28 research outputs found

    The Unfortunate-Flow Problem

    Get PDF
    In the traditional maximum-flow problem, the goal is to transfer maximum flow in a network by directing, in each vertex in the network, incoming flow into outgoing edges. The problem is one of the most fundamental problems in TCS, with application in numerous domains. The fact a maximal-flow algorithm directs the flow in all the vertices of the network corresponds to a setting in which the authority has control in all vertices. Many applications in which the maximal-flow problem is applied involve an adversarial setting, where the authority does not have such a control. We introduce and study the unfortunate flow problem, which studies the flow that is guaranteed to reach the target when the edges that leave the source are saturated, yet the most unfortunate decisions are taken in the vertices. When the incoming flow to a vertex is greater than the outgoing capacity, flow is lost. The problem models evacuation scenarios where traffic is stuck due to jams in junctions and communication networks where packets are dropped in overloaded routers. We study the theoretical properties of unfortunate flows, show that the unfortunate-flow problem is co-NP-complete and point to polynomial fragments. We introduce and study interesting variants of the problem: integral unfortunate flow, where the flow along edges must be integral, controlled unfortunate flow, where the edges from the source need not be saturated and may be controlled, and no-loss controlled unfortunate flow, where the controlled flow must not be lost

    Fault tolerance in WBAN applications

    Get PDF
    One of the most promising applications of IoT is Wireless Body Area Net-works (WBANs) in medical applications. They allow physiological signals monitoring of patients without the presence of nearby medical personnel. Furthermore, WBANs enable feedback action to be taken either periodically or event-based following the Networked Control Systems (NCSs) techniques. This thesis first presents the architecture of a fault tolerant WBAN. Sensors data are sent over two redundant paths to be processed, analyzed and monitored. The two main communication protocols utilized in this system are Low power Wi-Fi (IEEE 802.11n) and Long Term Evolution (LTE). Riverbed Modeler is used to study the system’s behavior. Simulation results are collected with 95% confidence analysis on 33 runs on different initial seeds. It is proven that the system is fully operational. It is then shown that the system can withstand interference and system’s performance is quantified. Results indicate that the system succeeds in meeting all required control criteria in the presence of two different interference models. The second contribution of this thesis is the design of an FPGA-based smart band for health monitoring applications in WBANs. This FPGA-based smart band has a softcore processor and its allocated SRAM block as well as auxiliary modules. A novel scheme for full initial configuration and Dynamic Partial Reconfiguration through the WLAN network is integrated into this design. Fault tolerance techniques are used to mitigate transient faults such as Single Event Upsets (SEUs) and Multiple Event Upsets (MEUs). The system is studied in a normal environment as well as in a harsh environment. System availability is then obtained using Markov Models and a case study is presented

    Discourse, Power Dynamics, and Risk Amplification in Disaster Risk Management in Canada

    Get PDF
    The domain of disaster risk management is rife with discursive contentions, whereby dominant discourses amplify the powers of risk actors to precipitate and reinforce political, economic, and environmental inequalities that predispose different sections of the population to unequal disaster risk vulnerabilities. This thesis identified important actors (government, risk experts, media, and NGOs) that shape the power dynamics in disaster risk management in Canada and explained their roles, influences, and the dimensions in which their powers negotiate each other through risk discourses. The patterns of these power dynamics in the three aspects of power –communication, assessment, and social trust –were also developed to provide a detailed description of how they form hegemonies that produce disaster inequality. The Power Amplified Risk Discourse (PARD) framework provides a theoretical framework for investigating the roles of discourses in creating and sustaining these power imbalances. PARD is an adaptation of the Social Amplification of Risk Framework (SARF) which can explain the complex cognitive, technical, and social dimensions to selective risk interpretations. Accordingly, PARD uses documentary and critical discourse analyses to investigate the roles of discourses in shaping the assessment and interpretation practices that reflect risk power imbalances. Analyses of the discursive and social practices also revealed that in many cases, these powers do not oppose each other, but rather work cooperatively to foist a risk hegemony as a means of self-perpetuation in risk management decision-making. The study also concludes that technical expertise, social trust, and privileged access to media constitute the biggest power factors for shaping risk discourse. Additionally, topic modeling and thematic analysis of social media data revealed the social impacts that could be directly attributed as the social consequences of these discursive power dynamics. The study suggests that the decentralized access to risk information and the growing distrust for institutional expertise significantly account for the social responses to power amplification in risk discourses. The study recommends a more inclusive approach to risk management and calls for restoration of trust between institutions and the public. Recommendations were also made for future research

    Enabling Cyber-Physical Communication in 5G Cellular Networks: Challenges, Solutions and Applications

    Get PDF
    Cyber-physical systems (CPS) are expected to revolutionize the world through a myriad of applications in health-care, disaster event applications, environmental management, vehicular networks, industrial automation, and so on. The continuous explosive increase in wireless data traffic, driven by the global rise of smartphones, tablets, video streaming, and online social networking applications along with the anticipated wide massive sensors deployments, will create a set of challenges to network providers, especially that future fifth generation (5G) cellular networks will help facilitate the enabling of CPS communications over current network infrastructure. In this dissertation, we first provide an overview of CPS taxonomy along with its challenges from energy efficiency, security, and reliability. Then we present different tractable analytical solutions through different 5G technologies, such as device-to-device (D2D) communications, cell shrinking and offloading, in order to enable CPS traffic over cellular networks. These technologies also provide CPS with several benefits such as ubiquitous coverage, global connectivity, reliability and security. By tuning specific network parameters, the proposed solutions allow the achievement of balance and fairness in spectral efficiency and minimum achievable throughout among cellular users and CPS devices. To conclude, we present a CPS mobile-health application as a case study where security of the medical health cyber-physical space is discussed in details

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Third Annual Natural Diversity Forum: Natural Diversity and Habitat Planning

    Get PDF
    Document includes: Environmental Briefing Book, published by Sierra Club California and the Mountain Lion Foundation (Nov. 1991); Restoring the Bay, by the Citizens Alliance to Restore the Estuary, for the Restoring the Bay Campaign (Oct. 1991)

    Saving critical nodes with firefighters is FPT

    Get PDF
    We consider the problem of firefighting to save a critical subset of nodes. The firefighting game is a turn-based game played on a graph, where the fire spreads to vertices in a breadth-first manner from a source, and firefighters can be placed on yet unburnt vertices on alternate rounds to block the fire. In this work, we consider the problem of saving a critical subset of nodes from catching fire, given a total budget on the number of firefighters. We show that the problem is para-NP-hard when parameterized by the size of the critical set. We also show that it is fixed-parameter tractable on general graphs when parameterized by the number of firefighters. We also demonstrate improved running times on trees and establish that the problem is unlikely to admit a polynomial kernelization (even when restricted to trees). Our work is the first to exploit the connection between the firefighting problem and the notions of important separators and tight separator sequences. Finally, we consider the spreading model of the firefighting game, a closely related problem, and show that the problem of saving a critical set parameterized by the number of firefighters is W[2]-hard, which contrasts our FPT result for the non-spreading model.by Jayesh Choudhari and Anirban Dasgupta and Neeldhara Misra and M. S. Ramanuja

    A Systematic Review and Meta-Analysis of the Incidence of Injury in Professional Female Soccer

    Get PDF
    The epidemiology of injury in male professional football is well documented and has been used as a basis to monitor injury trends and implement injury prevention strategies. There are no systematic reviews that have investigated injury incidence in women’s professional football. Therefore, the extent of injury burden in women’s professional football remains unknown. PURPOSE: The primary aim of this study was to calculate an overall incidence rate of injury in senior female professional soccer. The secondary aims were to provide an incidence rate for training and match play. METHODS: PubMed, Discover, EBSCO, Embase and ScienceDirect electronic databases were searched from inception to September 2018. Two reviewers independently assessed study quality using the Strengthening the Reporting of Observational Studies in Epidemiology statement using a 22-item STROBE checklist. Seven prospective studies (n=1137 professional players) were combined in a pooled analysis of injury incidence using a mixed effects model. Heterogeneity was evaluated using the Cochrane Q statistic and I2. RESULTS: The epidemiological incidence proportion over one season was 0.62 (95% CI 0.59 - 0.64). Mean total incidence of injury was 3.15 (95% CI 1.54 - 4.75) injuries per 1000 hours. The mean incidence of injury during match play was 10.72 (95% CI 9.11 - 12.33) and during training was 2.21 (95% CI 0.96 - 3.45). Data analysis found a significant level of heterogeneity (total Incidence, X2 = 16.57 P < 0.05; I2 = 63.8%) and during subsequent sub group analyses in those studies reviewed (match incidence, X2 = 76.4 (d.f. = 7), P <0.05; I2 = 90.8%, training incidence, X2 = 16.97 (d.f. = 7), P < 0.05; I2 = 58.8%). Appraisal of the study methodologies revealed inconsistency in the use of injury terminology, data collection procedures and calculation of exposure by researchers. Such inconsistencies likely contribute to the large variance in the incidence and prevalence of injury reported. CONCLUSIONS: The estimated risk of sustaining at least one injury over one football season is 62%. Continued reporting of heterogeneous results in population samples limits meaningful comparison of studies. Standardising the criteria used to attribute injury and activity coupled with more accurate methods of calculating exposure will overcome such limitations
    corecore