Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Quantitative Verification and Synthesis of Resilient Networks

Schou, Morten Konggaard

DOl (link to publication from Publisher):
10.54337/aau588616986

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Schou, M. K. (2023). Quantitative Verification and Synthesis of Resilient Networks. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau588616986

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 29, 2023

https://doi.org/10.54337/aau588616986
https://vbn.aau.dk/en/publications/a96aef43-1a22-4369-92b6-8575c603433f
https://doi.org/10.54337/aau588616986

QUANTITATIVE VERIFICATION
AND SYNTHESIS OF
RESILIENT NETWORKS

BY
MORTEN KONGGAARD SCHOU

DISSERTATION SUBMITTED 2023

((¢

AALBORG UNIVERSITY
DENMARK

Quantitative Verification
and Synthesis of
Resilient Networks

Ph.D. Dissertation
Morten Konggaard Schou

Dissertation submitted August, 2023

Dissertation submitted:

PhD supervisor::

PhD committee:

PhD Series:

Department:

ISSN (online): 2446-1628

August, 2023

Professor Jiii Srba
Aalborg University

Associate Professor Michele Albano (chair)
Aalborg University, Denmark

Associate Professor Laurent Vanbever
ETH Ziirich, Switzerland

Senior Researcher Nikolaj Bjerner
Microsoft Research, USA

Technical Faculty of IT and Design, Aalborg University

Department of Computer Science

ISBN (online): 978-87-7573-659-1

Published by:

Aalborg University Press

Kroghstrade 3

DK — 9220 Aalborg @
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Morten Konggaard Schou

Printed in Denmark by Stibo Complete, 2023

Abstract

Computer networks connect people across the world and are a critical infras-
tructure for many of the services that a modern society depends on. With
the rapidly growing use of computer networks, the demand for higher band-
width and lower latency to support a new generation of applications, as well as
the need for failure protection mechanisms to meet the increasingly stringent
dependability requirements, modern computer networks have evolved into
complex heterogeneous systems. These networks are tricky to manage and
operate correctly, and there are many examples of subtle configuration errors
taking down entire networks.

Formal methods have been proposed as a way to reduce the risk of network
outages by creating mathematically well-defined models of the networks and
their behavior and applying algorithmic techniques to verify conformance with
the specifications or synthesize correct-by-construction configurations.

In this thesis, we contribute to the formal treatment of the widely-deployed
MPLS networks with a focus on quantitative properties and resiliency mech-
anisms. We present a formal model of the MPLS network data plane and
use this model to develop a practical technique for increasing the resilience
of MPLS networks by synthesizing loop-free recursive failover protections.
Moreover, we extend prior work on model checking MPLS networks with
failover protections to also consider quantitative properties with shortest and
longest trace analysis. This work builds on the connection between MPLS net-
works and pushdown automata. To address the scalability of MPLS network
model checking, we significantly improve the performance of pushdown au-
tomata reachability checking by developing new on-the-fly algorithms and an
efficient tool implementation. We increase the trustworthiness of the model
checking results by formally proving the correctness of the used algorithms in
the proof assistant Isabelle/HOL, extracting executable code, and performing
differential testing against this formally verified oracle.

Finally, we address the importance of providing accurate data for the formal
models through a case study with a network analytics company, where we
present a robust and efficient method for inferring the otherwise unknown
ratios that the routers use when load balancing traffic among multiple paths.

1ii

Resumé

Computernetveerk forbinder mennesker over hele verden og er en kritisk in-
frastruktur for mange af de tjenester, som et moderne samfund afhzenger af.
Med den hastigt voksende brug af computernetveerk, eftersporgslen pa hojere
bandbredde og lavere latenstid til at understette en ny generation af applika-
tioner, samt behovet for fejlbeskyttelsesmekanismer for at opfylde de stadigt
strengere krav til palidelighed, har moderne computernetveerk udviklet sig til
komplekse heterogene systemer. Disse netverk er vanskelige at administrere
og operere korrekt, og der er mange eksempler, hvor subtile konfigurationsfejl
har faet hele netvaerk til at ga ned.

Formelle metoder er blevet foresldet som en made at reducere risikoen
for netvaerksafbrydelser ved at skabe matematisk veldefinerede modeller af
netveerkene og deres adfeerd, og anvende algoritmiske teknikker til at verificere
overensstemmelse med specifikationerne eller syntetisere konfigurationer, der
er korrekte per konstruktion.

I denne athandling bidrager vi til den formelle behandling af de vidt
udbredte MPLS-netveerk med fokus pé kvantitative egenskaber og resistens-
mekanismer. Vi praesenterer en formel model af MPLS-netveerkets dataplan
og bruger denne model til at udvikle en praktisk teknik til at oge modstands-
dygtigheden af MPLS-netveerk ved at syntetisere fejlbeskyttelse med lokkefri
rekursive reserve-veje. Desuden bygger vi videre pa tidligere arbejde med
modelkontrol af MPLS-netveerk med fejlbeskyttelse, og udvider til ogsa at veri-
ficere kvantitative egenskaber med analyse af korteste og leengste vej. Dette ar-
bejde bygger pa forbindelsen mellem MPLS-netveaerk og pushdown-automater.
For at handtere skalerbarheden af MPLS-netveerksmodelkontrol, reducerer
vi markant keretiden af reachability analyse i pushdown-automater ved at
udvikle nye on-the-fly-algoritmer og en effektiv implementering. Vi gger tro-
vaerdigheden af resultaterne fra modelkontrollen ved formelt at bevise korrekt-
heden af de anvendte algoritmer i bevis-verktojet Isabelle/HOL, udtraekke en
eksekverbar kode og udfere differentiel testning mod dette formelt verificerede
orakel.

Endeligt arbejder vimed vigtigheden af at levere preecise data til de formelle
modeller gennem et casestudie med et netveerksanalysefirma, hvor vi preesen-
terer en robust og effektiv metode til at udlede de ellers ukendte veerdier, som
routerne bruger, ndr de belastningsfordeler data trafik mellem flere veje.

A%

Contents

Abstract
Resumé

Preface

I Introduction

1 Network Verification and Synthesis
2 Challenges in Application of Formal Techniques
3 Overview of Computer Networks
4 RelatedWork 0.
41 Verification of Traditional Networks
42 Verification of Programmable Networks
43 Traffic Engineering Optimization
4.4 Synthesis of Network Configurations and Updates
5 Contributions o Lo
6 MPLS Network Resilience
6.1 MPLS Network Model
6.2 Data Plane Generation and Simulation
6.3 Recursive Fast Reroute Protection
7 Pushdown Automata Reachability
7.1 Pushdown Automata Reachability for MPLS Verification
7.2 Solving Pushdown Reachability Efficiently
7.3 Weighted Pushdown Automata Verification
7.4 Formal Correctness of Pushdown Verification
8 Measuring Real Networks
9 Conclusion
References

vii

Contents

II Papers 51
A R-MPLS: Recursive Protection for Highly Dependable MPLS Net-

works 53

1 Introduction 55

2 MPLS Network Model 57

3 R-MPLS Protection 60

3.1 Protectable Forwarding Entries 61

32 Loop Avoidance 62

3.3 R-MPLS Algorithm 63

3.4 Recursive Link and Node Protection 65

3.5 Distributed R-MPLS Implementation 66

3.6 Properties of the R-MPLS Protection 67

4 Evaluationof RMPLS 68

4.1 MPLS Generation and Simulation 68

42 Methodology 69

43 Results of RSVP Experiments 71

4.4 Results of LDP Experiments 75

5 Discussion e 77

6 Related Work 77

7 Conclusion e 79

References e 80

A ProofsforSection3.6 84

B Elaboration on Section4.1 86

C ArtifactAppendix o L oo 88

B MPLS-Kit: An MPLS Data Plane Toolkit 93

1 Introduction 95

2 MPLS Network Operation 97

3 MPLS-Kit Overview, 98

4 MPLS Dataplane Generation 100

5 MPLS Forwarding Simulation 103

6 USeCases o v i e e e e e e e 105

7 Conclusions e 107

References e e 107

C Faster Pushdown Reachability Analysis with Applications in Net-

work Verification 111
1 Introduction 113
2 Preliminaries 115
3 Formal Model of MPLS Networks 116

3.1 MPLS Network Verification 119

3.2 From Query Satisfiability to Pushdown Reachability . . 120

Vviii

Contents

4 Improving Pushdown System Reachability Analysis 122
4.1 Early Termination of Reachability Algorithms 122
42 Combining Forward and Backward Search 123
4.3 Abstraction Refinement for Pushdown System Reachability 124
5 Implementation and Experiments 126
6 Conclusion 128
References 129
A Appendix 131
AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS
Networks 135
1 Introduction 137
2 MPLSNetworkModel 139
21 Network definition 139
2.2 Valid MPLSheaders 140
2.3 Examplenetwork o 0 L. 141
2.4 Network traces 142
2.5 Querylanguage L. 143
3 Quantitative Extension 144
4 Tool Implementation 146
4.1 Verification methodology 147
42 Toolarchitecture 147
5 Performance Evaluation 149
6 Conclusion 151
References 151
A Appendixo 154
PDAAAL: A Library for Reachability Analysis of Weighted Push-
down Systems 157
1 Introduction L .. 159
2 Weighted Pushdown Systems and Reachability 160
3 Implemented Algorithms and PDAAAL Architecture 161
4 Comparison with State-of-the-Art 162
5 Applications L 163
6 Conclusion 164
References L 164

Differential Testing of Pushdown Reachability with a Formally Ver-

ified Oracle 167
1 Introduction 169
2 Isabelle/HOL 172
3 Pushdown Reachability 174

3.1 Nondeterministic pre* Saturation 174

iX

Contents

3.2 Nondeterministic post* Saturation 177
3.3 Combined dual” Saturation 180
4 Executable Pushdown Reachability 180
5 Differential Testing 182
51 Differential Testing of Pushdown Reachability 183
52 Automatic Counter-Example Minimization 184
6 CaseStudy: Analysisof PDAAAL 185
6.1 Methodology of Test Case Generation 186
6.2 Results 186
7 Conclusion L 188
References 188

G Discovery of Flow Splitting Ratios in ISP Networks with Measure-

ment Noise 193
1 Introduction 195
2 Problem Formalization 197
2.1 Network, Pathsand Flows 198
2.2 Correlation of Traffic Flow and Link Utilization 199
3 Solution to Flow Splitting Ratio Synthesis 200
3.1 Encoding of FSR to a Linear Program 200
3.2 Measurement Noise 204
4 Dealing with MeasurementNoise 204
4.1 Simulation Experiments with Synthetic Traffic 205
5 Scalability Study on Large EuropeanISP 206
6 Conclusion 207
References 208

Preface

While being a PhD student can sometimes feel like a lonely endeavor, the truth
is that a lot of brilliant people have helped me throughout this journey, and I
believe that a few words of acknowledgement are in order.

First and foremost, I would like to thank my supervisor Jiff Srba for his
guidance and extensive feedback throughout this PhD project.

During my five month in Berlin, thanks to Ingmar Poese, I gained valuable
insight into the practical challenges of working with data from real networks.
I would like to thank all the colleagues at Benocs for quickly making me feel
part of the company and for also joining social activities outside of work.

Stefan Schmid has been involved in my PhD project from the beginning, and
he has throughout provided me with much-needed guidance on networking
research, for which I am grateful. During my stay in Berlin he kindly invited
me to his research group at TU Berlin.

With Juan Vanerio, I have had many fruitful discussions, where the combi-
nation of our different technical backgrounds has provided some interesting
and valuable outcomes. Peter Gjol Jensen has been a great inspiration, helped
guide my intuition for implementing high-performing algorithms, and showed
me the value of high-quality code. Anders and Dmitriy, thank you for the col-
laboration on formalizing pushdown automata and for making me further
appreciate the art of interactive theorem proving.

I also want to thank my office mates and the lunch group at DEIS for all
the various discussions about life, science, or whatever is currently going on
in the world.

Finally, a huge thank you to my parents, Helle and Henning, who initially
sparked my curiosity for science and technology, have inspired me to explore
my ideas and make a fair effort, and have continuously supported me and
shown interest in my research.

Morten Konggaard Schou
Aalborg University, August 8§, 2023

Xi

Preface

Xii

Part1

Introduction

Computer networks, like enterprise networks and in particular the internet,
have become a ubiquitous part of everyday life and a critical component in the
infrastructure of our modern, digital society. Digitalization of core parts of
the society like the economy, media, hospitals, and education depend on reli-
able inter-connection of computers. Even social interaction and entertainment
increasingly flow through these networks of routers and switches connected
across the world by copper or fiber-optic cables.

The last couple of decades have seen a drastic increase in the use of the
internet, and with that an increased demand on the capacity of the networks.
Not only do networks need to transport huge amounts of data packets, they
need also be able to react to sudden increases or shifts in traffic patterns,
as recently witnessed during the COVID-19 lockdowns: people staying at
home caused significant shifts in the usage of internet traffic, with an increase
in applications for remote work and education like video conferencing and
VPN services, as well as entertainment including video-on-demand and online
gaming [52].

Most networks, using the internet protocol, have traditionally been opti-
mized for throughput and resource utilization, with less emphasis on decreas-
ing the latency [24]. However, for many of these new types of networked appli-
cations, the quality of experience depends heavily on the delays that the user
experiences, which in turn brings strict latency requirements on the networks.
Loss of connectivity, even if short-lived, can disrupt the user applications. Next
generation of networked applications like factory automation, robotics, intel-
ligent transport systems, and tele-surgery will place even further demands for
reliability and low latency on modern communication networks [127].

The introduction of these new latency-sensitive applications along with
the need for more bandwidth to serve the increasing amount of traffic pushes
network operators to evolve their networks, gain more fine-grained control,
and steer the traffic flows through the network. With this incremental growth,
computer networks evolve into large heterogeneous systems, where a vari-
ety of different hardware and software run several protocols with complex
configurations—all making the networks difficult to manage and operate cor-
rectly.

There are many examples of network outages, where an erroneous network
configuration update [78, 107, 150, 159] or a latent software or configuration
error being triggered inadvertently under normal operation [8, 132, 139] have
taken down large networks and impacted millions of users as well as critical
services like emergency phone lines [107, 132] and payment systems. These
incidents are often caused by human errors [13, 25, 150] and can even be as
simple as a typo in a command [7]. In some cases, the errors also take down
internal monitoring tools, which extends the outage by making it harder for
the network administrators to locate and fix the issue [8, 78, 107, 132, 159].

To make matters worse, networking equipment is not perfect and will even-

3

tually fail, so given the magnitude of modern networks, equipment failures are
not uncommon. Networks need to be build and configured in a way, so they
are resilient to these failures: the failure of an individual component should
only have a minimal effect on the continued functioning of the network, in-
cluding the quality of service aspects like the latency and bandwidth. Further
adding to the complexity is an increase in failure scenarios that affect multiple
network elements simultaneously [134].

We contribute to the recent efforts to cleverly automate parts of the network
operation and use formal models and algorithms to verify its correctness in
order to reduce the risk of the network outages that regularly impact millions
of people worldwide.

1 Network Verification and Synthesis

One of the basic tools for the management of computer networks is network
monitoring [105], which gives network operators the insight into the current
behavior of the network and allows them to identify issues and reactively
reconfigure the network. A purely reactive and ad-hoc approach to network
operation has the risk of introducing errors that quickly lead to network outage
before the operator is able to react. Instead, operators can use simulation or
emulation to test the configuration changes before deployment [110], inspect
the results, and fix any issues observed in the sandbox environment.

While simulation and testing can catch errors early, it cannot check all
scenarios that the network might experience, so even if the simulation and
testing is done thoroughly, this approach leaves room for implementation and
configuration errors in uncommon scenarios, which may lead to severe failures
during the lifetime of the system.

Formal verification takes a different, complementary approach to system
correctness by constructing a formal, mathematically well-defined model of
the system and its specification. Model checking [36, 37] can then be used
to exhaustively verify that the system satisfies the specification in all possible
situations.

Model checking comes with the problem of state-space explosion, since
most systems have at least an exponential, if not unbounded, number of possi-
ble inputs to check. Much work has been done in the field of formal methods
to tackle this state-space explosion for various different modelling formalisms
by constructing efficient model checking algorithms that still guarantee a full
correctness of the results. This correctness guarantee, however, only holds
if the model checker itself is correct. Confidence in model checking results,
e.g. when used in safety-critical systems, can be increased by certification,
extensive testing, algorithm review or combination with theorem proving ef-
forts [102, 121].

2. Challenges in Application of Formal Techniques

Formal synthesis takes it a step further. Instead of verifying the correctness
of a given system model, synthesis takes a specification and generates a system
that is correct by construction. On top of the Boolean correctness according to
a specification, synthesis may further try to optimize quantitative objectives—
creating a system that is not only correct but also efficient.

When it comes to computer networks, the specification of desired proper-
ties can include qualitative correctness and safety properties as well as quan-
titative performance properties. Correctness properties are e.g. that packets
can reach their destination; that all traffic flows through a certain waypoint,
such as a firewall; the absence of forwarding loops; or the absence of “black
holes”, where packets are dropped because the router has no forwarding rule
for it.

Quantitative properties are relevant for the performance of computer net-
works and include for instance the maximum latency experienced by packets
on a given traffic flow, the utilization of each link given typical traffic demands,
and the maximum throughput the network can serve across different traffic
flows given the bandwidth capacities of each link. As traffic patterns change
during the day, many of the quantitative properties change with them, so
network performance measures need to also take this temporal variation into
account.

With the possibility of failures of individual components and the changes
induced by the network’s reaction to a failure, these properties need to be seen
relative to their resilience. Given estimates of the probability of various failures,
we can use the notion of availability to express the probabilistic guarantee that
a given property is met at least a certain percentage of the time.

2 Challenges in Application of Formal Techniques

Developing formal techniques for the modelling, verification, and synthesis of
computer networks is a significant undertaking. We will here consider six of
the major challenges that should be addressed to enable formal verification and
synthesis becoming an essential tool for making modern computer networks
safe, reliable, and efficient.

Network formalization: Errors can happen at different layers, in the con-
figuration of many different protocols, and in their interplay. An error that
manifests in the data plane—the forwarding rules installed at each router,
responsible for forwarding packets—may be caused by an incorrect configu-
ration at the control plane. This indicates that a complete formal model can
become quite complex in order to incorporate all essential elements of a mod-
ern network. Finding the right abstraction and formalization for each part, as
well as creating composable models may be the key to solving this challenge.

Network mining: Precise formal network models alone are not enough to en-

able verification and automation; their variables need to also be populated with
concrete values from the running network, and they should be continuously
updated over time. Given the size and heterogeneity of modern networks, it
can often be difficult in practice to gather and correctly interpret all the techni-
cal details about e.g. router configurations; instead, it may be needed to infer
some parameters of the model (at a higher abstraction layer) based on other
measurements. When measuring traffic in a large network, it is often neces-
sary to perform sampling of the traffic and rely on statistical estimates based
on the samples; moreover, with hundreds or even thousands of routers, it is
hard to avoid gaps and errors in the measurements from each router. These
are practical challenges related to mining the data from the network.

Specification: As the formal specification of desirable behavior for a com-
puter network needs to express a variety of properties, including qualitative
correctness and safety properties as well as quantitative performance proper-
ties, the formalisms developed to model the network need to be sufficiently
expressive to model and check these properties. Moreover, the specification
formalisms should be intuitive and easily understandable by non-experts to
ensure clarity of the specification and coherence between the formal property
and the intended behavior.

Optimization of configuration synthesis: While model verification can help
avoid errors and increase the uptime of networks, the full benefit of formal
methods for automating network management and improving network re-
liability and performance comes from being able to synthesize correct and
efficient configurations from a formal specification. The challenge is to effi-
ciently search through the huge state-space of possible configurations and find
one that is both correct and performant.

Resilience: When a failure happens, the network’s resiliency mechanisms
kicks in and alters the forwarding behavior. The network then has a new
data plane that may no longer satisfy the specification. To be able to give
a priori guarantees, the verification and synthesis need to take all possible
failures into account, hence significantly increasing the state-space. When
considering that multiple failures may overlap, the number of possible failure
scenarios becomes exponential. This calls for the development of efficient
model checking algorithms. Further, to compute availability guarantees, the
formal model and algorithms need to take failure probabilities into account.

Deployment: Solving the theoretical and algorithmic challenges is an impor-
tant step for the research, but to become directly applicable in the networking
industry, tools that implement the formal techniques need also be developed
with usability in mind. Tools with excessive run-times can be impractical
for the daily management of networks, so the efficiency of the verification
and synthesis algorithms matters. For verification, a negative result should be
accompanied with a counterexample that explains the property violation. For-
mal methods is not a one-off solution, they need to also address how to manage

6

3. Overview of Computer Networks

and evolve the formal model and specification as the network and its appli-
cations and requirements grow. Finally, the integration of formal tools with
existing network management systems and practices can help the incremental
adoption of formal techniques.

This thesis, to different degrees, contributes to pushing the state-of-the-art
of these challenges.

3 Overview of Computer Networks

Before diving into the research on network verification and synthesis, we
provide an overview of relevant concepts in computer networking.

The internet is composed of many networks, each functioning as an au-
tonomous system (AS) and each typically owned and controlled by a distinct
entity. These networks connect and share routes with each other using the
border gateway protocol (BGP) [137]. This thesis, and much of the related
work, mainly focus on the mechanisms of a single network, i.e. inside a single
AS, and the possible interactions with its neighbors, since this is the scope that
can be fully observed and controlled by a network operator.

Such a computer network can be modelled as a graph of routers and links
called the network topology. The software and hardware elements on each
router can logically be split into the control plane, responsible for computing
and installing paths, and the data plane, responsible for forwarding packets
along the paths computed by the control plane.

Traditionally, networks rely on the internet protocol (IP) [130] to perform
forwarding. Here the packet’s destination IP address is matched against the
router’s forwarding table using longest prefix matching [63]. The intra-AS
routing is computed using an interior gateway protocol (IGP) such as IS-IS [28,
76] or OSPF [120]. These are distributed algorithms for finding the shortest
paths between each pair of routers given some configurable link weights.

Software defined networking (SDN) [97, 117] is an emerging technology
that takes a different approach by centralizing the control plane. The data
plane rules are then pushed out from the central controller to the individual
routers through standardized interfaces like OpenFlow [117]. In this way, SDN
allows operators to program their networks and create sophisticated routing
solutions, such as centralized and frequently adjusted traffic engineering [72,
77], enforcement of security policies [29], and detection of DDoS flooding
attacks [23].

Multiprotocol label switching (MPLS) [140] is a well-established network-
ing technology typically deployed inside a single AS and used for e.g. enter-
prise wide-area networks (WANSs) to simplify and generalize traffic engineer-
ing (TE) and virtual private network (VPN). In MPLS networks, packets are
forwarded based on labels rather than network addresses. The labels encode

paths to network endpoints and are established by MPLS control plane proto-
cols, where the two main protocols are label distribution protocol (LDP) [10]
and resource reservation protocol with traffic engineering (RSVP-TE) [12].

By encapsulating the packet in a label header, MPLS simplifies the for-
warding table lookup and allows for more explicit engineering of traffic paths.
An MPLS packet can be further encapsulated by another label—effectively
creating a stack of labels, where the top label is used to decide the forwarding.
This allows tunneling packets through a specific path by pushing a label at the
beginning of the path and popping the label at the last hop.

Segment Routing (SR) [53, 54] is an emerging source routing technology,
where the ingress router can encapsulate the packet with a list of segments
used for forwarding. SR works on top of either MPLS, using a stack of MPLS
labels, or IPv6, using a special header with a list of IP addresses.

With the demand of large traffic volumes and the constraints of bandwidth
capacity on individual links, networks may need to balance the traffic load
across different paths through the network. Equal-cost multi-path routing
(ECMP) [73] accomplishes this by splitting traffic among multiple equally
short paths according to the link weights for the IGP.

When the failure of a link or a router is detected by the neighbors in
the network, the control plane protocols start the distributed algorithms that
recompute forwarding paths in the changed network topology. This is not a
fast process, and in the meantime packets are lost. To mitigate this, networks
can make use of fast reroute (FRR) [32, 133] techniques, where the router that
detects the failure makes a local decision to switch the affected traffic onto
a precomputed backup path. Compared to the reconvergence of the control
plane algorithms, this local repair is very fast and hence reduces the number
of packets that are lost due to the failure.

Internet service providers (ISPs) can specify guarantees on quality of ser-
vice (QoS) [68] parameters such as bandwidth and latency as well as service
availability and resilience through service level agreements (SLAs) with their
clients. An SLA often impose a financial penalty on the ISP for breaking the
contract [68].

4 Related Work

Over the past decade, academic research has taken an increasing interest into
the formal treatment of computer networks. This section presents a selection of
important literature in the area covering formalisms and tools for verification
of both traditional and programmable network, optimization techniques for
traffic engineering, and synthesis of network configurations and updates.

4. Related Work

4.1 Verification of Traditional Networks

The seminal work in the field of network data plane verification by Xie et
al. [170] proposes algorithms for static reachability analysis of IP networks.
This is followed by work that extends static data plane analysis to more expres-
sive properties and network models: ConfigChecker [4] and FlowChecker [3]
uses binary decision diagrams (BDDs) [26] and CTL logic, Anteater [114] uses
a SAT solver, and header space analysis (HSA) [91] models networks using
bit-vectors and transformation functions. Real-time data plane analysis of rule
updates is introduced using incremental algorithms in the tools Veriflow [92]
and NetPlumber [90]. Further improvements to the scalability and expressive-
ness of real-time data plane analysis are achieved by Libra [178], Delta-net [74],
the AP Verifier [171, 172], and APKeep [180].

More recently, P-Rex [45, 80] verifies MPLS network data planes and models
the behavior of fast reroute for any scenario up to k link failures. P-Rex can
handle the push and pop operations of MPLS networks without restricting the
size of the label stack by using pushdown automata.

Configuration verification moves one abstraction layer up by taking all
data planes that might emerge from the control plane routing protocols into
account in the verification. Batfish [57] simulates the control plane and verifies
properties using the SMT solver Z3 [40]. Batfish is able to parse configu-
ration files from several network vendors. Its performance is improved by
network-optimized datalog (NoD) [112] which extends Z3 Datalog with effi-
cient data structures for modelling header spaces and packet rewrite functions.
Minesweeper [14] extends Batfish with the ability to verify all failure scenar-
ios with up to k failures. Bonsai [15] speeds up verification in Batfish and
Minesweeper by compressing the control plane using abstraction refinement.

Several works attempt to improve the performance of configuration veri-
fication compared to Minesweeper. Both ARC [65] and ERA [50] use Batfish
to parse configuration files and then perform efficient configuration verifica-
tion of specific properties using respectively algorithms on weighted graphs
and BDD operations. To simplify the use of Batfish as a frontend for config-
uration verifiers, NV [67] introduces an intermediate language for network
configuration verification.

Tiramisu [2] creates a graph model of the network and uses different verifi-
cation algorithms for different properties to balance performance and fidelity
of the property, while Plankton [131] uses an executable model of the control
plane protocols with the model checker SPIN [71]. Hoyan [174] combines sim-
ulation with formal verification in order to scale to the practical use in a real
large network. Moreover, Hoyan is able to detect and deal with vendor-specific
behavior in the running devices, hence addressing the correctness of the for-
mal models used for verification. This is further addressed by Metha [18]
that tests the correctness of network verifiers compared to the behavior of

real devices using fuzzing and combinatorial testing, and it uses delta debug-
ging for fault localization. To scale network configuration verification further,
Kirigami [161] and Timepiece [5] introduce modular control plane verification
that allows parallel verification.

Real network configurations evolve gradually, so instead of performing
a clean-slate verification on every configuration change, differential network
analysis [179] uses techniques from differential dataflow programming and
incremental verification to efficiently compute the impact in network behavior
of a configuration change. To ease the adoption of network verification, Con-
fig2Spec [19] synthesizes formal network specifications from configurations.

Probabilistic network verification is introduced by NetDice [156] for veri-
fying soft properties that must hold with a certain probability given a proba-
bilistic failure model as a Bayesian network.

Stateful network verification [51, 126, 158, 176] addresses network verifica-
tion in the presence of middleboxes, such as caches and firewalls, that change
forwarding behavior based on the packets they observe. Given the high com-
plexity of a priori verification of stateful network functions, Aragog [173]
proposes to instead use runtime verification. Some verification approaches
are specific to e.g. BGP [169] or datacenters [79, 129].

Much of the work in network verification focuses on qualitative correctness
properties. It has recently been suggested to extend the use of formal methods
to analyze quantitative network performance [11] and e.g. find counterexam-
ples of traffic workloads that will cause bad performance.

4.2 Verification of Programmable Networks

Network programming is made possible by a standardization of the inter-
faces to proprietary routers and switches called OpenFlow [117]. On top
of this, domain-specific SDN programming languages, like the Frenetic fam-
ily [59, 60, 118, 119], give higher-level features for programming modular and
portable network programs. The declarative language Merlin [155] allows pro-
visioning network resources based on high-level policies and specified band-
width constraints. Development of correct-by-construction SDN programs is
addressed by Cocoon [141] using stepwise refinement.

A formal, semantic foundation for the programming of networks is intro-
duced with NetKAT [9, 62] that builds on Kleene algebra with tests (KAT) [96].
NetKAT has a sound and complete equational theory that enables verification
by checking the equivalence between safety properties and the programmed
network behavior—both expressed in NetKAT. To reason about fault toler-
ance and expected congestion, ProbNetKAT [61, 153] extends NetKAT with
probabilistic behavior, and McNetKAT [154] improves the verification perfor-
mance by restricting to history-free probabilistic NetKAT programs. Another
(history-free) probabilistic network programming language is Bayonet [64]

10

4. Related Work

that builds on standard probabilistic programming and inference systems.
WNetKAT [104] is a quantitative extension of NetKAT, but it lacks decision
procedures. The recently proposed Concurrent NetKAT [166] extends NetKAT
for reasoning about concurrency with multiple packets and mutable state.

While the first wave of SDN has allowed programming of a centralized
control plane, switches and routers are now opened up to programmers with
the data plane programming language P4 [21]. This allows implementing
custom switch programs [152] or pushing advanced computations, such as
performance diagnostics [66] or the Paxos consensus protocol [39], onto the
network devices.

This new way of defining the forwarding behavior of networks has spawned
a line of work on verification of P4 programs [111, 123, 157, 162]. The verifi-
cation in Vera [157] uses symbolic execution, and p4v [111] is based on verifi-
cation condition generation and SMT solving. Aquila [162] is practically used
for verification of production-scale programmable data planes.

Recently, the development of formal foundations for the P4 language [43]
has inspired formal reasoning tools for data plane programming based on
interactive theorem proving [6, 44, 128, 167] and dependent type theory [46].

4.3 Traffic Engineering Optimization

Traffic engineering aims at steering the traffic demand efficiently through the
network while satisfying the bandwidth capacity of each link and the latency
requirements of the traffic. A classical approach for traffic engineering in IP
networks [58] configures IGP link weights to minimize the maximum link
utilization (relative to capacity).

More fine-grained control of the traffic paths and load balancing weights
can be gained e.g. using RSVP-TE and weighted ECMP in MPLS networks
or through the use of SDN. If moreover all the traffic demands are known,
the maximum link utilization can be minimized by encoding it as a multi-
commodity flow problem, which is well-studied and can be solved using linear
programming (LP) [163]. In practice, traffic demands change over time and
there might be scalability restrictions on the number of paths. To address the
overhead involved in tearing down and setting up new paths when the traffic
changes, SMORE [101] computes first a diverse set of low-stretch paths without
knowledge of the traffic demands and then dynamically adapts sending rates
based on the actual traffic.

Congestion-free resilience [85, 108, 168] is achieved by including the effect of
failure protection in the optimization problems and guaranteeing congestion-
freedom for certain numbers of failures. In some cases, congestion-free k-
failure resilience is not possible, so more nuanced approaches [20, 31] use a
probabilistic failure model to guarantee e.g. congestion-freedom for a certain
availability target. This allows achieving high utilization while still being

11

congestion-free with high probability [20, 84].

Traffic engineering is being practically used to efficiently steer traffic be-
tween datacenters [72, 77] and even to optimize a large-scale internet back-
bone [98].

4.4 Synthesis of Network Configurations and Updates

Network configuration synthesis tools [1, 16, 17, 47, 48, 122, 135, 142, 160,
175] create correct-by-construction network configurations based on high-level
policies or based on partial configurations with holes that need to be filled out
correctly.

The introduction of SDN, where network programs dynamically send out
updates to the routers, gave rise to a new issue: given that networks are
distributed systems, there is no guarantee that the updates are installed simul-
taneously, so how do we ensure that packets are forwarded correctly while the
update is happening? This is addressed by the notion of consistent network
updates [136], which guarantees that each packet sees a consistent view of
either the initial or final configuration. This strong consistency comes with an
overhead of duplicating the forwarding tables and tagging packets during the
update, so a relaxation is proposed [113] that allows other intermediate states
but requires that they satisfy a set of safety properties.

McClurg et al. [115] and their tool, sometimes referred to as NetSynth,
specifies these properties in LTL and uses incremental model checking to
find safe sequences of rule updates. Not all network update problems can
be solved by a sequences of rule replacements, so FLIP [165] generalizes the
solution space to also contain rule additions in the update sequence and is able
to solve more update problems.

Recent approaches using Petri nets [33, 41, 87] and Stackelberg games [146]
benefit from existing formal models and efficient solvers and address the ef-
ficiency of the synthesized update schedules by finding safe batch updates.
AllSynth [103] uses BDDs to find all update schedules that satisfy an LTL
specification. Quantitative aspects are addressed by zUpdate [109] that syn-
thesizes congestion-free network updates for datacenters and by Dionysus [86]
that reduces update latency by dynamically scheduling the consistent updates
based on the runtime differences of updating each switch. For updating the
configurations of traditional routing protocols, SnowCap [147] finds reconfig-
uration orderings that satisfy an LTL formula of regular path conditions and
among these it optimizes an objective function, such as minimizing the traffic
shift during the safe update.

Foerster et al. [56] gives a comprehensive survey of consistent network
updates.

12

5. Contributions

5 Contributions

This thesis contributes to the formal treatment of network data planes with a fo-
cus on MPLS networks, where the forwarding is based on a label stack. For net-
work verification, we build on the relation between MPLS networks and push-
down automata, where we address quantitative specifications, the scalability
and efficiency of algorithms and implementations, as well as the trustworthi-
ness of answers provided by verification tools. We improve the resilience of
MPLS networks to multi-failure scenarios and synthesize failover protection
that maintains certain properties of the data plane like loop-freedom. Finally,
we address the challenge of obtaining an accurate model of a real network, in
particular with respect to the ratios used when load balancing traffic among
multiple paths.
The following conference publications are part of this thesis.

Paper A R-MPLS: Recursive Protection for Highly Dependable MPLS Networks.
S.Schmid, M. K. Schou, J. Srba, and J. Vanerio. In: Proceedings of the 18th
International Conference on Emerging Networking EXperiments and
Technologies (CoNEXT "22), pp. 276-292, Association for Computing
Machinery, 2022. [145]

This work led to a patent application (2022-521/10-0946) being filed on
April 26,2022 by Aalborg University in collaboration with the University
of Vienna. The patent application was later discontinued.

Paper B MPLS-Kit: An MPLS Data Plane Toolkit. J. Vanerio, S. Schmid, M. K.
Schou, and J. Srba. In: IEEE 11th International Conference on Cloud
Networking (CloudNet "22), pp. 49-54, IEEE, 2022. [164]

(Presented at IEEE Global Internet (GI) Symposium 2022, organized in
conjunction with IEEE CloudNet 2022.)

Paper C Faster Pushdown Reachability Analysis with Applications in Network
Verification. P. G. Jensen, S. Schmid, M. K. Schou, J. Srba, J. Vanerio, and
I. van Duijn. In: Automated Technology for Verification and Analysis
(ATVA 2021), Lecture Notes in Computer Science, vol. 12971, pp. 170-
186, Springer, 2021. [81]

Paper D AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS
Networks. P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C.
Schrenk, and J. Srba. In: Proceedings of the 16th International Confer-
ence on emerging Networking EXperiments and Technologies (CoNEXT
'20), pp. 474-481, Association for Computing Machinery, 2020. [83]

This paper is a modified version of the master’s thesis [99], compared
to which a new experimental evaluation is performed and the clarity of
presentation improved.

13

Paper E PDAAAL: A Library for Reachability Analysis of Weighted Pushdown
Systems. P. G. Jensen, S. Schmid, M. K. Schou, and J. Srba. In: Automated
Technology for Verification and Analysis (ATVA 2022), Lecture Notes in
Computer Science, vol. 13505, pp. 225-230, Springer, 2022. [82]

Paper F Differential Testing of Pushdown Reachability with a Formally Verified
Oracle. A. Schlichtkrull, M. K. Schou, J. Srba, and D. Traytel. In: Proceed-
ings of the 22nd Conference on Formal Methods in Computer-Aided De-
sign (FMCAD 2022), pp. 369-379, TU Wien Academic Press, 2022. [143]

Paper G Discovery of Flow Splitting Ratios in ISP Networks with Measurement
Noise. M. K. Schou, I. Poese, J. Srba. Under submission, 17 pages (in this
thesis), 2023.

In the following sections, we will present the contributions of the papers in
this thesis—referring to them by their letters above. The papers are inserted in
their entirety in PartII. In Section 6, we first introduce details of MPLS networks
and present our formal model of these. We also describe the tool MPLS-Kit
that is developed to aid the prototyping and evaluation of new ideas for MPLS
networks, and we present one such idea, R-MPLS, for increasing the resilience
of MPLS networks by synthesizing loop-free recursive failover protections.
Section 7 motivates the use of pushdown automata for model checking MPLS
networks and presents our algorithmic improvements as well as an extension
for quantitative verification through the tools PDAAAL and AalWiNes. We
increase the trust in results from these tools by formalizing the pushdown
reachability algorithms in Isabelle/HOL and performing differential testing
against this formally verified oracle. Our method for inferring flow splitting
ratios from noisy measurements of a real network is described in Section 8.

6 MPLS Network Resilience

This section covers work from Paper A and Paper B on modelling, generating
and analyzing MPLS data planes as well as synthesizing low-overhead, loop-
free resiliency schemes for MPLS networks.

6.1 MPLS Network Model

As briefly discussed in Section 3, multiprotocol label switching (MPLS) [140] is
a networking technology, where packets are forwarded based on labels rather
than addresses. MPLS allows encapsulating the packet in a stack of labels,
where each router forwards the packet based on the top label on the stack.
MPLS networks transport packets from an ingress to an egress router.
When a packet enters the network, the ingress router classifies it and deter-
mines its forwarding equivalence class (FEC), which typically represents a

14

6. MPLS Network Resilience

network resource, e.g. a specific router or a traffic engineering tunnel. The
packets belonging to a FEC are forwarded in the same way through the net-
work. The ingress router has a table that maps the FEC to an MPLS label.
It encapsulates the packet in an MPLS header and initializes the stack with
the corresponding label; the packet has now entered the MPLS data plane. In
Paper B we provide a more detailed overview of MPLS networks.

When forwarding an MPLS packet, the router looks up the label on top
of the stack in its forwarding table to find a matching forwarding entry. The
forwarding entry contains a sequence of operations, instructing the router to
modify the label stack, and the next-hop interface, where the packet should
exit the router. Each operation acts on the top of the stack and can either swap,
push, or pop a label.

In Figure 1 we introduce a small running example. Here Figure 1a depicts
a network topology as a directed graph (to simplify the presentation some
links are unidirectional), and Figure 1c lists the forwarding tables of the four
routers. As an example of the forwarding process, consider a packet arriving
at router v; with label stack 20 o 05, where the left-most label denotes the top
of the stack. A look-up in the forwarding table determines that the header
should be modified by the operation swap(21), resulting in the header 21 o 05,
and then the packet is sent out on link e; towards router vs.

For the distribution of labels and installation of forwarding rules to encode
desired traffic paths, as we describe in Paper B, the MPLS control plane has
access to information about the network topology and shortest paths obtained
by the IGP. We focus here on two main control plane protocols for MPLS:

* The label distribution protocol (LDP) [10] maps the IP address of each
router and link to a locally recognized MPLS label and installs forwarding
rules to reach this resource. It works by each router allocating local labels
for each resource (FEC) it knows and then broadcasting this information
to its neighbors. They will in turn allocate a local label for each of these
resources, install the corresponding forwarding rules, and broadcast the
new information to their neighbors.

e The resource reservation protocol with traffic engineering extension
(RSVP-TE) [12] can create label-switched paths (LSPs) from ingress to
egress router. It is possible to assign traffic engineering policies on these
paths by e.g. specifying certain waypoints, excluding some links from
the path, or requiring some minimum bandwidth guarantee.

LDP creates basic connectivity in an MPLS network, but it does not allow the
more fine-grained engineering of traffic paths that is possible with RSVP-TE.
MPLS networks can support balancing of the traffic load among multiple
paths through the use of equal-cost multi-path routing (ECMP) [73]. For each
packet, a forwarding rule is chosen pseudo-randomly; either uniformly or

15

Router | Label Prio. | eout Operation
)r@ V1 01 1 e swap(02)
ele e3 1 e4 swap(04)
mi 2 out 10 1 e4 swap(11)
20 1 e1 swap(21)
€5 €6 v2 02 1 e3 swap(03)
ing €4 2 €2 swap(03) o push(10)
21 1 e3 pop
v3 04 1 €6 swap(05)
(@) Network topology. 2 es swap(05) o push(20)
07 1 e6 swap(08)
2 es swap(08) o push(20)
11 1 ee pop
(e3, e2e4€4) (eg, e5€1€3) v4 03 1 out pop
05 1 out pop
08 1 out pop
(b) Protection graph (c) Forwarding table
(in1,01)(e1,02)(es, 03)(out,) F=0
(in1,01)(e1,02)(e2,10 0 03)(eq, 11 0 03)(eg, 03) (out, €) F = {e3}

(d) Two traces through the network. The second uses FRR protection to route around a link failure.

Router | Label Prio. | eout | Operation
V2 21 2 es swap(10)
v3 11 2 es swap(20)

(e) Problematic forwarding rules introduce the possibility of a loop.

(4n1,01)(e1,02)(e2, 10 0 03)(es, 11 0 03)(es5, 20 0 03)(e1,21 0 03)(e2,10003) ... F = {es,es}

(f) Looping trace (sequence of link-header pairs) in the failure scenario F' using the rules from Figure le.

Fig. 1: Example MPLS network data plane with an LSP from v3 to v4 and load balancing between
two LSPs from v to v4. Links e3 and eg have FRR protections using labels (10, 11) resp. (20, 21).

based on a weight [88]. To avoid that packet reordering disrupts the perfor-
mance of the transmission control protocol (TCP) on the transport layer, pack-
ets belonging to the same TCP flow should follow the same paths through the
network. This is accomplishes by computing a hash of the header fields that
identify the flow and using this as the key for selecting the forwarding rule [73].

To model ECMP, we allow the forwarding table to have multiple entries for
a single label. In the running example in Figure 1c, this can be seen at router
vi, where the label 01 has two entries encoding the two different paths to v4
going via either v, or vs.

When we reason about the possible packet traces through the network, it
is sufficient for the semantics to model that any of the possible entries can
be chosen. When looking at certain quantitative properties of the data plane,
the model needs to include a weight for each entry to indicate the relative
probability that this entry is chosen. Paper G investigates how to obtain these

16

6. MPLS Network Resilience

values in a real network analytics deployment.

Modelling Failures and Fast Reroute Protection

In the event of a failure of a router or a link, the neighboring routers will
detect it and start notifying the rest of the network. This changed view of the
network topology makes the control plane start recomputing shortest paths in
the network. As mentioned in Section 3, this is a comparatively slow process,
and while it unfolds, packets will be dropped at the point of failure. To combat
this, networks can use fast reroute (FRR) [32] techniques to reduce the packet
drop when a link or router fails by redirecting the traffic onto a precomputed
backup path. The decision to redirect traffic happens locally at the router
detecting that its corresponding interface port is down.

There are various techniques for failure detection, ranging from higher layer
methods such as bidirectional forwarding detection [89] to lower layer tech-
niques such as detecting a degradation in the signal quality of optical fibers e.g.
observed by an increase in the bit error rate computed in the process of forward
error correction [30, 75, 149]. We abstract over this by merely assuming the
indication of whether an interface (and the corresponding link) is up or down.

In MPLS networks FRR is supported by RSVP-TE [125]. In its popular
variant, facility protection, the protocol installs a backup tunnel around each
facility, i.e. link or node, along the path to protect. In the case of a failure,
the repairing router pushes the label that encodes the backup tunnel onto the
label stack and the packet is forwarded along the protection path. At the last
hop, the label is popped, and the packet merges back in to its original path,
using the underlying label for forwarding.

We model FRR mechanisms in the MPLS data plane by assigning a priority
to each forwarding table entry. The semantics is now to find the entries with
highest priority among those where the next-hop interface is up. If multiple
entries with equal priority qualify, the semantics for ECMP apply.

Returning to the running example, we see in Figure 1c that if the link e3
is down, packets arriving at router vy with the label 02 on top of the stack
will have to use the lower priority backup rule that pushes the label 10 on the
stack and sends the packet along the backup path through links e5, e4, and es.
Figure 1d shows first a packet trace on the primary path through router v, in
the situation with no failures and then a trace where FRR protects against the
failure of link es.

Contribution 1 (Paper A)

We present a formal model of MPLS data planes that is capable of modelling
all possible packet traces through the network, including the behavior of
ECMP and fast reroute in case of failures.

17

6.2 Data Plane Generation and Simulation

When performing research of new networking techniques and protocols, it is
imperative to be able to experiment with the new ideas on realistic test cases
to assess performance and to possibly discover unseen issues. While there
exist datasets of network topologies (the graph of routers and links) stemming
from measurements on real-world networks [95], there is a lack of open source
datasets of network data planes and control planes, in particular datasets that
include the routers’ configurations and forwarding tables.

Generating arbitrary forwarding tables is likely to result in data planes that
differ widely from real networks, hence making research results based on these
data planes inaccurate compared to a real deployment. To enable research into
MPLS networks, including the evaluation of formal verification and synthesis
tools, we develop in Paper B the automated tool MPLS-Kit that can gener-
ate realistic MPLS data planes based on a parameterized configuration using
widely-deployed industry-standard control protocols.

MPLS-Kit is implemented as a modular Python library with a command
line interface. It allows specifying which of the supported control plane pro-
tocols to use, including LDP, RSVP-TE with fast reroute, and VPN services, as
well as the parameters for each protocol. These parameters can for instance
include a list of specific traffic engineering tunnels or just a number of random
tunnels to create. This flexibility allows both simple and advanced uses.

Given the specified configuration, MPLS-Kit produces an MPLS data plane
that follows the model presented in the previous section. To efficiently generate
the data plane, the tool abstracts over certain details of the distributed control-
plane algorithms and produces the data plane that would result from the
convergence of this distributed process.

On the generated data plane, MPLS-Kit can perform simple packet-level
simulations, from which packet traces and various statistics can be gathered. In
Paper B we present use cases of MPLS-Kit’s simulation including congestion,
latency, and resilience analysis. The modular and extensible design allows
easy prototyping of new techniques, such as the R-MPLS protection scheme
that we will introduce in the next section.

Contribution 2 (Paper B)

We present MPLS-Kit, an open-source tool for automated and efficient gen-
eration and simulation of synthetic, yet realistic,c MPLS data planes based
on parameterized configurations.

18

6. MPLS Network Resilience

6.3 Recursive Fast Reroute Protection

While the fast reroute supported in MPLS networks by RSVP-TE can protect
against single link or node failures, it does not provide resilience to multiple
concurrent failures. The FRR technique installs backup tunnels around vul-
nerable links or nodes to protect the main traffic, but it does not attempt to
protect against failures in the backup paths.

Given that most links and nodes already have protection paths around them
for protecting the main traffic paths, it seems like alow-hanging fruit to increase
the resilience by reusing these paths to protect the protection paths—resulting
in recursive protection. Since applying a facility protection amounts to just
pushing a corresponding label onto the stack, recursive facility protection is a
fast and memory efficient way of providing increased resilience against multi-
failure scenarios.

To understand why existing FRR does not perform this recursive protection,
consider the two rules in Figure 1e that “protect” the backup path ese; e3 against
of failure of link es and similarly for backup path eseses and the link es. If
both e3 and e are down, e.g. caused by a node failure on vy, the recursive
protection will keep sending packets back and forth between routers v, and
vz until the time-to-live (TTL) field of the packets reach zero. This forwarding
loop will quickly exhaust the bandwidth of the impacted links (e, €2, e4 and
es), which effectively blocks traffic that would otherwise flow unhindered on
other LSPs from v, to v3 via v;.

As this example highlights, naively applying recursive protection can result
in packets being forwarded in a loop—leading to detrimental performance. We
will now look at how to proactively avoid this and develop the R-MPLS tech-
nique (presented in Paper A) that guarantees loop-free recursive protection.
In the example, we can simply avoid installing the two rules in Figure 1e, but
in general we want to install as many recursive protections as possible while
guaranteeing that no forwarding loops are introduced. The challenge is to
determine which recursive protections are safe to install.

To capture the possible interplay of different protection paths, we define a
graph, where each node is a protection, modelled as a pair of the failing link
and the sequence of links used as the protection path. This protection graph
has a directed edge from p to g if the protection ¢ can be used for recursive
protection somewhere along the path of the protection p. The idea is that a
cycle in this graph corresponds to a possible forwarding loop in the network
under some failure scenario if all these recursive protections are enabled.
Paper A presents the formal definition and further uses certain annotations
of the directed edges in the graph to give a precise characterization of which
cycles in the graph correspond to forwarding loops in the network—details
that we will omit in this overview.

The protection graph for the two protections in the running example, de-

19

Success Ratio (%)

R-MPLS

=== Unprotected data plane (LDP / RSVP)

RSVP + Standard FRR]

100

90

80

70

R-MPLS on top of LDP

25 50 75 100
Network Topologies

125

Success Ratio (%)

100

95

90

85

80

R-MPLS vs FRR on top of RSVP-TE

25 50 75 100
Network Topologies

125

Fig. 2: Success rate per topology relative to optimal protection (higher value is better) for R-MPLS
on top of LDP (left) and RSVP-TE (right) compared to the unprotected data plane. For RSVP-TE
we also compare to its standard FRR protection. Plots are from Paper A.

picted in Figure 1b, has a cycle that corresponds to the forwarding loop in the
scenario where links ez and eg fail as shown by the trace in Figure 1f.

The loop-avoidance algorithm proceeds by finding cycles in the protection
graph and removing edges until there are no more cycles that correspond to
forwarding loops in the network. When removing an edge (p,¢) from the
graph, we add it to a set of disabled protection pairs and make sure that R-
MPLS does not install the recursive protection ¢ for the label that encodes the
protection p. This is how the algorithm determines that the rules in Figure 1e
should not be installed, as they correspond to the two edges forming a cycle
in Figure 1b. In Paper A we prove that R-MPLS, using this loop-avoidance
algorithm, is guaranteed not to introduce any forwarding loops.

Contribution 3 (Paper A)

We present R-MPLS, a recursive fast reroute protection scheme for practi-
cal multi-failure resilience in MPLS networks. R-MPLS uses an algorithm
for proactively avoiding any loops that would otherwise result from recur-
sive application of backup paths. We prove that R-MPLS with this loop-
avoidance algorithm guarantees loop-free protection.

To evaluate R-MPLS, we use MPLS-Kit (Paper B) to generate data planes
on 143 network topologies from the internet topology zoo dataset [95] using
either LDP or RSVP-TE to populate the forwarding tables. On top of these
baseline data planes we run R-MPLS to create recursive protections, and for
RSVP-TE we run its standard FRR with facility protection for comparison.

Next, we enumerate failure scenarios of up to four link failures for each data

20

7. Pushdown Automata Reachability

plane, and we run packet-level simulations to determine how many packets
the data plane successfully forwards in the given failure scenario. Packets
that get physically disconnected from their destination by the failure scenario
are not counted, so a theoretical optimal protection achieves 100% success
rate. In Figure 2 we plot the success rate averaged over all simulated failure
scenarios, where for each curve the topologies are sorted by their success ratio.
On the LDP-based data planes, we see that R-MPLS significantly improves the
resilience compared to the unprotected data plane. The same trend is clear on
the RSVP-TE data planes, where the recursive protection also improves greatly
on the standard FRR that only protects against single failures.

These experiments are presented in more detail in Paper A along with an
analysis showing that R-MPLS induces only a modest overhead in memory
(needed for storing forwarding rules) and communication (between routers
needed for the distributed computation of forwarding tables).

Contribution 4 (Paper A)

We show through extensive experiments that R-MPLS achieves high re-
silience with only a modest memory and communication overhead. R-MPLS
builds upon standard protocols and can be implemented in a distributed way
with existing MPLS hardware.

7 Pushdown Automata Reachability

In this section, we shall introduce our contributions to automated formal ver-
ification of MPLS networks. The work arises from the observation [80, 144]
that the packet forwarding of an MPLS network, with a label stack modified by
push, pop, and swap operations, closely resembles the classical formal model
of a pushdown automaton [151, Chapter 2.2].

Our work extends on a research prototype tool for MPLS network verifica-
tion, P-Rex [80], by adding quantitative verification; further, we propose and
implement several efficiency improvements that combined result in orders of
magnitude speed up, making the MPLS network verification more scalable for
practical use.

7.1 Pushdown Automata Reachability for MPLS Verification

A pushdown automaton (PDA) is a finite-state automaton equipped with an
unbounded stack and rules that can change state and modify the stack if they
match the top symbol on the current stack. Formally, a PDA has a finite set of
control locations P, a finite input alphabet ¥, a finite stack alphabet I', and a

21

finite set of rules on the form (p, v) N (p',w) wherep,p’ € P,y €T, weT*
and o € X. (Note the use of Kleene star means that I'* is the set of all words
over the alphabet I, i.e. sequences of elements from I'; moreover, let ¢ denote
the empty word.) The rule says that in control location p, if -y is on top of the
stack, we can move to p’ and replace y with w.

A configuration in a PDA is a pair (p, w) of a control location p € P and
a stack w € IT'*. A trace in the PDA is a sequence of Y-labelled transitions
between configurations (pg, wo) L (p1, w1) = (pn, wy,) such that for

Tit1 Ti+1

each step (p;,w;) RUELS (pi+1,wit1) there is a rule (p;,vy) —— (pi+1,w) and

a suffix w’ € T'* such that w; = yw’' and w;11 = ww’. Note how the rule
must match the current control location and top-of-stack symbol, and that
everything in the stack below the top symbol is unchanged when taking a
step. We sometimes omit the 3-labels when just talking about the existence of
a tracel.

For example, in a PDA with P = {p,q}, ¥ = {z,y,2}, I' = {a,b}, and
the three rules (p,a) < (g, aa), (q,b) 4 (p,a), and (q,a) <> (q,¢), a possible
trace is (p, ab) = (g, aab) = (q,ab) = (¢,b) % (p,a). Notice how the three

rules correspond respectively to push, swap, and pop operations. This PDA is
depicted in Figure 3a and will be used as a running example.

For MPLS network verification, we let X be the set of (directed) links in the
network and I be the set of MPLS labels. This allows us to model both the
links traversed by a packet and its intermediate MPLS headers. In a failure-
free scenario, the translation from our MPLS data plane model to pushdown
automata follows straightforwardly—details of this translation are presented
in Paper C. We will later discuss how to handle failures and fast reroute, i.e.
lower priority rules in the MPLS data plane model.

Note that this presentation of pushdown automata omits the start config-
uration and accepting control locations that are normally part of a PDA [151],
since there is no clear way to define the start and end of an MPLS network. This
means that we cannot talk about the language accepted by the PDA modelling
the network; instead, we will use a query language to specify a subset of traces
that are of interest.

This query language, which was first introduced by P-Rex [80], specifies net-
work traces by means of an expression on the form (regez ;) regez ..y, (regez),
where regezr 4, is aregular expression over network links, describing traversed
paths, while regex; and regez . are regular expressions over labels, describing
the initial resp. final header of the network trace. This gives a way of express-
ing traces with various properties in an intuitive language. We formalize this
as the following problem:

1Some papers [22, 81, 82, 138, 143, 148] (including Paper C, Paper E, and Paper F) call such a
structure a pushdown system (PDS).

22

7. Pushdown Automata Reachability

T z
a—aa Q€ T, Y,z

(a) PDA P; where rules are arrows between control loca- (b) NFA A; for the regular expression y (z|y|z)*y
tions annotated with stack modification and rule label

a— €
a— aa ()
()= ()) —()
b—a

(c) PDA P3 as the product of P; in (a) and A; in (b). E.g. qo corresponds to g and s¢. Rule labels omitted.

(qo, bb) = (p1, ab)=(q1, aab)=>(q1, ab)=(q1,b)=(p2,a) (1)
(q:bb) & (p, ab) = (g, aab) = (g,ab) = (q,b) & (p,a) ()
Y x z

so—>81—>81—>sli>sli>82 3)

(d) A trace (1) through P> in (c), and corresponding labelled trace (2) in Py, and path (3) in A,

Fig. 3: Example of a PDA P, NFA A1, and their product construction into a new PDA P2

Problem 1 (Pushdown Query Satisfiability). Given a PDA P and a query
(regex) regex .y, (reger), return, if it exists, a trace (po, wo) o (P, wy)
in P such that o; ... 0, matches the regular expression regex wo matches
regex ;, and w,, matches regez p.

path’s

For the PDA in the running example (see Figure 3a), say for instance we
wish to find traces that start and end with an edge labelled y, the traces can
have any initial header, and the final header must be the single label 'a’. We
can express this as regular expressions with the query (-*) y -*y (a), where
the symbol "’ is a wildcard that matches any symbol in the corresponding
alphabet. It is well known that any regular expression can be transformed into
an equivalent finite automaton [151].

A nondeterministic finite automaton (NFA) consists of a finite set of states
S with some states designated as initial / C S and final F' C S, an alphabet,
and a transition relation on the form s % s, where s,s’ € S and o is in the
alphabet. For the path expression in the query, the alphabet is 3; while for
specifying the headers, the alphabets of the NFA areI". A word w = o1...0,
is in the language of the NFA, if there are states sy, ..., s, € Ssuch that s € I,
s, € F,and s; RAREN s;41 for 0 < i < n. We may also write this as s Ly g, and
say that w is accepted by the automaton. A set of words is said to be regular if
it is the language of a finite automaton.

For the running example, Figure 3b shows an NFA for the regular expres-
sion y -*y, where s is the initial state and s is the final state. The word yzyy

23

is accepted by this NFA, while the word zzzy is not.

Ifatraceina given PDA P,,ciuori, Satisfies a query (reger) regex ..y, (reger),
the labels of the rules in the trace must form a word that is recognized by the
path expression regez ., of the query and the NFA A4, that encodes it. To
find such traces, we combine Ppctwork and Apg, into a new PDA Pproguet by
means of a product construction, where each control location in Pprodyct 1S
a pair of a control location from Pjciwore and a state from Ap.s,. The stack
alphabet of Pproquct is the same as in Pjerwork, and the rules of Pproquce are
constructed so that for each rule (p,~) N (p',w) in Ppepwort and transition
s 2 s"in Apa, where the symbol o matches, the rule ((p, s),7) (@, 8), w)
is added to Pproduct-

Figure 3c shows, for the running example, the result P, of the product
construction of the PDA P; in Figure 3a and the NFA A, in Figure 3b. The
names of the control locations in P, are simplified so that e.g. p; is the pair
(p, s1) of corresponding control location and state from P; and A;. Any trace
in Py corresponds to a trace in P; and a path in A; with the same ¥-labels. If
the trace starts in either py or gy and ends in either ps or ¢, the corresponding
path in the NFA will be an accepting path. Figure 3d shows an example of
such a trace.

Next, to handle the query’s regular expressions on the initial and final
headers, we translate them into NFA over the stack alphabet I'. We extend
each of these NFA from specifying a set of stacks to specifying a set of PDA
configurations by letting the control locations of the PDA become initial states
in the NFA. We say that a configuration (p, w) is accepted by this NFA, if p —* ¢
for some final state ¢ in the automaton. This allows us to specify both control
locations and stacks in the same structure, and this special NFA turns out to be
anatural fit for the reachability algorithms used to find traces in the PDA [148],
which helps make this construction efficient.

As shown in Paper C, we have now reduced Problem 1 of finding a PDA
trace that satisfies a given query to the following pushdown reachability prob-
lem:

Problem 2 (Pushdown reachability). Given a PDA and two finite automata 4
and A’, return, if it exist, a trace (pg,wo) = -+ = (pn,wy,) in the PDA such
that (po, wo) is accepted by A and (p,,, wy,) is accepted by .A’.

For the running example, we create an initial NFA A that accepts (po, w)
and (qo, w) for any w € {a,b}* and a final NFA A’ that accepts only (p2, a) and
(g2, a). Trace (1) in Figure 3d is an example of a solution to this instance of the
pushdown reachability problem, and trace (2) in Figure 3d is the corresponding
PDA trace that satisfies the query (-*) y -*y (a).

24

7. Pushdown Automata Reachability

Modelling Link Failures by Over-Approximation

The presentation so far has shown how to model MPLS networks in the failure-
free scenario as a pushdown automata and how to specify traces using regular
expressions. The last part of the query language from P-Rex [80] is to specify
a maximal number of link failures & to consider when modelling the behavior
of fast reroute protections. The semantics of the query is to ask whether there
exists a failure scenario with at most k failures, in which there is a possible
network trace that matches the regular expressions in the query.

The possibility of failures is handled by over-approximation: at each router,
we include (in the creation of the network PDA) all forwarding rules that are
active, i.e. may be used, in a failure scenario with at most k failures [80]. As
described above, finding a trace that satisfies the three regular expressions in
the query can be reduced to the pushdown reachability problem. Due to the
over-approximation, when a satisfying trace is found, we need to check that
no more than & links were assumed to be failed for the forwarding entries in
the trace to activate and that each link was consistently assumed to be either
active or failed.

The over-approximation of failures and the idea of using a product con-
struction of the network PDA and the NFA that encodes the path expression
were already part of the solution in P-Rex [80]. The new idea in this translation
from MPLS network verification to pushdown reachability is the direct use of
finite automata to encode the initial and final headers and to constrain the trace
to start and end with the initial resp. final states of the path NFA. This reduces
the size of the pushdown automata compared to the approach in P-Rex [80],
and together with an efficient C++ implementation of the translation it leads to
more efficient verification.

Contribution 5 (Paper C)
We present a direct, efficient translation from the query satisfaction problem
for MPLS network into the pushdown reachability problem.

7.2 Solving Pushdown Reachability Efficiently

After having established the use of pushdown reachability for MPLS network
verification, this section will introduce our improvements to the algorithms
for solving pushdown reachability. First, we will make a brief overview of the
existing algorithms.

For a set of PDA configurations C, the predecessors of C' are all config-
urations that have a trace to a configuration in C, and the successors of C
are all configuration that are reachable by a trace from a configuration in C.

25

Dl

b—a

(a) PDA P; from Figure 3a (b) NFA A’ accepting {(p, a)} (c) Saturated NFA A’

pre*

Fig. 4: Example of applying the pre* saturation procedure for PDA P; on the automaton A’

More formally, this is respectively pre*(C) = {c | 3¢ € C. ¢ =* '} and
post*(C) = {¢ | Ic € C. ¢ =* '}, where ¢ =* ¢’ indicates the existence of a
trace (with zero or more steps) from c to ¢’.

The key insight for solving pushdown reachability is that if the set of con-
figurations C' is regular, then both pre*(C) and post*(C') are regular too [27];
moreover, the corresponding automata can be computed efficiently by adding
transitions to the finite automaton representing C' according to certain satura-
tion rules [22, 55, 148]. For instance, pre* works by the following saturation
rule: if the PDA has a rule (p,7) < (p/,w), and in the current automaton
p 2 * ¢ for some state ¢, then add the transition p - ¢ to the automa-
ton [148]. We will call these algorithms, specifically the versions presented by
Schwoon [148], pre* and post*.

Figure 4 shows, for the PDA in the running example, the result of applying
the pre* algorithm on an automaton A’ that accepts just the configuration
(p, a). The resulting NFA, A}, ., in Figure 4c accepts pre* ({(p, a)}) = {(p,a)}U
{(p, awd) | w € T*} U {{g, wd) | w € T*}.

The next step in solving the pushdown reachability problem from a set
of initial configurations C to a set of final configurations C’, is to check if
C intersects with pre*(C’) or, symmetrically, if C’ intersects with post*(C).
Given that these sets are represented by finite automata, we can use a textbook
product construction for the intersection of two finite automata [151].

In Figure 5 we see the product automaton for the intersection of A, .. and
an NFA A that accepts (g, ab) and (g, bb). We see that the languages of these
two automata do intersect.

Finally, if reachability is satisfied, we need to return a trace as a witness
of reachability. This can be achieved by annotating the transitions added by
pre* or post™ with metadata that explain why the transition was added [148].
We can then backtrack from a configuration in the intersection and use the
metadata to discover the rule applied at each step.

On-The-Fly Construction of Product Automaton and Bidirectional Search

The first improvement to the algorithms is to terminate as soon as reachability
is determined to be satisfied. This is achieved by constructing on the fly the

26

7. Pushdown Automata Reachability

(a) NFA A accepts {(q, ab), (g, bb)} (b) NFA A’

pre

« from Figure 4c (c) Product automaton of A and .A;”E*

’
pre*’

Fig. 5: With on-the-fly construction of the product automaton of .A and .A
terminate early before adding the dashed arrows to the automata.

the algorithm can

product of the two finite automata, encoding C and pre*(C’) or encoding
post*(C) and C’, while the pre* or post* saturation algorithm adds transitions
to the corresponding automata. The algorithm will early terminate when a
non-empty intersection is found.

In the running example with the pre* algorithm, only the transitions
marked with solid arrows in Figure 5 have been added when an accepting
path is found in the product automaton in Figure 5c. The algorithm can ter-
minate early without having to add the two transitions with dashed arrows
in Figure 5b that are part of the fully saturated pre* automaton. For larger
examples, this early termination can lead to a significant speed-up.

The idea behind the algorithm for on-the-fly construction of the product
automaton, which we present in Paper C, is to keep track of states in the product
automaton that are reachable from an initial state, and when a transition is
added to one of the automata, we efficiently check if there are any matching
transitions in the other automaton that can lead to the addition of a transition
from a reachable state in the product automaton. When a new state becomes
reachable, we recursively check if transitions from this state can be added. If a
final state is reached in the product automaton, we know that we have found
an accepting path, and the algorithm can terminate.

To evaluate the algorithms, we conduct benchmarks on a large set of MPLS
network verification problems. Figure 6 shows the results, where we see that
pre* and post™ have similar performance. In Paper C we show how this is al-
ready an improvement compared to previous implementations. Interestingly,
the two algorithms often perform well on different problem instances (not
shown in the plot), which spark the idea of combining the forward search of
post* with the backward search of pre*.

This leads us to our second algorithmic improvement for the pushdown
reachability problem: bidirectional search, which we in Paper C name dual”.
The idea with dual™ is to apply pre* on the set of final configurations C’ and
post™ on the set of initial configurations C' in a way that interleaves the steps of
the saturation procedures. We use the on-the-fly product construction on the
corresponding two automata, where pre* adds transitions to one automaton

27

10" 7
©
i}
£
o
[a Y
o]
10° 4
— dual”
= min{dual®, CEGAR}
107! t t t
0 10,000 20,000 30,000 40,000 50,000 60,000

Instances

Fig. 6: Benchmark comparison showing the speed-up of dual* and its combination with CEGAR
compared to pre* and post*. For each solver, all 60 800 instances on the x-axis are independently
sorted by the verification time on the logarithmically scaled y-axis. Plot is from Paper C.

and post* adds transitions to the other. As soon as a configuration is found
in the intersection between post*(C) and pre*(C’), we know that there is a
trace from C through this configuration to C’, and the algorithm can termi-
nate. Moreover, we can terminate the algorithm with a negative answer as
soon as one search saturates without finding an overlap. This means that for
unreachable cases, only the smallest of the two search spaces, post*(C') and
pre*(C"), needs to be exhausted. In Figure 6 we see how the dual® algorithm
significantly improves the running time compared to the already optimized
pre” and post* implementations. Paper C gives the full algorithm.

Our third improvement is the implementation of counterexample-guided
abstraction refinement (CEGAR) [34] for pushdown reachability. The idea
with CEGAR is to reduce the size of the verified PDA by performing an ab-
straction [35] that groups control locations and labels into a smaller number of
abstract control locations and labels. If a trace is found in this smaller PDA, we
efficiently try to reconstruct a corresponding trace in the original PDA using
the method described in Paper C. If this fails, the spurious trace is used as
a counterexample to refine the abstraction so that the spurious trace is not
present in the refined PDA in the next iteration. In some cases this makes
verification much faster, since we are verifying a smaller model; however, in
other cases the abstraction needs to be refined too many times—leading to a

28

7. Pushdown Automata Reachability

longer overall verification time. For this reason, we suggest running CEGAR
in parallel with the dual™ algorithm to benefit from the cases where CEGAR is
fast without suffering from its bad cases. As we see in Figure 6, this improves
the running time even further and leads to almost an order of magnitude speed
up compared to pre* and post* on the large instances.

Contribution 6 (Paper C)

We improve the running time of pushdown automata verification by i) an
on-the-fly algorithm for finite automata intersection, ii) a novel bidirectional
search algorithm for reachability of pushdown automata, and iii) the use of
counter-example guided abstraction refinement to decrease the size of the
pushdown automaton. We demonstrate the performance improvements by
benchmarking on a large set of network verification problems.

7.3 Weighted Pushdown Automata Verification

While it can be useful to know whether there exists a trace in an MPLS network
with a given regular pattern, in the positive cases, it might not be enough to
just have an arbitrary example of such a trace. For debugging the network, we
may want to find a trace in a failure scenario with as few failures as possible,
or for traffic engineering we can ask what the worst-case latency from A to B is
when at most two links fail. To answer such questions, we introduce in Paper D
quantitative what-if verification for MPLS networks with the tool AalWiNes.

Specifically, AalWiNes supports assigning weights to each forwarding rule
in the network data plane and finding a query-satisfying trace that has either
the smallest or the largest sum over these weights. The weights can encode
e.g. hop-count, link latency, number of push operations, or the number of
failures needed locally for the forwarding rule to be active. To allow expressing
more advanced weight properties, AalWiNes supports linear combinations
and lexicographically ordered vectors of such weights.

The theoretical foundation of this quantitative verification is weighted
pushdown automaton (WPDA). In general, a WPDA is a pushdown automa-
ton where each rule is assigned a weight. In order to analyze the weight of
traces in a WPDA, the weights must come from a domain that supports two op-
erations and satisfies certain properties like associativity and commutativity.
Specifically, the domain must define an operation for computing the weight
of a trace from the weights of its steps, and it must define an operation for
aggregating over the weights of multiple traces. Formally, we use an algebraic
structure known as an idempotent semiring for the weighted generalization
of pushdown reachability [82, 100, 138]. In AalWiNes and its underlying PDA
library PDAAAL (presented in Paper E), we require the weight domain to

29

MPLS Reachability Analysis & Visualization Tool

Model _pemonet

Dataplane Generation

Query <> (o) rv2rvaye [v32] <> 1

Options

Result Satisfied

<.> [#V0] [*V2#V3]* [V3#] <.> 1

<1,20> : [VO#V2]

<1,21,30> : [V2#V4]
<1,21> : [V4#V3]

<1>:[V3#]
@ mapbox

 Opensirseiiiap opensieelmap rg/copyight

Fig. 7: The graphical user interface of AalWiNes showing the result of a longest trace query on a
small example network.

be totally ordered. Other works on WPDA use different relaxations of this
requirement [100, 138].

The domains we use for quantitative MPLS verification are integers and
vectors of integers. The weight of the trace is the (elementwise) sum of the
weights of rules on the trace, and we aggregate over multiple paths by the
(lexicographical) minimum or maximum depending on the whether we are
looking for shortest or longest traces.

To improve usability, AalWilNes features a graphical user interface, shown
in Figure 7, for inspecting the network model, specifying queries and weight
expressions, and visualizing the returned traces.

Contribution 7 (Paper D)

We extend previous work on MPLS network verification to include quanti-
tative verification. In particular we implement an efficient tool, AalWiNes,
that supports shortest and longest trace queries using various configurable
weights such as hop-count or latency.

For solving the (weighted) pushdown reachability problems from Aal-
WiNes, we build in Paper E an efficient open-source C++ library and command-
line tool for (weighted) pushdown automata verification, PDAAAL.

The idea behind extending the pre* and post* algorithms for pushdown
reachability to finding e.g. shortest traces in WPDA, is that the saturation
procedures not only add transitions to the NFA, they also assign weights to the
transitions in a way so that the weight of a shortest accepting path for a given

30

7. Pushdown Automata Reachability

(a) WPDA modified from Figure 3a
with weight annotations on rules (b) NFA A’ from Figure 4b (c) Weights (in brackets) on NFA A7

pre*

—() —(p.1) . (@0 D (1.0) X (1)

(g.ab) 2 (q,b) = (p,a)

b(0)
a(0) .
e , a(2) (f) Shortest path (top) in product au-

tomaton (e) and corresponding trace
(d) NFA A5 for {{g, ab®) | k>0} () Intersection of A3 and A}, « (bottom) in the WPDA (a)

b(o b(l

(@.9) “2 (£.9) =2 (o) = (£.F)
(g, abb*) 2 [(g, b8") 2> (p, ab*) & IR TERAEN (0.6 @0 = p.0)

(g) The product automaton (e) has a positive cycle, so the longest path (top) is arbitrarily long (repetition is
shown by "..."). Corresponding longest trace (bottom) in the WPDA (a) is also unbounded.

Fig. 8: Shortest (f) and longest (g) trace analysis from A3 (d) to A’ (b) through a WPDA (a). In this

particular case, A}, . (c) is assigned the same weights for both shortest and longest trace analysis.

configuration in the saturated automaton e