. USENIX NSDI, 2017, pp. 683–698.

[142] S. Saha, S. Prabhu, and P. Madhusudan, “NetGen: Synthesizing data-plane con-

figurations for network policies,” in Proc. ACM SOSR, 2015, article 17, pp. 1–6.

[143] A. Schlichtkrull, M. K. Schou, J. Srba, and D. Traytel, “Differential testing of

pushdown reachability with a formally verified oracle,” in Proc. Formal Methods

in Computer-Aided Design (FMCAD). TU Wien Academic Press, Oct. 2022, pp.

369–379.

[144] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-manipulating

MPLS networks,” in Proc. IEEE INFOCOM, 2018, pp. 1799–1807.

[145] S. Schmid, M. K. Schou, J. Srba, and J. Vanerio, “R-MPLS: Recursive protection for

highly dependable MPLS networks,” in Proc. ACM CoNEXT, 2022, pp. 276–292.

[146] S. Schmid, B. C. Schrenk, and Á. Torralba, “NetStack: A game approach to

synthesizing consistent network updates,” in IFIP Networking, 2022, pp. 1–9.

[147] T. Schneider, R. Birkner, and L. Vanbever, “Snowcap: Synthesizing network-wide

configuration updates,” in Proc. ACM SIGCOMM, 2021, pp. 33–49.

[148] S. Schwoon, “Model-checking pushdown systems,” Ph.D. dissertation, Technis-

che Universität München, 2002.

[149] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

48

https://doi.org/10.1016/j.comnet.2006.09.010
https://doi.org/10.1016/j.comnet.2006.09.010
https://doi.org/10.1007/978-3-030-44685-7
https://www.usenix.org/conference/nsdi23/presentation/ramanathan
https://www.usenix.org/conference/nsdi23/presentation/ramanathan
https://doi.org/10.1145/2377677.2377748
https://doi.org/10.1145/2377677.2377748
https://doi.org/10.17487/RFC4271
https://doi.org/10.1016/j.scico.2005.02.009
https://doi.org/10.1016/j.scico.2005.02.009
https://www.fastly.com/blog/summary-of-june-8-outage
https://doi.org/10.17487/RFC3031
https://doi.org/10.17487/RFC3031
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/ryzhyk
https://doi.org/10.1145/2774993.2775006
https://doi.org/10.1145/2774993.2775006
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_44
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_44
https://doi.org/10.1109/INFOCOM.2018.8486261
https://doi.org/10.1109/INFOCOM.2018.8486261
https://doi.org/10.1145/3555050.3569140
https://doi.org/10.1145/3555050.3569140
https://doi.org/10.23919/IFIPNetworking55013.2022.9829770
https://doi.org/10.23919/IFIPNetworking55013.2022.9829770
https://doi.org/10.1145/3452296.3472915
https://doi.org/10.1145/3452296.3472915
https://d-nb.info/96638976X/34
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

References

[150] A. Sharma, “Microsoft cloud outage hits users around the world,”

Reuters, Jan. 2023. [Online]. Available: https://www.reuters.com/technology/

microsoft-teams-down-thousands-users-india-downdetector-2023-01-25/

[151] M. Sipser, Introduction to the Theory of Computation, 3rd ed. CENGAGE Learning,

2012.

[152] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and M. Budiu, “DC.P4:

Programming the forwarding plane of a data-center switch,” in Proc. Symposium

on SDN Research (SOSR ’15). ACM, 2015, article 2, pp. 1–8.

[153] S. Smolka, P. Kumar, N. Foster, D. Kozen, and A. Silva, “Cantor meets Scott:

Semantic foundations for probabilistic networks,” in Pro. ACM POPL, 2017, pp.

557–571.

[154] S. Smolka, P. Kumar, D. M. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva,

“Scalable verification of probabilistic networks,” in Proc. ACM PLDI, 2019, pp.

190–203.

[155] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and N. Foster,

“Merlin: A language for provisioning network resources,” in Proc. ACM CoNEXT,

2014, pp. 213–226.

[156] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev, “Probabilistic verifi-

cation of network configurations,” in Proc. ACM SIGCOMM, 2020, pp. 750–764.

[157] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu, “Debug-

ging P4 programs with Vera,” in Proc. ACM SIGCOMM, 2018, pp. 518–532.

[158] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet: Scalable sym-

bolic execution for modern networks,” in Proc. ACM SIGCOMM, 2016, pp. 314–

327.

[159] T. Strickx and J. Hartman, “Cloudflare outage on june 21, 2022,” The

Cloudflare Blog, Jun. 2022. [Online]. Available: https://blog.cloudflare.com/

cloudflare-outage-on-june-21-2022/

[160] K. Subramanian, L. D’Antoni, and A. Akella, “Genesis: Synthesizing forwarding

tables in multi-tenant networks,” in Proc. ACM POPL, 2017, pp. 572–585.

[161] T. A. Thĳm, R. Beckett, A. Gupta, and D. Walker, “Kirigami, the verifiable art

of network cutting,” in IEEE International Conference on Network Protocols (ICNP),

2022, pp. 1–12.

[162] B. Tian, J. Gao, M. Liu, E. Zhai, Y. Chen, Y. Zhou, L. Dai, F. Yan, M. Ma, M. Tang,

J. Lu, X. Wei, H. H. Liu, M. Zhang, C. Tian, and M. Yu, “Aquila: A practically

usable verification system for production-scale programmable data planes,” in

Proc. ACM SIGCOMM, 2021, pp. 17–32.

[163] R. J. Vanderbei, Linear programming: Foundations and Extensions, 5th ed. Springer,

2020.

[164] J. Vanerio, S. Schmid, M. K. Schou, and J. Srba, “MPLS-Kit: An MPLS data plane

toolkit,” in IEEE 11th International Conference on Cloud Networking (CloudNet), Nov.

2022, pp. 49–54.

49

https://www.reuters.com/technology/microsoft-teams-down-thousands-users-india-downdetector-2023-01-25/
https://www.reuters.com/technology/microsoft-teams-down-thousands-users-india-downdetector-2023-01-25/
https://doi.org/10.1145/2774993.2775007
https://doi.org/10.1145/2774993.2775007
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/2674005.2674989
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/2934872.2934881
https://doi.org/10.1145/2934872.2934881
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://doi.org/10.1145/3009837.3009845
https://doi.org/10.1145/3009837.3009845
https://doi.org/10.1109/ICNP55882.2022.9940333
https://doi.org/10.1109/ICNP55882.2022.9940333
https://doi.org/10.1145/3452296.3472937
https://doi.org/10.1145/3452296.3472937
https://doi.org/10.1007/978-3-030-39415-8
https://doi.org/10.1109/CloudNet55617.2022.9978791
https://doi.org/10.1109/CloudNet55617.2022.9978791

References

[165] S. Vissicchio and L. Cittadini, “FLIP the (flow) table: Fast lightweight policy-

preserving SDN updates,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[166] J. Wagemaker, N. Foster, T. Kappé, D. Kozen, J. Rot, and A. Silva, “Concurrent

NetKAT,” in Programming Languages and Systems (ESOP 2022), ser. LNCS, vol.

13240. Springer, 2022, pp. 575–602.

[167] Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel, “Founda-

tional verification of stateful P4 packet processing,” in Interactive Theorem Proving

(ITP 2023). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2023, article 32,

pp. 32:1–32:20.

[168] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and Y. R. Yang, “R3:

Resilient routing reconfiguration,” in Proc. ACM SIGCOMM, 2010, pp. 291–302.

[169] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and Z. Tatlock,

“Scalable verification of border gateway protocol configurations with an smt

solver,” in Proc. ACM OOPSLA, 2016, pp. 765–780.

[170] G. G. Xie, Jibin Zhan, D. A. Maltz, Hui Zhang, A. Greenberg, G. Hjalmtysson,

and J. Rexford, “On static reachability analysis of IP networks,” in Proc. IEEE

INFOCOM, vol. 3, 2005, pp. 2170–2183.

[171] H. Yang and S. S. Lam, “Real-time verification of network properties using atomic

predicates,” IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 887–900,

2016.

[172] ——, “Scalable verification of networks with packet transformers using atomic

predicates,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 2900–2915,

2017.

[173] N. Yaseen, B. Arzani, R. Beckett, S. Ciraci, and V. Liu, “Aragog: Scalable runtime

verification of shardable networked systems,” in Proc. USENIX OSDI, 2020, pp.

701–718.

[174] F. Ye, D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang, X. Wu, T. Guo, C. Jin,

D. She, Q. Ma, B. Cheng, H. Xu, M. Zhang, Z. Wang, and R. Fonseca, “Accuracy,

scalability, coverage: A practical configuration verifier on a global WAN,” in Proc.

ACM SIGCOMM, 2020, pp. 599–614.

[175] Y. Yuan, D. Lin, R. Alur, and B. T. Loo, “Scenario-based programming for SDN

policies,” in Proc. ACM CoNEXT, 2015, article 34, pp. 1–13.

[176] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar, “NetSMC: A custom symbolic

model checker for stateful network verification,” in Proc. USENIX NSDI, 2020,

pp. 181–200.

[177] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,”

IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–200, 2002.

[178] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and A. Vahdat,

“Libra: Divide and conquer to verify forwarding tables in huge networks,” in

Proc. USENIX NSDI, 2014, pp. 87–99.

[179] P. Zhang, A. Gember-Jacobson, Y. Zuo, Y. Huang, X. Liu, and H. Li, “Differential

network analysis,” in Proc. USENIX NSDI, 2022, pp. 601–615.

[180] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li, “APKeep: Realtime

verification for real networks,” in Proc. USENIX NSDI, 2020, pp. 241–255.

50

https://doi.org/10.1109/INFOCOM.2016.7524419
https://doi.org/10.1109/INFOCOM.2016.7524419
https://doi.org/10.1007/978-3-030-99336-8_21
https://doi.org/10.1007/978-3-030-99336-8_21
https://doi.org/10.4230/LIPIcs.ITP.2023.32
https://doi.org/10.4230/LIPIcs.ITP.2023.32
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1145/2983990.2984012
https://doi.org/10.1145/2983990.2984012
https://doi.org/10.1109/INFCOM.2005.1498492
https://doi.org/10.1109/TNET.2015.2398197
https://doi.org/10.1109/TNET.2015.2398197
https://doi.org/10.1109/TNET.2017.2720172
https://doi.org/10.1109/TNET.2017.2720172
https://www.usenix.org/conference/osdi20/presentation/yaseen
https://www.usenix.org/conference/osdi20/presentation/yaseen
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/2716281.2836119
https://doi.org/10.1145/2716281.2836119
https://www.usenix.org/conference/nsdi20/presentation/yuan
https://www.usenix.org/conference/nsdi20/presentation/yuan
https://doi.org/10.1109/32.988498
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
https://www.usenix.org/conference/nsdi22/presentation/zhang-peng
https://www.usenix.org/conference/nsdi22/presentation/zhang-peng
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng

Part II

Papers

51

Paper A

R-MPLS: Recursive Protection for

Highly Dependable MPLS Networks

Stefan Schmid, Morten Konggaard Schou,

Jiří Srba, and Juan Vanerio

The paper has been published in:

Proceedings of the 18th International Conference on Emerging Networking

EXperiments and Technologies (CoNEXT ’22), pp. 276-292, Association for

Computing Machinery, 2022. https://doi.org/10.1145/3555050.3569140

https://doi.org/10.1145/3555050.3569140

© 2022 Copyright is held by the owner/author(s).

The layout has been revised.

1. Introduction

Abstract

Most modern communication networks feature fast rerouting mechanisms in the data

plane. However, design and configuration of such mechanisms even under multiple

failures is known to be difficult. In order to increase the resilience of the widely deployed

MPLS networks, we propose R-MPLS, an alternative link protection mechanism for

MPLS networks that uses recursive protection and can route around multiple si-

multaneously failed links. Our new R-MPLS approach comes with strong theoretical

underpinnings, is implementable in a fully distributed way and executable on existing

MPLS hardware, and formally guarantees that no forwarding loops are introduced.

We implement our R-MPLS protection in an automated tool which overcomes the com-

plexity of configuring such resilient network data planes, and report on the benefits of

recursive protection in realistic network topologies. We find that R-MPLS significantly

increases network robustness against multiple failures, with only moderate increase

in the number of forwarding rules and communication overhead (both comparable to

industry-standards like RSVP-TE FRR).

1 Introduction

Network failures are inevitable: network interfaces can go down and devices

crash at any time [1, 2]. Today, especially link failures are common, and with

the increasing scale of communication networks, failures are likely to become

more frequent [3]. In order to deal with such failures and provide the required

high degree of dependability, modern networks rely on control software whose

responsibility is to ensure connectivity despite these unreliable components.

In particular, most mission-critical communication networks today feature fast

rerouting (FRR) mechanisms in the data plane [4] which allow routers to locally

and hence quickly forward traffic to alternative paths.

However, the design of fast rerouting mechanisms providing a high degree

of resilience is known to be challenging, and continues to attract significant

attention from the research community [4–8]. In particular, since routers need

to react to failures locally, these decisions are taken without knowledge of

potential failures downstream. The additional failures, however, may lead to

incorrect forwarding behaviors and threaten reachability.

Many major network outages have been reported over the last years [9, 10].

While sometimes already a single link failure can lead to undesired network

behaviors [11], with the increasing network scale and due to shared risk

link groups, operators now even have to plan for multiple failures simulta-

neously [12]. Also, multiple link failures have already been studied in the

literature intensively before [8, 13–15]. There results for achieving perfect re-

silience for many classes of topologies and different kinds of networks. None

of them is readily implementable in MPLS.

55

Paper A.

This paper is motivated by observing an opportunity to significantly im-

prove the resilience provided by fast rerouting mechanisms. In particular, we

consider the widely deployed networks based on Multiprotocol Label Switch-

ing (MPLS) [16, 17]. For example, MPLS networks are popular among ISPs

for traffic engineering purposes. The fast rerouting mechanism used in MPLS

relies on stacks of labels in the packet header, where a label pushed on the stack

allows to route packets around failed links, creating a “backup tunnel” [18].

MPLS FRR allows protecting against individual link and node failures, and

has been successfully used for two decades already. It has recently regained

attention for supporting fast what-if analysis [19, 20].

Two common protection methods are standardized on MPLS for protection

of traffic engineering tunnels [18]: one-to-one backup where one backup label

switched path (LSP) is established for each protected LSP in such a way that the

former intersects the latter at one of the downstream nodes and facility backup

where each backup LSP is established to protect a set of many primary LSPs

that share the same outgoing interface or next-hop, intersecting the primary

paths at a shared downstream node right after the failed link/node. However,

while conceptually simple, MPLS FRR procedures are designed to protect

against a single link or node failure (as a weakness and in contrast to our

method).

Our main contribution is a generalization of the MPLS fast reroute mecha-

nism, R-MPLS, which supports a recursive protection scheme, where additional

labels are pushed on the stack whenever a packet encounters another failure,

essentially creating “nested tunnels”. This generalization is non-trivial: if done

naively, nested tunnels may quickly lead to forwarding loops, which is a major

concern of operators. Also, while R-MPLS may increase the header size, this

overhead occurs only when it is needed due to multiple link failures. To this

end, we believe that our approach is in line with other trends in networking,

such as IPv6 or segment routing [21], which require larger headers. Although

MPLS forwarding requires exact matching on labels, which is less expensive

than IP ternary matches, the number of routing entries and the number of

communications required to compute a protection are critical parameters to

scale with the network size. Our recursive protection mechanism R-MPLS

then substantially improves the resilience of the network to multiple link fail-

ures without the risk of introducing forwarding loops, while keeping low the

memory and the communications overheads.

By recursively building protection tunnels, R-MPLS is able to provide al-

ternative paths from a single router, as well as protection paths for other

protection paths, neither of which is possible with standard MPLS protec-

tion mechanisms. Figure 1 exemplifies the protections provided by R-MPLS.

A main path from v0 to v1 can be backed up with a protection path via v2. If

(v0, v2) is also unavailable then the main path is protected by another protec-

tion path via v3, which rejoins the original protection path at v2. Additionally

56

2. MPLS Network Model

Fig. 1: Example R-MPLS protection.

also link (v2, v1) has its own protection via v4. As a result, R-MPLS can find

a path from v0 to v1 even when links (v0, v1), (v0, v2) and (v2, v1) simultane-

ously fail. R-MPLS’s improvement is due to recursive link failure protection

by design.

We evaluate the benefits of such recursive protection empirically on a large

number of real network topologies, also comparing against the state-of-the-

art mechanism to achieve multi-failure resiliency. We find that R-MPLS can

indeed significantly increase the network resilience against multiple link fail-

ures at minimal overheads. Another attractive feature of R-MPLS is that it is

compatible with and can be employed on top of any existing MPLS data plane

and protocol, such as RSVP and LDP.

As a contribution to the research community, in order to ensure repro-

ducibility and support follow-up work, we make all our experimental artifacts

and implementations publicly available (as open-source code) [22].

2 MPLS Network Model

Let us first formally define a general data plane model of MPLS networks. This

model is based on prior formal models of MPLS [19, 20], though we restrict

the model to the widely used per-platform label space.

In the model, an MPLS network consists of a topology and forwarding rules,

where the topology is composed of routers and directed links. Bidirectional

links, which are common in real networks, are modelled by two directed links.

Figure 2a gives a small example topology. In the figure, links in1, in2 and out1
are connected to the outside of the MPLS domain, modelled using a designated

external node not shown in the figure.

Definition 1. A network topology is a directed multigraph (V,E, src, tgt) where

V is a set of routers, E is a set of links between routers, src : E → V assigns the

source router to each link, and tgt : E → V assigns the target router.

A path p in the directed multigraph is a sequence of links e1 . . . en ∈ E∗

57

Paper A.

with tgt(ei) = src(ei+1) for 1 ≤ i < n. The path is simple if all its routers are

distinct. Define tgt(p) ≜ tgt(en).

We assume that links in the network can fail. This is modelled by a set

F ⊆ E of failed links. In our model, this set does not change for the duration

of time considered. In other words we look at a snapshot of the data plane

after some failures happen and before the control plane computes new paths.

A link is active if it belongs to E \ F . We sometimes call F the failure scenario.

Forwarding in an MPLS network is accomplished using labels in the packet

header. We denote the set of MPLS labels used in the network by L. Packet

headers are modified using pop, swap and push operations. For a set of

MPLS labels L, we define the set of MPLS operations on packet headers as

Op(L) = {swap(ℓ) | ℓ ∈ L} ∪ {push(ℓ) | ℓ ∈ L} ∪ {pop}.
Each router has a mapping from labels to forwarding entries. Figure 2c

shows an example of a forwarding table for the topology in Figure 2a. The

tables encode two Label Switched Paths (LSPs) from v1 resp. v2 and exiting at

out1.

For ease of presentation, the formal model does not include how a packet

enters the MPLS domain, but it is easily extendable by also mapping these

external interfaces to forwarding entries. In the formal definition, these map-

pings for all routers are joined into one forwarding table τ :

Definition 2. An MPLS network N = (V,E, src, tgt , L, τ) is a tuple where

(V,E, src, tgt) is a network topology, L is a finite set of MPLS labels, and

τ : V × L→ 2N×E×Op(L)+
is the forwarding table.

For every router-label pair (v, ℓ) ∈ V ×L, the forwarding table returns a set

τ(v, ℓ) = {(pr1, e1, ω1), . . . , (prm, em, ωm)} of forwarding entries where, for all

1 ≤ j ≤ m, pr j is the priority, ej is the outgoing link such that src(ej) = v, and

ωj ∈ Op(L)+ is a nonempty sequence of MPLS operations to be performed on

the packet header. We say that a forwarding entry is active, if its outgoing link

is active.

The semantics of a set of forwarding entries is to choose an active entry

with the highest priority (lowest natural number). If several active entries have

the same highest priority, we nondeterministically pick one, hence abstracting

away from various specific routing policies like e.g. ECMP that allow splitting

a flow along multiple paths.

Definition 3. For a set of failed links F ⊆ E we define the active forwarding

table τF : V × L → 2E×Op(L)+
as τF (v, ℓ) = {(e, ω) | (pr , e, ω) ∈ τ(v, ℓ), e ∈

E \ F and pr = prmin}, where prmin is the highest priority (minimal value)

of an active forwarding entry in τ(v, ℓ), or define τF (v, ℓ) = ∅ if τ(v, ℓ) has no

active forwarding entries given F .

As an example with a single protection entry, if τ(v1, 01)={(1, e1, swap(02)),
(2, e2, swap(02) ◦ push(10))}, then given the failure scenario F = {e1}, the cor-

58

2. MPLS Network Model

v1

v2

v4

v3

in1

in2

out1

e1

e2

e3
e4

e5
e6

lbv1

lbv3

lbv4

lbv2

(a) Network topology.

⟨e1, e4e3⟩ ⟨e4, e6e2⟩⟨e3, e5e1⟩

{e4}

{e5}
∅

P = {⟨e3, e5e1⟩, ⟨e1, e4e3⟩, ⟨e4, e6e2⟩}

(b) Protection graph for the protections P is used for loop avoidance.

Router Label Prio. eout Operation

v1 01 1 e1 swap(02)

v2 05 1 e2 swap(06)

v3 06 1 e3 swap(07)

v4 02 1 out1 pop

07 1 out1 pop

(c) Forwarding table, before R-MPLS, encoding flows v1 → v4 and v2 → v3 → v4.

Router Label Prio. eout Operation

v1 01 1 e1 swap(02)
2 lbv1 swap(02) ◦ push(10)

10 1 e4 swap(11)
2 lbv1 swap(11) ◦ push(40)

40 1 e6 swap(41)
31 1 e1 pop

2 lbv1 pop ◦ push(10)
v2 05 1 e2 swap(06)

41 1 e2 pop

v3 06 1 e3 swap(07)
2 lbv3 swap(07) ◦ push(30)

11 1 e3 pop

2 lbv3 pop ◦ push(30)
30 1 e5 swap(31)

v4 02 1 out1 pop

07 1 out1 pop

(d) Forwarding table after R-MPLS protects links e1, e3, and e4 with labels (10, 11), (30, 31), resp. (40, 41).

Gray rows are excluded to avoid loops.

(in1, 01)(e1, 02)(out1, ε) F = ∅
(in1, 01)(lbv1, 10 ◦ 02)(e4, 11 ◦ 02)(e3, 02)(out1, ε) F = {e1}
(in1, 01)(lbv1, 10◦02)(lbv1, 40◦11◦02)(e6, 41◦11◦02)(e2, 11◦02)(e3, 02)(out1, ε) F = {e1, e4}
(in1, 01)(lbv1, 10 ◦ 02)(e4, 11 ◦ 02)(lbv3, 30 ◦ 02)(e5, 31 ◦ 02)(lbv1, 10 ◦ 02). . . F = {e1, e3}

(e) Traces through the network in different failures scenarios. The last looping trace (notice the repeated hop

(lbv1
, 10 ◦ 02)) is avoided by excluding the grayed forwarding rules in Figure 2d.

Fig. 2: A simple network with a routing table before and after R-MPLS protection.

59

Paper A.

responding entry in the active forwarding table is τF (v1, 01) = {(e2, swap(02)◦
push(10))}. In this case forwarding is deterministic, since τF (v1, 01) is a sin-

gleton set.

Definition 4. The semantics of MPLS operations is a partial header rewrite func-

tion H : L∗ × Op(L)∗ ⇀ L∗
, where ω, ω′ ∈ Op(L)∗, h ∈ L∗

and ε is the empty

sequence of operations:

H(h, ω) =

h if ω = ε

H([op](ℓ) ◦ h′, ω′)
if ω = op ◦ ω′

and h = ℓ ◦ h′

with ℓ ∈ L, h′ ∈ L∗

undefined otherwise

where we define [pop](ℓ) = ε, [swap(ℓ′)](ℓ) = ℓ′ and [push(ℓ′)](ℓ) = ℓ′ℓ for all

ℓ, ℓ′ ∈ L.

As an example, applying the operation sequence swap(02) ◦ push(10) to

the header 01, yields H(01, swap(02) ◦ push(10)) = 10 ◦ 02. The forwarding

of a packet proceeds by (i) selecting an entry from the active forwarding table

that corresponds to the top-most label on the packet label-stack, (ii) applying

the header operations, and (iii) sending the packet on the outgoing link.

Definition 5. A trace in a network N = (V,E, src, tgt , L, τ), given a set of

failed links F ⊆ E, is any (finite or infinite) sequence of link-header pairs

(e1, h1)(e2, h2) . . . with each (ei, hi) ∈ (E \ F) × L∗
, where for each i > 1,

hi = H(hi−1, ω) for some (ei, ω) ∈ τF (tgt(ei−1), head(hi−1)), where head(h) is

the top (left-most) label of h.

Figure 2e shows traces under different failure scenarios using the forward-

ing table in Figure 2d. The first trace is a primary path in the original data

plane. The next two use R-MPLS protection in two different failure scenarios.

The last one shows looping behavior, where the gray parts correspond to the

gray forwarding entries in Figure 2d, which are excluded from the forwarding

table by our loop avoidance algorithm.

3 R-MPLS Protection

Our recursive MPLS protection (R-MPLS) is designed as a protection layer

that enhances an existing data plane. That is, it takes a topology and a data

plane as inputs and returns an augmented version of the same data plane as

output. This operation is performed regardless of the protocols involved in the

creation of the original one. Hence our R-MPLS implementation can be used

for postprocessing and data plane augmentation.

60

3. R-MPLS Protection

v1 v2 v3

v4 v5 v6

in

out

e1 e2
e3

e4
e5 e6

e7 e8

lbv1

v1 v2 v3

v4 v5 v6

P = {⟨e1, e3e4⟩, ⟨e1, e3e7⟩, ⟨e1, e3e7e8⟩}

First entries of LSP

(1, e1, swap(ℓ1)) ∈ τ(v1, ℓ0)

(1, e5, swap(ℓ2)) ∈ τ(v2, ℓ1)

Entries for p = ⟨e1, e3e7⟩
(1, e3, swap(ℓ

1
p)) ∈ τ(v1, ℓ

0
p)

(1, e7, pop) ∈ τ(v4, ℓ
1
p)

Protect LSP with p

(2, lbv1 , swap(ℓ2) ◦ push(ℓ0p)) ∈ τ(v1, ℓ0)

Fig. 3: A network with two main forwarding paths (dotted and dashed line), and three protections

P of e1. Right side shows node protection of the dotted LSP.

We generalize the notion of link protection and node protection (Defini-

tion 6) and address which forwarding entries can be protected by a given

protection path in Section 3.1. Next we solve in Section 3.2 the issue of avoid-

ing the introduction of forwarding loops—which occurs if naively applying

recursive protection. The high-level pseudocode of our protection algorithm

is described in Algorithm 2 and Section 3.3, while Section 3.5 provides details

on its distributed implementation.

3.1 Protectable Forwarding Entries
Definition 6. A protection is a pair ⟨e, p⟩where e ∈ E is the link being protected

and p is a simple path e1 . . . en ∈ (E \ {e})∗, with src(e1) = src(e).

If tgt(p) = tgt(e), then ⟨e, p⟩ is a link protection. Figure 3 shows a network

with two main LSPs (dotted and dashed lines), and three protections P for e1.

The protection ⟨e1, e3e4⟩ is a link protection. A node protection routes around not

just the failing link, but also the neighboring node. In the example, ⟨e1, e3e7⟩ is
a node protection. Note that this protection can only be used for the LSP going

through v5. The other LSP (going through v3) has no node protection, but we

can protect it by a path merging further down the LSP, namely the protection

⟨e1, e3e7e8⟩.
Not all forwarding entries can be protected by a given protection. We only

install protections on forwarding entries where the original path merges with

the protection path.

Definition 7. An entry (pr , e, ω) ∈ τ(src(e), ℓ) for a label ℓ ∈ L is protectable

by a protection ⟨e, p⟩ using operations ω′ ∈ Op(L)∗, if there exists e′ ∈ E with

tgt(e′) = tgt(p) such that for all h ∈ L∗
there is a trace

(e,H(ℓ ◦ h, ω)) . . . (e′,H(ℓ ◦ h, ω′))

in the network under no failures.

61

Paper A.

The R-MPLS algorithm only installs protections for protectable entries, and

it needs to know the operation sequence ω′
to use. For link protection, all

entries are protectable using ω′ = ω.

In Figure 3, the entry (1, e1, swap(ℓ1)) ∈ τ(v1, ℓ0) is protectable by ⟨e1, e3e7⟩
using ω′ = swap(ℓ2), since (e1, ℓ1 ◦ h)(e5, ℓ2 ◦ h) is a valid network trace for all

h ∈ L∗
. Note that applying ω′ = swap(ℓ2) before pushing the protection label,

ensures that a packet using the protection path arrives at v5 with the same

header ℓ2 ◦ h as if using the main LSP.

3.2 Loop Avoidance
When using a protection ⟨e, p⟩, in case of a failure of a link e′ on the path p,

the R-MPLS algorithm allows to recursively switch to a new protection ⟨e′, p′⟩.
As shown in the last trace in Figure 2e this can sometimes result in a loop. In

this example the failure of e1 causes the packet to use the backup path e4e3,

where the failure of e3 makes the packet switch to the backup path e5e1, hence

looping back to the failed e1 and the backup path e4e3.

To avoid introducing forwarding loops, we need to understand the interac-

tions between different protection paths, and then avoid installing the recursive

protection in some cases. For this, we use the following graph.

Definition 8. Given a set of protections P , we define a protection graph with

nodesP and edges called protection-pairs such that there is an edge (⟨e, p⟩,⟨e′, p′⟩)
in protection-pairs whenever the protected link e′ is on the protection path p,

and p′ merges downstream on p, i.e. there is ei = e′ and ej with j ≥ i and

tgt(ej) = tgt(p′) such that p = e1 . . . ei . . . ej . . . en. Moreover, we annotate

using the function α every such edge with the set of links that must be ac-

tive before the link e′ is used, i.e. α(⟨e, p⟩, ⟨e′, p′⟩) = {e1, e2, . . . , ei−1} where

p = e1e2 . . . ei−1ei . . . en and e′ = ei.

Figure 2b gives the protection graph for the running example, when all link

protections are used. The edges in the graph are labelled by theirα annotations.

We use the annotation to keep track of which links on the protection path p

must be active, since the packet has already traversed them, when the failure

of ei makes the packet move onto the protection path p′.

Note that in our example protection graph in Figure 2b, the cycle between

⟨e1, e4e3⟩ and ⟨e3, e5e1⟩ corresponds to a possible forwarding loop in the failure

scenario F = {e1, e3} as shown by the last trace in Figure 2e. We define such

bad cycles that lead to forwarding loops in some failure scenarios.

Definition 9. A bad simple cycle in the protection graph is a sequence of distinct

protections ⟨e1, p1⟩ . . . ⟨en, pn⟩ such that the set of consecutive pairs of the cycle

C ≜
{
(⟨e1, p1⟩, ⟨e2, p2⟩), . . . , (⟨en−1, pn−1⟩, ⟨en, pn⟩), (⟨en, pn⟩, ⟨e1, p1⟩)

}
satisfy

C ⊆ protection-pairs and {e1, . . . , en} ∩ (
⋃

(⟨e,p⟩,⟨e′,p′⟩)∈C α(⟨e, p⟩, ⟨e′, p′⟩)) = ∅.

62

3. R-MPLS Protection

Algorithm 1 Computing bad protection pairs to avoid loops

1: function FindBadProtectionPairs(protections P)

2: Let G be the protection graph of P (see Definition 8)

3: B ← ∅ ▷ Initialize bad protection-pairs

4: while there is a bad simple cycle of length n in G do
5: if n > 2 then
6: Pick an edge (⟨e, p⟩, ⟨e′, p′⟩) from the cycle

7: Update B ← B ∪ {(⟨e, p⟩, ⟨e′, p′⟩)}
8: Remove the edge (⟨e, p⟩, ⟨e′, p′⟩) from G

9: else
10: Add both protection pairs in the cycle to B

and remove the two edges from G

11: return B

The requirement in Definition 9 on the property of the cycle states that the

paths in the cycle do not protect links that appear in the annotations of the

protection-pairs involved in the cycle. If this property does not hold, a link is

assumed to be both active and failed, hence the cycle does not correspond to

a routing loop in any possible failure scenario.

Algorithm 1 removes edges, i.e. protection-pairs, from the protection

graph, until there are no more bad simple cycles in the graph. The set of

removed edges is returned as the bad protection-pairs, where R-MPLS should

avoid adding recursive protection entries for these specific cases. We note

that for cycles of length 3 and more, we only break one protection-pair on

that cycle, while for shorter cycles we remove all of them (a minor optimiza-

tion of the algorithm). In our example from Figure 2b, we identify the set

{(⟨e1, e4e3⟩, ⟨e3, e5e1⟩), (⟨e3, e5e1⟩, ⟨e1, e4e3⟩)} as the set of bad protection-pairs

which form a cycle of length 2 and the links e1 and e3 do not appear on the

annotations of the protection-pairs in the cycle.

We can find and eliminate all bad cycles using a depth-first-search approach

starting from each protection, where the annotations are continuously checked

to not intersect with the protected links on the search stack.

3.3 R-MPLS Algorithm
Given an existing MPLS network, with its own topology and forwarding tables,

we initialize the execution of Algorithm 2 by adding loopback links to each

router as an abstraction of instructing the router to run a packet through its

forwarding processes again. The R-MPLS algorithm then installs the LSP for

each protection (loop in Lines 4–10). We here give the protections as input to

the algorithm. They can be computed e.g. as link or node protections along

shortest paths. Each router along the protection allocates a local label ℓi⟨e,p⟩ to

63

Paper A.

Algorithm 2 Recursive protection algorithm

Input: Network N = (V,E, src, tgt , L, τ), set of protections P ⊆ (E × E∗)

Output: Protected network N ′ = (V,E′, src′, tgt ′, L′, τ ′) with R-MPLS protection

1: src′ ← src, tgt ′ ← tgt , L′ ← L, τ ′ ← τ ▷ Initialize N ′

2: for v ∈ V do create loopback link lbv such that src′(lbv) = v and tgt ′(lbv) = v

3: E′ ← E ∪ {lbv | v ∈ V }
4: for each protection ⟨e, p⟩ ∈ P do (let e1, . . . , en be the links on protection path p)

5: e0 ← lbsrc(e) ▷ Start from loopback link

6: ℓ0⟨e,p⟩, . . . , ℓ
n−1
⟨e,p⟩ ← fresh labels, add each ℓi⟨e,p⟩ to L′

7: protects(ℓi⟨e,p⟩)← ⟨e, p⟩ for 0 ≤ i < n ▷ Store in mapping protects : (L′ \ L)→ P

8: for i ∈ {0, 1, . . . , n− 2} do
9: τ ′(tgt(ei), ℓ

i
⟨e,p⟩)← {(1, ei+1, swap(ℓ

i+1
⟨e,p⟩))} ▷ Use labels to encode the path

10: τ ′(tgt(en−1), ℓ
n−1
⟨e,p⟩)← {(1, en, pop)} ▷ Pop the label on last hop

11: bad-protection-pairs← FindBadProtectionPairs(P) ▷ Call Algorithm 1

12: Let M be larger than any priority occurring in τ ′

13: Let τ ′
min(v, ℓ) = {(pr , e, ω) ∈ τ ′(v, ℓ) | pr = prmin} where prmin is the highest

↪→ priority in τ ′(v, ℓ)

14: for v ∈ V , ℓ ∈ L′
, (pr , e, ω) ∈ τ ′

min(v, ℓ) and ⟨e, p⟩ ∈ P do
15: if ℓ ∈ L then ▷ Protection of original data plane

16: if entry (pr , e, ω) ∈ τ ′(v, ℓ) is protectable by ⟨e, p⟩ using ω′ ∈ Op(L)∗ then
17: τ ′(v, ℓ)← τ ′(v, ℓ) ∪ {(M, lbv, ω

′ ◦ push(ℓ0⟨e,p⟩))} ▷ Push backup path

18: else (let ⟨e′, p′⟩ = protects(ℓ), let e′1, . . . , e
′
n be the links on p′, and let j be the

↪→ index where tgt(e′j) = v)

19: if (⟨e′, p′⟩, ⟨e, p⟩) /∈ bad-protection-pairs and there exists index i such that

↪→ tgt(e′i) = tgt(p) and i > j then

20: ω′ ←

{
pop if i = n

swap(ℓi⟨e′,p′⟩) otherwise

21: τ ′(v, ℓ)← τ ′(v, ℓ) ∪ {(M, lbv, ω
′ ◦ push(ℓ0⟨e,p⟩))} ▷ Recursive protection

22: return N ′ = (V,E′, src′, tgt ′, L′, τ ′)

it and records that the label is on the LSP of protection ⟨e, p⟩. It then creates

new entries in its forwarding table to use the protection path. Notice that the

last router in the path uses a pop instruction while the others just swap labels.

No router along this path records a push instruction, as these LSPs are only

used as protection paths.

Next, we compute a set of bad protection-pairs based on the protection

graph using Algorithm 1. In order to avoid introducing forwarding loops, we

disable the recursive protection for these specific pairs of protections.

After completing the previous process, each router proceeds to execute

the loop in Lines 14–21 which augments the original forwarding table by

adding lower priority entries. Note that this loop does not iterate over the new

entries created inside the loop. For each previously existing highest priority

64

3. R-MPLS Protection

forwarding entry, and for each protection that can protect that forwarding

entry (Line 16), the router creates a new lower priority entry (Line 17). The

new entry performs the operations ω′
that will make the packet arrive at the

merge point router with the same header as under the original forwarding.

These operations are followed by pushing the label that encodes the protection

path. The new protection entries forward to the router’s loopback link. For link

protection, the sequence ω′
is just the original operations ω for the entry; for

other protections this information needs to be retrieved from e.g. the control

plane.

To achieve recursive protection, the same is done for the entries created on

the loop of Lines 4–10, unless the protection that the incoming label encodes,

paired with the protection we are about to use, are part of the bad protection-

pairs. Again, we check if the entry is protectable by the protection, i.e. that

the new protection intersects downstream with the current protection. The

operation ω′
is computed based on where the two protection paths intersect.

We apply Algorithm 2 on the network topology from Figure 2a and for-

warding table in Figure 2c that encodes two flows. We use the link protections

P in Figure 2b. The resulting forwarding table is shown in Figure 2d, where

the links e1, e3, and e4 are protected. Note that in this small example, no other

links can have link protection due to the direction of the links; however, in real

networks usually all links get protection paths. Figure 2e shows four possible

traces under different failure scenarios. Notice how the third trace uses the

recursive protection to recover from both e1 and e4 failing. Due to the failure

of e1, it first tries to use the protection path starting at e4 encoded by the label

10. Using the loopback link, it then tests if link e4 is also failing, and then it

uses the path through e6 until that path joins the first protection path at router

v3.

3.4 Recursive Link and Node Protection
Algorithm 2 takes the set of protections P as input. We now show two instan-

tiations of computing P : link protection and node protection.

Given a network topology (V,E, src, tgt) where the links are annotated

with weights, we compute for each link e ∈ E the shortest path p from src(e)

to tgt(e) in the graph (V,E \ {e}, src, tgt), and if p exists add ⟨e, p⟩ to the set of

protections P . This gives link protection of all links.

To compute node protection: for each v ∈ V and e, e′ ∈ E with tgt(e) =

v = src(e′), compute the shortest path p from src(e) to tgt(e′) in the graph

with v and all of v’s incident edges removed. If p exists, add ⟨e, p⟩ to the set of

protections P .

The standard FRR facility protection uses node protection when possible

and link protection only as a fallback. We can achieve the recursive version

of this, by adding both link and node protections to P , and then extending

65

Paper A.

Line 16 and 19 to filter out link protections in case the entry is protectable by a

node protection. The R-MPLS framework also allows for more general sets of

protections, e.g. to optimize link capacity usage in failure scenarios.

3.5 Distributed R-MPLS Implementation
The pseudocode from Algorithm 2 and the computation of protections P for

common protection schemes like link and node protection, can be implemented

in a fully distributed fashion, and it is hence compatible with traditional MPLS

routers. In particular, each router can compute the protection paths for each

of its outgoing links. The topology knowledge required to compute paths

is provided on traditional MPLS networks by the Interior Gateway Protocol

(IGP), typically OSPF-TE [23] or ISIS-TE [24]. The information exchanged by

the IGP is stored by each router in a local database, so no central entity with

a complete view of the topology is required. Each router along the computed

protection path is notified by the originating router, and then Lines 4–10 of

Algorithm 2 are executed locally.

Notice that Line 11 and Line 18 (with the mapping defined on Line 7)

require knowledge of the full protection path p = e1, . . . , en. To obtain this in-

formation, the intermediate routers along the path src(e2), . . . , src(en) query

src(e1), which is responsible for computing the protection path. Such a query

can be performed e.g. using the RSVP Diagnose facility [25], by which any

network element sends a request message to another router and inquires infor-

mation about computed paths. This request uses only existing RSVP primitives

so the communication can be implemented completely in software.

The loop on Lines 14–21 of Algorithm 2 requires only local operations

on each router, when link protection is used. For node protections, Line 20

queries the merge point router for its label allocated to the protection, and

Line 16 needs to query the next-hop router tgt(e) for its forwarding entries of

the top label left by ω. In other words, each router only needs to know about

the labels of neighboring routers to implement link protection and their next-

hop forwarding entries to implement node protection. No other information

nor central controller is needed.

R-MPLS has then all the information available, when it finishes computing

its protection paths. So, whichever path is provided by the underlying proto-

cols, at present or in the future, as long as R-MPLS finished computing its own

(topology dependent only) protection paths, then the router can derive a pro-

tecting entry for each original data plane route, loop-freedom guaranteed;

(though for node protections, Line 16 still needs to query the neighboring

router to get ω′
). And if or when new forwarding paths result from the un-

derlying protocols, these can also be protected against link failures. Since the

priority range is partitioned, all R-MPLS routing entries are guaranteed to have

lower priority than all original ones, ensuring no interference on the networks’

66

3. R-MPLS Protection

basic routing.

Execution of Algorithm 1 can also be implemented in a distributed fashion.

Again, each router only performs computations for its own outgoing links.

Routers query each other for the protections paths they have previously com-

puted. The rest of the algorithm is computed locally from those elements. To

ensure that computations made on Line 6 are identical on all routers, it suf-

fices to assume a total order on the set of links and choose the protection-pair

deterministically regardless of the router.

3.6 Properties of the R-MPLS Protection
We shall now argue that our R-MPLS protection preserves all the connections

of the original MPLS data plane and does not introduce any forwarding loops.

For this we first need to define the subset of traces that corresponds to a full

run of a packet.

Definition 10. LetN = (V,E, src, tgt , L, τ) be an MPLS network and letF ⊆ E

be the set of failed links. A maximum trace in N under F is either any infinite

trace or a finite trace that is not a prefix of any other trace in N under F .

Hence a finite trace (e1, h1) . . . (en, hn) is maximum if its last link-header pair

(en, hn) satisfies either hn = ε, τF (tgt(en), head(hn)) = ∅, or H(hn, ω) is unde-

fined for all (e, ω) ∈ τF (tgt(en), head(hn)).

We now formally define the three properties of MPLS networks. Due

to the support of nondeterministic forwarding, there is a difference between

possibility and certainty of connectivity in a given scenario.

Definition 11. For a network N = (V,E, src, tgt , L, τ) and set of failed links

F ⊆ E, define the predicates no-loops
F
N , can-reach

F
N , and must-reach

F
N such that

for e, e′ ∈ E and h, h′ ∈ L∗
:

• can-reach
F
N (e, h, e′, h′) is true iff there exists a trace (e, h) . . . (e′, h′) in N

under F ,

• must-reach
F
N (e, h, e′, h′) is true iff every maximum trace starting at (e, h)

contains (e′, h′), and

• no-loops
F
N is true iff every maximum trace in N under F is finite.

We now show that Algorithm 2 preserves all can-reach and must-reach prop-

erties, i.e. our protection never removes connectivity. We refer to the appendix

for the proofs of the theorems.

Theorem 1. Let N ′
be the result of applying Algorithm 2 for recursive protection

to an MPLS network N = (V,E, src, tgt , L, τ). For all possible failure scenarios

F ⊆ E, for all e, e′ ∈ E and h, h′ ∈ L∗
:

67

Paper A.

(1) if can-reach
F
N (e, h, e′, h′) then can-reach

F
N ′(e, h, e′, h′),

(2) if must-reach
F
N (e, h, e′, h′) then must-reach

F
N ′(e, h, e′, h′).

The next theorem states that for any loop-free input data plane, R-MPLS

guarantees to produce a loop-free protected data plane.

Theorem 2. Let N ′ = (V,E′, src′, tgt ′, L′, τ ′) be the result of applying Algorithm 2

for recursive protection to an MPLS network N = (V,E, src, tgt , L, τ). If for all

failure scenariosF ⊆ E the networkN satisfies no-loops
F
N then for all failure scenarios

F ′ ⊆ E the protected network also satisfies no-loops
F ′

N ′ .

4 Evaluation of R-MPLS

In this section we describe the experimental evaluation of R-MPLS. We compare

its protection performance as well as memory and communication overhead

against the unprotected data plane, the industry standard FRR protection and

the optimal protection achieved by the tool Plinko [26].

4.1 MPLS Generation and Simulation
For evaluation of MPLS data planes we use MPLS-Kit [27], a tool and library

for data plane generation and simulation. It includes utilities for automation

of execution and analysis. Specifically, MPLS-Kit provides two main function-

alities:

• Data Plane Generation. Allows for the computation of the converged

data plane, mimicking a real network by running the industry standard

control protocols Label Distribution Protocol (LDP) [28] and the Resource

ReSerVation Protocol (RSVP) [18]. It does so by exchanging the same in-

formation that these protocols do in real networks, yet without engaging

in a simulation of the actual message passing. The user inputs the net-

work topology and the required control protocol parameters. With the

information at hand, each router in the topology allocates MPLS labels

and populates its forwarding tables accordingly to provide the intended

reachability.

• Simulation. Once the data plane is generated, the library also provides

functionality to perform simple packet-level simulations in order to test

reachability. For this purpose, packet-level simulators model and mimic

the packet delivery through the network on a hop by hop basis. The

resulting trajectory of the packet along the network serves as a witness in

testing that the packet arrives to its intended destination. In particular,

68

4. Evaluation of R-MPLS

our simulator initializes an MPLS packet with a valid header to be han-

dled by routers in the topology. The packet is then forwarded according

to the data plane rules until there are no more labels on the header or

the time-to-live field is exceeded (i.e, a forwarding loop).

Further details regarding both core functionalities are provided in the ap-

pendix. The code, dataset and experimental setup is publicly available as an

artifact [22], and details on the artifact are given in the artifact appendix.

4.2 Methodology
To empirically evaluate the reliability achieved by our proposed recursive

protection method, we perform a series of experiments that can be decomposed

in two sets:

• RSVP experiments: Adding R-MPLS protection on top of RSVP-based

data planes.

• LDP experiments: Adding R-MPLS protection on top of LDP-based data

planes.

The topologies used as input for MPLS-Kit [27] are real-world networks

from the topology Zoo dataset [29]. For the topologies in the dataset, we first

generate data planes and then we enumerate all failure scenarios (sets of failed

links) with up to 4 failed links. Then, for each combination of topology, data

plane and failure scenario, we run a set of packet-level simulations for all labels

representing valid user traffic. As the LDP data plane is nondeterministic, we

run here multiple packet simulations and take the average.

Data Plane Generation

On RSVP experiments, we compute the following data planes (referred as

RSVP-based data planes):

• RSVP: Data plane containing n2
unprotected RSVP tunnels between

random endpoints, where n is the number of nodes.

• RSVP + R-MPLS {Link,Node}: Data plane containing the exact same

tunnels as RSVP and additional R-MPLS recursive protection on top

with either single link protections (Link) or node protections with link

protection as fallback (Node).

• RSVP + FRR: Data plane containing the exact same tunnels as RSVP and

additional RSVP-TE Fast Reroute node protection [4].

69

Paper A.

• RSVP + Plinko {2,4}: Data planes containing the exact same tunnels as

RSVP and additional Plinko [26] path protection, with resiliency levels 2

and 4.

This set of six data planes per topology allows for direct evaluation of the

impact of adding R-MPLS on top of an unprotected RSVP data plane, and to

compare against the benchmarks of industry-standard RSVP-TE FRR and the

state-of-the-art high-resiliency approach of Plinko.

RSVP-TE FRR is widely used on real MPLS networks to provide tempo-

rary protection against networking failures. It has been in use for more than

a decade and is well understood. It is designed to provide sub 50ms local

responses by diverting traffic in case of link failure and comes in two modes,

facility (node) protection where the precomputed protection path avoids send-

ing traffic through the next hop of the failed link, and link protection where

other links to the same next hop can be used.

Plinko is a state-of-the-art technique for achieving optimal resiliency, i.e.,

it provides protection to existing routes on scenarios of up to t link failures, as

long as there exists a path in the topology, without introducing loops. Plinko

can be implemented using RSVP-TE FRR primitives, so we extended the RSVP

class of MPLS-Kit to provide protection as specified by Algorithm 1 in [26]. A

drawback hindering widespread adoption of Plinko on real networks is its high

memory consumption. The original paper proposes a non-MPLS forwarding

model that allows a reduction of required storage space but this improvement

is impossible to employ on traditional networking devices. In our experiments,

we use Plinko with resiliency levels 2 and 4. This means that for value 4, Plinko

computes a protection path for up to 4 failed links (provided that the topology

remains connected).

On LDP experiments, we compute just two data planes (referred as LDP-

based data planes):

• LDP Data plane containing LDP generated labels for reaching every link

and node in the topology from all routers.

• LDP + R-MPLS {Link,Node} Same data plane as LDP but with additional

R-MPLS recursive protection on top with either link protection (Link) or

node protection with link protection as fallback (Node).

In this case, we evaluate the effect of adding the recursive protection on top of

an unprotected data plane. Notice that as FRR is a RSVP-TE specific protection

mechanism, it cannot be applied to LDP.

Failure Scenarios

We generate the failure scenarios by choosing all possible combinations of k

links on all the topologies, for all values of k between 0 and 4 (included). This

70

4. Evaluation of R-MPLS

means that all failure scenarios have a number of total failed edges of at most

4. When we generate a failure on a topology link, we remove both directed

links between the corresponding nodes, thus provoking a disconnection in

both directions. This is usually the case in real networks. To restrict the total

number of cases to test, if the number of total combinations to evaluate is

larger than

(
40
4

)
, we randomly choose that number of scenarios from the set

of all possible ones with at most 4 failed links. In this case no distinction

is made between LDP and RSVP experiments. Notice that when available,

Plinko with resiliency level 4 provides protection for the maximum number

of failed links we consider. This implies that Plinko (level 4) always achieves

the optimal protection level in our simulations, however, at the expense of

exponentially large communication and memory overheads as demonstrated

by our experiments.

Execution Details

All simulations are executed making use of the command line tools and the

library we implemented. In order to evaluate the topology as an MPLS net-

work, we only simulate packets that can be part of user-generated traffic. A

key advantage that this method provides, is that it allows to test the exact

same packets on all data planes for each kind of experiment (RSVP or LDP),

simplifying the comparison of the results.

During the simulations we also count how many times the simulation of

a packet forwarding ends up in a successful forwarding towards its intended

destination and how many times it ends in a failure. Given the large number

of experiments, we execute the experiments on a compute cluster with 9 ma-

chines, each with 64 cores. We conduct the experiments on all topologies with

a single connected component of up to 40 links.

The size of the topologies in our experiments is constrained by the com-

putation times required to compute Plinko and LDP data planes. These two

protocols have poor space scalability (exponential for Plinko and quadratic

for LDP), therefore using larger topologies leads to excesively large delays

in the tool MPLS-Kit [27] just to obtain the baselines, without contributing

significantly to the results. This criterion results in a subset of 143 topologies.

4.3 Results of RSVP Experiments
In our experiments, we analyze the success rates of the protection, memory

overhead (related to the number of added protection rules) and communi-

cation overhead (number of messages needed to establish the protection in

a distributed way).

From the experience using our data plane generation tool, on the large

majority of topologies the time required to compute R-MPLS entries is com-

71

Paper A.

RSVP + Plinko 4
RSVP + Plinko 2

RSVP + R-MPLS (Node)
RSVP + R-MPLS (Link)

RSVP + FRR
RSVP (unprotected)

0 25 50 75 100 125
Network Topologies

80

85

90

95

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 1 failure

(a) Success rate per topology relative to optimal

(higher value is better).

0 25 50 75 100 125
Network Topologies

80

85

90

95

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 2 failures

(b) Success rate per topology relative to optimal

(higher value is better).

0 25 50 75 100 125
Network Topologies

80

85

90

95

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 3 failures

(c) Success rate per topology relative to optimal

(higher value is better).

0 25 50 75 100 125
Network Topologies

80

85

90

95

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 4 failures

(d) Success rate per topology relative to optimal

(higher value is better).

25 50 75 100 125
Network Topologies

10
3

10
4

N
um

be
ro

fe
nt

rie
s

(m
em

or
y)

(e) Number of total forwarding table entries per topol-

ogy (lower value is better).

25 50 75 100 125
Network Topologies

10
3

10
4

N
um

be
ro

fc
om

m
un

ic
at

io
ns

(f) Number of communication messages among nodes

(lower value is better).

Fig. 4: Results for R-MPLS on all RSVP based data planes. Note that in (e) and (f) the y-axis is

logarithmic.

72

4. Evaluation of R-MPLS

#nodes #links RSVP FRR R-MPLS R-MPLS Plinko 2 Plinko 4

Topology (Link) (Node)

Ans 18 25 61 % 70 % 87 % 88 % 90 % 94 %

Heanet 7 11 55 % 77 % 80 % 83 % 85 % 88 %

Uninet 13 18 58 % 81 % 83 % 84 % 87 % 88 %

EliBackbone 20 30 68 % 85 % 93 % 94 % 96 % 98 %

Abvt 23 31 65 % 74 % 90 % 91 % 93 % 95 %

Cesnet200304 29 33 69 % 80 % 82 % 82 % 83 % 83 %

Nextgen 17 19 44 % 48 % 56 % 58 % 60 % 60 %

Harnet 21 23 59 % 71 % 71 % 71 % 73 % 74 %

Getnet 7 8 39 % 50 % 51 % 52 % 54 % 54 %

GtsRomania 21 24 64 % 72 % 76 % 76 % 77 % 77 %

Nordu1997 14 13 49 % 49 % 49 % 49 % 49 % 49 %

Arn 30 29 67 % 67 % 67 % 67 % 67 % 67 %

Reuna 37 36 57 % 57 % 57 % 57 % 57 % 57 %

Amres 25 24 46 % 46 % 46 % 46 % 46 % 46 %

Basnet 7 6 31 % 31 % 31 % 31 % 31 % 31 %

Table 1: Success rates for topologies using different protections ordered by the improvement R-

MPLS (Link) gives on unprotected RSVP. The table shows the five top, five middle and five bottom

rows.

parable to the time to compute RSVP+FRR entries. Additionally, the observed

average number of additional hops is almost identical between RMPLS and

RSVP+FRR protections.

Success Rates

Figures 4a-4d show, for increasing numbers of failed links, plots for the success

rates achieved by each RSVP-based data plane on each topology. Results are

averaged over all failure scenarios considered, providing a measurement on

the fraction of successful cases for each network topology and the network

topologies are sorted in non-decreasing order (on x-axis) according to their

success rates (y-axis). We can observe that Plinko 4 indeed provides optimal

protection upto 4 link failures, and Plinko 2 up to two link failures. Our R-

MPLS provides perfect protection for 1 link failure and slighly deteriorates

with the increasing number of failures. In the rest we focus on the discussion

of Figure 4d, which contains all the simulated scenarios with up to 4 link

failures.

Clearly, the unprotected RSVP has the smallest success rates, and all pro-

tected data planes achieve higher success rates. The standard FRR node pro-

tection on top of RSVP achieves, as expected, a considerably better success

rate. Adding our R-MPLS protection on top of the unprotected RSVP data

plane alone clearly outperforms RSVP with the standard FRR node protection,

both for the link and node protection. This is because RSVP+FRR has only one

73

Paper A.

option to provide a protection while R-MPLS adds recursive (multiple edge)

protection. Our R-MPLS protections gets closer in success rate to the optimal

protection achieved by Plinko level 4 (protection is guaranteed anytime there

is physical connectivity), while Plinko’s level 2 success rate is between R-MPLS

and the optimal protection. As expected, the node protection R-MPLS achieves

better success ratio than the link protection. In all experiments, as formally

proved earlier, we confirm that R-MPLS does not create any forwarding loops.

Table 1 highlights the 5 topologies (from the tested 143) that achieved the

largest improvement by adding R-MPLS protection on top of the unprotected

RSVP data plane, as well as the 5 in the middle and the 5 topologies with

the lowest improvement. It also provides further details about the size of the

topologies. Note that the 5 bottom topologies are trees, and hence cannot be

protected against link failures by any method. For the top 5 topologies in the

table, large improvements are achieved by all protection schemes. Yet clear

differences are present between the R-MPLS protected data planes and FRR: at

least 2% for link protection (3% for node protection) and up to 17% (resp 18%)

on the first 5 topologies. On many occasions, the R-MPLS solutions get closer

to the optimal value achieved by Plinko (at level 4) than to the standard FRR.

Memory and Communication Overhead

Figure 4e shows the accumulated number of entries in the forwarding tables

(corresponding to the required memory) of the routers, where the topologies

are sorted (on the x-axis) according to the number of entries (y-axis). We can

see that both FRR and our R-MPLS approach add only a moderate number

of additional forwarding rules to the existing data plane (with only small

differences between node and link protection). On average 21% of the memory

on FRR protected data planes are used for the protection, where for R-MPLS

the number is 35% and 44% for link and node protection respectively. Plinko

protects (whenever possible) against all failure scenarios with up to 4 failed

links, but it requires exponentially many more entries in the forwarding tables

to do so (note that the y-axis is logarithmic). This is also the case if we consider

Plinko only at level 2; now Plinko does not provide the optimal protection for 4

link failures anymore but at the same time it still has an exponential overhead

for establishing the protection.

Similarly, Figure 4f shows the amount of required communication (message

exchanges between the nodes) for all considered network topologies, showing

only a negligible overhead for establishing FRR and R-MPLS link protection

(on average 31% resp. 23% of the communications are used for protection) but

a large communication penalty for adding the optimal protection by Plinko,

both for level 4 and 2. We also notice that computing the R-MPLS node

protection requires larger number of communications (on average 60% of the

communications) compared to the link protection. This is due to the fact that

74

4. Evaluation of R-MPLS

routers must query the neighboring routers about the labels used for encoding

downstream header rewriting.

As a conclusion, the memory overhead to establish our R-MPLS protection

in a distributed way is small and comparable to the widely used FRR protection,

however, the success rate of the R-MPLS protection is significantly higher than

for FRR. R-MPLS link protection requires fewer message exchanges between

the routers compared to the node protection. Plinko achieves the optimal

success rate, however, at the expense of unrealistic demands on the available

memory and with a large communication overhead.

4.4 Results of LDP Experiments
We first focus on the success rate achieved by both protected (R-MPLS) and

unprotected LDP data planes and benchmark against the optimum which

indicates a success if the failure scenario still allows at least one path from

source to destination. We then consider the memory and communication

overhead. As discussed earlier, FFR and Plinko are not applicable for protecting

an LDP data plane.

Success Rates.

Figures 5a-5d show, for increasing numbers of failed links, plots with sorted

success rates achieved by the LDP-based data plane and its R-MPLS protection

relative to the optimum achievable protection. As before, we can observe that

R-MPLS protects optimally up to 1 link failure and with the increasing number

of link failures, it provides significant improvement over the unprotected data

plane. The curves in Figure 5d confirm the observations from the RSVP ex-

periments, showing significantly improved success rates when the basic LDP

data plane is protected using R-MPLS and we are also relatively close to the

optimum protection. As before, R-MPLS node protection is slightly more

successful than the link protection.

Memory and Communication Overhead

The plots in Figure 5e and 5f follow the same trend as for protection of RSVP

data plane and show that the overhead both for the number of entries in

the forwarding tables and in the communication overhead is moderate and

proportional to the overhead for establishing the unprotected data plane using

LDP. Out of all created forwarding rules, only 39% (on average) are used for the

additional recursive link protection and 49% for node protection, with about

27% of message exchanges needed to establish the link protection and 61% for

node protection.

75

Paper A.

LDP + R-MPLS (Node) LDP + R-MPLS (Link) LDP (unprotected)

0 25 50 75 100 125
Network Topologies

70

80

90

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 1 failure

(a) Success rate per topology relative to optimal

(higher value is better).

0 25 50 75 100 125
Network Topologies

70

80

90

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 2 failures

(b) Success rate per topology relative to optimal

(higher value is better).

0 25 50 75 100 125
Network Topologies

70

80

90

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 3 failures

(c) Success rate per topology relative to optimal

(higher value is better).

0 25 50 75 100 125
Network Topologies

70

80

90

100

Su
cc

es
s

Ra
tio

(%
)

Scenarios up to 4 failures

(d) Success rate per topology relative to optimal

(higher value is better).

0 25 50 75 100 125
Network Topologies

10
2

10
3

10
4

N
um

be
ro

fe
nt

rie
s

(m
em

or
y)

(e) Number of total forwarding table entries per topol-

ogy (lower value is better).

0 25 50 75 100 125
Network Topologies

10
2

10
3

10
4

N
um

be
ro

fc
om

m
un

ic
at

io
ns

(f) Number of communication messages among nodes

(lower value is better).

Fig. 5: Results for R-MPLS on LDP based data planes. Note that in (e) and (f) the y-axis is

logarithmic.

76

5. Discussion

5 Discussion

Our R-MPLS protection is designed for working on top of an arbitrary MPLS

data plane. To realize this efficiently we have to address the issue of packet

recirculation. Our solution uses the logical loopback link to check link failures

one at a time. In case of failures, this induces a runtime overhead that is linear

in the number of failed links at the router. The advantage, however, is that only

one path needs to be added per link we protect, and it only takes one entry

to add recursive protection for each existing entry, so the memory overhead

is minimal. An alternative approach is to compute protection paths for each

router and for each subset of its links that can fail. With this approach, there

is no time overhead, however, an explosion in the number of necessary entries

in the forwarding tables of the routers.

In our R-MPLS implementation, we hence resort to packet recirculation

(where packets are sent to the loopback interface) inside the router to provide

resiliency against failures. Yet, recirculating packets requires these to be sent

through a slow processing path to a control element that introduces the packet

again into forwarding hardware. This can hurt the throughput and cause

a spike in the router’s CPU. To avoid these effects, we propose a further R-MPLS

enhancement without altering its inner working by recirculating the first few

packets of a flow after an adjacent link failure and caching the set of header

operations and the outgoing interface through which the packet finally gets

transmitted. This information is then used to insert a new temporary routing

entry in the forwarding table, with a priority such that it matches the following

packets of the same flow. The new entry is valid until the router detects a new

local link up or link down event. This operation avoids further recirculation

of packets while preserving the same protection intended by R-MPLS. We

plan to develop this concept in future work. In the case of non-traditional

MPLS devices, it is possible to implement this caching mechanism e.g. using

PURR [30], a technique devised specifically to provide packet recirculation-free

primitives for path protections on programmable routers.

Although requiring fewer routing entries, R-MPLS may result in deep label

stacks in multiple failure scenarios, leading to potential fragmentation or max-

imum label depth issues. The former can be alleviated with jumbo frames [31]

without requiring lowering the MTU, and the latter with label replacement

techniques in which a label stack is replaced by a new, shallower stack.

6 Related Work

To provide high availability in the presence of failures, most modern commu-

nication networks support fast recovery in the data plane [7, 18, 32], see [4]

for a recent survey.

77

Paper A.

This paper focuses on conventional MPLS networks, which are widely

deployed today. Compared to alternative network types [33–37], a particular

property and challenge of MPLS networks is that the header size is dynamic

and potentially unbounded. The ability to fast reroute traffic (i.e., to protect

LSPs) is a key feature of MPLS [16–18]. Most work has, however, been on single

failure protection techniques, e.g, RSVP-TE FRR [18], LFA [38] and TI-LFA, [39].

Limitations of these techniques in multi-failure scenarios have already been

observed [40–47]. Besides RSVP-TE FRR, which has already been discussed in

this article, LFA is a solution LDP Fast ReRoute. LFA requires knowledge of the

paths to destination, so it cannot be used independently of its specific control

protocol, while R-MPLS works for any control protocol—it uses the LFIB entries

but is not concerned about how they were generated. Hence, R-MPLS does not

interact with any other control protocol. Additionally, both LFA and TI-LFA

have been designed to protect against a single failure, while R-MPLS is more

general, so it is expected that R-MPLS outperforms both on multi-link failure

scenarios. Alternatively, one can consider the resilience provided by Equal

Cost Multi-Path (ECMP), a load-balancing data plane mechanism. As ECMP

is not a Fast ReRoute protection scheme, it cannot be directly directly compared

with R-MPLS. Furthermore, our model and simulator support ECMP that is

abstracted as nondeterministic forwarding.

The approach suggested in [7] runs a data plane re-convergence algorithm

by reversing the directions of links upon failures, while modifying the routing

tables. This approach is orthogonal to ours as we preinstall the failover directly

in the data plane.

Although there are proposals for achieving forwarding resilience up to

a maximum number of link failures that do not disconnect the topology (per-

fect forwarding resiliency [48]) on top of MPLS primitives, we are not aware of

a solution that achieves such resilience in a conventional MPLS network. Some

existing proposals, like R3 [40] have a mandatory centralized stage and require

additional traffic demand information, which is usually not available. R-MPLS

achieves such resilience while being fully distributed and not requiring exter-

nal information.

Protecting the protection paths is mentioned in RFC6981 [49], where the

issue of mutually looping protection paths is addressed by putting such links

into a secondary shared risk link group (SRLG), but—to our knowledge—this

has not been implemented. Compared to [49], we extend with multiple pro-

tection paths, provide a complete algorithm for eliminating loops and support

node protection. Further, we implement our algorithm along side with existing

protocols, and run experiments to compare the performance.

R-MPLS is attractive for its ability to reinforce an existing forwarding

data plane independently of how it was built. This is in stark contrast with

Plinko [26], which is the only state-of-the-art proposal we know of capable

of achieving perfect forwarding resilience that can be applied to conventional

78

7. Conclusion

MPLS. However, Plinko requires control plane knowledge, i.e. the information

on how the forwarding paths were originally computed, and thus cannot be

easily integrated with traditional MPLS control protocols. Moreover, Plinko

brute-force enumerates all hypothetical failure scenarious that must be en-

coded into (exponentially large) label space, causing a combinatorial number

of inserted forwarding entries and exchanged messages among the routers.

Our R-MPLS does not introduce this explosion in the number of labels and

rules and hence scales memory- and communication-wise better than Plinko,

whereas Plinko on the other hand achieves better connectivity. The require-

ment on the knowledge of the control plane also affects Failure Carrying Packets

(FCP) [50], a classical proposal similar to Plinko.

Recent work showed how to provably verify the resilience and policy-

compliance of MPLS networks under multiple failures. In particular, tools

such as P-Rex [19, 51] and AalWines [20] allow verifying the reachability of

MPLS data planes even under failures in polynomial time. However, in contrast

to R-MPLS, these approaches cannot be used to improve the resilience of the

data plane.

Last but not least, our work is orthogonal to solutions such as PURR [30],

which allows to avoid overheads of recirculation in the switch during failover.

7 Conclusion

Motivated by uncovering the opportunity to increase the resilience of MPLS

networks, we suggest a recursive MPLS data plane protection, allowing us

to provably route traffic around multiple simultaneously failed links without

creating any forwarding loops. Contrary to other existing approaches, R-

MPLS is fully distributed solution and hence it is compatible with existing

MPLS hardware employed in current networks.

We evaluate R-MPLS on protecting real-world networks with realistic data

planes and show that our approach is efficient and significantly increases

network robustness compared to the state-of-the-art FRR protection, at similar

memory and communications cost. Another feature of our solution is that it

is orthogonal and can be combined with existing and future protocols, such

as RSVP or LDP, serving as an “extra resilience” layer, while requiring only

minimal increase in memory and communication overhead.

Our work opens several interesting directions for future research. We

plan to extend R-MPLS to Segment Routing networks and to evaluate its per-

formance with respect to the standard Segment Routing’s protection TI-LFA.

Also, we plan to study how to further improve the performance of our algo-

rithms. Our approach is also readily available to account for link congestion

when fast reroute takes over because in our protection algorithm, we can select

an arbitrary protection path for a link.

79

References

Acknowledgements. This research is funded by the Vienna Science and Tech-

nology Fund (WWTF), project WHATIF (ICT19-045), and DFF project QAS-

NET.

References

[1] N. Shelly, B. Tschaen, K.-T. Förster, M. Chang, T. Benson, and L. Vanbever,

“Destroying networks for fun (and profit),” in Proceedings of the 14th ACM

Workshop on Hot Topics in Networks, 2015, article 6, pp. 1–7.

[2] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”

IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 515–528, 1998.

[3] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in

data centers: Measurement, analysis, and implications,” in Proc. ACM

SIGCOMM, 2011, pp. 350–361.

[4] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A survey of

fast-recovery mechanisms in packet-switched networks,” IEEE Communi-

cations Surveys and Tutorials (COMST), pp. 1253–1301, 2021.

[5] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio, and

L. Vanbever, “Blink: Fast connectivity recovery entirely in the data plane,”

in Proc. USENIX NSDI, 2019, pp. 161–176.

[6] K.-T. Foerster, J. Hirvonen, Y.-A. Pignolet, S. Schmid, and G. Tredan, “On

the feasibility of perfect resilience with local fast failover,” in Proc. SIAM

Symposium on Algorithmic Principles of Computer Systems (APOCS), 2021.

[7] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,

“Ensuring connectivity via data plane mechanisms,” in Proc. USENIX

NSDI, 2013, pp. 113–126.

[8] M. Chiesa, I. Nikolaevskiy, S. Mitrović, A. Panda, A. Gurtov, A. Maidry,

M. Schapira, and S. Shenker, “The quest for resilient (static) forwarding

tables,” in Proc. IEEE INFOCOM, 2016.

[9] Duluth News Tribune, “Human error to blame in min-

nesota 911 outage,” in https://www.ems1.com/911/articles/

389343048-Officials-Human-error-to-blame-in-Minn-911-outage/ , 2018.

[10] R. Chirgwin, “Google routing blunder sent japan’s internet dark on fri-

day,” in https://www.theregister.co.uk/2017/08/27/google_routing_blunder_

sent_japans_internet_dark/ , 2017.

80

https://doi.org/10.1145/2834050.2834099
https://doi.org/10.1109/90.731185
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1109/COMST.2021.3063980
https://doi.org/10.1109/COMST.2021.3063980
https://www.usenix.org/conference/nsdi19/presentation/holterbach
https://doi.org/10.1137/1.9781611976489.5
https://doi.org/10.1137/1.9781611976489.5
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://doi.org/10.1109/INFOCOM.2016.7524552
https://doi.org/10.1109/INFOCOM.2016.7524552
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

References

[11] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t

mind the gap: Bridging network-wide objectives and device-level config-

urations,” in Proc. ACM SIGCOMM, 2016, pp. 328–341.

[12] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Failure protection in layered networks

with shared risk link groups,” IEEE Network, vol. 18, no. 3, pp. 36–41, 2004.

[13] M. Menth, M. Duelli, R. Martin, and J. Milbrandt, “Resilience analysis

of packet-witched communication networks,” IEEE/ACM Transactions on

Networking, vol. 17, no. 6, pp. 1950–1963, 2009.

[14] A. Atlas and A. D. Zinin, “Basic specification for IP fast reroute: Loop-free

alternates,” RFC 5286, Sep. 2008.

[15] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “IP fast rerouting for

multi-link failures,” IEEE/ACM Transactions on Networking, vol. 24, no. 5,

pp. 3014–3025, 2016.

[16] S. Smith, Introduction to MPLS, https://www.cisco.com/c/dam/

global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf, 2003, visited:

19/05/2020.

[17] E. C. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switch-

ing architecture,” RFC 3031, Jan. 2001.

[18] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE for

LSP tunnels,” RFC 4090, May 2005.

[19] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T.

Thorgersen, “P-Rex: Fast verification of MPLS networks with multiple

link failures,” in Proc. ACM CoNEXT, 2018, pp. 217–227.

[20] P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk, and

J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool for MPLS

networks,” in Proc. ACM CoNEXT, 2020, pp. 474–481.

[21] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,

“The segment routing architecture,” in 2015 IEEE Global Communications

Conference (GLOBECOM), 2015, pp. 1–6.

[22] S. Schmid, M. K. Schou, J. Srba, and J. Vanerio, “Artifact for "R-MPLS:

Recursive Protection for Highly Dependable MPLS Networks",” Zenodo,

Oct. 2022.

[23] D. M. Yeung, D. Katz, and K. Kompella, “Traffic engineering (TE) exten-

sions to OSPF version 2,” RFC 3630, Oct. 2003.

81

https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1109/MNET.2004.1301021
https://doi.org/10.1109/MNET.2004.1301021
https://doi.org/10.1109/TNET.2009.2020981
https://doi.org/10.1109/TNET.2009.2020981
https://doi.org/10.17487/RFC5286
https://doi.org/10.17487/RFC5286
https://doi.org/10.1109/TNET.2016.2516442
https://doi.org/10.1109/TNET.2016.2516442
https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf
https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf
https://doi.org/10.17487/RFC3031
https://doi.org/10.17487/RFC3031
https://doi.org/10.17487/RFC4090
https://doi.org/10.17487/RFC4090
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1109/GLOCOM.2015.7417124
https://doi.org/10.5281/zenodo.7191618
https://doi.org/10.5281/zenodo.7191618
https://doi.org/10.17487/RFC3630
https://doi.org/10.17487/RFC3630

References

[24] T. Li and H. Smit, “IS-IS extensions for traffic engineering,” RFC 5305,

Oct. 2008.

[25] L. Zhang, R. T. Braden, A. Terzis, and S. Vincent, “RSVP diagnostic mes-

sages,” RFC 2745, Jan. 2000.

[26] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast failover

via forwarding table compression,” in Proc. Symposium on SDN Research

(SOSR ’16). ACM, 2016, article 9, pp. 1–12.

[27] J. Vanerio, S. Schmid, M. K. Schou, and J. Srba, “MPLS-Kit: An MPLS data

plane toolkit,” in IEEE 11th International Conference on Cloud Networking

(CloudNet), Nov. 2022, pp. 49–54.

[28] L. Andersson, I. Minei, and B. Thomas, “LDP specification,” RFC 5036,

Oct. 2007.

[29] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communications,

vol. 29, no. 9, pp. 1765–1775, 2011.

[30] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński, G. Niko-

laidis, and S. Schmid, “Purr: A primitive for reconfigurable fast reroute:

Hope for the best and program for the worst,” in Proc. ACM CoNEXT,

2019, pp. 1–14.

[31] EthernetAlliance.org, “Ethernet jumbo frames,” Nov. 2009. [Online].

Available: http://www.ethernetalliance.org/wp-content/uploads/

2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf

[32] M. Chiesa, I. Nikolaevskiy, S. Mitrović, A. Gurtov, A. Madry, M. Schapira,

and S. Shenker, “On the resiliency of static forwarding tables,” IEEE/ACM

Transactions on Networking, vol. 25, no. 2, pp. 1133–1146, 2016.

[33] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Ma-

hajan, and T. Millstein, “A general approach to network configuration

analysis,” in Proc. USENIX NSDI, 2015, pp. 469–483.

[34] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast

control plane analysis using an abstract representation,” in Proc. ACM

SIGCOMM, 2016, pp. 300–313.

[35] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach to

network configuration verification,” in Proc. ACM SIGCOMM, 2017, pp.

155–168.

82

https://doi.org/10.17487/RFC5305
https://doi.org/10.17487/RFC2745
https://doi.org/10.17487/RFC2745
https://doi.org/10.1145/2890955.2890957
https://doi.org/10.1145/2890955.2890957
https://doi.org/10.1109/CloudNet55617.2022.9978791
https://doi.org/10.1109/CloudNet55617.2022.9978791
https://doi.org/10.17487/RFC5036
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/3359989.3365410
https://doi.org/10.1145/3359989.3365410
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
https://doi.org/10.1109/TNET.2016.2619398
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834

References

[36] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,

“Plankton: Scalable network configuration verification through model

checking,” in Proc. USENIX NSDI, 2020, pp. 953–967.

[37] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast

multilayer network verification,” in Proc. USENIX NSDI, 2020, pp. 201–

219.

[38] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, “Remote loop-free

alternate (LFA) fast reroute (FRR),” RFC 7490, Apr. 2015.

[39] S. Litkowski, P. Francois, A. Bashandy, C. Filsfils, and B. Decraene,

“RFC draft: Topology independent fast reroute using segment routing,”

Tech. Rep., 2018. [Online]. Available: https://tools.ietf.org/html/

draft-bashandy-rtgwg-segment-routing-ti-lfa-02

[40] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and Y. R.

Yang, “R3: Resilient routing reconfiguration,” in Proc. ACM SIGCOMM,

2010, pp. 291–302.

[41] J. S. Arora, Introduction to Optimum Design, 4th ed. Boston: Academic

Press, 2017.

[42] D. Applegate and E. Cohen, “Making intra-domain routing robust to

changing and uncertain traffic demands: Understanding fundamental

tradeoffs,” in Proc. ACM SIGCOMM, 2003, pp. 313–324.

[43] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg, “COPE:

Traffic engineering in dynamic networks,” in Proc. ACM SIGCOMM, 2006,

pp. 99–110.

[44] O. Lemeshko, A. Romanyuk, and H. Kozlova, “Design schemes for MPLS

fast reroute,” in 2013 12th International Conference on the Experience of De-

signing and Application of CAD Systems in Microelectronics (CADSM), 2013,

pp. 202–203.

[45] O. Lemeshko and K. Arous, “Fast ReRoute model for different backup

schemes in MPLS-network,” in 2014 First International Scientific-Practical

Conference Problems of Infocommunications Science and Technology, 2014, pp.

39–41.

[46] O. S. Yeremenko, O. V. Lemeshko, and N. Tariki, “Fast ReRoute scalable

solution with protection schemes of network elements,” in 2017 IEEE First

Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2017,

pp. 783–788.

83

https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://doi.org/10.17487/RFC7490
https://doi.org/10.17487/RFC7490
https://tools.ietf.org/html/draft-bashandy-rtgwg-segment-routing-ti-lfa-02
https://tools.ietf.org/html/draft-bashandy-rtgwg-segment-routing-ti-lfa-02
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1016/B978-0-12-800806-5.00002-0
https://doi.org/10.1145/863955.863991
https://doi.org/10.1145/863955.863991
https://doi.org/10.1145/863955.863991
https://doi.org/10.1145/1159913.1159926
https://doi.org/10.1145/1159913.1159926
https://doi.org/10.1109/INFOCOMMST.2014.6992292
https://doi.org/10.1109/INFOCOMMST.2014.6992292
https://doi.org/10.1109/UKRCON.2017.8100353
https://doi.org/10.1109/UKRCON.2017.8100353

References

[47] O. Lemeshko and O. Yeremenko, “Linear optimization model of MPLS

traffic engineering Fast ReRoute for link, node, and bandwidth protec-

tion,” in 2018 14th International Conference on Advanced Trends in Radioele-

crtronics, Telecommunications and Computer Engineering (TCSET), 2018, pp.

1009–1013.

[48] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and

A. Singla, “Brief announcement: On the resilience of routing tables,”

in Proc. Principles of Distributed Computing (PODC ’12). ACM, 2012, pp.

237–238.

[49] S. Bryant, S. Previdi, and M. Shand, “A framework for IP and MPLS fast

reroute using not-via addresses,” RFC 6981, Aug. 2013.

[50] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,

and I. Stoica, “Achieving convergence-free routing using failure-carrying

packets,” in Proc. ACM SIGCOMM, 2007, pp. 241–252.

[51] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-

manipulating MPLS networks,” in Proc. IEEE INFOCOM, 2018, pp. 1799–

1807.

A Proofs for Section 3.6

Theorem 1. Let N ′
be the result of applying Algorithm 2 for recursive

protection to an MPLS network N = (V,E, src, tgt , L, τ). For all possible

failure scenarios F ⊆ E, for all e, e′ ∈ E and h, h′ ∈ L∗
:

(1) if can-reach
F
N (e, h, e′, h′) then can-reach

F
N ′(e, h, e′, h′),

(2) if must-reach
F
N (e, h, e′, h′) then must-reach

F
N ′(e, h, e′, h′).

Proof. Before we prove (1) and (2), we first consider for any failure scenario F ,

the active forwarding tables τF and τ ′F for N and N ′
, respectively. We argue

by considering Line 17 and 21 in Algorithm 2 together with the definition of

M that for any v, ℓ ∈ V × L,

(a) if τF (v, ℓ) ̸= τ ′F (v, ℓ) then τF (v, ℓ) = ∅,

since all new rules in τ ′ are appended with lower priority.

To prove (1), we assume that can-reach
F
N (e, h, e′, h′) is true for some e, e′ ∈

E and h, h′ ∈ L∗
. Then there must exist a trace (e1, h1) . . . (en, hn) in N

under F s.t. (e1, h1) = (e, h) and (en, hn) = (e′, h′). For each step i, 1 ≤
i < n, we must have τF (tgt(ei), head(hi)) ̸= ∅, and hence due to (a) we have

τF (tgt(ei), head(hi)) = τ ′F (tgt(ei), head(hi)). This means that the same trace is

valid in N ′
under F , so can-reach

F
N ′(e, h, e′, h′) is also true.

84

https://doi.org/10.1109/TCSET.2018.8336365
https://doi.org/10.1109/TCSET.2018.8336365
https://doi.org/10.1109/TCSET.2018.8336365
https://doi.org/10.1145/2332432.2332478
https://doi.org/10.17487/RFC6981
https://doi.org/10.17487/RFC6981
https://doi.org/10.1145/1282380.1282408
https://doi.org/10.1145/1282380.1282408
https://doi.org/10.1109/INFOCOM.2018.8486261
https://doi.org/10.1109/INFOCOM.2018.8486261

A. Proofs for Section 3.6

To prove (2), we assume must-reach
F
N (e, h, e′, h′) is true for some e, e′ ∈ E

and h, h′ ∈ L∗
. Now all maximum traces in N under F starting from (e, h)

contain (e′, h′). Assume (to reach a contradiction) that some maximum trace

(e1, h1)(e2, h2) . . . in N ′
under F with (e1, h1) = (e, h) does not contain (e′, h′).

Then for some step i, (ei, hi) is contained in some maximum trace in N , while

(ei+1, hi+1) is not. Hence, τF (tgt(ei), head(hi)) ̸= τ ′F (tgt(ei), head(hi)), so due

to (a) τF (tgt(ei), head(hi)) = ∅. But then (e1, h1) . . . (ei, hi) is a maximum trace

in N that does not contain (e′, h′), which is a contradiction.

Theorem 2. LetN ′ = (V,E′, src′, tgt ′, L′, τ ′)be the result of applying Algo-

rithm 2 for recursive protection to an MPLS network N = (V,E, src, tgt , L, τ).

If for all failure scenarios F ⊆ E the network N satisfies no-loops
F
N then for all

failure scenarios F ′ ⊆ E the protected network also satisfies no-loops
F ′

N ′ .

Proof. Assume (to reach a contradiction) that there exists a failure scenario F ′

such that no-loops
F ′

N ′ does not hold. Then there must be some infinite trace in

the protected network (e1, h1)(e2, h2) . . . and because there are only finitely

many links and labels, the infinite trace must consist of finitely many repeating

heads (e, head(h)). Consider the first repeating head, i.e. the smallest b such

that there exists a < b where (ea, head(ha)) = (eb, head(hb)). The sequence

loop = (ea, ha) . . . (eb, hb) is the (first) forwarding loop, and we shall now

argue that it cannot exist.

Let H = {head(ha), . . . , head(hb)} be the set of head labels in the loop.

Consider two cases: a) H consists only of protection labels, i.e. H ⊆ (L′ \ L),
and b) H contains labels from the original data plane, i.e. H ∩ L ̸= ∅. Note

that these two cases cover all possibilities.

For case a), since all protection labels are fresh, the loop must be only

traversing protection paths. A single protection path does not contain a loop

(assured by Definition 6), so it must be due to recursive protection moving the

trace from one protection path to another eventually making a loop. Formally,

let loope
i denote the ith link ea+i in the loop sequence, let looph

i denote the ith

header ha+i in the loop sequence, and let pj denote the jth link in the protection

path p, i.e. pj = ej if p = e1 . . . ej . . . en. Let ⟨e, p⟩ = protects(head(ha)) be the

protection on which the loop starts, so e is a failed link. Let ea . . . pj be the

longest part of p that coincides with loope
1 . . . loop

e
i such that pj+1 ̸= loope

i+1.

Since head(looph
i+1) is also a protection label, this must indicate a failure on e′ =

pj+1, so we must be using a new protection ⟨e′, p′⟩ = protects(head(looph
i+1)),

and the loop trace continues with p′1 . . . p
′
j′ = loope

i+1 . . . loop
e
i+j′ such that

p′j′+1 ̸= loope
i+j′+1. Here either loop merges back into the protection path p at

some point after pj , or e′′ = p′j′+1 is the next failed link. In the former case

we can just forget the fully traversed protection ⟨e′, p′⟩ and only consider the

last recursive protection of a link e′ on p. Since each protection path does not

contain a loop, and the recursive protections always merge downstream (en-

85

References

sured by Line 19), the looping trace must eventually move to a new protection

that is not fully traversed. This goes on until we reach the first failed link e on

a protection path, which will complete the loop. In the protection graph there

must be edges (⟨e, p⟩, ⟨e′, p′⟩) annotated α(⟨e, p⟩, ⟨e′, p′⟩) = {p1, . . . , ea, . . . , pj},
and (⟨e′, p′⟩, ⟨e′′, p′′⟩) annotated α(⟨e′, p′⟩, ⟨e′′, p′′⟩) = {p′1, . . . , p′j′}, and so on

until the edge (⟨e(k), p(k)⟩, ⟨e, p⟩), which forms a cycle. Note that all links in

the annotations of the edges are part of the trace and hence cannot be failed,

so the cycle is a bad cycle. Since the call to FindBadProtectionPairs on Line 11

of Algorithm 2 returns a set of protection-pairs that break all bad cycles, and

Line 19 removes protection based on this set, there must be some (ei, hi) in

loop where the given recursive protection is not installed, and hence the loop

cannot exist.

For case b), the loop includes some routing from the original network, and

hence the protection paths are fully traversed, so we can iteratively remove

protection paths and corresponding failures and find a loop in the original

network. Line 16 and Definition 7 along with Lines 4–10 and Line 19 ensures

that a protection is only used if a higher priority entry has a path to the target of

the protection path in the network with no failures. If that higher priority entry

is part of another protection path, we will inductively remove that, eventually

removing all failures, or else the entry is part of the original forwarding; hence,

the original network will have a loop in some failure scenario F ⊆ F ′
. This

contradicts the assumption that no-loops
F
N holds for all F .

B Elaboration on Section 4.1

B.1 Data Plane Generation
MPLS-Kit [27] implements an abstraction of the distributed MPLS control

plane, in which each router has its own protocol processes, yet these can

directly access the memory of each other when required. This abstracts away

communications.

MPLS introduces the concept of Forward Equivalence Class (FEC), which

stands for the set of packets that should be forwarded in the same fashion; sent

through the same outgoing interface to the same next-hop and executing the

same set of header operations. Essentially, each FEC is identified with a local

label on each router. When a packet arrives to a router, the latter determines

to which FEC the former belongs to, and forwards it accordingly.

In MPLS-Kit, the two main control protocols that create Label Switched

Paths (LSPs) by introducing forwarding entries on the router’s tables, are LDP

and RSVP. Both are industry standard, fully distributed protocols. Each LSP

is related to a single FEC. LDP associates FECs with IP protocol prefixes and

propagates labels through the network in order for the other routers to build

86

B. Elaboration on Section 4.1

their own LSPs to reach said prefixes. RSVP builds tunnels (and associates

them with FECs) from a given starting node (the headend) towards a final node

(the tailend) over a path allowing for fine-grained packet steering. The routers

along said path locally allocate labels to represent the LSP.

Given a weighted network topology and parameters for the control proto-

cols as inputs, the tool outputs the data plane that results from letting the con-

trol protocols converge. As MPLS-Kit implements functionalities commonly

used on ISP networks, the resulting data plane is then a realistically-looking

MPLS data plane.

B.2 Simulation
As MPLS is a transport network, each user data packet (also called user-

generated traffic) that enters the MPLS domain should follow an LSP and

eventually exit the network. No successfully delivered data packets may be

generated or terminated inside the MPLS domain.

To model the connections to the outside, we add a special node θ to V , and

we add links (with infinite weight) between θ and a subset of MPLS routers

that have interfaces with the outside. Such routers are known as Label Edge

Routers (LERs). The links from θ are used to model the possible incoming

packets, and the links to θ model the points where packets can leave the MPLS

network.

Algorithm 3 shows how we simulate a packet, given the link where the

packet starts and the intended exit link. Line 3 considers the possible next

link-header pairs given the current link and header. Line 4 reports a failure

if this set is empty, i.e. there is no valid rule for the current header. When

there are multiple options due to nondeterminism, Line 5 randomly picks one.

A maximum number of iteration is used to determine if the packet entered

a forwarding loop.

The start and final links in the calls to Algorithm 3 are determined from the

protocols used to create LSPs and their FECs. For the purpose of this section,

a FEC f defines a mapping from a subset of routers Vf to the corresponding

local labels for that FEC: f : Vf → L.

For RSVP, each tunnel corresponds to a single FEC f in this protocol, and

is implemented with an LSP from v to v′. We define links e, e′ s.t. src(e) = θ,

tgt(e) = v, src(e′) = v′, and tgt(e′) = θ, and we define τ(v′, f(v′)) = {e′, pop}
and initial header h = f(v), where τ(v, f(v)) contains the forwarding entries

for the first step of the LSP. This encodes the behavior of the tunnel at the

border of the MPLS domain. Simulating the header h is here an abstraction

over how the forwarding is implemented on a real router. For the simulation

with Algorithm 3, we use initial packet (e, h) and final link e′, and we run this

simulation for each tunnel.

In LDP, for each LDP FEC f (corresponding to an IP destination prefix ip)

87

References

Algorithm 3 Simulation of a packet starting from es.

Input: Network N = (V,E, src, tgt , L, τ), failures F ⊆ E,

start (es, hs) ∈ E × L∗
, final link ef ∈ E

Output: Exit code (in {SUCCESS, FAILURE, LOOP})
1: (e, h)← (es, hs), n← 0 ▷ Initial packet

2: while n < MAX_TTL do
3: nexts ← {(e′, h′) | (e′, ω) ∈ τF (tgt(e), head(h)),

h′ = H(h, ω)} ▷ Compute all next hops

4: if nexts = ∅ then return FAILURE
5: Pick at random (e′, h′) ∈ nexts

6: if e′ = ef and h′ = ε then return SUCCESS ▷ Success if egress router is

↪→ reached

7: (e, h)← (e′, h′), n← n+ 1 ▷ Update packet

8: return LOOP

announced by router v′, we define a link e′ s.t. src(e′) = v′, tgt(e′) = θ, and

we define τ(v′, f(v′)) = {e′, pop}. Let X ⊆ V be the set of label edge routers.

Then for each such router v ∈ X we define a link ev s.t. src(ev) = θ and

tgt(ev) = v, and we define initial header hv = f(v), where τ(v, f(v)) contains

the forwarding entries of FEC f for packets entering the MPLS network at v

with destination ip. We run for each v a simulation with Algorithm 3 using

initial packet (ev, hv) and final link e′, and we run such simulations for each

LDP FEC. In our simulation we useX = V , which implies that all MPLS routers

are LERs, and results in the maximum number of possible LDP generated LSPs.

In a nutshell, our simulator initializes an MPLS packet with a valid header

to be handled by routers in the topology. For RSVP tunnels, this means a packet

with proper headers on each headend router. For LDP entries, the simulator

just initializes a packet with the corresponding label on each router.

C Artifact Appendix

C.1 Abstract
This appendix describes software artifacts associated with this work; the

python source code of R-MPLS implemented on top of the MPLS data plane

generator and simulator MPLS-Kit [27] (accepted for Global Internet 2022),

along with a topology dataset derived from the original topology-zoo [29]

with an adapted JSON format. These artifacts come with scripts to reproduce

the experiments described in the evaluation section and a Jupyter notebook to

process the result files and produce the paper statistics, Table 1, and Figures

4 and 5. The scripts are written in Bash and automate the execution of the

88

C. Artifact Appendix

MPLS-Kit [27] python code. Additionally, we include a dataset containing the

results files we obtained from executing the artifact’s scripts on our compu-

tation cluster. Finally, we provide instructions for executing the scripts and

reproducing the results.

C.2 Artifact check-list (meta-information)
• Algorithm: The code provided implements Algorithms 1 and 2 from the RMPLS

paper on the file “rmpls.py”, leveraging the MPLS-Kit [27] code base.

• Data set: A topology dataset in JSON format derived from the topology-

zoo [29] dataset is provided. For the reviewers’ convenience, a dataset with the

results from executing the scripts of this artifact is also provided. The dataset is

approximately 3.2GB in size.

• Run-time environment: The artifact should run on any Linux machine with

Python3 and the required libraries. This setting is recommended: Linux kernel

version 5.4.0 or later, Python 3.10. It may also require root/sudo access to install

python modules.

• Hardware: The scripts use only CPU, memory, and I/O access, so in principle,

they can be run on any Linux machine without tuning. Some simulations may

require up to 20 GB RAM. As a reference, our installation used a cluster of 16

computing nodes with 1TB RAM each and 1248 CPU cores in total.

• Execution: Handled by the Bash scripts provided.

• Experiments: After installing the artifact, the experiment workflow can be

reproduced by executing the provided scripts in the following order:

1. Run “create_confs.sh {light|full}”: creates configuration files and failure

scenarios.

2. Run “run.sh {light|full}”: uses the configuration files and the topology

dataset to create MPLS data planes and run simulations on each data plane

and failure scenario.

3. Activate the python virtual environment (e.g., running “source .venv/bin/

activate”).

4. Run “jupyter-notebook make_plots.ipynb” and follow the instructions to

open it in a browser. The notebook loads result files and produces figures

and tables. In the “Options” cell, specify the parameters as appropriate.

• Output: The script “create_confs.sh” creates configuration specifications to be

used as inputs by the data plane generator under the folder “confs/{light|full}/

<topology name>”. Each configuration file instructs the generation of an MPLS

data plane from a specific set of protocols, as described in the paper. It also cre-

ates files describing the different possible failure scenarios up to k = 2 (“light”)

or k = 4 (“full”) under a subfolder called “failure_chunks” for each topology.

An additional folder “confs/conext22artifact/” contains the dataset of configu-

rations and failure scenarios computed for the “full” case on our cluster.

89

References

The script “run.sh” takes the output from the previous script and generates the

MPLS data planes, which include a topology, and based on the protocols in

use, the forwarding tables on each router and a set of valid traffic source and

destination pairs. Immediately after the script executes the simulation (tracing)

on each data plane in each of the failure scenarios. The results are stored in JSON

files under the “results/{light|full}/<topology name>” directory. There will

be one result file for each configuration, summarizing results across all failure

scenarios, according to the following format:

{ " preamble " :

{ " benchmark " : <topology name> ,

" prog_a l i a s " : <conf igura t ion name> ,

" program " : " Comparison of MPLS

and R−MPLS"

} ,

" s t a t s " :

{" < code > " : { " comms " : 532 . 0 ,

" e n t r i e s " : 8 35 . 0 ,

"k " : 0 ,

" loops " : 0 ,

" optimal " : 121 ,

" success " : 121 ,

" t o t a l " : 121 } ,

. . .

}

Code uniquely identifies each failure scenario. The stats are, respectively: no. of

control-plane communications among routers, no. of LFIB entries, no. of failed

links, no. of packet traces ended in forwarding loops, no. of possible successful

traces, no. of actual successful traces, number of attempted packet traces.

An additional folder “confs/conext22artifact/” contains the dataset of configu-

rations and failure scenarios as computed for the “full” case on our cluster for

the evaluator’s convenience.

The Jupyter notebook “make_plots.ipynb” loads the JSON files summarizing the

results and the topology dataset and produces the PDF files with the plots from

Figures 4 and 5 (stored in the “plots/” folder). It will also generate Table 1

showing success rates (percentages) and other performance statistics mentioned

in the article.

• How much disk space required (approximately)?: At least 9 GB.

• How much time is needed to complete experiments (approximately)?: On

our cluster installation, running the whole batch of experiments (“full”) took five

days; running on a standard laptop may take weeks. A smaller set of experiments

(“light”), also included for the evaluator’s convenience, can be run, taking up to

30 mins to complete in our installation while using 200MB RAM.

• Publicly available?: Yes.

• Code and data licenses: GNU General Public License v3.0

• Archived: https://doi.org/10.5281/zenodo.7191618

90

https://doi.org/10.5281/zenodo.7191618

C. Artifact Appendix

C.3 Description

How to access

The artifact is publicly available on Zenodo https://zenodo.org/record/

7191618 The provided results dataset uses 3.2GB of space. Reproducing the

results using the “full” option will create an additional 3.2 GB of data. The

remaining datasets and packages are usually below 2 GB. The total would be

approximately 9 GB.

Software dependencies

This artifact assumes execution with a Debian-based OS machine or similar,

with recommended requirements: Linux kernel version 5.4.0 or later, Python

3.8.10, jupyter-notebook 6.0.3.

The following Python libraries are also required: matplotlib 3.3.4, Net-

workX 2.5, numpy 1.17.4, PyYAML 5.3.1, jsonschema 3.2.0, pandas 1.3.3, ujson

5.5.0.

Data sets

A JSON-formatted version of the publicly available topology-zoo [29] dataset

is provided with the artifact. Also, a dataset containing the JSON result files

we got from our execution of the experiment workflow is included.

C.4 Installation
After downloading and decompressing the artifact, change to the main artifact

folder and run:

./ i n s t a l l −dependencies . sh

C.5 Experiment workflow
Described in Section C.2. Detailed instructions can also be found on the

README file.

C.6 Evaluation and expected results
After successful installation, the evaluator can run the artifacts’ scripts as

described in Section C.2. Detailed instructions can be found in the README

file.

There are three different evaluation options, already mentioned in Sec-

tion C.2. First, the “full” option will replicate the whole set of experiments

91

https://zenodo.org/record/7191618
https://zenodo.org/record/7191618

References

and produce their results, although it can take a significant amount of time.

Alternatively, the “conext2artifact” can be used directly on the final jupyter

notebook to generate the tables and figures from the article using our pro-

vided results dataset. Finally, the “light” option allows the evaluator to run a

smaller and faster set of experiments to validate the artifact: no use of Plinko4,

no LDP, failure scenarios considering up to two simultaneous link failures, and

just the first 10 topologies from the dataset by alphabetical order. The results

of this option will naturally differ from the published results, although the

main findings hold.

Once the instructions from the README file have been completed (with

the “full” option), the user will have launched a set of experiments for each

kind of data plane included in the paper (RSVP, RSVP+R-MPLS Link, RSVP+R-

MPLS Node, RSVP+FRR, RSVP+Plinko2, RSVP+Plinko4, LDP, LDP+R-MPLS

Link, LDP+R-MPLS Node). They will also have reproduced Figures 4 and 5,

Table 1, and other performance statistics from the article using the included

jupyter notebook. The produced files’ location is described in item C.2.

C.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

92

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

Paper B

MPLS-Kit: An MPLS Data Plane Toolkit

Juan Vanerio, Stefan Schmid,

Morten Konggaard Schou, and Jiří Srba

The paper has been published in:

IEEE 11th International Conference on Cloud Networking (CloudNet ’22),

pp. 49-54, IEEE, 2022.

https://doi.org/10.1109/CloudNet55617.2022.9978791

https://doi.org/10.1109/CloudNet55617.2022.9978791

© 2022 IEEE

The layout has been revised.

1. Introduction

Abstract

Networking research often requires a means to quickly generate different realistic net-

works for evaluating the practical relevance. This is especially the case for emerging

fields related to the automated verification of network configurations (“what-if anal-

ysis”) or to AI-driven network operations (“self-driving networks”). Unfortunately,

the data of real world network deployments are often scarce. In particular, while the

topologies of many real communication networks have been made available online, this

data typically does not include the routers’ forwarding tables, e.g., by Internet Service

Providers (ISPs). This introduces a dilemma, as generating arbitrary forwarding rules

for these topologies may not adequately mimic network behavior.

We present MPLS-Kit, a tool for the automated generation of realistic MPLS data

planes. In particular, the tool supports an efficient generation of MPLS data planes

following widely-deployed industry-standard control protocols on top of arbitrary

network topologies. Notably, MPLS-Kit supports the instantiation of MPLS Fast

Reroute and VPN services. It further supports packet-level simulations providing a

rich set of statistics about the simulated data plane which can be used for numerous

applications, like congestion, latency, and resilience analysis. The generated data

planes can be further exported in standard exchange formats and analyzed by formal

verification tools.

1 Introduction

Modern communication networks are often very complex, and hence, model-

ing and analyzing their behavior can be difficult. Given that communication

networks have become a critical infrastructure of our digital society in general

and ISP networks in particular, and their dependable operation is crucial, this

is worrisome.

In order to identify performance bottlenecks or to try out new innova-

tive protocols, and verify their practical relevance, researchers need a means

to generate realistic networks which mimic real and complex behavior. For

example, in order to evaluate emerging automated network verification and

what-if tools such as AalWiNes [1] and DeepMPLS [2], a way to generate re-

alistic data planes (DP) is required. The generation of network configurations

is also particularly important for emerging AI-driven approaches to improve

the dependability and performance of networks, e.g., [2] or [3].

However, the data of real world network deployments are often scarce [4].

In particular, while the topologies of existing real communication networks

have been made available online, e.g., [5], this data does not include the routers’

forwarding tables; the latter however are required to model data planes. In-

troducing arbitrary forwarding rules may seem like a reasonable workaround,

but the resulting data plane may vastly differ from the one found on a real

95

Paper B.

network. Research based on such data planes may give results far from what

can be observed in practice.

Even researchers who manage to obtain such data, e.g., through a collabo-

ration with industry, typically only have access to one or two complete network

configurations. They are likely also not allowed to share their data with other

researchers. Furthermore, while many network protocols are based on open

standards and RFCs, many implementations of these protocols are either not

open-source or not fully featured.

This paper presents MPLS-Kit, a toolset that allows the generation of syn-

thetic data planes for the popular Multiprotocol Label Switching (MPLS) [6]

system, which is widely deployed by ISPs. Concretely, given a weighted net-

work topology the tool directly computes the MPLS data plane that would

have been obtained after running commonly deployed MPLS protocols as La-

bel Distribution Protocol (LDP [7]) and Resource Reservation Protocol with

Traffic Engineering extensions (RSVP-TE [8]) until convergence.

Tool Type

Direct
DP

compu-
tation

MPLS LDP RSVP
FRR

MPLS
VPN

Open-
source
MPLS
Code

Parame-
terized
configu-
ration

GNS3 [9] Emulator

√ √ √ √

ns-3 [10] Simulator

Lim-

ited

√

Mininet [11] Emulator

√ Lim-

ited

√

Batfish [12]
Configu-

ration

analyzer

√
N/A

OMNeT++ [13] Simulator

√ √ √

MPLS-Kit
Generator

and

Simulator

√ √ √ √ √ √ √

Table 1: Related work feature comparison.

Our Contributions. Our main contribution is MPLS-Kit, a tool and library to

quickly generate MPLS data planes. The tool provides researchers and oper-

ators with fine control over the configuration of each network element, from

fine path-level to automatic creation of a given number of tunnels, supporting

the evaluation and analysis of MPLS configurations and their behavior under

various conditions.

It also enables the study of the impact of different design choices on the

network performance. MPLS-Kit includes utility tools that provide easy-to-

use, simple interfaces for evaluation and automation of the execution.

The library is easy to extend and re-usable, allowing for fast prototyp-

ing of new concepts. In particular, MPLS-Kit supports RSVP-TE with Fast

96

2. MPLS Network Operation

ReRoute protections and VPN services, features rarely supported by other

tools and forwarding stacks. MPLS-Kit further supports forwarding simula-

tions at packet-level and provides easy-to-use, simple interfaces for evaluation

and automation of the execution.

Together with this publication, MPLS-Kit is released as open source soft-

ware at https://github.com/juartinv/mplskit, along with further exam-

ples of library usage. It can also be used online at https://demo.AalWiNes.

cs.aau.dk.

Novelty and Related Work. We are not aware of any open-source tool which

allows generation of realistic MPLS data planes. MPLS-Kit complements many

existing works such as [1–3, 14] which so far relied on ad-hoc methodologies

to generate data planes.

The lack of network data and protocol implementations, e.g., control planes,

is not solved by emulators. GNS3 [9] allows running closed-source MPLS

implementations that may use non-standard features and which cannot be

independently reproduced for usage on research evaluations. Tools like ns-

3 [10] and Mininet [11] can run open-source networking stacks but these may

not implement all the expected protocol features. Besides, emulation of an

entire network may also be time-consuming, as it requires the protocols to run

until convergence, eventually providing the data plane as a by-product of the

emulation.

In fact, realistic control plane emulators and/or generators of data planes

are scarce in general. Batfish [12] is capable of building an internal vendor-

agnostic network model (including the forwarding table) from complete and

correct vendor configurations. Some useful features for research purposes,

like using parametrized configurations or stating that some features should

be created randomly are outside the scope of Batfish. Also, Batfish does not

support MPLS networks.

MPLS-Kit may also be compared with OMNeT++ [13], a C++-based general

discrete event simulation environment. OMNeT++ is often used for com-

munication networks simulations. Although it provides limited support for

MPLS, some required functionality is missing, like support for VPN services

and MPLS failure-protection mechanisms. OMNeT++ is efficient for detailed,

full-scale, cross-layer simulations and not for data plane generation and pro-

totyping.

See Table 1 for a concise feature comparison among these tools.

2 MPLS Network Operation

We model an MPLS networks as a graph composed of routers interconnected

through bidirectional links, forming a topology. MPLS networks are designed

to transport packets from an ingress to an egress router.

97

https://github.com/juartinv/mplskit
https://demo.AalWiNes.cs.aau.dk
https://demo.AalWiNes.cs.aau.dk

Paper B.

Ingress packets. Packets are inspected by the ingress router on the edge of

the MPLS domain that finds their Forwarding Equivalence Class (FEC). FECs are

used to represent a network resource or group of resources, such as traffic

engineering tunnels or virtual private networks (VPNs). All packets that

request the same resource must be forwarded the same way. Each router hosts

a (control-plane) table called Label Information Base (LIB) mapping each FEC

to a unique local label. After identifying the packet’s FEC, the router initializes

the packet’s MPLS label stack with the corresponding label from the LIB, and

then further processes it like an internal MPLS packet.

Internal MPLS packets. Each router has a Label Forwarding Information

Base (LFIB) table that registers the prioritized forwarding instructions for each

top of stack label. These instructions describe the outgoing interface and the

operations (pop, swap, or push) to be performed on the packet’s label stack.

If a match is found, the router uses the highest priority forwarding rules such

that the outgoing interface is up. This behavior enables the implementation of

failure protections. If no match or no acceptable forwarding rule is found, the

packet is dropped.

In a real MPLS network, the routers compute their LFIBs after exchanging

FEC and label information through MPLS control plane protocols specialized

in different FEC types. Additionally, the routers gain information about the

topology through a Link-State Interior Gateway Protocol (IGP), typically OSPF

or IS-IS. After exchanging messages, each router populates its local Link-State

Database (LSDB) and the Traffic Engineering Database (TEDB) for traffic engi-

neering functionalities.

We use the term flow to generalize over the reachability requirements of

different FEC types. The flow specifies an initial router and header along with

the destination routers allowed by the FEC.

An MPLS data plane is a network topology including its routers and links,

together with the LFIB of each router. The primary purpose of MPLS-Kit is to

generate such a data plane and to provide simulation capabilities on top of it.

3 MPLS-Kit Overview

MPLS-Kit is a modular Python library supporting MPLS data plane generation

and packet-level simulation, following closely the operations described above.

Its main strengths are being stand-alone and extensible, producing MPLS

data planes based on controllable industry-standard protocols. In terms of

features, MPLS-Kit provides:

• per-platform label space,

• direct computation of converged data planes,

98

3. MPLS-Kit Overview

Input

Generator

Output

Preprocessing

Simulator Traces

Data plane

Flows

RSVP-TE
tunnels

Configuration

Network

Flows and
failure

scenarios

Parametrized
configuration

and
topology

Fig. 1: MPLS-Kit interfaces and modules.

• support for Penultimate Hop Popping (PHP) ([15]),

• computation of Fast ReRoute (FRR) protection paths,

• instantiation of VPN services,

• deterministic and non-deterministic forwarding rules (supporting e.g.,

ECMP),

• multiple supported control-plane protocols,

• printing data planes and flows to files, and

• easy automation through command line interface and external configu-

ration files.

The main overview of MPLS-Kit is depicted in Figure 1. Initially, a user pro-

vides a parametrized configuration including a topology (either a NetworkX [16]

graph, an external file, or random generation instructions) and the set of en-

abled control plane protocols along with their parameters. For instance, to

create traffic engineering tunnels, allowed values are a list of (tunnel start, tun-

nel end) tuples or a number of different tunnels to be randomly created. The

parametrized configuration can be provided as YAML files, python variables,

or command-line arguments.

99

Paper B.

The Preprocessing module receives a parametrized configuration and re-

turns a concrete one, i.e., a configuration with no undetermined elements. On

the tunnels example, a concrete configuration has an explicit topology (a Net-

workX graph) and an explicit list of tuples specifying the requested tunnels.

As shown in Figure 1, the tool has two core modules; the Generator and the

Simulator. The Generator is responsible for computing the data plane, i.e. the

topology and the MPLS forwarding tables, according to the specification of

the concrete configuration. Its operation reproduces the basic functionalities

of the control plane protocols including keeping tables as the LIB.

The Generator returns a Network object including the data plane and control

plane components. The list of valid flows in the network can be extracted by

examining the LIBs and exporting them to a file. The data plane can be

exported to a JSON file.

The Simulator module provides packet-level simulation functionality. Its

inputs are a Network object, a list of flows to reproduce and a file describing

failure scenarios. Each failure scenario consists of a list of failed links, such

that forwarding instructions using them become unavailable. For each flow,

the Simulator instantiates and forwards a packet while recording the trace

of traversed links and the final result (e.g., succesful delivery at destination,

detection of a forwarding loop, etc.). Results and traces can be exported to

a file.

4 MPLS Dataplane Generation

MPLS-Kit uses high-level abstractions of the control plane components. In-

stead of thoughtfully mimicking control protocols and their subtleties, MPLS-

Kit reproduces their essential functionalities in order to generate forwarding

entries.

In a real MPLS network the routers engage in the distributed execution of an

IGP protocol to obtain a consistent local view of the network topology to use in

path computations. Such a process is time-consuming and prone to transient

effects. Hence MPLS-Kit does not simulate any IGP, yet it does provide their

essential features; i.e., providing a view of the topology and shortest path

computations to every router, under the assumption of a single level, single

area (OSPF or IS-IS) topology by default. This consideration covers most basic

deployments, and the tool can be extended to multi-area deployments.

The communication involved in MPLS control protocols is also abstracted

away; MPLS-Kit provides the protocol’s client processes direct access to the

memory content of their peer processes running on other routers. This sim-

plification allows direct computation the same data plane that a real network

achieves after convergence while avoiding delays and corner cases that arise

100

4. MPLS Dataplane Generation

due to the interleaving of communication processes and protocol computa-

tions. The following protocols are implemented in MPLS-Kit.

Label Distribution Protocol (LDP) [7]. Provides connectivity when traffic

engineering is not required. It works by establishing Label Switched Paths

(LSPs) along the existing IP paths. The routers broadcast label mappings for

each IP prefix to all of their neighbors. In turn, these neighbors allocate a local

label to the prefix and broadcast the information further. MPLS-Kit assumes

the implicit existence of an IP prefix for each link and node in the topology.

LDP is a “best effort” protocol; if a router fails, all LSPs through it will fail.

Resource Reservation Protocol with Traffic Engineering extensions (RSVP-
TE) [8]. Used between ingress and egress routers to establish tunnels im-

plemented as LSPs, with desirable traffic engineering properties. Examples

include waypointing, ensuring a given bandwidth and avoiding some network

links. MPLS-Kit supports the facility backup protection method standardized

on MPLS for protection of traffic engineering tunnels [17]. Here a backup

LSP is established to protect a set of primary LSPs sharing a path segment by

intersecting at the closest possible common downstream node [18].

VPN. MPLS-Kit also provides an MPLS client for instantiating a generalization

of industry-standard MPLS VPN services such as Pseudo Wires [19], VPLS [20,

21] and VPRNs [22].

A high-level view of MPLS-Kit’s generator internal architecture and its

components is shown in Figure 2. Descriptions are provided in the following

sections. Protocol-related parameters are adjustable.

Router. Supports multiple concurrent MPLS client processes implementing

control plane functionalities. As each router object has direct access to the

network topology (in the same way a real router has access to its local LSDB

or TEDB), it also provides path computation functionalities.

It keeps the following local tables:

• Label Information Base (LIB): allocates a local label to each FEC. Each

FEC is managed by a single MPLS client process on each router.

• Label Forwarding Information Base (LFIB): keeps routing entries for each

local label. The routing entries are computed by the respective MPLS

client.

Network. A network object is composed by a given topology, pointers to the

routers and global functions. In MPLS-Kit, a topology is implemented as an

undirected weighted graph whose nodes are routers, and its edges are links

connecting the routers.

MPLS Client Process. Represents an actual process running on a router to

participate in the MPLS control plane. There is a specialized client type per

protocol, each responsible for:

101

Paper B.

Network

LDP
Client
Process

RSVP-TE
Client
Process

VPN
Service
Client
Process

LFIBLIB

Router #1

Topology

LDP
Client
Process

RSVP-TE
Client
Process

VPN
Service
Client
Process

Router #n

LFIBLIB

Fig. 2: Internal structure of the MPLS data plane generator.

• creating FEC objects for the network resources related to its control plane

protocol (e.g., IP prefixes for LDP and TE tunnels for RSVP),

• requesting labels for its FECs on the router’s LIB table, and

• providing functions to compute appropriate routing entries for LFIB

building.

Performance Examples. We use MPLS-Kit to generate 100 data planes (one per

topology) in 14.16s on an Ubuntu 20.04 system with Intel Core i9 and 32GiB

RAM. The selected topologies are taken alphabetically from the Topology

Zoo [5], accounting for 36.16 nodes 45.34 edges on average. and ranging

between 5 and 197 nodes.

The following parameter values are used:

• PHP enabled,

• LDP enabled,

• RSVP-TE enabled; 20 random tunnels with facility protection FRR, and

• VPN services enabled; 15 instances spanning 5 nodes each.

Additionally, we generate data planes for random topologies of different

sizes, using the same configuration as above, except with 3n RSVP-TE tunnels

102

5. MPLS Forwarding Simulation

Fig. 3: Computation times for generating data planes.

Algorithm 1 Use of simulation to estimate link utilization.

Input: Flows f ∈ F , demands df , iterations n, capacity cℓ of each link ℓ.

Output: Utilization uℓ of each link ℓ

for each flow f ∈ F do
for i from 1 to n do
trace := Simulator.run(f)

for each link ℓ do usei(f, ℓ) := count ℓ in trace

for each link ℓ do avg_use(f, ℓ) :=
∑n

i=1 usei(f, ℓ)/n

return uℓ :=
∑

f∈F df · avg_use(f, ℓ)/cℓ for all links ℓ

and 2n VPN services with n being the number of nodes in the topology. For

each n we generate 100 different topologies, one data plane per topology.

The results are shown in Figure 3. We can see that in the order of seconds,

MPLS-Kit is capable of providing data planes fast enough for most interesting

applications. These results are in line with MPLS-Kit’s goal of providing a large

variety of data to other tools in a time efficient way.

5 MPLS Forwarding Simulation

When a router forwards a packet in a real-world MPLS network, it uses the

outmost label of the packet’s stack to look up in its LFIB table. On a match,

the router uses the forwarding rules with the highest priority such that the

outgoing interface is up. If there are no acceptable forwarding rules at any

priority level, or if at any point the time-to-live value reaches 0, the packet is

dropped.

Consider the case in which the router’s LFIB provides multiple equally

103

Paper B.

preferable forwarding rules for a packet. Solving such nondeterminism is

actually outside the scope of MPLS, and on actual routers this decision is

made by the lower-layer Forwarding Information Base. MPLS-Kit resolves it

by choosing uniformly among all available options.

Packet Forwarding Simulation Implementation. In MPLS-Kit, at the begin-

ning of each execution step a packet lies inside a router’s memory. It is then

processed and forwarded to the next hop (if any) moving to the next execution

step, or finishing the simulation otherwise. As their real-world counterpart,

MPLS-Kit’s MPLS packets (instances of the MPLS packet class) have a label

stack and a time-to-live field that decreases on each forwarding step. They

also keep a pointer to the network object allowing access to all forwarding

rules as well as to a list F of failed links. This information is used to filter out

forwarding rules by priority when taking the forwarding decision.

The MPLS packet class implements the following forwarding methods:

• step simulates the next execution step as follows:

1. In the current router’s LFIB, identify the set of matching forwarding

entries and their priorities.

2. Filter out entries instructing to use a failed link, i.e. a link in F . If

no entries remain, the packet is dropped.

3. Select the highest priority rule. Break ties by randomly choosing

with uniform distribution.

4. Modify the packet’s label stack, decrease its time-to-live, and send

it to the next hop.

• fwd iteratively calls step until the packet depletes its label stack or its

time-to-live expires.

As a packet is forwarded through the network, it keeps a record of its path

(traceroute) for further analysis. Upon completion of the forwarding, the packet

returns an exit code indicating its successful forwarding (0) or the specific type

of error encountered.

Simulator Implementation. The Simulator class takes care of iteratively in-

stantiating MPLS packets from user-specified flows on the network’s routers

with an adequate label stack and calling their fwdmethod.

Upon finalization, the Simulator gathers and aggregates statistics (exit code

and traceroute) from all packet simulations and returns a summary of success-

ful and failed cases. Results can be written to a CSV file or sent to the standard

output.

104

6. Use cases

Algorithm 2 Use of simulation for latency analysis.

Input: Flow f , delay delay(ℓ) for each link ℓ, iterations n

Output: Expected latency E(latency) for the flow f

for i from 1 to n do
trace := Simulator.run(f)

ℓ1ℓ2 . . . ℓm := the sequence links in trace

latencyi :=
∑m

j=1 delay(ℓj)

return E(latency) :=
∑n

i=1 latencyi/n

6 Use cases

We shall now provide examples of how MPLS-Kit can be used in practical

applications.

Dataplane Verification. We can use the data plane output of MPLS-Kit to check

properties using MPLS network data plane verification tools. The benefit of

this use case is twofold. First, for testing and benchmarking a verifier tool,

it is useful to have realistic data planes, since this is closer to what the tool

will experience in real use. Second, the verifier allows us to check various

properties of the generated data plane.

Formal verification. As a first example, we run AalWiNes [1] with a reach-

ability query for each of the flows that the Generator outputs (see Figure 1).

The query checks for a flow (source, header , destinations) that a packet starting

at the source router with the given initial header can reach one of the given

destinations . For example for a flow (R1, H,R2), the query is ⟨H⟩ [·#R1] ·∗
[·#R2] ⟨ε⟩. This verifies that all the flows that MPLS-Kit claims to have created

are in fact present in the output data plane.

Machine learning assisted verification. While formal verification tools for the

data plane provide guaranteed results, they can still be relatively slow in prac-

tice. DeepMPLS [2] is a highly accurate, low execution time machine learning-

based verification tool that also needs MPLS data planes as input, hence also

benefitting from MPLS-Kit generation capabilities. The same properties (i.e.,

queries) verified with AalWiNes can be checked with DeepMPLS, and while

the former provides guarantees, the latter can synthesize new MPLS header-

rewriting rules in case a network property is not satisfied. Combined usage of

AalWiNes, DeepMPLS and MPLS-Kit suggest an opportunity for synthesizing

arbitrary property compliant MPLS data planes.

Congestion Analysis. We can use the simulation component of MPLS-Kit

together with flow demands of a bandwidth-limited network to estimate con-

gestion on links. From the trace output of the simulation, we can count how

many times each flow traverses a certain link. By running the simulation of

each flow multiple times, we can average out the randomness introduced by

105

Paper B.

Algorithm 3 Use of simulation for resilience analysis.

Input: Flows F , links L, failure-bound k, probability of single link failure p.

Output: Average success rate, weighted by failure probability

let S := {X ⊆ L | |X| ≤ k} ▷ Failure scenarios

for each X in S do
rX := Simulator.run(F,X).success_rate()

wX := p|X| · (1− p)k−|X|

return
∑

X∈S rX · wX/
∑

X∈S wX ▷ Normalized average

multiple path. Now, given traffic demands for each flow and the capacity of

each link, we can compute the link utilization as in Algorithm 1. All links

ℓ with uℓ > 1 can be congested given the traffic demands of the flows. The

benefit of MPLS-Kit for this use case is the realistic packet-level simulation on

an MPLS data plane that can be used e.g. in early stages of network design.

Latency Analysis. The trace output of the simulation in MPLS-Kit can be

used to estimate latency of flows in the MPLS network. Measuring network

latency in a simulated environment like the one provided by MPLS-Kit can be

helpful in networks where the researcher or the operator has no access to trace

collecting tools or the ability to inject test traffic into the network.

We can turn the trace into a sequence of links ℓ1ℓ2 . . . ℓm, where m is the

hop count. Due to nondeterminism in the data plane, several packets of the

same flow may traverse different paths, so we repeat many experiments for the

given flow. By labeling each link ℓ ∈ L in the topology with a delay, we can

estimate the path latency of the flow as in Algorithm 2.

Resiliency Analysis. To test the resilience of various data planes, we can use

the simulator’s capability of simulating link failures. For a given set of failing

links, the simulator outputs for each flow, whether the packet is successfully

forwarded to an intended destination. We can run multiple simulations and

compute the average success rate of packets in each failure scenario.

Using the external script, create_confs.py, we can for a data plane with

links L systematically generate all k-failure scenarios as all the subsets X ⊆ L

with size |X| ≤ k. To speed up the simulation, MPLS-Kit supports batch

processing of failure scenarios and allows for possible parallelization of this

computationally heavy task.

We can now average the success rates over all k-failure scenarios. To take

failure probabilities into account, a weighted average can be used, as in the

example in Algorithm 3, where link failures are modelled with a uniform,

independent probability p. This gives a measure of the resilience of the given

data plane. We can use this resiliency measure to compare different data

planes of the same topology, for instance with or without fast re-route (FRR)

protection.

106

7. Conclusions

7 Conclusions

Motivated by the need to produce realistic data planes for networking re-

search, we developed MPLS-Kit, a library with MPLS data plane generation

capabilities (including its fast-rerouting features) which also supports packet-

level simulations. MPLS-Kit is designed to faithfully mimic the control plane

processes responsible for computing the forwarding tables in real networks,

especially ISP networks, without engaging in time-consuming full convergence

simulations. Our design and implementation are based on a hierarchical struc-

ture of classes closely following the internal architecture of a router, allowing

easy development of new functionalities and prototyping. As demonstrated

with our use cases, MPLS-Kit can be useful in many scenarios, ranging from

verification of data plane properties with external tools to simulation-based

studies like convergence, latency and resiliency analysis. In summary, our

contribution provides an opportunity to alleviate the scarceness of data plane

datasets, thus encouraging more reproducible research in networking.

As a future work, we plan to extend our current work with Segment Routing

(SR) [23], addressing first MPLS-SR and afterward moving towards IPv6-SR.

Acknowledgement

This research is supported by the Vienna Science and Technology Fund (WWTF)

project ICT19-045 and by the DFF project QASNET.

References

[1] P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk, and

J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool for MPLS

networks,” in Proc. ACM CoNEXT, 2020, pp. 474–481.

[2] F. Geyer and S. Schmid, “DeepMPLS: Fast analysis of MPLS configurations

using deep learning,” in Proc. IFIP Networking, 2019.

[3] A. Blenk, P. Kalmbach, S. Schmid, and W. Kellerer, “O’Zapft is: Tap your

network algorithm’s big data!” in Proc. ACM SIGCOMM 2017 Big-DAMA

Workshop, 2017, pp. 19–24.

[4] K. Claffy and D. Clark, “Comments on request for information

on the american research environment,” National Science and

Technology Council (NSTC), 2020-01. [Online]. Available: https:

//catalog.caida.org/paper/2020_comments_rfi_american_research

107

https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.23919/IFIPNetworking46909.2019.8999396
https://doi.org/10.23919/IFIPNetworking46909.2019.8999396
https://doi.org/10.1145/3098593.3098597
https://doi.org/10.1145/3098593.3098597
https://catalog.caida.org/paper/2020_comments_rfi_american_research
https://catalog.caida.org/paper/2020_comments_rfi_american_research

References

[5] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communications,

vol. 29, no. 9, pp. 1765–1775, 2011.

[6] B. S. Davie and Y. Rekhter, MPLS: technology and applications. Morgan

Kaufmann Publishers Inc., 2000.

[7] L. Andersson, I. Minei, and B. Thomas, “LDP specification,” RFC 5036,

Oct. 2007.

[8] D. O. Awduche, L. Berger, D.-H. Gan, T. Li, D. V. Srinivasan, and G. Swal-

low, “RSVP-TE: Extensions to RSVP for LSP tunnels,” RFC 3209, Dec.

2001.

[9] “GNS3,” https://gns3.com/, accessed: 2022-02-10.

[10] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Net-

work simulations with the ns-3 simulator,” SIGCOMM demonstration,

vol. 14, no. 14, p. 527, 2008.

[11] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proc. ACM SIGCOMM

HotNets, 2010, article 19, pp. 1–6.

[12] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Ma-

hajan, and T. Millstein, “A general approach to network configuration

analysis,” in Proc. USENIX NSDI, 2015, pp. 469–483.

[13] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation

environment,” in Proc. of ICST SIMUTools Workshop, 2008.

[14] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T.

Thorgersen, “P-Rex: Fast verification of MPLS networks with multiple

link failures,” in Proc. ACM CoNEXT, 2018, pp. 217–227.

[15] E. C. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and

A. Conta, “MPLS label stack encoding,” RFC 3032, Jan. 2001.

[16] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,

dynamics, and function using NetworkX,” in Proc. 7th Python in Science

Conference (SciPy 2008), 2008, pp. 11–15.

[17] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE for

LSP tunnels,” RFC 4090, May 2005.

[18] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A survey of

fast-recovery mechanisms in packet-switched networks,” IEEE Communi-

cations Surveys and Tutorials (COMST), pp. 1253–1301, 2021.

108

https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.17487/RFC5036
https://doi.org/10.17487/RFC3209
https://gns3.com/
https://conferences.sigcomm.org/sigcomm/2008/papers/p527-hendersonA.pdf
https://conferences.sigcomm.org/sigcomm/2008/papers/p527-hendersonA.pdf
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027
https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.17487/RFC3032
https://conference.scipy.org/proceedings/scipy2008/paper_2/
https://conference.scipy.org/proceedings/scipy2008/paper_2/
https://doi.org/10.17487/RFC4090
https://doi.org/10.17487/RFC4090
https://doi.org/10.1109/COMST.2021.3063980
https://doi.org/10.1109/COMST.2021.3063980

References

[19] S. Bryant and P. Pate, “Pseudo wire emulation edge-to-edge (PWE3) ar-

chitecture,” RFC 3985, Mar. 2005.

[20] K. Kompella and Y. Rekhter, “Virtual private LAN service (VPLS) using

BGP for auto-discovery and signaling,” RFC 4761, Jan. 2007.

[21] M. Lasserre and V. Kompella, “Virtual private LAN service (VPLS) using

label distribution protocol (LDP) signaling,” RFC 4762, Jan. 2007.

[22] E. C. Rosen and Y. Rekhter, “BGP/MPLS IP virtual private networks

(VPNs),” RFC 4364, Feb. 2006.

[23] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir,

“Segment routing architecture,” RFC 8402, Jul. 2018.

109

https://doi.org/10.17487/RFC3985
https://doi.org/10.17487/RFC3985
https://doi.org/10.17487/RFC4761
https://doi.org/10.17487/RFC4761
https://doi.org/10.17487/RFC4762
https://doi.org/10.17487/RFC4762
https://doi.org/10.17487/RFC4364
https://doi.org/10.17487/RFC4364
https://doi.org/10.17487/RFC8402

References

110

Paper C

Faster Pushdown Reachability Analy-

sis with Applications in Network Ver-

ification

Peter Gjøl Jensen, Stefan Schmid, Morten Konggaard Schou,

Jiří Srba, Juan Vanerio, and Ingo van Duĳn

The paper has been published in:

Automated Technology for Verification and Analysis (ATVA 2021),

Lecture Notes in Computer Science, vol. 12971, pp. 170-186, Springer, 2021.

https://doi.org/10.1007/978-3-030-88885-5_12

https://doi.org/10.1007/978-3-030-88885-5_12

© 2021 Springer Nature Switzerland AG

The layout has been revised.

1. Introduction

Abstract

Reachability analysis of pushdown systems is a fundamental problem in model checking

that comes with a wide range of applications. We study performance improvements of

pushdown reachability analysis and as a case study, we consider the verification of the

policy-compliance of MPLS (Multiprotocol Label Switching) networks, an application

domain that has recently received much attention. Our main contribution are three

techniques that allow us to speed up the state-of-the-art pushdown reachability tools

by an order of magnitude. These techniques include the combination of classic pre∗

and post∗ saturation algorithms into a dual-search algorithm, an on-the-fly technique

for detecting the possibility of early termination, as well as a counter-example guided

abstraction refinement technique that improves the performance in particular for the

negative instances where the early termination technique is not applicable. As a second

contribution, we describe an improved translation of MPLS networks to pushdown

systems and demonstrate on an extensive set of benchmarks of real internet wide-area

networks the efficiency of our approach.

1 Introduction

Pushdown systems are a widely-used formalism with applications in, e.g.,

interprocedural control-flow analysis of recursive programs [1, 2] and model

checking [3–6]. Pushdown systems have recently also received attention in the

context of communication networks. Modern communication networks rely

on increasingly complex router configurations which are difficult to manage

by human administrators. Indeed, over the last years, several major network

outages were due to human errors [7–10], and researchers are hence devel-

oping more automated and formal approaches to ensure policy compliance

in networks. In particular, pushdown systems have been shown to enable

fast automated what-if analysis of the policy compliance of an important

and widely-deployed type of network, namely Multiprotocol Label Switch-

ing (MPLS) networks [11].

We are motivated by the objective to improve the performance of reachabil-

ity analysis in pushdown systems, which typically relies on automata-theoretic

approach for computing the pre∗ and post∗ of a regular set of pushdown con-

figurations [12]. Time is the most critical performance aspect of reachability

analysis in general, and in particular, in the context of the increasingly large

communication networks that need to be frequently reconfigured.

Our Contributions. We show that there is a significant potential to improve

the state-of-the-art in reachability analysis of pushdown systems. In partic-

ular, we propose a fast on-the-fly early termination technique as well as an

113

Paper C.

algorithm that provides a novel combination of the classic pre∗ and post∗ al-

gorithms in order to harvest the benefits of both methods. We also suggest

a specialization of the counter-example guided abstraction refinement (CE-

GAR) [13] technique that leverages equivalence classes on stack symbols as

well as control states in order to improve the reachability analysis of MPLS

networks that contain significant redundancy in the IP prefixes and produce a

large number of MPLS labels (modeled as stack symbols). All techniques are

general and apply to arbitrary pushdown systems, and are hence of interest

in a wide range of applications. Finally, we also suggest a novel encoding

approach of an MPLS communication network into a pushdown system that

not only renders the pushdown analysis faster but also simpler compared to

the recent approaches [11, 14, 15]. We report on our C++ prototype implemen-

tation and our empirical evaluation showing that the techniques can reduce

the runtime by almost an order of magnitude compared to the state-of-the-art

tools AalWiNes [15] and Moped [4].

Background and Related Work. We are motivated by the application of

pushdown systems in order to perform automated what-if analysis of com-

munication networks. In a nutshell, we consider a communication network

interconnecting a set of routers which forward packets. The forwarding behav-

ior of each router is defined by its pre-installed routing table which consists of

a set of forwarding rules. To provide a dependable service, the network needs

to fulfill a number of properties, such as reachability or loop-freedom, even

under link failures.

Schmid and Srba recently showed in [11] that policy compliance of the

widely-deployed MPLS networks can be verified in polynomial time, when

overapproximating the possible link failures. Their approach leverages the

fact that routing in MPLS networks is based on label stacks: packets contain

stacks of labels which can be pushed and popped, and routers forward packets

based on the top-of-stack label. Accordingly, these networks can be modelled

as pushdown systems. In [14], the tool P-Rex was presented which implements

the approach from [11]. P-Rex is implemented in Python, relies on the Moped

model checker, and allows to verify complex network queries on network

topologies with 20-30 routers in a matter of hours. The AalWiNes tool [15]

is a follow-up work that improves the performance by an order of magnitude

compared to P-Rex and replaces Moped with a tailored reachability engine

written in C++.

In this paper, we show how to improve the performance by another order

of magnitude compared to AalWiNes, by using three novel reachability tech-

niques, including an early termination algorithm, a combined dual computa-

tion of pre∗ and post∗, and a CEGAR approach. The CEGAR [13] technique was

investigated in the context of symbolic pushdown systems before by Esparza

114

2. Preliminaries

et al. [16] who consider sequential (recursive) programs whose statements are

given as binary decision diagrams (BDDs). However, the CEGAR application

is not used to speed up the reachability analysis but to refine the abstrac-

tions of the programs. Moped [12] is a model checker for linear-time logic on

pushdown systems and has been adapted to many use cases. For instance,

jMoped [5] models java byte-code as symbolic pushdown systems allowing

automated analysis and verification of invariant properties with Moped.

2 Preliminaries

A Labelled Transition System (LTS) is a triple (S,Σ,→) where S is the set of states,

Σ is the set of labels and→ ⊆ S × Σ× S is a transition relation. If (s, a, s′) ∈ →
then we write s

a−→ s′. We also write s −→ s′ if there is an a ∈ Σ such that s
a−→ s′

and let−→∗
be the reflexive and transitive closure of−→. The relation−→∗

can be

annotated by the sequence of labels w ∈ Σ∗
as follows: s

ϵ−→∗ s for any s ∈ S

where ε is the empty word, and s
aw−−→∗ s′ for a ∈ Σ and w ∈ Σ∗

if s
a−→ s′′ and

s′′
w−→∗ s′ for some s′′ ∈ S.

Definition 1. A Nondeterministic Finite Automaton (NFA) is a tuple

N = (Q,Σ,→, I, F) where Q is a finite set of states, Σ is a finite input

alphabet, → ⊆ Q × (Σ ∪ {ε}) × Q is the transition relation, I ⊆ Q is the set of

initial states, and F ⊆ Q is the set of accepting states.

An NFAN accepts a word w ∈ Σ∗
if the LTS (Q,Σ,→) satisfies q0

w−→∗ qf for

an initial state q0 ∈ I and an accepting state qf ∈ F . The language Lang(N) is

the set of all words that N accepts.

Definition 2. A Pushdown System (PDS) is a tuple P = (P,Γ,∆), where P is a

finite set of control locations (states), Γ is a stack alphabet, and the set of rules ∆

is a finite subset of (P × Γ) × (P × Γ∗). If ((p, γ), (p′, w)) ∈ ∆ then we write

⟨p, γ⟩ ↪→P ⟨p′, w⟩.

A configuration of a pushdown system is a pair ⟨p, w⟩ where p ∈ P and

w ∈ Γ∗
. The set of all configurations is denoted Conf (P). The semantics

of a pushdown system P is given by the LTS TP = (Conf (P),∆,⇒P) where

⟨p, γw′⟩ r⇒P ⟨p′, ww′⟩ for all w′ ∈ Γ∗
whenever there is r = ((p, γ), (p′, w)) ∈ ∆.

If P is clear from the context, we may omit it from ↪→P and ⇒P . We only

consider normalized PDS in which all rules ⟨p, γ⟩ ↪→ ⟨p′, w⟩ satisfy |w| ≤ 2.

Note that any PDS can be normalized by adding at most O(|P |) auxiliary

states [12].

Definition 3. Let P = (P,Γ,∆) be a PDS. A P-automaton is an NFA A =

(Q,Γ,→, P, F) with the stack symbols of P as its input alphabet and with the

initial states being the control locations of P .

115

Paper C.

A P-automaton accepts a pushdown configuration ⟨p, w⟩ of P if p
w−→∗ q for

some q ∈ F . The set of all configurations accepted byA is denoted by Lang(A).
A set of configurations is called regular if it is accepted by some P-automaton.

Problem 1 (Pushdown Reachability Problem). For a PDS P and two regular

sets of configurations C and C ′
, is there c ∈ C and c′ ∈ C ′

such that c
σ
=⇒∗

P c′

for some sequence of rules σ? In the affirmative case return a witness trace

(c, σ).

Given a PDS P and a set of configurations C ⊆ Conf (P) the predecessors

are defined as pre∗(C) = {c | ∃c′ ∈ C, c⇒∗ c′} and the successors as post∗(C) =

{c | ∃c′ ∈ C, c′ ⇒∗ c}. If C is a regular set of configurations, then both pre∗(C)

and post∗(C) are also regular sets of configurations [17].

Construction of pre∗. Given a P-automaton A = (Q,Γ,→0, P, F), we con-

struct a P-automaton Apre∗ = (Q,Γ,→, P, F) where→ is obtained by repeat-

edly adding transitions to →0 according to the following saturation rule: if

⟨p, γ⟩ ↪→ ⟨p′, w⟩ and p′
w−→ q in the current automaton, add a transition p

γ−→ q.

Theorem 1 ([6, 12, 18]). An automaton Apre∗ that satisfies Lang(Apre∗) =

pre∗(Lang(A)) can be built in O(|Q|2 · |∆|) time and O(|Q| · |∆|+ |→0|) space.

There is a slightly more complicated saturation procedure for Apost∗ .

Theorem 2 ([6, 12, 18]). An automaton Apost∗ that satisfies Lang(Apost∗) =

post∗(Lang(A)) can be built inO(|P | · |∆| · (n1 + n2) + |P | · |→0|) time and space,

where n1 = |Q \ P | and n2 is the number of different pairs (p, γ) such that there is a

rule of the form ⟨p′, γ′⟩ ↪→ ⟨p, γγ′′⟩ in ∆.

Problem 1 can now be solved in polynomial time using either the pre∗ or

post∗ algorithm by computing e.g. pre∗(C ′) and checking if C ∩ pre∗(C ′) ̸= ∅,
similarly for post∗, relying on the fact that regular languages are closed under

intersection. A witness trace σ can be computed by storing metadata during

the saturation procedures (see e.g. [12] for details).

3 Formal Model of MPLS Networks

An MPLS network consists of a topology and forwarding rules.

Definition 4. A network topology is a directed multigraph (V,E, s, t) where V

is a set of routers, E is a set of links between routers, s : E → V assigns the

source router to each link, and t : E → V assigns the target router.

116

3. Formal Model of MPLS Networks

We assume that links in the network can fail. This is modelled by a set

F ⊆ E of failed links. A link is active if it belongs to E \ F .

For a nonempty set of MPLS labels L, we define the set of MPLS operations

on packet headers as Op(L) = {swap(ℓ) | ℓ ∈ L} ∪ {push(ℓ) | ℓ ∈ L} ∪ {pop}.
We define the semantics of MPLS operations [·] : Op(L) → (L → L∗) by

[pop](ℓ) = ε, [swap(ℓ′)](ℓ) = ℓ′ and [push(ℓ′)](ℓ) = ℓ′ℓ for all ℓ, ℓ′ ∈ L.

The forwarding of a packet in an MPLS network depends on the interface

(link) that the packet arrives on, which determines the forwarding table used,

and the top MPLS label in the packet header, which is used for lookup in the

forwarding table. When a packet enters the MPLS domain, it does not yet have

any MPLS label, and the forwarding depends only on the link that it arrives

on as well as the type of the protocol that is used for the packet forwarding

(this is abstracted away by the use of nondeterminism).

Definition 5. An MPLS network is a tupleN = (V,E, s, t, L, τ)where (V,E, s, t)

is a network topology, L is a finite set of MPLS labels, and τ : E ∪ (E × L) →(
2E×Op(L)+

)∗
is the routing table.

For every link e ∈ E and for every link-label pair (e, ℓ) ∈ E×L, the routing

table returns a sequence of traffic engineering groups O1O2 . . . On where each

group is a set of the form {(e1, ω1), . . . , (em, ωm)} where ej is the outgoing

link such that t(e) = s(ej) and ωj ∈ Op(L)+ is a nonempty sequence of MPLS

operations to be performed on the packet header. Figure 1a gives an example

of an MPLS network with its routing table in Figure 1b. Here the priority

column refers to the index of the corresponding traffic engineering group.

The semantics of a traffic engineering group is that any pair of active link

and operation sequence in the group can be nondeterministically chosen, hence

abstracting away from various specific routing policies that allow e.g. splitting

a flow along multiple paths. The group Oi has a higher priority than Oi+1,

and during forwarding the router always selects the traffic engineering group

with the highest priority and at least one active link.

For a traffic engineering group O = {(e1, ω1), (e2, ω2), . . . , (em, ωm)} let

E(O) = {e1, e2, . . . , em} denote the set of outgoing links in the group.

Definition 6. For a set of failed links F ⊆ E we define the active routing table

τF : E ∪ (E × L) → 2E×Op(L)+
as τF (u) = {(e′, ω) ∈ AF (τ(u)) | e′ ∈ E \ F},

where u = e or u = (e, ℓ) and AF is the active traffic engineering group defined

as AF (O1O2 . . . On) = Oj if j is the lowest index such that E(Oj) \ F ̸= ∅, or

A(O1O2 . . . On) = ∅ if no such j exists.

Definition 7. The semantics of MPLS operations is a partial header rewrite func-

tion H : L∗ × Op(L)∗ ⇀ L∗
, where ω, ω′ ∈ Op(L)∗, h ∈ L∗

and ε is the empty

117

Paper C.

v0

v1

v2
e0 e1

e2 e3

e4

e5

(a) Network topology

Router ein Label Priority eout Operation
v0 e0 − 1 e1 push(11)

e0 − 2 e2 push(11) ◦ push(20)
e0 10 1 e1 swap(12)

e0 10 2 e2 swap(12) ◦ push(20)
v1 e2 20 1 e3 pop

v2 e1 11 1 e4 pop

e1 12 1 e5 pop

e3 11 1 e4 pop

e3 12 1 e5 pop

(b) Routing table

σ1 = (e0, ε)(e1, 11)(e4, ε) for F = ∅
σ2 = (e0, 10 ◦ 30)(e2, 20 ◦ 12 ◦ 30)(e3, 12 ◦ 30)(e5, 30) for F = {e1}
φ = ⟨10 ·∗⟩ e0 ·∗ e5 ⟨30⟩ 1 is satisfied by σ2

(c) Example traces σ1 and σ2 under a set of failed links F , and an example query φ

sb

s0

s1

e0

e5

∗

e0, ε, s0

e2, push(20), s0

v2, ε, s0

e2, ε, s0

e4, ε, s0

e5, ε, s0

e5, ε, s1

∗; push(11) 10; swap(12)

∗; push(11)

10; swap(12)

∗; push(20)

20; pop

11; pop

12; pop

12; pop

(d) Corresponding pushdown system for the query φ. Left: the NFA Nb for φ. Right: the generated PDS P .

The labelled arrow (p)
ℓ;op−−−→ (p′) denotes the rule ⟨p, ℓ⟩ ↪→ ⟨p′, [op](ℓ)⟩. The state (v2, ε, s0) is merged from

(e1, ε, s0) and (e3, ε, s0).

Pi = {(e0, ε, s0)}
Pf = {(e5, ε, s1)}
Lang(Ni) = {10 ◦ w ◦ ⊥ | w ∈ L∗}
Lang(Nf) = {30 ◦ ⊥}

(e) Initial/final configurations for φ

⟨(e0, ε, s0), 10 ◦ 30 ◦ ⊥⟩ ⇒P

⟨(e2, push(20), s0), 12 ◦ 30 ◦ ⊥⟩ ⇒P

⟨(e2, ε, s0), 20 ◦ 12 ◦ 30 ◦ ⊥⟩ ⇒P

⟨(v2, ε, s0), 12 ◦ 30 ◦ ⊥⟩ ⇒P ⟨(e5, ε, s1), 30 ◦ ⊥⟩

(f) Computation in PDS P corresponding to σ2

Fig. 1: Example of a small network and its encoding into a pushdown system

sequence of operations:

H(h, ω) =

h if ω = ε

H([op](ℓ) ◦ h′, ω′) if ω = op ◦ ω′
and h = ℓ ◦ h′

with ℓ ∈ L, h′ ∈ L∗

undefined otherwise .

Using the example from Figure 1, the operation sequence swap(12) ◦
push(20) applied to the header 10 ◦ 30 yieldsH(10 ◦ 30, swap(12) ◦ push(20)) =
20 ◦ 12 ◦ 30.

118

3. Formal Model of MPLS Networks

Definition 8. A trace in a network N = (V,E, s, t, L, τ), given a set of failed

links F ⊆ E, is any finite sequence (e1, h1)(e2, h2) . . . (en, hn) ∈
(
(E \F)×L∗)∗

of link-header pairs where for all i, 1 ≤ i < n, hi+1 = H(hi, ω) for some

(ei+1, ω) ∈ τF (u), where either u = ei or u = (ei, head(hi)), where head(hi) is

the top (left-most) label of hi. If hi = ε then head(hi) is undefined.

In Figure 1c we can see a trace σ1 in the network without any failed links,

while for the failure set F = {e1}we notice that σ1 is not a trace, while σ2 is.

3.1 MPLS Network Verification
Similar to prior work [14, 15], we present a powerful query language that

allows us to specify regular trace properties, both regarding the initial and

final label-stacks as well as the sequence of links in the trace.

Definition 9. A reachability query for an MPLS network N = (V,E, s, t, L, τ)

is of the form ⟨a⟩ b ⟨c⟩ k where a and c are regular expressions over the set of

labels L, b is a regular expression over the set of links E, and k ≥ 0 specifies

the maximum number of failures to be considered.

We assume here a standard syntax for regular expressions and by Lang(a),

Lang(b) and Lang(c) we understand the regular language defined by the ex-

pressions a, b and c, respectively. Intuitively, the query ⟨a⟩ b ⟨c⟩ k asks if there is

a network trace such that the initial header (stack of labels) belongs to Lang(a),

the sequence of visited links belongs to Lang(b) and at the end of the trace the

final header belongs to Lang(c).

We further use the following notation for specifying links in the network.

If v and u are routers, then [v#u] matches any link e from v to u such that

s(e) = v and t(e) = u. The dot-syntax is used to denote any link or label in the

network and it is extended to match also any router so that [v#·] =
⋃

u∈V [v#u]

and [·#u] =
⋃

v∈V [v#u].

Problem 2 (Query Satisfiability Problem). Given an MPLS network N and a

query φ = ⟨a⟩ b ⟨c⟩ k, decide if there exists a trace σ = (e1, h1) . . . (en, hn) in the

network N for some set of failed links F such that |F | ≤ k where h1 ∈ Lang(a),

e1 . . . en ∈ Lang(b), and hn ∈ Lang(c). If this is the case, the query φ is satisfied

and we call σ a witness trace.

In Figure 1c the query φ asks if a packet with the top most label 10 can

be forwarded from the link e0 to e5, while just leaving the label 30 on the

label-stack. This query is satisfied and the trace σ2 serves as a witness trace.

On the other hand, the query ⟨ ·∗⟩ [·#v1] ·∗ e3 ⟨ ·∗⟩ 0 is not satisfied as it asks if

a packet (with any header) arriving on some link to the router v1 (note that e0
is the only such link) can reach the link e3 if no links fail. Such a trace exists

only if we allow for at least one failed link.

119

Paper C.

3.2 From Query Satisfiability to Pushdown Reachability
We now solve the query satisfiability problem by translation to the pushdown

reachability problem. This is an over-approximation, so in a few cases a

positive result cannot be transfered back to the query satisfiability problem.

Notice that our construction is different from the one in [14]. In particular,

we model the initial and final headers directly as NFA rather than simulating

them with PDSs, which makes the reduction simpler and more efficient at the

same time.

The behavior of the network for a fixed set of failed links F is given by the

active routing table τF , however to represent the possible behavior for any set

of failed links F with |F | ≤ k, we use the following definition.

Definition 10. For a network N = (V,E, s, t, L, τ) and number k, we define

the overapproximating routing table τk(u) =
⋃i

j=1 Oj , where τ(u) = O1O2 . . . On

and i is the smallest index such that |
⋃i

j=1 E(Oj)| > k.

The routing table τk overapproximates all possible routing table entries if up

to k links fail at any router.

Given a network N = (V,E, s, t, L, τ) and a query φ = ⟨a⟩ b ⟨c⟩ k, let Na =

(Sa, L,→a, {sa}, Fa), Nb = (Sb, E,→b, {sb}, Fb) and Nc = (Sc, L,→c, {sc}, Fc)

be the NFAs corresponding to the regular expressions a, b and c. Let L⊥ =

L ∪ {⊥} where ⊥ is used to represent the bottom of the stack. We construct a

PDSP = (P,L⊥,∆) where P = E×Ops×Sb and Ops is the set of all operation

sequences and suffixes hereof occurring in τk. The set of rules ∆ is defined by:

a) ⟨(e, ε, s), ℓ⟩ ↪→ ⟨(e′, ω, s′), [op](ℓ)⟩ if s e′−→∗
b s

′
and (e′, op◦ω) ∈ τk(u)where

either (i) u = (e, ℓ), or (ii) u = e, ℓ ∈ L, or (iii) u = e, ℓ = ⊥, op = push(ℓ′).

b) ⟨(e, op ◦ ω, s), ℓ⟩ ↪→ ⟨(e, ω, s), [op](ℓ)⟩ for ℓ ∈ L and for ℓ = ⊥ if op =

push(ℓ′).

Finally, we define the initial states Pi = {(e, ε, s) | e ∈ E, s ∈ Sb, sb
e−→∗

b s},
and the final states Pf = {(e, ε, sf) | e ∈ E, sf ∈ Fb}. Let N⊥ be an NFA such

that Lang(N⊥) = {⊥}. Let Ni = Na ◦ N⊥ and Nf = Nc ◦ N⊥ where ◦ is the

standard NFA concatenation operator. For the running example this is shown

in Figure 1e. Now the query satisfiability problem is reduced to the problem

of finding configurations c ∈ Pi × Lang(Ni) and c′ ∈ Pf × Lang(Nf) such that

c
σ
=⇒∗

P c′, and in the positive case outputing the trace (c, σ).

Optimizations. To reduce the size of the PDS we use the following optimiza-

tions. We merge control locations (e, ω, s) and (e′, ω, s) for which t(e) = t(e′),

τ(e) = τ(e′) and τ(e, ℓ) = τ(e′, ℓ) for all ℓ ∈ L, i.e. the lookup is independent

of which interface on the router the packet arrives on, which is often the case

120

3. Formal Model of MPLS Networks

in many existing networks. We only construct control states that are reachable

from Pi. If a rule ⟨p, ℓ⟩ ↪→ ⟨p′, [op](ℓ)⟩ is added for all ℓ ∈ L⊥, we represent it

succinctly as ⟨p, ∗⟩ ↪→ ⟨p′, [op](∗)⟩where ∗ is a wildcard representing any label.

The wildcard can be handled efficiently by our post∗ algorithm, while for pre∗

it needs to be unfolded. In Figure 1d we can see the generated pushdown

system for our running example and in Figure 1f we show an execution of the

pushdown system corresponding to the network trace σ2.

We can now show that if there is a network trace satisfying a given query

then the constructed pushdown system provides a positive answer in the

reachability analysis.

Theorem 3. Given a network N and a query φ, if there exists a witness trace in the

network satisfying φ, then there exist c ∈ Pi × Lang(Ni), c
′ ∈ Pf × Lang(Nf) and

σ ∈ ∆∗
such that c

σ
=⇒∗

P c′.

Proof (Sketch). By induction on the length of the witness trace we construct the

corresponding pushdown execution following the construction of the push-

down rules ∆. One step in the network trace can be simulated by a sequence

of pushdown transitions as the rules of type b) apply the MPLS operations

sequentially one by one. ⊓⊔

For the other direction, we have to first make sure that the trace obtained

from the execution in the pushdown system is indeed a valid network trace

(since the pushdown system overapproximates the set of all valid traces as it

assumes that at any router, up to k links can fail).

Reconstruction of Network Traces. The reachability analysis for the push-

down system P returns (in the affirmative case) a trace ⟨p0, w0⟩
r1⇒P . . .

rm⇒P
⟨pm, wm⟩. We extract (e, h) for every i such that pi = (e, ω, s) and wi = h ◦ ⊥
where ω = ε, producing a network trace (e0, h0) . . . (en, hn). For each rule r of

type a) that was added due to (e′, ω) ∈ τk(u), we define F τ (r) =
⋃i−1

j=1 E(Oj)

where τ(u) = O1O2 . . . and i is the smallest index such that (e′, ω) ∈ Oi. Let

F =
⋃n

i=1 F
τ (ri) be the set of failed links in order to enable the execution of

the trace. Now we have to check that {e0, . . . , en}∩F = ∅ and |F | ≤ k in order

to guarantee that the corresponding network trace is executable; otherwise the

overapproximation returns an inconclusive answer.

Theorem 4. Given a networkN and a queryφ, if in the constructed pushdown system

there exist c ∈ Pi × Lang(Ni), c
′ ∈ Pf × Lang(Nf) and σ ∈ ∆∗

s.t. c
σ
=⇒∗

P c′ from

which a valid network trace σ′
can be reconstructed, then σ′

satisfies φ.

Proof (Sketch). From the construction of the pushdown system and the encod-

ing of MPLS operations by a series of pushdown transitions, we can see that if

the reconstructed trace only uses active links, i.e. {e0, . . . , en} ∩ F = ∅, then it

121

Paper C.

corresponds to a correct network trace for the routing table τk. However, as τk

allows for up to k link failures at any router along the trace, the total number

of failed links along the reconstructed trace may exceed the bound k. This is

detected in the trace reconstruction procedure. ⊓⊔

4 Improving Pushdown System Reachability Anal-
ysis

We now describe our improvements to the pushdown reachability analysis.

4.1 Early Termination of Reachability Algorithms
In Section 2 we showed that for a given PDSP = (P,Γ,∆) andP-automatonA
that represents a set of configurations in P , we can construct the Apost∗ and

Apre∗ automata by iteratively adding additional transitions to the existing

automaton A. During this saturation procedure, the language of the current

P-automaton A can only increase (w.r.t. subset inclusion). Hence if at any

point the current P-automaton has a nonempty intersection with some set

of target configurations, it will have the nonempty intersection also after the

saturation procedure terminates. We can hence allow for an early termination

as we can return a witness trace before completing the saturation procedure.

We further generalize this idea by considering P-automata A1 =

(Q1,Γ,→1, P, F1) and A2 = (Q2,Γ,→2, P, F2) that can be step-by-step satu-

rated by calling (in arbitrary order) the functions AddTransition(q1
γ−→1 q′1)

and AddTransition(q2
γ−→2 q′2), respectively. Each such call will add the

corresponding transition in its argument to the automaton A1 resp. A2 and at

the same time compute the reachable part (stored in the nondecreasing set R

of pairs of states inA1 andA2) of the product automatonA∩ representing the

current intersection of A1 and A2. The function call AddTransition(qi
γ−→i q

′
i)

where i ∈ {1, 2} relies on the function AddState(q1, q2) given in Algorithm 1

and before any calls to AddTransition are made, it is assumed that the

product automaton is initialized by calling AddState(p, p) for all states p ∈ P .

The algorithm exits (early terminates) and returns true as soon as the product

automaton accepts at least one string.

Proposition 1. Let A1 and A2 be two initial P-automata and let A′
1 and A′

2 be the

resulting P-automata after an arbitrary number of calls to the function AddTransi-

tion given in Algorithm 1. Then Lang(A∩) = Lang(A′
1) ∩ Lang(A′

2) and as soon

as Lang(A∩) ̸= ∅, the algorithm returns true.

This on-the-fly detection of nonemptiness of the intersection between two

P-automata can be used to allow for early termination when deciding the

122

4. Improving Pushdown System Reachability Analysis

Algorithm 1 On-the-fly computation of product automaton

Input: P-automata A1 = (Q1,Γ,→1, P, F1) and A2 = (Q2,Γ,→2, P, F2)

1: Initialize R ⊆ Q1 ×Q2 to ∅
2: LetA∩ ← (Q1 ×Q2,Γ,→, {(p, p) | p ∈ P}, F1 × F2) where→ initially does

↪→ not contain any transitions

3: function AddState(q1, q2)

4: if (q1, q2) /∈ R then
5: R← R ∪ (q1, q2)

6: if q1 ∈ F1 and q2 ∈ F2 then exit and return true
7: for all q′1 ∈ Q1, q

′
2 ∈ Q2, γ ∈ Γ s.t. q1

γ−→1 q′1 and q2
γ−→2 q′2 do

8: add (q1, q2)
γ−→ (q′1, q

′
2) to A∩

9: AddState(q′1, q′2)

10: function AddTransition(qi
γ−→i q

′
i) ▷ with i ∈ {1, 2}

11: add qi
γ−→i q

′
i to Ai

12: for all q3−i, q
′
3−i ∈ Q3−i s.t. (q1, q2) ∈ R and q3−i

γ−→3−i q
′
3−i do

13: add (q1, q2)
γ−→ (q′1, q

′
2) to A∩

14: AddState(q′1, q′2)

reachability in pushdown systems using the pre∗ and post∗ approach described

in Section 2. Here only one of the two P-automata is saturated while the other

automaton remains unchanged. We now show that this on-the-fly detection

of nonemptiness can be applied, with significant performance improvements,

also when both approaches are combined.

4.2 Combining Forward and Backward Search
Our experiments show that none of the two approaches, pre∗ and post∗, is

superior to the other one. Our aim is to further improve the reachability

analysis of pushdown systems by combining these two methods into dual∗
algorithm. We first observe the following facts.

Proposition 2. Given a PDS P = (P,Γ,∆) and regular sets C and C ′
of its con-

figurations, the following statements are equivalent: a) c ⇒∗ c′ for some c ∈ C and

c′ ∈ C ′
, b)C∩pre∗(C ′) ̸= ∅, c) post∗(C)∩C ′ ̸= ∅, and d) post∗(C)∩pre∗(C ′) ̸= ∅.

Let theP-automataA andA′
represent the sets of configurations C and C ′

,

respectively. The classical approach to the reachability problem, formulated

in Proposition 2a, either uses the equivalent formulation in b) and iteratively

constructs A′
pre∗ while checking whether its language has a nonempty inter-

123

Paper C.

Algorithm 2 Dual search

Input: P-automata A and A′

1: for p in P do AddState(p, p)

2: Initialize pre∗ algorithm forA′
and post∗ forA (incl. worksets of transitions)

3: while worksetpre∗ ̸= ∅ and worksetpost∗ ̸= ∅ do
4: pop t from worksetpre∗

5: execute one step of pre∗ using t

6: for t′ newly added to worksetpre∗ do
7: AddTransition(t′) ▷ can return true
8: pop t from worksetpost∗

9: execute one step of post∗ using t

10: for t′ newly added to worksetpost∗ do
11: AddTransition(t′) ▷ can return true
12: return false

section with the set C, or it uses part c) and constructs Apost∗ while checking

for nonempty intersection with C ′
.

We suggest a novel combination of these two methods while relying on

Proposition 2d. In Algorithm 2, we (sequentially) interleave the executions of

the post∗ saturation procedure on A and the pre∗ procedure on A′
. The inter-

section of the two automata is computed on-the-fly using Algorithm 1 where

each of the saturation procedures calls its respective AddTransition function

and Algorithm 2 terminates with true as soon as the intersection becomes

nonempty. Once one of the saturation algorithms completes its execution, the

algorithm returns false. Notice that this approach is different from running

pre∗ and post∗ independently in parallel since our algorithm allows the two

search directions to ‘meet in the middle’. In Section 5 we document a gain of

almost an order of magnitude compared to saturating exclusively A or A′
.

4.3 Abstraction Refinement for Pushdown System Reachabil-
ity

We now explore an abstraction technique [19] in order to reduce the size of

the verified PDS. We suggest (in a heuristic way) an initial abstraction by

collapsing selected stack symbols and control states and use counter-example

guided abstraction refinement [13] in case we obtain spurious traces.

Abstraction of Pushdown Model of MPLS Network. As described in Sec-

tion 3.2, we consider a network N = (V,E, s, t, L, τ), NFAs that originate

from the given query Na = (Sa, L,→a, sa, Fa), Nb = (Sb, E,→b, sb, Fb) and

Nc = (Sc, L,→c, sc, Fc), and the overapproximating routing table τk.

124

4. Improving Pushdown System Reachability Analysis

Let L and E be the sets of abstract labels resp. edges that are possibly

smaller than the sets L and E. A network abstraction is a surjective function

α : L ∪ E → L ∪ E such that α(ℓ) ∈ L for all ℓ ∈ L and α(e) ∈ E for all e ∈ E.

Example 1. Let L = {•} and E = {⋆} such that α(ℓ) = • for ℓ ∈ L and α(e) = ⋆

for e ∈ E. This is the coarsest abstraction that does not distinguish between any

labels nor edges. On the other hand, if L = L and E = E then the abstraction

α(x) = x for x ∈ L ∪ E is the most fine-grained one.

We extend α in a straightforward way to apply to headers and sequences

of MPLS operations. We now construct an α-abstracted PDS P = (P,L⊥,∆)

similar to Section 3.2 such thatP = E×Ops×Sb whereOps = {α(ω) |ω ∈ Ops}
and ∆ is defined as above except that rule of type a) now uses the abstraction:

a) ⟨(α(e), ε, s), α(ℓ)⟩ ↪→ ⟨(α(e′), α(ω), s′), [α(op)](α(ℓ))⟩ if (e′, op◦ω) ∈ τk(u)

and s
e′−→∗

b s′ where either (i) u = (e, ℓ), or (ii) u = e and ℓ ∈ L, or (iii)

op = push(ℓ′), u = e and ℓ = ⊥.

We also define α-abstracted initial states Pi = {(α(e), ε, s) | e ∈ E, s ∈
Sb, sb

e−→ ∗
b s} and final states Pf = {(α(e), ε, sf) | e ∈ E, sf ∈ Fb}. Fi-

nally, we define an abstraction of an NFA N = (S,L,→, {s0}, F) as α(N) =

(S,L,→α, {s0}, F) where s
α(ℓ)−−−→α s′ in α(N) iff s

ℓ−→ s′ in N . Using this, let

Ni = α(Na)◦N⊥ andNf = α(Nc)◦N⊥. Theorem 3 can now be shown to hold

also for this α-abstracted PDS.

We now show how to reconstruct a concrete network trace from the α-

abstracted pushdown trace. The reconstruction may finish with a success (a

concrete network trace is found) or it suggests a refinement of the abstraction

function α and the whole verification process is repeated (CEGAR).

Reconstruction of Network Traces. Given a trace ⟨p0, w0⟩
r1⇒P . . .

rm⇒P
⟨pm, wm⟩ in the α-abstracted PDS, we take the subsequence of rules in the

trace of type a), and for each such rule ri define Ti as the set of forwarding

rules (u, e′, ω) such that ri was added due to (e′, ω) ∈ τk(u).

For each set Ti, define [Ti] as a mapping between sets of link-header pairs:

[Ti](C) =
⋃

(e,h)∈C{(e′, h′) | (u, e′, ω) ∈ Ti, H(h, ω) = h′, and u = e or u =

(e, head(h))}. If C ′ = [Ti](C) then we write C =⇒
Ti

C ′
. The initial set of

link-header pairs is C0 = {(e, h) ∈ E × L∗ | p0 = (α(e), ε, s), sb
e−→∗

b s, w0 =

α(h) ◦ ⊥, h ∈ Lang(Na)}. The set of reachable link-header pairs is now found

by C0 =⇒
T1

C1 =⇒
T2

. . . =⇒
Tn

Cn. If Cn ̸= ∅ and there exists (e, h) ∈ Cn such

that h ∈ Lang(Nc), then we have a concrete network trace, where we finally

compute and check the set of failed links against the trace as in Section 3.2.

Otherwise the PDS trace is a spurious counter-example that will guide the

refinement of the abstraction α.

125

Paper C.

Refinement from pushdown system rules. If Cn = ∅ then we compute the

refinement based on the rules of the pushdown system: let i be such that

Ci ̸= ∅ and Ci+1 = ∅, and we must have some (e, h) ∈ Ci and (u, e′′, ω) ∈ Ti+1

such that u = (e′, ℓ′) and head(h) = ℓ where (α(e), α(ℓ)) = (α(e′), α(ℓ′)) but

(e, ℓ) ̸= (e′, ℓ′), or that u = e′ where α(e) = α(e′) but e ̸= e′. In the refined

abstractionα′
we ensure that for all such (e, ℓ) ̸= (e′, ℓ′)we have (α′(e), α′(ℓ)) ̸=

(α′(e′), α′(ℓ′)), and similarly for such e ̸= e′ we haveα′(e) ̸= α′(e′). The refined

abstraction α′
should preferably be as coarse as possible. In the appendix, we

present a greedy algorithm (used in our experiments) for computing one such

suitable refinement.

Refinement from final headers. If Cn ̸= ∅ but for all (e, h) ∈ Cn we have

h /∈ Lang(Nc) then we compute the refinement based on the transitions in the

NFA encoding the final headers: for all pairs (e, h) ∈ Cn we must have α(h) ∈
Lang(α(Nc)) but h /∈ Lang(Nc). That is we have in α(Nc): sc

α(ℓ1)−−−→α s1
α(ℓ2)−−−→α

. . .
α(ℓn)−−−→α sn with h = ℓ1ℓ2 . . . ℓn, but in Nc: sc

ℓ1−→ s1
ℓ2−→ . . .

ℓi−→ si ̸
ℓi+1−−−→, for

some iwith i < n. Now there must be another label ℓ′ such thatα(ℓi+1) = α(ℓ′)

and si
ℓ′−→ si+1, but ℓi+1 ̸= ℓ′. In the refined abstraction α′

we ensure that for

all such ℓ′ we have α′(ℓi+1) ̸= α′(ℓ′) and we do this for all relevant h.

Heuristics for initial abstraction. We use a heuristic to construct the initial

abstraction. We group labels based on their next-hop links, i.e. L ⊆ 2E and

α(ℓ) = {e′ | (e′, ω) ∈ τk(e, ℓ) for some e}. We group links based on their

explicit mention in the path expression of the query, i.e. E ⊆ 2Sb×Sb
and

α(e) = {(s, s′) | s e−→b s
′}.

5 Implementation and Experiments

We implemented the translation of MPLS networks to pushdown automata as

well as the three improvements to the reachability analysis in our prototype

tool written in C++. In our experimental evaluation, we use real-world network

topologies from the Internet Topology Zoo [20]. We implemented a Python tool

that for a given network topology distributes the MPLS labels and configures

the forwarding tables by following the commonly used Label Distribution

Protocol (LDP), the Resource Reservation Protocol with Traffic Engineering

extensions (RSVP-TE), as well as the industry-standard MPLS VPN services.

We generate the forwarding tables using four different parameter settings

for the ten largest topologies from [20] (ranging from 100 nodes up to 700

nodes). This results in 40 MPLS data planes, each with 1,520 queries that are

randomly instantiated from a set of query templates describing reachability,

waypointing, loop-freedom, service-chaining and transparency [14], with the

126

5. Implementation and Experiments

0 10,000 20,000 30,000 40,000 50,000 60,000

Instances

10
−1

10
0

10
1

10
2

C
P

U
t
i
m

e
(
s
)

Moped-pre
∗

Moped-post
∗

AalWiNes-pre
∗

AalWiNes-post
∗

pre
∗

post
∗

dual
∗

min{dual
∗

,CEGAR}

Fig. 2: Comparison of solvers; all 60,800 instances (x-axis) are for each solver independently sorted

by the verification time (y-axis, note the logarithmic scale).

maximum number of failures k ∈ {0, 1, 2, 3}. We balance the benchmark in

order to obtain an even distribution between positive and negative queries.

The whole benchmark consists of 60,800 queries that are verified by each of

the solvers, in particular our algorithms referred to as post∗, pre∗ and dual∗

(all without CEGAR), compared to the state-of-the-art pushdown reachability

algorithms implemented in Moped [4] (Moped-pre∗ and Moped-post∗) and in

AalWiNes [15] (AalWiNes-pre∗ and AalWiNes-post∗). The experiments were

run on a cluster with AMD EPYC 7551 processors at 2.55 GHz (boost disabled)

with 32GB memory limit and 100 second timeout. Time spent on parsing

files is excluded. The source code, experimential benchmark and all data are

available at https://doi.org/10.5281/zenodo.5005893.

The results are presented in Figure 2 in terms of performance plots where

all instances for the competing approaches are independently sorted by their

running times and plotted on the x-axis while the y-axis contains (on logarith-

mic scale) the respective running times in seconds.

The performance curve for AalWiNes-pre∗ and Moped-pre∗ are signifi-

cantly slower than the other methods, including Moped-post∗ and AalWines-

post∗, which are comparable. Our new improved pre∗ and post∗ methods are

comparable performance-wise and already more than two times faster (on the

median instance) compared to AalWiNes-post∗. This is mainly due to our early

termination improvement and a more efficient encoding of the network.

127

https://doi.org/10.5281/zenodo.5005893

Paper C.

Topology Query CEGAR dual∗ Speedup

Colt ⟨·∗⟩ [·#Toulouse] [ˆ · #Milan, ·#Poit]∗ [Bari#·] ⟨·∗⟩ 0 0.94 90.54 96.42

Pern ⟨·∗⟩ [·#N56] [ˆ · #N38 , ·#Isla, ·#N54]∗ [N99#·] ⟨·∗⟩ 0 0.35 34.30 97.10

Colt ⟨·⟩ [·#Paris] ·∗ [Livorno#·] ⟨·+·⟩ 0 1.00 >100.00 >100.00

Colt ⟨·?⟩ [·#Strasbourg] ·∗ [·#Piacenza] ·∗ [Novara#·] ⟨·?⟩ 0 1.00 >100.00 >100.00

Colt ⟨·?⟩ [·#Karlsruhe] ·∗ [·#Ostend] ·∗ [Brindisi#·] ⟨·?⟩ 0 0.98 >100.00 >102.04

Fig. 3: The queries that perform relatively best for CEGAR (time in seconds)

The introduction of our dual∗ approach significantly improves the perfor-

mance of both pre∗ and post∗, and on the median instance the dual∗ solver

is more than 6 times faster than the previous state-of-the-art AalWiNes-post∗

approach, while the curves further open with the increasing complexity of the

reachability problems. On the instance number 49,629 (the largest instance

that Moped-post∗ solved) dual∗ is already 11 times faster than Moped-post∗.

With the harder instances dual∗ performs increasingly better than both pre∗

and post∗.

The performance of the CEGAR approach is incomparable with dual∗ as

on 27% of all instances CEGAR is faster (sometimes even by two orders of

magnitude) but on the remaining instances it can be significantly slower. We

noticed that the CEGAR approach is considerably better performing on nega-

tive queries (without any trace) where it is faster on 47% cases. The best cases

for CEGAR with two orders of magnitude speedup are listed in Figure 3 and

we remark that CEGAR solved 249 queries where dual∗ timed out. The number

of CEGAR iterations where the method is faster than dual∗ ranges between 1 to

61 but typically less than 10 iterations are required to get a conclusive answer.

As dual∗ and CEGAR are incomparable, we use the pragmatic approach where

we can run both of them in parallel and terminate as soon as one of the meth-

ods provides an answer. This is depicted by the curve min{dual∗, CEGAR}
that further improves the performance by additional 20–30%. In particular

this combined method is 7.5 times faster than AalWiNes-post∗ on the median

case and 17 times faster than Moped-post∗ on the instance number 49,629.

Finally, as both the network encoding in AalWiNes [15] as well as in our

paper overapproximate the set of network traces, they can provide inconclusive

answers. On our benchmark, AalWiNes-post∗ returned 2,024 inconclusive

answers, whereas our encoding approach reported only 7 inconclusive answers

for dual∗ and 6 inconclusive answers for dual∗ combined with CEGAR.

6 Conclusion

While more automated approaches to verify and operate communication net-

works can significantly improve their dependability, this requires efficient al-

gorithms which can deal with the large scale and complexity of today’s net-

128

References

works. We presented an efficient translation from MPLS routing tables into

pushdown systems. We also revisited the problem of fast reachability analysis

of pushdown systems and presented three techniques improving the perfor-

mance over the state-of-the-art solution by an order of magnitude. In the future

work we plan to study fast algorithms for verifying quantitative reachability

properties (related to latency or network congestion) via weighted pushdown

automata.

Acknowledgements. We thank to Bernhard Schrenk for updating the

AalWiNes online demo at https://demo.aalwines.cs.aau.dk with the

improved verification engine described in this paper.

Research supported by the Vienna Science and Technology Fund (WWTF),

ICT19-045 (WHATIF), and the DFF project QASNET.

References

[1] J. Esparza and J. Knoop, “An automata-theoretic approach to interproce-

dural data-flow analysis,” in FOSSACS’99, ser. LNCS, vol. 1578. Springer,

1999, pp. 14–30.

[2] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards, “Incremental

algorithms for inter-procedural analysis of safety properties,” in CAV’05,

ser. LNCS, vol. 3576. Springer, 2005, pp. 449–461.

[3] J. Esparza and S. Schwoon, “A BDD-based model checker for recursive

programs,” in CAV’01, ser. LNCS, vol. 2102. Springer, 2001, pp. 324–336.

[4] S. Schwoon, “Moped,” in http://www2.informatik.uni-stuttgart.de/ fmi/szs/

tools/moped/ , 2002.

[5] D. Suwimonteerabuth, S. Schwoon, and J. Esparza, “jMoped: A java

bytecode checker based on Moped,” in TACAS’05, ser. LNCS, vol. 3440.

Springer, 2005, pp. 541–545.

[6] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of pushdown

automata: Application to model-checking,” in CONCUR’97, ser. LNCS,

vol. 1243. Springer, 1997, pp. 135–150.

[7] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t

mind the gap: Bridging network-wide objectives and device-level config-

urations,” in Proc. ACM SIGCOMM, 2016, pp. 328–341.

[8] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger,

and D. Walker, “NetKAT: Semantic foundations for networks,” in Proc.

ACM POPL, 2014, pp. 113–126.

129

https://demo.aalwines.cs.aau.dk
https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/11513988_45
https://doi.org/10.1007/11513988_45
https://doi.org/10.1007/3-540-44585-4_30
https://doi.org/10.1007/3-540-44585-4_30
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://doi.org/10.1007/978-3-540-31980-1_35
https://doi.org/10.1007/978-3-540-31980-1_35
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2535838.2535862

References

[9] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:

Static checking for networks,” in Proc. USENIX NSDI, 2012, pp. 113–126.

[10] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide

configuration synthesis,” in CAV’17, ser. LNCS, vol. 10427. Springer,

2017, pp. 261–281.

[11] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-

manipulating MPLS networks,” in Proc. IEEE INFOCOM, 2018, pp. 1799–

1807.

[12] S. Schwoon, “Model-checking pushdown systems,” Ph.D. dissertation,

Technische Universität München, 2002.

[13] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-

guided abstraction refinement,” in Computer Aided Verification (CAV), ser.

LNCS, vol. 1855. Springer, 2000, pp. 154–169.

[14] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T.

Thorgersen, “P-Rex: Fast verification of MPLS networks with multiple

link failures,” in Proc. ACM CoNEXT, 2018, pp. 217–227.

[15] P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk, and

J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool for MPLS

networks,” in Proc. ACM CoNEXT, 2020, pp. 474–481.

[16] J. Esparza, S. Kiefer, and S. Schwoon, “Abstraction refinement with Craig

interpolation and symbolic pushdown systems,” Journal on Satisfiability,

Boolean Modeling and Computation, vol. 5, no. 1-4, pp. 27–56, 2009.

[17] J. R. Büchi, “Regular canonical systems,” Archiv für mathematische Logik

und Grundlagenforschung, vol. 6, no. 3-4, pp. 91–111, 1964.

[18] A. Finkel, B. Willems, and P. Wolper, “A direct symbolic approach to

model checking pushdown systems,” in INFINITY’97, ser. ENTCS, vol. 9.

Elsevier, 1997, pp. 27–37.

[19] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and ab-

straction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–1542,

Sep. 1994.

[20] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communications,

vol. 29, no. 9, pp. 1765–1775, 2011.

[21] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE for

LSP tunnels,” RFC 4090, May 2005.

130

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1109/INFOCOM.2018.8486261
https://doi.org/10.1109/INFOCOM.2018.8486261
https://d-nb.info/96638976X/34
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.3233/SAT190051
https://doi.org/10.3233/SAT190051
https://doi.org/10.1007/BF01969548
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.17487/RFC4090
https://doi.org/10.17487/RFC4090

A. Appendix

A Appendix

Proof Sketch for Proposition 1
We first prove the following lemma:

Lemma 1. After initialization, the following invariant holds for any sequence of calls

to AddTransition in Algorithm 1: for all p ∈ P we have (p, p)
w−→ ∗(q1, q2) iff

p
w−→∗

1 q1 and p
w−→∗

2 q2, and we have R = {(q1, q2) | ∃p ∈ P. (p, p) −→∗ (q1, q2)}.

Proof (Sketch). Base: Initially → and R are empty. If p
w−→∗

1 q1 and p
w−→∗

2 q2,

then the call AddState(p, p) will (using the recursive depth-first-search) add

transitions to A∩ such that (p, p)
w−→∗(q1, q2), and add the state (q1, q2) to R

(unless the initialization terminates early). No other transitions or states are

added.

Invariant preservation: Let R, →, →1 and →2 be the values before, and

R′
, →′

, →′
1 and →′

2 be the values after a call to AddTransition(qi
γ−→i q′i).

Consider each matching transition q3−i
γ−→3−i q

′
3−i in the other P-automaton.

If (q1, q2) ∈ R then for some p ∈ P,w ∈ Γ∗ (p, p)
w−→∗(q1, q2) and hence p

w−→∗
1 q1

and p
w−→∗

2 q2. Due to line 11 and 12 we have p
wγ−−→′∗

1 q′1 and p
wγ−−→′∗

2 q′2, and

on line 13 we get (p, p)
wγ−−→′∗(q′1, q

′
2). Furthermore, all transitions and states

reachable from (q′1, q
′
2) are added during the call to AddState(q′1, q′2) using

depth-first-search of matching transitions in→′
1 and→′

2. If (q1, q2) /∈ R then

for all p ∈ P (p, p) ̸−→∗(q1, q2) and hence for all w ∈ Γ∗
either p ̸ w−→∗

1 q1 or

p ̸ w−→∗
2 q2. Therefore either p ̸ wγ−−→′∗

1 q′1 or p ̸ wγ−−→′∗
2 q′2, and hence no transitions

need to be added to A∩ for this match. ⊓⊔

From Lemma 1 and the fact that the final states of A∩ are F1 × F2 we have

that Lang(A∩) = Lang(A′
1) ∩ Lang(A′

2).

From R = {(q1, q2) | ∃p ∈ P. (p, p) −→∗ (q1, q2)} as per Lemma 1, and the

fact that line 6 of Algorithm 1, immediately after a state is added to R, checks

whether it is a final state, we see that as soon as Lang(A∩) ̸= ∅, the algorithm

returns true. This completes the proof of Proposition 1. ⊓⊔

Search Efficiency of CEGAR
The sets of possible link-header pairs, in particular C0, can be very large, so

we use two techniques to succinctly represent the search states. First, we use

depth first search of the configuration sets C0 =⇒
T1

. . . =⇒
Tn

Cn to avoid storing

most states in memory and to enable early termination if a valid reconstruction

is found. We keep track of the current deepest Ci, for potentially computing

refinement based on pushdown system rules. Second, we succinctly represent

all headers in C0 by a stack of wildcards with the correct size. When we

131

References

follow a forwarding rule t ∈ Ti during the depth first search, we specialize

the wildcard to the required precondition label ℓi for that rule. We know the

accepting path inα(Na): sa . . .
α(ℓi)−−−→α si . . . , so we check that inNa: si−1

ℓi−→ si
which eventually ensures that h0 ∈ Lang(Na). If there are still wildcards left,

when we reach the final header hn, we follow the remaining transitions from

bothNa andNc in lockstep to find concrete labels such that bothh0 ∈ Lang(Na)

and hn ∈ Lang(Nc) are satisfied. If this is not possible, we have a spurious

counter-example and find a refinement based on this. Finally, the search keeps

track of the used and failed links, and avoids searching down branches, where

it is already clear that the final check {e0, . . . , en}∩F = ∅ and |F | ≤ k will fail.

Computing a Small Pair Refinement
For the CEGAR approach, we need a way of computing a refinement based

on a spurious counter-example. The refinement should remove this spurious

counter-example, while not making the next α-abstraction too fine-grained,

since that would increase the size of PDS. The case where we have pairs

(α(e), α(ℓ)) = (α(e′), α(ℓ′)) but (e, ℓ) ̸= (e′, ℓ′) turns out to be non-trivial. Here

we abstract away from the use in CEGAR and define the problem of computing

a small pair refinement as follows.

Given sets A and B, and sets of pairs X ⊆ A × B and Y ⊆ A × B, find

partitionings A1 ⊎ · · · ⊎An = A and B1 ⊎ · · · ⊎Bm = B with a) minimal n and

m, such that b) for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m we have X ∩ (Ai × Bj) =

∅ ∨ Y ∩ (Ai ×Bj) = ∅.
We wish to avoid any i, j with X ∩ (Ai × Bj) ̸= ∅ and Y ∩ (Ai × Bj) ̸= ∅,

since that would (locally) allow the spurious counter-example to reappear in

the next iteration of CEGAR. Secondly, we wish to minimize n and m since

this will keep the refinement as small as possible.

Since performance is important for this application, we present a greedy

algorithm that satisfies b), while it relaxes a) to only small, rather than minimal,

values for n and m.

We introduce the following notation: Functions XA(b) = {a | (a, b) ∈ X},
XB(a) = {b | (a, b) ∈ X}, YA(b) = {a | (a, b) ∈ Y }, YB(a) = {b | (a, b) ∈ Y }. Sets

XA =
⋃

b∈B XA(b), XB =
⋃

a∈A XB(a), YA =
⋃

b∈B YA(b), YB =
⋃

a∈A YB(a).

Algorithm 3 assigns elements of A and B into buckets in a greedy manner,

choosing first buckets for elements of A and then B in a way that ensures

condition b) is fulfilled. When needed a new bucket is created.

Details on Tool for Generation of MPLS Data Plane
While the topologies of many real communication networks have been made

available online, e.g., [20], this data does not include the router tables required

to model MPLS data planes. For this paper, we hence develop a tool which

132

A. Appendix

Algorithm 3 Greedy algorithm for computing pair refinement

1: Initialize bucket A1 with A \ (XA ∪ YA)

2: for each a in XA ∪ YA do
3: for each existing bucket Ai do
4: Let ZX ←

⋃
a′∈Ai

XB(a
′), and ZY ←

⋃
a′∈Ai

YB(a
′)

5: if (XB(a) ∩ ZY) ∪ (YB(a) ∩ ZX) = ∅ then
6: Put a in bucket Ai

7: if a was not assigned to a bucket then
8: Initialize new bucket with a

9: Initialize bucket B1 with B \ (XB ∪ YB)

10: for each b in XB ∪ YB do
11: for each existing bucket Bi do
12: Let ZX ←

⋃
b′∈Bi

XA(b
′), and ZY ←

⋃
b′∈Bi

YA(b
′)

13: if ∀(a, a′) ∈ (XA(b) × ZY) ∪ (YA(b) × ZX), a and a′ are not in the

↪→ same bucket then
14: Put b in bucket Bi

15: if b was not assigned to a bucket then
16: Initialize new bucket with b

17: return all buckets A1 . . . An and B1 . . . Bm

allows to generate, for a given network topology, realistic synthetic data planes.

Concretely, given a network topology (with weighted links as expected from

an IGP topology), our tool directly computes the MPLS data plane that will be

obtained after running typically deployed MPLS protocols Label Distribution

Protocol (LDP)1 and Resource Reservation Protocol with Traffic Engineering

extensions (RSVP-TE)2 until convergence. The tool also allows instantiating

industry-standard MPLS VPN services. The protocol related parameters can be

adjusted for each experiment. By generating the forwarding tables according

to usual protocols and practice, the result is a data plane for experimentation

that shares similarities on its construction to the ones found on real MPLS

networks.

Motivation for Redundant Paths and Labels on MPLS Networks
MPLS networks often feature significant redundancy in paths and labels,

which can be exploited for optimization. There are a few reasons that explain

why many paths on a MPLS network may have significant overlap or path re-

dundancy. On networks that use LDP, this protocol is in charge of distributing

and setting up paths across the network to reach IP prefixes present in routing

1See https://www.rfc-editor.org/rfc/rfc5036.txt.
2See https://www.rfc-editor.org/rfc/rfc3209.txt.

133

https://www.rfc-editor.org/rfc/rfc5036.txt
https://www.rfc-editor.org/rfc/rfc3209.txt

References

tables of different routers. A typical strategy is to allocate a single MPLS label

to all prefixes that can be reached through the same BGP next-hop3. Thus if

the LDP process of a router at the edge of the MPLS domain creates a path

tree for each of its BGP next-hops (a common situation when connecting with

other networks), then the result is a network containing several labels along

exactly the same paths, hence the redundancy. Also, LDP can be configured

to introduce further deaggregation resulting in further redundancy4 Another

possibility is due to having a few RSVP tunnel tailends concentrating many

tunnels from different headends. In this case, a concentration of paths tend to

appear when getting closer to the destination. This is not rare in practice for

MPLS domain edge nodes connecting to IXPs or datacenters. The result is hav-

ing many labels pointing to the same interface, or even more, to the same paths

or common segments of paths, introducing a redundancy in the forwarding.

Yet another situation on which path redundancy may arise is due to usage of

One-to-One MPLS Fast Re Route protections [21]. In this case, given a RSVP

path across the network, each router on said path computes an alternative path

to forward packets in the event of link failure upstream, eventually merging

with the original path. This protection might effectively multiply the number

of forwarding paths in the network by a factor proportional to the average

path length, increasing path redundancy if the ratio of tunnels to paths in the

network is already high.

3Juniper LDP overview https://www.juniper.net/documentation/us/en/software/junos/
mpls/topics/topic-map/ldp-overview.html

4MPLS LDP FEC deaggregation https://www.juniper.net/documentation/en_US/
junose15.1/topics/task/configuration/mpls-ldp-fec-deaggregation.html

134

https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-overview.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-overview.html
https://www.juniper.net/documentation/en_US/junose15.1/topics/task/configuration/mpls-ldp-fec-deaggregation.html
https://www.juniper.net/documentation/en_US/junose15.1/topics/task/configuration/mpls-ldp-fec-deaggregation.html

Paper D

AalWiNes:

A Fast and Quantitative What-If

Analysis Tool for MPLS Networks

Peter Gjøl Jensen, Dan Kristiansen,

Stefan Schmid, Morten Konggaard Schou,

Bernhard Clemens Schrenk, and Jiří Srba

The paper has been published in:

Proceedings of the 16th International Conference on emerging Networking

EXperiments and Technologies (CoNEXT ’20), pp. 474-481, Association for

Computing Machinery, 2020. https://doi.org/10.1145/3386367.3431308

https://doi.org/10.1145/3386367.3431308

© 2020 Copyright held by the owner/author(s). Publication rights licensed to

ACM.

The layout has been revised.

1. Introduction

Abstract

We present an automated what-if analysis tool AalWiNes for MPLS networks which

allows us to verify both logical properties (e.g., related to the policy compliance) as well

as quantitative properties (e.g., concerning the latency) under multiple link failures.

Our tool relies on weighted pushdown automata, a quantitative extension of classic

automata theory, and takes into account the actual data plane configuration, rendering

it especially useful for debugging. In particular, our tool collects the different router

forwarding tables and then builds a pushdown system, on which quantitative reacha-

bility is performed based on an expressive query language. Our experiments show that

our tool outperforms state-of-the-art approaches (which until now have been restricted

to logical properties) by several orders of magnitude; furthermore, our quantitative

extension only entails a moderate overhead in terms of runtime. The tool comes with a

platform-independent user interface and is publicly available as open-source, together

with all other experimental artefacts.

1 Introduction

While communication networks are a critical infrastructure of our digital soci-

ety, their correct configuration and operation is complex, requiring operators

to become “masters of complexity” [1]. As many recent network outages were

caused by human errors, e.g., [2–4], we currently witness major research ef-

forts toward more automated and formal approaches to operate and verify

networks [5–13].

A particularly critical but challenging task for human operators is to reason

about failures (in this paper referred to as what-if analysis). In order to meet

their stringent dependability requirements, most modern communication net-

works come with fast recovery mechanisms which revert traffic to alternative

paths [14–17]. While this is attractive, already a single link failure can lead to

unintended network behaviors which are easily overlooked and may violate

the network policy [4]. Especially multiple link failures, which are more likely

to occur in large networks and can be caused e.g. due to shared risk link

groups [18–20], may threaten network dependability.

It is often insufficient to only ensure the logical correctness (e.g., policy

compliance) of the network behavior under failures. A dependable network

also needs to satisfy quantitative properties. For example, traffic should be

rerouted along short paths, e.g., regarding link latency (offering a low latency)

or number of hops (reducing load), even under a certain number of link fail-

ures.

We are particularly interested in networks based on Multiprotocol Label

Switching (MPLS) [21]. MPLS networks are widely deployed in the Internet

today, especially in IP networks and for traffic engineering purposes. The

137

Paper D.

study of MPLS networks is also interesting from a theoretical perspective, as

the header size in these networks is not fixed; rather, additional labels may

be pushed on the header while rerouting packets around failed links, creat-

ing “tunnels”. This makes the employment of formal methods particularly

challenging as we must deal with a possibly unbounded set of packet headers.

Our Contributions. We present a what-if analysis tool for MPLS networks,

AalWiNes1, which supports a fully automated and fast verification of the net-

work behavior under failures. In particular, AalWiNes relies on an expressive

query language and allows us to test both logical properties (such as the policy

compliance) as well as quantitative properties (such as the latency, number of

hops, required label stack size resp. tunneling depth, or number of failed links),

and in polynomial-time using an over- and under-approximation technique for

an arbitrary number of link failures (and with a low number of inconclusive

answers). AalWiNes operates directly on the dataplane forwarding tables,

allowing to debug issues not visible in the control plane.

At the heart of AalWiNes lies a weighted pushdown automaton, a quantita-

tive generalization of classical automata: based on the router forwarding tables

and a query (the input to the tool), we build a weighted pushdown system and

then perform a quantitative reachability analysis. To improve performance,

AalWiNes uses novel algorithms tailored to this use case.

We offer an optimized C++ implementation of AalWiNes and report on its

platform-independent user interface. Considering a case study in cooperation

with NORDUnet, a major network operator, we show that our tool outperforms

state-of-the-art approaches (only applicable to verification of logical proper-

ties) by several orders of magnitude in terms of runtime. We also demonstrate

that our quantitative extension only entails a reasonable overhead. As a con-

tribution to the research community and in order to ensure reproducibility,

we released our tool as open source and we also shared all our experimental

artefacts [22].

Related work and novelty. The problem of how to render networks more

automated and formally verifiable has recently received much interest, both

for specific networks and protocols, such as BGP [23], OpenFlow [5, 12],

or MPLS [7] networks, as well as for networks which are protocol agnos-

tic [6]. The different systems rely on different approaches, including e.g.,

algebraic approaches [5], static verification based on geometric approaches [6],

or automata-theoretic approaches [24]. We specifically consider MPLS net-

works and use an automata-theoretic approach. Whereas some recent work

focus on verification of the control plane configurations [11, 25–29], we directly

verify the router forwarding tables, which allows us to catch errors in the data

plane [30].

We focus on polynomial-time verification via a suitable over- and under-

1AALborg WIen NEtwork verification Suit

138

2. MPLS Network Model

approximation, even under failures: many existing approaches in the literature

do not consider failure scenarios explicitly (and still exhibit a super-polynomial

runtime, e.g., due to SAT solving [10]), and/or have to solve NP-hard problems

when modelling failures scenarios, e.g. SMT solving [11]. Furthermore, most

existing approaches target different network types [11, 25, 26, 28, 29] and do

not support arbitrary header sizes, which however arise in the context of

MPLS networks: by representing MPLS networks symbolically as pushdown

automata, we hence achieve an exponential speedup compared to the direct

encoding of all possible sequences of header symbols.

To the best of our knowledge, our tool is the first to consider what-if anal-

ysis of quantitative aspects as well, and we are not aware of any applications

of weighted automata theoretical results in this context. The few weighted

solutions that exist do not consider failure scenarios and have an exponen-

tial runtime [31]. The paper closest to ours is P-Rex [24], a polynomial-time

approach to verify logical properties of MPLS networks, also accounting for

possible failures by using approximative analysis. As we demonstrate in our

evaluation, our tool not only adds the novel quantitative dimension, but also

outperforms P-Rex by several orders of magnitude. We further contribute an

interactive user interface and make a leap forward regarding applicability for

network operators.

Finally, we note that what-if analyses tools have been developed also various

other networking contexts, such as in CDNs, to predict the effects of possible

configuration and deployment changes [32].

2 MPLS Network Model

This section introduces our MPLS model and query language.

2.1 Network definition
An MPLS network consists of a topology and forwarding rules.

Definition 1. A network topology is a directed multigraph (V,E, s, t) where V

is a set of routers, E is a set of links between routers, s : E → V assigns the

source router to each link, and t : E → V assigns the target router.

We assume that links in the network can fail. This is modelled by a set

F ⊆ E of failed links. A link is active if it belongs to E \ F . We assume

asymmetric link failures that can be caused e.g., by congestion in one direction,

resulting in packet drops that can also appear as a link failure.

Let L be a nonempty set of MPLS labels used in packet headers. We

define the set of MPLS operations on packet headers as Op = {swap(ℓ) | ℓ ∈

139

Paper D.

L} ∪ {push(ℓ) | ℓ ∈ L} ∪ {pop}. Given an alphabet A, let A∗
denote the set of

all finite words over the elements of A, including the empty word ϵ.

Definition 2. An MPLS network is a tupleN = (V,E, s, t, L, τ)where (V,E, s, t)

is a network topology,L = LM⊎L⊥
M⊎LIP is a finite set of labels partitioned into

(1) the MPLS label setLM , (2) the set of MPLS labels with the bottom of the stack

bit (S) set to true L⊥
M , (3) a set of IP addresses LIP , and τ : E×L→ (2E×Op∗

)
∗

is the routing table.

The routing table, for every link e ∈ E and a top (left-most) packet label ℓ,

returns a sequence of traffic engineering groups τ(e, ℓ) = O1O2 . . . On where

each traffic engineering group is a set of the form {(e1, ω1), . . . , (em, ωm)}where

ej is the outgoing link such that t(e) = s(ej) and ωj ∈ Op∗
is a sequence of

operations to be performed on the packet header. In a given traffic engineer-

ing group, the router can nondeterministically (e.g. pseudorandomly) select

any active link and forward the packet via that link while applying the corre-

sponding sequence of MPLS operations. This allows us to abstract away from

various routing policies that facilitate e.g. splitting of a flow along multiple

shortest paths. The group Oi has a higher priority than Oi+1 and during the

forwarding, and the router always selects the traffic engineering group with

the highest priority and at least one active link.

2.2 Valid MPLS headers
The MPLS labels can be nested only in a specific way. For a given network

N = (V,E, s, t, L, τ), we define the set of valid headers H ⊆ L∗
by H =

LIP ∪ {αℓ1ℓ0 | α ∈ L∗
M , ℓ1 ∈ L⊥

M , ℓ0 ∈ LIP}. Hence the on top of the IP label

there can be one label with the bottom of stack bit S set to true and an arbitrary

number of other MPLS labels. The MPLS operations can manipulate the label-

stack by modifying only the topmost label so that the result of operations

performed on a valid header is itself a valid header.

Definition 3. The semantics of MPLS operations is a partial header rewrite func-

tion H : H × Op∗ ↪→ H where ω, ω′ ∈ Op∗, ℓ ∈ L, h ∈ H and ϵ is the empty

sequence of operations:

H(ℓh, ω) =

ℓh if ω = ϵ and ℓ ∈ L

H(ℓ′h, ω′) if ω = swap(ℓ′) ◦ ω′
and ℓ′h ∈ H

H(ℓ′ℓh, ω′) if ω = push(ℓ′) ◦ ω′
and ℓ′ℓh ∈ H

H(h, ω′) if ω = pop ◦ ω′
and ℓ ∈ LM ∪ L⊥

M

undefined otherwise .

Let LM = {30, 31}, L⊥
M = {s20, s21} and LIP = {ip1}. We use here and in

what follows the convention that all labels that are on the bottom of the MPLS

140

2. MPLS Network Model

v0

v1

v2

v3

v4

e0

e2

e1

e3

e4

e5

e6

e7

(a) Network topology

Router ein Label Priority eout Operation
v0 e0 ip1 1 e1 push(s20)

e0 ip1 1 e2 push(s10)
e0 s40 1 e1 swap(s41)

v1 e2 s10 1 e3 swap(s11)

v2 e1 s20 1 e4 swap(s21)
e1 s41 1 e5 swap(s42)
e1 s20 2 e5 swap(s21) ◦ push(30)

v3 e3 s11 1 e7 pop

e4 s21 1 e7 pop

e6 s43 1 e7 swap(s44)
e6 s21 1 e7 pop

v4 e5 30 1 e6 pop

e5 s42 1 e6 swap(s43)

(b) Routing table

σ0 = (e0, ip1) (e1, s20 ◦ ip1) (e4, s21 ◦ ip1) (e7, ip1)

σ1 = (e0, ip1) (e2, s10 ◦ ip1) (e3, s11 ◦ ip1) (e7, ip1)

σ2 = (e0, ip1) (e1, s20 ◦ ip1) (e5, 30 ◦ s21 ◦ ip1) (e6, s21 ◦ ip1) (e7, ip1)

σ3 = (e0, s40 ◦ ip1) (e1, s41 ◦ ip1) (e5, s42 ◦ ip1) (e6, s43 ◦ ip1) (e7, s44 ◦ ip1)

(c) Examples of traces

Query Witness traces
φ0 = ⟨ip⟩ [.#v0] .∗ [v3#.] ⟨ip⟩ 0 σ0, σ1

φ1 = ⟨ip⟩ [.#v0] [ˆ v2#v3]
∗ [v3#.] ⟨ip⟩ 2 σ1, σ2

φ2 = ⟨s40 ip⟩ [.#v0] .∗[v3#.] ⟨smpls ip⟩ 0 σ3

φ3 = ⟨s40 ip⟩ [.#v0] .∗[v3#.] ⟨mpls+ smpls ip⟩ 1 no trace exists

φ4 = ⟨smpls? ip⟩ [.#v0]∗[v3#.] ⟨smpls? ip⟩ 1 σ2, σ3

(d) Network queries

Fig. 1: A small network example

label stack (have the bottom of stack bit S set to true) are prefixed with small

s. ThenH(30 ◦ s20 ◦ ip1, pop ◦ swap(s21) ◦ push(31)) = 31 ◦ s21 ◦ ip1.

2.3 Example network
An example of a simple network topology is given in Figure 1a together with

the forwarding table described in Figure 1b. The example defines two label

switching paths for IP-packet routing from v0 to v3, either via the links e1 and e4,

or the links e2 and e3. The respective path can be selected nondeterministically.

Moreover, packets arriving via the link e0 with the service label s40 (agreement

with the neighboring network operator) are routed via the links e1, e5, e6 and

leave the network on the link e7.

Every forwarding rule for the router v is represented by a line in the table

and depending on the incoming link ein (where t(ein) = v) and the top of

141

Paper D.

the stack label, it determines the outgoing link eout (where s(eout) = v) and

a sequence of stack operations that replace the top label. Each such rule has

a priority that is depicted by the priority column in the middle of the table.

In our example, it is only the router v2 that has more than one priority group

associated to its forwarding table in order to protect the link e4. If a packet

arrives via the link e1 with label s20 on top of the stack then it is primarily

forwarded via the link e4 while the label is swapped with s21. Only if the link

e4 fails, a backup rule with priority 2 is used so that it forwards the traffic via

the link e5, first swapping the top label with s21 and then pushing a new label

30 on top of the label stack. The router v4 then pops the label and the packet

arrives to v3 with the same label as if the link e4 did not fail.

2.4 Network traces
We now define valid traces in an MPLS network N = (V,E, s, t, L, τ) under

the assumption that the links in the set F ⊆ E failed. For a traffic engineering

group O = {(e1, ω1), (e2, ω2), . . . , (em, ωm)} we let E(O) = {e1, e2, . . . , em}
denote the set of all links in the group. The group O is active if it contains at

least one active link, i.e. E(O) \ F ̸= ∅. Further, we define A(O1O2 . . . On) =

{(e, ω) ∈ Oj | e is an active link}where j is the lowest index such that Oj is an

active traffic engineering group, and we let A(O1O2 . . . On) = ∅ if no such j

exists. The setA(τ(e, ℓ)) so contains all the currently available output links and

the corresponding label-stack operations to be performed on a packet arriving

on the link e with the top-most label ℓ. A trace in a network is a routing of a

packet in the network and consists of a sequence of active links together with

the corresponding label-stack headers.

Definition 4. A trace in a networkN = (V,E, s, t, L, τ)with a set of failed links

F ⊆ E is any finite sequence

(e1, h1)(e2, h2) . . . (en, hn) ∈
(
(E \ F)×H

)∗
of link-header pairs where hi+1 = H(hi, ω) for some (ei+1, ω) ∈
A(τ(ei, head(hi))) for all i, 1 ≤ i < n, where head(hi) is the top (left-

most) label of hi.

Examples of network traces for our running example are provided in Fig-

ure 1c. The traces σ0 and σ1 describe two possible traces for routing a packet

arriving to v0 with the destination IP ip1, under the assumption that F = ∅.
The trace σ2 shows a failover protection of the link between v2 and v3 in case

that F = {e4}. Finally, the trace σ4 encodes a label switching path for packets

arriving to v0 with the service label s40 and it is a valid trace for example for

the set of failed links F = {e2, e3}.

142

2. MPLS Network Model

2.5 Query language
We present a powerful query language that allows us to specify regular trace

properties, both regarding the initial and final label-stacks as well as the link

sequence in the trace.

Definition 5. A reachability query for an MPLS network N = (V,E, s, t, L, τ)

is of the form ⟨a⟩ b ⟨c⟩ k where a and c are regular expressions over the set of

labels L, b is a regular expression over the set of links E, and k ≥ 0 specifies

the maximum number of failed links to be considered.

We assume here a standard syntax for regular expressions and by Lang(a),

Lang(b) and Lang(c) we understand the regular language defined by the ex-

pressions a, b and c, respectively. For specifying labels in the regular expres-

sions a and c we use the abbreviations:

• ip = [ip0, . . . , ipn] where LIP = {ip0, . . . , ipn},

• mpls = [ℓ0, . . . , ℓn] where LM = {ℓ0, . . . , ℓn}, and

• smpls = [ℓ⊥0 , . . . , ℓ
⊥
n] where L⊥

M = {ℓ⊥0 , . . . , ℓ⊥n }.

We further use the following notation for specifying links in the network.

If v and u are routers, then [v#u] matches any link e from v to u such that

s(e) = v and t(e) = u. If in1 is an interface on router v that uniquely identifies

the outgoing link e, and in2 identifies the incoming interface on router u for

the link e, then [v.in1#u.in2] matches exactly the link e. The dot-syntax is used

to denote any link in the network and it is extended to match also any router

so that [v#·] =
⋃

u∈V [v#u] and [·#u] =
⋃

v∈V [v#u].

Problem 1 (Query Satisfiability Problem). Given an MPLS network N and a

query φ = ⟨a⟩ b ⟨c⟩ k, decide if there exists a trace σ = (e1, h1) . . . (en, hn) in the

network N for some set of failed links F such that |F | ≤ k where h1 ∈ Lang(a),

e1 . . . en ∈ Lang(b), and hn ∈ Lang(c). If this is the case, the query φ is satisfied

and we call σ a witness trace.

Examples of queries are provided in Figure 1d. The query φ0 asks about

the existence of a trace that starts and ends with the label-stack containing only

the IP header, such that the first link is incoming to the router v0, followed by

zero or more hops via unspecified links, and ending with link that leaves the

router v3, all under the assumption of no link failures. The traces σ0 and σ1

satisfy the query, however, even though the trace σ2 has the required form as

well, it does not satisfy φ0 as it requires that the link e4 fails. The next query

φ1 expresses a similar property as φ0 with the exception that we allow for up

to 2 link failures and the inner path may not contain any link between v2 and

v3 (the symbol ˆ stands for complement of regular expressions). The traces

143

Paper D.

σ1 and σ2 satisfy this query. The query φ2 asks about a possible routing path

between v0 and v3 where the header of the initial packet contains the label

s40 on top of an IP header and leaves the network with an arbitrary MPLS

label (where the bottom of the stack bit is set to true) on top of the IP header.

Indeed, the trace σ3 has this property and it is a valid trace even in case of no

link failures. The next query φ3 checks the transparency of the routing from

v0 to v3 by asking whether a packet with the service label s40 can leave our

network with at least one additional MPLS label on top of the service label.

Should this be the case then our network leaks internal MPLS labels to the

neighboring networks, which is not desirable. Even in case of one link failure,

the query is not satisfied. Finally, the query φ4 asks whether in case of one link

failure there is an IP routing, with an optional MPLS label on the top of the IP

label, with three or more hops between the incoming and outgoing links, and

this is indeed the case as documented by the witness traces σ2 and σ3. In case

of no link failures, the query is satisfied only by the trace σ3.

3 Quantitative Extension

After describing our network model and the query language used in our tool,

we now present a novel extension of the framework which allows us to account

for quantitative aspects, like latency, number of hops, tunnels (label stack size),

number of failures, and linear combinations of these measures.

For a given network query, there can be several network traces that satisfy

the query and for some queries there exist even infinitely many witness traces.

From the user perspective, it is hence essential that when debugging the rea-

sons why a certain query holds, we can impose quantitative constrains on the

traces and specify what kind of witness traces we wish to visualize. For traffic

engineering purposes we may want to find a trace that has the lowest latency

or the smallest number of hops. We may be interested in finding a trace that

minimizes tunneling depth or the number of failed links required to execute a

given trace, or we may wish to find a trace that balances several such measures

simultaneously.

We shall start by defining atomic quantiative properties of network traces.

Let N = (V,E, s, t, L, τ) be an MPLS network and let F ⊆ E be the set of failed

links. An atomic quantity is a function p : ((E \ F)×H)∗ → N0 that for a given

trace σ evaluates to a non-negative integer p(σ) representing the quantitative

measure of the trace. In our tool, we support the following atomic quantities

of a network trace σ = (e1, h1) . . . (en, hn):

• Links(σ) = n is the length of the trace,

• Hops(σ) = |{e ∈ {e1, . . . , en} | s(e) ̸= t(e)}| is the number of hops, where

we avoid counting links that are self-loops,

144

3. Quantitative Extension

• Distance(σ) =
∑n

i=1 d(ei) is the distance for any distance function d :

E → N0, e.g., the geographical distance, latency or e.g. inverse band-

width capacity,

• Failures(σ) =
∑n−1

i=1 |failed(i)| where failed(i) = {e | (e, ω) ∈ Ok, 1 ≤
k < j}, where τ(ei, head(hi)) = O1O2 . . . Om, and where j, is the lowest

index such that Oj is an active traffic engineering group, and

• Tunnels(σ) =
∑n−1

i=1 max(0, |hi+1|− |hi|) is the number of pushes of new

MPLS labels on the existing label-stack.

The atomic quantity Failures(σ) measures the minimal number of failed

links which are necessary at each router in order to enable the feasibility of the

trace σ. The function Tunnels(σ) measures the positive increase in the label-

stack height during the trace σ that corresponds to the number of tunnels

created during the trace.

Consider again the traces for our running example from Figure 1c. We have

Hops(σ0) = Links(σ0) = 4 and Hops(σ3) = Links(σ3) = 5. We also observe

that Failures(σ2) = 1 while Failures(σ3) = 0. Finally, we can see that e.g.

Tunnels(σ1) = 1, Tunnels(σ2) = 2 and Tunnels(σ3) = 0.

We can now combine the atomic quantities in order to define composed

criteria for trace weight specification, by constructing linear expressions of the

form

expr ::= p | a * expr | expr1 + expr2
where p is an atomic quantity and a ∈ N. A vector of linear expressions

(expr1, expr2, . . . , exprn) allows us to specify trace properties by priorities, so

that expr1 has a higher priority than expr2 etc. For a trace σ, there is a natural

evaluation of linear expressions to nonnegative integers and for a vector of

linear expressions, we assume the lexicographical ordering ⊑ on vectors of

nonnegative integers, by abuse of notation extended to traces.

Problem 2 (Minimum Witness Problem). For a network, a query that is satis-

fied in the network and a vector of linear expressions (expr1, expr2, . . . , exprn),

we want to find a witness trace σ such that σ ⊑ σ′
for any other witness trace

σ′
.

Consider the queryφ4 in our running example from Figure 1 where we want

to find witness traces that will minimize the vector (Hops,Failures+3·Tunnels).
The query has two witness traces σ2 and σ3 and when we evaluate them on

the minimization vector, we get the pair (5, 1 + 3 · 2) = (5, 7) for σ2 and

(5, 0 + 3 · 0) = (5, 0) for σ3. As lexicographically (5, 0) ⊑ (5, 7), the answer to

the minimum witness problem is the trace σ3. In general, there can be several

minimum witness traces, and we may return any of those, or add another

minimization criterion to the vector of linear expressions.

145

Paper D.

Fig. 2: Running example loaded in the AalWiNes GUI

4 Tool Implementation

We now give an overview of the tool architecture, its theoretical foundation

and integration with the dataplane configuration. The front end of our tool

provides a web-browser based visualization. The graphical interface allows us

to load a number of predefined networks from the Internet Topology Zoo [33],

the operator’s network used in the experiments as well as the running example

used in this tool paper. In the interface we can specify the query, including

an online help for router names with interfaces as well as the sets of labels

tested at each router. In options, we can set different parameters for the tool

and graphically create the vector of linear expressions for the minimum trace

specification. If a witness trace is discovered, the GUI visualizes the trace

including the operations performed at each router. A screenshot in Figure 2

shows how to specify the minimization vector (Hops,Failures + 3 · Tunnels)
and the corresponding witness trace. The GUI is written in JavaScript and

the source code is available under the GPL3 license. The backend verification

engine is running on a web server at https://demo.aalwines.cs.aau.dk/

and there is also a packaged version of the tool that can be run locally without

the use of a web server (and allows to input additional MPLS networks created

by the user).

146

https://demo.aalwines.cs.aau.dk/

4. Tool Implementation

4.1 Verification methodology
Our tool is based on automata-theoretic approach that leverages a translation

from the query satisfiability (in an MPLS network) to a reachability analysis

of a pushdown automaton (with potentially infinitely many reachable config-

urations). As reachability in pushdown automata is decidable in polynomial

time [34, 35], this approach has the potential of scaling to large networks.

The connection between MPLS networks and pushdown automata was

first noticed in [7, 24] where the authors provide a command-line prototype

implementation in Python with encouraging experiments showing the feasi-

bility of the approach. They use a state-of-the-art pushdown model checker

Moped [36, 37] for reachability checking on pushdown automata and show

that they can verify complex network queries on network topologies with 20-

30 routers in a matter of hours. However, the work in [24] is a purely qualitative

approach and does not provide any support for quantitative analysis. In or-

der to deal with quantitative aspects, we extend the approach from [24] and

suggest a novel translation from the query satisfiability problem with mini-

mization criteria for witness traces, into the framework of weighted pushdown

automata [38]. The theoretical foundations for the verification of weighted

pushdown automata have been developed in the area of dataflow analysis [39]

where polynomial-time algorithms are known even for the weighted extension.

The basic observation behind this automata-theoretic approach to reachabil-

ity analysis of weighted pushdown automata is that the set of all reachable

configurations in a pushdown system forms a regular language that can be

effectively represented by a nondeterministic finite automaton (of polynomial

size) with transitions annotated by weights. The length of the shortest path

to reach a pushdown configuration then corresponds to the shortest accept-

ing path in the finite automaton under that configuration. As the Moped

tool employed in [24] cannot handle weighted pushdown automata, we de-

velop a new weighted pushdown automata C++ library AalWiNes (available at

https://github.com/DEIS-Tools/AalWiNes) to replace Moped. Our exper-

iments show a significant (several orders of magnitude) speedup due to the

novel translation method with optimized reduction methods as well as due to

our efficient implementation of the backend engine.

4.2 Tool architecture
The details about the architecture of our tool are given in Figure 3. First

we obtain a dataplane snapshot of the routing forwarding tables (including

the failover rules) as described in Appendix A. If the network configuration

changes, we need to obtain a new dataplane snapshot. The graphical user

interface allows us to load the MPLS network, a query and possibly also

a weight expression. The tool then constructs a pushdown automaton by

147

https://github.com/DEIS-Tools/AalWiNes

Paper D.

GUI

Translation module
MPLS
network

Query

Our solver

post*

pre*

Over-
approximation

Library

Reduction

Moped

post*

pre*

Binary

Satisfied

Network
trace

PDA

Weight

Unsatisfied
ResultSuccessful

FailedSuccessful

Trace-
reconstruction

PDA
trace

Failed
Under-

approximation

Inconclusive

Fig. 3: Tool Architecture

means of over-approximation as the exact analysis requires to enumerate all

of the (exponentially many) failure scenarios. Intuitively, over-approximation

assumes that up to k links can fail at any router. This clearly includes all failure

scenarios of up to k globally failed links but it may include additional traces

that contain more than k failed links in total.

After this, the tool performs a series of reductions (based on static analysis

that overapproximates the possible top-of-stack symbols in every given con-

trol state) on the constructed (weighted) pushdown automaton by removing

redundant rules in order to decrease its size. The reduced pushdown is then

sent either to the Moped engine (possible only if the weight requirements are

not specified) or to our solver that accepts both weighted and unweighted

pushdown automata. If the verification result says that the query is not sat-

isfied, we achieve a conclusive answer and report it to the GUI. Otherwise,

the produced network trace must be verified for its feasibility and the fact that

it does not exceed in total k link failures (for a fixed trace this can be done

in polynomial time). If the trace reconstruction succeeds, we have a witness

trace (possibly one of the minimal ones in case the weight objective is given)

and we can report that a query is satisfied. Otherwise, our tool constructs

an under-approximating pushdown automaton where we add a global failed

link counter and use this counter to guarantee that the total number of failed

links is not exceeded. This produces only an under-approximation as in case

of traces with loops, we may count the same failed link twice. If a valid trace

is generated by the under-approximation, we can return it as a witness trace.

Otherwise the answer is inconclusive. In our experiments on a real operator

network, the answer was inconclusive for 8 out of 6,000 queries (0.13% of the

total)—a more expensive analysis is then needed.

148

5. Performance Evaluation

Query Moped Dual Failures
⟨smpls ip⟩ [· #R6] ·∗ [· #R4] ⟨smpls ip⟩ 1 9.57 0.82 41.23

⟨smpls ip⟩ [· #R2] ·∗ [· #R18] ⟨(mpls∗ smpls)? ip⟩ 1 9.29 0.86 31.76

⟨ip⟩ [· #R0] ·∗ [· #R4] ⟨ip⟩ 0 0.88 0.01 0.02

⟨[$449550] ip⟩ [· #R0] ·∗ [· #R5] ·∗ [· #R1] ⟨ip⟩ 0 1.66 0.02 0.03

⟨[$449550] ip⟩ [· #R0] ·∗ [· #R5] ·∗ [· #R1] ⟨ip⟩ 1 6.08 0.05 0.06

⟨smpls? ip⟩ ·∗ ⟨· smpls ip⟩ 0 89.37 14.73 432.66

Table 1: Query verification time (in seconds)

5 Performance Evaluation

We evaluate the performance of our tool on a real-world network operator

NORDUnet (http://www.nordu.net/) with 31 routers and more than 250.000

forwarding rules. The operator uses an advanced MPLS routing in its network,

including numerous service labels by which it communicates with neighboring

networks. In order to increase the variety of different types of networks, we

create several variants of networks from Internet Topology Zoo [33] (having on

average 84 routers and 240 routers at the largest instance) with label switching

paths between any two edge routers and with local fast failover protection by

introducing tunnels based on shortest paths; the queries are like in Table 1 and

in our running example. The experiments were run on our cluster with AMD

EPYC 7551 processors running at 2.55 GHz with boost disabled, using 16GB

memory limit and 10 minutes timeout. A reproducibility artifact [22] includes

the specific queries used in our experiments.

The operator asked us to verify a number of specific queries, including

those in Table 1. The table shows the verification time for using Moped as

the backend engine, our own engine (called Dual as it combines the over- and

under-approximation approach) and our weighted verification engine that

uses the Failures atomic quantity. Both the unweighted (Dual) and weighted

(Failure) engine is a part of our AalWiNes verification suite. The results show

that for three queries our weighted engine is on average about 4 times slower

that Moped and for other three queries it is about 70 times faster than Moped.

Our unweighted engine is always faster and has a 53 times speed up on average

compared to Moped. The overhead of performing quantitative analysis is

hence reasonable as the performance is comparable with the state-of-the art

unweighted tool. Noticeably, the last query in the table takes significantly more

verification time for all three engines. The reason is that its path constraint is

very unspecific (allows for any sequence of routers) and the created pushdown

system hence becomes significantly larger. We also note that [24] reports that

the unweighted verification of similar queries on a network of comparable size

149

http://www.nordu.net/

Paper D.

4000 4200 4400 4600 4800 5000 5200 5400 5600
Instances

100

101

102

103

V
er

ifi
ca

tio
n

tim
e

Moped
Dual
Failures

Fig. 4: Comparison on Topology Zoo networks

took between 28 minutes (for the simpler queries) and up to 109 minutes (for

the more complex ones). This shows an improvement of several orders of

magnitude and makes it possible to perform MPLS verification interactively

for human operators, in particular in combination with our GUI ([24] is a

command-line tool).

Finally, the plot in Figure 4 shows a comparison (note the logarithmic scale)

of the verification times (in seconds) between Moped, our Dual unweighted

approach and our weighted engine with the quantity Failures (we also run the

experiment for the other quantitative measures and the verification times did

not differ significantly). The plot includes over 5602 experiments on different

queries on the networks from the Internet Topology Zoo database, ordered by

their verification times. As the input format of all three engines is the same, all

experiments were run with the same set of network topologies and the same

queries. Again, we outperform Moped by almost an order of magnitude by

using our unweighted engine. An interesting phenomenon can be observed

for our weighted engine that behaves similarly as Moped on the smaller in-

stances; however, on the difficult instances it is able to verify 6 more cases than

our unweighted implementation. This is due to the fact that the guided search

for shortest traces, that minimize the number of failures, allows us to find

witness traces that are otherwise not discovered by the unweighted search;

this highlights the benefits of quantitative analysis. This is further confirmed

by the percentage of inconclusive answers that corresponds to 0.57% (32 in-

conclusive answers out of 5568) for the Dual unweighted approach and only

0.04% (2 inconclusive answers out of 5574) for the weighted engine optimiz-

ing the number of failures. In vast majority of cases we can hence use our

150

6. Conclusion

approximation approach that is guaranteed to run in polynomial time.

6 Conclusion

We presented an MPLS what-if analysis tool that not only provides an un-

precedented performance in theory but also in practice, as demonstrated in

our case study with a major network operator. We regard our contribution

concerning the automated analysis of quantitative aspects as a first step, and

believe that our paper opens interesting avenues for future research. We are

currently improving the expressiveness of the query language.

Acknowledgements. We thank Henrik T. Jensen from NORDUnet for pro-

viding us with configuration data. The research is supported by DFF project

QASNET and WWTF project ICT19-045.

References

[1] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,

S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, K. Zarifis, and

P. Kazemian, “Leveraging SDN layering to systematically troubleshoot

networks,” in Proc. ACM HotSDN, 2013, pp. 37–42.

[2] Duluth News Tribune, “Human error to blame in min-

nesota 911 outage,” in https://www.ems1.com/911/articles/

389343048-Officials-Human-error-to-blame-in-Minn-911-outage/ , 2018.

[3] R. Chirgwin, “Google routing blunder sent japan’s internet dark on fri-

day,” in https://www.theregister.co.uk/2017/08/27/google_routing_blunder_

sent_japans_internet_dark/ , 2017.

[4] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t

mind the gap: Bridging network-wide objectives and device-level config-

urations,” in Proc. ACM SIGCOMM, 2016, pp. 328–341.

[5] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger,

and D. Walker, “NetKAT: Semantic foundations for networks,” in Proc.

ACM POPL, 2014, pp. 113–126.

[6] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:

Static checking for networks,” in Proc. USENIX NSDI, 2012, pp. 113–126.

[7] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-

manipulating MPLS networks,” in Proc. IEEE INFOCOM, 2018, pp. 1799–

1807.

151

https://doi.org/10.1145/2491185.2491197
https://doi.org/10.1145/2491185.2491197
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2535838.2535862
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://doi.org/10.1109/INFOCOM.2018.8486261
https://doi.org/10.1109/INFOCOM.2018.8486261

References

[8] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “NetComplete:

Practical network-wide configuration synthesis with autocompletion,” in

Proc. USENIX NSDI, 2018, pp. 579–594.

[9] ——, “Network-wide configuration synthesis,” in CAV’17, ser. LNCS, vol.

10427. Springer, 2017, pp. 261–281.

[10] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King,

“Debugging the data plane with anteater,” in Proc. ACM SIGCOMM, 2011,

pp. 290–301.

[11] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach to

network configuration verification,” in Proc. ACM SIGCOMM, 2017, pp.

155–168.

[12] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:

Verifying network-wide invariants in real time,” in Proc. USENIX NSDI,

2013, pp. 15–27.

[13] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and

A. Vahdat, “Libra: Divide and conquer to verify forwarding tables in

huge networks,” in Proc. USENIX NSDI, 2014, pp. 87–99.

[14] M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári, and S. Schmid, “Fast recovery

mechanisms in the data plane,” May 2020.

[15] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,

“Ensuring connectivity via data plane mechanisms,” in Proc. USENIX

NSDI, 2013, pp. 113–126.

[16] M. Chiesa, I. Nikolaevskiy, S. Mitrović, A. Gurtov, A. Madry, M. Schapira,

and S. Shenker, “On the resiliency of static forwarding tables,” IEEE/ACM

Transactions on Networking, vol. 25, no. 2, pp. 1133–1146, 2016.

[17] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE for

LSP tunnels,” RFC 4090, May 2005.

[18] M. Menth, M. Duelli, R. Martin, and J. Milbrandt, “Resilience analysis

of packet-witched communication networks,” IEEE/ACM Transactions on

Networking, vol. 17, no. 6, pp. 1950–1963, 2009.

[19] A. Atlas and A. D. Zinin, “Basic specification for IP fast reroute: Loop-free

alternates,” RFC 5286, Sep. 2008.

[20] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “IP fast rerouting for

multi-link failures,” IEEE/ACM Transactions on Networking, vol. 24, no. 5,

pp. 3014–3025, 2016.

152

https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
https://doi.org/10.36227/techrxiv.12367508.v1
https://doi.org/10.36227/techrxiv.12367508.v1
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://doi.org/10.1109/TNET.2016.2619398
https://doi.org/10.17487/RFC4090
https://doi.org/10.17487/RFC4090
https://doi.org/10.1109/TNET.2009.2020981
https://doi.org/10.1109/TNET.2009.2020981
https://doi.org/10.17487/RFC5286
https://doi.org/10.17487/RFC5286
https://doi.org/10.1109/TNET.2016.2516442
https://doi.org/10.1109/TNET.2016.2516442

References

[21] S. Smith, Introduction to MPLS, https://www.cisco.com/c/dam/

global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf, 2003, visited:

19/05/2020.

[22] P. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. Schrenk, and J. Srba,

“Artifact for "AalWiNes: A fast and quantitative what-if analysis tool for

MPLS networks",” Zenodo, Oct. 2020.

[23] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A. Scedrov,

and C. Talcott, “FSR: Formal analysis and implementation toolkit for safe

interdomain routing,” IEEE/ACM Transactions on Networking, vol. 20, no. 6,

pp. 1814–1827, 2012.

[24] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T.

Thorgersen, “P-Rex: Fast verification of MPLS networks with multiple

link failures,” in Proc. ACM CoNEXT, 2018, pp. 217–227.

[25] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Ma-

hajan, and T. Millstein, “A general approach to network configuration

analysis,” in Proc. USENIX NSDI, 2015, pp. 469–483.

[26] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast

control plane analysis using an abstract representation,” in Proc. ACM

SIGCOMM, 2016, pp. 300–313.

[27] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and

G. Varghese, “Efficient network reachability analysis using a succinct

control plane representation,” in Proc. USENIX OSDI, 2016, pp. 217–232.

[28] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,

“Plankton: Scalable network configuration verification through model

checking,” in Proc. USENIX NSDI, 2020, pp. 953–967.

[29] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast

multilayer network verification,” in Proc. USENIX NSDI, 2020, pp. 201–

219.

[30] A. Shukla, S. J. Saidi, S. Schmid, M. Canini, T. Zinner, and A. Feldmann,

“Toward consistent SDNs: A case for network state fuzzing,” IEEE Trans-

actions on Network and Service Management, vol. 17, no. 2, pp. 668–681,

2020.

[31] K. G. Larsen, S. Schmid, and B. Xue, “WNetKAT: A weighted SDN pro-

gramming and verification language,” in 20th International Conference

on Principles of Distributed Systems (OPODIS 2016), ser. LIPIcs, vol. 70.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 18:1–18:18.

153

https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf
https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf
https://doi.org/10.5281/zenodo.4056504
https://doi.org/10.5281/zenodo.4056504
https://doi.org/10.1109/TNET.2012.2187924
https://doi.org/10.1109/TNET.2012.2187924
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3281411.3281432
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://doi.org/10.1109/TNSM.2019.2955790
https://doi.org/10.4230/LIPIcs.OPODIS.2016.18
https://doi.org/10.4230/LIPIcs.OPODIS.2016.18

References

[32] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar, “Answer-

ing what-if deployment and configuration questions with wise,” in Proc.

ACM SIGCOMM, 2008, pp. 99–110.

[33] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communications,

vol. 29, no. 9, pp. 1765–1775, 2011.

[34] J. R. Büchi, “Regular canonical systems,” Archiv für mathematische Logik

und Grundlagenforschung, vol. 6, no. 3-4, pp. 91–111, 1964.

[35] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of pushdown

automata: Application to model-checking,” in CONCUR’97, ser. LNCS,

vol. 1243. Springer, 1997, pp. 135–150.

[36] S. Schwoon, “Moped,” in http://www2.informatik.uni-stuttgart.de/ fmi/szs/

tools/moped/ , 2002.

[37] ——, “Model-checking pushdown systems,” Ph.D. dissertation, Technis-

che Universität München, 2002.

[38] W. Kuich and A. Salomaa, Eds., Semirings, Automata, Languages. Berlin,

Heidelberg: Springer-Verlag, 1985.

[39] T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted pushdown systems

and their application to interprocedural dataflow analysis,” Science of

Computer Programming, vol. 58, no. 1-2, pp. 206–263, 2005.

A Appendix

By default, our tool accepts a generic and vendor agnostic XML input format

for a network. The input is split into a topology definition and a routing

definition and examples are given below.

topo.xml
<network>
<routers>
<router name="R0">
<interfaces>
<interface name="ae1.11"/>
<interface name="ae5.0"/>
...

</interfaces>
</router>
...

</routers>
<links>

154

https://doi.org/10.1145/1402958.1402971
https://doi.org/10.1145/1402958.1402971
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1007/BF01969548
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://d-nb.info/96638976X/34
https://doi.org/10.1016/j.scico.2005.02.009
https://doi.org/10.1016/j.scico.2005.02.009

A. Appendix

<sides>
<shared_interface interface="et-3/0/0.2" router="R0"/>
<shared_interface interface="et-1/3/0.2" router="R3"/>

</sides>
</links>
...

</network>

route.xml
<routes>
<routings>
<routing for="R0">
<destinations>
<destination from="ae1.11" label="$300292">

<te-group>
<routes>
<route to="et-1/1/0.0">
<actions>
<action arg="$300050" type="swap"/>
<action arg="496505" type="push"/>

</actions>
</route>

</routes>
</te-group>
...

</destination>
...

</destinations>
</routing>
...

</routings>
</routing>

A.1 IS-IS input
Our tool accepts topological description and routing tables exported directly

from an IS-IS system; to do so we run the following commands on each router

in the network:

show isis adjacency detail | display xml
show route forwarding-table family mpls extensive |\

display xml
show pfe next-hop | display xml

To correctly reconstruct the network configuration, an additional

mapping file has to be constructed. Each line in the mapping file cor-

responds to a single logical routing entity and is given in the form

<aliases>:<adj.xml>:<route-ft.xml>:<pfe.xml>. Edge routers can also

be defined by omitting the xml-files. In the case of edge routers, the

routing-table is assumed empty, and such routers will act as sink-nodes in the

network. An example of such a mapping file is given below.

155

References

192.0.0.1,R1:R1-adj.xml:R1-route.xml:R1-pfe.xml
192.0.0.2,10.10.0.2,E1
...

A network given as an extract from an IS-IS system can be turned into

the vendor agnostic format by calling directly our binary and providing the

–write-topology topo.xml and –write-routing route.xml options.

A.2 Location data
To correctly visualize the network in the GUI, an additional location mapping

has to be provided giving latitude and longitude to each router. This informa-

tion is also used for computing the physical distance between routers used in

the minimum trace specification. An example is given below.

{ "R0": { "lat": 46.5,"lng": 7.3}, ... }

156

Paper E

PDAAAL:

A Library for Reachability Analysis

of Weighted Pushdown Systems

Peter Gjøl Jensen, Stefan Schmid,

Morten Konggaard Schou, and Jiří Srba

The paper has been published in:

Automated Technology for Verification and Analysis (ATVA 2022),

Lecture Notes in Computer Science, vol. 13505, pp. 225-230, Springer, 2022.

https://doi.org/10.1007/978-3-031-19992-9_14

https://doi.org/10.1007/978-3-031-19992-9_14

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland

AG. Reproduced with permission from Springer Nature

The layout has been revised.

1. Introduction

Abstract

We present PDAAAL, an open source C++ library and tool for weighted reachabil-

ity analysis of pushdown systems, including generation of both shortest and longest

witness traces. We consider totally ordered weight domains which have important

applications, e.g. in network verification, and achieve a speedup of two orders of

magnitude compared to the state-of-the-art tool WALi. Our tool further extends the

state of the art by supporting the generation of the longest trace in case it exists, or

reporting that no finite longest trace can be generated. PDAAAL is provided both as a

stand-alone tool accepting JSON files and as a C++ library. This allows for integration

in software pipelines as well as in verification tools like AalWiNes.

1 Introduction

Pushdown automata are a fundamental model in computer science and they

are often used as an underlying formalism for data-flow analysis of recursive

programs [1–4], parsing of XML streams [5], modelling of network protocols [6,

7] and others [8, 9]. The verification questions on different types of models can

be reduced to reachability analysis for pushdown systems.

In order to support quantitative extensions of such systems, we need to

study weighted extensions of pushdown automata. In general, these weights

are defined over an idempotent semiring and we need to consider meet-over-

all-paths values for reaching certain pushdown configurations. There is a

rich literature of theory showing the application of weighted pushdown au-

tomata [4, 8–10] to various application domains and several tools for the reacha-

bility analysis of pushdown systems exist, including the tools Moped [11] used

for the analysis of Java programs (in the jMoped framework [3]), WPDS++ [12]

for program analysis as well as its more recent successor WALi [13] employed

in tools like ICRA [9] performing interprocedural compositional recurrence

analysis and the static analysis tool Phasar [4] for C/C++ programs.

We present an open source C++ library and stand-alone tool PDAAAL for

efficient reachability analysis of pushdown automata over the weight domain

of totally ordered idempotent semirings. The study of such totally ordered

semirings is fundamental and has important applications, e.g., in the context

of the verification of communication networks [6, 7]. PDAAAL implements

the classical pre∗ and post∗ saturation algorithms for unweighted pushdown

systems, including the new dual∗ algorithms [14] and extends these algorithms

for weighted reachability analysis, computing the weights of not only the

shortest traces but also the longest traces, while returning such trace witnesses

in case they exist. The study of longest traces is practically relevant, as it

allows, for example, to perform a worst-case analysis of the routing paths in a

communication network, e.g., in terms of delay or size of packet headers [7]. It

159

Paper E.

is, however, also challenging to analyze, as the longest trace may be unbounded

and hence impossible to compute directly. To the best of our knowledge,

PDAAAL is the first tool providing the exact computation of the longest traces

as the debugging information.

We introduce the formalism of weighted pushdown systems (Section 2),

present the implemented algorithms and tool usage (Section 3) and compare

the performance of PDAAAL with the state-of-the-art tool WALi for weighted

reachability analysis (Section 4) where we observe up to two orders of magni-

tude faster performance. Finally, we elaborate on a specific use case in network

verification (Section 5) related to MPLS networks [7].

2 Weighted Pushdown Systems and Reachability

PDAAAL can accept weights from the domain of totally ordered idempotent

semirings S = (D,⊓,⊕,⊤,⊥). An example of a weight domain for computing

the shortest paths is S1 = (N ∪ {∞},min,+,∞, 0) where weights are natural

numbers including infinity, the weights are additive along a single path and

minimum is the meet-over-all-path operation. A domain for the computation

of the longest path is S2 = (Z ∪ {−∞},max,+,−∞, 0).

Definition 1. A Weighted Pushdown System (WPDS) over a weight semiring

S = (D,⊓,⊕,⊤,⊥) is a tuple (P,Γ,∆) where P is a finite set of control locations,

Γ is a finite stack alphabet, and the set of rules ∆ is a finite subset of (P × Γ) ×
D × (P × Γ∗), written ⟨p, γ⟩ d

↪−→ ⟨p′, w⟩, if ((p, γ), d, (p′, w)) ∈ ∆.

A configuration in a pushdown system is a pair ⟨p, w⟩ where p ∈ P is the

current control location and w ∈ Γ∗
is the stack content (head of the stack on

the left). A WPDS induces a labelled transition system T = (P × Γ∗, D,⇒),

where for all w′ ∈ Γ∗ ⟨p, γw′⟩ d
=⇒ ⟨p′, ww′⟩, provided that there is a pushdown

rule ⟨p, γ⟩ d
↪−→ ⟨p′, w⟩. We write c0

d
=⇒⊕cn if there is a path in the labelled

transition system c0
d1=⇒ . . .

dn==⇒ cn such that d = d1 ⊕ . . . ⊕ dn. The distance

between two configurations c and c′ is given by δ(c, c′) = ⊔{d | c d
=⇒⊕c′}. If

S is a bounded idempotent semiring (i.e. has no infinite descending chains),

the distance is well defined. If S is unbounded, the supremum may not be in

the domain D; for example in the semiring S2, the distance is ∞ if there is a

positive-weight loop.

The problem solved by PDAAAL is: given a WPDS (P,Γ,∆) and two regu-

lar sets of configurations C,C ′ ⊆ P × Γ∗
, compute the distance ⊔{δ(c, c′) | c ∈

C, c′ ∈ C ′} and return a witness trace (if any) with this distance.

160

3. Implemented Algorithms and PDAAAL Architecture

3 Implemented Algorithms and PDAAAL Archi-
tecture

It is well known that the sets of all predecessors pre∗(C) and successors

post∗(C) of a regular set of pushdown configurations C are also regular [15].

The classical pre∗ and post∗ saturation algorithms [2, 16, 17] solve reachability

for pushdown systems without weights. Schwoon [17] describes how to find

a shortest witness trace for totally ordered weight domains by using a priority

queue to select the next step of the saturation. This is later generalized to

bounded idempotent semirings [8], and implemented in the tool WALi [13].

Here the saturation algorithms use a workset where transitions may be added

multiple times, hence possibly loosing some efficiency compared to the prior-

ity queue that exploits the total ordering. Extensions to unbounded semirings

are considered in [10] by detecting that exceeding a given number of iterations

of the saturation algorithm causes nontermination of the procedure. PDAAAL

implements the ideas from [10] to pre∗, post∗ as well as dual∗ (combination of

the first two approaches) for unbounded but totally ordered weight domains.

To achieve a high performance, we employ numerous algorithmic optimiza-

tions. We extend the early termination and bidirectional-search (dual∗) tech-

nique from unweighted pushdowns [14] to shortest trace queries for weighted

systems. The main challenge here is that the on-the-fly construction of the

product automata must keep track of the weight of the best path to any state,

and the saturation only terminates if the best weight of an accepting path is

no higher than the current weight in the priority queue in the saturation. For

longest trace queries the dual∗ approach simply interleaves the saturation of

pre∗ and post∗ and returns when either of them terminates. We also efficiently

handle rules that apply to any top-of-stack label, using of a wildcard flag in the

precondition, and adapting the pre∗ and post∗ algorithms to efficiently handle

wildcards.

PDAAAL is designed to be included as a library in other C++ projects, but it

also functions as a stand-alone tool with JSON parsers for pushdown systems

and P-automata (nondeterministic automata used to represent regular sets

of pushdown configurations). The tool has predefined weight domains for

integers and natural numbers as well as vectors of these. In all cases, the

weight semiring can either minimize or maximize the weight, depending on

whether a shortest or longest trace is required. Other weight domains can be

defined by the user, when PDAAAL is used as a C++ library.

As an example, a P-automaton for the following set of pushdown config-

urations {⟨p0, BA⟩, ⟨p0, A⟩, ⟨p1, A⟩} can be defined either in JSON format, or

by using regular expressions for the stack, symbols ’<’ and ’>’ to denote con-

figurations, and the symbol ’|’ to union multiple configuration sets: < [p0],

[B]? [A] > | < [p1], [A] >.

161

Paper E.

WALi pre
∗

WALi post
∗

WALi min pre
∗

post
∗

dual
∗

0 5,000 10,000 15,000

10
−1

10
0

10
1

10
2

(s)

(a) Shortest latency

0 5,000 10,000 15,000

10
−1

10
0

10
1

10
2

(s)

(b) Longest latency

Fig. 1: Performance plots of WALi (pre∗,post∗ and minimum of both) in thin lines, compared to

PDAAAL (pre∗, post∗ and dual∗) in thick lines; all instances on x-axis are independently sorted

by the increasing verification time that is plotted on y-axis (log-scale) in seconds.

To run PDAAAL from the command line, an input file must be provided

along with the algorithm to use: -e 1 (post∗), -e 2 (pre∗), or -e 3 (dual∗) and

the trace type -t 0 (no trace), -t 1 (any trace), -t 2 (shortest trace), or -t 3

(longest trace). For instance to run the post∗ shortest trace algorithm: pdaaal

--input example.json -e 1 -t 2.

4 Comparison with State-of-the-Art

The first library for weighted pushdown systems, called WPDS [17], was pro-

vided by Schwoon and used in Moped version 2. Later, WPDS++ [12] was

developed by Reps et al. and included further performance optimizations.

The state-of-the-art tool WALi [13] was developed as a successor of WPDS++

and it is used as a backend in recent static analyzers ICRA [9] and Phasar [4] .

We compare PDAAAL to WALi by running the shortest and longest trace

queries on weighted pushdown systems produced by AalWiNes [7] on a large

benchmark of real communication networks from ISP providers. All together,

we run 16,800 reachability queries on pushdown systems of varying sizes.

WALi does not support a generation of the longest traces, unless a bound on

the weight of the longest trace is known a priori. In order to enable this,

we set the bound to the highest possible value of 32bit integer. On contrary,

the implementation in PDAAAL is able to effectively compute a bound on

the number of iterations, and hence it guarantees the termination even for

unbounded longest traces.

Figure 1 shows the results comparing WALi and PDAAAL. We consider

162

5. Applications

both the computation of shortest traces and longest traces where the weight

domain represents the latency (which is additive along a pushdown trace).

PDAAAL supports both pre∗, post∗ and dual∗ (interleaving of pre∗ and post∗),

while WALi does not support dual∗. We instead present the minimum of

the verification time of pre∗ and post∗, which shows an improvement on the

largest instances for the longest latency. For the shortest trace experiment,

all variants of PDAAAL saturation algorithms outperform WALi by several

orders of magnitude. For the longest traces, this is also the case for our

dual∗ algorithm, even though the post∗ algorithm times out about at the same

instance as WALi. We can also observe that our pre∗ implementation is in

general performing as good (or even better) than our post∗, while this is not

the case for WALi.

PDAAAL is available on https://github.com/DEIS-Tools/PDAAAL to-

gether with specifications of input/output formats and how to run the tool.

A reproducibility package is available at https://doi.org/10.5281/zenodo.

6833493.

5 Applications

Pushdown automata find broad and practical applications in many domains

where verification tasks are often reduced to a pushdown reachability analysis.

As an example, PDAAAL can be used to model MPLS networks, a popular and

widely-used type of communication network used by most Internet Service

Providers for efficient traffic engineering [7]. MPLS networks interconnect a

set of routers which forward packets, where packets contain stacks of labels

which can be pushed and popped, and the forwarding is based on the top-of-

stack label. Such networks can hence be modelled as pushdown systems.

PDAAAL can be used in combination with AalWiNes [7] as part of a what-

if analysis tool (behavior under link failures) to ensure a dependable service

and policy-compliant routing. In particular, PDAAAL’s support for longest

traces is attractive to perform a worst-case analysis of the network’s routing

behavior. For example, PDAAAL can be used to compute the longest possible

routes that may occur under one or multiple link failures, both in terms of

the number of hops (which is directly related to the amount of bandwidth

resources consumed in the network) as well as in terms of the overall delay

(an important metric for latency-critical applications). Furthermore, PDAAAL

can also be used to verify further quantitative metrics of interest. An online

demo is available at http://demo.aalwines.cs.aau.dk.

Similar applications for the longest trace analysis also arise in other do-

mains, allowing to perform worst-case time analyses of possible control flows

in recursive programs or the execution of parsers of XML streams, shedding

light on the possible overheads of such operations.

163

https://github.com/DEIS-Tools/PDAAAL
https://doi.org/10.5281/zenodo.6833493
https://doi.org/10.5281/zenodo.6833493
http://demo.aalwines.cs.aau.dk

References

6 Conclusion

We presented PDAAAL, a tool for reachability analysis of weighted pushdown

automata over possibly unbounded weight domains. Our tool can be used also

as a library, and it is integrated into a recent network analysis tool AalWiNes

that relies on pushdown systems produced from widely used MPLS networks.

Apart from being two orders of magnitude faster than the state-of-the-art

competitor, it supports the detection of the existence of longest traces which

finds practical applications in e.g., the analysis of network protocols. Our

tool uses unbounded but totally ordered weight domains but despite of this

limitation, it finds numerous applications and can in the case of totally ordered

domains replace the backend weighted engines like Moped, WPDS++ and

WALi with a generic, modern and efficient library.

References

[1] J. Esparza and J. Knoop, “An automata-theoretic approach to interproce-

dural data-flow analysis,” in FOSSACS’99, ser. LNCS, vol. 1578. Springer,

1999, pp. 14–30.

[2] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of pushdown

automata: Application to model-checking,” in CONCUR’97, ser. LNCS,

vol. 1243. Springer, 1997, pp. 135–150.

[3] D. Suwimonteerabuth, S. Schwoon, and J. Esparza, “jMoped: A java

bytecode checker based on Moped,” in TACAS’05, ser. LNCS, vol. 3440.

Springer, 2005, pp. 541–545.

[4] P. D. Schubert, B. Hermann, and E. Bodden, “PhASAR: An inter-

procedural static analysis framework for C/C++,” in TACAS’19, ser.

LNCS, vol. 11428. Springer, 2019, pp. 393–410.

[5] V. Kumar, P. Madhusudan, and M. Viswanathan, “Visibly pushdown

automata for streaming XML,” in WWW’07. ACM, 2007, pp. 1053–1062.

[6] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-

manipulating MPLS networks,” in Proc. IEEE INFOCOM, 2018, pp. 1799–

1807.

[7] P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk, and

J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool for MPLS

networks,” in Proc. ACM CoNEXT, 2020, pp. 474–481.

164

https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/978-3-540-31980-1_35
https://doi.org/10.1007/978-3-540-31980-1_35
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1145/1242572.1242714
https://doi.org/10.1145/1242572.1242714
https://doi.org/10.1109/INFOCOM.2018.8486261
https://doi.org/10.1109/INFOCOM.2018.8486261
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1145/3386367.3431308

References

[8] T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted pushdown systems

and their application to interprocedural dataflow analysis,” Science of

Computer Programming, vol. 58, no. 1-2, pp. 206–263, 2005.

[9] Z. Kincaid, J. Breck, A. F. Boroujeni, and T. Reps, “Compositional recur-

rence analysis revisited,” in Proc. ACM PLDI, 2017, pp. 248–262.

[10] M. Kühnrich, S. Schwoon, J. Srba, and S. Kiefer, “Interprocedural dataflow

analysis over weight domains with infinite descending chains,” in FOS-

SACS’09, ser. LNCS, vol. 5504. Springer-Verlag, 2009, pp. 440–455.

[11] S. Schwoon, “Moped,” in http://www2.informatik.uni-stuttgart.de/ fmi/szs/

tools/moped/ , 2002.

[12] N. Kidd, T. Reps, D. Melski, and A. Lal, “WPDS++: A C++ library for

weighted pushdown systems,” Univ. of Wisconsin, 2004.

[13] N. Kidd, A. Lal, and T. Reps, “WALi: The weighted automaton library,”

2007. [Online]. Available: https://research.cs.wisc.edu/wpis/wpds/

wali/

[14] P. G. Jensen, S. Schmid, M. K. Schou, J. Srba, J. Vanerio, and I. van Duĳn,

“Faster pushdown reachability analysis with applications in network ver-

ification,” in Automated Technology for Verification and Analysis (ATVA 2021),

ser. LNCS, vol. 12971. Springer, 2021, pp. 170–186.

[15] J. R. Büchi, “Regular canonical systems,” Archiv für mathematische Logik

und Grundlagenforschung, vol. 6, no. 3-4, pp. 91–111, 1964.

[16] A. Finkel, B. Willems, and P. Wolper, “A direct symbolic approach to

model checking pushdown systems,” in INFINITY’97, ser. ENTCS, vol. 9.

Elsevier, 1997, pp. 27–37.

[17] S. Schwoon, “Model-checking pushdown systems,” Ph.D. dissertation,

Technische Universität München, 2002.

165

https://doi.org/10.1016/j.scico.2005.02.009
https://doi.org/10.1016/j.scico.2005.02.009
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1007/978-3-642-00596-1_31
https://doi.org/10.1007/978-3-642-00596-1_31
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://research.cs.wisc.edu/wpis/wpds/wali/
https://research.cs.wisc.edu/wpis/wpds/wali/
https://doi.org/10.1007/978-3-030-88885-5_12
https://doi.org/10.1007/978-3-030-88885-5_12
https://doi.org/10.1007/BF01969548
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1016/S1571-0661(05)80426-8
https://d-nb.info/96638976X/34

References

166

Paper F

Differential Testing of Pushdown

Reachability with a Formally Verified

Oracle

Anders Schlichtkrull, Morten Konggaard Schou,

Jiří Srba, and Dmitriy Traytel

The paper has been published in:

Proceedings of the 22nd Conference on Formal Methods in Computer-Aided

Design (FMCAD 2022), pp. 369-379, TU Wien Academic Press, 2022.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_44

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_44

© 2022 The author(s). Licensed under Creative Commons Attribution 4.0

International (CC BY 4.0)

The layout has been revised.

1. Introduction

Abstract

Pushdown automata are an essential model of recursive computation. In model check-

ing and static analysis, numerous problems can be reduced to reachability questions

about pushdown automata and several efficient libraries implement automata-theoretic

algorithms for answering these questions. These libraries are often used as core com-

ponents in other tools, and therefore it is instrumental that the used algorithms and

their implementations are correct. We present a method that significantly increases

the trust in the answers provided by the libraries for pushdown reachability by (i)

formally verifying the correctness of the used algorithms using the Isabelle/HOL proof

assistant, (ii) extracting executable programs from the formalization, (iii) implement-

ing a framework for the differential testing of library implementations with the verified

extracted algorithms as oracles, and (iv) automatically minimizing counter-examples

from the differential testing based on the delta-debugging methodology. We instantiate

our method to the concrete case of PDAAAL, a state-of-the-art library for pushdown

reachability. Thereby, we discover and resolve several nontrivial errors in PDAAAL.

1 Introduction

In 1964, Büchi [1] proved that the possibly infinite set of all reachable pushdown

configurations (from a given initial configuration) can be effectively described

by a regular language. In fact, even for a given regular set of pushdown con-

figurations, its post∗ and pre∗ closures (representing all forward and backward

reachable configurations from a given set of configurations) are also regular.

Büchi’s automata-theoretic approach gave rise to a rich theory of pushdown

reachability with numerous algorithms and applications to, e.g., interproce-

dural control-flow analysis of recursive programs [2, 3], model checking [4–7],

communication network analysis [8–10] and others. A number of tools have

been developed to support the theory, including Moped [5, 6], WALi [11], and

PDAAAL [12] with applications ranging from the static analysis of Java [6]

and C/C++ code [13, 14] to the analysis of MPLS communication protocols [9].

Even though the automata-theoretic approach for pushdown reachability

is based on relatively simple saturation procedures, the proofs of correctness

are nontrivial and the implementation of the algorithms in the different tools

often includes numerous performance optimizations as well as additional im-

provements to the theory itself [12]. To be able to rely on the output of model

checking tools and other applications of pushdown reachability, it is important

that the theory is not only sound but also correctly implemented. A positive

reachability answer is typically accompanied by a finite evidence (trace) that

can function as an efficiently checkable certificate. A negative answer is, on

the other hand, much harder to check, and designing a finite evidence for

non-reachability is difficult, primarily because the number of reachable push-

169

Paper F.

down configurations can be infinite. One approach is to establish an invariant

that (i) includes the initial configuration(s) of the system, (ii) is maintained by

the transition relation and (iii) has an empty intersection with the set of un-

desirable configurations. Such approaches have been studied [15, 16] but are

usually incomplete and require another complex tool (that can be error-prone,

too) to verify such invariants.

We instead use a proof assistant, Isabelle/HOL [17] (§2), to formally ver-

ify the correctness of the pushdown reachability algorithms post∗ (forward

search), pre∗ (backward search), and dual∗ (bi-directional search) (§3) that lie

at the heart of the automata-theoretic analysis of pushdown systems [7, 12, 18].

From the formalization of pre∗, we extract an executable program with strong

correctness guarantees (§4). For a given input, the extracted program’s output

can be compared with the output of other, unverified but optimized tools solv-

ing the same problem (§5). This approach is known as differential testing [19–

21] with a twist that the testing oracle has been formally verified and thus is ex-

tremely trustworthy. When testing reveals a disagreement between a verified

and an unverified algorithm, we know who is to blame. To help localize errors

in unverified algorithms, we minimize the tests causing disagreement using

the delta-debugging technique [22]. Our main contributions are as follows.

– The formalization of post∗, pre∗ and dual∗ algorithms in Isabelle/HOL

and verification of their correctness based on the proofs provided by

Schwoon [18] for post∗ and pre∗, and following Jensen et al. [12] for

dual∗.

– The refinement to and the extraction of an executable program of the

formalized pre∗ algorithm that serves as the verified oracle for differential

testing.

– The automatic minimization of the input automata in cases where an

unverified tool disagrees with the oracle.

– The application of our method to a modern state-of-the-art library for

pushdown reachability, PDAAAL [12], and the identification, localiza-

tion (using the minimized counter-examples), and correction of three,

previously unknown, implementation errors (§6). The corrected imple-

mentation passes all differential tests successfully.

Our Isabelle formalization as well as the case study are publicly available [23].

Related work Differential testing with a verified oracle has been used in the

context of runtime verification and automatic theorem proving. The runtime

monitor VeriMon [24, 25] served as the verified oracle used to detect errors

in unverified monitors. Compared to our approach, VeriMon’s differential

testing case study is from a different application domain, does not include

170

1. Introduction

exhaustive test generation for small input sizes (which is difficult in runtime

monitoring) and does not minimize the tests automatically. To assess its

performance but also to evaluate the benchmark’s correctness, the verified

first-order prover RPx [26] was evaluated on a standard benchmark for

first-order logic problems. RPx’s answers have in all cases coincided with the

expected ones recorded in the benchmark.

The verified C compiler CompCert [27] and several verified distributed

systems [28–30] have been themselves put onto the testbed [31, 32]. A few

errors in these tools’ unverified parts or in scenarios violating the verification

assumptions were found, but none in the verified components themselves.

Many works extract efficient executable code from formalizations, but do

not use it as an oracle in testing. Examples include verified model check-

ers for LTL [33] and timed automata [34] and verified algorithms for finite

automata [35–38] and context-free grammars [39, 40].

The only formalization of pushdown automata we are aware of is part

of Lammich et al.’s work on dynamic pushdown networks (DPN) [41].

Lammich describes the Isabelle formalization of an executable pre∗ algorithm

for DPNs stemming from this work in an unpublished technical report [42].

DPNs generalize pushdown automata, but their post∗ is not regular [43]

and so we cannot extend this work for our purposes. Moreover, Lammich’s

formalization does not support ε-transitions in the underlying automata, an

essential component needed for our formalization of post∗ and dual∗.

Background definitions Let P be a finite set of control locations and Γ a

finite stack alphabet. A pushdown system (PDS) is a tuple (P,Γ,∆), where ∆ ⊆
(P × Γ) × (P × Γ∗) is a finite set of rules, written (p, γ) ↪→ (q, w) whenever

((p, γ), (q, w)) ∈ ∆. Without loss of generality, we assume |w| ≤ 2, so thatw = ε

represents a pop operation that removes the topmost stack symbol, |w| = 1 is a

swap that replaces the topmost symbol with another one, and |w| = 2 is a push

that incorporates a swap followed by adding a new symbol on top.

A configuration of a pushdown system is a pair (p, w) of the current

control location p ∈ P and the current stack content w ∈ Γ∗
where we

assume that the top of the stack is on the left. The set of all configurations

is denoted by C. A PDS can take a computation step (p, γw′) ⇒ (q, ww′)

between configurations whenever (p, γ) ↪→ (q, w) and w′ ∈ Γ∗
. For a given

C ⊆ C, we define post∗(C) = {c′ ∈ C | c ⇒∗ c′ for some c ∈ C} and

pre∗(C) = {c ∈ C | c⇒∗ c′ for some c′ ∈ C}.
The reachability problem for PDSs is to decide whether c ⇒∗ c′ for config-

urations c and c′, and it is equivalent to asking whether c′ ∈ post∗({c}) or

equivalently whether c ∈ pre∗({c′}). Büchi [1] showed that for any regular set

C ⊆ C, the sets post∗(C) and pre∗(C) are also regular.

To represent regular sets of pushdown configurations, we use P-

171

Paper F.

automata [18], which are nondeterministic finite automata with multiple initial

states for each of the control locations from the set P . Formally, let N be

a finite set of noninitial states and F ⊆ P ∪ N a finite set of final states.

A P-automaton is a tuple A = (P ∪ N,→, P, F) with the transition relation

→ ⊆ (P ∪ N) × Γ × (P ∪ N) so that P ∪ N is the set of its states and the

pushdown alphabet Γ is the input alphabet of the automaton. The language

L(A) of P -automatonA contains the pushdown configurations accepted byA:

a configuration (p, w) ∈ P × Γ∗
is accepted if and only if there is a path from

p to q for some q ∈ F in the P -automaton (defined via the transition relation

→) labelled with w. The reachability problem for P -automata is as follows: given

a PDS (P,Γ,∆) and P -automata A1 and A2, does there exist c ∈ L(A1) and

c′ ∈ L(A2) such that c⇒∗ c′ using the rules ∆?

2 Isabelle/HOL

Isabelle/HOL [17] is a proof assistant based on classical higher-order logic

(HOL), a simply typed lambda calculus with Hilbert choice, axiom of infinity,

and rank-1 polymorphism. We present our formalization using HOL’s syntax,

which mixes functional programming and mathematical notation.

Types are built from type variables
′a,

′b, . . . and type constructors like

pairs _ × _ and functions _ ⇒ _ (both written infix) and sets _ set (written

postfix). Type constructors can also be nullary, e.g., the Boolean type bool .

Type variables can be restricted by type classes:
′a :: finite is a type variable

′a that can only be instantiated with finite types (i.e., types with finitely

many inhabitants). New type constructors are introduced as abbreviations

for complex type expressions and as inductive datatypes using commands

type_synonym and datatype respectively, e.g., the types of transitions

type_synonym (′state, ′label) transition = ′state × ′label × ′state and finite

lists datatype ′a list = [] | ′a # (′a list).

Terms are built from variables x, y, . . ., constants c, d, . . ., lambda

abstractions λx. t and applications written as juxtaposition f x. Isabelle

includes many constants and syntax for them, e.g., infix operators ∧, ∨, −→,

←→, ∈, ∪, ∩, unbounded and bounded quantifiers ∃x. P x and ∀y ∈ A. Q y,

and set comprehensions {x. P x}. Non-recursive functions are defined and

given readable syntax using the definition command:

definition image (infix ‘) where
f ‘ A = {y. ∃x ∈ A. y = f x}

Type annotations like image :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′b set can be omitted as

they are inferred. Recursive definitions are supported using the fun command:

fun append (infix @) where
[] @ ys = ys | (x # xs) @ ys = x # (xs @ ys)

172

2. Isabelle/HOL

locale LTS = fixes trans_rel :: (′state, ′label) transition set begin
definition step_relp (infix⇒) where
c⇒ c′ ←→ (∃l. (c, l, c′) ∈ trans_rel)

definition step_starp (infix⇒∗
) where

c⇒∗ c′ ←→ step_relp∗∗ c c′

definition pre_star C = {c′. ∃c ∈ C. c′ ⇒∗ c}
definition post_star C = {c′. ∃c ∈ C. c⇒∗ c′}
definition srcs = {p. ∄q γ. (q, γ, p) ∈ trans_rel}
definition sinks = {p. ∄q γ. (p, γ, q) ∈ trans_rel}
inductive_set trans_star where
(p, [], p) ∈ trans_star
| (p, γ, q′) ∈ trans_rel −→ (q′, w, q) ∈ trans_star −→
(p, γ#w, q) ∈ trans_star

end

Fig. 1: The locale for labeled transition systems

Internally, fun performs an automatic termination proof. More complex

recursion schemes may require a manual proof.

Another way to define a function is as Prolog-style monotone rules. The

inductive command allows such definitions as least fixed points. Take, e.g.,

the reflexive transitive closure:

inductive rtranclp (_∗∗) where
R∗∗ x x | R x y −→ R∗∗ y z −→ R∗∗ x z

Theorems and lemmas are terms of type bool that have been proved to be

equivalent to True. All proofs pass through Isabelle’s kernel, which relies only

on a few well-understood reasoning rules such as modus ponens. We refer to

a textbook [44] for a practical introduction to proving in Isabelle.

Structures and assumptions common to many theorems can be organized

via locales [45]—Isabelle’s module mechanism for fixing parameters and

stating and assuming their properties. In the context of a locale, the param-

eters are available as constants and the assumptions as facts. Locales can

be interpreted, which involves instantiating the parameters and proving the

assumptions. As the result, one obtains the (instantiated) theorems proved in

the context of the locale.

Consider our locale for labeled transition systems (LTSs) in Fig. 1. It fixes

the parameter trans_rel, and its context consists of the definitions between the

begin and end keywords. All definitions should be self-explanatory except

perhaps trans_star: the set of triples (p, w, q) for which the LTS can move from

p to q by consuming word w. This relation is defined inductively, first for the

empty sequence and then extending it by one more symbol—here we use in

173

Paper F.

conjunction two assumptions on the symbol γ and sequence w. (Following an

Isabelle convention, we formalize it equivalently as two implications.) In the

formalization, the locale has more definitions than shown here and a number

of lemmas. Outside LTS’s context, we can access its definitions, e.g., pre_star
is available under the name LTS.pre_star and can be applied to any transition

relation A and a set of states C as follows: LTS.pre_star A C.

3 Pushdown Reachability

We formalize pushdown systems (PDSs) and saturation algorithms for

calculating pre∗ and post∗ following Schwoon [18] and dual∗ following Jensen

et al. [12].

Fig. 2 shows our modeling of PDSs. We use type variables to represent

control locations (
′ctr_loc) and stack labels (

′label). We introduce types

for operations (
′label op), rules ((′ctr_loc, ′label) rule) and configurations

((′ctr_loc, ′label) conf). A PDS is given by the locale PDS, which fixes a set

of rules ∆. Each PDS gives rise to an unlabeled transition relation, which

we model by an LTS step with label ()—the only element of type unit . The

definition is a non-recursive inductive definition. We use the interpretation
command to interpret LTS with step. This means that pre_star refers to

LTS.pre_star step in PDS. Likewise, trans_star refers to LTS.trans_star step and

similarly for otherLTSdefinitions. The type (′ctr_loc, ′noninit) state represents

P -automata states, where
′noninit is the type variable for noninitial states. The

locale PDS_with_finals extends PDS with a set of final initial states F_inits and

final noninitial states F_noninits. For the rest of this section, we work within

the PDS_with_finals locale. In this locale, a P -automaton is a set of transitions.

3.1 Nondeterministic pre∗ Saturation
Schwoon [18] presents the pre∗ saturation which is a nondeterministic algo-

rithm that given a P -automaton A returns a P -automaton whose language is

pre_star (lang A). The algorithm proceeds by iteratively adding transitions toA.

In each step, the algorithm nondeterministically chooses an transition to add

that satisfies a number of criteria. TheP -automaton is saturated when no more

transitions can be added. We formalize a step of the algorithm by the relation:

inductive pre_star_rule where
(Init p, γ, q) /∈ A −→ (p, γ) ↪→ (p′, w) −→
(Init p′, lbl w, q) ∈ LTS.trans_star A −→
pre_star_rule A (A ∪ {(Init p, γ, q)})

Thepre_star_rule relation relates twoP -automata if the latter can be obtained

from the former via one step of the algorithm. The criteria of the algorithm are

174

3. Pushdown Reachability

datatype ′label op = pop | swap ′label | push ′label ′label

type_synonym (′ctr_loc, ′label) rule =

(′ctr_loc × ′label)× (′ctr_loc × ′label op)

type_synonym (′ctr_loc, ′label) conf = ′ctr_loc × ′label list

locale PDS = fixes ∆ :: (′ctr_loc, ′label :: finite) rule set begin
fun lbl where
lbl pop = [] | lbl (swap γ) = [γ] | lbl (push γ γ′) = [γ, γ′]

definition is_rule (infix ↪→) where
(p, γ) ↪→ (p′, w)←→ ((p, γ), (p′, w)) ∈ ∆

inductive_set step where
(p, γ) ↪→ (p′, w) −→
((p, γ # w′), (), (p′, lbl w @ w′) ∈ step

interpretation LTS step .

end

datatype (′ctr_loc, ′noninit) state =

Init ′ctr_loc | Noninit ′noninit

locale PDS_with_finals = PDS ∆

for ∆ :: (′ctr_loc :: enum, ′label :: finite) rule set +

fixes F_inits ::
′ctr_loc set and F_noninits ::

′noninit set

begin
definition finals = Init ‘ F_inits ∪ Noninit ‘ F_noninits
definition inits = {q. ∃p. q = Init p}
definition accepts A (p, w) =

(∃q ∈ finals. (Init p, w, q) ∈ LTS.trans_star A)

definition lang A = {c. accepts A c}
end

Fig. 2: The types and locales for pushdown systems

expressed as the premises of the implication shown in pre_star_rule’s definition.

The last two premises are taken directly from Schwoon’s definition of the

algorithm and the first one ensures that the transition we add into the new

P -automaton is a new one. A single P -automaton can be related to different

P -automata via pre_star_rule, which captures nondeterministic choice.

Consider the PDS defined by ∆ in Fig. 3, and let the P -automaton A consist

of the two solid transitions in the figure. Let A′
be A ∪ {(P2, γ2, P0)}. No-

tice that (P2, γ2, P0) /∈ A and (p2, γ2) ↪→ (p0, pop) and (P0, lbl pop, P0) ∈
LTS.trans_star A. From pre_star_rule’s definition then follows that

pre_star_rule A A′
. Let A′′

be A′ ∪ {(P1, γ1, Q1}). From pre_star_rule’s
definition it follows that pre_star_rule A′ A′′

.

175

Paper F.

P0

P1

P2

Q1 Q2

γ2

γ0 γ0

γ1

Pi = Init pi for i ∈ {0, 1, 2}
Qi = Noninit qi for i ∈ {1, 2}

definition ∆ = {((p2, γ2), (p0, pop)),
((p1, γ1), (p2, push γ2 γ0))}

definition A = {(P0, γ0, Q1), (Q1, γ0, Q2)}

Fig. 3: Adding two transitions (dashed arrows) to a P -automaton. Initially (solid arrows)

the P -automata encodes only configuration (p0, [γ0, γ0]). After saturation, the configurations

(p1, [γ1, γ0]) and (p2, [γ2, γ0, γ0]) are also encoded.

We formalize what it means for a P -automaton A to be saturated w.r.t a

rule r, and for A′
to be a saturation of A:

definition saturated r A = (∄A′. r A A′)

definition saturation r A A′ = (r∗∗ A A′ ∧ saturated r A′)

In our example,A′′
is saturated and thus formally we have saturated pre_star_rule A′′

and saturation pre_star_rule A A′′
.

We next prove the pre∗ saturation algorithm correct. Here, we focus on

the proof’s most interesting aspects, especially those where we had to deviate

from Schwoon’s pen-and-paper proof, and refer to our formalization for full

details [23].

The correctness theorem states that if a transition system A′
is a saturation

of a transition system A then the language of A′
is indeed the pre∗ closure of

the language of A. Like Schwoon, we assume that the initial states are sources:

theorem pre_star_rules_correct:

assumes inits ⊆ LTS.srcs A
and saturation pre_star_rule A A′

shows lang A′ = pre_star (lang A)

Schwoon’s Lemma 3.1 is used to prove the ⊇ direction of the theorem’s

conclusion. He proves it by considering an arbitrary predecessor configura-

tion (p′, w) of a configuration (p, v) in A’s language. The proof proceeds by

induction on the number of ⇒ transitions from (p′, w) to (p, v). We do not

keep track of this number, but we instead prove the lemma by induction on

the transitive and reflexive closure of ⇒. The formalization of the proof is

written in Isabelle’s structured proof language Isar (not shown) and follows

Schwoon’s arguments. Schwoon’s Lemma 3.2 is used to prove the ⊆ direction

of pre_star_rules_correct’s conclusion. We showcase Lemma 3.2 in Schwoon’s

formulation, but adapted to our notation:

Lemma 3.2 If saturation pre_star_rule A A′
and (p, w, q) ∈ LTS.trans_star A′

then:

176

3. Pushdown Reachability

(a) (p, w)⇒∗ (p′, w′) for a configuration (p′, w′) such that (p′, w′, q) ∈ A;

(b) moreover, if q is an initial state, then w′ = [].

In his proof, Schwoon claims to prove (a) by an induction and then that (b)

will follow immediately from a simple argument. However, reading his proof

we notice that he uses (b) in the proof of (a). We resolve this by noticing that

we can strengthen (b) to hold for any stack w and not just the one w′
claimed

to exist in (a). Our formulation of (b) looks as follows:

lemma word_into_init_empty:

assumes (p, w, Init q) ∈ LTS.trans_star A
and inits ⊆ LTS.srcs A
shows w = [] ∧ p = Init q

We prove (a) using the strengthened version of (b). Like Schwoon, we prove

(a) by a nested induction. His outer induction is on the number of times the

algorithm added transitions to the P -automaton. We instead prove the lemma

by induction on the transitive reflexive closure of pre_star_rule. The inner in-

duction is more challenging to formalize. Here, Schwoon considers a specific

transition t which he defines as the ith transition added to P -automaton A. In

the same context he considers a word w and two states, Init p and q, such that

(Init p, w, q) ∈ LTS.trans_star A′
. He then defines j as the number of times t is

used in (Init p, w, q) ∈ LTS.trans_star A′
. We may argue that this number is not

well-defined, because there can be several paths from Init p to q consuming w,

and on these paths t may not occur the same number of times. It turns out we

can choose among these paths completely freely—any one of them will work,

and so we just choose one arbitrarily. Formalizing this required us to define

a variant of trans_star that keeps track of the intermediate states.

3.2 Nondeterministic post∗ Saturation
We call states with no incoming or outgoing transitions isolated. The post∗

saturation algorithm requires the addition of new noninitial states that are

isolated in the automaton on which the algorithm is run. Under certain

conditions the algorithm adds transitions into and out of these. Each such new

state corresponds to a control location and a label. We extend the datatype of

states with a new constructor Isolated for these:

datatype (′ctr_loc, ′noninit , ′label) state =

Init ′ctr_loc | Noninit ′noninit | Isolated ′ctr_loc ′label

Moreover, we define isols = {q. ∃p. q = Isolated p}.
Steps in the post∗ saturation are formalized as follows:

177

Paper F.

inductive post_star_rules where
(p, γ) ↪→ (p′, pop) −→ (Init p′, ε, q) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Init p′, ε, q)})

| (p, γ) ↪→ (p′, swap γ′) −→ (Init p′,Some γ′, q) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Init p′,Some γ′, q)})

| (p, γ) ↪→ (p′, push γ′ γ′′) −→
(Init p′,Some γ′, Isolated p′ γ′) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ (Init p′,Some γ′, Isolated p′ γ′))

| (p, γ) ↪→ (p′, push γ′γ′′) −→
(Isolated p′ γ′,Some γ′′, q) /∈ A −→
(Init p′,Some γ′, Isolated p′ γ′) ∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Isolated p′ γ′,Some γ′′, q)})

The relation has one rule for pop, one for swap, and two for push. It uses

LTS_ε.trans_star_ε, which is similar to LTS.trans_star but allows ε-transitions

that do not consume stack symbols. The transition (Init p′, ε, q) is an

ε-transition and (Init p′,Some γ′, q) is a γ′
-labeled non-ε-transition. The

function lang_ε returns the language of a P -automaton with ε-transitions. We

prove post∗ saturation correct:

theorem post_star_rules_correct:

assumes saturation post_star_rules A A′

and inits ⊆ LTS.srcs A and isols ⊆ LTS.isolated A

shows lang_ε A′ = post_star (lang_ε A)

Schwoon’s definition of the post∗ rule has only one rule for push
(in contrast to our two rules). In his rule, Schwoon first adds a

transition (Init p′,Some γ′, Isolated p′ γ′) and then adds a transition

(Isolated p′ γ′,Some γ′′, q). Consider his rule here presented in his formulation

but our notation:

If (p, γ) ↪→ (p′, push γ′ γ′′) and (Init p, γ, q) ∈ LTS_ε.trans_star_ε A,

first add (Init p′,Some γ′, Isolated p′ γ′);

then add (Isolated p′ γ′,Some γ′′, q).

We were at first surprised that he specified this first/then order, but his correct-

ness proof actually relies on it. Specifically, the order is used in his proof of

Lemma 3.4, which is the key to prove the ⊇ direction of post_star_rules_correct.

We present Lemma 3.4 in Schwoon’s formulation but our notation:

Lemma 3.4 If saturation post_star_rules A A′
and

(Init p, w, q) ∈ LTS_ε.trans_star_ε A′
then:

178

3. Pushdown Reachability

(a) if q /∈ isols, then (p′, w′)⇒∗ (p, w) for a configuration (p′, w′) such

that (Init p′, w′, q) ∈ LTS_ε.trans_star_εA;

(b) if q = Isolated p′ γ′
, then (p′, γ′)⇒∗ (p, w).

Schwoon’s proof is a nested induction. The outer induction is on the

number of transitions post∗ has added. The induction step proceeds by an

inner induction on the number of times the most recently added transition t

was used in (Init p, w, q′) ∈ LTS_ε.trans_star_ε A′
. (We resolve the ambiguity of

that number’s meaning in a similar way as for pre∗.) The proof then proceeds

by a case distinction on which of the post∗ saturation rules added t. Consider

the case where t was added by the “first” part of the rule for push. In this case,

t has the form (Init p′,Some γ′, Isolated p′ γ′). Schwoon states that “Then since

Isolated p′ γ′
has no transitions leading into it initially, it cannot have played

part in an application rule before this step, and t is the first transition leading to

it. Also, there are no transitions leading away from t so far.” Had Schwoon not

forced the algorithm to first add the transition into Isolated p′ γ′
and then add

the one out of it, then he could not have claimed that there are no transition

leading away from t. We capture this idea in the following two lemmas, stating

that if t is not present, then Isolated p′ γ′
must be a source and a sink:

lemma post_star_rules_Isolated_source_invariant:

assumes post_star_rules∗∗ A A′

and isols ⊆ LTS.isolated A

and (Init p′,Some γ′, Isolated p′ γ′) /∈ A′

shows Isolated p′ γ′ ∈ LTS.srcs A′

lemma post_star_rules_Isolated_sink_invariant:

assumes post_star_rules∗∗ A A′

and isols ⊆ LTS.isolated A

and (Init p′,Some γ′, Isolated p′ γ′) /∈ A′

shows Isolated p′ γ′ ∈ LTS.sinks A′

Formalizing Schwoon’s push rule as a single rule in post_star_rules does not

capture the order in which the two transition are added to the set. This is why

we split the rule in two—one adding the transition into the new noninitial

state and another adding the transition out of the new noninitial state. This

does not yet impose the needed first/then order. However, we can impose the

order by letting the latter rule be only applicable if the transition added by

the former is indeed already in the automaton. This is possible because the

transition added into state Isolated p′ γ′
is (Init p′,Some γ′, Isolated p′ γ′), and

thus we can refer to the states comprising this transition in any context where

Isolated p′ γ′
is available, in particular, the second push rule. Note that our post∗

saturation algorithm is slightly more general than Schwoon’s as we do not

require the transition out of the new noninitial state to be added immediately

after the transition into it, rather we allow this to happen at any time after.

179

Paper F.

fun (in LTS) reach where
reach p [] = {p}
| reach p (γ#w) = (

⋃
q′ ∈ (

⋃
(p′, γ′, q′) ∈ step.

if p′ = p ∧ γ′ = γ then {q′} else {}). reach q′ w)

definition (in PDS) pre_star1 A = (
⋃
((p, γ), (p′, w)) ∈ ∆.⋃

q ∈ LTS.reach A (Init p′) (lbl w). {(Init p, γ, q)})

definition (in PDS) pre_star_exec = the ◦ while_option
(λs. s ∪ pre_star1 s ̸= s) (λs. s ∪ pre_star1 s)

Fig. 4: Executable pre∗

3.3 Combined dual∗ Saturation
We now consider the recent bi-directional search approach, called dual∗ [12].

With dual∗ we can check if the configurations of one P -automaton A2 are

reachable from another P -automaton A1 by alternating between saturating A2

towards its pre∗ closure andA1 towards its post∗ closure, while simultaneously

(on-the-fly) keeping track of their intersection automaton. As soon as the

intersection automaton becomes nonempty, we know that there is a state in A2

that is reachable from A1. This is the case even if the pre∗ and post∗ automata

are not saturated. Our correctness theorem is formalized here:

theorem dual_star_correct_early_termination:

assumes inits ⊆ LTS.srcs A1 and inits ⊆ LTS.srcs A2

and isols ⊆ LTS.isolated A1 ∩ LTS.isolated A2

and post_star_rules∗∗ A1 A
′
1 and pre_star_rule∗∗ A2 A

′
2

and lang_ε_inters (inters_ε A′
1 (LTS_ε_of A′

2)) ̸= {}
shows ∃c1 ∈ lang_ε A1. ∃c2 ∈ lang A2. c1 ⇒∗ c2

The function LTS_ε_of trivially converts aP -automaton to aP -automaton with

ε-transitions. The function inters_ε calculates the intersection P -automaton

with ε-transitions of two P -automata with ε-transitions using a product

construction. The function lang_ε_inters gives the language of an inter-

section automaton. Since the ⊆ directions of pre_star_rule_correct and

post_star_rules_correct do not rely on A′
being saturated we prove them

assuming only respectively pre_star_rule∗∗ A2 A′
2 and post_star_rules∗∗ A1 A′

1

instead of saturation pre_star_rule A2 A′
2 and saturation post_star_rules A1 A′

1.

We use these more general lemmas to prove dual_star_correct_early_termination.

4 Executable Pushdown Reachability

To get an executable algorithm for pre∗, we resolve the nondeterminism by

defining a functional program pre_star_exec, presented in Fig. 4 (where we

180

4. Executable Pushdown Reachability

indicate the corresponding locale for each definition), with this characteristic

property:

theorem pre_star_exec_language_correct:

assumes inits ⊆ LTS.srcs A
shows lang (pre_star_exec A) = pre_star (lang A)

The function reach is trans_star’s executable counterpart: for a state p and a word

w, reach p w computes the set of states reachable from pviawusing step (fixed in

the LTS locale). In other words, we have q ∈ reach p w iff (p, w, q) ∈ trans_star.
The definition of pre_star_exec uses while_option, the functional while loop

counterpart. Given a test predicate b, a loop body c and a loop state s, the ex-

pression while_option b c s computes the optional state Some (c (· · · (c (c s))))

not satisfying b with the minimal number of applications of c, or None if

no such state exists. Our specific loop keeps adding the results of a single

step pre_star1 to the P -automaton comprising the loop state. We prove that

our loop never returns None, i.e., it always terminates. We thus use the,
defined partially as the (Some x) = x, in pre_star_exec to extract the resulting

P -automaton. The step pre_star1 computes the set of all transitions that can

be added by a single application of pre_star_rule.
Fig. 4’s definitions are executable: Isabelle can interpret them as functional

programs and extract Standard ML, Haskell, OCaml, or Scala code [46],

but it is usually not possible to extract code for inductive predicates (such

as trans_star or the transitive closure in saturation) or definitions involving

quantifiers ranging over an infinite domain (as in saturated). The definition

of pre_star_exec has an obvious inefficiency. In every iteration, pre_star1 is

evaluated twice: once as a part of the loop body and once as a part of the test.

Instead we use the following improved equation, which replaces while_option
with explicit recursion, for code extraction.

lemma pre_star_exec_code[code]:

pre_star_exec s = (let s′ = pre_star1 s in

if s′ ⊆ s then s else pre_star_exec (s ∪ s′))

With the executable algorithm for pre∗, we decide the reachability problem

for P -automata using the check function shown in Fig. 5. It inputs a PDS

∆ along with two P -automata represented by their transition relations (A1

and A2), their final initial states (F1 and F2) and their final noninitial states

(F ni

1 and F ni

2). The computation proceeds by intersecting (inters) the initial

P -automaton with the pre∗ saturation of the final P -automaton and checking

the result’s nonemptiness (nonempty). Fig. 5 refers to functions pre_star_exec,
inits, finals, and trans_star which we introduced earlier in the context of

different locales, outside of the respective locale. Therefore, these functions

take additional parameters that correspond to the fixed parameters of the

181

Paper F.

definition nonempty A P Q =

(∃p ∈ P. ∃q ∈ Q. ∃w. (p, w, q) ∈ trans_star A)

definition inters A B =

{((p1, p2), w, (q1, q2)). (p1, w, q1) ∈ A ∧ (p2, w, q2) ∈ B}

definition nonempty_inter ∆ A1 F1 F ni

1 A2 F2 F ni

2 =

nonempty (inters A1 (pre_star_exec ∆ A2))

((λx. (x, x)) ‘ inits) (finals F1 F ni

1 × finals F2 F ni

2)

definition check ∆ A1 F1 F ni

1 A2 F2 F ni

2 =

(if ¬inits ⊆ LTS.srcs A2 then None
else Some (nonempty_inter ∆ A1 F1 F ni

1 A2 F2 F ni

2)

Fig. 5: Reachability check for P -automata

respective locale if they are used by the function (e.g., we write pre_star_exec ∆
instead of pre_star_exec for an implicitly fixed ∆).

The definition of nonempty is not executable because of the quantification

over words w. We implement, but omit here, the straightforward executable

algorithm that starts with the set of initial states P and iteratively adds

transitions from A until it reaches Q or saturates without reaching Q, in which

case the language is empty since no state in Q is reachable from P .

Overall, check returns an optional Boolean value, where None signifies a

well-formedness violation on the final P -automaton: a non-source initial state

in A2. If check returns Some b, then b is the answer to the reachability problem

for P -automata. We formalize this characterization of check by the following

two theorems (phrased outside of locales).

theorem check_None:

check ∆ A1 F1 F ni

1 A2 F2 F ni

2 = None←→
¬inits ⊆ LTS.srcs A2

theorem check_Some:

check ∆ A1 F1 F ni

1 A2 F2 F ni

2 = Some b←→
(inits ⊆ LTS.srcs A2 ∧ (b←→
(∃p w p′ w′. step_starp ∆ (p, w) (p′, w′) ∧
(p, w) ∈ langA1 F1 F

ni

1 ∧ (p′, w′) ∈ langA2 F2 F
ni

2)))

5 Differential Testing

Differential testing [19–21] is a technique for finding implementation errors by

executing different algorithms solving the same problem on a set of test cases

and comparing the outputs. Differential testing has been effective for finding

errors in a wide range of domains, from network certificate validation [47] to

182

5. Differential Testing

JVM implementations [48]. Yet, even different algorithms do not necessarily

fail independently, e.g., when built from the same specification [49] or when

sharing potentially faulty components, e.g., input parsers or preprocessing.

To reduce the danger of missing such errors, we suggest to incorporate a

formally verified implementation in differential testing. Moreover, in case

of a discrepancy the verified oracle reliably tells us which of the unverified

implementations is wrong.

5.1 Differential Testing of Pushdown Reachability
Our executable formalization of pushdown reachability allows us to perform

differential testing on unverified tools for the same problem. A test case for

pushdown reachability consists of a PDS with rules ∆ and two P -automata

A1 and A2 representing the initial and final configurations of interest. The

answer to the test case is whether there exist c ∈ L(A1) and c′ ∈ L(A2) such

that c⇒∗ c′ using the rules ∆.

To execute the formalization on a given test case, we generate an Isabelle

theory file, which first defines the control locations, labels, and automata

states as finite subsets of the natural numbers (their sizes depending on the

specific test case), and then includes for the pushdown rules ∆ and the two

P -automata, each represented by its transitions Ai along with the accepting

(initial and noninitial) states Fi and Fni
i for i ∈ {1, 2}. Fig. 3 shows a specific

example of ∆ and A definitions.

We generate a lemma that uses our check function, where the expected

result Some True or Some False is inserted depending on the answer produced

by an unverified tool under test (invoked before generating the theory on the

same inputs):

lemma check ∆ A1 F1 F
ni
1 A2 F2 F

ni
2 = Some True by eval

The eval proof method extracts Standard ML code for check and other constants

in the lemma and executes the lemma statement as an expression. It succeeds

iff the lemma evaluates to True. We call a test case a counter-example, if the

proof method fails. One could also run the extracted code outside Isabelle, but

our setup allows us to generate the inputs to check on the formalization level

instead of that of the extracted code.

To efficiently check a large number of test cases, we batch multiple defini-

tions and lemmas into one theory file, thus reducing the overhead of starting

Isabelle. We run Isabelle from the command line and check the output log for

any failing eval proofs, which correspond to failing test cases.

183

Paper F.

Algorithm 1 Specialization of delta-debugging [22] to PDS.

Input: Reachability tools tool and oracle, PDS (P,Γ,∆),

P -automata Ai=(P ∪Ni,→i, P, Fi) for i ∈ {1, 2}.
Output: Minimal counter-example (failing testcase)

1: c← ∆ ∪ ({1} × (→1 ∪ F1)) ∪ ({2} × (→2 ∪ F2)) ▷ Convert to a set of features

2: return DD(c, 2) ▷ returned set of features can be converted to PDS and

↪→ P -automata as on lines 10-11

3: function DD(c, n) ▷ c is a test case, n is granularity

4: let c1 ⊎ · · · ⊎ cn = c, all ci as evenly sized as possible

5: if ∃i. Bad(ci) return DD(ci, 2)

6: else if ∃i. Bad(c \ ci) return DD(c \ ci, max(n− 1, 2))

7: else if n < |c| return DD(c, min(2n, |c|))
8: else return c

9: function Bad(c) ▷ c is a test case

10: let ∆′ = c ∩∆ ▷ extract PDS rules and P -automata

11: for i ∈ {1, 2} letA′
i = (P∪Ni,→′

i, P, F
′
i)where→′

i = {t ∈ →i | (i, t) ∈ c}
↪→ and F ′

i = {q ∈ Fi | (i, q) ∈ c}
12: with both tools check if A′

1 reaches A′
2 via (P,Γ,∆′)

13: return false if tool and oracle agree, else true

5.2 Automatic Counter-Example Minimization
If differential testing finds a failing test case, we use delta-debugging [22] to

automatically reduce it to a minimal failing test case to help the subsequent

debugging process. We use the minimizing delta debugging algorithm [22]

that sees a test case as a set of features, and works by systematically testing

different subsets until a minimal failing test case is found.

We use delta debugging on any discovered counter-example and fix the set

of features to contain: (i) each pushdown rule, (ii) each transition in either of

the P -automata, and (iii) each final state in a P -automaton (as opposed to it

not being final).

States and labels are identified by unique names, and the initialP -automata

states are exactly the states mentioned in any pushdown rule in the feature set.

We specialize the general delta debugging algorithm to pushdown systems

as shown in Algorithm 1. The algorithm first creates the set of features and

calls the recursive function DD with this set of features and the granularity 2.

The function then splits the set of features into a number of equally sized

subsets (according to the granularity) and checks if any of these subsets

or their complements still fail. If yes, then the function tries to recursively

reduce the set of features further, otherwise it will increase the granularity

184

6. Case Study: Analysis of PDAAAL

∆={

(p0,D)↪→(p0,swap A),

(p0,E)↪→(p0,push B E),

(p0,D)↪→(p0,push DD),

(p0,D)↪→(p0,pop),

(p0,D)↪→(p1,swap A),

(p0,A)↪→(p1,push CA),

(p0,E)↪→(p2,push A E),

(p0,B)↪→(p2,push DB),

(p0,C)↪→(p2,swapD),

(p0,E)↪→(p2,swap E),

(p0,E)↪→(p3,push B E),

(p0,C)↪→(p3,swap E),

(p1,B)↪→(p0,swap C),

(p1,D)↪→(p0,swap C),

(p1,C)↪→(p0,swap B),

(p1,C)↪→(p0,swap E),

(p1,B)↪→(p1,swap C),

(p1,E)↪→(p1,swap C),

(p1,A)↪→(p2,swap A),

(p1,D)↪→(p2,swapD),

(p1,C)↪→(p2,swap E),

(p1,C)↪→(p3,swapD),

(p1,D)↪→(p3,pop),

(p2,B)↪→(p0,push AB),

(p2,A)↪→(p0,push CA),

(p2,C)↪→(p0,push C C),

(p2,D)↪→(p0,push BD),

(p2,C)↪→(p1,push C C),

(p2,A)↪→(p1,push BA),

(p2,A)↪→(p2,push AA),

(p2,C)↪→(p2,swap A),

(p2,E)↪→(p2,swap A),

(p2,A)↪→(p2,push BA),

(p2,B)↪→(p2,swap E),

(p2,E)↪→(p3,push A E),

(p2,B)↪→(p3,push CB),

(p3,D)↪→(p0,push BD),

(p3,C)↪→(p0,push E C),

(p3,C)↪→(p0,swap E),

(p3,C)↪→(p1,push A C),

(p3,B)↪→(p1,pop),

(p3,E)↪→(p2,swap C),

(p3,B)↪→(p2,push DB),

(p3,E)↪→(p3,swap A),

(p3,A)↪→(p3,push CA),

(p3,E)↪→(p3,swapD),

(p3,C)↪→(p3,pop)}

A1 = {(Init p0,B,Noninit q1), (Init p0,D,Noninit q0), ∆ = {(p0, D) ↪→ (p0, pop)}
(Init p2,B,Noninit q0), (Init p3,A,Noninit q2), A1 = {(Init p0,D,Noninit q0),

(Noninit q0,D,Noninit q1), (Noninit q2,C,Noninit q0)} (Noninit q0,D,Noninit q1)}

F1 = {} Fni
1 = {q1} F1 = {} Fni

1 = {q1}

A2 = {(Init p2, A, Noninit q0)), (Init p2, B, Noninit q0)} A2 = {}

F2 = {p0, p2} Fni
2 = {} F2 = {p0} Fni

2 = {}

Fig. 6: Original and minimized (bottom right) counter-example

and try again. The function Bad converts the set of features into a reduced

pushdown system and two reduced P -automata and checks if the given tool

implementation is still inconsistent with the oracle. We note that minimal

failing counter-examples are only locally minimal and not necessarily unique.

Yet, minimization is effective and necessary. Fig. 6 shows a real bug example

we discovered by random differential testing in the PDAAAL library for

pushdown reachability [12] and its minimization by Algorithm 1.

6 Case Study: Analysis of PDAAAL

We apply differential testing with automatic counter-example minimization to

PDAAAL [50], a recent C++ implementation of pushdown reachability check-

ing, which appears to be the currently most efficient library for pushdown

reachability [12]. PDAAAL implements post∗, pre∗ and dual∗ [12].

These three different algorithms can be used in classical differential testing

without a verified oracle, but given the large amount of shared code this is

bound to miss some errors. And without a verified oracle, manual effort is

needed to determine which implementation is faulty in case of discrepancies.

This motivates using our verified reachability check via pre∗, and we compare

the output of each unverified algorithm to the output of our trustworthy

oracle on a large number of test cases.

185

Paper F.

6.1 Methodology of Test Case Generation
We structure our test case generation in three phases.

In phase one, we use real-world tests generated from the domain of

network verification, which PDAAAL was originally built for as a backend [9].

We generate pushdown reachability problems from realistic network verifica-

tion use-cases on (up to) 100 random reachability queries on each of the 260

different networks derived from the Internet Topology Zoo [51] giving a total

of 25 512 test cases.

In phase two, we randomly generate valid pushdown systems and

P -automata. We generate 15 000 cases of varying sizes with 4 control loca-

tions, 5 labels, up to 200 pushdown rules, and up to 13 automata transitions.

Our generator writes all ingredients (pushdown system and P -automata) to a

JSON file, which is then translated to the Isabelle definitions and correctness

lemmas that incorporate the unverified answers.

Finally, in phase three, we exhaustively enumerate the set of all test cases

up to a certain (small) size. For the pushdown systems |P | = |Γ| = 2 and

|∆| ≤ 2, and for P -automata |N1| = 2, |N2| = 1 and |→| ≤ 2. We remove

symmetric cases, where swapping state names or labels gives an identical

case. In total, this yields close to 27 million combinations of pushdown

systems and P -automata. For the exhaustive tests, we output both JSON files

and Isabelle definitions directly from the test case generator. A bash script

stitches together the Isabelle definitions into a single theory file with a batch

of test cases to benefit from Isabelle’s parallel processing of proofs.

6.2 Results
The real-world test cases showed no discrepancies between the verified oracle

and PDAAAL. This indicates that PDAAAL has already been thoroughly

tested on this type of problem instances. Isabelle ran out of memory in 30 of

the 25 512 test cases. The average CPU time (on AMD EPYC 7642 processors

at 1.5 GHz) per test case was 35 seconds for Isabelle, while PDAAAL used less

than 0.02 seconds on most cases.

Phase two, however, resulted in 1 334 discrepancies. By applying our

counter-example minimization, we noted that all these cases had a common

trait: the P -automaton A2 accepted the empty word. This helped us find the

first implementation error in the implementation of the on-the-fly automata in-

tersection when using post∗. The post∗ algorithm can introduce ε-transitions,

which were not handled correctly by the intersection implementation. In

most cases, this does not matter, as for any ε-transition followed by a normal

transition the post∗ algorithm adds a direct transition at some later point.

However, in the case of an empty stack being accepted by A2, this does not

happen, which causes the unverified algorithm to return the wrong answer

186

6. Case Study: Analysis of PDAAAL

10: function AddTransition(qi
γ−→i q

′
i) ▷ with i ∈ {1, 2}

11: add qi
γ−→i q

′
i to Ai

12: for all q3−i, q
′
3−i ∈ Q3−i s.t. (q1, q2) ∈ R and q3−i

γ−→3−i q
′
3−i do

13: add (q1, q2)
γ−→ (q′1, q

′
2) to A∩

14: AddState(q′1, q′2)

(a) Snippet of (correct) intersection pseudocode by Jensen et al. [12]

(b) PDAAAL’s C++ code showing the resolution of the second error

Fig. 7: Discovered second implementation error and its correct pseudocode

False. We resolved the error and re-ran the generated tests. After that only

one discrepancy remained.

This second error was found in the implementation of pre∗. The minimized

counter-example helped us find the source of the implementation error: the

set of automata transitions was updated only after calling the function that

performs the nonemptiness check of the intersection automaton, but it should

have been updated before that call. We argue that this error is subtle, as it

only causes a single failure out of 15 000 randomly generated test cases. Fig. 7a

shows the correct pseudocode by Jensen et al. [12]. Fig. 7b shows PDAAAL’s

corresponding C++ code and the change resolving the error, where the line

that needed to be moved corresponds to the pseudocode’s Line 11.

For both errors, the affected test cases resulted in a correct answer for at

least one of the other search strategies in PDAAAL. This is not the case for

the last error, which is found in code shared by all three methods, and where

PDAAAL’s algorithms disagree only with Isabelle. This error is caused by a

mismatch between the assumptions of the parser that builds the pushdown

system and the data structure that stores the pushdown rules. The parser

assumes that it can incrementally add rules to the data structure without

knowing all labels in advance, but the data structure assumes to know all

labels from the start to implement a memory optimization that replaces a rule

that applies to all labels by a wildcard.

187

References

For the first two test phases, the program that generated Isabelle definitions

also depended on this parser, so the bug was not discovered until the third

phase, which has a different setup. After the three bugs were fixed, all test

cases pass.

7 Conclusion

We presented a methodology that increases the reliability of tools and libraries

for pushdown reachability analysis. To this end, we formalized and proved

in Isabelle/HOL the correctness of the essential saturation algorithms used in

such tools. We extracted an executable program from our formalization and

used it as a trustworthy oracle for differential testing. Putting the modern

pushdown analysis library PDAAAL on the testbed, we discovered a number

of implementation errors in its code, even though the library performed

flawlessly in its application domain. Using our automatic counter-example

minimization based on delta-debugging, we were able to identify the sources

of these errors and suggested fixes to PDAAAL’s implementation that now

passes all the differential tests.

This process significantly increased PDAAAL’s reliability and shows that

with a moderate effort, the combination of proof assistants with code genera-

tion, differential testing, and delta-debugging is highly fruitful. The execution

of all tests in the three phases took 303 CPU days. We executed the tests on a

compute cluster with 1 536 CPU cores. The formalization work took about two

person-months for experienced formalizers, creating about 4 400 nonempty

lines of Isabelle definition and proofs. An additional half person-month of

work was needed to implement the differential testing and counter-example

minimization, set up the tests, and localize and resolve the discovered errors.

This one-time effort will also benefit the future development of PDAAAL.

Too often, the race for better performance can lead to subtle implementa-

tion errors. Our methodology shows how formally verified algorithms that

were not tuned for performance can be used to improve the quality of tuned

but unverified algorithms.

Acknowledgements. This research was supported by the Independent Re-

search Fund Denmark (DFF project QASNET) and by Novo Nordisk Fonden

(NNF20OC0063462).

References

[1] J. R. Büchi, “Regular canonical systems,” Archiv für mathematische Logik

und Grundlagenforschung, vol. 6, no. 3-4, pp. 91–111, 1964.

188

https://doi.org/10.1007/BF01969548

References

[2] J. Esparza and J. Knoop, “An automata-theoretic approach to interproce-

dural data-flow analysis,” in FOSSACS’99, ser. LNCS, vol. 1578. Springer,

1999, pp. 14–30.

[3] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards, “Incremental

algorithms for inter-procedural analysis of safety properties,” in CAV’05,

ser. LNCS, vol. 3576. Springer, 2005, pp. 449–461.

[4] J. Esparza and S. Schwoon, “A BDD-based model checker for recursive

programs,” in CAV’01, ser. LNCS, vol. 2102. Springer, 2001, pp. 324–336.

[5] S. Schwoon, “Moped,” in http://www2.informatik.uni-stuttgart.de/ fmi/szs/

tools/moped/ , 2002.

[6] D. Suwimonteerabuth, S. Schwoon, and J. Esparza, “jMoped: A java

bytecode checker based on Moped,” in TACAS’05, ser. LNCS, vol. 3440.

Springer, 2005, pp. 541–545.

[7] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of pushdown

automata: Application to model-checking,” in CONCUR’97, ser. LNCS,

vol. 1243. Springer, 1997, pp. 135–150.

[8] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T.

Thorgersen, “P-Rex: Fast verification of MPLS networks with multiple

link failures,” in Proc. ACM CoNEXT, 2018, pp. 217–227.

[9] P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk, and

J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool for MPLS

networks,” in Proc. ACM CoNEXT, 2020, pp. 474–481.

[10] I. v. Duĳn, P. G. Jensen, J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid,

J. Srba, and M. T. Thorgersen, “Automata-theoretic approach to verifica-

tion of MPLS networks under link failures,” IEEE/ACM Transactions on

Networking, vol. 30, no. 2, pp. 766–781, 2022.

[11] N. Kidd, A. Lal, and T. Reps, “WALi: The weighted automaton library,”

2007. [Online]. Available: https://research.cs.wisc.edu/wpis/wpds/

wali/

[12] P. G. Jensen, S. Schmid, M. K. Schou, J. Srba, J. Vanerio, and I. van Duĳn,

“Faster pushdown reachability analysis with applications in network ver-

ification,” in Automated Technology for Verification and Analysis (ATVA 2021),

ser. LNCS, vol. 12971. Springer, 2021, pp. 170–186.

[13] Z. Kincaid, J. Breck, A. F. Boroujeni, and T. Reps, “Compositional recur-

rence analysis revisited,” in Proc. ACM PLDI, 2017, pp. 248–262.

189

https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/11513988_45
https://doi.org/10.1007/11513988_45
https://doi.org/10.1007/3-540-44585-4_30
https://doi.org/10.1007/3-540-44585-4_30
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://doi.org/10.1007/978-3-540-31980-1_35
https://doi.org/10.1007/978-3-540-31980-1_35
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1109/TNET.2021.3126572
https://doi.org/10.1109/TNET.2021.3126572
https://research.cs.wisc.edu/wpis/wpds/wali/
https://research.cs.wisc.edu/wpis/wpds/wali/
https://doi.org/10.1007/978-3-030-88885-5_12
https://doi.org/10.1007/978-3-030-88885-5_12
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3062341.3062373

References

[14] P. D. Schubert, B. Hermann, and E. Bodden, “PhASAR: An inter-

procedural static analysis framework for C/C++,” in TACAS’19, ser.

LNCS, vol. 11428. Springer, 2019, pp. 393–410.

[15] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A robust frame-

work for learning invariants,” in CAV 2014, ser. LNCS, A. Biere and

R. Bloem, Eds., vol. 8559. Springer, 2014, pp. 69–87.

[16] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants

using decision trees and implication counterexamples,” in Proc. ACM

POPL, 2016, pp. 499–512.

[17] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof Assistant

for Higher-Order Logic, ser. LNCS. Springer, 2002, vol. 2283.

[18] S. Schwoon, “Model-checking pushdown systems,” Ph.D. dissertation,

Technische Universität München, 2002.

[19] W. M. McKeeman, “Differential testing for software,” Digital Technical

Journal, vol. 10, no. 1, pp. 100–107, 1998.

[20] R. B. Evans and A. Savoia, “Differential testing: a new approach to change

detection,” in ESEC-FSE 2007. ACM, 2007, pp. 549–552.

[21] A. Groce, G. J. Holzmann, and R. Joshi, “Randomized differential testing

as a prelude to formal verification,” in ICSE 2007. IEEE Computer Society,

2007, pp. 621–631.

[22] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing

input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–200, 2002.

[23] A. Schlichtkrull, M. K. Schou, J. Srba, and D. Traytel, “Repeatability pack-

age for "Differential testing of pushdown reachability with a formally

verified oracle",” Zenodo, 2022.

[24] J. Schneider, D. A. Basin, S. Krstic, and D. Traytel, “A formally verified

monitor for metric first-order temporal logic,” in RV 2019, ser. LNCS, vol.

11757. Springer, 2019, pp. 310–328.

[25] D. A. Basin, T. Dardinier, L. Heimes, S. Krstic, M. Raszyk, J. Schneider, and

D. Traytel, “A formally verified, optimized monitor for metric first-order

dynamic logic,” in ĲCAR 2020, ser. LNCS, N. Peltier and V. Sofronie-

Stokkermans, Eds., vol. 12166. Springer, 2020, pp. 432–453.

[26] A. Schlichtkrull, J. C. Blanchette, and D. Traytel, “A verified prover based

on ordered resolution,” in CPP 2019, A. Mahboubi and M. O. Myreen,

Eds. ACM, 2019, pp. 152–165.

190

https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://d-nb.info/96638976X/34
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/1287624.1287707
https://doi.org/10.1145/1287624.1287707
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://doi.org/10.5281/zenodo.6952978
https://doi.org/10.5281/zenodo.6952978
https://doi.org/10.5281/zenodo.6952978
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1145/3293880.3294100

References

[27] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,

vol. 52, no. 7, pp. 107–115, 2009.

[28] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts,

S. T. V. Setty, and B. Zill, “Ironfleet: proving safety and liveness of practical

distributed systems,” Commun. ACM, vol. 60, no. 7, pp. 83–92, 2017.

[29] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,

and T. E. Anderson, “Verdi: a framework for implementing and formally

verifying distributed systems,” in Proc. ACM PLDI, 2015, pp. 357–368.

[30] M. Lesani, C. J. Bell, and A. Chlipala, “Chapar: certified causally consis-

tent distributed key-value stores,” in Proc. ACM POPL, 2016, pp. 357–370.

[31] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding

bugs in C compilers,” in Proc. ACM PLDI, 2011, pp. 283–294.

[32] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy, “An empirical

study on the correctness of formally verified distributed systems,” in

EuroSys 2017, G. Alonso, R. Bianchini, and M. Vukolic, Eds. ACM, 2017,

pp. 328–343.

[33] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J. Smaus,

“A fully verified executable LTL model checker,” in CAV 2013, ser. LNCS,

N. Sharygina and H. Veith, Eds., vol. 8044. Springer, 2013, pp. 463–478.

[34] S. Wimmer, “Munta: A verified model checker for timed automata,” in

FORMATS 2019, ser. LNCS, É. André and M. Stoelinga, Eds., vol. 11750.

Springer, 2019, pp. 236–243.

[35] T. Braibant and D. Pous, “Deciding Kleene algebras in Coq,” Log. Methods

Comput. Sci., vol. 8, no. 1, 2012.

[36] P. Lammich and T. Tuerk, “Applying data refinement for monadic pro-

grams to Hopcroft’s algorithm,” in ITP 2012, ser. LNCS, L. Beringer and

A. P. Felty, Eds., vol. 7406. Springer, 2012, pp. 166–182.

[37] D. Jiang and W. Li, “The verification of conversion algorithms between

finite automata,” Sci. China Inf. Sci., vol. 61, no. 2, pp. 028 101:1–028 101:3,

2018.

[38] S. Berghofer and M. Reiter, “Formalizing the logic-automaton connec-

tion,” in TPHOLs 2009, ser. LNCS, S. Berghofer, T. Nipkow, C. Urban, and

M. Wenzel, Eds., vol. 5674. Springer, 2009, pp. 147–163.

[39] Y. Minamide, “Verified decision procedures on context-free grammars,”

in TPHOLs 2007, ser. LNCS, K. Schneider and J. Brandt, Eds., vol. 4732.

Springer, 2007, pp. 173–188.

191

https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3068608
https://doi.org/10.1145/3068608
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-030-29662-9_14
https://doi.org/10.2168/LMCS-8(1:16)2012
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/s11432-017-9155-x
https://doi.org/10.1007/s11432-017-9155-x
https://doi.org/10.1007/978-3-642-03359-9_12
https://doi.org/10.1007/978-3-642-03359-9_12
https://doi.org/10.1007/978-3-540-74591-4_14

References

[40] M. V. M. Ramos, J. C. B. Almeida, N. Moreira, and R. J. G. B. de Queiroz,

“Formalization of the pumping lemma for context-free languages,” J.

Formaliz. Reason., vol. 9, no. 2, pp. 53–68, 2016.

[41] P. Lammich, M. Müller-Olm, and A. Wenner, “Predecessor sets of dy-

namic pushdown networks with tree-regular constraints,” in CAV 2009,

ser. LNCS, A. Bouajjani and O. Maler, Eds., vol. 5643. Springer, 2009, pp.

525–539.

[42] P. Lammich, “Formalization of dynamic pushdown networks in

Isabelle/HOL,” 2009. [Online]. Available: https://www21.in.tum.de/

~lammich/isabelle/dpn-document.pdf

[43] A. Bouajjani, M. Müller-Olm, and T. Touili, “Regular symbolic analysis of

dynamic networks of pushdown systems,” in CONCUR 2005, ser. LNCS,

M. Abadi and L. de Alfaro, Eds., vol. 3653. Springer, 2005, pp. 473–487.

[44] T. Nipkow and G. Klein, Concrete Semantics - With Isabelle/HOL. Springer,

2014.

[45] C. Ballarin, “Locales: A module system for mathematical theories,” J.

Autom. Reason., vol. 52, no. 2, pp. 123–153, 2014.

[46] F. Haftmann and T. Nipkow, “Code generation via higher-order rewrite

systems,” in FLOPS 2010, ser. LNCS, M. Blume, N. Kobayashi, and G. Vi-

dal, Eds., vol. 6009. Springer, 2010, pp. 103–117.

[47] C. Tian, C. Chen, Z. Duan, and L. Zhao, “Differential testing of certifi-

cate validation in SSL/TLS implementations: An RFC-guided approach,”

ACM Trans. Softw. Eng. Methodol., vol. 28, no. 4, pp. 24:1–24:37, 2019.

[48] Y. Chen, T. Su, and Z. Su, “Deep differential testing of JVM implementa-

tions,” in ICSE 2019, J. M. Atlee, T. Bultan, and J. Whittle, Eds. IEEE /

ACM, 2019, pp. 1257–1268.

[49] J. C. Knight and N. G. Leveson, “An experimental evaluation of the as-

sumption of independence in multiversion programming,” IEEE Trans.

Software Eng., vol. 12, no. 1, pp. 96–109, 1986.

[50] M. K. Schou, P. G. Jensen, D. Kristiansen, and B. C. Schrenk, “PDAAAL,”

GitHub, 2021. [Online]. Available: https://github.com/DEIS-Tools/

PDAAAL

[51] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communications,

vol. 29, no. 9, pp. 1765–1775, 2011.

192

https://doi.org/10.6092/issn.1972-5787/5595
https://doi.org/10.1007/978-3-642-02658-4_39
https://doi.org/10.1007/978-3-642-02658-4_39
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1145/3355048
https://doi.org/10.1145/3355048
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1109/TSE.1986.6312924
https://doi.org/10.1109/TSE.1986.6312924
https://github.com/DEIS-Tools/PDAAAL
https://github.com/DEIS-Tools/PDAAAL
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002

Paper G

Discovery of Flow Splitting Ratios

in ISP Networks with Measurement

Noise

Morten Konggaard Schou, Ingmar Poese, and Jiří Srba

The paper is under submission.

© 2023

The layout has been revised.

1. Introduction

Abstract

Network telemetry and analytics is essential for providing highly dependable services

in modern computer networks. In particular, network flow analytics for ISP networks

allows operators to inspect and reason about traffic patterns in their networks in order

to react to anomalies. High performance network analytics systems are designed with

scalability in mind, and can consequently only observe partial information about the

network traffic. Still, they need to provide a holistic view of the traffic, including the

distribution of different traffic flows on each link. It is impractical to monitor such

fine-grained telemetry, and in large, heterogeneous networks it is often too complex

and error-prone, if not impossible, to access and maintain all technical specifications

and router-specific configurations needed to determine e.g. the load balancing weights

used when traffic is split onto multiple paths. The ratios by which flows are split on

the possible paths must be derived indirectly from the measured flow demands and

link utilizations. Motivated by a case study provided by a major European ISP, we

suggest an efficient method to estimate the flow splitting ratios. Our approach, based

on quadratic linear programming, is scalable and robust to the measurement noise

found in a typical network analytics deployment. Finally, we implement an automated

tool for estimating the flow splitting ratios and document its applicability on real data

from the ISP.

1 Introduction

Network flow analytics [1, 2] in internet service provider (ISP) networks is

often employed by network operators for monitoring the traffic patterns [3–5].

This can help to optimize overall network performance and link utilizations.

As modern computer networks transfer huge quantities of data, it is impos-

sible to store and analyze every single packet forwarded in the network. By

packet sampling (using e.g. NetFlow [6] or IPFIX [7]), a network operator is

though capable of estimating, with a relatively high precision, the number of

packets transferred by each flow in the network. Similarly, packet counters for

each interface can provide reliable information on the current link utilizations.

However, answering questions like: "What traffic caused a spike on this link yes-

terday?" requires the analytics to not only show the total traffic dispatched on

each link (identifying the spike), but it also needs to break down this traffic

into the different flows, in order to determine where the anomaly originates

from.

In this paper, we tackle the problem of correlating flows with link traffic

in a practical and scalable manner—a problem arising from a case study with

a major network analytics company that monitors over 6000 routers across

multiple ISPs.

Sampling packet headers on every link in the network can answer such

195

Paper G.

questions; however, it has severe scalability issues. Instead, current high

performing network analytics systems sample packet headers at the ingress

routers only and combine this with the information from Border Gateway

Protocol (BGP) [8] and the interior gateway protocol (IGP) (e.g. IS-IS [9, 10] or

OSPF [11]) to determine the links traversed by the packet.

A lookup of the packet’s destination in the ingress routing table determines

the BGP next-hop, which is the router where the packet will egress the network.

The possible paths that the packet can use to go through the network from

ingress to egress are obtained from the IGP. All the packets that travel from

the same ingress to egress in the network are aggregated into a flow that

has a certain demand (size in bytes per second) averaged over some time

window. Figure 1a shows an example network where links are annotated by

the current link utilizations and Figure 1b depicts two flows of demand 12 and

4, respectively. In order to better distribute traffic along the links and thus

reduce the maximum link utilization [12], flows can be split along multiple

paths as demonstrated in the last column in Figure 1b. The splitting ratios

can be uniform among the available paths, or they can depend on the link

capacities [13] or custom link weights as shown in Figure 1c.

In practice the flow splitting ratios on the router depend on many technical,

vendor-specific implementation details and configurations—some of which

may not be accessible. Obtaining and processing this fine-grained information

across a large heterogeneous network would require a very complex system.

Hence the network analytics company deem it impossible in practice to obtain

the flow splitting ratios directly from the router. As it is, moreover, infeasible

to sample and categorize the packets traversing each link to the corresponding

flows, we need additional information in order to first infer the flow splitting

ratios and then estimate how much of each flow contributes to the load on a

concrete link in the network.

Fortunately, each router has a byte counter for each interface that measures

the total amount of traffic sent out on each link. This information is regularly

queried using SNMP [14, 15], and then the link utilization for a given time

interval is estimated by linear interpolation between SNMP measurements.

In our example from Figure 1a, each link is annotated with the current link

utilization. We now want to solve the following Flow Splitting Ratios (FSR)

problem: given flow demands, their paths and aggregated link utilizations,

find the flow splitting ratios such that when we accordingly project flow de-

mands onto the links, the predicted traffic on each link matches (as close as

possible) the measured link utilizations.

As our main contribution, we provide a practical and efficient solution to

the FSR problem, employing quadratic linear programming. As a concrete

instance of the FSR problem, consider our running example from Figure 1:

given the flow demands, available paths and the link utilizations, our approach

automatically predicts the splitting ratios at each node (depicted in the last

196

2. Problem Formalization

column of Figure 1c) and hence identifies how much every flow contributes to

the total load on each link. Moreover, we suggest a filtering method to compute

the splitting ratios even in case of large (but relatively rare) measurement errors

that are present in a practical deployment of a real network. The suggested

mechanism can efficiently deal with such measurement noise and errors and

we demonstrate the robustness of our approach on a large set of simulated

networks from the Topology Zoo [16] as well as on real traffic data from a

major European ISP (in collaboration with a network analytics company)

We observe that our approach achieves high precision in determining the

load balancing weights even in cases where the measured data are imprecise

and occasionally significantly deviate from the actual ingress traffic. Based

on an extensive statistical evaluation on a benchmark of over 190 real-world

ISP topologies, we conclude that our filtering technique helps to improve

the precision by an order of magnitude in the best cases and achieves about

66% improvement in the median case. Our approach scales to even large ISP

networks with thousands of routers and millions of flows. This allows us to

analyze real traffic data from a major European ISP network (which consists of

over 3.000 routers and 14.000 links) in a matter of minutes. We automatically

identify the load balancing weights in this network (which in this concrete case

closely correlates with the capacity-based splitting ratios where the balancing

weights are proportional to the link capacities) and put the more precise flow

analysis into production (as a part of a network analysis tool developed by the

company).

Related Work There are several network approaches based on linear pro-

gramming (see e.g. [17–20]) that compute/synthesize optimal splitting ratios

for traffic engineering and congestion-free resilience. We, on the other hand,

use LP to reverse engineer splitting ratios employed in a real network with the

purpose of providing more accurate traffic flow analytics. Contrary to other

papers that use linear objective functions, we employ quadratic optimization

that is better suited for this application domain. From the network monitoring

research, network traffic analysis and visualization tools like NVisionIP [21],

Flowyager [22] and VITALflow [23] have been designed for the purpose of

network security [21, 24, 25] and management [22, 23]. To the best of our

knowledge, none of these tools can reliably project the flow traffic on each link,

unless making assumptions on the underlying router configurations, which

can be difficult to obtain for larger networks.

2 Problem Formalization

In this section, we shall first define the notion of a network and traffic flows

and then formally rephrase the problem of identifying the flow splitting ratios.

197

Paper G.

i

New York

f

Chicago

j

Washington DC

aSeattle

bSunnyvale

c

Los Angeles

d

Denver

e

Kansas City

h

Houston

k

Atlanta

g
Indianapolis

8

48

4

2
2

6

8

6

10

1

9

7

1

(a) Abilene network from the Internet Topology Zoo [16]

Flow Demand Paths

Sunnyvale → New York 12
b-d-e-g-f-i

b-c-h-k-j-i

Seattle → Atlanta 4
a-d-e-g-k

a-d-e-h-k

a-b-c-h-k

(b) Two flows in Abilene network and their paths

Flow Split Node Split Ratios

Sunnyvale → New York Sunnyvale

Los Angeles: 1/3
Denver: 2/3

Seattle → Atlanta

Seattle

Denver: 1/2
Sunnyvale: 1/2

Kansas City

Indianapolis: 1/2
Houston: 1/2

(c) Splitting ratios for the two flows

Fig. 1: Example network topology with link utilizations

2.1 Network, Paths and Flows
We model a network as a directed simple graph N = (V,E) where V is a finite

set of nodes (routers) and E ⊆ V ×V is a finite set of links. A (simple) path in the

network is a sequence of distinct nodes p = v1v2 . . . vn such that (vi, vi+1) ∈ E

for 1 ≤ i < n. The total link utilization is a function U : E → N that assigns to

each link its current load.

A traffic flow inside the network is a pair f = (s, t) ∈ V × V of ingress

and egress router, respectively. The traffic matrix of the network is a function

F : V × V → N such that F (f) where f = (s, t) indicates the amount of traffic

that ingress the network at s and egress at t, averaged over some time interval.

The set of paths used by a flow (from ingress to egress) is given by the set

198

2. Problem Formalization

P (f) = {p1, . . . , pn} where each path p ∈ P starts at the ingress node s and

ends in the egress node t.

From the set of paths P (f), we can construct a directed subgraph G(f) ⊆ E

of the network where there is an edge (u, v) ∈ G(f) if and only if there is a path

p ∈ P (f) which contains uv as a subpath. When the network computes the set

of paths using equal-cost multi-path routing (ECMP) [26], the subgraph for

every flow f = (s, t) is acyclic and the set of possible paths from s to t through

G(f) is exactly P (f).

To avoid making assumptions on symmetries of the load balancing weights,

we model them independently for each flow f , so that each node v in the flow

graph G(f) has a splitting ratio dfv : V → [0; 1] such that dfv (u) denotes for each

next-hop u the percentage of traffic of the flow f that splits at the node v and

follows the link (v, u). The flow splitting ratios must satisfy

∑
u∈V dfv (u) = 1

and dfv (u) > 0 only if (v, u) ∈ G(f).

Now the fraction of traffic from a flow f on a link e can be calculated using

the paths and flow splitting ratios as follows:

xf
e ≜

∑
p∈P (f)

∏j

i=1 d
f
vi(vi+1)

if p = v1 . . . vn and

e = (vj , vj+1)

0 otherwise .

The value of xf
e is the sum the traffic for the flow f over the paths that go

through e and for each path we multiply the splitting ratios up until reaching

the link e. In the running example in Figure 1, we have for example (ignoring

the nodes with no splitting): xa→k
hk = da→k

a (b)+da→k
a (d) ·da→k

e (h) = 1/2+1/2 ·
1/2 = 3/4. This means that 3/4 of the flow size from Seattle to Atlanta passes

through the link between Houston and Atlanta.

2.2 Correlation of Traffic Flow and Link Utilization
By correlating the projection of flow traffic onto the links with the actual link

utilization U , we can evaluate various hypotheses about the flow splitting

ratios, and in that way improve the accuracy of the forward projection of traffic

flow.

In an ideal world, we wish to find flow splitting ratios such that the pro-

jected traffic matches the actual link utilization:

∀e ∈ E. U(e) =
∑

f∈V×V

F (f) · xf
e (ideal)

However, due to the inaccuracies of data introduced by e.g. sampling, timing

and delay, misclassification or loss of measurements, we cannot expect the

projected flow traffic to exactly match the link utilization. Instead, we define

199

Paper G.

a cost function of how badly the projected traffic on the links differs from the

actual link utilization.

cost ≜
∑
e∈E

penalty
(
U(e),

∑
f∈V×V

F (f) · xf
e

)
where the penalty function describes how undesirable an estimation (est) is

given the actual value (util), e.g. the absolute error penaltyabs(util , est) ≜

|util − est |, or squared relative error penaltyrel2 (util , est) ≜
(
util−est

util

)2
.

Remark 1. In practice, there is a large variety in the size and utilization of

links across a network, so penaltyabs tends to overfit the large links. Using

relative errors alleviates this problem, and squaring the error, like penaltyrel2

does, penalizes large errors more than several small errors, hence preferring

to spread out the inaccuracies over the network.

In the case study, we know that there is some missing data for the traffic

matrix F , making it unavoidable that some estimates become too low, so we

decide to only penalize over-estimations. Further, in practice the small flows

and links are given less importance, so we want to avoid noise in the data with

low magnitude having too big an impact on the relative errors. For this we

introduce a constant c that is the acceptable absolute error (e.g. c = 100Mbps),

and arrive at the following penalty function:

penalty(util , est)≜

(est − util − c

util

)2

if est − util > c

0 otherwise .

(1)

The flow splitting ratios (FSR) problem is now to find the splitting ratios dfv
that minimize the cost function from Equation 1.

3 Solution to Flow Splitting Ratio Synthesis

To solve the FSR problem, we turn to mathematical optimization. In particular,

we first encode the FSR problem as the problem of minimizing a linear or

quadratic optimization function (depending on the penalty function used) on

continuous variables subject to a set of linear constraints. We then study the

influence of measurement noise on the precision of splitting ratio estimates.

3.1 Encoding of FSR to a Linear Program
Linear programming (LP) and quadratic programming are well-studied prob-

lems with several industry-standard solvers [27, 28]. A linear programming

problem is to find values for a vector of decision variables x that minimize a

200

3. Solution to Flow Splitting Ratio Synthesis

Define non-negative variables:

xb→i
bc , xb→i

bd , xa→k
ab , xa→k

ad , xa→k
eg , xa→k

eh ,

xa→k
hk , errab , errad , errbc , errbd , errch ,

errde , erreg , erreh , errfi , errgf , errgk ,
errhk , err ji , errkj

Minimize:

(errab)
2 + (errad)

2 + (errbc)
2 + (errbd)

2+
(errch)

2 + (errde)
2 + (erreg)2 + (erreh)

2+
(errfi)

2 + (errgf)
2 + (errgk)

2 + (errhk)
2+

(err ji)
2 + (errkj)

2

Subject to:

(for the flow Sunnyvale → New York (b→ i))
(1) xb→i

bc + xb→i
bd = 1

(for the flow Seattle → Atlanta (a→ k))

(2) xa→k
ab + xa→k

ad = 1
(3) xa→k

ad = xa→k
eg + xa→k

eh
(4) xa→k

ab + xa→k
eh = xa→k

hk

(relative link errors)

(5) errab · 2 ≥ 4 · xa→k
ab − 2− c

(6) errad · 2 ≥ 4 · xa→k
ad − 2− c

(7) errbc · 6 ≥ 12·xb→i
bc + 4·xa→k

ab − 6− c
(8) errbd · 8 ≥ 12 · xb→i

bd − 8− c
(9) errch · 6 ≥ 12·xb→i

bc + 4·xa→k
ab − 6− c

(10) errde ·10 ≥ 12·xb→i
bd + 4·xa→k

ad − 10− c
(11) erreg · 9 ≥ 12·xb→i

bd + 4·xa→k
eg − 9− c

(12) erreh · 1 ≥ 4 · xa→k
eh − 1− c

(13) errfi · 8 ≥ 12 · xb→i
bd − 8− c

(14) errgf · 8 ≥ 12 · xb→i
bd − 8− c

(15) errgk · 1 ≥ 4 · xa→k
eg − 1− c

(16) errhk · 7 ≥ 12·xb→i
bc + 4·xa→k

hk − 7− c
(17) err ji · 4 ≥ 12 · xb→i

bc − 4− c
(18) errkj · 4 ≥ 12 · xb→i

bc − 4− c
(19) c = 0

Fig. 2: Quadratic programming formulation of the example

given cost function cTx subject to linear constraints Ax ≥ b and x ≥ 0 for some

constant vectors b, c and an integer matrix A. In quadratic programming, the

cost function can include products of pairs of decision variables, in general:

minimize cTx+ 1/2 · xTQx for some symmetric matrix Q. We refer to [29] for

further introduction to linear and quadratic programming.

In order to describe the encoding of the FSR problem into LP, we need to

introduce some notation. Let G(f)+v = {(v, u) ∈ G(f)} be the outgoing edges

from the node v in G(f) and let G(f)−v = {(u, v) ∈ G(f)} be the incoming

edges to v in G(f). The variables of the optimization problem are xf
e for every

flow f and every link e. The value of the variable xf
e , 0 ≤ xf

e ≤ 1, expresses

the fraction of the traffic of the flow f that is traversing the link e. From the xf
e

variables, we can derive the flow splitting ratios as follows

dfv (u) =
xf
(v,u)∑

e∈G(f)+v
xf
e

where dfv (u) expresses the flow splitting ratio at node v for the next-hop u. The

linearly constrained optimization program is then:

minimize

∑
e∈E penalty

(
U(e),

∑
f∈V×V F (f) · xf

e

)
subject to ∀f ∈ V × V : (let f = (s, t))

(1) xf
e ≥ 0 ∀e ∈ E

(2)

∑
e∈G(f)+s

xf
e = 1

(3)

∑
e∈G(f)−v

xf
e =

∑
e∈G(f)+v

xf
e ∀v ∈ V \{s, t}

201

Paper G.

t=1 t=2 t=3

flow size a → k 4.2 / 4.0 8.8 / 8.0 18.0 / 6.0

flow size b → i 11.4 / 12.0 22.8 / 24.0 17.1 / 18.0

ratio da→k
a (b) 51% / 50% 52% / 50% 66% / 50%

ratio da→k
a (d) 49% / 50% 48% / 50% 34% / 50%

ratio da→k
e (g) 50% / 50% 50% / 50% 50% / 50%

ratio da→k
e (h) 50% / 50% 50% / 50% 50% / 50%

ratio db→i
b (c) 32% / 33% 31% / 33% 6% / 33%

ratio db→i
b (d) 68% / 67% 69% / 67% 94% / 67%

mean error 0.83% 1.39% 14.36%

max error 1.30% 2.27% 26.99%

link util. ab 2.1 / 2.0 4.6 / 4.0 11.8 / 3.0

link util. ad 2.1 / 2.0 4.2 / 4.0 6.2 / 3.0

link util. bc 5.8 / 6.0 11.8 / 12.0 12.9 / 9.0

link util. bd 7.7 / 8.0 15.6 / 16.0 16.0 / 12.0

link util. ch 5.8 / 6.0 11.8 / 12.0 12.9 / 9.0

link util. de 9.8 / 10.0 19.8 / 20.0 22.2 / 15.0

link util. eg 8.8 / 9.0 17.7 / 18.0 19.1 / 13.5

link util. eh 1.0 / 1.0 2.1 / 2.0 3.1 / 1.5

link util. fi 7.7 / 8.0 15.6 / 16.0 16.0 / 12.0

link util. gf 7.7 / 8.0 15.6 / 16.0 16.0 / 12.0

link util. gk 1.0 / 1.0 2.1 / 2.0 3.1 / 1.5

link util. hk 6.8 / 7.0 13.9 / 14.0 16.0 / 10.5

link util. ji 3.7 / 4.0 7.2 / 8.0 1.1 / 6.0

link util. kj 3.7 / 4.0 7.2 / 8.0 1.1 / 6.0

penalty value 0.008 0.030 13.403

Table 1: Result of quadratic program on three separate simulations where cells show estimated

vs. real values

Here we minimize the cost function defined in Section 2.2 and require that (1)

the variables a non-negative, (2) the source of the flow initiates all the traffic,

and (3) each intermediate router in the flow graph sends out as much traffic

as it receives. We do not need a constraint requiring that the target node t

receives all the traffic of the flow f , as it is the only sink node in the subgraph

G(f), and the constraints (2) and (3) imply that all traffic of f ends in t.

Remark 2. If for some flow f an edge e = (v, u) is the only outgoing edge from

v in the subgraph G(f), there is no need to introduce the variable xf
e as it is

redundant.

In order to express the penalty function from the case study (Equation 1),

we introduce variables erre for each link e and rewrite the quadratic program

as:

minimize

∑
e∈E(erre)

2

subject to (1) - (3) and ∀e ∈ E :

(4) erre · U(e) ≥
∑

f∈V×V F (f) · xf
e − U(e)− c

where the optimal value of the variable erre is the positive relative error of

202

3. Solution to Flow Splitting Ratio Synthesis

c
o
m

b
i
n
i
n
g

t
i
m

e
s
e
r
i
e
s

fi
l
t
e
r
i
n
g

t
=

1
t
=

2
t
=

3
t
=

1
t
=

2
t
=

3

fl
o
w

s
i
z
e
a
→

k
(
m

e
a
s
u

r
e
d

/
r
e
a
l
)

4
.
2

/
4
.
0

8
.
8

/
8
.
0

1
8
.
0

/
6
.
0

4
.
2

/
4
.
0

8
.
8

/
8
.
0

1
8
.
0

/
6
.
0

fl
o
w

s
i
z
e
b
→

i
(
m

e
a
s
u

r
e
d

/
r
e
a
l
)

1
1
.
4

/
1
2
.
0

2
2
.
8

/
2
4
.
0

1
7
.
1

/
1
8
.
0

1
1
.
4

/
1
2
.
0

2
2
.
8

/
2
4
.
0

1
7
.
1

/
1
8
.
0

r
a
t
i
o
d
a
→

k
a

(b
)

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

6
4
%

/
5
0
%

5
3
%

/
5
0
%

r
a
t
i
o
d
a
→

k
a

(d
)

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

3
6
%

/
5
0
%

4
7
%

/
5
0
%

r
a
t
i
o
d
a
→

k
e

(g
)

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

5
1
%

/
5
0
%

4
9
%

/
5
0
%

r
a
t
i
o
d
a
→

k
e

(h
)

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

4
9
%

/
5
0
%

5
1
%

/
5
0
%

r
a
t
i
o
d
b
→

i
b

(c
)

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

1
8
%

/
3
3
%

3
3
%

/
3
3
%

r
a
t
i
o
d
b
→

i
b

(d
)

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

8
2
%

/
6
7
%

6
7
%

/
6
7
%

m
e
a
n

e
r
r
o
r

1
0
.
0
1
%

1
.
4
1
%

m
a
x

e
r
r
o
r

1
5
.
4
1
%

3
.
1
6
%

l
i
n

k
u

t
i
l
.
a
b

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

2
.
7

/
2
.
0

5
.
6

/
4
.
0

1
1
.
5

/
3
.
0

2
.
2

/
2
.
0

4
.
7

/
4
.
0

9
.
6

/
3
.
0

l
i
n

k
u

t
i
l
.
a
d

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

1
.
5

/
2
.
0

3
.
2

/
4
.
0

6
.
5

/
3
.
0

2
.
0

/
2
.
0

4
.
1

/
4
.
0

8
.
4

/
3
.
0

l
i
n

k
u

t
i
l
.
bc

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

4
.
7

/
6
.
0

9
.
7

/
1
2
.
0

1
4
.
6

/
9
.
0

6
.
0

/
6
.
0

1
2
.
3

/
1
2
.
0

1
5
.
3

/
9
.
0

l
i
n

k
u

t
i
l
.
bd

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

9
.
4

/
8
.
0

1
8
.
7

/
1
6
.
0

1
4
.
0

/
1
2
.
0

7
.
6

/
8
.
0

1
5
.
2

/
1
6
.
0

1
1
.
4

/
1
2
.
0

l
i
n

k
u

t
i
l
.
ch

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

4
.
7

/
6
.
0

9
.
7

/
1
2
.
0

1
4
.
6

/
9
.
0

6
.
0

/
6
.
0

1
2
.
3

/
1
2
.
0

1
5
.
3

/
9
.
0

l
i
n

k
u

t
i
l
.
d
e

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

1
0
.
9

/
1
0
.
0

2
1
.
9

/
2
0
.
0

2
0
.
5

/
1
5
.
0

9
.
6

/
1
0
.
0

1
9
.
3

/
2
0
.
0

1
9
.
8

/
1
5
.
0

l
i
n

k
u

t
i
l
.
eg

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

1
0
.
1

/
9
.
0

2
0
.
3

/
1
8
.
0

1
7
.
3

/
1
3
.
5

8
.
5

/
9
.
0

1
7
.
2

/
1
8
.
0

1
5
.
5

/
1
3
.
5

l
i
n

k
u

t
i
l
.
eh

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

0
.
7

/
1
.
0

1
.
6

/
2
.
0

3
.
2

/
1
.
5

1
.
0

/
1
.
0

2
.
1

/
2
.
0

4
.
3

/
1
.
5

l
i
n

k
u

t
i
l
.
fi

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

9
.
4

/
8
.
0

1
8
.
7

/
1
6
.
0

1
4
.
0

/
1
2
.
0

7
.
6

/
8
.
0

1
5
.
2

/
1
6
.
0

1
1
.
4

/
1
2
.
0

l
i
n

k
u

t
i
l
.
gf

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

9
.
4

/
8
.
0

1
8
.
7

/
1
6
.
0

1
4
.
0

/
1
2
.
0

7
.
6

/
8
.
0

1
5
.
2

/
1
6
.
0

1
1
.
4

/
1
2
.
0

l
i
n

k
u

t
i
l
.
gk

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

0
.
8

/
1
.
0

1
.
6

/
2
.
0

3
.
3

/
1
.
5

1
.
0

/
1
.
0

2
.
0

/
2
.
0

4
.
1

/
1
.
5

l
i
n

k
u

t
i
l
.
h
k

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

5
.
5

/
7
.
0

1
1
.
3

/
1
4
.
0

1
7
.
8

/
1
0
.
5

7
.
1

/
7
.
0

1
4
.
4

/
1
4
.
0

1
9
.
6

/
1
0
.
5

l
i
n

k
u

t
i
l
.
ji

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

2
.
0

/
4
.
0

4
.
1

/
8
.
0

3
.
1

/
6
.
0

3
.
8

/
4
.
0

7
.
6

/
8
.
0

5
.
7

/
6
.
0

l
i
n

k
u

t
i
l
.
kj

(
e
s
t
i
m

a
t
e
d

/
r
e
a
l
)

2
.
0

/
4
.
0

4
.
1

/
8
.
0

3
.
1

/
6
.
0

3
.
8

/
4
.
0

7
.
6

/
8
.
0

5
.
7

/
6
.
0

p
e
n

a
l
t
y

v
a
l
u

e
1
4
.
1
6
2

0
.
0
4
2

Ta
bl

e
2:

R
e
s
u

l
t
s

o
f

c
o
m

b
i
n

i
n

g
t
h

e
t
i
m

e
w

i
n

d
o
w

s
o
f

T
a
b
l
e

1
a
n

d
fi

l
t
e
r
i
n

g
o
u

t
t
h

e
2
0
%

w
o
r
s
t

c
o
n

s
t
r
a
i
n

t
s

(
g

r
e
y

c
e
l
l
s
)
.

203

Paper G.

the estimation after discounting the acceptable absolute error c. Note that by

using an inequality in the constraint (4), we only penalize over-estimation.

Figure 2 shows the quadratic program for our running example. Here,

in case of no measurement noise, the optimal zero-cost solution of the linear

program gives us exactly the correct splitting ratios from Figure 1c.

3.2 Measurement Noise
Next, returning to our running example from Figure 1, we synthetically add

measurement noise that can vary the size of the measured flow demands.

We do this in order to simulate the noise seen in a real network analytics

deployment. There is always a small noise variation that reflects the timing

and sampling variance, while the large (but less frequent) differences can be

caused by late detection of changes in the BGP tables leading to incorrect

mapping of ingress-traffic to the flows inside the network.

Table 1 shows the results of three experiments with increasing levels of

measurement noise on the first flow (+5%, +10%, +200%), while the second

flow has the same small noise (-5%) for all three simulated time windows

(t=1,2,3). The measured value is the left number in the cell, and the actual

value the right number. Note that, like in real networks, the amount of traffic

changes between the time windows. We use the quadratic programming

solver CPLEX 22.1 [27] to solve the programs, and report the computed vs.

ideal (real) splitting ratios, as well as the forward projected traffic derived

from the computed ratios vs. actual utilization on each link based on the real

ratios.

As we can see in Table 1, the estimated flow splitting ratios are quite

accurate when there is only little noise; however, in the last case (t=3) with a

large measurement error for the flow a→ k, the estimated ratios are quite far

off. This is even the case for the splitting ratios of the other flow b→ i.

4 Dealing with Measurement Noise

To achieve stable and accurate estimations of the flow splitting ratios despite

the noise and occasional large errors in the measurement of the size of the

flows, we propose two techniques.

First, by combining time series of measurements into a single large quadratic

program, we exploit that we have data for multiple time intervals (e.g. 24 one-

hour measurements of a day) for which the flow splitting ratios are expected

to remain (mostly) unchanged.

Second, by filtering out the link error constraints with the highest penalty

in the optimization function, we can indirectly filter out the flows with large

(but rare) measurement errors. The intuition is that when only a few flows

204

4. Dealing with Measurement Noise

have large measurement errors, then only relatively few links will be affected.

By not considering the utilization of these links for these specific time periods,

we effectively filter out the large flow measurement errors without knowing

specifically which flows were measured erroneously.

Table 2 shows the result of combining the three time windows from Table 1

of the running example into a single quadratic program. The left side of Table 2

shows the result without filtering, while the right side shows the results of

filtering out the 20% link constraints (highlighted with grey background) that

contribute the most to the total penalty value of the LP (in the optimal solution

for the unfiltered problem).

We see that combining the three time windows reduces the mean error in

estimation of splitting ratios from 14.36% for the worst case (t=3) to 10.01%

in the combined problem without filtering. After filtering, the mean error

is only 1.41%. This small example shows a strong benefit of combining time

series of measurements and filtering out some constraints with high penalty;

however, it contains only two flows and only one large measurement error. In

order to statistically validate the benefits of our technique, we run an extensive

simulation experiment on a large set of network topologies.

4.1 Simulation Experiments with Synthetic Traffic
We simulate synthetic flow demands and splitting ratios on real world topolo-

gies from the Topology Zoo benchmark [16]. We restrict topologies to their

largest connected component (disconnected components can be handled inde-

pendently) and we do not consider topologies with less than eight nodes or

where the synthetic traffic encounters no splitting at all. This leaves us with

192 different topologies.

To generate synthetic traffic, we use the gravity model [30] with random

node masses and randomly select 25% of all source-destination pairs to have

traffic between them—this corresponds to the numbers found in our industrial

case study. As an approximate simulation of the variation of traffic during the

day, we vary the total traffic in the network over time using a sine wave together

with added noise. We generate 24 traffic matrices, corresponding to one for

each hour of the day—a similar setup as the data source in the case study. The

splitting ratios are generated by assigning random load balancing weights to

the links of the graph and then computing ratios based on these link weights.

These demands over time and the splitting ratios are the ’ground truth’ of the

simulation and are used to compute the true total utilization of each link.

To mimic the type of measurement noise found in a real network analytics

deployment, we introduce a small random variation of ±1% to the measured

traffic of all flows. We also model rare but large measurement errors in flow

traffic: with a low probability of 0.5% we vary a flow size by a random factor

between 1/10 and 10. From the estimated splitting ratios, returned by the

205

Paper G.

quadratic programing solver, we compute the error compared to the true

splitting ratios, and average each of these errors weighted by the total size

of the flow. This avoids small, and hence in practice less important, flows

dominating and skewing the results. This weighted average splitting ratio

error is then considered as the error of that solution.

For each topology, we create ten different random instances of splitting

ratios and traffic demands and average the errors. We then report on the best

filtering ratio and the error it achieved, and we compare this to the maximum

error of a single time window, and to the error when combining time series

without filtering. Table 3 orders the topologies by the improvement achieved

by filtering compared to only combining time series, and shows the results for

the top, middle and bottom seven topologies.

It is clear that combining measurements over multiple time windows bal-

ances out the measurement noise and reduces the estimation errors compared

to the worst single time window. We can further observe that filtering im-

proves the error in the estimation of the real splitting ratios by an order of

magnitude in the best cases and in the middle cases it achieves a significant

66% improvement. In the worst seven topologies, our improvement is smaller

(but the filtering technique still improves the precision in every single topol-

ogy). We observe that topologies with smallest improvement have either close

to no error in the first place or have a very large diameter of more than 20,

where it is likely to create flows that traverse a large number of links in the

network. In such cases, we need to filter up to 50% of LP constraints, which is

significantly more than what is needed for the other topologies (where 5-10%

filtering is sufficient). Hence if a large measurement error is introduced to such

a long elephant flow, then there is simply not enough data on the remaining

links in the network to accurately approximate the actual splitting ratios.

5 Scalability Study on Large European ISP

We perform a case study on data from a large European ISP. This network

consists of over 3.000 routers and 14.000 links, and the dataset contains hourly

traffic matrices, flow paths, and link utilizations for 24 hours of one day. The

set of paths used by a flow is in most cases stable in the dataset, but some

changes occur during the day. We handle this by assuming that the set of

splitting ratios are stable as long as the set of paths is stable, but we introduce

new variables for modelling a new set of paths for the flow.

Over the course of one day, more than two and a half million flows have

traffic. The quadratic program that analyzes all flows is solved in about seven

minutes running on 4 CPU cores at 2.5GHz; however, most of these flows have a

very small volume, and in practice the largest flows are the most important. As

seen in Figure 3, analyzing the flows that carry 99.9% of the total traffic volume

206

6. Conclusion

Topology D
ia

m
et

er

M
ax

er
ro

r
ov

er
al

l
tim

e
w

in
do

w
s

Er
ro

ra
ft

er
co

m
bi

ni
ng

tim
e

se
ri

es

Er
ro

ra
ft

er
fil

te
ri

ng

Fi
lte

ri
ng

pe
rc

en
ta

ge

Im
pr

ov
em

en
t

of
fil

te
ri

ng

Nextgen 11 40.32% 3.56% 0.20% 5% 94.5%

Bbnplanet 8 56.16% 5.74% 0.43% 5% 92.5%

Psinet 12 50.46% 7.66% 0.64% 5% 91.7%

Goodnet 5 16.36% 2.40% 0.23% 5% 90.5%

Abvt 8 29.62% 4.95% 0.49% 5% 90.1%

Janetlense 5 11.72% 1.69% 0.17% 5% 90.1%

Ibm 7 29.93% 5.46% 0.54% 5% 90.1%

Geant2009 8 22.78% 8.87% 2.87% 10% 67.6%

Geant2001 7 21.48% 10.08% 3.28% 10% 67.5%

Easynet 7 25.87% 4.66% 1.53% 10% 67.1%

Compuserve 5 26.05% 0.82% 0.28% 5% 66.1%

Dfn 7 30.08% 11.41% 3.92% 10% 65.6%

Cesnet201006 7 33.70% 10.65% 3.68% 10% 65.5%

DT 7 19.14% 7.78% 2.71% 10% 65.1%

Ion 26 34.83% 21.13% 15.70% 50% 25.7%

TataNld 29 23.12% 17.05% 13.06% 50% 23.4%

GtsCe 22 28.58% 18.96% 14.59% 50% 23.1%

UsCarrier 36 36.68% 17.00% 13.69% 50% 19.4%

DialtelecomCz 31 34.62% 18.61% 15.17% 45% 18.5%

Gridnet 3 6.16% 0.12% 0.10% 15% 15.7%

Claranet 5 30.28% 0.20% 0.18% 5% 10.4%

Table 3: Experiments with synthetic traffic data

per hour takes only 87 seconds, and analyzing 99% of the traffic volume takes 34

seconds. In conclusion, the method is highly scalable, especially considering

the typically uneven distribution of traffic volume in ISP networks.

The diameter of the topology in the case study is 10, so from the experiments

on synthetic traffic data we expect that a 5-10% filtering is reasonable. We

compute flow splitting ratios using our approach, and observe that they closely

match splitting ratios based on link capacities—an insight that is now used in

the traffic analytics deployment.

6 Conclusion

We suggested a method for synthesis of flow splitting ratios from incom-

plete and noisy network traffic flow measurements. Our methods is based

on quadratic linear programming and we documented the accuracy and ro-

bustness of our method on an extensive synthetic benchmark. Our method is

scalable even to large ISP networks. Based on the analysis by our tool on a case

207

References

96% 97% 98% 99% 100%

Percentage of total traffic volume analyzed

0

100

200

300

400

(s)
Solve time for quadratic program

Fig. 3: Scalability of solving FSR on a real, large ISP

study in collaboration with a network analytics company, flow splitting ratios

based on link capacities are now used to improve the accuracy of a real traffic

analytics deployment.

References

[1] B. Li, J. Springer, G. Bebis, and M. Hadi Gunes, “A survey of network flow

applications,” Journal of Network and Computer Applications, vol. 36, no. 2,

pp. 567–581, 2013.

[2] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and

A. Pras, “Flow monitoring explained: From packet capture to data anal-

ysis with NetFlow and IPFIX,” IEEE Communications Surveys & Tutorials,

vol. 16, no. 4, pp. 2037–2064, 2014.

[3] J. L. Garcia-Dorado, A. Finamore, M. Mellia, M. Meo, and M. Munafo,

“Characterization of ISP traffic: Trends, user habits, and access technology

impact,” IEEE Transactions on Network and Service Management, vol. 9, no. 2,

pp. 142–155, 2012.

[4] M. Trevisan, D. Giordano, I. Drago, M. Mellia, and M. Munafo, “Five

years at the edge: Watching internet from the ISP network,” in Proc. ACM

CoNEXT, 2018, pp. 1–12.

[5] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel, D. Wag-

ner, M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez, O. Hohlfeld, and

G. Smaragdakis, “The lockdown effect: Implications of the COVID-19

pandemic on internet traffic,” in Proc. ACM Internet Measurement Confer-

ence (IMC), 2020, pp. 1–18.

208

https://doi.org/10.1016/j.jnca.2012.12.020
https://doi.org/10.1016/j.jnca.2012.12.020
https://doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1109/TNSM.2012.022412.110184
https://doi.org/10.1109/TNSM.2012.022412.110184
https://doi.org/10.1145/3281411.3281433
https://doi.org/10.1145/3281411.3281433
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/3419394.3423658

References

[6] B. Claise, “Cisco systems NetFlow services export version 9,” RFC 3954,

Oct. 2004.

[7] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP flow in-

formation export (IPFIX) protocol for the exchange of flow information,”

RFC 7011, Sep. 2013.

[8] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),”

RFC 4271, Jan. 2006.

[9] ISO, “Intermediate system to intermediate system intra-domain route-

ing exchange protocol for use in conjunction with the protocol for pro-

viding the connectionless-mode network service (ISO 8473),” ISO/IEC

10589:2002, Nov. 2002.

[10] R. Callon, “Use of OSI IS-IS for routing in TCP/IP and dual environ-

ments,” RFC 1195, Dec. 1990.

[11] J. Moy, “OSPF version 2,” RFC 2328, Apr. 1998.

[12] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional

IP routing protocols,” IEEE Communications Magazine, vol. 40, no. 10, pp.

118–124, 2002.

[13] Juniper Networks, “IS-IS user guide: Understand-

ing weighted ECMP traffic distribution on one-

hop IS-IS neighbors,” Jan. 2021. [Online]. Available:

https://www.juniper.net/documentation/us/en/software/junos/

is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html

[14] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple network manage-

ment protocol (SNMP),” RFC 1157, May 1990.

[15] D. Harrington, B. Wĳnen, and R. Presuhn, “An architecture for describ-

ing simple network management protocol (SNMP) management frame-

works,” RFC 3411, Dec. 2002.

[16] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communications,

vol. 29, no. 9, pp. 1765–1775, 2011.

[17] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and Y. R.

Yang, “R3: Resilient routing reconfiguration,” in Proc. ACM SIGCOMM,

2010, pp. 291–302.

[18] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford, “Network

architecture for joint failure recovery and traffic engineering,” SIGMET-

RICS Perform. Eval. Rev., vol. 39, no. 1, pp. 97–108, Jun. 2011.

209

https://doi.org/10.17487/RFC3954
https://doi.org/10.17487/RFC7011
https://doi.org/10.17487/RFC7011
https://doi.org/10.17487/RFC4271
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html
https://doi.org/10.17487/RFC1195
https://doi.org/10.17487/RFC1195
https://doi.org/10.17487/RFC2328
https://doi.org/10.1109/MCOM.2002.1039866
https://doi.org/10.1109/MCOM.2002.1039866
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/wecmp-for-one-hop-isis-neighbors-overview.html
https://doi.org/10.17487/RFC1157
https://doi.org/10.17487/RFC1157
https://doi.org/10.17487/RFC3411
https://doi.org/10.17487/RFC3411
https://doi.org/10.17487/RFC3411
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/1851182.1851218
https://doi.org/10.1145/2007116.2007128
https://doi.org/10.1145/2007116.2007128

References

[19] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and

R. Wattenhofer, “Achieving high utilization with software-driven WAN,”

in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[20] J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjørner, A. Valadarsky, and

M. Schapira, “TEAVAR: Striking the right utilization-availability balance

in WAN traffic engineering,” in Proc. ACM SIGCOMM, 2019, pp. 29–43.

[21] K. Lakkaraju, W. Yurcik, and A. J. Lee, “NVisionIP: Netflow visualizations

of system state for security situational awareness,” in Proc. Workshop on

Visualization and Data Mining for Computer Security (VizSEC/DMSEC ’04).

ACM, 2004, pp. 65–72.

[22] S. J. Saidi, A. Maghsoudlou, D. Foucard, G. Smaragdakis, I. Poese, and

A. Feldmann, “Exploring network-wide flow data with Flowyager,” IEEE

Transactions on Network and Service Management, vol. 17, no. 4, pp. 1988–

2006, 2020.

[23] T. Tremel, J. Kögel, F. Jauernig, S. Meier, D. Thom, F. Becker, C. Müller, and

S. Koch, “VITALflow: Visual interactive traffic analysis with netflow,” in

IEEE/IFIP Network Operations and Management Symposium (NOMS), 2022,

pp. 1–6.

[24] D. Phan, J. Gerth, M. Lee, A. Paepcke, and T. Winograd, “Visual analysis

of network flow data with timelines and event plots,” in Proc. Workshop

on Visualization for Computer Security (VizSEC 2007), ser. MATHVISUAL.

Springer, 2008, pp. 85–99.

[25] J. R. Goodall and D. R. Tesone, “Visual analytics for network flow anal-

ysis,” in Cybersecurity Applications & Technology Conference for Homeland

Security, 2009, pp. 199–204.

[26] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,

Nov. 2000.

[27] IBM, “IBM ILOG CPLEX optimization studio 22.1.0.” [Online]. Available:

https://www.ibm.com/docs/en/icos/22.1.0

[28] Gurobi Optimization, Gurobi optimizer reference manual - Version

10.0, 2023. [Online]. Available: https://www.gurobi.com/wp-content/

plugins/hd_documentations/documentation/10.0/refman.pdf

[29] R. J. Vanderbei, Linear programming: Foundations and Extensions, 5th ed.

Springer, 2020.

[30] M. Roughan, “Simplifying the synthesis of internet traffic matrices,” SIG-

COMM Comput. Commun. Rev., vol. 35, no. 5, pp. 93–96, Oct. 2005.

210

https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1145/1029208.1029219
https://doi.org/10.1145/1029208.1029219
https://doi.org/10.1109/TNSM.2020.3034278
https://doi.org/10.1109/NOMS54207.2022.9789776
https://doi.org/10.1007/978-3-540-78243-8_6
https://doi.org/10.1007/978-3-540-78243-8_6
https://doi.org/10.1109/CATCH.2009.47
https://doi.org/10.1109/CATCH.2009.47
https://doi.org/10.17487/RFC2992
https://www.ibm.com/docs/en/icos/22.1.0
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/10.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/10.0/refman.pdf
https://doi.org/10.1007/978-3-030-39415-8
https://doi.org/10.1145/1096536.1096551

M
o

r
ten

 K
o

n
g

g
a

a
r

d
 Sc

h
o

u
Q

u
a

n
titative ver

ific
atio

n
 a

n
d

 Syn
th

eSiS o
f r

eSilien
t n

etw
o

r
K

S

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-659-1

	Omslag_MKS.pdf
	PHD_MKS_TRYK.pdf
	Kolofon_MKS.pdf
	morten-schou-thesis-submission.pdf
	Front page
	Abstract
	Resumé
	Contents
	Preface
	I Introduction
	1 Network Verification and Synthesis
	2 Challenges in Application of Formal Techniques
	3 Overview of Computer Networks
	4 Related Work
	4.1 Verification of Traditional Networks
	4.2 Verification of Programmable Networks
	4.3 Traffic Engineering Optimization
	4.4 Synthesis of Network Configurations and Updates

	5 Contributions
	6 MPLS Network Resilience
	6.1 MPLS Network Model
	6.2 Data Plane Generation and Simulation
	6.3 Recursive Fast Reroute Protection

	7 Pushdown Automata Reachability
	7.1 Pushdown Automata Reachability for MPLS Verification
	7.2 Solving Pushdown Reachability Efficiently
	7.3 Weighted Pushdown Automata Verification
	7.4 Formal Correctness of Pushdown Verification

	8 Measuring Real Networks
	9 Conclusion
	References

	II Papers
	A R-MPLS: Recursive Protection for Highly Dependable MPLS Networks
	1 Introduction
	2 MPLS Network Model
	3 R-MPLS Protection
	3.1 Protectable Forwarding Entries
	3.2 Loop Avoidance
	3.3 R-MPLS Algorithm
	3.4 Recursive Link and Node Protection
	3.5 Distributed R-MPLS Implementation
	3.6 Properties of the R-MPLS Protection

	4 Evaluation of R-MPLS
	4.1 MPLS Generation and Simulation
	4.2 Methodology
	4.3 Results of RSVP Experiments
	4.4 Results of LDP Experiments

	5 Discussion
	6 Related Work
	7 Conclusion
	References
	A Proofs for Section 3.6
	B Elaboration on Section 4.1
	C Artifact Appendix

	B MPLS-Kit: An MPLS Data Plane Toolkit
	1 Introduction
	2 MPLS Network Operation
	3 MPLS-Kit Overview
	4 MPLS Dataplane Generation
	5 MPLS Forwarding Simulation
	6 Use cases
	7 Conclusions
	References

	C Faster Pushdown Reachability Analysis with Applications in Network Verification
	1 Introduction
	2 Preliminaries
	3 Formal Model of MPLS Networks
	3.1 MPLS Network Verification
	3.2 From Query Satisfiability to Pushdown Reachability

	4 Improving Pushdown System Reachability Analysis
	4.1 Early Termination of Reachability Algorithms
	4.2 Combining Forward and Backward Search
	4.3 Abstraction Refinement for Pushdown System Reachability

	5 Implementation and Experiments
	6 Conclusion
	References
	A Appendix

	D AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
	1 Introduction
	2 MPLS Network Model
	2.1 Network definition
	2.2 Valid MPLS headers
	2.3 Example network
	2.4 Network traces
	2.5 Query language

	3 Quantitative Extension
	4 Tool Implementation
	4.1 Verification methodology
	4.2 Tool architecture

	5 Performance Evaluation
	6 Conclusion
	References
	A Appendix

	E PDAAAL: A Library for Reachability Analysis of Weighted Pushdown Systems
	1 Introduction
	2 Weighted Pushdown Systems and Reachability
	3 Implemented Algorithms and PDAAAL Architecture
	4 Comparison with State-of-the-Art
	5 Applications
	6 Conclusion
	References

	F Differential Testing of Pushdown Reachability with a Formally Verified Oracle
	1 Introduction
	2 Isabelle/HOL
	3 Pushdown Reachability
	3.1 Nondeterministic pre* Saturation
	3.2 Nondeterministic post* Saturation
	3.3 Combined dual* Saturation

	4 Executable Pushdown Reachability
	5 Differential Testing
	5.1 Differential Testing of Pushdown Reachability
	5.2 Automatic Counter-Example Minimization

	6 Case Study: Analysis of PDAAAL
	6.1 Methodology of Test Case Generation
	6.2 Results

	7 Conclusion
	References

	G Discovery of Flow Splitting Ratios in ISP Networks with Measurement Noise
	1 Introduction
	2 Problem Formalization
	2.1 Network, Paths and Flows
	2.2 Correlation of Traffic Flow and Link Utilization

	3 Solution to Flow Splitting Ratio Synthesis
	3.1 Encoding of FSR to a Linear Program
	3.2 Measurement Noise

	4 Dealing with Measurement Noise
	4.1 Simulation Experiments with Synthetic Traffic

	5 Scalability Study on Large European ISP
	6 Conclusion
	References

	Omslag_MKS
	Blank Page
	Blank Page
	Blank Page

