1,239 research outputs found

    Finding Influential Users in Social Media Using Association Rule Learning

    Full text link
    Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods

    Tensor Learning for Recovering Missing Information: Algorithms and Applications on Social Media

    Get PDF
    Real-time social systems like Facebook, Twitter, and Snapchat have been growing rapidly, producing exabytes of data in different views or aspects. Coupled with more and more GPS-enabled sharing of videos, images, blogs, and tweets that provide valuable information regarding “who”, “where”, “when” and “what”, these real-time human sensor data promise new research opportunities to uncover models of user behavior, mobility, and information sharing. These real-time dynamics in social systems usually come in multiple aspects, which are able to help better understand the social interactions of the underlying network. However, these multi-aspect datasets are often raw and incomplete owing to various unpredictable or unavoidable reasons; for instance, API limitations and data sampling policies can lead to an incomplete (and often biased) perspective on these multi-aspect datasets. This missing data could raise serious concerns such as biased estimations on structural properties of the network and properties of information cascades in social networks. In order to recover missing values or information in social systems, we identify “4S” challenges: extreme sparsity of the observed multi-aspect datasets, adoption of rich side information that is able to describe the similarities of entities, generation of robust models rather than limiting them on specific applications, and scalability of models to handle real large-scale datasets (billions of observed entries). With these challenges in mind, this dissertation aims to develop scalable and interpretable tensor-based frameworks, algorithms and methods for recovering missing information on social media. In particular, this dissertation research makes four unique contributions: _ The first research contribution of this dissertation research is to propose a scalable framework based on low-rank tensor learning in the presence of incomplete information. Concretely, we formally define the problem of recovering the spatio-temporal dynamics of online memes and tackle this problem by proposing a novel tensor-based factorization approach based on the alternative direction method of multipliers (ADMM) with the integration of the latent relationships derived from contextual information among locations, memes, and times. _ The second research contribution of this dissertation research is to evaluate the generalization of the proposed tensor learning framework and extend it to the recommendation problem. In particular, we develop a novel tensor-based approach to solve the personalized expert recommendation by integrating both the latent relationships between homogeneous entities (e.g., users and users, experts and experts) and the relationships between heterogeneous entities (e.g., users and experts, topics and experts) from the geo-spatial, topical, and social contexts. _ The third research contribution of this dissertation research is to extend the proposed tensor learning framework to the user topical profiling problem. Specifically, we propose a tensor-based contextual regularization model embedded into a matrix factorization framework, which leverages the social, textual, and behavioral contexts across users, in order to overcome identified challenges. _ The fourth research contribution of this dissertation research is to scale up the proposed tensor learning framework to be capable of handling real large-scale datasets that are too big to fit in the main memory of a single machine. Particularly, we propose a novel distributed tensor completion algorithm with the trace-based regularization of the auxiliary information based on ADMM under the proposed tensor learning framework, which is designed to scale up to real large-scale tensors (e.g., billions of entries) by efficiently computing auxiliary variables, minimizing intermediate data, and reducing the workload of updating new tensors

    Efficient Multimedia Broadcast for Heterogeneous Users in Cellular Networks

    Get PDF
    Efficient Multimedia Broadcast and Multicast Services (MBMS) to heterogeneous users in cellular networks imply adaptive video encoding, layered multimedia transmission, optimized transmission parameters, and dynamic broadcast area definition. This paper deals with MBMS by proposing a multi-dimensional approach for broadcast area definition, which provides an effective solution to all of the above aspects. By using multi-criteria K-means clustering, our scheme provides users with high levels of Quality-of-Experience (QoE) of multimedia services. Adaptive video encoding and allocation of radio resources (i.e., time-frequency resource blocks, and modulation and coding scheme) are performed based on user spatial distribution, channel conditions, service request, and user display capabilities. Simulation results show that our solution provides a 70% improvement in user QoE and 86% in number of served customers, as compared to an existing multimedia broadcast scheme.© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation

    Full text link
    Bundle recommendation seeks to recommend a bundle of related items to users to improve both user experience and the profits of platform. Existing bundle recommendation models have progressed from capturing only user-bundle interactions to the modeling of multiple relations among users, bundles and items. CrossCBR, in particular, incorporates cross-view contrastive learning into a two-view preference learning framework, significantly improving SOTA performance. It does, however, have two limitations: 1) the two-view formulation does not fully exploit all the heterogeneous relations among users, bundles and items; and 2) the "early contrast and late fusion" framework is less effective in capturing user preference and difficult to generalize to multiple views. In this paper, we present MultiCBR, a novel Multi-view Contrastive learning framework for Bundle Recommendation. First, we devise a multi-view representation learning framework capable of capturing all the user-bundle, user-item and bundle-item relations, especially better utilizing the bundle-item affiliations to enhance sparse bundles' representations. Second, we innovatively adopt an "early fusion and late contrast" design that first fuses the multi-view representations before performing self-supervised contrastive learning. In comparison to existing approaches, our framework reverses the order of fusion and contrast, introducing the following advantages: 1)our framework is capable of modeling both cross-view and ego-view preferences, allowing us to achieve enhanced user preference modeling; and 2) instead of requiring quadratic number of cross-view contrastive losses, we only require two self-supervised contrastive losses, resulting in minimal extra costs. Experimental results on three public datasets indicate that our method outperforms SOTA methods

    Learning Representations of Social Media Users

    Get PDF
    User representations are routinely used in recommendation systems by platform developers, targeted advertisements by marketers, and by public policy researchers to gauge public opinion across demographic groups. Computer scientists consider the problem of inferring user representations more abstractly; how does one extract a stable user representation - effective for many downstream tasks - from a medium as noisy and complicated as social media? The quality of a user representation is ultimately task-dependent (e.g. does it improve classifier performance, make more accurate recommendations in a recommendation system) but there are proxies that are less sensitive to the specific task. Is the representation predictive of latent properties such as a person's demographic features, socioeconomic class, or mental health state? Is it predictive of the user's future behavior? In this thesis, we begin by showing how user representations can be learned from multiple types of user behavior on social media. We apply several extensions of generalized canonical correlation analysis to learn these representations and evaluate them at three tasks: predicting future hashtag mentions, friending behavior, and demographic features. We then show how user features can be employed as distant supervision to improve topic model fit. Finally, we show how user features can be integrated into and improve existing classifiers in the multitask learning framework. We treat user representations - ground truth gender and mental health features - as auxiliary tasks to improve mental health state prediction. We also use distributed user representations learned in the first chapter to improve tweet-level stance classifiers, showing that distant user information can inform classification tasks at the granularity of a single message.Comment: PhD thesi

    Learning Representations of Social Media Users

    Get PDF
    User representations are routinely used in recommendation systems by platform developers, targeted advertisements by marketers, and by public policy researchers to gauge public opinion across demographic groups. Computer scientists consider the problem of inferring user representations more abstractly; how does one extract a stable user representation - effective for many downstream tasks - from a medium as noisy and complicated as social media? The quality of a user representation is ultimately task-dependent (e.g. does it improve classifier performance, make more accurate recommendations in a recommendation system) but there are proxies that are less sensitive to the specific task. Is the representation predictive of latent properties such as a person's demographic features, socioeconomic class, or mental health state? Is it predictive of the user's future behavior? In this thesis, we begin by showing how user representations can be learned from multiple types of user behavior on social media. We apply several extensions of generalized canonical correlation analysis to learn these representations and evaluate them at three tasks: predicting future hashtag mentions, friending behavior, and demographic features. We then show how user features can be employed as distant supervision to improve topic model fit. Finally, we show how user features can be integrated into and improve existing classifiers in the multitask learning framework. We treat user representations - ground truth gender and mental health features - as auxiliary tasks to improve mental health state prediction. We also use distributed user representations learned in the first chapter to improve tweet-level stance classifiers, showing that distant user information can inform classification tasks at the granularity of a single message.Comment: PhD thesi

    An efficient approach to generating location-sensitive recommendations in ad-hoc social network environments

    Get PDF
    Social recommendation has been popular and successful in various urban sustainable applications such as online sharing, products recommendation and shopping services. These applications allow users to form several implicit social networks through their daily social interactions. The users in such social networks can rate some interesting items and give comments. The majority of the existing studies have investigated the rating prediction and recommendation of items based on user-item bipartite graph and user-user social graph, so called social recommendation. However, the spatial factor was not considered in their recommendation mechanisms. With the rapid development of the service of location-based social networks, the spatial information gradually affects the quality and correlation of rating and recommendation of items. This paper proposes spatial social union (SSU), an approach of similarity measurement between two users that integrates the interconnection among users, items and locations. The SSU-aware location-sensitive recommendation algorithm is then devised. We evaluate and compare the proposed approach with the existing rating prediction and item recommendation algorithms subject to a real-life data set. Experimental results show that the proposed SSU-aware recommendation algorithm is more effective in recommending items with the better consideration of user's preference and location.This work was supported by the National Natural Science Foundation of China under Grant 61372187. G. Min’s work was partly supported by the EU FP7 CLIMBER project under Grant Agreement No. PIRSES-GA-2012-318939. L. T. Yang is the corresponding author
    • …
    corecore