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Abstract

Advances in microelectronics over the last decades have led to miniaturization of com-
puting devices and sensors. A driving force to use these in various application scenarios
is the desire to grasp physical phenomena from the environment, objects and living en-
tities. We investigate sensing in two particularly challenging applications: one where
small sensor modules are worn by people to detect their activities, and one where wire-
lessly networked sensors observe events over an area.

This thesis takes a data-driven approach, focusing on human motion and vibrations
caused by trains that are captured by accelerometer sensors as time series and shall be
analyzed for characteristic patterns. For both, the acceleration sensor must be sampled
at relatively high rates in order to capture the essence of the phenomena, and remain
active for long stretches of time. The large amounts of gathered sensor data demand
novel approaches that are able to swiftly process the data while guaranteeing accurate
classification results. The following contributions are made in particular:

* A data logger that would suit the requirements of long-term deployments is designed
and evaluated. In a power profiling study both hardware components and firmware
parameters are thoroughly tested, revealing that the sensor is able to log acceleration
data at a sampling rate of 100 Hertz for up to 14 full days on a single battery charge.

* A technique is proposed that swiftly and accurately abstracts an original signal with a
set of linear segments, thus preserving its shape, while being twice as fast as a similar
method. This allows for more efficient pattern matching, since for each pattern only a
fraction of data points must be considered. A second study shows that this algorithm
can perform data abstraction directly on a data logger with limited resources.

* The railway monitoring scenario requires streaming vibration data to be analyzed for
particular sparse and complex events directly on the sensor node, extracting relevant
information such as train type or length from the shape of the vibration footprint. In
a study conducted on real-world data, a set of efficient shape features is identified
that facilitates train type prediction and length estimation with very high accuracies.

* To achieve fast and accurate activity recognition for long-term bipolar patients moni-
toring scenarios, we present an approach that relies on the salience of motion patterns
(motifs) that are characteristic for the target activity. These motifs are accumulated
by using a symbolic abstraction that encodes the shape of the original signal. A large-
scale study shows that a simple bag-of-words classifier trained with extracted motifs
is on par with traditional approaches regarding the accuracy, while being much faster.

* Some activities are hard to predict from acceleration data alone with the aforemen-
tioned approach. We argue that human-object interactions, captured as human mo-
tion and grasped objects through RFID, are an ideal supplement. A custom bracelet-
like antenna to detect objects from up to 14 cm is proposed, along with a novel
benchmark to evaluate such wearable setups.

By aiming for wearable and wirelessly networked sensor systems, these contributions
apply for particularly challenging applications that require long-term deployments of
miniature sensors in general. They form the basis of a framework towards efficient
event detection that relies heavily on early data abstraction and shape-based features
for time series, while focusing less on the classification techniques.







Zusammenfassung

Die Fortschritte in der Mikroelektronik der vergangenen Jahrzehnte fiihrten zur Minia-
turisierung von Rechnern und Sensoren. Eine treibende Kraft, diese in verschiedenen
Anwendungsszenarien zu verwenden ist der Wunsch nach der Erfassung physikalis-
cher Phanomene in der Umgebung, an Objekten und Lebewesen. Wir untersuchen den
Einsatz von Sensoren in zwei besonders anspruchsvolle Anwendungsszenarien: zum
Einen, wo kleine Sensormodule von Menschen getragen werden, um ihre Aktivititen
zu erkennen, und zum Anderen, wo drahtlos vernetzte Sensorknoten eine Umgebung
nach relevanten Ereignissen iiberwachen.

Diese Arbeit nimmt einen datenorientierten Ansatz, wobei der Schwerpunkt beim Er-
fassen menschlicher Bewegungen und von durch Ziige verursachten Vibrationen liegt.
Diese werden durch Beschleunigungssensoren als Zeitreihen aufgezeichnet und sollen
auf charakteristische Muster und Ereignisse untersucht werden. In beiden Szenar-
ien miissen die Beschleunigungssensoren mit relativ hohen Raten abgetastet werden,
um die Essenz der Phdnomene zu erfassen, was zudem iiber lange Zeitraume erfol-
gen muss. Die dabei anfallenden sehr grolen Mengen an Sensordaten verlangen nach
neuen Ansitze, mit denen gewahrleistet sein soll, dass die Daten schnell verarbeitet
und gleichzeitig gute Klassifikationsergebnisse bei der Analyse erzielt werden. Die wis-
senschaftlichen Beitrdge dieser Arbeit lassen sich wie folgt zusammenfassen:

* Es wird ein Gerat vorgestellt, welches Beschleunigung und Vibrationen aufzeichnet
und den Anforderungen der Langzeiteinsatze entsprechend konstruiert und evaluiert
wurde. Eine Untersuchung des Stromverbrauchs beziiglich verschiedener Hardware-
Komponenten und Firmware-Parameter hat ergeben, dass der Sensor in der Lage ist
Beschleunigungsdaten mit einer Abtastrate von 100 Hertz bis zu 14 Tage lang mit
einer einzigen Akkuladung aufzuzeichnen.

* Wir schlagen eine Abstraktionsmethode vor, die das aufgezeichnete Signal effizient
und genau durch lineare Segmente abstrahiert, dabei das urspriingliche Aussehen
bewahrt und zudem doppelt so schnell wie ein dhnliches Verfahren ist. Damit wird
auch effiziente Mustererkennung ermdglicht, da fiir jedes Muster nur ein Bruchteil
der Datenpunkte zu beriicksichtigen ist. Eine zweite Studie zeigt, dass die Methode
auf einem Datenlogger mit begrenzten Ressourcen implementiert werden kann.

* Das Szenario zur Schienenverkehrsiiberwachung fiihrt die Idee nach friiher Datenab-
straktion weiter aus, indem es gestreamte Vibrationsdaten auf sparlich vorkommende
und komplexe Ereignisse direkt auf dem Sensorknoten untersucht. Damit lassen sich
fir die Uberwachung relevante Informationen, wie Zugtyp oder dessen Linge, aus
dem Vibrationsmuster extrahieren. Eine Studie an realen Daten hat eine Reihe von
effizienten Features ergeben, auf deren Grundlage der Zugtyp und die Lange mit sehr
hohen Genauigkeiten vorhergesagt werden konnen.

e Um eine schnelle und akkurate Aktivititserkennung fiir langfristige Uberwachung
von bipolaren Patienten zu ermoglichen, stellen wir einen Ansatz vor, der auf der
Dichte des Auftretens von Bewegungsmustern (Motif), die charakteristisch fiir eine
Zielaktivitat sind, basiert. Die relevanten Motifs werden durch die Verwendung einer




symbolischen Darstellung der Sensordaten, die die Form des urspriinglichen Signals
beriicksichtigen, akkumuliert. Unsere umfangreiche Studie zeigt, dass ein mit den
extrahierten Motifs trainierter einfacher Bag-of-Words Klassifikator dhnliche Erken-
nungsraten erreicht, wie traditionelle Ansétze auch, und dabei viel schneller ist.

Einige Aktivitdten sind mit dem oben genannten Ansatz auf der alleinigen Grund-
lage von Beschleunigungsdaten nur sehr schwer vorherzusagen. Wir argumentieren
an dieser Stelle, dass die Interaktion mit Objekten, bestehend aus der Erkennung
menschlicher Bewegungen durch Beschleunigungssensoren und der Identifikation
von ergriffen Objekten durch RFID, sich ideal erginzen und die Erkennungsgiite
verbessern. Wir stellen eine neu hergestellte RFID Armband-Antenne vor, mit der
Objekte bis zu einer Reichweite von 14 cm erkannt werden kénnen. Zudem stellen
wir einen neuartigen Vergleichstest vor, mit dem solche tragbare Sensoren ausgew-
ertet und verglichen werden konnen.

Aufgrund des in dieser Arbeit gewdhlten Fokus auf tragbare und drahtlos vernet-

zte Sensor-Systeme, sind die vorgestellten wissenschaftliche Beitrage fiir eine Vielzahl
von besonders anspruchsvollen Anwendungen, die auf langfristigen Einsatz von Sen-
sorknoten abzielen, relevant. Sie bilden eine Grundlage fiir effiziente Ereigniserken-
nungssysteme, die insbesondere auf frither Datenabstraktion und der Verwendung von
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gnalform-Features basieren, und dabei auf weniger komplexe Klassifizierungstech-
ken zuriickgreifen.
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1 Introduction

Advances in microelectronics and computer science over the past decades have signif-
icantly changed our world and how we perceive it. The ongoing computerization has
impacted almost all aspects of our lives, including communications, businesses, indus-
try, health, science, or leisure. We are surrounded with a multitude of microelectronic
devices that compute, sense and communicate with each other directly or via the In-
ternet, offering their users various types of services. The ongoing miniaturization and
diversification of hardware components and their integration in everyday things aids
the concept of ubiquitous computing, a paradigm coined by Mark Weiser in late 80ies.

Ubiquitous computing, in all its manifolds, has actively been pursued by thousands of
researches, practitioners and businesses from over the world. Pushing beyond general
purpose computers as central computing units, the development of new technologies,
computing and communication devices and sensors, aimed at obtaining a much more
detailed insight on how “things” work. A major focus was put on grasping physical
phenomena from the environment as well as objects and living entities within, with
application possibilities ranging from the health-care domain over dedicated industry
and logistics scenarios up into the everyday’s life of every human being.

For environmental monitoring, sensors can be used that capture relevant conditions,
such as temperature, humidity, light intensity, atmospheric pressure, direction and
speed of wind, gas concentrations, air or water pollution. For monitoring large spaces or
human built infrastructure for relevant physical phenomena, wireless sensor networks
have been proposed, consisting of huge numbers of small and relatively inexpensive
sensor nodes that are capable of sensing the environment, processing the data and com-
municating with each other in order to exchange relevant information. Besides already
mentioned simple sensor modalities, inertial and vibration data is of particular inter-
est, as it can capture ocean wave fluctuations, land slides and earth-quakes. Sensors
that are capable to sense acceleration and vibrations are used to monitor human-built
infrastructure, such as bridges, tunnels or buildings, for critical vibration or oscillating
motions caused by vehicles or natural phenomena, such as wind.

Monitoring animals or humans is a much more challenging task and requires more
and more complex sensors that can capture their location and motion, interactions with
objects or other individuals. Various approaches have been proposed over the years that
rely on visual data obtained through cameras installed in the environment, location in-
formation from different outdoor and indoor localization systems, context information
from environmental sensors, or inertial data from body-worn sensors. The diversity
of applications was specifically aided by the miniaturization of hardware components,
where especially wearable technology profited a lot. A significant impact can be seen
in the health-care domain, where the availability of inertial sensors allowed to obtain
fine-grained information about the patients’ disease symptoms or conditions. Many re-
searchers focus on elderly care and health applications, where detecting falls, seizures,
movement disabilities, regular medication intake, ability of self-contained living are




relevant to the medical staff. The latter has spawned a specific sub-area inside hu-
man activity recognition focusing on activities of daily living, including personal care,
cooking, eating and drinking, cleaning dishes, or household work.

While many challenges in these research fields have been addressed over the years,
and novel hardware and data processing algorithms were proposed, many of the tar-
geted scenarios have specific restrictions that make the use of invasive sensors (such
as cameras or microphones) not possible, or can not be tackled even with computing
power and resources in reasonable amount of time. Hereby, domain knowledge is of a
particular importance, since domain-specific limitations and restrictions, regarding the
hardware, energy efficiency, costs, legal aspects and many others, create a rigid corset
that the scientist and practitioners need to consider. This is often specifically the case
for application scenarios where humans or large-area environments are to be monitored
with limited hardware resources. Therefore, there is a high demand for power-efficient
hardware as well as computationally efficient approaches and algorithms that handle
data collection, perform data abstraction or compression and further data analysis.

Motion and vibration play an essential and ubiquitous component of the physical
world. Capturing them yields huge potential for various applications and thus has al-
ready been addressed with various types of hardware, preferably with inertial sensors.
Among others, applications focusing on human motion are to be found in the health-
care domain and fitness monitoring applications, which nowadays become more and
more popular through inertial-equipped smartphones and other wearable devices. Ac-
celeration sensors are used in commercial products and research projects, for remote
control device implementations that are based on gesture recognition for data entry,
control functions and gaming. Moreover, from acceleration data, motion or orientation
information can be extracted, which then can be intelligently used in portable or wear-
able devices. For example, the device would be able to adjust the interaction interface,
or adapt the system’s behavior for more power efficiency.

Typical applications for vibration sensing applications lie in detecting erroneous vi-
brations for predictive and preventative maintenance of industrial equipment and ma-
chinery, identifying anomalous vibrations for safety or security event trigger, capturing
acoustic vibration signatures for event detection, classification and tracking. Highly
sensitive and specialized inertial sensors are heavily used for seismological equipment.
Moreover, vibration sensors are used for structural health monitoring in bridges, tunnels
and buildings.

Thus, due to the versatility of inertial sensors that are able to capture these physical
phenomena both in its forms as acceleration and vibration, this work is specifically
taking a data driven approach. We hereby rely on different application scenarios with
human motion and infrastructure vibration as motivation for this work. The specific
challenge in our case lies with building a coherent system, beginning with the actual
hardware platform and its corresponding firmware for logging the data, backed with
efficient data processing algorithms that are used to obtain desired information, such
as motion or vibration patterns, from recorded data. The system is made complete by
techniques that estimate from the gathered shape-based features either human motion
patterns and activities or the cause of vibration.

With new application scenarios and corresponding constraints, this research field be-
comes more complex and more focused on systems that are custom designed for specific
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Figure 1.1: Motion and vibration can be picked up by MEMS accelerometers, resulting
in acceleration data, which can be viewed as time series and analyzed for
patterns. This thesis aims at using the shape of the signal as a feature to
recognize characteristic recurring motion patterns and thus perform activity
recognition, and discern moving objects by their vibration footprint.

purposes. The hardware-related components, including the hardware itself, as well as
the firmware or embedded operating software, are often created for the target applica-
tions, relying on the domain knowledge and restrictions. The software components for
data analysis are more and more tailored towards the specific application domain, con-
sidering the type of sensors used, their sampling frequencies, utilizing novel approaches
to reduce computational cost as well as increasing the accuracy of predictions.

The next section presents the research problem addressed in this thesis, specifically
focusing on the similarities of the chosen, quite different application scenarios.

1.1 Problem statement

This thesis addresses a class of problems that is created through a specific combination
of the application scenario itself, the utilized sensors to achieve the task, and the amount
of data that is created during sampling and to be processed afterward. Hereby, we
are interested in the physical phenomena “motion” of humans and “vibrations” caused
by moving objects, such as vehicles, that can be captured by micro-electromechanical
systems (MEMS) accelerometers and visualized as a time series.

Due to various applications focusing on inertial data and aiming at identifying ac-
tivities performed by a human, or events to be detected and classified within wireless
sensor networks, this work proposes to use the shape of the signal in time specifically
for these tasks: identifying and classifying different activities and complex vibration
events from shape-based features.

Figure 1.1 shows such particularly interesting phenomena: a human performing ac-

tivities with characteristic motion patterns (e.g. playing badminton) and vibrations
patterns caused to the railway tracks by different types of trains.




To capture the essential details of human motion (which includes translation, tilt,
rotation) as well as vibrations caused by moving vehicles, the accelerometer sensor’s
sampling frequency needs to be sufficiently high, leading to large amounts of raw sen-
sor data. This fact very much impacts the sensor hardware design choices — when
choosing among existing devices or designing a new device — and the algorithms that
are used to handle the data during the logging process and afterward, demanding ef-
ficient algorithms to extract relevant information and to enable swift and at the same
time accurate data analysis.

Considering these two application domains, the similarities in restrictions with regard
to hardware and the need for efficient shape-based features become obvious:

* First, the hardware platform needs to be small, lightweight, energy efficient, ro-
bust, and inexpensive. The sensor needs to be built and packaged such that it
will survive a long-lasting deployment at the wearer’s body or in the open world
environment, where it will be impacted by nature forces, including temperature
fluctuations, humidity, dust, shock, splash water, etc. In the wearable application
scenario, the usability aspect also plays a significant role, often requiring the ad-
dition of more components for a more in-suspicious and user-friendly experience,
such as, for example, a display that can display time, date, and other information.

* Second, the sampling frequency is set relatively high in order to capture the physi-
cal phenomena of interest, resulting in large amounts of data, which is very critical,
both during the logging process and in the following data analysis. Writing raw
sensor data to a persistent local storage or wireless forwarding to a base station is
very expensive with regard to energy consumption.

In the activity recognition scenario, human motion data has to be stored on the
sensor until it is downloaded for further analysis to a more powerful machine.
This makes efficient early data abstraction and compression mandatory, whereby
the goal is to perform early data abstraction steps in an on-line fashion directly
on the sensor device. For our WSN application, the raw vibration data should not
be stored at all. Instead, it needs to be processed on-the-fly, such that only its
much smaller abstraction or preferably the result (e.g. the identified event type)
is reported to a base station.

* Third, we are focusing on the shape of the signal as a feature in both selected
application scenarios. For human motion, these are recurring motion patterns that
are characteristic for specific activities and thus can be used as evidence for activity
spotting. In the second domain, vibrations caused by trains can be analyzed for
their shapes, based on which the train types can be discerned.

To obtain required shape-based features, there is a high demand for abstraction
algorithms that can significantly reduce the huge amount of raw sensor data while
preserving the essential shape of the signal. With such a proper abstraction, further
data analysis (i.e. pattern matching) is feasible in a tolerable time frame.

The following sections will present this thesis’ challenges and contributions in more
detail.




1.2 Challenges for Activity Recognition from Long-term Inertial Data

The challenges for long-term activity recognition from inertial data lie, first and fore-
most, in the sizeable data sets recorded by the body-worn MEMS accelerometer sensors.
To be able to grasp human motion in whole detail, accelerometer sensors are to be sam-
pled at relatively high frequencies (e.g. 100 Hz), resulting in more than 25 million 3D
samples for a day. Focusing on specific health-care domain, the data sets obtained tend
to consist of weeks worth of continuous raw sensor data. For activity recognition appli-
cations, the combination of high sampling rates and the long-lasting deployments poses
a severe computational obstacle in further processing steps.

A lot of work in activity recognition from inertial data proposed extraction of features
that abstract the sensor data and preserve interesting characteristics, such that these
can be used as a basis for activity discrimination in common classifier approaches (e.g.
SVM or HMM). Many of these approaches face a computational problem, due to the
huge amount of samples and their in-distinctiveness with regard to class vs. non-class
problem.

This work considers the shape of the signal as a very important feature that describes
the essence of the human locomotion, thus requiring it to be preserved during the data
reduction step. Depending on the actual application, the shape abstraction step thus
consider how the abstraction will be used in the further data analysis. Here, I consider
two challenges common in activity recognition domain: First, pattern matching from
user queries or from a previously created data base against new data. Second, auto-
mated collection of patterns from a time series that are characteristic for an activity,
aiming at building efficient classifiers for large-sized data sets.

In the first study, the challenge is to match few user-selected or pre-defined motion
patterns against a continuous time series with weeks worth of sensor data in a fast and
accurate way.

A second study aims at extracting recurring motion patterns that are characteristic for
specific activities, such that these can then be used in efficient shape-based classifiers.

While there exist different techniques to reduce the amount of sensor data preserving
the shape of the signal, few works have looked into optimizing the algorithms such that
these can be directly implemented on a wearable sensor node.

To summarize:

* Human motion is captured continuously at 100 Hz and results in huge data sets,
demanding early data abstraction to facilitate further analysis.

* Focusing on signal shape as a feature, the abstraction algorithm has to preserve
the shape while reducing the amount of data.

* The abstraction algorithm should be efficient enough to be implemented directly
on the sensor node.

* The impact of early abstraction should be low with regard to pattern matching and
requires evaluation.

* To conduct activity recognition on long-term data, we need to efficiently extract
unknown patterns that are characteristic to a target activity.




1.3 Challenges for on-line vibration event classification in WSNs

The challenges for on-line vibration event classification in wireless sensor network lie
in our case specifically in the relatively high sampling rate, which results in amounts of
data exceeding on-board operating memory. Since communication in sensor networks
is the most expensive operation with respect to energy consumption, local on-sensor
processing of data is required, such that only the classification result is transmitted
to a base station or the backbone system. The demand for a long-term deployment
and power-efficient hardware hereby constrains the processing capabilities and memory
resource of the embedded system.

To avoid expensive wireless communication, the ultimate goal is to process the
streaming data in an on-line fashion directly on the sensor node. The challenge hereby
is to extract from high-frequent streaming data shape-related information that allows
to perform event classification in real-time. With limited resources on the hardware
side, such as only few Kilobytes of RAM to hold the streaming data or the lack of a
floating point unit on the main processor, requires a study for finding suitable and
easy-to-compute shape-preserving features.

To summarize:

* Vibrations are captured at 100 Hz; the amount of data exceeds on-board RAM.

* Forwarding sensor data is not possible, it must be analyzed on the sensor node.

» Events can be discerned based on their vibration footprints, such that appropriate
shape-preserving features need to be found and evaluated.

* The classifier implementation must be simple enough to fit on the sensor node.

1.4 Challenges in hardware design for long-term deployments

Considering the development of hardware and software systems targeting application
domains in fundamental research as well as health- or industry-related areas, the focus
of this work lies with applications in which motion and vibration are the most important
physical phenomena. Both, motion and vibration, physically defined by occurring ac-
celerations, can be captured efficiently with off-the-shelf available MEMS accelerometer
Sensors.

The main requirement of the targeted application scenarios is what makes the devel-
opment of efficient data analysis systems very challenging: the sensors are deployed
as wearable data loggers for human motion logging or as main sensing components
in distributed sensor networks, whereby the continuous operation time frames range
from multiple weeks up to several months, respectively. With this, due to limited power
supply in form of a battery, power efficiency of the sensor node becomes critical.

In contrast to the power-efficiency demand stands the amount of data generated by
the accelerometer sensor. For capturing human motion or vibration data the sampling
rates are set relatively high (100 Hz), resulting in lots of raw sensor data. Human
motion data obtained through a wearable data logger has to be locally stored to a
persistent memory, such that it can be downloaded and analyzed afterwards on a more
powerful computer. In the wireless sensor network application, where vibration data is
being captured, the streaming data has to be processed directly on the sensor node.
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Many research prototypes as well as commercially available devices have some lim-
itations in this regard. The former tend to record raw sensor data in short-term trials
lasting few hours or days on a single battery charge; the latter tend to last much longer,
but do not provide access raw sensor data, mostly storing features computed from the
signal. Aiming at obtaining raw sensor data at high sampling frequency in a long-term
deployment, novel designing the hardware and the corresponding firmware (logging
procedure) of the sensor is critical.

To summarize:

* The data logger captures human motion or vibrations from trains at a 100 Hz.
* Sensor data needs to be efficiently compressed and stored for off-line analysis
» Sensor data needs to be directly processed and analyzed on the sensor node.

* Accurate time-stamps are required in both scenarios.

* Robustness and usability are mandatory to consider.

1.5 Contributions

With the challenges named above, this thesis’ contributions in the two application sce-
narios are manifold in many aspects.

As a first contribution, we discuss our prototype system that includes a custom-
designed hardware platform with a MEMS accelerometer unit to obtain raw sensor
data, designed specifically to fit the harsh application demands and constraints of both
applications. Secondly, we propose efficient data abstraction algorithms that reduce
the amount of raw sensor data to its fraction, while preserving the essential shape in-
formation of the signal, thus facilitating further data analysis. Thirdly, we evaluate our
proposed shape-based features by conducting multiple studies that show their efficiency
and suitability for the chosen scenarios. The studies’ results are hereby discussed in the
context of the target applications.

1.5.1 Applications’ demand for a custom hardware platform

The two application scenarios require a sensor platform that is able to capture acceler-
ation and vibration (Figure 1.2) and that at the same time is small, lightweight, robust,
power-efficient, inexpensive, and can be deployed for longer time spans. To this end,
a custom sensor node has been developed. We will highlight some of the key design
choices and present evaluation of the platform.

Considering the long-term human activity recognition scenario, we will also highlight
additional work in making the sensor node as user-friendly as possible, which includes
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Figure 1.2: Capturing accelerations and vibrations with a MEMS accelerometer sensor at
a predefined rate will produce what we call raw sensor data. For long-term
deployments, an efficient design of the sensor device is crucial.




a protective encasing and the wrist-mounting strap. Additionally, we consider an ex-
tended sensor node that is equipped with a power-efficient display for in-suspicious
deployment and a more richer user experience, e.g. for displaying time and date, re-
cent events, providing interface for annotations.

Aiming at improved activity recognition performance, specifically with activities that
are quite hard to distinguish solely with acceleration data, such as activities of daily
living, we propose to include additional information. Hereby, it is widely acknowledged
that specifically user-object interaction information yields huge potential. To this end,
we attach an off-the-shelf available miniature RFID reader to our wrist-worn sensor, and
design a bracelet-like antenna that is able to detect interactions with tagged object.

1.5.2 Efficient on-line data abstraction technique

Detecting recurring activities, routines and trends can be very helpful in medical mon-
itoring applications. The activity recognition scenario thus focuses on long-term de-
ployment of the wrist-worn sensor in order to obtain such detailed information about
the wearer’s routines. Using wearable inertial sensors in medical monitoring applica-
tions with relatively high sampling frequencies will result in huge data sets. The size
of the recorded data is a computational obstacle on the way towards data inspection,
annotation and post-analysis, i.e. activity detection and classification.

Following this activity recognition scenario, Chapter 4 proposes a method for sensor
data abstraction in order to reduce the amount of data points but still preserve the
essence of the signal. The approximation algorithm specifically targets human motion
data and produces a piecewise linear approximation (Figure 1.3), which can also be
visualized as a time series. We evaluate how our algorithm performs against existing
work, by varying the approximation parameters and comparing the approximation error
as well as the time required for processing a data set. Furthermore, we evaluate the
implementation of the algorithm directly on a sensor device, thus moving the early
abstraction step to the logging platform.
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Figure 1.3: Approximating raw sensor data by linear segments significantly reduces the
amount of data while preserving the shape of the signal, facilitating faster
pattern matching.

Besides these basic evaluations, we are specifically interested in how such an abstrac-
tion impacts the finding of visually similar patterns. Our human activity recognition
application scenario specifically requires query-by-example pattern matching for data
annotation purposes. To this end, we evaluate pattern matching of linear segments
with a traditional approach, namely dynamic time warping, and also propose a novel
algorithm that considers only the most significant segments of the pattern.




1.5.3 Efficient shape features for WSNs in railway monitoring scenarios

Aiming at infrastructure monitoring with inertial sensors, we propose a railway moni-
toring scenario with a wireless sensor network. The sensor nodes deployed on the rails
are able to sense the vibrations caused by the running trains, and from this data extract
relevant information that has to be provided to the monitoring system backbone.

For this, in Chapter 5 we present a wireless sensor network deployment for railway
operation monitoring. By using a set of small and power-efficient, yet computationally
sufficient sensor nodes, a data set with vibrations from running trains was obtained from
two geographically different deployment locations. A study then investigates various
efficient features that can be extracted from streaming data in an on-line fashion (Figure
1.4), which then can be used to predict the type of train, as well as estimate further
important details such as the number of wagons in the train, train speed, traffic density,
or even detect potentially defective wheels that need replacement.

Raw Data 5 A Features

Figure 1.4: In wireless sensor networks, the shape of the vibration footprint can be rep-
resented by simple time-domain features, such that on-line event classifica-
tion can be performed.

1.5.4 Long-term activity recognition with Dense Motifs

Performing manual data annotation is a very tedious task, especially when the user is
confronted with long-term data, and the desire for more autonomous system is preva-
lent. In this part of the work we address an activity recognition scenario, where selected
activities have to be recognized as autonomously as possible. We argue that many ac-
tivities can be discerned based on characteristic repetitive motions, such as playing
badminton with its forehand and backhand motions.

Chapter 6 presents our approach that aims at finding repetitive motions (motifs) that
are specifically characteristic for an activity and can be used to discern the target activity
from other activities. The main problem hereby is to efficiently find such patterns, since
an excessive query-by-example search, with randomly or systematically chosen patterns
of linear segments, is not desirable due to runtime complexity.

Our contribution in finding recurring patterns is the utilization of a search-oriented
data structure called suffix trees, which is heavily used in bio-informatics and text pro-
cessing for matching symbolic sequences. In order to be able to use this data structure,
we introduce an additional discretization step that converts the linear segments time
series into its symbolic representation, namely a string of characters. For that, we eval-
uate different discretization approaches based on the properties of the linear segments
(e.g. length, slope, angle between segments, etc). With the symbolic representation of
the data and the search-optimized data structure available, the motion patterns (motifs)
can be easily extracted (Figure 1.5).




Raw Data s Y ATNETWTN i~ CABCDBCBACBBACABCDBCE Motifs

B (Y
. v

Figure 1.5: A symbolic representation of the original data facilitates efficient extraction
of recurring motion patterns (motifs). These motifs can then be used as weak
detectors in a simple bag-of-words classifier for activity recognition.

With these motifs, we are able to build simple bag-of-words classifiers, which can be
applied to abstracted new sensor data, resulting in detections. Based on the density of
these detections, our simple classifier then can decide whether a specific region should
be labeled as the target activity, or considered background data.

To evaluate our approach, we conduct a detailed study with 33 participants with a
total of more than 3800 hours worth of continuous data. Our study evaluates the per-
formance in detecting various activities against generic approaches with signal features
and common SVM classifiers.

1.5.5 Detecting interactions with objects

Chapter 7 investigates the usability of a wrist-worn bracelet that combines an accelera-
tion sensor with an RFID reader for long-term deployments. We aim at improving the
activity recognition for activities that are hard to classify solely from acceleration data
obtained from a human’s wrist. This is achieved on the hardware level, by introducing
RFID sensing to detect tags attached to various objects (Figure 1.6).

With only limited amount of freely available information on the design and manufac-
turing process of a bracelet-like RFID antenna with a sufficient reading range, sharing
the hardware design for reproducibility is considered an important contribution.

After manufacturing the sensor device, we present a novel antenna benchmark, called
“box test” that can be used to identify how well RFID tags attached to various objects
of different material can be detected. After that, the “gardening” study is carried out,
where a participant performed gardening activities and had to use different tools to
complete his tasks. Interaction with objects is detected by the RFID tags, while the
inertial sensors pick up the motions on “how” the tools were used.

An extended long-term study evaluates the applicability of such a device in household
settings aiming at detecting activities of daily living, such as vacuum cleaning, watering
flowers, cooking, ironing, etc. While the experiment showed that deployment is possible
and most objects can be successfully detected, the usability aspect of the bracelet should
be improved.
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Figure 1.6: Detecting object interaction with wearable wrist-worn RFID readers yields
significant information gain. With regard to long-term activity recognition,
RFID tags detections can be considered as motifs.

10



1.5.6 Contributions summary

This thesis’ contributions are summarized as follows:

We motivate our work by two challenging application scenarios and argue for
shape-based features.

We present a custom data logger that is able to efficiently capture human motion
and vibrations caused by trains.

We propose various efficient data abstraction algorithms that preserve the shape
of the signal.

In multiple studies we evaluate the abstraction algorithms with regard to quality
and efficiency of the abstraction or its impact on pattern matching.

In a multi-user large-scale study we evaluate the use of dense motifs for activity
spotting.

A study compares various efficient features for vibration footprint abstraction
through classification performance evaluation.

For detecting human-object interaction and use, we build and evaluate a custom
RFID bracelet.

1.6 Outline

This section gives an overview of the organization of this thesis, providing a short sum-
mary of each chapter, along with information on the originating publications. The thesis
is structured as follows:

Chapter 2 - Related Work. This chapter provides an overview on some important re-

lated work and positions the thesis within. Aiming at long-term deployment of
wearable sensors for human activity recognition or wireless sensor networks ap-
plications, we focus on efficient data representation approaches. Hereby, our main
target are efficient data abstraction techniques and fast feature extraction that
should preferably run directly on the sensor node and still be usable for pattern
matching and for classification purposes.

Chapter 3 - Designing an Efficient Activity Logger. This chapter presents the custom

acceleration data logger that has been designed, built and used specifically for
obtaining human motion data in long-term deployments as well as vibration data
from the railway tracks. By considering various application challenges, the system
design choices are discussed and thoroughly evaluated. The main focus hereby
was put on energy efficient implementation and an evaluation of how different
hardware components as well as multiple configuration parameters impact the
current consumption and how this affects the life time of the sensor node.

The work of this chapter currently undergoes peer review at SAS 2015 confer-
ence as a full paper with the title “Low-power Lessons from Designing a Wearable
Logger for Long-term Deployments”.

Chapter 4 - Efficient Data Abstraction with Linear Segments. This chapter presents an

efficient on-line approximation algorithm that works well on human inertial data,
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abstracting raw sensor data to its piecewise linear representation and by that sig-
nificantly reducing the amount of data, while preserving the essence (shape) of
the signal. After presenting the main characteristics of the algorithm, two stud-
ies show how the proposed algorithm can be used productively: The first study
focuses on applications targeting at post-analysis and annotation of recorded sen-
sor data as well as activity recognition. The study shows that the abstracted time
series allows more efficient query-by-example pattern matching and activity classi-
fication, whereby we also present a novel pattern matching technique that speeds
up the subsequence matching process. The second study presents the implementa-
tion of the abstraction algorithm on a wireless sensor node, focusing hereby on the
implementation challenges as well as the impact of on-line data approximation on
the power consumption of the sensor node.

The work of this chapter was published in three papers a) at ISWC 2009 in “When
Else Did This Happen? Efficient Subsequence Representation for Matching in
Wearable Activity Data” (Van Laerhoven and Berlin, 2009); b) at ICMLA 2009
in “Enabling Efficient Time Series Analysis for Wearable Activity Data” (Van Laer-
hoven et al., 2009); and c) at SenseApp 2010 in “An On-Line Piecewise Linear
Approximation Technique for Wireless Sensor Networks” (Berlin and Van Laer-
hoven, 2010).

Chapter 5 - Complex Event Classification in WSN. This chapter is dedicated to efficient

data abstraction in wireless sensor network applications, where the shape of the
signal turns out to be not useful. In our study we evaluate the deployability of
a wireless sensor network for railway monitoring, where detection and classifica-
tion of sparse complex events (passing trains) in or close to real-time is required.
Hereby, we investigate various features that can be efficiently extracted on-line fa-
cilitating event classification directly on the sensor node, thus reducing the amount
of communication in the network, extending its lifetime.

The work of this chapter is covered by two publications: a) INSS 2012 in
“Trainspotting: Combining Fast Features to Enable Detection on Resource-
constrained Sensing Devices” (Berlin and Van Laerhoven, 2012b) and b) DCOSS
2013 in “Sensor Networks for Railway Monitoring: Detecting Trains from their
Distributed Vibration Footprints” (Berlin and Van Laerhoven, 2013).

Chapter 6 — Activity Recognition Through Dense Motif Discovery. In this chapter we fo-

cus on long-term deployment applications with wearable sensors, where huge
amounts of data need to be processed and analyzed afterward as fast as pos-
sible. In our study, motivated by a long-term medical monitoring scenario, we
propose a system consisting of an unobtrusive wearable sensor and an efficient ac-
tivity inference system that relies on early data abstraction (abstraction algorithm
from Chapter 4 followed by a symbolic representation of segments) and that uses
the salience of recurring motion patterns (motifs) for activity spotting.

The work of this chapter was published at Ubicomp 2012 in “Detecting Leisure
Activities with Dense Motif Discovery” (Berlin and Van Laerhoven, 2012a). A sig-
nificantly extended study with a much larger data set and discussion currently
undergoes the review process of IEEE Transactions on Pattern Analysis and Ma-
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chine Intelligence (TPAMI) as article with the title “Using Salience of Motifs as
Evidence for Activities in Long-term Wearable Data”.

Chapter 7 - Detecting Interactions with Efficient Wrist-worn Sensors. In this chapter we
report about the design details of a wrist-worn bracelet-like sensor platform con-
sisting of an acceleration sensor and an RFID reader that is able to sense nearby
RFID tags attached to objects. This combination allows to detect “what” objects the
user was interacting with and “how”. Hereby, we evaluate the detection range of
the new bracelet-like antenna on different objects with our novel “box test” bench-
mark. Enriching inertial sensor data with RFID tag detections yields the benefit of
a much more detailed insight and improved classification performance, especially
in cases where the classification is hard to do solely for acceleration data.

The work of this chapter was published at TEI 2010 in “Coming to Grips with
the Objects We Grasp: Detecting Interactions with Efficient Wrist-Worn Sensors”
(Berlin et al., 2010).

Chapter 8 — Conclusion and outlook. In this chapter, we summarize the contributions
and the results of this thesis and give an outlook on possible directions of future
work.
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2 Related Work

The shape of a time series can be considered as a feature in various applications. Our
main focus is acceleration sensor data and efficient data abstraction techniques that
facilitate detection of motion patterns for human activity recognition purposes or event
classification from vibration data in wireless sensor network monitoring deployments.
This chapter gives an overview of relevant related work and positions the thesis within.

This chapter is organized as follows. First we present important work on time series
representation. We then present activity recognition and WSN monitoring applications
with a prominent view on the used data representation, to additionally motivate and
frame our own work. We hereby consider a variety of important points, including the
challenges of the whole processing chain: the hardware platforms and the lengths of the
deployment, the different data abstraction methods and utilization of various features
to achieve the desired task, namely the dimensionality reduction of sensor data while
preserving its essence, the detection of patterns, and finally the classification of activities
or complex events.

2.1 Abstracting Sensor Data While Preserving Its Shape

This section presents various time series representation techniques and discusses their
characteristics with regard to the chosen application scenarios constraints.

Time series representations or abstraction techniques can be, according to Lin et al.
(2003, 2007), generally divided into two categories: data adaptive and non data adap-
tive (Figure 2.1). Hereby, the first type of techniques will produce an approximation
that minimizes the overall approximation error, while the latter considers local proper-
ties of the signal and computes the parameters of the approximation at the potentially
higher approximation error.

Time Series Representations
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Figure 2.1: Various time series representations available in the literature. [Image used
with kind permission of Lin et al. (2007).]

We take an important characteristic into consideration, namely the “visualizability”
of the time series representation. While many approaches can be visualized straight
forward as a time series, there are also many transforms that produce parameters only,
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which cannot be visualized this way. This leads to additional effort when visualizing the
representation, since an additional re-construction step is required to produce from the
approximation parameters a visualizable time series.

In the remainder of this section we will highlight some of the for this work more
relevant techniques and discuss their characteristics for our applications demands.

2.1.1 Binary Encoding

The bit level representation of a time series utilizes a threshold that converts the sensor
values to ones, when these lie strictly above a threshold, and zero, otherwise (Figure
2.2). This technique is very simple and offers significant data compression rates, and
Bagnall et al. (2006) have shown that it yields the possibility for time series data mining
with shape-based metrics. While the authors consider this technique being “data dic-
tated”, it can be seen as a special case of symbolic representation, where the time series
is converted to a string utilizing a two-characters alphabet, depending on the threshold.

\//\\
0ooooo0001111121111211211111000021211222227217122122721212727711111111111000001111110000

Figure 2.2: Converting a time series to its bit-level representation, where the values
strictly above the threshold are converted to ones, and zeros otherwise.

This approach can be very useful in wireless sensor network scenarios, where the
streaming sensor values need to be compressed, such that a whole event can fit into
the operating memory for further on-sensor analysis. Besides such event detection, the
shape of the bit-level representation can be used for similarity comparison and thus
their classification.

The drawback of this approach is the loss of visual information, since the actual shape
of the time series is removed. Therefore, this approach is not suitable for the chosen ac-
tivity recognition scenario, where user-defined patterns shall be used for pattern search,
as described in our motivation scenarios. In our work, we favor representations that
not only reduce the dimensionality of the time series, but to a great extent preserve the
shape of the signal.

2.1.2 Mean and Variance

The appeal of using the mean value and variance as features that describe the acceler-
ation signal is particularly high because of their efficient implementation. Dealing with
large time series and being interested in representing local characteristic of the signal,
mean and variance are usually computed from a window of fixed length.
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Figure 2.3: Abstracting a time series with segmented mean and variance. Here, the
mean values can are connected by linear segments for better readability,
and the variance is shown as error bars. This representation reduces the
amount of data and facilitates faster pattern matching.

Yi and Faloutsos (2000) and Keogh et al. (2001a) have independently proposed to
use the mean value over a fixed window size for dimensionality reduction of a time
series, thus facilitating fast similarity search, naming the techniques piecewise constant
approximation (Faloutsos et al., 1997) and piecewise aggregate approximation (PAA),
respectively. According to the time series representation overview given in Figure 2.1,
this technique is considered a non-data adaptive technique.

Chakrabarti et al. (2002) have relaxed the fixed window size constraint, which lead to
a data adaptive technique that was called Adaptive Piecewise Constant Approximation.
The advantage of this approach lies in a better overall approximation (when following
the above definition), but at a cost of storing more data, since not only the mean value
but also the length of the segment have to be stored. This approximation technique
can also be implemented in such a way that it considers local peaks in sensor data and
approximates these more accurately, by, for example, growing the constant segment
until a specified variance threshold in the window is reached.

To preserve the potentially important information about the amount of sensor value
fluctuation, combining the mean value of the window with the variance results in a
mean-variance representation. This representation can also be easily visualized: a vi-
sual example of such representation can be found in Figure 2.3. The importance of
mean and variance in activity recognition domain as well as in wireless sensor net-
works is tremendous, since it can be used for event detections and classification, and
more efficient pattern search than on raw sensor data.

Mean and variance have been widely used in the human activity recognition sce-
nario, since the mean value tends to capture the local posture of the body, while
variance describes how much motion is present in the signal (Foerster et al., 1999).
The combination of mean and variance has also been used with much success in detect-
ing high-level activities by calculating them over large sliding windows (Huynh et al.,
2007). These features have been used effectively when combining multiple body-worn
sensors (Ogris et al., 2008) or in short sliding windows with an HMM-based approach
(Ward et al., 2006).

In various wireless sensor network scenarios, computing mean and variance on a
small buffer of streaming sensor data and applying a threshold have been commonly
used to, for example, detect and monitor volcano eruptions (Werner-Allen et al., 2005,
2006) or to monitor variability of soil water content (Bogena et al., 2010) over long
stretches of time. Furthermore, variance describes the total amount of vibrations caused
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Figure 2.4: Discrete Fourier Transform of a random walk time series. Zeroing small FFT
coefficients will remove the noise and less important peaks, resulting in an
approximation that retains the main shape of the signal. To visualize the
representation in the time domain, inverse FFT reconstruction is necessary.

by an event, such as a passing vehicle to the ground or a train to the rails, such that in
combination with other features it can be used for event classification. More interesting
is the variance computed over a short sliding window, which would allow to detect
vibration peaks that correspond to wheel impacts.

2.1.3 Discrete Fourier Transform

One of the very prominent methods to analyze time series in the frequency domain is the
Fourier Analysis, whereby for time-discrete applications the Discrete Fourier Transform
(DFT) is widely used in a multitude of disciplines. The original time series is represented
by an infinite sum of sine and cosine terms, where the coefficients of the terms are the
actual resulting abstraction. Based on these coefficients, most prominent frequencies
can be extracted and used for similarity searches, as suggested by Agrawal et al. (1993).

From the computed coefficients, the whole time series can be reconstructed. Zeroing
less important coefficients leads to an approximation of the time series, where noise
or less important peaks are removed, preserving the main frequencies and thus the
shape of the signal. Figure 2.4 shows a random walk time series along with a DFT
representation (computed through the inverses DFT), where the smallest 2% of the
coefficients have been zeroed.

While this time series representation is very popular and widely used, even the Fast
Fourier Transform (FFT) algorithms come at a high computational cost of O(N?) to
O(Nlog(N)), as for example was shown by Duhamel and Vetterli (1990), which is
specifically problematic when considering large amounts of data. This is of particu-
lar importance when considering this thesis’ long-term deployment scenarios, where
compression of the sensor data or their analysis should be performed on-line on compu-
tationally very limited hardware platforms. Furthermore, visualizing the DFT represen-
tation of the time series is similarly costly, since it requires an additional re-construction
step (the inverse transform) from the frequency domain coefficients into the original
human-readable time domain.

Several other features in the spectral analysis are based on the Fourier Transform
and are thus also costly to calculate. On the other hand, the frequency domain repre-
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sentations have resulted in better pattern matching or classification performance than
the previously presented mean and variance. Autocorrelation, Discrete Fourier Trans-
form, Entropy and filterbank analysis can be expected to work especially well on signals
with dominant frequencies, and have been identified as superior in several comparison
studies (Bao and Intille, 2004; Huynh and Schiele, 2005).

Frequency analysis is specifically important in various vibration sensing and moni-
toring scenarios, such as in geophysical or infrastructure monitoring. Computing the
FFT, on the other hand, usually requires more powerful hardware than a low-cost low-
power WSN scenario offers. We show in Chapter 5 that even simple features extracted
from vibration data are sufficient to detect and classify events and facilitate long-term
deployments for railway monitoring.

In Chapter 6 we utilize the DFT based features in combination with a SVM classifier
as a comparison technique for our dense motifs activity recognition approach.

2.1.4 Piecewise Defined Functions

Approximation of time series with piecewise defined functions aims at preserving the
shape of the signal while reducing the amount of data has a long ranging tradition.
The following paragraphs will present the more relevant piecewise polynomial repre-
sentation approaches, along with the advantages as well as limitations. We start with
polynomials of degree one, which are called linear approximations, and then consider
higher level polynomials.

Piecewise linear approximation

Approximating a time series with linear segments ranges back decades (Stone, 1961;
Cameron, 1966; Phillips, 1968). The goal hereby is to represent a given time series of
values with a set of linear segments, constrained by a maximum number of segments or
a maximum approximation error. The main advantages is that the amount of data can
be significantly reduced, and the resulting approximation stays in the time domain.

While the above mentioned piecewise constant approximation techniques computes
the mean value or the median from a sliding window of fixed or variable width, piece-
wise linear approximation (PLA) use interpolation or regression approaches to compute
well fitting linear segments with varying slopes and lengths (Figure 2.5). In this work
we are more interested in the interpolation approximation techniques, since these visu-
ally produce a continuous abstracted time series, whereas their regression pendants do
not. Generally, PLA techniques produce representations that have a smaller approxima-
tion error and preserve the shape of the time series better, when compared to piecewise
constant approximations, but at additional computation cost as well as the amount of
information to store.

Various algorithms have been proposed aiming at improving the approximation qual-
ity or making these computationally more efficient. Among others, there are the Sliding
Window, Bottom-Up or Top-Down approaches, as well as various combinations of those,
such as the SWAB by (Keogh et al., 2001b). These techniques differ with respect to the
quality of their approximations, and also with regard to the ability to be performed in an
on-line fashion on streaming data, which is specifically important in our human activity
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Figure 2.5: An example of a piecewise linear approximation of a time series. Various
existing algorithms differ with regard to their on-line or off-line capability,
computational complexity and quality of approximation.

recognition scenario. The other constraint is the quadratic computational complexity
with respect to the length of the time series.

While the Sliding Window approach can be implemented in an on-line fashion, its
quadratic complexity and the final approximation error have been shown inferior when
compared to the two Bottom-Up and Top-Down approaches. These two approaches, on
the other hand, cannot be performed on streaming data. SWAB combines the Bottom-
Up approach on a small buffer window to produce segments with the Sliding Window
technique that is responsible for filling the buffer with new data, resulting in an on-line
algorithm with a “semi-global” view on the sensor data.

The positive impact of compressing data in such a way is obvious: Using the approx-
imating linear segments rather than the initial raw sensor data, searching for similar
patterns in the time series can be carried out more efficiently. Pattern matching in our
application example is mostly carried out by taking a query pattern (a set of adjacent
segments) and by matching it against the whole or a subset of the time series. This is
generally implemented by computing the distance between the segments’ points of the
query pattern to the time series, whereby the sum of euclidean distances is often used as
a distance metric. Working with patterns with much less data points, the computation
of the distance metric can be performed much faster.

With a linear approximations produced by SWAB or its modifications, matching sub-
sequences of these linear segments can be carried out, such as shown in (Van Laerhoven
et al., 2009). Due to a varying number of segments in these patterns, matching can be
improved by using dynamic programming or dynamic time warping techniques (Bell-
man, 1957).

In Chapter 4 we present a modification of the original SWAB approximation algo-
rithm, that aims at human acceleration data characteristics and reduces the computa-
tional complexity, such that the algorithm can be implemented directly on the sensor
hardware.

Polynomial approximation

Instead of approximating time series with linear segments, fitting piecewise polyno-
mial functions to the sensor data has been shown very beneficial to preserve the shape.
One of the prominent algorithms is SwiftSeg by Fuchs et al. (2009), based on polyno-
mial least-squares approximation with a sliding or growing window over the raw sensor
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Figure 2.6: Approximating sensor data, in this example from body-worn inertial sensors
featuring three instances of the same gesture, with polynomial functions of
different degrees. The parameters of the resulting polynomial function can
be used as features to train a classifier.

[Image IEEE ©2010, used with kind permission of Blanke et al. (2010).]

data. This approach offers some advantages with regard to piecewise linear techniques,
such as a potentially better approximation with a lower approximation error, along with
similar or even better data compression rates or computation runtime.

The resulting polynomial segments can then be considered as motifs (Fuchs et al.,
2010) and thus more efficient pattern matching or the search for anomalies in the time
series can be performed. The authors hereby evaluate their approach on a subset of
freely available datasets (Keogh et al., 2011), which, unfortunately, did not contain
human motion data.

Blanke et al. (2010) have applied the SwiftSeg approximation algorithm to human
motion data obtained with inertial sensors, aiming at detecting particular interesting or
relevant gestures. Hereby, after performing the polynomial approximation (Figure 2.6),
the parameters of the polynomial functions were used as features to train the classifier.
The approach, however, relied on using already known patterns and finding similar
patterns on a relatively small data set with 45-90 minutes worth of data per person.

Due to our challenging long-term application scenario and with the prospect of imple-
menting the data abstraction directly on the sensor node, using polynomial approxima-
tion is considered challenging, both from computational point of view, as well as due to
technical restrictions of embedded micro-controllers, such as the lack of a floating point
unit or limited operating memory. Because of this, the more “simplistic” approaches,
i.e. piecewise linear approximation, are preferred in this work.

2.1.5 Symbolic Representation

One of the more challenging tasks in time series analysis is to find similar or recurring
previously unknown patterns, specifically when the time series is very large and no a-
priori information is available. While time series representation with statistical features,
piecewise linear or polynomial functions reduce the amount of data and facilitate query-

21



C

[ e e ©

b b

o
/OE)K’L?O/@B ’a

0 100 120

Figure 2.7: The symbolic aggregate approximation (SAX) technique first computes a
piecewise aggregate approximation of the original data (colored in the plot)
and then maps these constant segments to a set of characters (here of size
3), resulting in a symbolic representation of the time series: baabccbc.
[Image ©2007, used with permission of Lin et al. (2007).]

by-example searches, the extraction of unknown recurring patterns (motifs) is often
very tedious and computationally expensive.

Abstracting or encoding the time series to a symbolic representation, a string of char-
acters, yields very promising possibilities. First and for most, a string can be used for
fast sub-string searches or queering, relying upon efficient data structures, such as suf-
fix trees (Ukkonen, 1992, 1995; Hamid et al., 2007) or suffix arrays (Kim et al., 2005),
that are widely used in text searches (Baeza-Yates and Gonnet, 1996), genome match-
ing (Barsky et al., 2009), and other applications. On the other hand, which is even more
important for our application scenario, these data structures allow efficient extraction
of recurring patterns. Of course, we first need to obtain a symbolic representation of
the time series.

There are various techniques to map a time series to its symbolic representation. (Lin
et al., 2003) proposed symbolic aggregate approximation (SAX), a technique that com-
putes the mean of the sensor samples from a sliding window of fixed length, which is
basically a piecewise constant approximation of the time series. The constant segments
are then discretized to bins labeled with characters, thus producing the final symbolic
representation. An example of this process is shown in Figure 2.7. In the most straight-
forward case, the window width is set to 1 sample, resulting in one character per sensor
value, and thus in the string’s length equaling the length of the time series.

Minnen et al. (2006) relies on the SAX technique to convert the acceleration and gy-
roscope data to their symbolic representation. With a set of beforehand known patterns,
which were annotated during experiments, or in general should then come from the do-
main experts’ knowledge, the authors concentrate on efficient and accurate detection of
motifs in sparse multivariate time series. Hereby, generalized suffix trees are utilized to
find motif occurrences, reaching overall good performance. The dataset of 27 minutes
of sensor readings is rather small, compared to our long-term deployment scenario and
the corresponding study.

SAX has been widely used for time series pattern matching, but there are some limit-
ing aspects that are important to mention with regard to our work. By computing the
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Figure 2.8: Mapping human motion traces in 3D space to their symbolic representation:
First, the sensor values are aggregated into trajectory segments (here, with
temporal aggregation of fixed size w = 8). Then, the trajectory segments
direction is mapped to symbols, which form a trajectory string.

[Image ©2007, used with kind permission of Stiefmeier et al. (2007).]

mean value from a fixed width window results to some extent in information loss with
regard to the essential shape of the signal, in our case specifically the characteristic peak
patterns. Preserving the signal shape more accurately can be achieved by decreasing the
window size, which results in a much longer string of characters. To this end, Hung and
Anh (2007) propose to first perform SAX and find potential patterns, which are then
filtered based on their shape encoded in PLA and their slope encoded to characters.
The additional PLA step thus allows to use the shape as a feature and results in better
overall similarity search.

Stiefmeier et al. (2007) considers human motion in space as trajectories, produces a
3D segmentation through temporal or spacial aggregation and then maps the direction
of the vector to characters, thus producing a symbolic representation of the trajectory
(Figure 2.8). Relying on fasts string matching techniques, the aim is to detect recurring
motion patterns (motifs) and thus to spot characteristic gestures for the bicycle main-
tenance activity. Specifically, this work aimed at the classification part, with efficient
time series representation and detection of already obtained motifs. The accumulation
or extraction of motifs (building a classifier) has not been primary target, though.

Our approach to abstract raw sensor data is based on a combination of PLA and SAX,
and to some extent is comparable to Stiefmeier’s 3D segmentation approach. We first
approximate the raw sensor data with linear segments, and then map these segments
to symbols using the slopes of (or angle between) adjacent segments. Hereby, for the
PLA step, we rely on our modified version of SWAB, which is presented in Chapter 4,
and then use the discretization step in Chapter 6 for efficient extraction of motifs.
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2.2 Embedding Abstraction Algorithms Directly on a Sensor Node

Performing the necessary feature extraction or data abstraction steps as early as possible
has multiple, some already mentioned advantages. First and foremost, microprocessor
computation is much more cheaper with regard to power consumption than writing data
to a local persistent memory or forwarding it wirelessly to a base station. This thesis
application scenarios specifically motivate early data abstraction, whereby additional
effort is required to identify implementable representations that yield good potential
in further analysis, i.e.: pattern matching, event classification and activity recognition.
The following paragraphs will present some of the relevant related work that considers
data compression, abstraction or feature extraction directly on the sensor node.

Early work (Barr and Asanovi¢, 2003) already identified that it is more beneficial to
process/compress data on a sensor node and only wirelessly transmit its compression
over the network. Various lossless compression algorithms, such as LZW, bzip2 or GP-
zip have been evaluated, comparing the algorithms’ compression performance as well
as the power consumption required to produce the compression. While the focus of
the publication was put on sensor network applications where specifically the lossless
compression of data is important, our approach targets at other applications where
lossy compression of sensor data is allowed and even welcome. Still, the basic idea
of reducing the amount of data by using relatively cheap CPU computation instead of
power-hungry wireless transmission of uncompressed data holds for both approaches.

Run-length encoding (Golomb, 1966) is a very common and widely used method to
compress data, also in the embedded systems domain including wearable sensors or
wireless sensor networks. Capo-Chichi et al. (2009) presented the K-RLE algorithm,
an adaptation of the common run-length encoding algorithm, which in essence is run-
length encoding with a sensor value deviation threshold K > 0. The main advantage of
K-RLE is that it not only compresses identical sensor values, but, with a correctly chosen
threshold, can be used to filter out noise in the signal. It performs very efficiently (in
terms of the approximation error) on flat data, or data with flat periods in the signal. On
the other hand, if the sensor readings are constantly fluctuating, run-length encoding
often results in even more data than the plain raw signal.

A good example of the use of features as data compression approaches is the Mercury
wearable sensor network platform by Lorincz et al. (2009). The platform is designed
to be used in the medical domain for on-line analysis of inertial data to monitor and
detect specific events in human motion. The authors of Mercury are aiming at long-
term deployments, and thus pay a lot of attention both to battery lifetime and hardware
resource constraints. Their approach to handle high-fidelity data is to compute high-
level features, such as mean, maximum peak-to-peak amplitude, peak velocity, and RMS
of the jerk time series, from the raw signal and transmit only the features to the base
station, thus preserving a considerable amount of bandwidth and energy. On the other
hand, when the features are indicating a motion that is of particular interest, the raw
data that was previously stored on the sensor node needs to be downloaded for more
detailed analysis, which also results in additional power consumption.

The usefulness of piecewise linear approximation (PLA) in wireless sensor network
applications has been shown by Le Borgne et al. (2007), where the aim is to reduce radio
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communication to its minimum for energy preservation purposes. When a sensor node
is monitoring the development of a physical variable over time, such as temperature
or humidity, based on the readings it will choose a suiting model among a previously
specified set of candidate models, and then only transmit the model parameters (e.g.
a linear model and its parameters). Once the chosen model and the parameters have
been transmitted to the base station, future sensor readings can be predicted, both at
the base station or the sensor node itself, until the sensor readings exceed predefined
application-dependent error bounds. Only then the model and its parameters have to
be updated and transmitted to the base station again.

Our PLA method preserves the shape of the signal and avoids the storage or transmis-
sion of raw data as well, this way reducing battery power consumption. Still, depending
on the application, encoding the shape of the signal with features yields potentially bet-
ter results with regard to event classification, such as in our proposed WSN scenario.

One of the studies in Chapter 4 specifically benchmarks the impact of our PLA algo-
rithm against the transmission of raw sensor data and the K-RLE compression technique.

2.3 Human Activity Recognition Applications

This section will present relevant application domains for activity recognition and moti-
vate our approach with wrist-worn inertial data loggers and shape-based data analysis.

Since the activity recognition field has grown huge over the last decades, we specifi-
cally constrain ourselves to activity recognition from human inertial data. We are hereby
interested in long-term deployment scenarios, where activity recognition is much more
challenging, since the deployments are happening in the real-world, outside any con-
strained laboratory setting.

Monitoring the well-being of a person is one of the main driving forces for deploy-
ing wearable sensors and building systems that extract relevant information from the
sensor data. Gaining more information about the patients daily routines, biorhythm,
habits, medical conditions etc., allows for a more detailed insight, diagnosis or treat-
ment as well as monitoring over longer time spans. In the health care domain various
applications exist that will be addressed in the following.

2.3.1 Actigraphy

Actigraphy is a widely used non-invasive method in the medical domain for obtaining
human activity/resting cycles with wearable sensors, ranging back decades (Godfrey
and Knight, 1984; Royant-Parola et al., 1986). It is used to assess human well being
over long periods of time as well as finding characteristic sleep, performance, circadian
rhythms, and trends during the monitoring period for various medical purposes (Tah-
masian et al., 2013). Sleep and mood disorders, such as insomnia, depressions, mania,
bi-polar disorders (Burton et al., 2013), attention-deficit/hyperactivity disorder (ADHD)
(Teicher, 1995; Corkum et al., 2001), impact the quality of life, and require professional
medical attention. Therefore, it is of great interest to diagnose such diseases, to moni-
tor their condition and progress as well as the impact of medication or treatment plans,
to detect or predict mood phases and mood changes. Furthermore, Dijk et al. (2001)
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took actigraphy to space, where it is being used for monitoring purposes of astronauts’
biorhythms and provides information that allows them to adapt their schedule to ensure
optimal fitness for critical tasks during space flights.

In the general medical domain, users usually wear actigraphs (data loggers with in-
ertial and sometimes additional sensors) on their body and report on their mood and
well being in detailed diaries. Various commercially available actigraph devices, such
as the wrist-worn Philips Actiwatch!, Camntech Motionwatch?, ActiGraph GT3X+3, or
the BodyMedia Sensewear upper arm sensor? equidistantly sample the intensity of hu-
man motion and store these as the “activity counts” feature. The counts hereby range
from “zero” during sleep or when lying down/relaxing, through “normal” activity levels
during daily routines, up to “high” activity levels when sports and similar activities are
performed.

An actigraph record, called actogram, generally looks similar to the one shown in Fig-
ure 2.9, and usually comes with general information about the patient (name, age, sex,
etc.), as well as days with activity levels. Recording activity levels over long stretches
of time (i.e. weeks or months), allows for detailed statistical analysis, which reveals
characteristic activity level patterns and sleep/wake cycles and trends. Along with the
diaries and regularly performed interviews, mood assessment of patients, diagnoses of
conditions and their treatment is possible. In the long-term deployment scenarios, such
as bipolar patients monitoring, psychiatrists will use statistical methods to extract infor-
mation from the data, allowing them to assess their patients well being, current mood
state, mood phase and phase changes, etc.

Recent work in this field has used both activity levels and segmented sleep and wake
cycles of the patients. For a more advanced monitoring of the patients, detecting activ-
ities of daily living as well as hobby or physical activities is beneficial, which will also
lead to reduction of detailed and time-consuming diary keeping, give a more detailed
insight on patient’s daily routines, and with that also increase the psychiatrists aware-
ness on his patients current mood and state of well being. With regard to psychiatric
disorders, such as bi-polar disorder, the detection of mood states and shifts or anomalies
within is specifically important, since medication or activity treatment needs appropri-
ate adaptation. For this, detecting relevant activities, preferably chosen for individual
patients by the doctors in charge, is of significant importance.

Actigraph devices compute activity levels or counts from raw inertial data over larger
time frames of usually 30 seconds up to 2 minutes, and raw sensor data is then dis-
carded. To be able to perform gesture and activity recognition based on recurring pat-
terns within the signal as proposed in our long-term monitoring scenario, obtaining raw
sensor data or its abstraction that preserves the essence of the signal is mandatory. At
the time when this project started, data loggers that would fit these requirements were
not available off-the-shelf, and had to be designed and manufactured from scratch, as
shown in Chapter 3. Recent work of Virkkala (2012) and Borazio et al. (2014) shows
that such human motion loggers can still be used as actigraph devices, which addition-

http://www.healthcare.philips.com/main/homehealth/sleep/actiwatch/default.wpd
http://www.camntech.com/products/motionwatch/motionwatch-8-overview
http://www.actigraphcorp.com/support/devices/gt3xplus/
http://sensewear.bodymedia.com/
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Figure 2.9: An actogram for a patient, as used in sleep and psychiatric monitoring, show-
ing continuous long-term data with activity levels (bi-daily view). Utilizing
statistical methods on such actigraph data, wake and sleep segmentation is
possible. Additional mood assessment questionnaires as well as periodical
personal interviews allow the psychiatrists to closely monitor their patients’
phases, phase changes as well as the impact of medication.

[Image manually redrawn based on multiple real-world medical actogram
records, for example as in (Jankelowitz et al., 2005).]

ally motivates to preserve raw acceleration data, as both actigraphy and motion pattern
detection is then feasible.

2.3.2 Human Motion Analysis in the Medical Domain

Monitoring human daily life and detecting the impact of physiological diseases has be-
come one of the driving forces for the development of body worn sensors and body
sensor networks.

Monitoring Parkinson’s disease with wearable sensors Patel et al. (2009) aims at de-
tecting tremors of limbs or frozen gaits. Similarly, using wearable sensors, epileptic
seizures can be detected (Jallon et al., 2009) and with appropriate systems a real-time
alarm triggered (Gouravajhala et al., 2012).

Lorincz et al. (2009) present a wearable, wireless sensor platform for motion anal-
ysis of patients being treated for neurological disorders, such as Parkinson’s Disease,
epilepsy, and stroke. While the system is designed for longer-term data collection in
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hospital and home settings, the setup of up to 8 sensor is considered for short-temp de-
ployments in the doctors office or a hospital. For that, the system computes high level
features, which are then used to train a linear classifier.

Most of the work in this domain, such as mentioned above, focuses on using time and
frequency domain features to detect specific relevant events that are related to condi-
tions of interest. On the other hand, aiming at preventive care, long-term monitoring of
users’ well being and way of life is required. For example, detecting and estimating in-
tensity of alcohol (Leffingwell et al., 2013) or tobacco (Scholl et al., 2013) consumption,
can be used for alarming the user about potentially harmful effects.

Wearable sensors have been also proposed for the psychiatric domain in form of actig-
raphy, as presented above, but also in form of human motion analysis (Teicher, 1995).
Valenza et al. (2013) propose to use heart rate variability in the obtained ECG signal
to recognize the four mood states (depression, mania, hypomania and mixed state) of
bipolar disorder patients.

2.3.3 Activity Recognition for Elderly Care

Activity recognition as means for monitoring the ability of the elderly for self-contained
living is a very popular research field. It aims at detecting human actions and activities
with wearable (Bao and Intille, 2004; Huynh, 2008) or environmental sensors (Tapia
et al., 2004), and use these to assess whether an elderly person is able to perform the
activities of daily living or requires additional substantial help. This is achieved through
obtaining the context of the environment and the human within, from location and
interactions with objects, from which human activities are inferred.

This area of research faces the challenge in identifying complex and generally very
diverse activities which every person performs individually, and which are often in-
terrupted or executed in varying order. Some of the more complex activities are for
example: “preparing a meal”, “washing dishes” or “cleaning the home”.

Besides detecting just the gestures and motions of the human, it is often of particular
interest to identify the location as well as objects the person was touching, moving,
or using. For that, research has used various approaches, among others vision-based
systems in the kitchen (Lei et al., 2012; Intille et al., 2006; Logan et al., 2007). On the
other hand, vision based approaches have specific limitations with regard to their user
acceptance and raise privacy violation concerns.

Motivated by identifying and maintaining healthy eating routines, Amft et al. (2005)
and Amft and Troster (2008) have been focusing on detecting the details of eating ac-
tivities. Hereby, various sensors were used, including inertial sensors to capture human
motion, microphones for chewing sounds and electromyogram electrodes for muscle
activity during swallowing. Motion was obtained from the user’s lower and upper arms,
such that eating and drinking gestures can be segmented and classified, hereby rely-
ing on the similarity of piecewise linear patterns, similar to our query-based pattern
matching approach.

Recent work has also considered using capacitive sensors, both deployed in the en-
vironment and well as on the users’ body, to facilitate localization, detection of impor-
tant or critical events (e.g. falls) and activity recognition (Braun et al., 2012; Grosse-
Puppendahl et al., 2012; Cheng et al., 2013).
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Using inertial sensor data only to infer actions and activities in this domain is often
prone with false detections. Since a person is actively interacting with objects during
such activities, detecting human-object interactions is considered as very important.
To this end, various approaches have been proposed that rely on detecting the objects
through RFID (Schmidt et al., 2000; Philipose et al., 2004; Patterson et al., 2005; Fishkin
et al., 2005).

Combining multiple modalities, specifically human motion information from the in-
ertial sensor, and human-object interaction from an RFID sensor, yields a more detailed
insight and improves the activity classification performance (Stikic et al., 2008; Sti-
kic, 2010). Using the object interaction information also has the positive feature of
potentially reducing supervision or simplifying annotation of the sensor data.

Unfortunately, integrating an RFID reader into a wrist-worn device and achieving a
sufficient reading range as well as robust detection of grasped objects is not trivial. For
others to be able to reproduce our results and aiming at serving the gained know-how to
the community, we have taken the effort in extending our own wearable inertial sensor
with an RFID reader and a custom-built bracelet-antenna. Additionally, we present a
novel benchmark method that allows to evaluate and compare such custom designs.

2.3.4 Fitness Applications

The advances in the wearables domain have a huge impact on the consumer market.
What started as step counters for walking or jogging or GPS trace recorders, has by now
arrived at a multitude of interesting fitness applications, both as apps for smartphones
or as dedicated wearable devices, such as Sony Smartband, Samsung Galaxy Gear Fit,
LG Lifeband Touch, Waterfi Nike+ Fuelband, Adidas miCoach Smart Run, or the Fitbit
devices family. By monitoring gym exercises, free-style jogging, generally tracking the
overall activity levels of the users, and even incorporating additional information about
the food intake, the devices and applications aim at motivating the wearer for a more
balanced and more fitness-aware life-style.

While the usability and aesthetic design aspects tend to be superior to research pro-
totypes in research, specifically due to the commercial interest of the manufacturers,
with regard to the scientific approach there are major drawbacks. First and foremost,
the sensor devices are mostly closed source and do not provide any access to the raw
sensor data. The activity intensity levels are usually computed from epochs with a du-
ration reaching from 1 second up to 2 minutes, thus discarding the original sensor data,
which is actually necessary to obtain the shape-based features from the signal, similarly
to actigraph devices mentioned above. On the other hand various existing applications
are able to count gym exercise repetitions and offer statistical overview and guidance
for optimized schedule.

The other problematic aspect concerns the power-efficiency of the hardware for long-
term logging applications. Since most actively-used smartphones need to be recharged
on daily basis, the hardware manufacturers for their fitness wearables rely on this
widely accepted user behavior. Thus, the wearables are designed to last for this pe-
riod of time with no additional effort being made to achieve much longer time spans,
such as weeks, as desired for our long-term activity recognition scenario.
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2.4 Wireless Sensor Networks Applications

Many research scenarios motivate the deployment of wireless sensor networks through
the suitability of small sensors to densely monitor infrastructure, such as buildings,
bridges, roads, rails. The huge diversity in sensors hardware, types of applications, de-
ployment procedures, methodical and implementation approaches is astounding. One
of the driving forces for monitoring structures and detecting relevant events is the goal
for improving safety and organizing maintenance tasks. Various scenarios with alarm or
control systems also motivate the detection and monitoring of critical events. This sec-
tion will therefore present several application scenarios and frame our train monitoring
study amid these related work.

Sensor networks have become a popular tool for various applications, due to being
able to cover and monitor large areas and drastically reduce the intrusion into existing
environments as well as disturbance of its inhabitants. The ability of wireless sensors to
span a sensing and communication network with minimal resources by using small, ro-
bust, power-efficient and inexpensive hardware, highly benefits large-scale monitoring
application. Such applications traditionally aim at periodic sampling of sensor values for
long time periods, in order to obtain a detailed overview on physical phenomena in the
environment. Many sensor network applications focus hereby on collective observation
of slowly changing physical values, including temperature, humidity, gas concentrations
in the air or particle concentration in the water.

Other popular sensor network applications aim at detecting sporadic events, such as
abrupt rising or falling of temperature and humidity, extremely high or hazardous con-
centrations of gas or pollutants in the air. The ability of the sensor nodes to detect such
events directly at the source is of great advantage to the whole network, allowing to
significantly reduce the amount of wireless communications within the network, thus
preserving the limited power supplies (Figure 2.10). Sensor networks have been in-
creasingly deployed in scenarios with the aim to detect, monitor and report on more
complex critical phenomena, such as seismic activity (Werner-Allen et al., 2006), dis-
aster detection (Ramesh et al., 2009) or emergency scenarios (Gao et al., 2007, 2008).
These applications require high-fidelity sensor data that preferably should be analyzed
in or close to real-time, which conflicts with the fact that wireless sensor nodes within
a network tend to be heavily constrained by their hardware capabilities and resources.

Source node Network Sink node

Event ID —

Figure 2.10: A wireless sensor network (WSN) is used to sense physical phenomena in
the environment and report them to a base station for further analysis.
Since wireless communication is very expensive (wrt. energy consumption),
detecting and classifying events from the sensor data directly on the sensor
node, will result in energy savings and longer sensor network lifetime.
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A multitude of research, including (Mazarakis and Avaritsiotis, 2007; Gupte et al.,
2002; Dutta et al., 2005; Keawkamnerd et al., 2008) describe different application sce-
narios, where detection and classification of rare or sporadic events is of particular
interest. The sensors that were deployed in these scenarios rely on vision-based, acous-
tic, seismic, magnetic and infrared sensors, and facilitate distributed observation of an
area, aiming first and foremost at spotting and classifying ground vehicles or humans.
While the scale of these deployments varies a lot, the need for energy-efficient sensors
accounts for the features to be relatively simple to compute. For their car toll system
application, Keawkamnerd et al. (2008) follow a similar approach to our work by choos-
ing simple features (vehicle length, the average observed energy and peak-patterns in
the signal) to detect and classify various ground vehicles, such as cars, pickup trucks,
vans, buses and motorcycles.

Vibration sensors are often used for monitoring and ensuring infrastructure safety,
such as by Huang et al. (2010) or Kim et al. (2007), where particular frequencies in the
raw data have been considered as well as various complex features utilized.

Railway safety and train detection plays an important role both from practical as well
as research point of view (Palmer, 2012), spawning several application scenarios utiliz-
ing different types of sensors. Angrisani et al. (2010) present a system for short-term
deployments that uses accelerometers to detect arriving trains in order to warn main-
tenance personnel working on tracks. To enhance railway safety, Wang et al. (2006)
deployed a vibration sensor on running trains, aiming at detecting rail deformations
during motion. Donato et al. (2004) show how electromagnetic sensor arrays can be
used to detect and count wheels. Aboelela et al. (2006) motivate the use of wire-
less sensor networks for railroad operation monitoring, aiming at increased safety and
improved efficiency of railway maintenance.

Reducing the energy consumption in wireless sensor network deployments, is often
very crucial for the lifetime of the deployment. Data compression approaches, such as
by Reinhardt et al. (2009), aim at reducing wireless communication payload. In the
wearable and mobile sensor research domains, limited power supplies require more
data processing directly at the device, avoiding energy-consuming transmission or stor-
ing to local memory. Sun et al. (2011) aim at reducing the communication payload by
detecting activities directly on a mobile device which extends the lifetime of the sensors.

Our work also focuses on a wireless sensor network application scenario, where ob-
served events cannot be detected with simple threshold approaches and require on-line
data processing. The aim is to predict train types and estimate train lengths by means of
their vibration footprint directly on the sensor nodes. The events in this scenario tend
to occur sporadically and last for only a short time period, but result in lots of data,
since sampling is carried out at relatively high rates. The ability to detect, classify and
monitor such events with sensor nodes deployed along railway tracks would allow to
deploy such a network for various long-term railway applications.

2.5 Summary

This chapter presented relevant related work on time series abstraction, which is specif-
ically necessary for dimensionality reduction to facilitate more efficient time series anal-
ysis. With the focus on long-term application scenarios with inertial sensors sampled
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at relatively high frequencies, the amount of sensor data is huge. Considering inertial
data as a time series, and being interested in identifying and classifying recurring pat-
terns with shape-based features, our goal is to reduce the amount of sensor data while
preserving the shape of the signal.

To this end, we propose a data logging prototype that is able to sample accelerations
at a frequency of 100 Hertz and last for multiple weeks. We then deploy this data logger
in two scenarios to obtain inertial data and to evaluate our approaches and techniques.

For our first application scenario, namely human motion analysis and activity recog-
nition through query-based pattern matching, we propose an adaptation of a piecewise
linear time series approximation technique that is almost twice as fast as the original
version on human inertial data. With the approximation at hand, pattern matching can
be carried out much faster than on raw sensor data. Additionally, we also propose to
even more speed up the query-by-example matching by using the K longest segments
(instead of all) of the pattern.

In the second application scenario, we focus on railway monitoring through the classi-
fication of vibration events based on the shape of the vibration footprint. Both the data
abstraction as well as the classification need to be performed on a hardware and compu-
tationally constrained sensor node, which does not allow complex frequency analysis.
Instead, we conduct a study revealing that simple and efficient-to-compute features can
preserve the essential information from the signal and thus can be used to discern the
events with a common SVM classifier.

Detecting physical or leisure activity can aid actigraphy and yields huge information
gain for long-term monitoring in medical applications, such as bipolar patients monitor-
ing. The main goal is the finding of recurring patterns that are characteristic to specific
activities and can be used as weak detectors in a bag-of-words classifier. To this end
we propose to use the salience of motif detections instead of the commonly used SVM
and HMM classifier systems. We hereby rely on the piecewise linear data approxima-
tion which we consecutively convert to a symbolic representation. We show that this
approach performs well on a multitude of activities, is able to match the performance of
the common time and frequency domain features in combination with a SVM classifier,
while being much faster.

Finally, we propose to improve activity recognition of our dense motifs approach by
adding further sensor modalities. By detecting object interaction through RFID sensing,
these detections may not only reveal which and how the user handled particular objects
or tools, but also improve activity classification performance, especially in cases where
activity classification is very hard to do solely from acceleration data.
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3 Designing an Efficient Activity Logger

One of the hard challenges in creating and deploying robust activity recognition sys-
tems is the deployment of wearable sensors that are unobtrusive and lightweight, and
therefore are limited in power and processing resources. This has also been identified in
earlier research on mobile sensing platforms, for example by Choudhury et al. (2008).

Several publications in activity recognition research have observed that long-term
operation of the wearable inertial sensor units is critical for various types of application
domains. Long-term monitoring of psychiatry patients, for example, can be considered
as one of the more challenging scenarios, due to its constraints regarding the type of
sensors, its power efficiency, as well as usability considerations. While commercially
available actigraphs are able to provide abstracted data in form of activity counts, few
wearable platforms allow the users’ activities to be captured as raw acceleration data
for more than a few hours. The design of such modules therefore can be expected to
impact such systems considerably.

This chapter presents a data logger that is specifically designed for long-term deploy-
ments to capture raw acceleration data (Figure 3.1) as efficiently as possible.

/_\ A A
Acceleration L

R ’ﬂ_{ AL NI T e Raw Data
I '

Vibrations Vi

Figure 3.1: Capturing human motion with MEMS accelerometer sensors at a predefined
rate will produce what we call raw sensor data. For long-term deployments,
an efficient design of the sensor device is crucial.

3.1 Motivation

In our case, due to lack of available off-the-shelf sensor platforms that would fit the
requirements, a custom sensor unit had to be designed and built. This has led us to
consider building a prototype that would explore long-term activity recognition ap-
proaches with a focus on the recording equipment. A trade-off between two features
was prevalent throughout this design phase:

User acceptance. A main requirement is that users accept to wear the wrist-worn units
continuously, day and night. Design, size and weight are important, as pointed
out by Narayanaswami et al. (2002), but also functionality: Although the unit was
meant to record data, many users, especially in the medical domain, would only
wear the device if it provided them the function of a basic wrist-watch, both for its
functionality and for wearing something that would raise questions.

Low-power operation. On the other hand, the device needs to be power-efficient
enough to be able to record inertial data at a high sampling rate for extended
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Figure 3.2: The custom-made inertial data logger was designed for long-term (day and
night) recording of data for activity recognition at 100 Hz, while simultane-
ously taking user acceptance requirements for wearing such as device into
consideration. We focus on the evaluation of low-power design choices.

periods of multiple weeks at a time on a single battery charge, thus requiring
components to be turned off or in sleep mode whenever possible.

We will focus specifically on the latter requirement of low-power operation, while
assuming the constraint of user acceptance, which in our case led to the inclusion of a
particularly small battery and the addition of an OLED display. Turning off the display
whenever possible, and turning it on only when required by the user, is hereby the
straight forward choice in preserving limited power resources. Figure 3.2 shows the
current prototype.

Aiming at efficiently capturing human motion in its full detail at 100 Hz and storing it
to local memory over long stretches of time, the remainder of the chapter presents the
choices for designing the data logger that we have built for our experiments, as well as
identifying the potential for power-efficient operation and logging of data.

3.2 Wrist-worn Unit Design

The custom-built platform is centered around a Microchip PIC18F46J50 microcon-
troller, which embeds in a small-scale form-factor key components for acquiring and
recording inertial data. Among the most relevant features embedded in the microcon-
troller are the real-time clock, multiple internal oscillator circuits, digital and analogue
communication interfaces, and a full-speed USB 2.0 communications module.

The real-time clock is specifically important to obtain accurate time stamps during
logging, which are then used in the visualization of the sensor data to the user through
a human readable time axis. Furthermore, the time stamps are necessary to synchronize
the sensor data with user annotations, whether kept in diaries or added interactively on
recall basis.

The main sensor unit of our platform is the 3-dimensional ADXL345 microelectrome-
chanical system (MEMS) accelerometer, which is able to obtain accelerations in a range
between 2 up to £16 g with sampling frequency up to 3600 Hz. The accelerometer
sensor is connected via a Serial Peripheral Interface (SPI) digital bus with the micro-
controller. In our experiments, the accelerometer sensor was configured to a sensitivity
of £4 g at 10 bit resolution and a sampling rate of 100 Hz. The accelerometer unit it-
self comes with important features, such as a double-tap and fall detection, low-power
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modes and an internal FIFO buffer that allows to transmit sensor values in bursts to
the microcontroller. This latter feature is specifically important, since it allows the main
processor to switch to power-efficient sleep modes or perform other tasks between these
communication burst.

Due to the amount of data being generated at 100 Hz, a local flash memory is needed
to store the acceleration data along with the time stamps. Non-volatile flash memory
suits the application scenario demands, since it is available off-the-shelf in small form
factors (microSD cards) and can preserve stored sensor data even when the battery
runs out of energy. Connectors and circuitry are available on the sensor board for
attaching the microSD card and for storage of sensor data. The microSD card is then
transparently accessible via USB as a so-called mass storage device that appears to the
user as a common memory stick with FAT16 file system.

In addition to the time and acceleration values, ambient light intensity is obtained
through a photosynthetic diode. The light sensor is hereby sampled approximately
once in a second.

The prototypes are powered from miniature Li-Polymer rechargeable batteries with a
capacity of 180 mAh. For user-friendly recharging of the battery via USB the sensor is
equipped with the MAX1551 charger integrated circuit.

To meet the requirements of long-term 24/7 deployment, the unit is packed in a
custom shock-proof case and provided with an anti-allergic textile wrist strap. Further-
more, a miniature OLED display is used for visualization purposes and can display time,
date or current sensor values. The display is by default turned off and can be activated
by the user by double-tapping the watch.

3.3 Experimental Setup

This section focuses on the experimental setup to obtain current consumption figures
for our prototypes. We first present the hardware setup to record the current drain
traces. Aiming at performing reproducible tests for all our test cases, we propose to use
a benchmarking platform. Lastly, to access how much a sensor would last in a real-world
scenario, we deploy the sensor for multiple days to measure overall consumption.

3.3.1 Measuring Current Consumption

Critical in the power evaluation of the different parts of our prototype is the way we
measured the individual components’ energy consumption footprints. This section cov-
ers the details of our method to measuring and record the energy consumed by our
prototype in particular modes. After presenting the basic principles of operation, we
provide the details on our measurement setup based on the Arduino Due! platform.
Large parts of this experiment were carried out by our technical staff: Martin Zittel and
Michael Braunlein.

Figure 3.3 depicts the schematics of the voltage measurement circuit with which we
are able to obtain detailed recordings of current consumption, shown later in the eval-

1 http://arduino.cc/de/Main/ArduinoBoardDue.

35


http://arduino.cc/de/Main/ArduinoBoardDue.

1.0V — AREF Arduino

GND A0

- 10 Q -
Battery Sensor
+ +

Figure 3.3: The schematics to measure current consumption via voltage drop over a resis-
tor: To acquire and log the current consumption footprint at a high-enough
speed and sensitivity for further detailed analysis, we use the Arduino Due
platform supplying a reference voltage of 1.0 V.

uation section. Following the Ohm’s law, we can from the measured voltage drop over
a sufficiently small resistor compute the current drawn by the sensor device:

I = v = iV with a constant resistor R = 102
R 10

To access the current consumption of different operation modes of our prototype, we
need to consider the current drain over the operation’s duration, which is given by the
area under the curve for the current draw measurements.

Most relevant information for power profiling of a sensor device can be gathered by
obtaining (a) the baseline current consumption of the sensor device when in low-power
idle or sleep mode, (b) current consumption of different hardware components used to
perform various tasks, such as sampling the accelerometer, writing data to persistent
memory, or displaying information on the display. To obtain current consumption for
different operations, we need to first identify these in our voltage data set, extract
corresponding voltage readings and compute the area under the curve, for which we
use the composite trapezoidal rule (trapz in the numpy python library).

The Arduino Due is connected to a computer and used as a high-resolution voltage
logger over the resistor R on the analog A0 pin against the ground GND pin. A reference
voltage of 1.0 V is supplied to the AREF pin, and power for both the prototype and the
Arduino is provided by a regulated bench power supply. The AO pin is sampled through
an ADC at full speed, whereby the resolution is set to 12 bit. The measured values are
transmitted to a computer for logging and further off-line evaluation (Figure 3.3).

3.3.2 The Robot Arm Benchmark

In order to obtain comparable current consumption figures for all the different configu-
rations, for each of the tests the data logger should be moved in a similar way and for a
similar amount of time. A human being is not able to perform the motions for each test
as reproducible as required, which motivated us for finding a suitable platform.
Luckily, with multiple outstanding robotics research groups at the university, we were
granted access to the BioRob research robot arm of Prof. Dr. Jan Peters, and were
allowed to use it for our experiments. The BioRob robot arm is able to perform very
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3D acceleration

Figure 3.4: The BioRob arm was used to perform a set of motions for benchmarking
purposes in a reproducible way. This way, multiple test cases with different
firmware settings and hardware configurations can be compared. The simu-
lation (top) depicts the programmed trace of one of the motions, while the
photos (middle) show the sensor and measurement hardware attached to
the platform. The acceleration data obtained by our data logger reveals the
repetitive execution of this particular motion (bottom).

precise motions for a specified amount of time, or repeatedly for a given number. The
motion can be programmed by either by manually defining the motion trajectory in
space, or by providing the angular configuration of the joints and letting the robot com-
pute the cheapest trajectory, whereby the latter approach was chosen for our evaluation.
The robot was programmed by Hany Abdulsamad.

Figure 3.4 depicts the simulation of the motion trajectory as well as photos from the
actual deployment, where the sensor and the measurement hardware was attached to
the mounting platform on the robot arm. This way we were able to obtain the voltage
measurements over the resistor from the Arduino platform, as well as the acceleration
data from the sensor node.

Since the robot free time was limited, and as a research prototype it is not designed
for long-term operation, we were able to use it for short-term recording of current
consumption in different configurations.

3.3.3 Long-term Current Consumption Measurement

While the robot arm is a great benchmark utility for comparing different combinations
and parameters, a real-world experiment is impossible to model. In order to access how
long a sensor would last on a single battery charge in real-world conditions, multiple
sensors were deployed to be worn at the human wrist continuously for full 10 days.

In this experiment, using the aforementioned hardware setup to obtain detailed cur-
rent consumption figures is not feasible. Instead, the consumption is computed via the
battery capacitance difference: Obtaining the capacity of the full battery before the
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Figure 3.5: Determining the capacity of four fully charged batteries via a 110 Q resistor.
The area under the curve up to the nominal voltage of 3.3 V is to be consid-
ered (highlighted in gray for Bat_3). Similarly, we can obtain the remaining
capacity of a battery that was powering a sensor in a deployment. The differ-
ence between the measured capacities before and after a deployment will
amount to the electrical charge consumed by the sensor.

deployment (Figure 3.5), and the remaining capacity after these 10 days, we are able
to compute the average current drain over the deployment time frame. Based on the
acceleration data obtained and the overall activity intensity during this period, we can
estimate how long a sensor would last when deployed for example for our psychiatric
monitoring scenario.

Furthermore, attaching a sensor to a constantly moving or vibrating device will allow
to evaluate the runtime characteristic of the sensor nodes on a single battery charge, and
access the quality of manufacturing of the sensor or the impact of different configuration
settings.

3.4 Evaluation

During the design of our prototype, following design choices were found to have a high
impact on the low-power operation of the system, which will be evaluated extensively
in this section:

1. Which component should control the sampling, the microcontroller or the ac-
celerometer itself?

2. There are a multitude of microSD cards available on the market, does it matter
which to use?

3. The OLED display is necessary for certain applications; how much does it cost with
regard to power consumption?

4. How long will the prototype last on a single battery charge with a sampling rate
of 100 Hz?
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Test Sensor Sampling Frequency Low-power mode RLE microSD card

1 Basic PIC 10 ms 100 Hz normal 2 Transcend 1Gb
2 OLED PIC 10 ms 100 Hz normal 2 Transcend 1Gb
3 Basic FIFO 100 Hz normal 2 Transcend 1Gb
4 Basic FIFO 100 Hz low-power 2 Transcend 1Gb
5 Basic FIFO 100 Hz low/auto 2 Transcend 1Gb
6 Basic FIFO 50 Hz low/auto 2 Transcend 1Gb
7 Basic FIFO 25 Hz low/auto 2 Transcend 1Gb
8 Basic FIFO 100 Hz normal 2 SanDisk 2Gb

9 Basic FIFO 100 Hz normal 2 Transcend 2Gb
10 Basic FIFO 100 Hz normal 2 SwissBit 1Gb

11 Basic FIFO 100 Hz low/auto 0 Transcend 1Gb

Table 3.1: Overview on the different test cases, varying different parameters, such as
the sampling method and frequency, low-power modes, run-length encod-
ing, and the microSD card.

To investigate these questions thoroughly, a number of short tests were performed
to obtain current drain figures with the setup presented before, whereby settings and
components have been varied. We considered in our investigation microcontroller vs.
accelerometer FIFO sampling, different data compression settings, three different low-
power modes, four different flash cards, the effect of using the OLED display as well
as the impact of adjusting the sampling frequency. These test cases are summarized in
Table 3.1.

A second test aimed at measuring total current consumption for a long-term deploy-
ment, as one would expect in real human activity recognition scenarios. For that, we
deployed two sensors that have been worn continuously day and night for full 10 days.
By measuring the capacity of the full battery before the test and after the deployment,
the current consumption for this time frame can be computed.

3.4.1 Which Component Should Control the Sampling?

In most sensor unit implementations where sensor data need to be acquired at equidis-
tant intervals, the micro controller is commonly the unit that times and polls for new
data from the sensor. Such typical behavior for a 3D MEMS accelerometer is depicted
in Figure 3.6a: every couple of milliseconds (10 in this case, due to sampling at 100
Hz), the sensor unit is woken up from a low-power sleep mode via a timer interrupt,
to communicate with the accelerometer (via SPI) and acquire a new value tuple (con-
sisting of the x, y, and z axis). This causes every 10 milliseconds a small peak in power
consumption, taking about a millisecond.

Many recent MEMS accelerometer chips come with a large set of digital support func-
tions, however, including an operation mode which lets the accelerometer do the ac-
quisition of new 3D acceleration samples for storage in a local FIFO buffer. For the
ADXL345 used on our prototype, this buffer holds 32 samples, which means filling a
buffer takes a bit more than 300 milliseconds for our target sampling rate of 100 Hz.
Figure 3.6b shows the typical current draw pattern in such a case. Additionally, it is pos-
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(a) Typical behavior when sampling from the (b) Utilizing the accelerometer’s FIFO results in
microcontroller every 10 ms, causing the communication bursts, where 32 accelera-
small peaks of approx. 1 ms width. tion samples are transmitted at a time.

Figure 3.6: Current consumption traces showcasing the two sampling methods: (a) mi-
crocontroller polling for samples every 10 milliseconds, and (b) accelerometer
sampling with its internal FIFO buffer. Note that transmitting 32 samples at a
time reduces the overall communication overhead and allows the microcon-
troller to sleep for longer periods of time, or conduct other computations, if
necessary.

sible to invoke the accelerometer’s power-saving functionalities that cause more noise
but has a slight effect on the current draw as well.

After obtaining initial current draw figures for sleep mode (0.24 mA), the FIFO or
polling communication (2.8 mA), and writing to the microSD card (13.5 mA), a set
of small tests lasting 7 minutes was conducted in order to evaluate different operation
modes and hardware components (listed in Table 3.1). The result is that FIFO sam-
pling is more efficient: First, while the accelerometer is collecting the sensor samples,
the microcontroller can be put to low-power sleep mode to preserve energy. Second,
transmitting the 32 values at a time results in a reduced communication overhead and
almost the half the current drain (Table 3.2, sampling).

3.4.2 What a Difference an SD Card Makes

After the acquisition of the sensor values, these are typically first stored in a buffer inside
random access memory (RAM). Once this buffer in the micro controller’s volatile mem-
ory is filled up, it needs to be offloaded to permanent storage. Many wearable devices
that are used to record fine-grained sensor data nowadays utilize flash memory, ei-
ther on-board flash chips or replaceable storage cards (e.g., microSD). Such replaceable
cards have two main advantages: First, these can be easily bought in large quantities
and at appropriate sizes of multiple Gigabytes. Second, broken or full cards can be
easily replaced without affecting the lifetime of the sensor device itself.

In our study, writing data to the SD card is the most expensive operation with regard
to current consumption (not considering the operation of the OLED display). With
our main goal being able to perform activity recognition from sensor data where we
specifically rely on subtle detailed information in the signal, there is also the need for
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Figure 3.7: These current consumption traces show the communication between the mi-
crocontroller and the accelerometer (small peaks) as well as writing to the
microSD card (big peaks). In (a), the writing sensor data to flash memory
operation requires approximately 10 milliseconds, thus fitting between two
samples (the small tips before and after the big peak). In (b), the communi-
cation in bursts is interrupted to offload the data to flash memory.

high-frequent sampling (at 100 Hz). Obviously, storing the raw sensor data will result
in lots of writing operations, impacting the lifetime of the sensor. Carefully designing
and implementing the logging routine yields a huge power efficiency potential.

Figure 3.7 shows examples of current consumption traces for sensor polling and burst
communication, along with the writing of sensor data to the microSD card.

One of the possible approaches to reduce the amount of write operations is to com-
press sensor data on-line in the microcontroller’s RAM, before storing it to the microSD
card. For our sensor device, we use run-length encoding (K-RLE) (Capo-Chichi et al.,
2009), which is a very common and widely used method to compress data, with a vari-
able threshold K > 0, already as mentioned in the related work section. In our case, the
two advantages of K-RLE are: (1) it compresses identical sensor values and preserves
subsequences with a varying signal, and (2) it can be used to filter out noise in the
signal, thus performing very efficiently on flat sensor data, when correctly choosing the
threshold. Choosing K = 2 over K = 0 for run-length encoding in our tests resulted
in a significant reduction of write to flash operations from approximately 23 to 6% of
overall consumption (cf. Table 3.2, tests 5 and 11).

Considering our data logger, the study revealed that is also mandatory to carefully
chose appropriate microSD cards. To show their impact on the overall current con-
sumption, we considered four microSD flash cards from three manufacturers, namely
Transcend, Sandisk and SwissBit, with capacities of 1 GB and 2 GB.

Figure 3.8 shows the findings regarding these cards, with an unexpected result: the
2 GB Transcend card turned out to consume almost three times the current of its 1
GB version or the 2 GB card by Sandisk. The 1 GB SwissBit card has a low plateau
current drain of 2.8-3 mA, matching the level of microcontroller and accelerometer
communications, and a very short peak of approximately 45 mA lasting 1 millisecond.
This is also reflected in the overall consumption figures of the tests 3, 8, 9, and 10 in
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Figure 3.8: Current consumption traces of the four microSD cards used in the experi-
ment. The 1GB Transcend and 2GB Sandisk turn out to be very similar. The
2GB Transcend card (c) has a much higher peak consumption, while requir-
ing few milliseconds less to finish its task. The 1GB SwissBit card (d) has a
significantly lower power consumption, at a much higher purchasing price.
Computing the area under the curve results in total amount of current spent
for the writing-to-flash-memory operation. After extracting these character-
istic peaks from the obtained voltage dataset, the distribution of per peak
current consumption is shown in sub-figure (e).

Table 3.2. Hereby it is necessary to note that the SwissBit card contains single-level cell
flash memory, whereas the other cards have multi-level cell flash, and therefore comes at
a much higher price (10 fold), but yields advantage with regard to power consumption.
The total current drain of the writing operation (namely the area under the curve) is
therefore much lower than of the other microSD cards (Figure 3.8e), making this more
expensive card much more preferable in this comparison.

The conclusion of this evaluation is that cheap consumer cards need much more thor-
oughly testing before being used in such long-term deployments. Just relying on the
data sheets with a given peak current drain figure only is not sufficient. What matters is
the actual current consumption trace that will reveal the details of this essential hard-
ware component. Obviously, choosing industry-oriented single-level cell flash memory
has a huge advantage of a very low power consumption, at a high monetary cost.

3.4.3 The (Battery) Cost of an OLED Display

Our prototype is equipped with an OLED display, which is programmed to show cur-
rent time and date for a few seconds whenever the user double-taps the wrist-worn
prototype. This was particularly a requirement for several long-term trials, in which
many users reported unwilling to wear a unit on the wrist that would look unfamiliar
enough to raise questions. By making it look and function as a wrist-watch with the
addition of the display, acceptance was much higher. However, this component comes
at a higher size and production cost for the entire prototype, and undoubtedly at an
impact on power consumption. Figure 3.9 shows a subsequence of the OLED display
current consumption just before it was turned off by the double-tap from the user.
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Figure 3.9: Current consumption trace of a data logger with the OLED display. Using the
OLED display results in a high current drain, represented by the high peaks
on the left side. After the OLED display has been turned off by the user
(double-tap feature), 10ms polling from the microcontroller becomes visible.

The OLED display requires 3.3 V power supply for the integrated display driver, which
nicely fits our data logger design. On the other hand, the OLED display also requires an
additional supply of 12 V for its back-light. To achieve this, a step-up circuit is necessary,
consisting of multiple additional components. The drawback of this approach is the
reciprocal-proportional dependency of voltage and current: to achieve a step-up from
3.3 V to the required 25 mA at 12 V (according to the data sheet), we need to supply at
least 90 mA. Our measurements show that due to the step-up circuit, the OLED display
and all other hardware components, the consumption peaks reach up to 140 mA at 3.3
V. Current work therefor focuses on a more efficient implementation of the display.

Although the display was turned on only for a short period of time during the test,
the consumption of the OLED and the step-up circuitry reaches more than 98% of the
total current draw (Table 3.2). With this result, while not representative for real-world
usage, it becomes very important to efficiently design the usage of the display interface.
This particularly means that the display has to be turned off as often as possible when
not needed by the user.

3.4.4 The (Obvious) Impact of Reduced Sampling Frequency

Varying the sampling frequency has a direct impact on the amount of sensor data gen-
erated by the accelerometer unit. While we aim at high sampling rate of 100 Hz to
capture full detail of human motion (as well as vibrations), lowering the sampling rates
can still tolerable for various applications. For example, for sleep monitoring and actig-
raphy scenarios, raw sensor data is not exceedingly critical and is often abstracted by
windowed variance or activity counts, whereby the window or epoch size is generally
relatively large (in the range of minutes).

With that, we face a trade-off between data granularity and life time of the sensor,
which directly impacts the usability aspect. Reducing the sampling rate from original
100 to 50 or 25 Hz results in a proportional decrease the transfer of samples from
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Test Total Writes to SD Transfer of Samples Display

mAs mAs % mAsS % mAs %

1 130.72 4.76 3.6 63.65 48.7

2 353.93 1.74 0.5 4.64 1.3 347.28 98.1

3 93.40 5.78 6.2 29.22 31.3

4 72.78 7.40 10.2 26.15 35.9

5 84.68 6.19 7.3 28.65 33.8

6 61.37 3.84 6.3 13.64 22.2

7 46.80 2.12 4.5 7.28 15.6

8 103.29 13.21 12.8 29.26 28.3

9 84.85 7.41 8.7 28.33 33.4

10 103.40 1.44 1.4 30.48 29.5

11 95.71 22.28 23.3 26.44 27.6

Table 3.2: Comparison of the electric charge consumed in total, and for the three main
operations: (1) writing to microSD flash memory, (2) transfer of acceleration
samples from the accelerometer to the microcontroller by polling or bursts,
(3) and the operation of the OLED display. The electric charge is obtained by
computing the area under the current drain curve.

the accelerometer to the microcontroller (cf. tests 5, 6, and 7 in Table 3.2), as well
as in the amount of write operations to the microSD card. While the sensor node will
still consume current for basic operation (microcontroller computation, sampling by the
accelerometer, real-time clock, and the loss in the circuits) on a level of approximately
0.24 mA, the overall consumption is reduced.

Thus, a reduced sampling rate will significantly improve the life-time of the sensor,
which was also confirmed by multiple long-term tests. Sensors, configured for a sam-
pling rates of 100 as well as 50 Hz were worn continuously for 14 days at the wrist.
At 100 Hz, the sensors were able to obtain sensor data for up to 11 days, before the
batteries were drained completely. With a sampling rate of 50 Hz, even after 14 days
the batteries were not completely drained, and the sensors would have been able to log
for additional couple of days.

3.4.5 The 10-day Deployment Test

The evaluations presented before have focused on the impact of different settings and
components on the current consumption of the prototype data logger. Aiming at de-
ploying the data logger outside laboratory conditions at the wrist of various users, in
order to obtain continuous day and night human motion data, an evaluation is required
that considers current consumption over a comparable time frame.

For this, two sensors have been deployed for capturing human motion for a time frame
of 10 days. The sensors were worn continuously day and night, and were allowed to
be only taken off during showering or bathing. The configuration for these sensors
was as follows: 100 Hz sampling through accelerometer’s FIFO, low-power modes fully
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enabled, RLE with K = 2, and the inexpensive Transcend 1 GB microSD card. The OLED
display was not used at all during the logging period.

The overall current drain of the sensor was obtained over the capacity change from a
fully charged battery before the deployment to the capacity state after the 10 days. The
delta of these values, divided by the time frame, provides us with an average current
drain figure, and with that allows to estimate runtime for this particular sensor-battery
pair. For example, a sensor running with the configuration above for 10 days of logging
drained about 93 mAh from the battery.

With that, one day of operation approximately drains 9.3 mAh from the battery. With
a nominal battery capacity of 180 mAh, the sensor node should theoretically last more
than 19 days.

Experience, on the other hand, shows that this estimated runtime is not reached.
The reason for this are the physical characteristics of the flash memory: First, the high
peak consumption of the microSD flash card (approximately 36 mA, cf. Figure 3.8a),
and secondly, its relatively high operating voltage of 3.3 V with very little deviation
tolerance. While the microcontroller, the accelerometer sensor and other components
on the sensor board can tolerate lower operating voltage, writing to flash memory will
fail as soon as the battery voltage drops below 3.2 V. With this constraint in mind, the
runtime of a sensor node with the given setup accounts for up to 14 days.

3.5 Conclusions

This chapter presented the experience gathered in designing and developing a wrist-
worn and low-power activity logging unit, which is able to record 3-dimensional ac-
celeration data at a sampling rate of 100 Hertz for two weeks on one battery charge.
Using the form-factor of a wrist-watch to safeguard user acceptance, we specifically fo-
cused on the choices and parts of our prototype that have the biggest impact on energy
consumption of the whole unit. After presenting the details on how we obtained our
measurements using an off-the-shelf low-current acquisition setup, we contribute with
these findings in particular:

* Accelerometer-based sampling has shown to result in slightly better energy fig-
ures than micro controller-based sampling, requiring shorter idle times between
samples.

* The choice of microSD card manufacturer and size showed strong variations on the
energy footprint of the whole unit, with a potentially large influence on the battery
usage. The current draw for some cards consistently reaches 100 mA for storing
data, whereas for others 35 mA was measured. A SwissBit 1 GB card turned out
to have the lowest current consumption for write operations.

* The OLED display, though appreciated by the users wearing our prototype, has an
enormous impact on energy consumption. This adds importance to any mecha-
nisms that turn off the display whenever it is not needed by the user.

* The 10-day test has shown that the sensors have consumed 93 mAh on average.
Taking the microSD flash requirement for an operational voltage of 3.3 V into
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account, a rechargeable battery with a capacity of 180 mAh is able to power the
sensor for approximately 14 days.

The following chapters present the two aforementioned application scenarios in the
activity recognition and railway monitoring domains. The data sets used in the corre-
sponding studies were obtained with the current (or earlier versions) of the data logger,
sampled at 100 Hertz.
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4 Efficient Data Abstraction with Linear
Segments

In the previous chapter we have presented an accelerometer data logger which can be
deployed for long time spans to capture accelerations, vibrations and orientation in
space. This chapter presents an efficient piecewise linear abstraction technique for the
output of such units, namely accelerometer time series, with the main focus of reducing
the amount of data and at the same time preserving the shape of the signal.

4.1 Motivation

Abstracting raw sensor data can significantly reduce the amount that has to be processed
in later steps, thus speeding up the analysis process. Preserving the original signal in
its abstraction is often mandatory, for example when the data needs to be visualized
for interactive annotation purposes or detailed visual inspection. Performing early data
abstraction with efficient abstraction algorithms directly on the sensor devices would
allow compression of streaming sensor samples at its source, resulting in much less
data to be stored on the sensor, thus preserving limited energy resources and extending
the lifetime of the sensor.

In long-term activity recognition with wearable acceleration sensors, where human
motion is recorded over long stretches of time, large sets of inertial sensor data have
to be analyzed. These data sets contain physical actions of the sensor’s wearer that
have been captured continuously for multiple weeks or months. Striving to capture
human motion as detailed as possible, the sensors are generally sampled at relatively
high frequencies resulting in huge amounts of data, which consequently often burden
post-analysis of the recorded data.

To tackle this computational problem, this chapter proposes a new data abstraction
method that approximates the recorded accelerometer time series by piecewise linear
segments and thus retains the original shape (Figure 4.1), that is fast on large data
sets and also well-suited for human motion data. Moreover, it is efficient enough to be
implemented directly on a sensor node with only few adaptations to meet the embed-
ded platform characteristics, such that the sensor data can be abstracted in an on-line

Figure 4.1: Linear segments as shape-preserving features. The shape of the signal is be-
ing preserved while the amount of raw sensor data is significantly reduced.
In activity recognition, this allows much faster pattern patching.

47



fashion. Relying on the shape of the signal as a feature for pattern matching pur-
poses, using the abstraction of the time series allows for much faster matching, since
the computation is performed on significantly less data points.

The following sections will motivate through a specific human activity monitoring
scenario our version of the abstraction algorithm to approximate human inertial data
as efficiently as possible, as well as a novel pattern matching technique for finding sim-
ilar subsequences in large activity logs. We show that our proposed algorithms are
faster on human acceleration streams than the traditional ones while being compara-
ble in accuracy to spot similar actions, benefiting post-analysis of human activity data.
Additionally, we investigate in an experimental study the advantages of the on-line
approximation directly on a sensor node.

4.2 Application Scenario: Interactive Analysis of Human Motion Data

As motivation for the work, we focus on the challenge that lies in the interactive analy-
sis of large amounts of recorded high-frequent inertial data, where users or researchers
can view the activity log as a time series, zoom into interesting areas, and select subse-
quences that exhibit characteristic patterns for particular activities. Figure 4.2 illustrates
a prototype of such an application, where the selecting of subsequences in the time se-
ries results in the system finding closest matches elsewhere in the data. This would
be beneficial for off-line annotation of the data, identification of motion gestures, and
detailed comparison of similar activities.

As presented in Chapter 2, previous work has applied a large variety of approxima-
tions and features to accelerometer data, such as mean and variance, Fourier coeffi-
cients, wavelet matches (Rajpoot and Masood, 2005), and symbolic approaches (Shieh
and Keogh, 2008). Approximation techniques that retain detailed visual features from
the original data such as Piecewise Linear Approximation of wearable inertial data has
not received much attention, apart from (Amft et al., 2005) in which the authors use
SWAB to segment out gestures. The analysis techniques on long-term data sets have
mostly been limited to resource-hungry and off-line prototypes or systems based on
machine learning algorithms such as boosting, topic models (Huynh et al., 2008), and
hidden Markov models. Figure 4.3 shows part of such an activity data set of 24/7
recording, which includes sensor data from an accelerometer and a light sensor, along
with annotation labels for different activities. The bottom plot shows a more detailed
view on the motion patterns in the sensor data while the subject was walking.

Inspired by data mining research, e.g., (Morinaka et al., 2001; Keogh et al., 2001b),
we present modifications of algorithms to approximate long-term human acceleration
data efficiently, and quickly find matches. These modified algorithms can be applied
to activity classification, as will be shown later, but here we focus on query by example
of large activity data sets. Therefore, the proposed methods allows a user to select a
subsequence in the data, for which the system returns other subsequences that match
the query in structure, as shown in Figure 4.2. This can be used to find other occurrences
in the data where the wearer performed such a characteristic action ("when else did this
walking pattern occur?"), or to identify stretches of time for an activity ("how long does
this walking pattern go on?").

The main properties of the presented approach are the following:
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Figure 4.2: A subsequence from a large 3D acceleration data set (top plot) is used to
query (second plot) for matching subsequences where a similar motion pat-
tern occurred (third plot). The 10 bottom plots show the closest matching
subsequences to the selected query in detail (top row: the original raw data,
bottom row: the approximations).

» Fast on large data sets. Multi-day acceleration data contains tens of millions of
samples typically, needing algorithms that allow fast searching through all data.

* Human acceleration-specific. As the time series is known to be from human
activities, optimizations can be made with respect to the traditional algorithms.

* Reduces logging on the sensor. The approximation can be implemented on a
low-power sensing module so that less data is stored, thus needing less power.

In the following we present a two-tier set of algorithms: one that approximates the
inertial data so that it can be stored in less memory and be processed faster, and one
that matches subsequences of these approximations to find similarities within a large
time series of human activity data. To achieve our goal, several requirements need to be
fulfilled: First, as both researchers and subjects have proven to be able to browse time
series plots of inertial data well, as mentioned by Van Laerhoven et al. (2008), the data
needs to be approximated so that it can still be represented visually as a time series.
Second, the algorithms that do the approximation of data need to be fast enough so
that it does not hinder the loading of data, and accurate enough to capture the essence
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Figure 4.3: Typical time series plots from a long-term activity dataset, obtained from a
wrist-worn sensor. Each day has 8.64 million time stamped 3D accelerometer
samples, and additionally light and ambient temperature data. Acceleration
data is focused on as the most descriptive modality, since it contains both
posture (e.g.: the sleeping postures during the night segments) and motion
data. The zoomed-in region at the bottom shows acceleration data from the
subject walking.

of the motion patterns. Finally, the matching of patterns needs to be fast enough to
allow interactive applications, while being accurate enough to do qualitative matching.

4.3 Approximation of Accelerometer Data

This section introduces the algorithm to approximate human acceleration time series
efficiently, so that it is represented by a smaller amount of data without losing the
intrinsic nature of the underlying activity.

Key to our approach is the approximation of a time series of human acceleration data,
into a representation of linear segments that is efficient to manipulate and faster to pro-
cess than the raw sensor data. The linear segments can be visualized in an identical way
to the original data in a time series plot, while the number of data points is significantly
reduced.

Our approach presented in this section is based on the SWAB algorithm (Keogh et al.,
2001b), and is an adaption of this algorithm specifically for physical activity data from
accelerometer sensors. The next sub-sections will present the original and our modifi-
cation in detail.

4.3.1 SWAB

The original SWAB algorithm works by approximating the time series by well-chosen
linear segments that are closer to the data than the on-line Sliding Windows method,
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Figure 4.4: The original SWAB algorithm approximates a time series to a set of segments,
with a sliding buffer in which bottom-up approximation is performed. Our
adaptation replaces the computationaly expensive Sliding Windows phase
(top) by moving the buffer up to the data point where the slope changes
sign (middle). After sliding the buffer (bottom), the segmentation process
starts over. Note that the buffer size is variable within certain bounds and
adapts automatically due to the shape of the signal.

while being still an on-line approach. Figure 4.4 sketches the basic operation of SWAB:
A buffer window is slid over the original time series, in which Bottom-Up segmentation
is performed. The left-most segment is then produced as the next approximated seg-
ment, while the buffer window is moved to the right, to the next original data point for
which the Sliding Windows approximation cost overruns a threshold.

More precisely if the segment between the ith and jth data points, x; and x; respec-
tively, is called S, the cost of approximation of the subsequence (x;, X;1...,X;) by S is
calculated by

c(x;..x;,S) = Z]: (xn —(x;+(n—1i)* ﬂ))z ,

n=i J—

which is then done for every new data point x; until the cost ¢ overruns the cost thresh-
old. In that case, the new buffer is extended to x;_; and the next approximation seg-
ment is searched with the Bottom-Up approach in the buffer.
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4.3.2 mSWAB

For the original SWAB algorithm optimizations with regard to the processing speed
are possible for particular data, by for instance incrementing the sliding window with
multiple samples instead of one, which showed beneficial in case of electrocardiogra-
phy (ECG) data. SWAB’s standard version moves a sliding window, recalculating an
approximation cost and matching it to a threshold for every additional sample of raw
data.

Our adaptation, as shown in Figure 4.4, exploits the property of accelerometer data,
which tends to heavily fluctuate by producing characteristic peaks in the time series,
and instead moves the window on to the next data point when the slope’s sign changes
between positive and negative, or zero. This means that instead of having to iteratively
calculate ¢, one simply has to calculate the slope between adjacent data points x; and
x;41 and stop when the signum function changes value:

sgn(x; —x;_1) # sgnlxj; — x;)

This speeds up the process as it requires a single test per sample (O(n) with n the sam-
ples the buffer is shifted over), instead of recalculating costs over the segment (O(n?)
regardless whether sum of squares or the L., norm is used for the cost calculation).
Although the Bottom-Up part of SWAB remains still costly, substituting the Sliding Win-
dows approach leads to a significant effect when the accelerometer data is sampled at
a high frequency or in constant subsequences (i.e., when no movement occurs). The
latter occurs very frequently, especially in long-term data which include resting and
sleeping segments.

A second change to the original algorithm uses a suggestion made by Junker (2005)
to merge the last two produced segments if their slope is the same. Listing 4.1 shows
the source code, highlighting the differences to the original SWAB algorithm.

Up to now, we have presented the one dimensional version of the algorithm. This
technique can be extended to handle multi-dimensional data as well, thus producing a
multi-dimensional approximation with linear segments. Depending on the application,
a multi-dimensional approximation of the sensor data can be of particular interest. For
example, the multi-dimensional version of the algorithm can be used for abstracting
human motion in time and 3D space. We have implemented a multi-dimensional ver-
sion of mSWAB and used it in chapter 6 to abstract human motion and then to detect
recurring motion patterns of interest. An example of multi-dimensional approximation
of raw inertial data by our mSWAB is shown in Figure 4.5.

To assess the impact of the proposed modification, we compare in the following sec-
tion the performance of our mSWAB algorithm to other existing techniques on real-
world human inertial data.

4.3.3 Evaluating the Approximations

With the modified SWAB at hand, our focus now lies with assessing the efficiency of the
approximation algorithm, meaning the execution speed and the quality of the approxi-
mation, which we measure by computing the overall approximation error.

52



Listing 4.1: Here, the original SWAB algorithm abstracting timeseries with cost thresh-
old T, has its Sliding Window heuristic modified to increase the algorithm's
speed. To create less data, segments with similar slopes are merged.

[segs] = mSWABsegs(timeseries , len, T)
win_left=1; win_right=bufsize;

while (1) % while there is new data:
swabbuf = timeseries[win_left:win_right];
BUsegs (swabbuf, bufsize ,bu_segs,T); % Bottom—Up approx. of buffer
segs = [segs; bu_segs(2)]; % add left —most segment
n = size(segs);
if slope(segs(n)) == slope(segs(n—1)), % merge last segments
merge last2(segs); n = n—1; % if slope is equal
end;
win_left = bu_segs(2).x; % update left border of buffer window
if (win_right<len), % find right border of buffer window

i = win_right+1;
s = sgn(slope(i,i—1));
while sgn(slope(i,i—1))==s), % while sign has not changed

i =i+1; % grow buffer window

end;
win_right = i; % update right border of buffer window
bufsize = win_right—win_left;

else % no more data available
segs = [segs; bu_segs]; % add remaining segments from buffer
break; % exit endless loop

end;

end;
250

—X—raw

——%— approx

200

250

250 0

Figure 4.5: An example of raw sensor data approximation with the 3-dimensional ver-
sion of our mSWAB algorithm.
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Abstraction technique time to reduce 24h of data by time to process
50% 10% 5% 24h of data
Mean and Variance 0.1 0.1 0.1 0.1
Discrete Fourier 219.0 383.0 428.0 318.0
Sliding Windows 2.7 6.7 14.0 188.8
SWAB 8.0 7.7 7.9 36.1
mSWAB 6.8 2.4 2.1 19.2

Table 4.1: Approximation methods and the time it takes to approximate the original raw
sensor data. The second, third and fourth columns vary the parameters so
that the algorithms produce respectively half, a tenth, and one twentieth of
data representing the original raw. The last column shows how many seconds
the algorithms need to transform a day worth of data (on average, with best
performing parameters).

For this, we conduct an experiment where a time series from a human-worn ac-
celerometer recorded by a wrist-worn accelerometer logger (Van Laerhoven et al., 2008)
has to be approximated. The device, a less recent version of the current prototype shown
in Figure 3.2, has been used to obtain 3D accelerometer data at a speed of 100 Hz that
was stored on a microSD card. Since the data was uploaded approximately every 24 to
48 hours, the resulting data set consists of sequences with about 8.5 to 17 million 3D
acceleration samples each.

Several basic approximation techniques are evaluated for execution speed on 36 hours
of consecutive accelerometer data, with approximately 13 million 3D samples. For this,
we compare our modified SWAB to the original algorithm, along with the Sliding Win-
dows technique, which all belong to the class of Piecewise Linear Approximation (PLA).
Additionally we also present the performance of the segmented mean and variance and
the Discrete Fourier transform.

As can be seen from a 3D acceleration data example in Figure 4.6, the linear seg-
ments produced by the PLA techniques can be visualized relatively easy as a time series
plot, showing several characteristics of the original time series. The PLA techniques
are represented by Sliding Windows in this figure, while SWAB and mSWAB produce a
slightly different approximation. This figure also explains in particular why Piecewise
Linear Approximation fits so well in the query by example application presented in this
chapter: The segments allow a fast displaying, as well as zooming in and out, in a time
series plot of the accelerometer data, with close similarity to the original time series.

In our evaluation, the parameters for each technique were chosen for the following
scenarios: The first two vary the parameters of the methods so that they produce ei-
ther fine-grained or coarse-grained approximations of the original data. The third was
chosen so that the approximation methods produced the same amount of approximated
data each (in bytes). To guarantee fairness, all algorithms were implemented in C/C+ +
and executed on a regular desktop computer.

Table 4.1 shows the time (in seconds) it takes for the various algorithms to approx-
imate 24 hours of accelerometer data, averaged over all days in the data set. For the
results in the first three columns, the parameters of the respective algorithms are set so

54



raw data: 1500B

DFT,40: 240B

sw,64: 240B

m+v,40: 240B

Figure 4.6: Representations of the most popular methods, all approximating the 3D ac-
celeration time series (top plot) within 240 bytes of data. The resulting 240
bytes have been visualized back to a time series representation to illustrate
what information is typically retained. The first 40 DFT coefficients are here
transformed back with the inverse Fourier transform (2nd plot), the third
plot shows the Sliding Windows approximation segments (with threshold
64), and the last plot displays segmented mean and variance. The original
as well as our modified SWAB algorithms (not shown here) produce better
approximations then the Sliding Windows technique.

that the amounts of data that each algorithm produces are approximately equal. The
results show that our modified version of SWAB is indeed faster than regular SWAB,
much faster than DFT or Sliding Windows, yet a lot slower than the segmented mean
and variance. Implementing mSWAB on a microcontroller is feasible, however, as it
does not require floating point arithmetic, nor large data buffers.

Figure 4.7 shows results in detail between SWAB and the proposed mSWAB. There is
a tradeoff of speed and approximation error: mSWAB becomes significantly faster from
an early threshold T, owing to the difference in implementation of the sliding buffer,
however, the error (normalized Euclidean distance over the length of the data set) is
much higher for mSWAB.

To get a more deeper insight on how significant these performance differences of
mSWAB compared to SWAB is, we have extended the evaluation to verify the following
two claims: (1) whether mSWAB does indeed approximate the original accelerometer
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Figure 4.7: A closer look at the results from SWAB and our modified version of SWARB.
By varying the threshold and comparing results when the number of seg-
ments match (top) or the error between approximation and original data
match (bottom). As hypothesized, the mSWAB is faster than SWAB, but at
the cost of deviating more from the original data. The bottom plots show
that speed is less of an issue to match the error of SWAB and mSWAB, a lot
more segments need to be created with mSWAB.

data faster than the generic SWAB, and (2) whether the quality of approximation is
indeed comparable to that of SWAB.

In order to obtain meaningful results for our proposed application, three data sets
of activity data were used that are similar in structure and configuration to the one
depicted in Figure 4.3. Each data set contains the continuous 3D acceleration data
from a wrist-worn sensor, and spans between 24 and 48 hours. The subjects that were
monitored in these can be characterized as leading a regular life with normal levels of
activity. Similarly to the first evaluation, all tested algorithms, namely Sliding Windows,
SWAB and mSWAB, were implemented in C++, and compiled with full compiler opti-
mization turned on. The tests were all carried out on the same computer with a CPU
clocked at 3.2GHz.

The left plot in Figure 4.8 shows the residual error (i.e., the sum of squares of the ver-
tical differences between original data and approximation segment, for all segments)
for the Sliding Windows, the SWAB algorithm, and the proposed mSWAB algorithm, for
a cost threshold set between 1 and 50. The initial buffer size was set to 100, which is es-
sentially the amount of raw data streaming in per second. Prior verification has shown
that this value works well and contains the recommended 5 to 6 segments mentioned
in by Keogh. There is little difference between the performances of SWAB and mSWAB,
confirming that the Bottom-Up buffer within the algorithm works identically for both
implementations. The results also further confirm those from (Keogh et al., 2001b),
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Figure 4.8: mSWAB evaluated against the Sliding Windows and SWAB algorithms on the
long-term data. Left: the residual error for a varying cost threshold. Right:
the time in seconds needed to approximate the data. Initial buffer size for
SWAB and mSWAB was set to 100.

showing that the approximation segments from the Sliding Windows algorithm are fur-
ther apart from the original data than those of SWAB and mSWAB.

The right plot in Figure 4.8 shows the execution speed in seconds, for the cost thresh-
old of the approximation algorithms between 1 and 50. Identically to the residual error
plot, the initial buffer size for SWAB and mSWAB was set to 100. Sliding Windows can
be seen to be in the same range for a cost threshold of one, then veering off and steadily
increasing as the cost threshold increases. The mSWAB algorithm does indeed display
a faster execution speed compared to SWAB, owing to the sliding heuristic of the buffer
window: Instead of steadily increasing the segment and re-doing the cost calculation
over an increasing set of data points, the change of slope between successive data points
is monitored.

The remaining questions are: a) Does this larger approximation error between seg-
ments and raw data have any effect on actual matching? and b) Is the algorithm effi-
cient enough to be implemented directly on a wearable data logger with very restricted
computational capabilities? To answer these questions, the next sections present a case
study each.

4.4 Case Study - Subsequence Matching for Activity Recognition

First, considering the activity recognition scenario, where patterns selected by the user
are used to query for similar patterns in sensor data.

After obtaining the approximation of the original inertial sensor data through
mSWAB, this section covers the matching of patterns in nearest neighbors-based classi-
fication of these approximations. Hereby, we use the well known dynamic time warping
technique as a base line. Additionally, as a faster alternative, we introduce a new heuris-
tic that uses Euclidean distances between the K longest segments of a pattern.
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Figure 4.9: a) Matching subsequences Q and C with dynamic time warping (DTW) aligns
data points to the optimal counterpart (dotted lines). b) DTW is often
bounded, restricting the warping paths by local or global constraints (e.g.,
“Sakoe-Chiba Band” or “Itakura Parallelogram” are shown as white areas).

4.4.1 Dynamic Time Warping

The distance between two time series of equal length x = x;,x,,...,x, and y =
Y1,Y2, .-+ ¥ €can be computed via the Euclidean distance:

dist(x,y)=|x—y|=

If the time series lengths are not equal, which is often the case for subsequence pattern
matching for the original scenario, the euclidean distance is not usable, since it does
not consider appropriate mapping of points. Furthermore, the euclidean distance is a
poor similarity measure if the time series are similar, but distorted in the time domain.

Dynamic time warping (DTW) is a widely used technique used in speech recogni-
tion, information retrieval and machine learning, to overcome small distortions in time
between two time series (Bellman, 1957; Ratanamahatana and Keogh, 2004; Ko et al.,
2005; Lemire, 2009; Pham et al., 2010). Given two subsequences, DTW optimally aligns
or ‘warps’ the data points between the two time series (Figure 4.9a) and returns their
distance, which then can be used in classifiers as a similarity measure.

To align two time series Q = qg, ...,q, of length n and C = ¢y, ...,c,, of length m with
DTW, an n-by-m matrix with squared distances of the time series elements g; and c; is
created, and an optimal ‘warping path’ that characterizes the alignment of Q and C and
minimizes the warping costs is computed. The warping path cost for distance matrix
entry (i, j) can for instance be recursively computed with the distance function

The general approach is to compute all the squared distances in the matrix and then
to choose the minimal continuous path. Unfortunately, this approach is of high time
complexity, namely O(n - m). In practice, different local or global constraints can be
used to decrease the number of paths that will be computed during alignment process,
thus significantly speeding up the calculation. In our implementations we considered
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Figure 4.10: Selecting K longest segments for pattern matching, with K in this exam-
ple being 7. In our query-by-example scenario, for a subsequence, the K
longest segments are chosen to be then compared against the time series.

two common bounding techniques: a band and a parallelogram originally proposed by
Sakoe and Chiba (1971) and Itakura (1975) respectively, where only paths are consid-
ered that lie within certain bounds (Figure 4.9b).

4.4.2 K Longest Segments

Most subsequences of interest tend to have a high number of segments, resulting in
slow matching when done with Euclidean matching or dynamic time warping. In order
to speed up matching, we propose to limit the subsequences to those segments that
are likely to be most descriptive. These are in our data assumed to be the K longest
segments per dimension. We argue that this is sensible as the large segments tend to
cover either large peaks or large stable regions in the subsequences for our accelerome-
ter data, both of which are important for characterizing motion patterns within physical
activities.

For matching, these K longest segments are selected and compared against the seg-
ments in the subsequence it is compared to. The distances to the closest matching
segments, using Euclidean distance, are then summed to obtain a distance between
the two subsequences. When used in our query-by-example scenario, the second sub-
sequence is created from the contents of a sliding window over the entire time series.
Thus, closest matching subsequences to a query subsequence can be found.

The choice of the number of segments K greatly affects the speed of the algorithm,
as well as the accuracy of approximation. The higher K becomes, the more distinctive
the resulting set of segments will be in matching and the more time is needed to find
closest matches to all segments.

4.4.3 Evaluation of Matching Methods

To evaluate how accurate the matching works of the DTW and K longest segments meth-
ods, we use a data set that contains 15 very similar target classes: For 5 test subjects,
three person-specific activities are recorded that are known to be highly challenging in
activity recognition: “walking”, “climbing stairs” and “descending stairs”, as shown in
Figure 4.11. The data set incorporates fatigue and sensor strap loosening by recording
per test subject all activities 5 times in a row and on two different days, resulting in
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Figure 4.11: The walking data set consisting of 5 test subjects performing “walking”,
“climbing stairs” and “descending stairs” activities. To evaluate our ap-
proximation and matching algorithms, we try various approximation and
matching parameters combinations, on the challenging 15 classes, where
the activities as well as the person need to be discerned.

Threshold DTW accuracy (%) KLS accuracy (%) Execution time (sec.)

worst best worst best DTW KLS
2 63.4 88.0 50.3 85.0 88.6 12.7
10 56.6 83.4 41.7 83.5 15.5 7.5
20 44.1 72.6 31.2 72.6 7.0 3.6
30 36.3 65.8 28.6 63.0 4.0 2.2
40 34.5 61.6 19.5 58.2 2.5 1.5
50 29.7 61.0 12.4 49.1 1.7 1.1

Table 4.2: Comparing the performance of DTW and K longest segments as in Figure
4.12 with accuracy (in %) and execution time (in seconds), using 10 for both
SC-band width and K, and varying approximation threshold.

many examples per class with inter-subject deviations. The entire data set consists of
about 1.1 million samples, spanning over 2 hours.

The above-described DTW and K longest segments algorithms were used to match
and classify via nearest neighbors classification the training part of this data set, using
30-fold cross validation, to the remainder testing part. DTW was used together with
a Sakoe-Chiba band being varied from 1 to 16, as was the parameter for K longest
segments, K. The target classes were chosen to be as challenging as possible, not
only containing the activity but also which person performed the activity. Detections
in unlabeled (‘background’) data were counted as false positives.

As illustrated by the best-performing data in the left plots of Figure 4.12, K longest
segments tends to equal the performance of DTW for SC band and K of 10, and using a
low enough cost threshold. The right plots in Figure 4.12 illustrate that DTW performs
in few isolated cases considerably better with lower cost thresholds. DTW however, as
can be witnessed in Table 4.2, results exactly then in far longer execution times. It is
therefore important in future work to consider data from more test subjects.
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(a) Accuracies using DTW with SC-band from 1 to 16 (on the x-axis)
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(b) Accuracies using K longest segments with K from 1 to 16 (on the x-axis)

Figure 4.12: Accuracy results for the best and worst test subjects in the data set, ap-
proximated with mSWAB for a range of cost thresholds, and classifying with
nearest neighbors using: a) Dynamic Time Warping with Sakoe-Chiba band,
or b) K longest segments.

4.4.4 Study Conclusions

Long-term activity recognition has, due to advances in miniature sensing techniques,
become a field in need for fast machine learning techniques. Recordings of long-term
inertial sensing trials tend to be many and large, producing time series which are hard
to analyze using conventional classification techniques.

In this study we have presented a piecewise linear approximation algorithm for time
series, which based on the SWAB algorithm and was modified to work faster on human
acceleration data. The resulting approximation can be plotted in time series plots just
as the original data, allowing inspection and annotation of the data. While in our
experiments the modification allowed for a significantly faster approximation, it also
resulted in a larger error with respect to original data, the impact on the classification
based on matching with bounded Dynamic Time Warping, however, resulted in similar
performance.
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Additionally, we have proposed a matching routine for the approximated data that
uses the Euclidean distance between the K longest segments in the approximation. This
method has in an empirical study shown to be about twice as fast as bounded Dynamic
Time Warping, while resulting in similar accuracies when the value K is chosen well.

The two main contributions for our long-term activity recognition research are: first,
an implementation of the approximation algorithm directly on the wearable accelera-
tion logger allows to store segmented approximations rather than the raw data. Second,
the fast matching of segments allows efficient query by example data mining: by select-
ing regions in the time series plot of a data set, matching regions are found that can be
used as a tool for post-annotation and -analysis of the data.

In Chapter 6, we will use the mSWAB algorithm as the first early data abstraction step
in an activity recognition system that uses learning methodologies that are capable of
modeling richer representations of activities, such as models capable of learning (sets
of) typical motion subsequences per activity.

Aiming for the proposed on-sensor implementation and on-line approximation of
streaming sensor data, the next section presents a study on implementing the mSWAB
algorithm on a wireless sensor node with constrained hardware resources,

4.5 Case Study - Embedded mSWAB for WSN Applications

Following the idea of early data abstraction that leads to faster analysis of the recorded
time series, such as pattern searching and matching, we argue that it is very useful to
create sensor data abstraction directly at the source, i.e. on the sensor node. First, at
a cost of additional processing, the amount of data to be stored on a sensor node, or
(in case of a wireless sensor network application) to be sent through the network is
significantly reduced. To this end, in this chapter investigates the implementation of
the proposed mSWAB algorithm on a sensor node.

After implementing the bottom-up approximation as well as the slope sign change
part for general purpose personal computers and evaluating their performance on al-
ready available off-line data sets, previous experiments indicated that this modification
is efficient enough to be implemented on an embedded sensor platform (Van Laerhoven
and Berlin, 2009; Van Laerhoven et al., 2009). In this section we will look at the imple-
mentation of this algorithm on wireless sensor nodes in general.

4.5.1 emSWAB

The basic functionality of a sensor unit running embedded mSWAB (emSWAB) is as fol-
lows: a sensor is being sampled at a specific fixed frequency, producing what we define
as raw data values. The new sampled data are forwarded to the emSWAB algorithm
that decides whether to store the value to a buffer or, if enough values are available in
the buffer already, to run the bottom-up approximation step, thereby producing the next
approximating linear segment. This segment is stored to a buffer that eventually will
be wirelessly transmitted into the sensor network for further analysis at the base station
(see Figure 4.13). Hereby the segments are represented by data points that consist of
an index (A; value in time in amount of samples, to the previous data point) and the
corresponding sensor value.
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Figure 4.13: Basic functionality of emSWAB on a wireless sensor node. The emSWAB
takes a buffer of raw data, computes a bottom-up approximation, and
produces the next segment as the final result of the approximation step.
The buffer is then filled with new raw data. The produced segments are
buffered and finally wirelessly transmitted to a base station.
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Figure 4.14: Example for the computation of the approximation cost (sum of distances)
for a candidate segment during the bottom-up approximation step.

One of the main issues we know in advance we will be facing when porting mSWAB
to an embedded system is that a floating point unit is not available in hardware. Thus,
following two adoptions were necessary and are important to be noted:

First, the approximation cost function was changed from Euclidean Distance to sum of
distances. This way, instead of computing the sum of squared distances and then com-
puting the square root, we only look at absolute distances between the raw data points
and their corresponding interpolated value on the segment. This adoption reduces the
computational load for the microcontroller, as well as the memory requirements, by
avoiding costly implementations of the square and the square-root functions.

Second, when computing the approximation cost between an approximating segment
and raw data points, corresponding interpolation points on the segment need to be
computed (Figure 4.14). For example: we want to compute the approximation cost of
the candidate segment that will be created when the two blue segments will be merged.
Given the two points for the candidate segment (iy; vy) and (iy; v,), both consisting of
an index and the sensor value, we can utilize the linear interpolation formula

.. A, ..
Vinterp = Vo t (ip + linterp)_A‘ , where A, =v,— 1y, A; =i, —
1
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to compute the interpolation values for the indices ijperp € {ip + 1,ip + 2,...,13,1; +
1,...,i, — 1}. The approximation cost c is then the sum of absolute distances between
the raw data values and the interpolated points:

]
Clig,in) = 2 : |y — Uinterp,kl

k=io

The lack of the floating point unit on a microcontroller is especially grave for the di-
vision step in the formula above that will cause additional error. For example, this error
becomes in particular obvious when considering a candidate segment with a positive
slope that is still smaller than 1: if (i + ijerp) - &, < 4, the division will result in zero.
From this follows that the interpolated point equals the raw data value, and this results
in a distance and thus in the approximation cost of zero.

To preserve as much accuracy as possible, we slightly transform the interpolation
formula, forcing the division by A; to be the last step in the computation:

Up A+ (lO + iinterp) AW
Uinterp = A

i

This transformation has been verified to better preserve the accuracy than the tradi-
tional way to compute the interpolation, and therefore was implemented in emSWAB.

Additionally, emSWAB can be further optimized by reducing the amount of repeat-
ing computations. For example, when the initial bottom-up approximation costs for a
given buffer of raw data have been computed, a copy of those values can be stored
and partially reused later. Once the approximation is finished and the next segment is
produced, only the costs for those points will be removed that have been merged out by
this particular segment. Other raw data points and their corresponding initial approxi-
mation costs remain. The approximation costs only need to be computed and stored for
new incoming raw data values.

To allow easy portability to different hardware platforms and operating systems, we
have chosen to implement our emSWAB algorithm as a library in standard C(95/99).

With the emSWAB algorithm now described in detail, we will next present the experi-
ments methodology and evaluate its performance on several data sets of which the data
could be captured within a wireless sensor network.

4.5.2 Experiments Methodology

The raw sensor data that is used during these experiments was taken from various
public data sets. Examples of the data can be seen in Figure 4.15. Hereby, the data sets
ECG 1 and 2, Power and Space are subsequences of the data sets that are freely available
athttp://www.cs.ucr.edu/~eamonn/discords/. The data sets Sleep and Hapkido are
subsequences of data sets that are freely available from the ESS group.

The two ECG data sets represent two different anomalies in a normal heart beat,
where the first is an oscillation of high frequency and the second is a small bump.
The Power data set represents power requirements/loads that were recorded at a pow-
erplant and spans multiple days. The Space data set shows a normal cycle in a Space
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Figure 4.15: Different publicly available data sets used in the experiments. The data
sets were chosen for their variety of the signal, displaying characteristic pat-
terns. Whenever present, we have chosen the subsequences that contained
anomalies, such as high variant section in the latter part of ECG 1 (top plot)
or the sudden drop in the “energized” phase of the Space data set.

Power Hapkido ECG2 ECG 1

Sleep

Space

Shuttle Marotta Valve time series, with an anomaly during the “energized” phase, where
the signal shall stay high. The Hapkido data set shows human activity data, namely
acceleration data of a sensor that was attached to the ankle of a person performing
Shinson Hapkido training. Finally, the Sleep data set shows accelerometer signals of a
person sleeping and changing her sleeping position during the night.

The main aspect about the used data sets are the essentially different types of signal in
terms of occurring patterns: on the one side of the spectrum there are long spans with
flat signals (as in Sleep or Space) and constantly varying sensor values on the other
side (as in Hapkido). Hereby, for our experiments and evaluation, the original sampling
frequency is not considered important. More important is the shape of the signal and
its preservation during the on-line approximation and abstraction on the sensor node.

We use these data sets to compress the signal utilizing our approach as well as the
forwarding of raw data and the run-length encoding (RLE) technique. With our ap-
proach, once a new sensor value is sampled, it is forwarded to the emSWAB algorithm.
The resulting approximating segments are buffered first and transmitted via radio to its
neighbors or a base station when enough segments have been accumulated. Hereby, the
segments are represented by data points consisting of a A; value (number of samples
that were abstracted to the previous segment point) and the actual sensor value.

Our evaluation goal is to be able to provide specific performance figures and esti-
mated power consumption for the algorithm that is easy to reproduce. To achieve this,
we have ported the emSWAB algorithm to Contiki (Dunkels et al., 2004). Contiki is
a very popular and widely used open-source, multi-platform and multi-tasking operat-
ing system for embedded wired and wireless sensor networks. It is written in C and
is designed for variety of microcontroller- and microprocessor-based sensor nodes that
have limited hardware resources. One of the main aims is a low-power radio commu-
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ENERGEST_TYPE_ Consumption (mA)

CPU 1.8
LPM 0.05
LISTEN 20
TRANSMIT 23
LED_G 20
LED_Y 25
LED_R 25
(a) TelosB wireless sensor node. (b) Current consumption figures.

Figure 4.16: a) The TelosB wireless sensor node based on the MSP430 microcontroller is
used as the target hardware platform for this evaluation. b) Contiki OS with
its built in software-based power-profiling mechanism Energest allows for
energy consumption estimations, with figures from according data sheets.

nication in wireless sensor node networks. The Contiki OS project has various tools
and implemented features, whereby the two most important for our work are the Cooja
network simulator (Osterlind et al., 2006) and the power-profiling mechanism Energest
(Dunkels et al., 2007).

Most experiments were conducted using the Cooja cross-level sensor network sim-
ulator. As the experiment target system we have chosen the very popular Tmote Sky
/ TelosB sensor node as the hardware platform. The node is a 8MHz MSP430-based
board with 10kB RAM, equipped with a CC2420 IEEE 802.15.4 compliant radio chip,
1 megabyte external flash memory, and optional sensors. The most important current
consumption figures, as noted in the Crossbow TelosB data sheet, are:

* MSP430, sensors and circuit: 1.8mA in active and 5.1uA in sleep mode,
* Radio transceiver: 23mA in active, 21uA in idle and 1uA in sleep mode.

Using Contiki’s software-based on-line power-profiling mechanism Energest (Dunkels
et al., 2007), we were able to record how long the sensor node was staying in the low
power mode (LPM) or was busy doing some computation (CPU), for example emSWAB
computing the approximating segments, or was wirelessly transmitting (TX) data to the
base station. Since our experiments focus on the sensor node sending abstracted data
only, the time spent for actively listening or receiving data (RX) is negligible. By logging
the time spent in each of these four states (modetime) and applying the corresponding
power consumptions, current or overall power consumption per state over a period of
time can be estimated, by for instance:

modetime(ticks)-1.8(mA)-3(V)

ticks
s

Powercpy(mW) =

frequency( ) - runtime(s)

Besides being able to use current power consumption to adapt sensor nodes behavior
as it is for example done in related work, our primary goal is to evaluate how much
power is used for computing a linear approximation of the signal.
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Some figures on the sensor node images

The footprint of our experimental Tmote Sky / TelosB module image with emSWAB
implemented in Contiki is 364.120 bytes, where less than 1% is taken by the emSWAB
image. On a different sensor node, featuring a PIC18-based microcontroller from Mi-
crochip instead, our emSWAB implementation has a footprint of 2440 bytes.

The buffer size for the bottom-up approximation step was initially set to 20 values,
bounding the buffer to minimum 10 and maximum 40 raw data values. When the
approximation is computed, a buffer with corresponding indices that are stored as 16
bit unsigned integers is additionally needed. Thus, our implementation results in a
buffer of 40 unsigned bytes (sensor values) and a buffer of 40 unsigned 16 bit integers
(indices), requiring 120 bytes of memory. To be able to store and work with merging
costs for adjacent pairs of segments, an additional array of unsigned 16 bit integers
is needed. In order to speed up the costs computation (as described previously), two
arrays are used, resulting in additional memory requirements of 156 bytes.

The structure implemented as union used to store the segments that are produced
during the approximation step is 40 bytes large. Its size can be varied, depending on
the size of the wireless communication package. We chose a value of up to 20 data
points (19 segments) that are represented by an index and the actual sensor reading.

To avoid losing new raw sensor readings, a raw data buffer of size 120 is used, adding
120 bytes to the overall memory requirements. The buffered sensor readings will be
copied into the emSWAB buffer. Once the approximation is computed, the data points
that have been merged to one resulting segment will be deleted.

4.5.3 Results

After discussing the methodology and presenting some figures on the sensor node im-
ages, in this section we want to evaluate the performance of emSWAB for different
merging threshold against the raw data dissemination and the run-length encoding
(RLE) techniques.

In Figure 4.17, two plots visualize the Energest power estimation logs: the upper plot
for RLE and the lower plot for emSWAB with a merging threshold of 5 and an initial
bottom-up buffer size of 20. Here, the Hapkido data set was used. Note that this is only
a fraction of the whole log that was recorded during the simulation, since visualizing
the log entirely would make it unreadable. The X-axis represents the sensor reading
ticks, whereas the Y-axis shows the number of CPU cycles that were spent in the four
different system modes.

Both plots show that most of the time the sensor node stayed in low-power mode.
Sampling and storing a new sensor value is almost negligible when abstracting the data
with RLE, therefore CPU usage only appears when the data is wirelessly transmitted
to the network (MAC overhead). The emSWAB plot, on the other hand, shows that
more computation is required. However, the amount of data that needs to be wirelessly
transmitted is reduced, resulting in a decreased amount of wireless communications:
with the emSWAB approach 4 times, against 7 times with RLE.

Since in the example given above a relatively low merging threshold of 5 has been
used for emSWAB, the resulting approximation is close to raw data. Increasing the
threshold will result in a more coarse grained approximation. This will lead to more
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Figure 4.17: Power consumption estimation with Energest: comparing the performance
of RLE and emSWAB using the Hapkido data set. The plots show how long
(in terms of CPU cycles) the system stayed in one of the four modes: CPU -
time spent on calculation, LPM - low power mode, TX - wirelessly transmit-
ting the abstraction, RX - listening or receiving (negligible). In this example,
RLE performs very similar to raw data dissemination (not shown here). Ob-
viously, the emSWAB algorithm requires more time for computation, but
profits through less data that needs to be wirelessly transmitted.

computation on the one hand, thus increasing the CPU load, but will reduce the amount
of data to be transmitted.

The six plots in Figure 4.18 present emSWAB’s performance on the data sets men-
tioned before (see Figure 4.15). To be able to compare the performance figures of the
different sensor data abstraction techniques, and to decide which one performs better,
we need to compute the relative time required for every system mode. This is achieved
by normalizing the time figures for the four different system modes by the total runtime
of the experiment. Additionally, emSWAB’s main abstraction parameter is varied for ev-
ery data set to show its direct impact on the algorithm’s performance and the estimated
power consumption. The values used for the merging threshold have been chosen as
follows: mt = {5, 10, 15, 20}.

Figure 4.18a shows performance figures for the Hapkido data set. This data set has
a fluctuating signal that leads to a poor performance of the RLE technique. A fine-
grained emSWAB approximation (mt = 5) demands more time for its computation,
thus resulting in a higher CPU load, but is balanced out by a smaller-sized abstraction.
This results in lower package size and thus in less wireless communication, thereby
preserving battery power. Increasing the merging threshold and by this forcing a more
coarse-grained approximation will reduce the footprint even more, as can be seen in the
plot, but result in a higher approximation error that might become critical for preserving
the shape.

Figure 4.18b shows performance figures for the Sleep data set. This data set is differ-
ent in nature compared to the Hapkido data set, in that it contains long periods with
constant sensor values: the signal stays flat, is shortly interrupted by a jump to an-
other level, and then stays flat again. The good performance of the RLE abstraction is
therefore not surprising. emSWAB does perform well on this data, too, but at a much
higher cost in terms of computation time, preventing the sensor node from entering the
desirable low-power mode.
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Figure 4.18: Energest performance comparison of raw data dissemination, RLE and em-
SWAB for different merging thresholds on six datasets. The y-axis shows
time spent in the four different states (normalized, in percent).

Figures 4.18c and 4.18d show performance figures for the two ECG data sets. The
main difference in these two data sets is the type of the anomaly present in the sig-
nal. ECG 1 has a part with highly varying signal that prevents RLE to perform as
good as it does on ECG 2 that does not contain this kind of anomaly. emSWAB per-
forms well on this combination of flat and high variance signal, outperforming RLE and
matching the time needed for computation (and MAC communication overhead) when
approximating with a merging threshold of 20.

Since the signal in the ECG 2 data set has no high variance part, RLE produces an
abstraction of a smaller size. Also, emSWAB performs better on this data set, outper-
forming RLE even for the small merging threshold.

Figure 4.18e shows performance figures for the Power data set. Due to reoccurring
characteristic patterns as well as lots of noise in the signal, RLE performs worse than on
clean data as it is the case for Sleep or ECG 2 data sets. In this case emSWAB performs
much better, especially with a higher merging threshold. Filtering out the noise and thus
considerably reducing the footprint of the approximation, emSWAB even outperforms

69



RLE in terms of cumulative CPU load (approximation computation plus the wireless
communication overhead).

Figure 4.18f shows the performance figures for the Space data set. The signal in this
data set contains less noise then in the previous one, but RLE is still not performing
optimal. This is due to the underlying shape of the signal that contains long periods of
slowly climbing or falling sensor values. emSWAB’s linear approximation does preserve
this linear shape of the signal, reducing the amount of data to be transmitted, outper-
forming RLE both in terms of the footprint as well as the time needed for computation
and the communication overhead.

In this section, we have presented the experiments methodology, some figures on the
sensor node images and the Energest performance figures for our emSWAB approxima-
tion technique that we have compared to the raw data dissemination as well as the RLE
methods. In the next section we want to draw some conclusions from these results and
also indicate directions for future work.

4.5.4 Study Conclusions

With the experiments and the results presented in this study, we can first conclude that
the modification and optimization made SWAB runnable on a microcontroller-based
sensor node. Experiments with this implementation of emSWAB, although currently
conducted in the Cooja simulator, show good performance on different data sets with
varying signal characteristics.

The comparison of emSWAB’s Energest performance figures to the figures of the com-
monly used RLE technique have shown that emSWAB can provide a good piecewise
linear approximation of the signal that preserves its shape and - on most of the data
sets used in this study - has a smaller footprint. The abstraction’s size is especially cru-
cial to a wireless sensor network as it has a direct impact on the amount of wireless
communication in the network and therefore on the battery lifetime.

Additional computation overhead that is needed to produce the emSWAB’s approx-
imation is balanced out by the reduced amount of data that needs to be transmitted
wirelessly throughout the network. This way, battery power can be preserved much
better than with RLE or just transmitting raw data.

Our approach is especially targeting data with patterns essential to the sensor net-
work application. This, of course, does not hold for sensor data that is similar to for
instance that in the Sleep data set, as in this case other abstractions such as RLE per-
form better, both in terms of the abstraction size as well as the CPU load. Future work
can consider further optimizations of emSWAB and possible combinations with other
abstraction techniques, depending on the signal.

Besides the on-line adaptation of the approximation technique based on the sensor
data, current power consumption, power consumption over a time span or the (es-
timated) remaining battery power can be utilized for adaptive sensor node behavior.
For our approach, the adaptive behavior would mean that (based on the power con-
sumption figures) the sensor node will automatically increase or decrease the merging
threshold to allow more coarse- or fine-grained approximation of the sensor data. In-
creasing the merging threshold, thus reducing the number of approximating segments,
will result in less data to be wirelessly transmitted and thus preserve battery power. On
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the other hand, if the approximation needs to be especially fine-grained, and enough
battery power is available, the merging threshold could be reduced allowing to preserve
even finer details in the signal.

4.6 Conclusions

We presented in this chapter the applicability of early data abstraction techniques that
preserve the shape of the time series. First, we presented our on-line mSWAB piecewise
linear approximation algorithm, that computes Bottom-Up approximation on sensor
readings in a small buffer window and updates the buffer borders very efficiently by
considering slope sign changes in new sensor values.

To show the potential of our modification, a case study motivated by activity recog-
nition research has been carried out, where closest matches of query patterns, chosen
by the user, have to be identified in huge time series as efficiently and accurate as pos-
sible. Such query by example pattern matching can be also employed with patters that
have been previously accumulated in a data base, thus allowing to perform the search
for specific know patterns without human presence. The advantage of piecewise linear
approximation allows for visual inspection on all stages, both approximation as well as
pattern matching.

Aiming at embedded sensor applications, such as wearable sensors for long-term ac-
tivity monitoring in medical applications, or the long-term deployment of sensor net-
works to monitor environmental phenomena, the abstraction of sensor data should also
be performed directly at the source. In a second study we showcase the on-sensor im-
plementation of the mSWAB algorithm which had to be adjusted to meet the hardware
and computational constraints of such custom sensor devices.

Considering the on-going development towards more powerful and yet more energy
efficient processing units, while higher energy consumption for wireless communication
or using a local flash memory storage remains, the advantages of early data abstraction
on the sensor node become more important. Reducing the amount of sensor readings
such that the shape of the signal, arguably its essence, will not only allow for faster
post-analysis of gathered data, but also preserve battery power and extend the lifetime
of the sensor during the deployment.

In the following chapter we will consider other means of encoding the shape of the
signal for a wireless sensor network monitoring application, hereby focusing not on
evaluating a continuous time series, but particular physical phenomena of short dura-
tion captured by the sensor nodes.

Besides just computing the piecewise linear approximation (e.g. through segments
produced by mSWAB), in Chapter 6 we consider further encoding of the signal shape to
facilitate not only fast matching of patterns, but specifically to facilitate the finding of
previously unknown recurring patterns in a challenging activity recognition scenario.
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5 Complex Event Classification in WSN

The data logger presented in Chapter 3 with its MEMS acceleration sensor is able to
capture not only translation, tilt and rotation, which are the basis for human motion
analysis, but also another type of acceleration, namely vibration. This chapter focuses
on capturing vibrations with the same power-efficient and inexpensive data logger, and
analysis of the vibration signal with the aim of detecting and discerning events.

In the previous chapter we have presented an approximation algorithm that reduces
the amount of sensor data and at the same time preserves the essence (shape) of the
original time series, and have shown how it can be applied for human motion detection
and activity recognition. In this chapter, we consider sporadic physical phenomena that
cause vibrations, for which the proposed piecewise linear approximation and pattern
matching algorithms are less suitable. On the other hand, the shape of the vibration
signal contains characteristic and relevant information that can be abstracted and used
for event detection and classification. Consequently, encoding the shape information in
appropriate features, as exemplary shown in Figure 5.1, facilitates data analysis with
our “shape as a feature” approach.

This section motivates our work in the domain of wireless sensor networks (WSN)
applications and argues for utilization of accelerometer sensor nodes that can capture,
abstract and analyze streaming vibration data with our shape-based features approach.

5.1 Motivation

In contrast to human motion data captured continuously for long stretches of time with
wearable sensors, which is being analyzed off-line for recurring patterns or activities,
this work considers long-term deployment of sensors for monitoring the environment
and detecting as well as identifying events. While the prominent wireless sensor net-
works scenarios consider relatively slow-changing sensor readings (e.g.: temperature,
humidity, gas concentration or air pollution), where often threshold based approaches
are used to trigger an alarm, many more applications face the problem of, what we call,
complex and sporadic phenomena.

Capturing and analyzing vibration events has already been a motivation for many
wireless sensor network application scenarios, e.g. seismological (Werner-Allen et al.,
2006), infrastructure (Kim et al.,, 2007), business (Wang et al., 2006) or military

Raw Data WA Lo Features

Figure 5.1: Encoding the shape of the signal as a set of features facilitates complex event
classification directly on sensor nodes.
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(William and Hoffman, 2011) monitoring applications. These scenarios often required
specialized and expensive equipment tailored to these applications, with high sampling
rates in the range of Kilohertz, demanding also more powerful techniques and analysis
based on frequency domain features.

Following these WSN research, we argue that even with simple and inexpensive
MEMS acceleration sensors, as presented in Chapter 3, vibration data can be cap-
tured and analyzed appropriately with shape-based features. With a relatively high
sampling frequency on the one hand, and the limited hardware resources of a minia-
ture sensor node on the other, the main challenge lies in on-line data abstraction and
analysis, which would allow to transmit only the result of the analysis to the base sta-
tion, instead of raw sensor data, thus facilitating power-efficient long-term monitoring
applications.

Our approach for such long-term wireless sensor network deployment relies on a
system that consists of

1. multiple miniature acceleration sensor nodes that are able to capture vibrations in

the chosen type of monitoring scenario,

2. abstraction techniques and features that encode the shape of the vibration foot-

print and can be efficiently computed on the sensor node,

3. astraight forward classification system based on the shape features to discriminate

the events directly on the sensor node.

Acceleration Sensor Nodes for WSN Deployment

With regard to acceleration sensors, we rely on the miniature, inexpensive and power-
efficient hardware design presented in Chapter 3. The acceleration sensor is sampled at
100 Hertz, which is lower than the sampling rate of specialized hardware for capturing
vibration data, but still sufficient in some application scenarios. An important feature
of the accelerometer sensor is the ability to set a pre-defined acceleration threshold:
Only when vibrations are detected that exceed this threshold, the acceleration sen-
sor will wake up the main processing unit (the microcontroller) thus initiating on-line
processing of the streaming sensor data.

The microcontroller is very power-efficient when in sleep mode, and still consumes
little energy when computing. It is fast enough to process streaming data on-line, which
allows to abstract the original data and extract relevant features almost in real-time. The
sensor hardware used in the experiments lacks wireless communication possibilities,
which can be solved by adding the required RF chip. Alternatively, our approach can
also be implemented on already existing hardware platform.

Using the Shape of the Vibration Signal

To facilitate the detection and classification of events, we rely on features that encode
the shape information of the vibration data, whereby we have consider not the signal
itself (as with human motion), but highlight other signals’ inherent characteristics. Our
approach relies on abstracting the sensor data that preserves this essential information.
Then, extracting relevant shape informations from this abstraction, and encoding these
into features, is much more suitable for describing the underlying phenomena. Using
fast feature extraction from streaming data that can be implemented on the sensor
nodes, we show that on-sensor event classification can be achieved.

74



Figure 5.2: Our system'’s concept: A sensor network deployed along railway tracks cap-
tures vibrations caused by passing trains. Immediately computing efficient
features from streaming sensor data allows train type classification and
counting wagons on the sensor nodes. In future deployments, these can
be used to estimate train speed and detect worn-down cargo wheels.

In this work, we focus specifically on sensor data abstraction in an application where
the sensors have been sampled at relatively high frequencies. Hereby, sampling rates
range from hundreds of Hertz, for acceleration sensors and gyroscopes, up to thousands
of Hertz for microphones. Using efficient and easy to compute features such as mean,
variance, signal amplitude, and similar, abstraction of such sensor data is possible di-
rectly on the sensor nodes, even with their limited hardware resources. For applications
where events require large amounts (i.e. multiple hundreds or thousands) of sensor
readings to be adequately captured, computing such abstractions significantly reduces
the amount of data in comparison to the original signal.

Using a scenario and real data from vibration signatures generated by passing trains,
we show how with this approach the classification of passing trains and estimation of
their lengths is possible on miniature sensor nodes.

Application scenario

Our approach of using the shape of the vibration signal as a feature directly on a
distributed set of wireless nodes is applied to a railway monitoring scenario. Figure
5.2 presents our system concept, with a network of sensors deployed for capturing
vibrations.

Figure 5.3 depicts one event from a data set recorded for the case study: The data set
was obtained by deploying a network of sensor nodes that are equipped with sensitive
inertial sensors at the railway tracks, capturing the vibrations caused by passing trains.
We show that from the raw sensor data captured by the sensors in such a network, we
are able to classify the type of train as well as the train’s length. To achieve this in a
realistic setting, we limit our approach to a set of sufficiently efficient features that can
be implemented on the sensor node in an on-line fashion, thus allowing on-sensor event
detection, train type classification and length estimation.

The first experiment on railway railway tracks in Darmstadt shows that the chosen
features produce good train type classification with up to 90% of trains correctly identi-
fied. The second feasibility study uses raw data obtained from a deployment on one of
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Figure 5.3: Miniature sensor nodes attached to the railway tracks capture the vibrations
caused by passing trains. From the raw 3D acceleration data of these events
(upper plots), features can be extracted that are characteristic enough to be
be used for on-sensor train classification (bottom plots). Using a network of
such nodes makes the detection more robust and allows additional analysis,
such as estimation of the train’s speed by using time delays between sensors.

Europe’s busiest railroad sections near Cologne, which was annotated with the help of
video footage and contains vibration patterns of 186 trains. These trains were classified
in 6 types by various methods, the best performing at an accuracy of 97%. To enrich the
information about the train events, we also estimate the trains’ length in wagons. Visual
inspection of the data shows further opportunities in the estimation of train speed and
detection of worn-out cargo wheels.

The remainder of this chapter is structured as follows: Section 5.2 is dedicated to our
feature extraction approach. In Section section 5.3 we present the experimental deploy-
ments from which we obtained our data sets, as well as the evaluation methodology and
the evaluation results. Finally, we discuss our results in Section 5.4 and conclude the
chapter in Section 5.5.

5.2 Encoding Shape of the Signal into Features

Focusing on the application of spotting and categorizing passing trains as a representa-
tive scenario for a wider range of application types, the main goal is to extract simple
features directly on the sensor node itself, and propagate either these features through-
out the network instead of the original raw data, or a classification based on these. In
both cases the feature calculation is focused on, while we assume the classification to
be either straightforward enough to also implement on the sensor node, or be done on
a more powerful platform at the network’s sink.
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For the remainder of this chapter we assume a sensor sampling rate of 100 Hz and
the data resolution set to 10 bit. Although this is far from sufficient for exact vibra-
tion analysis, we argue that with using the basic features discussed in this section on
data from low-cost but precise MEMS inertial sensors suffices to capture the events
for the application’s needs. The features discussed here will thus not rely on calcula-
tions and transformations in the frequency domain but instead approximate shapes and
amplitudes within the signal to enable event classification.

Events are assumed to occur sparsely over the course of time, so most of the data
acquired by the sensor is not relevant and can be discarded after verifying no events are
present in the data. A windowed standard deviation calculation was found to accurately
detect these flat signal sections between events.

Whenever an event occurs, the sensor node will thus detect the changing sensor val-
ues, including the start and stop times of the event and the event duration, and tem-
porarily buffer the sensor data from the event for further evaluation. As the node’s RAM
tends to be limited, storing of the data stream can be done in an on-line fashion on pe-
ripheral memory such as an attached SD card. The feature analysis and calculation are
thus limited to on-line algorithms: They are required to run incrementally on partial
buffers of the event’s data at a time.

Since the sensor has the time of event occurrence and also its duration in number of
samples, the latter can directly be used as a distinct feature. This feature is similar to
what others have used to detect types of ground vehicles, for instance by Keawkamnerd
et al. (2008).

As we are interested in abstracting the vibrations pattern caused by trains, using
the overall variance to describe a train event would be another higher-level feature.
Extracting other features from the sensor data that describe the signal footprint requires
a more detailed look at the signal properties. For this, the vibrations caused by each axle
or carriage/truck of train wagons, can be extracted by a sliding window approach and
represented as variance peaks, as shown in Figure 5.3. Counting these local maxima in
the variance will create a feature that is expected to correlate to the number of wagons
in the train.

The amplitude of the signal was also chosen as a feature. Hereby, either the real sig-
nal amplitude can be utilized or alternatively, since the windowed variance is computed
for the above described peak detection, the maximum peak value as a representative
for the amplitude can be used instead (see the bottom plots of Figure 5.3).

These four features were used in our first evaluation. For the second study, we added
more features that were derived from the windowed variance and extracted peaks: the
amount of vibrations of the trucks through maximum and average of the amplitudes,
truck distances through the average distance between peaks, variety of wagon lengths
or trucks constellations via variance of peak distances. Additionally, the overall area
under the variance curve, as well as the average area per peak will be considered.
For the off-line evaluation we compute this feature using the Python scipy.integrate
library. Table 5.1 summarizes the proposed features used in our evaluations.

The ability to characterize the events directly on the sensor node with these features

makes it possible to forward these few abstractions of the event instead of its origi-
nal raw sensor data representation. When considering a wireless sensor network that
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ID Feature Description

0 duration event duration (vibration exceeding a threshold)

1 variance total amount of vibration caused by the train

2 peaks number of peaks extracted from windowed variance
3 max. amplitude maximum peak value

4 avg. peaks average distance between peaks

5 avg. amplitude average peak amplitude

6 area total area under curve

7 avg. area average peak area under curve

8 var. peaks variance of peak distances

Table 5.1: Overview of all features considered for train type classification. During the
5-fold cross validation on the data set using an SVM classifier, all possible
feature combinations (with a minimum number of three) have been tested,
whereby the features were also computed with a varying window size. The
features 0-3 were used in the first study only, while the second study consid-
ered all of them.

should be deployed for railway monitoring tasks, a much more energy efficient way of
notifying a base station or logging data for future off-line analysis is worth focusing on.

The presented feature routines are in essence the result of a trade-off between having
highly-accurate vibration information but requiring a high amount of processing power,
and settling for more abstract information while being able to do these calculations on
more light-weight platforms. The features also do not require thousands of samples per
second. From this follows that relatively inexpensive and power-efficient sensor nodes
can be utilized with microcontrollers that can for instance lack floating point units.

5.3 Evaluation

The experiments discussed in this section rely on datasets obtained with the prototype
sensor node, while placed at multiple locations on railroad tracks in Darmstadt and in
Cologne. In the case of our studies, results needed to be reproducible and we therefore
opted for continuous logging of raw data on the local flash memory, which is also a
power-intensive operation.

The first deployment was carried out at two locations in Darmstadt and was intended
as a “proof of concept” experiment. Since the deployment locations had to be easily
human accessible, we chose a railway crossing and a train station.

In the second deployment, our focus was widened to evaluate more features for train
type prediction, as well as extracting more information about the events for the railway
monitoring scenario, such as length of the train (number of wagons). For that, we
obtained a more challenging real-world data set along with detailed annotates of the
vibration patterns. This time, railway company officials were involved in the planning
of the experiments, who suggested the location for the deployment of the sensor nodes
to be near Cologne, specifically due to the variety of train types and their maximum
possible speeds. The particular spot featured four tracks running completely straight
for multiple kilometers, thus allowing train speeds of up to 250 kilometers per hour.
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Figure 5.4: Different train types that were recorded and classified during the evaluation.
Fast inter-city and the city hopper passenger trains at the top, a fast regional
passenger and a cargo train at the bottom.

The recorded datasets are presented next, whereby we give an overview on their
characteristics and information content.

5.3.1 Trainspotting Data Sets

Darmstadt

The data obtained in the first deployment comes from two separate recordings that
were conducted on different railroad tracks in different locations, in order to make
the data set more diverse. The combined data contains in total 247 events, where
an event is defined as a train passing by, whereby 182 of the trains were annotated
with the corresponding train type as they could be traced by to the available train
schedule. The remaining 65 train events were labeled with "unknown" and not used in
the classification evaluation. Figure 5.4 shows some types of trains that were observed
to be running on those tracks.

Figure 5.5 shows a part of the dataset, including details of a fraction of the data, and
showing two exemplar events caused by a regional passenger train and a cargo train.

The first of the two recordings comes from a low duty railroad track and has approx-
imately 24 hours of continuous sensor data, during which in total 53 trains passed by.
This track services only smaller passenger trains that consist of a two-car articulated
unit (Figure 5.4, upper right), whereby trains consisting of multiple such wagons were
spotted during rush hours. The second recording was carried out on a busier railroad,
contains 35 hours of continuous vibration data with 194 train events in total. This track
is used by a higher variety of trains, such as inter-city and regional passenger trains as
well as cargo trains. The sensor node was this time deployed nearby a train station
that is served by some regional passenger trains. While some trains were passing the
station without slowing down, others did halt at this station, thus adding more diversity
to train speeds and thus their signature’s length.
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Figure 5.5: Part of the data set, showing approximately 35 hours of sensor data (top
plot): The data contain sparse but complex events caused by passing trains.
Vibrations patterns shown in the two bottom plots were caused by a regional
passenger train accelerating from the nearby station (duration 16 seconds)
and a cargo train with loaded wagons (duration 30 seconds). The proposed
features were tested on this data with two common classifiers.

Since the dataset contains many different train types that mainly differ by name due
to their scheduled tours, but in reality turn out to be similar regarding the type of
wagons and locomotive used, a decision was made to group the annotations in four
main categories. The categories reflect main train types as they tend to be found on
European railroads. The three inter-city passenger train types (ICE, IC, EC) mostly
consist of same type and number of wagons are therefore grouped as class A. The two
regional train types (RE, RB) were categorized as class B. All types of cargo trains were
put together in class C, while so-called city-hopper passenger trains form class D.

Cologne

In the second deployment, the sensors have captured 186 train events in total, of
which 141 could be annotated based on video footage recorded during the deployment.
Figure 5.6 illustrates the video data with a series of frames from video footage capturing
a single locomotive passing by. Table 5.2 provides an overview on the six different train
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Figure 5.6: Snapshots from the video recordings showing in this case a single loco-
motive passing by on the 2nd high-speed track. These videos were used
as ground truth for the evaluation of type of train and train composition
(wagon count).

Type Description Count Model

Regio  passenger trains connecting cities 63

CityRail trains service city center, suburbs 15

Cargo various cargo trains 39

Loc single locomotives being transferred 10

Thalys French high-speed passenger train 5 L‘Eﬁ ) S SE—— S
ICE German high-speed passenger train 9 == s il i

Table 5.2: A total of 141 train events in raw sensor data could be annotated and used
for the evaluation. Here, different train types and their count in the data set
are shown. The model depicts the trucks’ locations, which differ among the
train types, with two trucks for a wagon (e.g. ICE) or one between them (e.g.
CityRail, Thalys), resulting in characteristic vibration footprints.

types: four different passenger train classes — two types of high-speed trains, regional
passenger trains and city rail trains — along with a cargo and locomotive classes.

Thalys, a French high-speed passenger train, typically consists of head and tail lo-
comotives and 8 passenger wagons which are connected to a single continuous unit,
resulting in 10 wagons in total. The ICE is a German high-speed passenger train which
in our experiment typically contained 8 railmotor wagons. The Regio class contains the
regional passenger trains that connect nearby cities within a region, but do not stop at
stations in between. Regional trains consist of a locomotive pulling or pushing a number
of bi-level wagons (as shown in Figure 5.2 or the corresponding model in Table 5.2). In
our experiment, these trains’ lengths were 3, 5, 6 and 7 wagons in total. The CityRail
trains connect larger cities with its suburbs and other smaller towns nearby, and typi-
cally consist of two electrical units with 4 wagons each. In our experiment, these trains
were running exclusively on the separate low-speed tracks.

The Cargo class has proven to be rather versatile, with one characteristic feature that
all cargo trains have in common: at least one locomotive is pulling a highly varying
number of wagons. Both the locomotives as well as the wagons themselves can be
of different types (e.g., tanks, containers, car- or freight wagons), as well as different
lengths and truck constellations. In our experiment, cargo trains had mostly one, some-
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times two, locomotives with a total number of wagons ranging from 13 up to 43. The
locomotives class was added due to single locomotives being transferred to another sta-
tion. In the experiment, 10 such events have been captured, whereby both single as
well as two connected locomotives have been observed.

Summary

With these data sets, we were able to perform extensive evaluations, in which par-
ticular focus is given to finding a set of efficient-to-calculate features that can be im-
plemented directly on the sensor nodes for on-line train type classification. A second
objective that has been identified as valuable information to automatically detect by the
sensor network is the estimation of train length. The following section will present the
proposed features, the classification performance and train length estimation results.

The next sections will discuss the implementation and parametrization of the features
used with this dataset to classify the train events present in this dataset, as well as their
evaluation and discussion of the results.

5.3.2 Evaluation Methodology

This section discusses which features have been extracted from sensor data with which
set of parameters, and how they were evaluated by using them to classify the train
events.

Since our evaluations were conducted off-line for reproducibility, a first step requires
that from the large amount of data only the actual train events are detected from sensor
data. This was achieved by computing the variance over a sliding window with a rel-
atively small size of one second (using half a second for window overlap) and a small
threshold to cancel out the small amounts of noise in the original raw data. With this
step we also acquire the start and stop time of an event, thus being able to compute its
duration. Additionally, the overall variance of this event is computed to give a rough
estimation on how much vibration the train has caused.

In addition to these overall event features, a more short-term sliding window was
used to extract dense vibration patterns that correspond to the wheel impacts on the
rails. For this step, the choice of window size is crucial, as from this depends whether
we are counting the axles, the trucks (also called 'bogie’ or a 'wheel truck’), adjacent
trucks, or whole wagons (carriages with multiple axles). This truck count will then be
used as another feature for classification, but can also be used to estimate the train
length or the train’s configuration (e.g., in rail bridge monitoring).

To achieve this, we tested sliding window sizes on the interval from 100 up to 300
milliseconds (or 10 to 30 samples). Computing windowed variance resulted in the
characteristic plots shown in Figure 5.7, where raw sensor data is in the upper and the
resulting variance in the bottom plot. A window size of 160 milliseconds (16 samples)
was found to perform best for train type classification. Using a peak detection algorithm
based on the slope of the signal, the local maxima in the variance plot were found and
highlighted as green dots. The number of peaks thus tends to correlate to the number
of wagons the train consists of, and this feature can be expected to be of particular
importance for distinguishing the cargo train class (an example of this can also be seen
in Figure 5.7a).
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(a) A cargo train event of 31 seconds duration.
The raw signal suggests that the train cars
were loaded less in the first and more in
the second part. Here, 55 peaks were de-
tected and some missed, probably due to
high noise level.

(b) A regional train of 6 wagons accelerating
from nearby train station. High variance
peaks in the beginning indicate the loco-
motive. The variance peaks with decreas-
ing time gaps in between show the impact
of each truck.
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(c) A regional train of 6 wagons passing the
train station. The high variance at the end
indicates that this train is being pushed by
a locomotive. The variance peaks capture

(d) A fast inter-city passenger train of 8 wag-
ons (incl. the locomotive) passing at high
speed. The fixed window size is too wide
and can not capture each truck, but pairs
of trucks of adjacent connected wagons.

pairs of trucks of adjacent wagons.

(250 270231 10, 16985.1
By, ﬂ\mW“-"Mv,nwwmww_—mww/m«_——wuﬂuw\/wi
H 4

E M

(e) A city hopper passenger train is a 2-car articulated unit equipped with three trucks, two
axles each. Theses two examples show one single unit (on the left) and a train consisting of
two such units (on the right). The variance peaks nicely correspond to the trucks, showing
almost no gap between the two units for the latter example.

Figure 5.7: Examples of train events that were detected in the sensor data. Each subfig-
ure shows raw acceleration data in the upper and variance computed on a
sliding window of 0.16 seconds in the bottom plot. Peaks extracted from the
variance are marked with green bullets. Due to various train assemblies and
different train speeds, just counting the number of variance peaks computed
on a fixed sliding window will not give a good classification performance.

With the window size of 160 milliseconds, an early analysis showed that counting
the trucks to estimate number of passenger carriages worked fairly robust. Counting
trucks to estimate the number of wagons for the cargo trains on the other hand turned
out to be more error-prone, most likely due to the high vibration levels caused by the
cargo wagons and the high variance of different train speeds (due to cargo trains often
passing the nearby station at low speeds, and also speed limits that are for instance
imposed during the night time or at peak times). Counting pairs of trucks (with two
axles each) of adjacent wagons, on the other hand, can be distinguished more easily for
all train types.
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With these features calculated, a 5-fold leave-one-out cross validation study was con-
ducted. All events were grouped per train class and those were divided in 5 folds,
whereby 4 were used for training the classifier and remaining fold was used for testing.
For each fold, the true labels of the cross validation part (given by the annotation of the
dataset) as well as the labels obtained by the classification were stored, and afterwards
used to build the confusion matrices. From a confusion matrix, we then compute the
classification accuracy per class of interest as well as the total accuracy for the given set
of features and chosen parameters.

Two classifiers were used for the evaluation: The K nearest neighbor (kNN) classifier
was chosen particularly due to its simplicity and popularity. Additionally, a support
vector machine (SVM) classifier was chosen for comparison. This way we are able to
evaluate the features’ performance, and test whether the choice of the classifiers has a
significant impact, too. For the kNN classifier, k was set to 5 nearest neighbors, as it was
found to produce best classification results. In the SVM case, a linear kernel was used.

On the second data set, based on the results obtained from the first evaluation, the
following range of window sizes was found to be of interest for evaluation: 12, 14, 16,
18, 20 data points. Since the kNN classifier did not perform well on this more challeng-
ing data set, in this study we rely on the SVM classifier for the train type prediction.
The feature space was normalized before being used for the evaluation.

This time, since the classes sizes significantly differ, the performance evaluation was
carried out through a stratified 5-fold cross-validation, whereby the size proportion of
the six classes was preserved. Hereby, all possible feature combinations have been tested
(with three as a minimum features set size), resulting in 466 combinations. Multiplying
this with the range of window sizes, we end up with 2330 cross-validation runs. In the
following we present the cheapest (with regard to the number of features required) and
best performing feature combinations.

5.3.3 Train Type Classification

This section presents and discusses the results of the kNN and SVM classifiers that were
chosen for the evaluation on the two data sets.

Darmstadt

For the first one, the confusion matrices given in Figure 5.8 show the classification
performance for the KNN classifier (top row, k = 5,) and SVM classifier (bottom row)
and the four train categories. Hereby, different combination of features were tested
(event duration, overall variance, maximum amplitude, peaks count), and the sliding
window size was set to 160 milliseconds.

Relying on the event duration as a single feature results in a weak classification perfor-
mance, as can be seen in the confusion matrix shown in Figure 5.8a. The fast inter-city
trains are mostly confused with the city hopper trains, reaching a class accuracy of only
22.22%. The reason for this strong confusion lies in the relation of speed and train
length: on average a short and slow city hopper train generates a vibration pattern that
is as long in time as the fast inter-city trains which are longer but pass by faster (from
3 up to 7 seconds). The same observation holds for other train types as well, whereby
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Figure 5.8: Summary of the kNN (top) and SVM (bottom) classification results for the
four train type classes from the first data set and different feature combi-
nations presented as confusion matrices. The classes are: A - fast inter-city
trains; B - regional passenger trains; C - cargo trains; D - city hopper trains.

other train classes do not exhibit such high degree of confusion, reaching class accu-
racies of 61.76, 85.71 and 67.92% respectively. The SVM classifier’s performance with
event duration as the single feature is much worse for the inter-city train class: these
are heavily confused with the city hopper passenger trains (cf. Figure 5.8¢e). The other
classes perform considerably better, with 55.88, 83.12 and 98.11% per-class accuracy
respectively, producing a total accuracy of 74.18%, and thus slightly outperforming the
kNN classifier overall.

Using the total event variance as a second feature significantly improves the kNN
classification’s performance (Figure 5.8b). The accuracy for the inter-city class jumps to
61.11%, since the total vibration impact of a faster and heavier inter-city train is higher
than of the light city hopper, the confusion at this spot is drastically reduced compared
to the previous results. A similar but less significant improvement can be observed
with the cargo train and city hopper classes. The confusions between the inter-city and
regional trains on the other hand still remains, which most likely is due to their similar
duration and vibration signature. This especially becomes graspable when considering
just the regional trains that do not stop at the nearby train station and therefore do not
slow down (cf. Figure 5.7 c¢) and d)). All train type classes thus gain a performance
boost, now reaching 76.47, 97.4 and 96.23% in per-class accuracy. The total accuracy
for the chosen set of features lies at 89.56%. Only slightly better results can be achieved
by the SVM classifier, where the total accuracy reaches 90.11% (Figure 5.8f).
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The number of peaks in the vibration pattern has been previously mentioned as an
attractive feature candidate. Testing different window sizes from 0.1 up to 0.3 seconds
in 0.02 steps revealed, to our surprise, that using the peaks as an additional feature does
not improve the performance significantly. While there is no improvement for the kNN
at all, the SVM classifier improvement accounts to 0.3 % over the previous feature set
(with duration and overall variance). The reason might lie in the fact that the number
of peaks corresponds heavily to the duration of the event already, and thus not offering
much more information to distinguish train categories.

Since the windowed variance was computed with a fixed window width for all events,
regardless of their duration, one possibility to improve on the per-class accuracies might
be to adapting the parameters for the windowed variance according to the length of the
pattern. By adding the maximum value of the windowed variance (which represents the
variance amplitude), we are able to boost the total accuracy a little bit more, reaching
92.86%. When evaluating the performance of each class (Figure 5.8c), we observe that
the city hopper train class is performing at 100% accuracy. Only one false hit happened
with the cargo train class, being confused with a fast inter-city train. Some confusion
still happens between the fast inter-city and the regional passenger train classes, which,
as already mentioned, is most likely due to the non-stopping regional passenger trains
that belong to the class. In this case, the kNN classifier shows better performance than
the SVM, which reaches a total accuracy of 89.01%.

When considering just the number of peaks (wagons, windowed variance footprint),
without duration or total variance of the event, the classification performance drops to
a total accuracy of 84.62% for kNN (Figure 5.8d) and 83.52% for SVM (Figure 5.8h).
Since the number of peaks corresponds to the duration of the event on the one hand, but
also covers the vibration properties of the trains, the obtained performance lies between
the performances of duration on the one hand and duration with overall variance as
features on the other.

Cologne

The classification results obtained during the 5-fold cross validation were accumu-
lated, and confusion matrices were computed averaged over the number of folds. Figure
5.9 shows the three most illustrative confusion matrices, along with their parameters,
the window size and the set of features (cf. Table 5.1).

For the first evaluations with the first three features only (duration, total variance and
number of peaks), the SVM classifier was able to reach an overall accuracy of 90.78%
for the window size of 18 data points. Adding the maximum amplitude to the feature
set led to an increase of total accuracy 93.62% for the window size of 16. Adding more
features to the set or interchanging them would improve the accuracy in very little steps,
such that many combinations would reach a classification performance with 136 out of
141 train types correctly identified (96.45% accuracy). Figures 5.9a and 5.9b show two
confusion matrices with corresponding feature sets that were able to achieve this high
classification performance.

The feature set consisting of feature IDs 1, 4, 5, 6, 7 and 8 (computed from the
windowed variance with a window size of 16 data points) has reached the maximum
possible accuracy of 97.16%, with 137 of 141 train events being correctly identified
(Figure 5.9¢).
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Figure 5.9: Exemplary selection of confusion matrices obtained during the 5-fold cross-
validation with the SVM classifier. a) and b): These two matrices show an
accuracy of 96.45%, for different sets of features computed on different win-
dow sizes. ¢) This confusion matrix shows the feature set performing best,
reaching an accuracy of 97.16%.

These classification performance on our data set suggests that training an SVM classi-
fier off-line and implementing it on the sensor nodes would allow to detect train events,
compute features and predict train types directly at the signal source with high accuracy.

Predicting the types of passing trains with reaching accuracies up to 96% and 97%,
would be sufficiently promising for several applications. Following our scenario, de-
ploying a sensor network with such a SVM classifier implemented on each sensor node,
it is still possible to improve on the classification performance. This can be achieved
by utilizing the sensor network’s communication capabilities and let neighboring sensor
nodes decide upon the train type by a voting mechanism amongst classifiers.

After evaluating the train type classification performance with features, the following
section will give further insight on how well the train length estimation worked.

5.3.4 Train Length Estimation

To estimate the train length, we primarily rely on counting the number of wagons in the
trains. This can be achieved by using the already introduced feature “number of peaks”
as a basis. Additionally, using the train type obtained from the previous estimation step
is used as a prior. The wagon count can furthermore be improved by a comparison and
voting procedure amongst neighboring sensor nodes on the same railroad track.

Besides using the raw signal and computed features, it is useful to include inherent
model knowledge about the train type constellations: The ICE and Thalys high-speed
passenger trains as well as the CityRail trains consist of specific wagons only (loco-
motives are built-in or the wagons are motorized themselves). Regio trains consist of
varying amount of wagons with a separate locomotive. While with these trains the
axles constellations are fixed due to defined sets of wagons, the cargo train class poses
a much higher variety: wagons with single, double and triple axles per truck, wagons
of different lengths, and varying load are possible.
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Figure 5.10: Differences between the real number of wagons and number of peaks com-
puted from the windowed variance for each of the six train classes. The
number of peaks and therefore the accuracy of the wagons count depends
on the size of the sliding window and the train speed. From these results,
window sizes of 16 and 18 data points are performing best for counting
wagons. This is verified by the overall minimum squared-mean error of ap-
proximately 4.0 shown in Table 5.3.

Using the annotations from the video footage as ground truth (number of wagons)
and the number of peaks extracted from the windowed variance, we use their difference
for performance analysis. Since the peaks correspond to the trucks, the number of peaks
usually is by 1 more than the amount of wagons in the train. This deviation of 1 can
be visually recognized in the box plots shown in Figure 5.10. In addition, we compute
the mean-squared error for the whole data set as well as for each individual class (see
Table 5.3), whereby the deviation has been accordingly taken into account.

For a more concrete example, consider a regional passenger train with 7 wagons
(including the locomotive). For this train, the peak detection algorithm extracts 8 dis-
tinctive peaks (cf. Figure 5.3). Hereby we observe that the first peak belongs to the
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Window Size Mean-Squared Error

Overall Regio CityRail Cargo Loc Thalys ICE

12 28.14 11.78 1.87 78.95 7.30 4.00 2.00
14 10.33 4.65 1.00 27.95 2.60 3.56 0.20
16 4.02 2.84 0.27 8.74 2.20 2.33 0.00
18 3.98 2.89 0.33 8.87 1.20 1.44 0.60
20 5.62 2.43 0.20 14.28 1.00 6.56 2.00

Table 5.3: Mean-squared error of the estimated train lengths for the whole data set and
per class. The window size has a huge impact on the quality of the estimation.
Overall, window size of 18 performs slightly better than a window size of 16.

first trucks (double axles) of the first wagon, the following 5 peaks belong to adjacent
wagon trucks (two times double axles for passenger wagons), and the last two peaks
represent the last wagon and the locomotive (which has triple axle trucks that can not
be distinguished in the signal with the fixed window size). Due to Regio trains’ variety
in length (3, 5, 6 and 7 wagons including one or even two locomotives) and their vary-
ing speed when passing by the sensors, the relation of wagons to the number of peaks
tends to highly deviate as well as show lots of outliers (Figure 5.10a).

The window size to compute the windowed variance from raw sensor data has a sig-
nificant impact on the peak detection. On the other hand, leaving the window size fixed
at the best performing size of 16 data points (for classification and length estimation)
would deteriorate the system’s performance, as a fixed window size for a fixed sampling
rate of the sensor node leads to the issue of not being speed independent.

5.4 Discussion and Outlook

This section discusses the evaluation results and will point out particularly interesting
findings for the underlying scenario.

First, good train type classification results (up to 92% and 97% accuracy) could be
achieved on our data sets with proposed features. During the evaluation, suitable win-
dow sizes (16 data points) both for type prediction and train length estimation could
be found. Better performance in this regard can be achieved through implementing dis-
tributed voting among neighboring sensor nodes inside the sensor network. This would
allow the sensor nodes to compare decisions and remove outliers.

Estimating train length with a fixed window size bears the problem of not being speed
independent. In case of a very slowly moving train, which is very likely to happen and
has also been observed in our data set, the fixed window will lead to detecting separate
axles instead of trucks, resulting in a completely misleading peak count. One possible
approach to tackle this issue would be the introduction of a variable window size. This
would, on the other hand, lead to a more complex feature extraction routine and result
in more computation on the sensor node and therefore in a higher power consumption.

Besides the problems addressed in this work, the recorded data set allows to extract
much more information useful for the railway monitoring scenario.
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Figure 5.11: Two sensor nodes showing the vibrations footprint caused by a passing re-
gional passenger train. Knowing the distance between the sensor nodes
(10 meters in our deployment) and the time delay of the event between
two sensors (markers in the plots) will allow estimating the train speed.

Estimating train speeds belongs to this category of very useful details and can be
achieved with multiple sensors placed at a predefined distance which, in our experi-
ment, was 10 meters. Detecting a passing train on two sensors and then computing the
time delay between event arrival seems to be an easy and reasonable approach. For
this, time synchronization inside the sensor network is important, but can be nowadays
considered as a solved problem. An example for the feasibility is shown in Figure 5.11:
vibrations caused by a passing regional passenger train are captured by two sensors in
10 meters distance from each other. By aligning these raw sensor data in time, the delay
became visible.

Another very promising application for such a sensor network would be the detec-
tion of worn-out or defect wheels. Figure 5.12 shows data from two sensors which
have picked up extreme accelerations caused by a passing cargo train. These extreme
amplitude peaks in the raw sensor data are most likely caused by worn wheels (hav-
ing lost their roundness due to abrasion caused by blocking when the train brakes).
These worn-down wheels could cause damage to rails or rail bed, as well as the wagons
themselves, thus making the detection of such events particularly interesting.

5.5 Conclusions

In this chapter we presented and evaluated the suitability of a sensor network consist-
ing of tiny, inexpensive sensor nodes for a train monitoring application. It relies on
sensor data from 3D MEMS accelerometers that are able to capture vibrations caused
by running trains. To enable in-network event detection and train type classification,
we proposed a set of features that encode the shape of the vibration signal, and can be
computed efficiently in an on-line fashion directly on the sensor nodes.

We have carried out two studies that involved deployment of sensors at railway tracks,
recording real-wold data sets and video footage for annotation purposes. With these
data sets we conducted evaluations of the proposed features. In the second more chal-
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Figure 5.12: The sensor nodes have picked up extreme impacts (large peaks in raw data
and variance plots) from a passing cargo train, caused by a defect wheel
that is not completely balanced due to wear during braking. Since these
wheels could cause damage to rails, rail bed, and the wagons, detecting
such events automatically would be of significant interest as well.

lenging study, we found using an SVM classifier and a combination of features extracted
from a sliding buffer with window size of 16 data points, to produce optimal results for
this data set. The SVM classification performance for this optimal combination reached
97% accuracy. The length estimation performance accounted to 3.98 mean-squared

error for the whole data set.

To summarize, we have presented a system that

1. uses power-efficient sensor nodes with accelerometer sensors to capture vibrations
at a sampling frequency of 100 Hz,

2. relies on the shape of the vibration signal and encodes it into features that can be
efficiently computed in an on-line fashion directly on the sensor node,

3. is able, based on these shape features, to perform optimal train type classification
as well as to estimate train lengths,

4. and has shown to yield further potential for railway monitoring applications, in-
cluding speed estimation and detection of defect wheels.

The findings of this study specifically show how using the shape of a time series, or
the shape of its abstraction, can be productively utilized in long-term wireless sensor
network application scenarios, where harsh computational limitations of the hardware
platform and strict power-efficiency demands prevail.
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In the next chapter we will return to the human activity recognition domain, where
we are specifically interested in automatically accumulating recurring motion patterns
that can be used as evidence for activities in a simple and efficient classifier.
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6 Activity Recognition Through Dense
Motif Discovery

In Chapter 4, we proposed a method to abstract raw sensor data by piecewise linear
segments that significantly reduces the amount of data and enables faster query-based
pattern matching. Relying on the shape of the signal as a feature, and assuming that
different activities have distinguishable characteristic motion patterns, we are inter-
ested in building a system that is able to perform activity classification autonomously;,
specifically without any interactive input from a user in form of selected patterns.

To this end, this chapter proposes an activity inference system for deployment in
long-term monitoring scenarios, to detect selected physical activities in week-long con-
tinuous data. Our approach relies on a customized data mining method that performs
early sensor data abstraction and discovers motifs as evidence for activities (Figure 6.1).
An extensive study investigates both accuracy and execution speed of the system and
its sub-components. Results show that this method can be used to detect many phys-
ical activities robustly against a large amount of background data, with a comparable
precision and recall to conventional approaches, in approximately the time it takes to
download and graphically present the recordings from the sensor.

. \ /‘\
Raw Data s iy AN %~ C(ABCDBCBACBBACABCDBCE Motifs

. — -

Figure 6.1: Abstracting the acceleration time series to its symbolic representation allows
to efficiently obtain recurring patterns (motifs).

6.1 Motivation

Our recognition approach is targeting a class of long-term applications that remains
challenging, with one of such scenarios being psychiatric patient monitoring, which
aims at following mood and behavioral trends by recording activity data over a period
of typically several months. Existing commercial actigraphy solutions are able to record
the level of human activity and to detect sleep and wake cycles for such long deploy-
ments. Unfortunately, activity levels are a too coarse-grained abstraction and thus are
not suitable for activity recognition purposes, which is specifically desirable as it would
give more insight on the patients phases and well-being.

In the psychiatric monitoring scenario, some general problems in activity recognition
are bypassed: Patients already keep detailed diaries of their activities so that supervised
learning methods can be employed, and only a few key physical activities linked to
daily routine are of interest in the logged data. Other requirements, however, form
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Figure 6.2: Day-and-night recordings from a wrist-worn acceleration sensor (top) are an-
alyzed for certain physical activities. Salience detection upon motif discovery
(bottom) is used to find typical activity patterns (black marks) as supporting
evidence for the activity.

density

novel challenges: Sensors should record for long stretches of time, the large amount of
logged data needs to be analyzed fast, and detection needs to be robust against a deluge
of background data. On the other hand, the actual motion patterns that would represent
particularly interesting activities are not known and have to be obtained automatically,
without additional effort for the patient or the doctors.

Figure 6.2 illustrates the dense motif discovery method that forms the basis of our
detection approach. Occurrences of activity-characteristic patterns, so-called motifs, are
searched for in new data, and the density of these is used to substantiate the presence
of an activity. Motifs are discovered at training time by abstracting the raw acceleration
samples in function of sequences of peak patterns, and efficiently searching for such
patterns through a suffix tree. This search can be implemented in linear time, and
performs a shape-based abstraction of the original time series. Classification is then
implemented with a straightforward bag-of-words classifier. An extra advantage of this
method is that the illustration of particular motif occurrences in the time series allows
for visual inspection of the activity recognition before the classification step.

The main contributions of this work are threefold:

* A deployable system has been built consisting of a minimally invasive, wrist-worn
sensor that is able to last for two weeks on a single battery charge while recording
acceleration samples at 100 Hz, and a data analysis tool that can efficiently process
the recorded data.

* A novel detection approach is suggested that is suitable for classifying and detect-
ing activities in large amounts of long-term data, relying on local shape features
within the acceleration signal and dense motif discovery.

* An extensive study with 33 participants who performed different activities was
conducted to evaluate the proposed approach and discuss the applicability of the
method for the application in mood monitoring scenarios.

The remainder of this chapter is structured as follows: First, a long-term monitoring
scenario motivates the need for the proposed fast and accurate detection of when a user
performs physical activities. The next section will present the details on the different
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design choices and steps that constitute our method, such as the linear abstraction of
inertial data and the use of suffix trees for finding motifs. A study then presents results
on 33 week-long datasets, investigating how fast and robustly the chosen activities can
be recognized among a large amount of daily activity data, followed by a discussion on
general applicability of the proposed method.

6.2 Case Study - Bipolar Monitoring Scenario

We focus first and foremost on a practical detection method that is able to recognize
particular activities within large datasets with a massive amount of background data,
generally holding weeks of activity data at a time. As a case study of where this would
be applied, we describe here the long-term monitoring of bipolar patients. Research
in mood disorders, such as attention deficit hyperactivity disorder and bipolar dis-
order (Corkum et al., 2001) relies frequently on the patients’ self-reports, as well as
semi-structured interviews with a psychiatrist, during diagnosis and therapy. Work with
actigraphy tools in psychiatry (Wilhelm et al., 2006; Teicher, 1995) has started to de-
ploy wrist-worn sensors in conjunction with these tools that are recording the activity
intensities observed for the patient from several seconds to minutes at a time.

Characterized by severe mood swings between manic or hypomanic, mixed, as well
as depressive episodes, it is important in the diagnosis of a bipolar disorder to record
the patient’s activities over multiple weeks to months at a time. For mania for instance,
energy levels tend to be high and activities tend to be performed in an interleaved
fashion or especially vigorously. Similarly, depression tends to correlate with lower
activity levels or in shortened key activities, from not performing them at all or sparsely,
to not fully completing them. Apart from daily activities such as sleep and food intake,
especially physical and leisure activities are very likely to be impacted: Patients might
for instance stop playing tennis during depressions, or vigorously practice for several
hours without breaks in a manic episode.

Interviews with psychiatrists resulted in a list of basic requirements that an activity
recognition method should adhere to. These were grouped in three categories that are
important to consider when designing an intelligent recognition system:

* Supervised learning. Patients are typically interviewed at regular intervals of
several weeks, and provide log entries to report on performed tasks and their
mood. Current actigraphs combine these reports with sensor data, so that the
reports can be used to train patient-specific classifiers.

* Week-long, 24/7 data. Data needs to be captured continuously, as patients that go
through depression or manic episodes are known to perform activities irregularly,
including at night. The sensor units thus need to be robust and power-efficient to
keep recording continuously, and the data will be substantial to process.

* Activities with characteristic motions vs. lots of background data. The number
of activity classes to recognize is relatively small and can be determined by medical
staff during first observations. This makes it easier for patients to keep track of
what activities were performed, and means only few activities need to be detected
amongst a large amount of background data that might produce false positives.
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Figure 6.3: The raw 3D 100 Hz inertial data (top plot) are transformed by a piecewise
linear approximation algorithm into segments (bottom plot) that preserve
the shape of the signal to facilitate storage and analysis. The segments are
subsequently abstracted in discrete symbols (bottom row) to allow fast dis-
covery and matching of motifs. Occurrences for four motifs are highlighted
by colored boxes; Note that we allow overlaps and variations in length.

We presented in Chapter 3 the details on our wearable sensor platform that was
custom-designed and built focusing on long-term deployments, such as presented in
this bipolar monitoring scenario. The next sections will thus present our automated
approach to obtain characteristic motion patterns.

6.3 Dense Motif Discovery

This section gives an overview of the search and selection procedure for motifs from raw
inertial data, and motivates the use of dense motifs. Early abstraction in multiple steps
of the accelerometer data, together with a search-optimized data structure called suffix
tree, guarantee that searching through weeks of data becomes feasible on standard
computing hardware, and that classification can be done almost simultaneously with
the downloading of the sensor data.

6.3.1 Method Overview

Motif discovery refers to the search for recurring sequences or patterns within a data
stream. For real-world application scenarios such as ours, the original data tends to be
noisy and hard to match exactly, posing a significant computational problem. Previous
research has identified several techniques to represent the original data in a discrete
symbolic string, where one or multiple data abstraction steps are necessary. Aiming at
characterizing recurring motion patterns (i.e., activity-specific gestures) by the shape
of the time series, our approach implements a discrete mapping through a two-step
abstraction process.

Figure 6.3 illustrates how the proposed method transforms inertial data to a symbolic
representation that facilitates the finding of recurring motifs: The original sensor data
consists of 3D accelerometer readings that were equidistantly taken at a sampling fre-
quency of 100 Hz. Using an on-line piecewise linear approximation algorithm, these
inertial samples are abstracted to a set of linear segments, whereby the algorithm mini-
mizes the residual error between the original samples and the produced segments. The
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next step discretizes the segments into symbols based on the slopes of two adjacent
linear segments. With the symbolic representation of the time series at hand, the next
step utilizes the suffix tree representation of the target activity’s training data to accu-
mulate a set of motifs. In the last step, the motifs that also have occurrences in the
training’s background data (i.e., in the huge amount of data outside the target activity),
are removed from this collection.

As a dense set of motifs is trained for, classification is done by searching new data for
time windows in which motifs from one particular activity are frequently occurring. This
is implemented with a bag-of-words classifier which uses the detected motif occurrences
as evidence.

6.3.2 Approximation from Raw Data

The first abstraction step is essential from an efficiency point of view: Since the ac-
celerometer sensor is sampled at a frequency of 100 Hz, capturing the essence of the
gestures and typical motions performed by the sensor’s wearer, this also means that the
dataset size grows quickly and becomes computationally challenging. Even with fast
and lossless compression techniques, such as run-length encoding, 24 hours worth of
continuous sensor data typically contain millions of 3D acceleration samples.

We argue that for motif discovery in inertial data, primarily the shape of he acceler-
ation time series is important to retain. For our method we use a modification of the
Sliding Window and Bottom-Up algorithm that we have presented in Chapter 4 and
which has been verified to perform well on wrist-worn accelerometer data.

6.3.3 Mapping to Discrete Symbols

After abstracting the raw acceleration data to linear segments, a discretization step is
used to obtain a symbolic string representation of the original time series. This abstrac-
tion step is first and foremost required to enable fast discovery of motifs, but also for
finding matches between motifs.

First, we evaluated two degrees of freedom per segment (length and slope), and map-
ping the segments onto symbols in a similar way as was done with the SAX approach
by Lin et al. (2003). Our approach also discretizes the feature value space based on the
distribution of the values. The main difference to SAX is that the first abstraction step
produces constant segments of fixed length, thus having only one degree of freedom,
while SWAB produces linear segments with individual slope and length. With this ap-
proach, our initial test showed that very long segments became over-represented in the
motif discovery. This is due to inherent properties of accelerometer data, with long seg-
ments with a slope close to zero being over-represented, particularly during the night
time and sedentary tasks, where little or no changes are present in the signal.

Being interested in mainly short and characteristic gestures, focus went to repre-
sent peak patterns of neighboring segments. Thus, for one dimensional approximation,
the slopes of two neighboring segments are considered, where-by we use the angular
representation of the slope defined as 6 = arctan(m). In the case of multidimensional
approximation, we compute the angle of neighboring segments in the 2D plane spanned
by the segments.
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Figure 6.4: Mapping from linear segments to symbols: The slope range is divided into
bins for a given number of separation points which are computed based on
the training data segments’ slopes histogram. The segments’ corresponding
bin numbers are then used as indices for the symbols matrix. Sliding through
the segmented time series while considering two neighboring segments will
thus result in a symbolic string.

To achieve discretization, the slope range from —90 to 90 degrees (or the planar angle
range from O to 180 degrees, respectively) was divided into bins, whereby the borders
(quantiles) are selected on the basis of representative data in a histogram during the
training phase. To avoid over-representation of non-motion motifs, segments with a
slope close or equal to zero were not considered. The rest, where we do not assume
Gaussian distribution, is used to compute the quantiles for a given number of bins,
which was found to produce the best results when set to 5.

Mapping the linear segments to discrete symbols is realized by sliding through the
time series, considering the slopes of two neighboring segments (or the two neighboring
angles between three segments) at a time, and converting them to one character (cf.
Figure 6.4) using a 2 dimensional matrix. Converting an approximated time series using
this approach will result in a long symbolic string, as shown in Figure 6.3, that can be
parsed for motifs with the help of suffix trees. The advantages of this approach are
two-fold: First, the length of a linear segment is not constrained to a fixed value, as it is
the case with the SAX approach, and common errors where symbols afterwards would
need to be merged are avoided. Secondly, by not taking the length of a segment into
account when mapping these to symbols, more importance is placed on patterns in the
data where strong peak sequences occur. With a symbolic representation of the time
series now completed, the next section will discuss the method for the finding of motifs.

6.3.4 Extracting Motifs by Means of Suffix Trees

Having mapped the raw acceleration data to a symbol sequence, motif discovery can
now be done by finding substrings that occur multiple times in the target class. This is
above all an efficiency problem: searching for all occurrences of every motif in a long
string in an exhaustive fashion will result in a slow discovery process that is not scalable,
as large sets of motifs are expected to be present.
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Figure 6.5: Generalized suffix tree for the string mississippi created by adding a
unique terminator character $ to the original string. Suffix links are indi-
cated with dotted edges, edge labels give the first occurrence position in the
string of subsequent suffixes.

To significantly speed up this search procedure of motifs, a technique is applied that
transforms the string from a long array of symbols to a tree representation. This data
structure, called suffix tree, generally requires more storage space than the string array,
but in return allows searching for all substrings up to a certain length in linear time.
Furthermore, suffix trees can be constructed in linear time using an algorithm by (Ukko-
nen, 1992). The motifs are found by checking the number of leaves for all suffixes up
to a certain depth in the tree, which then corresponds to the number of the substring’s
occurrences in the data.

Figure 6.5 depicts the generalized suffix tree for the string mississippi. The gener-
alized suffix tree is produced by adding a unique terminating character (such as $ or #)
to the original string. With a generalized suffix tree created, this structure can be used
for a multitude of applications. The most common application is searching for query
substring occurrences, for example, those of the substring issi in the example above:
First, verifying whether the query is present in the original string at all can be answered
by traversing the edges 2:i and 3:ssi of the tree from its root. The fact that this path
can be traversed, means that the query is present in the original string. In this case, the
places and number of occurrences are found by counting the leaf nodes in the sub-tree
and looking at the leaf node indices: 2 occurrences with positions 2 and 5 are found
after traversing the edges 6:ssippi$ and 9:ppi$.

Suffix trees are used for the discovery of motifs that are likely descriptors for a tar-
get activity class. Motifs are found by searching the suffix tree to a certain depth, and
accumulating those motifs that occur at least two times and have a minimum length
(a trade-off evaluation on our dataset showed a minimum length of 5 to still produce
sufficient motifs for the bag-of-words classifier). The most discriminant motifs are then
selected for classification, from all discovered ones by removing those that appear fre-
quently in the background data provided during the training. After thus finding a set
of motifs that tend to represent a particular activity class, these can be used as weak
detectors in classification by evaluating the density of their occurrences.
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Figure 6.6: The Bag-of-Words classifier is built from the extracted motifs. Hereby, the
motifs that also occur outside the target class (i.e. background data) are
being retained.

6.3.5 Bag-of-Words Classification

Using the most discriminant motifs during a training phase as described in the previous
paragraphs, classification is performed by local evidence of all motifs that support an
activity (Figure 6.6). This straightforward bag-of-words classifier uses a sliding time
window over the time series and accumulates local evidence by counting occurrences
of motifs. As the activities tend to last at least 30 minutes and up to an hour and a half,
a window size of 10 minutes was chosen.

6.4 Evaluation

The approach as described in the previous section is in this section tested under the
conditions from our motivation scenario of psychiatric monitoring. After presenting the
details on our experiment setup, the evaluation participants and the chosen activities,
we compare the performance of our method with two commonly-used activity recogni-
tion techniques that have been chosen as a base line. After presenting the performance
results of our and the other methods, we will use the findings to discuss the applicability
of our technique for other activities.

6.4.1 Participants and Target Activities

The data used in the current experiment comes from 33 volunteers who have no known
psychiatric disorders and for whom a physical activity was known before the recording
phase, which they would do once each day, over the course of a whole working week.
Thus, each participant was regularly performing a key physical activity, as it would be
chosen by a psychiatrist. For most, this turned out to be a leisure activity or sports, for
some a household related activity that was part of their daily schedule.

Table 6.1 gives an overview of all participants, specifying their gender, age and their
personally chosen target activity which will be used for testing the detection accuracy
of the chosen approaches. In addition to that, the amount of raw sensor data as well
as the total number of segments used in the evaluation are given. This is to highlight
the significant effect of the first data reduction step: The modified SWAB algorithm,
executed with approximation threshold of 10 and buffer size of 80, on average results
in more than fifteen times less data points.
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Subject Gender Age Target activity 3D samples Segments
1 male 30 badminton 42735422 2552512
2 male 32 badminton 43566415 2758210
3 male 31 basketball 44055550 3116622
4 female 26 canoeing 35361647 2281800
5 male 32 cooking 43553117 2923277
6 male 35 cycling 42841897 2259414
7 male 30 dancing 43430128 2708621
8 female 14 dancing 43203531 2491817
9 female 16 dancing 43496339 2461287

10 male 20 drums 42866629 2554723
11 male 31 fishing 28993833 1825663
12 male 53 fishing 32495006 1957760
13 female 26 flamenco 43101537 2980562
14 male 27 guitar 43313553 2259521
15 female 27 guitar 43230164 2825311
16 male 23 guitar 43693805 2705336
17 male 28 gym 34822499 2480707
18 male 32 gym 43459162 2738924
19 male 30 gym 43450406 2587331
20 female 28 gym 43380386 2925873
21 male 31 ironing 49274551 3267584
22 female 27 keyboard 46276879 3194528
23 female 28 knitting 43453683 2677868
24 male 30 lunch 44243749 2757975
25 male 25 soccer 43523744 3153170
26 female 25 squash 42181448 3042767
27 male 27 squash 43383937 3355840
28 male 29 streetdance 46605778 2859799
29 female 30 streetdance 43572177 2975779
30 male 32 washing car 42960708 2723290
31 female 28 xbox 43391116 2553799
32 female 28 yoga 42991198 2705832
33 female 30 zumba 26927159 2011826

average 41934459 2687131

Table 6.1: Each of the participants wore our sensor day and night for about a week. For
every participant, one physical target activity was chosen before the study to
be performed once every day, leading to the 5 folds in the cross-validation.
To illustrate the impact of early abstraction, the raw acceleration samples and
the number of linear segments produced after the piecewise linear approxi-
mation step are listed to the right.

The dataset from each participant was split into separate blocks of about a full day
(24 hours £50 minutes) each to facilitate 5-fold cross validation. Each activity instance,
depending on the actual activity, generally lasted between 30 and 90 minutes, except
for fishing where the activity instances lasted 4 hours. The target activity on average
holds 5% of the entire fold, with the rest being other daily activities.
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6.4.2 Benchmarking the Performance

To evaluate the classification performance of our approach, a comparison to two stan-
dard activity recognition techniques was done. For the latter, several classifiers were
identified, with the Support Vector Machine (SVM) as the best performing, as well as
different feature sets to abstract the raw data. Due to their coverage in the activity
recognition community, e.g. in (Huynh and Schiele, 2005) or (Zinnen et al., 2009),
mean and variance were identified as one combination. An additional set of features
based on Fast Fourier Transform (FFT) coefficients were chosen as another: the 16 FFT
features that have been suggested and evaluated in (Zinnen et al., 2009) consist of the
absolute, real valued FFT coefficients grouped into 4 logarithmic bands, 10 Cepstral
Coefficients, the spectral entropy and energy of the signal.

One imbalance in this comparison is illustrated in Figure 6.7: Since the dense motif
approach aims at extracting characteristic motion patterns for target activities from the
symbolic representation of the original sensor data, more resources are spent on pre-
processing the sensor data, and less on the classification. Although Figure 6.7 details
just the required steps, and not their time complexity, it is clear that the approaches
differ significantly in how the processing steps are weighted.

Figure 6.8 shows the average times gathered during the 5-fold cross validations with
our dense motifs approach for one set of parameters (approximation threshold of 10
and buffer size of 80; symbols mapping with 5 bins). For one day worth of data the two
abstraction steps (producing segments and converting them to symbols) require about
10 seconds. Depending on the activity, the time required for extracting the characteristic
motifs from the training part of the dataset ranges from 1 up to 56 seconds. Obtaining
motif occurrences for the classification on the fifth part of the dataset and computing
the score needs from 5 up to 275 seconds (with an average of approximately 65 seconds
and 70 seconds standard deviation), using a standard laptop setup and with the source
code written in Python.
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Figure 6.8: Mean execution times in seconds for training and detecting on 24 hours
of data with the four approaches, with the upper and lower quartiles (red
lines): The dense motif method is especially faster in training, with segmen-
tation and discovery of motif occurrences taking up most of the time. Note
that the symbolic mapping step is very fast and therefore not visible on this
axis scale. For the SVM-based approaches, most of the time is spent on cal-
culating the features on the sliding window, with the classification done in a
few seconds. The same parameters were used as in the classification analysis.

Both mean and variance, as well as the FFT-based features, are computed on a slid-
ing window over the raw data, with window sizes varying from 1 to 30 seconds. For
classification, the svmtrain and svmclassify methods from the Matlab Bioinformat-
ics Toolbox were used. The performance of the features with the SVM classifier was
evaluated by the same 5-fold cross validation as for the dense motifs approach. The de-
tections produced by the SVM classifier are smoothed by a sliding window of 10 minutes
to filter out outliers (false detections), resulting in a score. At this stage, by evaluating
the obtained classification versus the the ground truth annotations, precision and re-
call are computed for our dense motifs as well as for the features with SVM approaches.
Figure 6.9 shows an example illustrating how the different classification techniques per-
formed on the third day of the cycling dataset during the evaluation phase. The score
plots below the raw data show the aggregated motif occurrences for the dense motif
method, and the normalized results of the windowed filter after SVM classification.

6.4.3 Experiment Results and Discussion

This section presents the experiment results for the leave-one-day-out 5-fold cross val-
idations: For every activity one day is left out for testing purposes, while training (ob-
taining the motifs that tend to represent the activity) on the other four days. Since the
evaluation considered a wide range of possible parameter combinations (abstraction
thresholds, buffer window sizes, number of bins for symbolic discretization, suffix tree
traversal depth, window sizes, etc.), only a few prolific figures are shown to discuss the
experiment results.

Figure 6.10 and 6.11 show a comparison of the best performing average precision
and recall figures of our approach (including the two variants with single-axis or multi-
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Figure 6.9: One day of the experiment data in which one of the participants cycled for
about one hour. The topmost plot shows the original 3D sensor data, along
with motif occurrences highlighted by black markers. The three plots below
give the corresponding score plots produced by the different classification
approaches during the evaluation: The first plot shows aggregated motif oc-
currences, while the two plots below show the smoothed SVM classification
for mean and variance and FFT-based features respectively, with all three
approaches using the same sliding window length. After combining all such
results for all participants’ data, the precision and recall figures show overall
performance of the three approaches in Figure 6.10 and 6.11.
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dimensional approximation) and the SVM classifier that has been trained with mean and
variance, and the FFT features. Additionally, the performance of a random ’guessing’
classifier is depicted for completeness. Precision and recall are averaged over the num-
ber of folds, while for each activity and classification method the choice of parameters
with the best classification performance is chosen.

The SVM classifier trained with mean and variance features performs well on activities
that involve a lot more motion, with especially the variance of the signal playing a
significant role. Our evaluation with this large dataset proves this reliance, which can
specifically be seen by comparing the activities badminton, drums, soccer, xbox playing,
squash or zumba with gym, cycling, knitting, flamenco, guitar or dancing activities.
While the first set activities exhibit very high accelerations due to sharp hand motions,
the latter activities lack such high accelerations.

The dense motif approach is in many cases the best-performing, in some cases even by
a significant margin. To illustrate its strengths, the performance on the badminton data
is shown in Figure 6.12, including a zoomed-in region on a brief time span of 50 seconds
with motif occurrences matching the underlying characteristic motion patterns. Motifs
here often overlap, with their dense occurrences making the detection of the activity
more reliable.

Overall, dense motifs with 3 dimensional approximation step can not match the recog-
nition performance of the per-axis approximation. While the trajectory in space is
abstracted well by linear segments, the symbolic mapping step relies upon the pla-
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Figure 6.10: Precision and recall performance results on 19 out of 33 different activities
obtained through the leave-one-day-out 5-fold cross validation, averaged
over the number of folds. Presented here are activities where the different
classification techniques performed mostly very well or similarly average.
Very good results were achieved for activities with recurring characteristic
motion patterns, which is mostly the case when characteristic acceleration
peaks can be found in the sensor data. Unequal distribution of motif occur-
rences for a target activity leads to reduced recall performance.

nar angles between adjacent linear segments, which results in much more information
about the 3D trajectory being lost. To preserve this relevant information during this
abstraction step, future work should consider alternative mapping approaches that im-
prove encoding of the 3D trajectory.

The precision and recall figures reveal that the detection performance of our approach
is both activity and person specific. For example, dancing, street dancing or gym activi-
ties from different participants show a significant discrepancy in the performance both
for the dense motifs and the traditional approaches (cf. Figures 6.10 and 6.11). With the
large dataset containing many different activities, our goal is to generalize the perfor-
mance results of the chosen approaches to be able to assess for which activities the dense
motif technique suits most. When considering these obtained performance figures, we
can observe four types of results:
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Figure 6.11: Precision and recall performance results on the remaining 14 activities ob-
tained through the leave-one-day-out 5-fold cross validation, averaged over
the number of folds. The activities presented here show a more diverse
classification performance across the classifiers, with (a) dense motifs sig-
nificantly outperforming the conventional approaches: flamenco, canoe-
ing, dancing, majority of gym or guitar, (b) FFT being superior on one gym
activity and (c) all approaches failing on cooking, lunch and yoga activities.

1. All classification techniques perform mostly “good” or similarly “average”
2. Dense motifs performs significantly better than SVM trained with features
3. SVM trained with FFT-based features outperforms dense motifs

4. All classification techniques perform poorly

Group 1: High-variance activities

The first group consists of activities that involve a lot more motion than all other
activities throughout the day. This property can be captured well using both the variance
of the signal as well as its frequency characteristics, which results in good performance
by SVM trained with these features. Our shape-based approach for such activities is able
to grasp the shape of the time series and by accumulating characteristic motifs therefore
to perform on par and often better than the two other approaches.

Figure 6.10 contains performance figures for activities where the chosen approaches
were able to perform similarly good (except cycling and keyboard, where mean& vari-
ance features performed poorly) or similarly average for streetdance-B and knitting.

When investigating the impact of the abstraction, we noticed that the parameters that
control the first abstraction step (piecewise linear approximation) have little impact on
the classification performance for activities that reach approximately 95% equal error
rate (e.g., badminton, drums, zumba or soccer). This can be explained by the impor-
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Figure 6.12: Dense motifs performance on one fold of the badminton data over one day
(upper plot, with badminton activity highlighted in red), and a 50-seconds
fraction thereof with motif occurrences (lower plot). Characteristic motions
such as forehand, backhand, smashes, are often marked by motifs, while
areas in between tend to be left out.

tance of high acceleration peaks in the signal that are preserved even with a coarse
grained approximation.

For activities where a slightly lower classification performance of approx. 80-90%
equal error rate was achieved (e.g. carwash, squash, ironing or dancing), the hand mo-
tions tend to be less sharp, leading to less high acceleration peaks. The motions become
more fluent, but are still fast enough to produce characteristic peak patterns. With a
more coarse grained parameters there is a risk of abstracting the sensor data too much,
such that the essential shape of the signal is lost, resulting in less good classification.
Figure 6.13 shows how varying the main approximation parameter impacts the quality
of dense motif classification.

Group 2: Fluent gesture-based activities

This group consists of activities that tend to have less sharp but more fluent hand
motions, showing a wide performance difference between the chosen approaches (cf.
Figure 6.11). Here, classification performance is much more activity and person de-
pendent, whereby the dense motif approach (single-axis approximation) performed
significantly better than its 3D version and the two feature based approaches.

Overall, the classification results could not match the quality of the first group, at
best reaching 85% equal error rate for one of the guitar activities. The classification
performance ranged from average 55% for ballroom dancing (dancing-C) and 60% for
the majority of gym weight lifting exercises, up to reasonable 80% for street dancing
and playing guitar. Hereby, the dense motif approach outperformed other approaches
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Figure 6.13: These precision-recall plots shows how varying the merging threshold pa-
rameter from the first abstraction step impacts the classification perfor-
mance of dense motif discovery. While for activities with the high acceler-
ation peaks (e.g. zumba) the merging threshold has almost no influence,
a more coarse grained approximation for less sharp motions (e.g. carwash
or guitar) often leads to characteristic peaks to be removed, thus reducing
the classification performance.

by up to 20% in equal error rate, having the largest leap ahead on flamenco, guitar and
most of the gym datasets.

For the majority of this groups’ activities, the mean and variance features did not
perform well. This is not surprising, since the variance in the accelerations is much less
discriminant due to less sharp hand motions. This to a large extent also impacts the
performance of FFT features, which, due to little periodic motions in flamenco or other
dancing activities, are not characteristic enough to produce good classification.

The dense motifs approach benefits the most from the characteristically short motions,
which are not equally distributed over the whole activity, such as during flamenco danc-
ing (as shown in Figure 6.14). Similarly, playing guitar data turned out to be captured
well with motifs, gaining a significant advantage over the traditional features. Differ-
ent ways to play were observed, including hitting or plucking the strings depending on
musical genre, as well as interruptions of the activity (e.g.: a bathroom break), result in
varying density of motif occurrences. While dense motif approach still detected much
of these activities, such uneven distribution of characteristic motions leads to a slight
drop in the recall and thus in lower detection performance.

Since the motions tend to be less sharp, such that the acceleration peaks are not that
characteristic, the choice of the first abstraction step parameters is much more severe.
Thus, the multi-step abstraction of the dense motif approach is more reliant on the
appropriate parameter settings.

Besides that, the motions during the target activity tend to be much harder to distin-
guish from background data, such that many potential good motifs are being retained
during the training phase. Visual inspection of different folds during the evaluation and
comparison to other activities shows that the initial number of motifs is not very high in
the first place, and is heavily reduced as motifs that appear in the background data are
discarded. When classifying with lower number of motifs, we have observed that the
number of motif occurrences outside the target activity has a much higher impact on
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the density score (higher density peaks outside the target class), and therefore reduce
the overall detection performance.

Group 3: Activities with dominant frequency features

This group consists of activities as in the previous group, with the only difference that
FFT features are able to significantly outperform the dense motif approach, reaching
80% equal error rate. Surprisingly, this happened for a single activity only, namely
the first gym dataset. For the other three gym datasets, FFT features performed much
worse, such hat these datasets can be found in group 2.

This result did surprise us a bit, since we have expected a more coherent behavior
of the thee approaches on gym and similarly slow and periodic activities. Considering
this result as a single case outlier would be too far fetched, though. The reason for
such discrepancy in performance is most likely to be found in the individual style of
carrying out the gym exercises, where the FFT features could profit from their ability in
representing periodic parts in the acceleration data. Additionally, the fixed window size
for feature extraction may play an additional role: for this activity, it seems, the window
size allowed for extraction of feature values that the SVM was able to distinguish. The
dense motif approach, on the other hand, is not bounded by a fixed window size, which
allows it to perform similarly on all four gym data sets.

In this case, the gym activity consisted of different weightlifting exercises, with ges-
tures being much slower and better characterized by the FFT features than the other
three gym activities. Hereby, the exercises seem to be carried out with another fre-
quency, resulting in more confusion with background data and therefore very low
(failed) classification performance. Figure 6.15 shows the dense motif performance
for this standing out gym dataset, on 24 hours and a sub-sequence lasting for about
2 minutes. The FFT-based features, on the other hand, computed on a window of 5
seconds, were able to profit from the frequency domain characteristics of the gym exer-
cise activity: The SVM classifier trained with these features performs considerably good
reaching over 80% in equal error rate.
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Figure 6.15: Dense motifs for a day of the gym data (upper plot, with gym activity high-
lighted in red) and a sub-sequence lasting 2 minutes (lower plot, with motifs
marked in red). Two of the exercises can be recognized by periodically sig-
nals in the lower plot.

Group 4: Activities where more modalities are needed

Finally, the fourth group consists of activities where the chosen approaches were not
able to produce meaningful classification. This is mostly because these activities tend to
be complex activities, consisting of multiple sub-activities that also tend to be performed
in other parts of the day, or activities lacking characteristic patterns.

For cooking, the sub-activities among others would be washing and cutting vegeta-
bles, fruit or meat, stirring, baking, roasting, doing the dishes. Besides that, the par-
ticipants sometimes tend to interrupt cooking for other short-while tasks (e.g. answer
a telephone call, or taking care of children). The lunch activity consists of walking to
the cafeteria, getting the food, eating, going for a coffee and then walking back to the
office. Yoga, on contrary, turned out to be a much more static activity, with very little
motion and therefore lacking characteristic patterns required for motif discovery.

For all these activities, neither the variance in the accelerations, nor the frequency
characteristics, nor the shape of time-series in the motif discovery were suitable to pro-
duce any meaningful classification in our experiments.

Thus, similar activities that do not exhibit characteristic peak patterns therefore re-
main a hard challenge for dense motif discovery. To assess, whether dense motifs are
usable at all, a much more detailed evaluation is required which should evaluate appro-
priate parameters, specific features and modeling.

6.4.4 Applicability for Other Activities

Overall, we can conclude that our dense motif approach tends to detect well those
activities that contain a high amount of characteristic motion patterns. From the per-
formance figures presented earlier we have observed that dense motifs generally shows
good results for sports activities, such as (a) racket sports, with characteristic swings of

110



the racket during the game, (b) ball sports, which include running, dribbling, kicking
or throwing the ball, (c) high-paced fitness, such as zumba, running or jogging.

Besides sports activities, our technique was able to reach good classification perfor-
mance for activities where the participants were playing music instruments. Here, the
performance varies on how characteristic the peak patterns are and how reliable the
dense motifs approach is able to capture these, depending on the music instrument it-
self (drums, guitar, keyboard, piano, violin etc.) and the way it was played. While dense
motifs performed well on the drum or keyboard datasets (approximately 95% equal er-
ror rate), playing guitar has a higher variety (75-90%): By just moving the fingers
(plucking the strings) instead of moving the arm (hitting the strings) will impact the
recognition results, as the peak patterns in the time series will be significantly different.
Nevertheless, the performance advantage compared to the two traditional techniques
is higher for more challenging ways of playing (i.e.: guitar-A and guitar-B). One there-
fore can expect good results from other activities such as sawing or hammering, if the
activities’ durations are long enough and exhibit recurring characteristic patterns that
will lead to motif discovery.

More unpredictable performance was witnessed from gym, dancing or activities with
similar kind of motions. These activities, similarly to playing music instruments, are per-
formed by the humans very individually, which directly impacts the classification per-
formance. For gym exercises, the dense motifs approach on 3 out of 4 participants was
able to achieve only average results (approximately 60% equal error rate). A much bet-
ter classification performance on the 4th dataset (reaching 80% accuracy) was reached
because of the participant’s characteristic warm-up running phase of 30 minutes du-
ration before the weight exercises. The dense motifs method was able to significantly
outperform the two other approaches on 2 out of 4 datasets. For one dataset, though,
the FFT-based features achieved a detection rate of more than 80% accuracy, most likely
due to the way the individual performed his training plan. For the dancing activities,
the detection performance increases significantly when the motion patterns tend to pro-
duce distinctive peaks in the time series: While the ballroom and Latin dances as well
as street dancing datasets performed at a very poor 60%, much better results were
achieved for flamenco (73%) or hip-hop and German “Gardatanz” (82-90%). For the
first two types of dances, the dense motifs approach did outperform the others by a
wide margin. Also, breaks during the activity (e.g., a bathroom break, or answering the
phone for few minutes) has shown to impact the density of motifs. If these are anno-
tated and trained as a part of the target activity, there naturally will be negative impact
on the classification performance.

Household activities, such as cooking, eating, vacuum-cleaning, or ironing play an
important role in activity recognition research that focuses on activities of daily living
(ADL). In our experiments, we were able to detect some of these activities (i.e., ironing,
knitting, washing the car, going for lunch, cooking), but with a varying accuracy. Hence,
for a productive deployment, the medical staff involved would have to carefully chose
the ADL of interest. From our observations (80% equal error rate), dense motifs will
most likely perform well on the ADLs that exhibit characteristic acceleration patterns,
such as ironing, vacuum-cleaning, swiping the floor, cleaning windows, or washing
the car. Complex activities, on the other hand, consisting of multiple sub-activities
which regularly occur multiple times a day (e.g., “lunch” that includes walking, sitting,
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and eating gestures that occur frequently outside the activity) or tend to be short or
inherently variable or often unstructured (e.g., “cooking” of different types of menus,
different workflows) remain challenging to be detected accurately.

6.5 Conclusions

We presented an activity recognition method designed to spot physical activities in long-
term continuous datasets of 24/7, day-and-night recordings from a wrist-worn inertial
sensor unit. The approach uses motif discovery to recognize target activities, by means
of the most typical gestures occurring in them. This allows the method to find possible
matches efficiently in large amounts of data, to pinpoint where a particular activity
might have occurred. Through the density of these motif occurrences, our system can
thus predict the likely underlying human activity.

This design has been inspired from an on-going deployment in psychiatry monitoring
and was evaluated on a considerable dataset under similar constraints. The dataset
contains more than 160 days of 3D accelerometer data from 33 participants that wore
a wrist-worn sensor unit for approximately a week non-stop. The sensor was recording
raw inertial data at 100 samples per second, resulting in more than 1.383 billion 3D
acceleration samples.

Our approach relies on early data abstraction as described in Chapter 4: The dis-
cretization of the abstracted time series to its symbolic representation is then performed
in order to utilize efficient search-oriented data structures, such as suffix trees or suffix
arrays and to extract recurring patterns (motifs) that are characteristic for specific ac-
tivities. Based on these motifs, we are able to create a bag-of-words classifier that relies
on the density of motif occurrences, instead of complex and computationally expensive
modeling techniques.

Our experiments show that the approach is able to detect many physical activities, at
an accuracy on par with standard feature-based recognition approaches, hereby reach-
ing an equal error rate performance of more than 90% for 11 and more than 80% for
additional 7 of 33 activities. Our approach was able to outperform these baseline ap-
proaches on 30 of 33 datasets, whereby performance advantage was achieved on 12
datasets, while being significantly inferior only on one. We demonstrated that the ap-
proach is able to work on large datasets with continuous inertial data, which thus allows
scaling for true long-term deployments over months at a time.

The amount of participants and gathered data allowed for a detailed evaluation of
the system’s performance potential with regard to physical activities. Experiments have
shown that the presence of characteristic gestures is crucial for the system to produce
usable results. For activities with slower movements, such as particular weight lifting at
the gym or dancing, this reliance turns out to be a weakness, as these motions are often
not picked as motifs. This result is specifically important for the psychiatric monitoring
scenario, because the choice of an appropriate activity is crucial to gain a more detailed
insight of patients’ behavior and the impact of the disorder on its quality.

The next chapter specifically considers this aforementioned weakness and proposes an
additional sensing modality that allows to identify object interaction and thus improves
activity recognition performance literary in hardware.
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7 Detecting Interactions with Efficient
Wrist-worn Sensors

Some events, such as a high variety of household activities, are too complex to be deter-
mined from just single 3D accelerometer. The fact that a human often uses or interacts
with objects while performing activities yields an information gain. When considering
object detections as characteristic evidence for activities (Figure 7.1), this information
can significantly improve the quality of activity recognition from acceleration data, as
presented in previous chapters. This approach is specifically interesting for a class of
activities the detection of which solely from accelerometer data is hard, and addresses
the problem much earlier on the hardware level by introducing appropriate sensing
modalities.

The use of a wrist-worn sensor that is able to read nearby RFID tags and capture the
wearer’s gestures has been suggested as a way to both detect the objects we interact with
as well as to identify the interaction. Making such a prototype feasible for longer-term
deployments is far from solved, however, as plenty of challenges remain in hardware,
embedded algorithms, and the overall design of such a device.

This chapter presents several of the challenges that emerged during the development
of a functioning prototype that is able to sense interaction data. We focus in particular
on RFID tag reading range optimization, efficient data logging methods and meaningful
evaluation techniques for long-term deployments.

/7 O\ Cup  Vacuum cleaner
RFID @ Doorknob  Phone Oven Objects
Bottle Toothbrush

Figure 7.1: Detecting object interaction with wearable wrist-worn RFID readers yields
significant information gain. With regard to long-term activity recognition,
RFID tag detections provide evidence to be used to improve classification.

7.1 Motivation

With the introduction of small and inconspicuous RFID tags, wearable tag readers have
been proposed as early as 2000 for the detection of objects we interact with (Schmidt
et al., 2000). A multitude of work, such as of Boronowsky et al. (2001); Philipose
et al. (2004); Patterson et al. (2005); Hodges and Pollack (2007) and many others,
evolved designs from glove-based prototypes to sleek bracelet-like designs such as the
Intel iBracelet (Fishkin et al., 2005; Logan et al., 2007).

The combination of sensed RFID tags and inertial data for detection of what gestures
are performed with the objects, has been mentioned and explored in a large body of

113



Figure 7.2: The wrist-worn prototype identifies grabbed objects and the physical inter-
actions with them, using a combination of RFID and inertial sensors. The
aim is to explore light-weight and power-efficient solutions in particular, to
facilitate long-term deployment.

work in years after. In one of the earlier articles, Wang et al. (2007) showed that the
characteristic motion patterns in the inertial data, combined with the knowledge of
which tools or objects were grabbed by the user, gave in many cases very good results
in the recognition of various daily activities such as “brushing teeth” or “making tea”.
Other work such as MIT’s ReachMedia by Feldman (2004) combines inertial sensors
and an RFID reader to detect particular on-the-move interactions from mobile users.

Applications suggested for such a wrist-worn sensor range from medical applications,
e.g., detecting Activities of Daily Living to follow the routines of the elderly who are
living independently (Fishkin et al., 2005; Stikic et al., 2008), to generic mobile inter-
faces that are designed to be more natural than existing mobile interfaces, e.g., an input
device for wearable computers (Feldman et al., 2005). One of the aspects of this work
remains underdeveloped, even though it is a main requirement for the acceptance of
wrist-worn RFID-accelerometer-sensors in these applications: a battery-driven device
at that location needs to be both light-weight and power-efficient enough for long-term
deployments.

Our work specifically focuses on the challenges that were encountered during the de-
velopment of a bracelet that detects interactions performed with detected objects (Fig-
ure 7.2), while focusing on a low-power solution that is deployable over long stretches
of time.

The main contributions of this work are as follows: First, we mention the technical
procedure in designing and optimizing a wrist-worn RFID antenna. Second, a bench-
mark is presented that allows evaluation of different antenna configurations. We then
report on experiments where this prototype was deployed in a gardening scenario for
few hours as well as in a domestic setting for several days.

7.2 Combining RFID reading and Inertial Sensing

The basic principle of RFID-tag reading is that a reader is able to power nearby tags by
induction, using relatively large antennas. Having the tag reader at the wrist means that
grabbed objects and tools can be detected using just these tags, assuming the reader’s
range is large enough to power and communicate with the object’s tag. Since the reader
needs to be mounted at the wrist, this type of wrist-mounted RFID sensing comes with
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a harsh energy constraint: the antenna and its circuitry need to be strong enough to
detect hand-held tags, yet power-efficient enough to not drain the battery after a short
while.

Accelerometer sensors have been widely used for the recognition of physical actions
that have characteristic motions or postures. Zinnen et al. (2007) propose the char-
acteristic wrist positions and motions to detect short actions in a car scenario such as
“pulling the handbrake” or “opening the oil tank”. In our prototype, after detection of
a claw hammer one might for instance expect the actions “hammering” or “pulling out
nails”, depending on the gestures detected with the wrist-mounted accelerometer.

Since accelerometers are known to be power-efficient but their data to be not as rich,
compared to IMUs containing also gyroscopes and magnetometers, the knowledge of
what object the user has grasped can help here to distinguish between a limited set of
interactions. Furthermore, object detections can significantly narrow down the amount
of data in which an automated search for motion patterns is executed, thus speeding up
data analysis.

To summarize, the two sensing technologies have proven their worth in earlier work
where prototypes were used in feasibility studies. Several questions remain regarding
their operation in applications which require functioning longer than a few hours. We
hereby focus specifically on the RFID modality. In particular, the following questions
emerge and are addressed:

* How can the working range of an RFID antenna be increased to reach from wrist
to the object in the hand?

* How can we compare different types of antennas and decide which performs bet-
ter?

* How dense should RFID samples be to detect grabbed objects, yet save energy?

The basis for this chapter’s wrist-worn sensor design is a custom data logger plat-
form, with its current version presented in Chapter 3. The accelerometer-based module
allowed power-efficient capturing of inertial data, enriched by light sensors, a tempera-
ture sensor, along with a precise time stamps. It is able to log the obtained samples on
a small microSD card, or wirelessly transmit chunks of sensor data to a nearby station
via Bluetooth.

For detecting and reading nearby RFID tags, the M1-mini from SkyeTek RFID reader
was chosen. This exact module is used by other researchers (Philipose et al., 2004;
Feldman et al., 2005; Wang et al., 2007) as it is one of the smallest and power-efficient
modules on the market. The M1-mini comes with a small on-board antenna which has
a reach of about 3 centimeters. To have a reading range larger then that, an external
antenna and a matching circuit are required. Figure 7.3 shows the current version of the
bracelet design, with the oval-shaped PCB antenna and matching circuit, the M1-mini
RFID reader, and the data logger on top of each other (without the battery).

7.3 Optimizing RFID Reading Range

One of the most time-demanding efforts in building a wrist-worn RFID sensor is the
optimization of the bracelet’s built-in antenna. Although Want (2006) gives a very good
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Figure 7.3: The data logger with the custom bracelet antenna and a small RFID reader.

introduction in the use of RFID tags and readers in pervasive computing applications, it
requires a deeper knowledge to maximize the potential of a given antenna. Fishkin et al.
(2005) describe a custom bracelet with integrated RFID reader and coil, but the authors
provide no details about their engineering and tuning processes of their antenna. As the
reading range for RFID tags is crucial in this type of work, this section is dedicated to a
detailed description of the antenna design and tuning process.

The Q-value is a measure of “quality” for the antenna and is directly related to the
reading range. Generally, increasing Q will result in a higher power output of the par-
ticular antenna, allowing higher reading distances. On the other hand, a too high Q
will conflict with the band-pass characteristics of the RFID reader. Since a sufficient
bandwidth for the wireless communication between the reader and the RFID tags has
to be assured, the relation between the quality and the bandwidth is thus reciprocal,
resulting in a trade-off between the quality of the antenna and the bandwidth.

The M1-mini SkyeTek reader (Figure 7.4a) can be equipped with an external an-
tenna, which in our case is a requirement as the built-in antenna does not reach further
than a few centimeters. The driver impedance of the reader is typically set to 50 Q.
Every antenna has its own impedance value, and to be able to use our customized
single-loop coil with the M1-mini reader, the antenna impedance has to be matched to
the reader’s impedance front end. There exist different matching approaches such as
gamma, transformer or capacitance matching, whereby the latter was used in our work.

The matching circuit, as shown in Figure 7.4b, consists of a serial capacitor C;, a
parallel capacitor C, and a parallel resistor R,,. The values chosen for those capacitors
and the resistor have a great impact on the quality and the bandwidth of the antenna.
Based on the experts work of Soffke (2007), the following approach is used to compute
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matching circuit antenna

(a) RFID reader (b) Matching circuit for external antenna (c) Antenna tuning

Figure 7.4: The SkyeTek M1-mini RFID reader used in our setup has an internal antenna
with a maximum reading range up to 4 cm. To increase the reading range, an
external antenna can be attached. Since the external antenna has to match
the 502 impedance level of the reader, a matching circuit (b) is required. The
fine-tuning of the circuit was done using a network analyzer (c).

the values for the capacitors and the resistor, whereby the relevant variables are: the
measured antenna inductance L, the target impedance Z, = 5012, the Q-value of Q =
30, and the frequency of the field f = 13.56 M Hz.

First, we compute the parallel resistor value:

R,=Q*wx*L with w=2xmx*f

Then, using the equations

1 -1
G, =— and B;=
R, w*xL
we compute the parallel and serial capacitor values
G 1
C,=—B,— Z—L—Gf and C, =
0

/1
C()*ZO* m—l

Using a network analyzer for our PCB antenna prototype an antenna inductance of
L = 322nH has been measured. Following the given approach the optimal values for the
resistor and the capacitors have been found to be R, = 820.28812, C, = 371.663pF and
C, = 59.807pF. After utilizing the off-the-shelf available 8202 resistor and assembling
a combination of fixed and variable capacitors to meet the computed values, we used
the network analyzer again, as shown in Figure 7.4c, to fine-tune the antenna to match
509. Finally, a reading distance of up to 14 cm has been achieved, which slightly
exceeds the reading ranges of the antennas mentioned by Fishkin et al. (2005) and
Feldman et al. (2005).

Surprisingly, evaluating the antenna’s reading range by increasing or decreasing the
distance from tag to antenna, is not the best way to benchmark the accuracy in detecting
tags. Starting with the RFID tags close by the antenna and increasing the distance
gradually, will lead to more optimistic reading ranges, since the tags that are charged
up by the reader are able to bridge some additional distance. The circumstances when
wearing the bracelet and grabbing tagged objects tends to differ substantially from these
lab tests. We propose a novel benchmark that will be presented in a later section in this
work.
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7.4 Optimizing RFID Reading Frequency

Every reading cycle, where the SkyeTek M1-mini RFID reader module seeks for the
nearest tags, according to the datasheet tends to last from 20 in best case up to 68.4
milliseconds in worst case, depending on the tag type and whether the reading was
successful. The reader draws approximately 60 mA in current while in active, 15 mA in
idle and 60 uA in sleep state. This means that a trade-off exists between detection speed
and power consumption: More frequent searching for nearby tags means that objects
are likely to be found faster yet at the cost of higher power consumption, whereas less
frequent reading will make the battery last longer, but might result in missing tags or a
slower detection.

Assuming that we want to search for nearby tags 16 times per second, we end up
with a time slot of maximally 62.5 milliseconds for one reading. Since the reader also
needs time to go to sleep as well as wake up, and additionally the worst case time for
one seek even exceeds this time slot, no idle or sleep states are possible in this scenario.
This means that the RFID reader will constantly consume power in active state, i.e., a
draw of 60 mA. With a light-weight rechargeable battery with a capacity of 600 mAh,
and assuming the rest of the bracelet consuming approximately 10 mA (in worst case),
this will result in a runtime of about 8.5 hours.

Reducing the reading rate to 1 reading per second allows the RFID reader to go into
the sleep mode to preserve power. In the worst case, it will take approximately 70
milliseconds to search for a tag and up to 100 milliseconds for switching modes, giving
the RFID reader roughly 730 milliseconds for staying in the sleep state. Since in our
approximated calculation we are able to neglect the power drain of 60 uA during sleep,
the runtime for the same battery and same configuration mentioned above will account
to about 28 hours. This is more than thrice the runtime as in the high frequency reading
case where the RFID reader’s power efficient sleep mode can not be utilized.

In addition to the idle and sleep modes between readings, it is also possible to have
the RFID reader change into sleep state and suspend the reading if no movement is reg-
istered by the bracelet’s accelerometer. For example, no movement will occur for longer
periods during the night when the participants wearing the bracelet is sleeping, or when
the bracelet has been temporarily taken off the wrist. Combining the sleep states of the
RFID reader and the main data logger in such situations will save battery power and
result in a longer total runtime. Assuming the night phase to last about 7 hours and
neglecting the power consumption during this period, the total runtime with the same
battery will account to 35 hours. Utilizing a battery with slightly higher capacity will
allow to deploy the bracelet for two full days without the need for recharging.

7.5 Evaluation of RFID Reading: The Box Test

To obtain the optimal RFID parameters, both reading range and frequency, we designed
a benchmark in which subjects wear the bracelet prototype and load a variety of tagged
objects in and out a box, which is also tagged with several RFID tags. The advantage
of this test over straightforward measuring increasing or decreasing distances between
a test tag and antenna, is that the whole system is immediately tested under realistic

118



objects

usb stick
glass bottle
hammer
utility knife
lipstick
plastic bottle L
plastic bottle S
screw driver

(a) Some of the tagged objects used in the test (b) All objects from the test
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(c) Frames from a video recorded during the “box test”.

Figure 7.5: Benchmarking the RFID antenna: Various subjects who participated in the
box test had to load and unload a box with tagged objects. The objects
were chosen to have a high variety in shape, weight and material.

circumstances. This test has the user’s wrist and hand present in the middle of the
antenna, and the amount of objects, as well as the speed at which objects are grabbed
and released tends to be challenging enough. The subjects loaded and unloaded the
box three times, and closed it each time it was loaded with all objects.

Furthermore, this test can employ a variety of objects with a wide range of properties
that might impact later usage. They can be chosen to fit target applications, or they
can be selected according to a variety of shapes and materials. Some of the objects
are illustrated in Figure 7.5a, and the full list is given in Table 7.5b. Tags were mostly
placed on the areas where people tend to grab the objects. Additionally, 8 tags were
also placed on the flaps of the box to detect the closing and opening of the box. To be
able to interpret sequences where things went wrong, all experiments were recorded on
video (Figure 7.5c shows some frames from the video footage).

To evaluate how well an object was recognized in the box test, we count the number
of hits, events when the RFID reader correctly found an object’s tag as it was taken in the
test subject’s hand, and divide this over all occurrences when the tag should have been
detected (excluding the tags affixed to the box). This measure will in the remainder of
this chapter be referred to as hit rate.

The box test was performed for the shape of the antenna, the Q value, and RFID
reading frequency, with the results being presented in the following paragraphs.
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Figure 7.6: Hit rates for several objects during the box test, using two antennas: one
circular and one oval-shaped, worn at an angle and tuned to Q = 30.

Antenna Shape

Figure 7.6 shows the hit rates between two types of antennas we tested in the early
design phase: one PCB antenna which is round, as mentioned in (Wang et al., 2007),
and one of the new design that is oval in shape, whereby it is worn tilted at a downward
angle, as shown in Figure 7.2. The latter is only slightly larger, but makes it easier to
put on the antenna as a bracelet.

A third type of antenna, which uses flexible coils and snap-on metal buttons to close
the antenna loops, such as presented by Feldman et al. (2005), is more promising for
comfort reasons. Unfortunately, it is much harder to implement and unpredictable to
design a matching circuit for, as its shape tends to change, and thus was not considered
after initial experiments.

Using our oval-shaped antenna design over the circular one, the hit rates improved
for all but one object, namely the lipstick. Substantial improvement can be observed for
the USB flash drive, the utility knife and the screw driver.

Q-Value

The antennas were evaluated also regarding the quality parameter, by being config-
ured with Q values up to 36. Figure 7.7 depicts the hit rate results for four different Q
values for our oval-shaped antenna prototype.

Aiming at the maximization of the reading range to be able to detect tags on grasped
objects, the box test benchmark revealed that a value of Q = 30 gives the best trade-off
between the quality and the bandwidth of the antenna prototype.

Note that also in this test detecting the lipstick did not work well. One of the possible
explanations would be that the RFID tag attached to the lipstick case (see Figure 7.5a)
had to be bent. This negatively impacts the electrical charging of the tag through the
inductive field generated by the RFID antenna. While the tag on the screw driver was
bent also, but not to such extent, the effect is also visible.

RFID Reading Frequency
To find out at what frequency the RFID reader should wake up from its sleep state to
seek for nearby tags, an experiment with a reading rate of 16 Hz was conducted.
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Figure 7.7: Hit rates for different values of Q, using the oval-shaped antenna. The hit
rates for lipstick are 0% for all Q's, and therefore are not visible in the plot.

To simulate less frequent readings, the data stored during that experiment was se-
lectively analyzed with an increasing step factor. By doubling the step factor, and this
way halving the reading rate, we obtained a monotonic decreasing number of captured
tags. The average hit rate started at 100% for the factor 1 (16 Hz), and dropped to an
acceptable level of 65% for the step factor values of 4, 8 and 16 (4 Hz, 2 Hz and 1 Hz re-
spectively). Increasing the step factor even more resulted in the hit rate monotonously
dropping further. From this we can conclude that a reading rate of 1 Hz provides a good
balance between capturing the deployed tags on the one hand and saving a significant
amount of battery power on the other. This frequency is on par with optimal frequencies
found in related work by Philipose et al. (2004); Wang et al. (2007).

The value of the box test goes beyond a more realistic evaluation of wrist-worn RFID
antennas. It offers insights in how well and how fast intended objects are found, while
it places the prototype in an environment that is closer to its usage scenario, without
demanding a costly experiment setup. For completeness, we also mention the distances
reported in previous work as well as our measured maximum range in Table 7.1. Note
however that not all of these measurements have been taken in the same situation and
environment.

Project name Maximum range Amplification Embedded in
iGlove (Philipose et al., 2004) 3-5 cm no glove
SonMicro (Medynskiy et al., 2007) 4-5 cm no glove
Phidgets (Hodges and Pollack, 2007) 10 cm no glove
ReachMedia (Feldman et al., 2005) 10 cm yes wrist band
iBracelet (Wang et al., 2007) 10 cm no bracelet
Oval-shaped design 14 cm no bracelet

Table 7.1: Several projects involving glove- and bracelet-based RFID readers, and their
reported maximum reading ranges. We stress that a comparison between
these distances is hard to do, and offer the box-test as a better estimation of
how well a design fits the intended application.
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Figure 7.8: Raw data from both the RFID reader and accelerometer embedded into the
bracelet during the sowing scenario from the gardening data. The top plot
shows blue crosses whenever a tag was detected at a specific time (x axis)
for a specific tag (y axis), while the bottom plot displays the accelerometer
time series (approximately lasting 12 minutes). Note that one of the main
object’s tags was found for most interactions, and that at several occasions
(e.g., raking) unrelated tags were detected.

7.6 Application Scenarios for Combining RFID and Inertial Sensing

This section considers multiple application scenarios as examples of activities where
detecting object interactions can significantly improve activity recognition.

Gardening

To stress the interaction with tools and objects, a new data set was recorded which
utilized both detected RFID tags, at 1 Hz, and raw accelerometer data at 100 Hz, where
an hour-long gardening scenario was followed. This experiment was performed as real-
istic as possible, taken outdoors in a real garden while planting real flowers and sowing
real seeds.

A gardening scenario is sensible to evaluate a range of interactions with objects, since
many tools are typically required for the execution of a wide range of tasks. Tools and
objects are also used in several ways, depending on the task at hand: the small spade
for example was used both to “dig holes”, “create trenches” and to “firm the soil around
plants”. A total of 16 different gardening-specific objects were tagged, including spades,
rakes, shovels, flower tops, and buckets, with 36 tags being deployed in total. The tools
and objects were positioned near each other throughout the recording, resulting in
several instances in which a tagged object was moved out of the way and providing our
bracelet with a ’false hit’ (e.g., a spade was detected during sowing). The visualization
in Figure 7.8 shows the raw data during the last gardening scenario. Annotation of the
sensor data was based on the previously defined “gardening activity” script as well as
video footage recorded during the experiment (cf. Figure 7.9a).

Three different scenarios were followed: one where a bed of flowers were planted
in soil, a second where weed is removed and plants are watered, and a third in which

122



(a) Gardening activity (b) Making coffee activity

Figure 7.9: a) A photo taken during the gardening experiment, where the user has been
wearing a bracelet with acceleration and RFID sensors. b) A set of frames
from a demonstration video with a subject performing a “making coffee” ac-
tivity that involved multiple objects shows detected objects and acceleration
data (in overlays) in real-time. Combining acceleration data with detected
objects gives more insight on the performed activities and can significantly
improve activity recognition.

vegetable seeds are sown. Each of the three scenarios contained a series of sub-tasks,
such as “loosening soil”, “digging a hole”, or “hammering in a sowing line”. Video footage
was taken for post-annotation of the data.

Aiming at detecting patterns of interactions with a multitude of tools in this experi-
ment, we rely upon piecewise linear approximations to reduce the accelerometer data
and to preserve the essential shape of the signal. Hereby, the approximation perfor-
mance of our mSWAB algorithm is also on this data set consistent with the evaluation
results presented in Chapter 4.

Making Coffee

A multitude of short-lasting activities often involve interactions with a relatively large
set of objects, whereby little characteristic motion patterns occur. Detecting such actions
or activities solely from acceleration data can be considered to be very hard, especially
when considering long-term continuous acceleration data.

The “making coffee” activity was recorded to demonstrate the additional information
gain for activity recognition. Figure 7.9b reveals that detecting the objects water filter,
coffee pack, coffee machine, sugar, spoon, and cup, yields an information foundation
to consider underlying human motion. Hereby, only few characteristic motions were
identified in the experiment, with “pouring water” in the beginning and “stirring” at the
end being most prominent.

Long-Term Domestic Test

In order to characterize the performance of our system in a relatively long-running
experiment, we deployed our sensor bracelet for an entire day, for three consecutive
days. During this time, a test subject performed daily a set of 11 household activities
such as “making the bed”, “polishing shoes”, “vacuuming”, and “sweeping the floor”. Fig-
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Figure 7.10: The four photos on the left show some of the activities conducted during
the long-term domestic study, here: watering the flowers, cleaning win-
dows, ironing, and vacuum cleaning. The photo on the right shows the
objects from the longer-term domestic setting study. Tagged objects and
tools were chosen for their interactions, whereby 43 tags have been de-
ployed, and scattered around the living environment of the test subject.

ure 7.10 shows some more examples for activities and the objects that were interacted
with during these three days. In total, 29 objects were tagged with 43 tags.

Our long-term logging target was met as the prototype was able to capture all data —
both accelerometer data and RFID data - for this extended period, while the majority
of the objects’ tags were detected during each interaction. Although the battery was left
charged overnight, the longest continuous log still lasted 18 hours and the bracelet’s
lightweight battery was never drawn to depletion. Our estimations are that on a light-
weight battery of 600 mAh, the prototype would be able to log at least for two days
continuously, assuming a highly active daily schedule.

The main obstacle for several days’ worth of continuous logging is currently the form
factor of the sensor. Before and during the development of the bracelet we held short-
term user trials which favored the oval design over the round one conform to (Wang
et al., 2007), mostly due to it being easier to put it on for subjects with bigger hands.
Although the weight and size of the bracelet sensor were found to be acceptable by
these user trials during initial development, the utilized straps were found to be hard
to adjust and especially uncomfortable to wear during the night in the long-term study.
For this reason, several designs are planned that will be evaluated over day-long studies
that wrap the current prototype in resin casings with more suitable wrist-bands built in.

For such application scenarios, considering detections of used objects will substan-
tially aid our our dense motif approach (cf. Chapter 6). One of the possibilities is to use
object detections in a similar way as user diaries, thus significantly reducing the search
space for recurring motion patterns.
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7.7 Conclusions

Inertial sensor data does not always provide enough information to detect complex
events such as human activities.

This chapter presented a lightweight bracelet-like sensor that continuously detects
which objects are handled, and how. It does this by combining a small-scale RFID
reader and a 3D accelerometer: tags on the objects reveal what they are, while motion
patterns performed while holding the objects characterize the type of interaction. Sev-
eral prototypes of these bracelet-like sensor devices have been proposed previously, but
we focus in this work especially on the aspects of making it deployable in real-world en-
vironments for longer time frames, balancing between sensor data richness and power
consumption of the wearable sensor.

Apart from detailing the crucial hardware design choices to achieve both good detec-
tions and a long battery lifespan, we also suggest the use of a small practical benchmark
study, the “box test”, to test various parameters used in the wrist-worn RFID antenna
circuit. This benchmark allows to test various antenna designs in a limited location in
relative short amount of time, with a wide range of objects and test subjects. We used
this benchmark to evaluate different antenna shapes, various matching circuit parame-
ters (via the Q value), and a range of RFID sampling frequencies. A technically optimal
configuration was found to be an oval-shaped antenna, with a Q-value of 30, searching
for nearby tags once every second.

Two data sets were recorded to test this prototype ’in the field. A the short-term
gardening scenario focused on the use of lots of objects and various interactions per
object. The making coffee demo of few minutes duration revealed that RFID tag de-
tections yield a huge information gain in situations where very little characteristic ac-
celeration patterns exist. Finally, a data set was recorded over several days to validate
the long-term functioning of our light-weight bracelet in practice, identifying remain-
ing challenges in the bracelet’s strap design but showing that continuous operation for
longer periods is feasible.

With regard to fusing acceleration data with RFID tag detections, relying on the lin-
ear segmenting algorithm from chapter 4, much faster query-based pattern matching
in acceleration data is possible. Furthermore, considering RFID tags as evidence for
activities, our dense motifs approach from chapter 6 would be able to automatically
use these detections to search 'nearby’ for activity-related motion patterns, without user
annotations.

The RFID sensing capability to detect object interactions as an additional modality to
acceleration data reveals its particular advantage when considering a class of activities
that are hard to predict solely from acceleration data. Such activities, for example
household activities, often tend to be relatively short and, due to only few characteristic
acceleration patterns within huge amounts of data obtained in long-term deployments,
not captured well by our dense motifs approach. Detecting object interactions through
RFID (as a complimentary modality to acceleration data) on the hardware level to a
large extent will improve or ideally solve activity recognition for presented application
scenarios.

These claims at the moment are left to be evaluated thoroughly in future work.
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8 Conclusion

The deployment of sensors is still a challenging undertaking especially in human ac-
tivity recognition or wireless sensor network scenarios. This mostly because these
applications aim at long-term deployments. In contrast to lab experiments or short-
term deployments, such deployments require more elaborate approaches, which must
cover various aspects of the overall system, choosing or manufacturing sensors to cap-
ture physical phenomena of interest, identifying suitable features and utilizing efficient
algorithms for dealing with the data, and finally performing classification of activities
or events.

In this thesis, we specifically focused on the challenges of long-term scenarios with
inertial sensors and addressed several aspects of the target system. The selection of
appropriate hardware is particularly important considering the target applications’ re-
quirements and constraints. To this end we presented a miniature and power-efficient
hardware device that can be worn to capture human motion or deployed in the envi-
ronment to capture vibrations. Then we argued for using the shape of the acceleration
signal as a feature and proposed for these scenarios different feature extraction, pattern
matching and classification techniques. We conducted studies of significant size and
have discussed the performance of our algorithms and techniques with regard to the
targeted applications.

In the following we summarize the contributions of this thesis and conclude with an
outlook for further research on potentially promising directions that emerged during
our investigations.

8.1 Summary of Contributions

In Sections 1.1 - 1.4 we listed the main challenges of long-term application with wear-
able sensors for human activity recognition purposes in the medical domain, or the
long-term deployments of vibration sensors in a wireless sensor network monitoring
scenarios. With the combination of the high frequency sampling on the one hand, and
the heavily constrained hardware with regard to the power supply and processing ca-
pabilities on the other, the challenge lies in creating a system that covers the whole
chain, from a) sensor hardware to obtain the relevant sensor data, over b) efficient data
abstraction algorithms or features for dimensionality reduction of the huge amounts of
data, to c) efficient classification techniques for the two proposed application domains.

Custom efficient data logger

In Chapter 3 we presented a custom data logger, tailored for long-term deployment
scenarios, specifically paying attention to power efficient design of the hardware as
well as the logging routine. With this sensor device at hand we were able to perform
the experiments and extended studies that constitute this thesis.
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We have chosen an open-source design of the sensor hardware as well as the firmware,
and made it publicly available from the projects website and code repository, thus mak-
ing it more easier for other researchers to use our platform for own experiments, as well
as to adjust it to personal needs without spending significant resources on “reinventing
the wheel”.

Piecewise linear segments as shape features for query-by-example pattern matching

Considering the amount of sensor data acquired, the next step was the utilization of
a suitable data representation that would allow faster pattern matching, event classifi-
cation, and finally activity recognition. We argued for utilizing the “shape” of the signal
as a feature, specifically aiming at recurring motion patterns that have characteristic
signal shapes.

Chapter 4 presented a piecewise linear approximation algorithm tailored for human
motion data, aiming at optimal representation while reducing computational complex-
ity and thus speeding up the computation. The resulting approximation can also be
easily visualized as a time series and used for faster query-based pattern matching.

On-line shape encoding for event classification in WSN applications

In Chapter 5 we proposed a WSN monitoring application that is targeting the de-
tection of vibrations caused by passing trains to the rail, and suggested to use inertial
sensors to capture and analyze these vibrations for railway infrastructure monitoring
purposes. This scenario and the type of data are essentially different from our hu-
man activity recognition, with vibration events occurring sporadically over the course
of time, demanding event detection and classification directly on the sensor node.

Encoding signal shape with symbols for dense motifs activity recognition

While Chapter 4 focused on using the abstraction time series for query-based pattern
matching, in Chapter 6, motivated by a medical bi-polar monitoring scenario, we con-
sidered a common activity recognition domain challenge, namely the identification of
unknown characteristic patterns that can be used to train a classifier to detect specific
activities.

The huge amount of continuous motion data requires efficient and computationally
fast techniques to identify characteristic recurring patterns. To this end, we proposed
our dense motifs approach that consists of a multi-step procedure: First, the raw sensor
data is abstracted to its piecewise linear representation, which is then consecutively
converted to a symbolic representation. Utilizing the search-optimized suffix tree data
structure, we are able to extract recurring string patterns that then are used in a bag-
of-words classifier. The classifier itself predicts target activities based on the salience of
motif occurrences.

Detecting human-object interaction and usage with accelerometers and RFID

Based on the early data abstraction and classification approaches, in Chapter 7 we
proposed to extend the design by adding an additional modality that would allow to
identify human-object interactions. We presented an extension of our data logger that
consisted of a miniature RFID reader and a custom bracelet-like antenna, which allows
to detect objects equipped with RFID tags. Thus, we obtain both human motion from
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the wrist as acceleration data, as well as human-object interactions as RFID tag detec-
tions, which allows us to detect which objects the person was interacting with, and how
exactly.

Summary

We have presented a system that covers all important aspects, ranging from the hard-
ware to obtain the data, different scenario-oriented data abstraction and feature ex-
tractions techniques, as well as evaluations of the pattern matching and classification
approaches. The hardware prototype allows for long-term applications in activity recog-
nition and wireless sensor networks deployments. Efficient early data abstraction and
feature extraction facilitate faster data analysis, both efficient off-line human motion
pattern matching as well as detection of specific activities, or the on-line classification
of vibration events for railway monitoring.

The hardware design, the firmware source code, data abstraction and feature extrac-
tion algorithms are made publicly available to support reproduction of experiments as
well as to encourage other researchers to open their data sets to the community.

8.2 Conclusions

The presented contributions were evaluated in multiple extensive studies, showing the
capabilities and advantages of our approach.

Customizing the data logger has a considerable impact on efficiency

Our experiments confirmed that storing the sensor data to the local memory is the
most expensive task, besides the operation of the OLED display. With regard to the
inexpensive consumer flash cards, these need to be chosen carefully based on their
actual current drain footprint. The peak consumption from technical data sheets reveals
nothing about the actual consumption of the card.

The current drain for the write operation range from as little as 0.05 mAs for the
much more expensive industry class flash memory card, and from 0.15 up to 0.28 mAs
for consumer flash cards, depending on their size and manufacturer. For long-term
application scenario, the industry flash memory is definitely worth consideration, since
it allows much longer runtime on a single battery charge.

The efficient compression of raw sensor data with run-length encoding has been iden-
tified as an essential key to achieve run-times of more than two weeks on a single battery
charge (using best performing consumer microSD flash card). While for actigraphy-
oriented scenarios reducing the sampling rate to 50 or 25 Hz is possible, high fidelity
data is required when considering the identification of subtle motions in activities, such
as weight lifting at the gym, dancing, or playing music instruments, or when using the
sensor to capture vibrations.

For the desired long-term deployments of the wearable sensor, the runtime on a single
battery charge was confirmed to be more than 14 days.
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Linear segments lend themselves well for query-by-example pattern matching

The comparative studies revealed that our mSWAB is almost two times faster than
the original SWAB algorithm, at the cost of more segments and only slightly increased
approximation error.

The quality of approximations, varied by setting the approximation threshold, was
evaluated through query-by-example pattern matching. Hereby, we we compared the
widely used dynamic time warping technique, and introduced a competitive novel ap-
proach that computes the similarity of patterns based on their K most characteristic
segments. On a challenging data set, both techniques reached for optimal parameter
settings a detection accuracy of more than 85%, whereby K longest segments was more
than twice as fast than DTW.

Furthermore, mSWAB was found computationally efficient enough to be implemented
directly on a sensor node even with harsh hardware constraints. Compared against
raw sensor data dissemination or run-length encoding on 6 different types of data, the
additional computational effort allowed better data compression during logging on 5
out of 6 data sets. This study confirmed that data abstraction directly on the sensor node
can be performed in an on-line fashion, while reducing expensive operations (writing
to flash memory or wireless communication) and preserving limited power resources of
the sensor device.

On-line shape encoding facilitates on-line event classification in WSN applications

The shape of the vibration footprints caused by the trains are visually characteristic
enough and can thus be used for event classification. The two studies focused on iden-
tifying suitable shape features that can be efficiently computed directly on the sensor
node.

With these features at hand, a generic SVM classifier was trained to discern the events,
which resulted in good train type classification of the six classes, reaching 97% in accu-
racy. Implementing the classifier directly on a sensor node can be done by converting
the SVM class planes into a straight-forward decision tree. Counting the amount of axle
impacts for train length estimation has reached a total mean-squared error of approxi-
mately 4.

The experiments have also revealed that some of the extreme acceleration peaks de-
tected in the signal have been caused by impacts of potentially damaged train wheels.
This nicely showcases how a low-cost acceleration sensor can obtain many relevant
information for a large-scale infrastructure monitoring system. Deploying a sensor net-
work with communication capabilities allows to obtain further information, such train
speeds or their acceleration.

Symbolic representation facilitates efficient activity recognition with dense motifs

We evaluated our dense motifs approach in two studies, whereby the larger study
contains more than 3800 hours of inertial data from 33 participants and a total of 22
different activities. The study results showed the efficiency of our approach on data
sets with target activities that contain characteristic acceleration patterns in the signal.
We compared the performance of dense motifs to that of an SVM classifier trained
with statistical and frequency domain features, and discussed its suitability for different
classes of activities.
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Our study results revealed that dense motifs reach better or equal classification results
with 90% equal error rate for 11 and more than 80% for additional 7 of the 33 activities.
Our approach was able to outperform the SVM trained with features approaches on 30
of 33 datasets, whereby significant performance advantage was achieved on 12 datasets,
and being significantly inferior only on one.

Furthermore, dense motifs allow faster processing of sensor data, with less than one
minute for training process, which includes the mSWAB abstraction and symbolic map-
ping step, as well as motif extraction and training of the bag-of words classifier, which
is more than twice an 7 times faster than with mean/variance and FFT based features.
Performing the classification with the bag-of words classifier required approximately
50 to 100 seconds (this includes the data abstraction step and accumulating motif oc-
currences), depending on the amount of motifs accumulated. Also here, dense motifs
performed slightly faster than mean/variance features, and more than 3.5 times faster
than FFT based features.

Detecting object interaction with RFID can improve activity recognition in hardware

The evaluation study focused specifically on the hardware development of the RFID
antenna, since its custom design aimed for accurate object detection. We presented
a novel “box test” benchmark to compare and evaluate the quality of such bracelet
antennas.

Besides an increased maximum reading range of 14 cm (against 10 cm of the Intel
bracelet), the box test revealed that our oval-shaped antenna design performed better
then the circular antenna: The hit rate of tag detections improved for almost all devices
used in the test, with 70-98% for 6 out of 8 objects and 50% for the screw driver. Only
the very small lipstick turned out to be hard to detect, for both types of antenna.

Since the RFID reader consumes substantial amount of energy, reducing the sampling
frequency and putting the reader to a power-efficient idle mode is very important for
long-term deployments. The optimal sampling frequency of the RFID sensor was found
to be 1 Hz. With this frequency, the sensor device is able to last for approximately 35
days on a battery with a capacity of 600 mAh.

Combining acceleration data and object interaction yields huge potential in improving
activity recognition, as motivated by the three scenarios: gardening, making coffee
and domestic deployment. Specifically, the use of an RFID bracelet is preferable in
scenarios where activity recognition solely from acceleration data is hard, since the
detected objects tend to provide good evidence for underlying activities.

8.3 Outlook

With the achieved results at hand, the question now is, ‘Where do we go from here?’.
Obviously, there are a multitude of possible directions that can be taken.

First and foremost, the modular characteristic of the current human activity recog-
nition system allows for improvements and even complete replacements of these mod-
ules, opening various opportunities to evaluate alternative techniques. For example,
the first segmentation step (mSWAB) can be replaced by a segmentation technique that
combines the run-length encoding algorithm for flat signal periods and mSWAB when
motion is detected, which would additionally reduce computational complexity and
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thus yield positive impact for embedded execution directly on a sensor node. Alter-
natively, mSWAB can be completely substituted with another algorithms that produce
piecewise linear segmentation differently or a piecewise polynomial representation. Af-
ter this step, query-based pattern matching can be performed, or the representation
may be mapped to symbols for motif extraction purposes. Converting the abstracted
time series to its symbolic representation can then be achieved based on the polyno-
mial degree and its constants. Furthermore, for application domains without the need
for a shape-preserving representation, the sensor data can be converted to symbols,
discarding previous information.

The motif extraction step, required for the creation of the bag-of-words classifier, is
specifically efficient due to the linear complexity of the suffix tree creation. On the
other hand, our current approach considers all accumulated motifs as equal candidates,
if these do not occur in background data. This strict filtering can be relaxed such that it
will also consider the frequency of motifs within the class as well as in the background
data and based on this decide whether to remove or to keep the motif for the classi-
fier. For example, motifs that occur only few times in the background data can be still
preserved and used for the dense motif search.

Also, our dense motif approach currently works with strict substring matching, which
can be replaced by approximate string search. This might specifically improve the
matching results when considering similar patterns that have been abstracted by a
different number of linear segments and therefor differ by a limited number of char-
acters.

The bag-of-words classifier is currently based on the density of motif occurrences and
can be improved through introduction of further features, such as statistical features
from the raw data computed from a sliding window, or even other information modali-
ties such as time and date, previous and upcoming activities from a calendar, location,
etc. Furthermore, building activity models based on motif occurrences statistics, such
as their order or the probability of multiple motifs to appear together or excluding each
other, as well as other features can improve performance results. Beyond the scope of
the thesis lies the option of using modeling techniques, such as HMMs, that can be used
to model such dependencies.

Obviously, the dense motifs approach works specifically well for activities that exhibit
characteristic acceleration peaks, and experiences problems when such peaks are not
available. For activities where with characteristic cyclic motions, such as during gym
exercises, DFT features performed better than dense motifs. For such activities, one
possibility to build motifs such that these incorporate frequency domain features. Such
considerations however require the design of other abstraction techniques, and are left
as future work.

In our WSN railway monitoring scenario, the vibration patterns are currently ab-
stracted based on a fixed width buffer window, which is, given a fixed sampling rate, is
not speed invariant. Depending on the speed of the train and the highly variable im-
pact of the wheels, the vibration footprint often varies to such an extent that axle peaks
are missed. This leads to high deviations when estimating train lengths. To tackle this
problem, a speed invariant approach is required that is able to minimize this estimation
error.
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Our investigations did not cover the distributed aspect of the sensor network, which
can provide relevant information, such as the speed or acceleration estimation of the
trains, or the refinement of the train type predictions as well as the wagon counts.
Furthermore, the detection of potentially damaged wheels through extreme peak am-
plitudes should be investigated throughly.

The major challenge for this scenario is an actual sensor network deployment for a
longer time period in order to evaluate the proposed system under real conditions.
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