180 research outputs found

    Pushing the limits of inertial motion sensing

    Get PDF

    Sampling frequency optimization and training model selection for physical activity classification with single triaxial accelerometer

    Get PDF
    Ambulatory monitoring system with accelerometers can provide a reliable, continuous, unsupervised and objective monitoring of human physical activities. The system can in many cases recognize the type of activity being performed, and calculate the duration and intensity. This kind of information can be utilized to help people to follow up their physical activities and remind people to be more active, because physical inactivity can cause some health problems. However, especially for mobile devices continuous sam-pling, signal processing and activity recognition rapidly depletes the system’s energy, which is a critically constrained resource. In this thesis work, several methods for reducing energy consumption in physical activi-ty recognition were reviewed and discussed, i.e., 1) reducing the number of sensors used; 2) selecting low power sensors; 3) reducing the number of axes; 4) decreasing the sampling frequency; 5) adopting an adaptive sampling strategy. In this thesis, a single tri-axial accelerometer was utilized for sensing the accelerations, and sampling frequency was optimized in order to lower the energy consumption. The physical activity recognition was performed with different sampling frequencies and training strategies, with the target to reach good classification accuracies and low energy consumption. Based on the obtained classification results, several conclusions were drawn. Firstly, personal models did not always achieve better classification accuracies over impersonal and hybrid models. However, personal models performed much better for some activi-ties, e.g., biking, lying, and rowing. Secondly, there was no uniform optimal sampling frequency for all activities. Sampling frequencies no larger than 10 Hz were enough to classify all activities. To further optimize the energy consumption, adaptive sampling rate logic was designed and implemented. It adaptively used 1 Hz when sampling the accelerations from lying activity and 10 Hz for other activities. The results showed it worked effectively and efficiently

    FRUGAL & SCALABLE FRAMEWORK FOR ROBUST & INTELLIGENT REMOTE MONITORING IN AN AGING DEMOGRAPHY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Early Abstraction of Inertial Sensor Data for Long-Term Deployments

    Get PDF
    Advances in microelectronics over the last decades have led to miniaturization of computing devices and sensors. A driving force to use these in various application scenarios is the desire to grasp physical phenomena from the environment, objects and living entities. We investigate sensing in two particularly challenging applications: one where small sensor modules are worn by people to detect their activities, and one where wirelessly networked sensors observe events over an area. This thesis takes a data-driven approach, focusing on human motion and vibrations caused by trains that are captured by accelerometer sensors as time series and shall be analyzed for characteristic patterns. For both, the acceleration sensor must be sampled at relatively high rates in order to capture the essence of the phenomena, and remain active for long stretches of time. The large amounts of gathered sensor data demand novel approaches that are able to swiftly process the data while guaranteeing accurate classification results. The following contributions are made in particular: * A data logger that would suit the requirements of long-term deployments is designed and evaluated. In a power profiling study both hardware components and firmware parameters are thoroughly tested, revealing that the sensor is able to log acceleration data at a sampling rate of 100 Hertz for up to 14 full days on a single battery charge. * A technique is proposed that swiftly and accurately abstracts an original signal with a set of linear segments, thus preserving its shape, while being twice as fast as a similar method. This allows for more efficient pattern matching, since for each pattern only a fraction of data points must be considered. A second study shows that this algorithm can perform data abstraction directly on a data logger with limited resources. * The railway monitoring scenario requires streaming vibration data to be analyzed for particular sparse and complex events directly on the sensor node, extracting relevant information such as train type or length from the shape of the vibration footprint. In a study conducted on real-world data, a set of efficient shape features is identified that facilitates train type prediction and length estimation with very high accuracies. * To achieve fast and accurate activity recognition for long-term bipolar patients monitoring scenarios, we present an approach that relies on the salience of motion patterns (motifs) that are characteristic for the target activity. These motifs are accumulated by using a symbolic abstraction that encodes the shape of the original signal. A large-scale study shows that a simple bag-of-words classifier trained with extracted motifs is on par with traditional approaches regarding the accuracy, while being much faster. * Some activities are hard to predict from acceleration data alone with the aforementioned approach. We argue that human-object interactions, captured as human motion and grasped objects through RFID, are an ideal supplement. A custom bracelet-like antenna to detect objects from up to 14 cm is proposed, along with a novel benchmark to evaluate such wearable setups. By aiming for wearable and wirelessly networked sensor systems, these contributions apply for particularly challenging applications that require long-term deployments of miniature sensors in general. They form the basis of a framework towards efficient event detection that relies heavily on early data abstraction and shape-based features for time series, while focusing less on the classification techniques

    Power Optimization for Sensor Hubs in Biomedical Applications

    Get PDF
    The design and development of wearable inertial sensor systems for health monitoring has garnered a huge attention in the scientific community and the industry during the last years. Such platforms have a typical architecture and common building blocks to enable data collection, data processing and feedback restitution. In this thesis we analyze power optimization techniques that can be applied to such systems. When reducing power consumption in a wearable system, different trade-offs have to be inevitably faced. We thus propose software techniques that span from well known duty cycling, frequency scaling, data compression to new paradigm such as radio triggering, heterogeneous multi-core and context aware power management

    Desarrollo y versatilidad del algoritmo de discretización Ameva.

    Get PDF
    Esta tesis presentada como un compendio de artículos, analiza el problema de reconocimiento de actividades y detección de caídas en dispositivos móviles donde el consumo de batería y la precisión del sistema son las principales áreas de investigación. Estos problemas se abordan mediante el establecimiento de un nuevo algoritmo de selección, discretización y clasificación basado en el núcleo del algoritmo Ameva. Gracias al proceso de discretización, se obtiene un sistema eficiente en términos de energía y precisión. El nuevo algoritmo de reconocimiento de actividad ha sido diseñado para ejecutarse en dispositivos móviles y smartphones, donde el consumo de energía es la característica más importante a tener en cuenta. Además, el algoritmo es eficiente en términos de precisión dando un resultado en tiempo real. Estas características se probaron tanto en una amplia gama de dispositivos móviles utilizando diferentes datasets del estado del arte en reconocimiento de actividades así como en escenarios reales como la competición EvAAL donde personas no relacionadas con el equipo de investigación llevaron un smartphone con el sistema desarrollado. En general, ha sido posible lograr un equilibrio entre la precisión y el consumo de energía. El algoritmo desarrollado se presentó en el track de reconocimiento de actividades de la competición EvAAL (Evaluation of Ambient Assisted Living Systems through Competitive Benchmarking), que tiene como objetivo principal la medición del rendimiento de hardware y software. El sistema fue capaz de detectar las actividades a través del conjunto establecido de puntos de referencia y métricas de evaluación. Se desarrolló para varias clases de actividades y obtiene una gran precisión cuando hay aproximadamente el dataset está balanceado en cuanto al número de ejemplos para cada clase durante la fase de entrenamiento. La solución logró el primer premio en la edición de 2012 y el tercer premio en la edición de 2013.This thesis, presented as a set of research papers, studies the problem of activity recognition and fall detection in mobile systems where the battery draining and the accuracy are the main areas of researching. These problems are tackled through the establishment of a new selection, discretization and classification algorithm based on the core of the algorithm Ameva. Thanks to the discretization process, it allows to get an efficient system in terms of energy and accuracy. The new activity recognition algorithm has been designed to be run in mobile systems, smartphones, where the energy consumption is the most important feature to take into account. Also, the algorithm had to be efficient in terms of accuracy giving an output in real time. These features were tested both in a wide range of mobile devices by applying usage data from recognized databases and in some real scenarios like the EvAAL competition where non-related people carried a smartphone with the developed system. In general, it had therefore been possible to achieve a trade-off between accuracy and energy consumption. The developed algorithm was presented in the Activity Recognition track of the competition EvAAL (Evaluation of Ambient Assisted Living Systems through Competitive Benchmarking), which has as main objective the measurement of hardware and software performance. The system was capable of detecting some activities through the established set of benchmarks and evaluation metrics. It has been developed for multi-class datasets and obtains a good accuracy when there is approximately the same number of examples for each class during the training phase. The solution achieved the first award in 2012 competition and the third award in 2013 edition
    corecore