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Abstract
We consider the problem of firefighting to save a critical subset of nodes. The firefighting game is
a turn-based game played on a graph, where the fire spreads to vertices in a breadth-first manner
from a source, and firefighters can be placed on yet unburnt vertices on alternate rounds to block
the fire. In this work, we consider the problem of saving a critical subset of nodes from catching
fire, given a total budget on the number of firefighters.

We show that the problem is para-NP-hard when parameterized by the size of the critical
set. We also show that it is fixed-parameter tractable on general graphs when parameterized by
the number of firefighters. We also demonstrate improved running times on trees and establish
that the problem is unlikely to admit a polynomial kernelization (even when restricted to trees).
Our work is the first to exploit the connection between the firefighting problem and the notions
of important separators and tight separator sequences.

Finally, we consider the spreading model of the firefighting game, a closely related problem,
and show that the problem of saving a critical set parameterized by the number of firefighters is
W[2]-hard, which contrasts our FPT result for the non-spreading model.
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1 Introduction

The problem of Firefighting [17] formalizes the question of designing inoculation strategies
against a contagion that is spreading through a given network. The goal is to come up
with a strategy for placing firefighters on nodes in order to intercept the spread of fire.
More precisely, firefighting can be thought of as a turn-based game between two players,
traditionally the fire and the firefighter, played on a graph G with a source vertex s. The
game proceeds as follows.

At time step 0, fire breaks out at the vertex s. A vertex on fire is said to be burned.
At every odd time step i ∈ {1, 3, 5, . . .}, when it is the turn of the firefighter, a firefighter
is placed at a vertex v that is not already on fire. Such a vertex is permanently protected.
At every even time step j ∈ {2, 4, 6, . . .}, the fire spreads in the natural way: every vertex
adjacent to a vertex on fire is burned (unless it was protected).

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10923.
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135:2 Saving Critical Nodes with Firefighters is FPT

The game stops when the fire cannot spread any more. A vertex is said to be saved if
there is a protected vertex on every path from s to v. The natural algorithmic question
associated with this game is to find a strategy that optimizes some desirable criteria, for
instance, maximizing the number of saved vertices [4], minimizing the number of rounds,
the number of firefighters per round [6], or the number of burned vertices [13, 4], and so
on. These questions are well-studied in the literature, and while most variants are NP-hard,
approximation and parameterized algorithms have been proposed for various scenarios. See
the excellent survey [14] as well as references within for more details.

In this work, we consider the question of finding a strategy that saves a designated subset
of vertices, which we shall refer to as the critical set. We refer to this problem as Saving A
Critical Set (SACS) (we refer the reader to Section 2 for the formal definitions). This is
a natural objective in situations where the goal is to save specific locations as opposed to
saving some number of them. This version of the problem has been studied by [6, 18, 7] and
is known to be NP-hard even when restricted to trees.

Our aim of designing firefighting solutions in order to save a critical set is well-motivated.
In the context of studying networked systems for instance, it is often desirable to protect a
specific set of critical infrastructure against any vulnerabilities that are cascading through
the network (see [15] and [12] for an overview of survivable network analysis which aim to
design networked systems that survive in the face of failures by providing critical services).
Similarly, in the context of handling widely different risk factors that a contagion might have
for different sections of the population (e.g. risk-factors that the epidemic of avian flu have
for different subpopulations [5]), it is natural to ask for inoculation strategies to protect the
identified at-risk groups.

Our Contributions and Methodology. We initiate the study of Saving A Critical Set
from a parameterized perspective. We first show that the problem is para-NP-hard when
parameterized by the size of the critical set, by showing that Saving A Critical Set is
NP-complete even on instances where the size of the critical set is one. It is already clear
from known results that Saving A Critical Set is para-NP-hard also when parameterized
by treewidth. A third natural parameter is the number of firefighters deployed to save the
critical set. Our main result is that Saving A Critical Set is FPT when parameterized
by the number of firefighters, although it is not likely to have a polynomial kernel.

Our FPT algorithm is a recursive algorithm that uses the structure of tight separator
sequences. The notion of tight separator sequences was introduced in [19] and has several
applications [16, 20, 21] (some of which invoke modified definitions). A tight separator
sequence is, informally speaking, a sequence of minimal separators such that the reachability
set of Si is contained in the reachability set of Si+1. Note that any firefighting solution is a
s−C separator, where s is the source of the fire, and C is the critical subset of vertices. We
also obtain faster algorithms on trees by using important separators.

As is common with such approaches, we do not directly solve SACS, but an appropriately
generalized form, which encodes information about the behavior of some solution on the
“border” vertices, which in this case is the union of all the separators in the tight separator
sequence.

Related Work. The Firefighting problem has received much attention in recent years. It
has been studied in the parameterized complexity setting [4, 7, 10, 2] but mostly by using the
number of vertices burnt or saved as parameters. King et.al. [18] showed that for a tree of
degree at most 3, it is NP-hard to save a critical set with budget of one firefighter per round,
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but is polynomial time when the fire starts from a vertex of degree at most 2. Chopin [7]
extended the hardness result of [18] to a per-round budget b ≥ 1 and to trees with maximum
degree b+ 2. Chalermsook et.al.[6] gave an approximation to the number of firefighters per
round when trying to protect a critical set.

Anshelevich et.al. [1] initiated the study of the spreading model, where the vaccination
also spreads through the network. In Section 4 we study this problem in the parameterized
setting.

2 Preliminaries

In this section, we introduce the notation and the terminology that we will need to describe
our algorithms. Most of our notation is standard. We use [k] to denote the set {1, 2, . . . , k},
and we use [k]O and [k]E , respectively, to denote the odd and even numbers in the set [k].

Graphs, Important Separators and Tight Separator Sequences. We introduce here the
most relevant definitions, and use standard notation pertaining to graph theory based
on [9, 11]. All our graphs will be simple and undirected unless mentioned otherwise. For
a graph G = (V,E) and a vertex v, we use N(v) and N [v] to refer to the open and closed
neighborhoods of v, respectively. The distance between vertices u, v of G is the length of a
shortest path from u to v in G; if no such path exists, the distance is defined to be ∞. A
graph G is said to be connected if there is a path in G from every vertex of G to every other
vertex of G. If U ⊆ V and G [U ] is connected, then U itself is said to be connected in G. For
a subset S ⊆ V , we use the notation G \ S to refer to the graph induced by the vertex set
V \ S.

The following definitions about important separators and tight separator sequences will
be relevant to our main FPT algorithm. We first define the notion of the reachability set of
a subset X with respect to a subset S.

I Definition 1 (Reachable Sets). Let G = (V,E) be an undirected graph, let X ⊆ V and
S ⊆ V \X. We denote by RG(X,S) the set of vertices of G reachable from X in G \ S and
by NRG(X,S) the set of vertices of G not reachable from X in G \S. We drop the subscript
G if it is clear from the context.

We now turn to the notion of an X-Y separator and what it means for one separator to
cover another.

I Definition 2 (Covering by Separators). Let G = (V,E) be an undirected graph and let
X,Y ⊂ V be two disjoint vertex sets. A subset S ⊆ V \ (X ∪Y ) is called an X−Y separator
in G if RG(X,S) ∩ Y = ∅, or in other words, there is no path from X to Y in the graph
G \ S. We denote by λG(X,Y ) the size of the smallest X − Y separator in G. An X − Y
separator S1 is said to cover an X − Y separator S with respect to X if R(X,S1) ⊃ R(X,S).
If the set X is clear from the context, we just say that S1 covers S. An X − Y separator is
said to be inclusionwise minimal if none of its proper subsets is an X − Y separator.

If X = {x} is a singleton, then we abuse notation and refer to a x− Y separator rather
than a {x} − Y separator. A separator S1 dominates S if it covers S and is not larger than
S in size:

I Definition 3 (Dominating Separators [8]). Let G = (V,E) be an undirected graph and let
X,Y ⊂ V be two disjoint vertex sets. An X − Y separator S1 is said to dominate an X − Y
separator S with respect to X if |S1| ≤ |S| and S1 covers S with respect to X. If the set X
is clear from the context, we just say that S1 dominates S.

ICALP 2017
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We finally arrive at the notion of important separators, which are those that are not
dominated by any other separator.

I Definition 4 (Important Separators [8]). Let G = (V,E) be an undirected graph, X,Y ⊂ V
be disjoint vertex sets and S ⊆ V \ (X ∪ Y ) be an X − Y separator in G. We say that S is
an important X − Y separator if it is inclusionwise minimal and there does not exist another
X − Y separator S1 such that S1 dominates S with respect to X.

It is useful to know that the number of important separators is bounded as an FPT
function of the size of the important separators.

I Lemma 5 ([8]). Let G = (V,E) be an undirected graph, X,Y ⊂ V be disjoint vertex sets
of G. For every k ≥ 0 there are at most 4k important X − Y separators of size at most k.
Furthermore, there is an algorithm that runs in time O(4kk(m+ n)) which enumerates all
such important X-Y separators, where n = |V | and m = |E|.

We are now ready to recall the notion of tight separator sequences introduced in [19].
However, the definition and structural lemmas regarding tight separator sequences used in
this paper are closer to that from [21]. Since there are minor modifications in the definition
as compared to the one in [21], we give the requisite proofs for the sake of completeness.

I Definition 6. Let X and Y be two subsets of V (G) and let k ∈ N. A tight (X,Y )-
reachability sequence of order k is an ordered collection H = {H0, H1, . . . ,Hq} of sets in V (G)
satisfying the following properties:

X ⊆ Hi ⊆ V (G) \N [Y ] for any 0 ≤ i ≤ q;
X = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hq;
for every 0 ≤ i ≤ q, Hi is reachable from X in G[Hi] and every vertex in N(Hi) can
reach Y in G−Hi

(implying that N(Hi) is a minimal (X,Y )-separator in G);
|N(Hi)| ≤ k for every 1 ≤ i ≤ q;
N(Hi) ∩N(Hj) = ∅ for all 1 ≤ i, j ≤ q and i 6= j;
For any 0 ≤ i ≤ q − 1, there is no (X,Y )-separator S of size at most k where S ⊆
Hi+1 \N [Hi] or S ∩N [Hq] = ∅ or S ⊆ H1.

We let Si = N(Hi), for 1 ≤ i ≤ q, Sq+1 = Y , and S = {S0, S1, . . . , Sq, Sq+1}. We call S a
tight (X,Y )-separator sequence of order k.

I Lemma 7 (see for example [21]). There is an algorithm that, given an n-vertex m-
edge graph G, subsets X,Y ∈ V (G) and an integer k, runs in time O(kmn2) and either
correctly concludes that there is no (X,Y )-separator of size at most k in G or returns the
sets H0, H1, H2 \ H1, . . . ,Hq \ Hq−1 corresponding to a tight (X,Y )-reachability sequence
H = {H0, H1, . . . ,Hq} of order k.

Proof. The algorithm begins by checking whether there is an X-Y separator of size at most
k. If there is no such separator, then it simply outputs the same. Otherwise, it uses the
algorithm of Lemma 5 to compute an arbitrary important X-Y separator S of size at most k
such that there is no X-Y separator of size at most k that covers S.

Although the algorithm of Lemma 5 requires time O(4kk(m + n)) to enumerate all
important X-Y separators of size at most k, one important separator of the kind described
in the previous paragraph can in fact be computed in time O(kmn) by the same algorithm.

If there is noX-S separator of size at most k, we stop and return the set R(X,S) as the only
set in a tight (X,Y )-reachability sequence. Otherwise, we recursively compute a tight (X,S)-
reachability sequence P = {P0, . . . , Pr} of order k and define Q = {P0, . . . , Pr, R(X,S)}
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as a tight (X,Y )-reachability sequence of order k. It is straightforward to see that all the
properties required of a tight (X,Y )-reachability sequence are satisfied. Finally, since the
time required in each step of the recursion is O(kmn) and the number of recursions is
bounded by n, the number of vertices, the claimed running time follows. J

Saving a Critical Set. We now turn to the definition of the firefighting problem. The game
proceeds as described earlier: we are given a graph G with a vertex s ∈ V (G). To begin
with, the fire breaks out at s and vertex s is burning. At each step t ≥ 1, first the firefighter
protects one vertex not yet on fire - this vertex remains permanently protected - and the fire
then spreads from burning vertices to all unprotected neighbors of these vertices. The process
stops when the fire cannot spread anymore. In the definitions that follow, we formally define
the notion of a firefighting strategy.

I Definition 8 (Firefighting Strategy). A k-step firefighting strategy is defined as a function
h : [2k]O → V (G). Such a strategy is said to be valid in G with respect to s if, for all
i ∈ [2k]O, when the fire breaks out in s and firefighters are placed according to h for all time
steps up to i− 2, the vertex h(i) is not burning at time step i, and the fire cannot spread
anymore after timestep 2k. If G and s are clear from the context, we simply say that h is a
valid strategy.

I Definition 9 (Saving C). For a vertex s and a subset C ⊆ V (G) \ {s}, a firefighting
strategy h is said to save C if h is a valid strategy and {h(i) | i ∈ [2k]O} is a {s}-C separator
in G, in other words, there is no path from s to any vertex in C if firefighters are placed
according to h.

We are now ready to define the parameterized problem that is the focus of this work.

Saving A Critical Set (SACS) Parameter: k
Input: An undirected n-vertex graph G, a vertex s, a subset C ⊆ V (G) \ {s}, and

an integer k.
Question: Is there a valid k-step strategy that saves C when a fire breaks out at s?

Parameterized Complexity. We follow standard terminology pertaining to parameterized
algorithms based on the monograph [9]. Here we define a known technique to prove kernel
lower bounds, called cross composition. Towards this, we first define polynomial equivalence
relations.

I Definition 10 (polynomial equivalence relation [3]). An equivalence relation R on Σ∗, where
Σ is a finite alphabet, is called a polynomial equivalence relation if the following holds: (1)
equivalence of any x, y ∈ Σ∗ can be checked in time polynomial in |x|+ |y|, and (2) any finite
set S ⊆ Σ∗ has at most (maxx∈S |x|)O(1) equivalence classes.

I Definition 11 (cross-composition [3]). Let L ⊆ Σ∗ and let Q ⊆ Σ∗ ×N be a parameterized
problem. We say that L cross-composes into Q if there is a polynomial equivalence relation R
and an algorithm which, given t strings x1, x2, . . . , xt belonging to the same equivalence
class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such

that: (i) (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t and (ii) k∗ is bounded by a polynomial in
(max1≤i≤t |xi|+ log t).

ICALP 2017
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The following theorem allows us to rule out the existence of a polynomial kernel for a
parameterized problem.

I Theorem 12 ([3]). If an NP-hard problem L ⊆ Σ∗ has a cross-composition into the
parameterized problem Q and Q has a polynomial kernel then NP ⊆ coNP/poly.

3 The Parameterized Complexity of Saving a Critical Set

In this section, we describe the FPT algorithm for Saving A Critical Set and our cross-
composition construction for trees. The starting point for our FPT algorithm is the fact that
every solution to an instance (G, s, C, k) of SACS is in fact a s-C separator of size at most
k. Although the number of such separators may be exponential in the size of the graph, it is
a well-known fact that the number of important separators is bounded by 4knO(1) [8]. For
several problems, one is able to prove that there exists a solution that is in fact an important
separator. In such a situation, an FPT algorithm is immediate by guessing the important
separator.

In the SACS problem, unfortunately, there are instances where none of the solutions
are important separators. However, this approach turns out to be feasible if we restrict our
attention to trees, leading to improved running times. This is described in greater detail in
Section 3.2. Further, in Section 3.3, we also show that we do not expect SACS to admit a
polynomial kernel under standard complexity-theoretic assumptions. We establish this by a
cross-composition from SACS itself, using the standard binary tree approach, similar to [2].

We describe our FPT algorithm for general graphs in Section 3.1. This is an elegant
recursive procedure that operates over tight separator sequences, exploiting the fact that a
solution can never be contained entirely in the region “between two consecutive separators”.
Although the natural choice of measure is the solution size, it turns out that the solution size
by itself cannot be guaranteed to drop in the recursive instances that we generate. Therefore,
we need to define an appropriate generalized instance, and work with a more delicate measure.
We now turn to a detailed description of our approach.

We note that the SACS problem is para-NP-complete when parameterized by the size of
the critical set, by showing that the problem is already NP-complete when the critical set
has only one vertex.

I Theorem 13 (?). SACS is NP-complete even when the critical set has one vertex.

3.1 The FPT Algorithm
Towards the FPT algorithm for SACS, we first define a generalized firefighting problem as
follows. In this problem, in addition to (G, s, C, k), we are also given the following:

P ]Q ⊆ [2k]O, a set of available time steps,
Y ⊂ V (G), a subset of predetermined firefighter locations, and
a bijection γ : Q→ Y , a partial strategy for Q.

The goal here is to find a valid partial k-step firefighting strategy over (P ∪ Q) that
is consistent with γ on Q and saves C when the fire breaks out at s. We assume that no
firefighters are placed during the time steps [2k]O \ (P ∪Q). For completeness, we formally
define the notion of a valid partial firefighting strategy over a set.

I Definition 14 (Partial Firefighting Strategy). A partial k-step firefighting strategy on
X ⊆ [2k]O is defined as a function h : X → V (G). Such a strategy is said to be valid in G
with respect to s if, for all i ∈ X, when the fire breaks out in s and firefighters are placed
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according to h for all time steps upto [i− 1]O ∩X, the vertex h(i) is not burning at time step
i. If G and s are clear from the context, we simply say that h is a valid strategy over X.

What it means for partial strategy to save C is also analogous to what it means for
a strategy to save C. The only difference here is that we save C despite not placing any
firefighters during the time steps j for j ∈ [2k]O \X.

I Definition 15 (Saving C with a Partial Strategy). For a vertex s and a subset C ⊆ V (G)\{s},
a partial firefighting strategy h over X is said to save C if h is a valid strategy and ∪i∈Xh(i)
is a s− C separator in G, in other words, there is no path involving only burning vertices
from s to any vertex in C if the fire starts at s and firefighters are placed according to h.

The intuition for considering this generalized problem is the following: when we recurse,
we break the instance G into two parts, say subgraphs G′ and H. An optimal strategy for G
employs some firefighters in H at some time steps X, and the remaining firefighters in G′ at
time steps [2k]O \X. When we recurse, we would therefore like to achieve two things:

Capture the interactions between G′ and H when we recursively solve H, so that a partial
solution that we obtain from the recursion aligns with the larger graph, and
Constrain the solution for the instanceH to only use time steps inX, “allowing” firefighters
to work in G′ for the remaining time steps.

The constrained time steps in our generalized problem cater to the second objective, and
the predetermined firefighter locations partially cater to the first. We now formally define
the generalized problem.

Saving A Critical Set With Restrictions (SACS-R) Parameter: k
Input: An undirected n-vertex graph G, vertices s and g, a subset C ⊆ V (G) \ {s},

a subset P ] Q ⊆ [2k]O, Y ⊂ V (G) (such that |Y | = |Q|, 2k − 1 ∈ Q and
g ∈ Y ), a bijeciton γ : Q→ Y such that γ(2k − 1) = g, and an integer k.

Question: Is there a valid partial k-step strategy over P ∪Q that is consistent with γ
on Q and that saves C when a fire breaks out at s?

We use p and q to denote |P | and |Q|, respectively. Note that we can solve an SACS
instance (G, s, C, k) by adding an isolated vertex g and solving the SACS-R instance
(G, s, C, 2k + 2, g, P,Q, Y, γ), where P = [2k]O, Q = {2k + 1}, Y = {g} and γ(2k + 1) = g.
Therefore, it suffices to describe an algorithm that solves SACS-R. The role of the vertex g
is mostly technical, and will be clear in due course.

We now describe our algorithm for solving an instance I := (G, s, C, k, g, P,Q, Y, γ) of
SACS-R. Throughout this discussion, for the convenience of analysis of Yes instances, let h
be an arbitrary but fixed valid partial firefighting strategy in G over P ∪Q, consistent with γ
on Q, that saves C. Our algorithm is recursive and works with pieces of the graph based on
a tight s− C-separator sequence of separators of size at most |P | in G \ Y . We describe the
algorithm in three parts: the pre-processing phase, the generation of the recursive instances,
and the merging of the recursively obtained solutions.

Phase 0 – Preprocessing. Observe that we have the following easy base cases:
If G \ Y has no s− C separators of size at most p, then the algorithm returns No.
If p = 0, then we have a Yes-instance if, and only if, s is separated from C in G \ Y and
h := γ is a valid partial firefighting strategy over Q. In this case, the algorithm outputs
Yes or No as appropriate.

ICALP 2017
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If p > 0 and s is already separated from C in G \ Y , then we return Yes, since any
arbitrary partial strategy over P ∪Q that is consistent with γ on Q is a witness solution.

If we have a non-trivial instance, then our algorithm proceeds as follows. To begin with,
we compute a tight s− C separator sequence of order p in G \ Y . Recalling the notation of
Definition 6 , we use S0, . . . , Sq+1 to denote the separators in this sequence, with S0 being
the set {s} and Sq+1 = C. We also use W0,W1, . . . ,Wq,Wq+1 to denote the reachability
regions between consecutive separators. More precisely, if H is the tight s− C reachability
sequence associated with S, then we have:

Wi := Hi \N [Hi−1] for 1 ≤ i ≤ q,

while Wq+1 is defined as G \ (N [Hq] ∪ C). We will also frequently employ the following
notation:

S =
q⋃

i=1
Si and W =

q+1⋃
i=1

Wi.

This is a slight abuse of notation since S is also used to denote the sequence S0, . . . , Sq+1,
but the meaning of S will typically be clear from the context.

We first observe that if q > k, the separator Sq can be used to define a valid partial
firefighting strategy. The intuition for this is the following: since every vertex in Sq is at a
distance of at least k from s, we may place firefighters on vertices in Sq in any order during
the available time steps. Since |Sq| ≤ p and Sq is a s− C separator, this is a valid solution.
Thus, we have shown the following:

I Lemma 16. If G admits a tight s−C separator sequence of order q in G \ Y where q > k,
then I is a Yes-instance.

Therefore, we return Yes if q > k and assume that q ≤ k whenever the algorithm proceeds
to the next phase.

This concludes the pre-processing stage.

Phase 1 – Recursion. Our first step here is to guess a partition of the set of available time
steps, P , into 2q + 1 parts, denoted by A0, . . . , Aq, Aq+1 and B1, . . . , Bq+1. The partition of
the time steps represents how a solution might distribute the timings of its firefighting strategy
among the sets in S and W. The set Ai denotes our guess of ∪v∈Si

h−1(v) and Bj denotes
our guess of ∪v∈Wjh

−1(v). Note that the number of such partitions is (2q + 1)p ≤ (2k + 1)k.
We define g0(k) := (2k + 1)k. We also use T1(P ) to denote the partition A0, . . . , Aq and
T2(P ) to denote B0, . . . , Bq+1.

We say that the partition (T1(P ), T2(P )) is non-trivial if none of the Bi’s are such that
Bi = P . Our algorithm only considers non-trivial partitions – the reason this is sufficient
follows from the way tight separator sequences are designed, and this will be made more
explicit in due course.

Next, we would like to guess the behavior of a partial strategy over P restricted to S.
Informally, we do this by associating a signature with the strategy h, which is is a labeling of
the vertex set with labels corresponding to the status of a vertex in the firefighting game
when it is played out according to h. Every vertex is labeled as either a vertex that had a
firefighter placed on it, a burned vertex, or a saved vertex. The labels also carry information
about the earliest times at which the vertices attained these statuses. More formally, we
have the following definition.
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I Definition 17. Let h be a valid k-step firefighting strategy (or a partial strategy over X).
The signature of h is defined as a labeling Lh of the vertex set with labels from the set:

L = ({f} ×X) ∪ ({b} × [2k]E) ∪ {p},

where:

Lh(v) =


(f, t) if h(t) = v,

(b, t) if t is the earliest time step at which v burns,
p if v is not reachable from s in G \ ({h(i) | i ∈ [2k]O})

We use array-style notation to refer to the components of L(v), for instance, if L(v) = (b, t),
then L(v)[0] = b and L(v)[1] = t. The algorithm begins by guessing the restriction of Lh on
S, that is, it loops over all possible labellings:

T : S → ({f} × P ) ∪ ({b} × [2k]E) ∪ {p}.

The labeling T is called legitimate if, for any u 6= v, whenever T(u)[0] = T(v)[0] = f, we have
T(u)[1] 6= T(v)[1]. We say that a labeling T over S is compatible with T1(P ) = (A0, . . . , Aq)
if we have:

for all 0 ≤ i ≤ r, if v ∈ Si and h(v)[0] = f, then h(v)[1] ∈ Ai.
for all 0 ≤ i ≤ r, if t ∈ Ai, there exists a vertex v ∈ Si such that h−1(f, t) = v.

The algorithm considers only legitimate labelings compatible with the current choice
of T1(P ). By Lemma 16, we know that any tight s− C separator sequence considered by
the algorithm at this stage has at most k separators of size at most p each. Therefore,
we have that the number of labelings considered by the algorithm is bounded by g1(k) :=
(p+ k + 1)(kp) ≤ (3k)O(k2) ≤ kO(k2).

We are now ready to split the graph into q + 1 recursive instances. For 1 ≤ i ≤ q + 1,
let us define Gi = G[Si−1 ∪Wi ∪ Si ∪ Y ]. Also, let Ti := T |V (Gi)∩S . Notice that when
using Gi’s in recursion, we need to ensure that the independently obtained solutions are
compatible with each other on the non-overlapping regions, and consistent on the common
parts. We force consistency by carrying forward the information in the signature of h using
appropriate gadgets, and the compatibility among the Wi’s is a result of the partitioning of
the time steps.

Fix a partition of the available time steps P into T1(P ) and T2(P ), a compatible labeling
T and 1 ≤ i ≤ q + 1. We will now define the SACS-R instance I〈i, T1(P ), T2(P ),Ti〉. Recall
that I = (G, s, C, k, g, P,Q, Y, γ). To begin with, we have the following:

Let Xi = Ai−1 ∪Ai and let Pi = Bi.
Let Qi := Xi ∪Q and Yi := Y ∪Xi. We define γi as follows:

γi(t) =
{
γ(t) if t ∈ Q,
v if t ∈ Xi and Ti(v) = (f, t)

Note that γi is well-defined because the labeling was legitimate and compatible with T1(P ).
We define Hi to be the graph χ(Gi,Ti), which is described below.

To begin with, V (Hi) = V (Gi) ∪ {s?, t?}
Let v ∈ V (Gi) be such that Ti(v)[0] = b. Use ` to denote Ti(v)[1]/2. Now, we do the
following:

Add k + 1 internally vertex disjoint paths from s? to v of length `+ 1, in other words,
these paths have `− 1 internal vertices.
Add k + 1 internally vertex disjoint paths from v to g of length k − `− 1.
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Algorithm 1: Solve-SACS-R(I)
Input: An instance (G, s, C, k, g, P,Q, Y, γ), p := |P |
Result: Yes if I is a Yes-instance of SACS-R, and No otherwise.

1 if p = 0 and s and C are in different components of G \ Y then return Yes;
2 else return No;
3 if p > 0 and s and C are in different components of G \ Y then return Yes;
4 if there is no s− C separator of size at most p then return No;
5 Compute a tight s− C separator sequence S of order p.
6 if the number of separators in S is greater than k then return Yes;
7 else
8 for a non-trivial partition T1(P ), T2(P ) of P into 2q + 1 parts do
9 for a labeling T compatible with T1(P ) do

10 if
∧q+1

i=1 (Solve-SACS-R(I〈i, T1(P ), T2(P ),Ti〉)) then return Yes;

11 return No

Let v ∈ V (Gi) be such that Ti(v) = p. Add an edge from v to t?.
We also make k+ 1 copies of the vertices t? and all vertices that are labeled either burned
or saved. This ensures that no firefighters are placed on these vertices.

For 1 ≤ i ≤ q+ 1, the instance I〈i, T1(P ), T2(P ),Ti〉 is now defined as (χ(Gi,Ti), s?, C =
{t?}, k, g, Pi, Qi, Yi, γi).

Phase 2 – Merging. Our final output is quite straightforward to describe once we have the
h[Ti, i]’s. Consider a fixed partition of the available time steps P into T1(P ) and T2(P ), and
a labeling T of S compatible with T1(P ). If all of the (q+ 1) instances I〈i, T1(P ), T2(P ),Ti〉,
1 ≤ i ≤ q + 1 return Yes, then we also return Yes, and we return No otherwise. Indeed, in
the former case, let h[i, T1(P ), T2(P ),T] denote a valid partial firefighting strategy for the
instance I〈i, T1(P ), T2(P ),Ti〉. We will show that h?, described as follows, is a valid partial
firefighting strategy that saves C.

For the time steps in Q, we employ firefighters according to γ.
For the time steps in T1(P ), we employ firefighters according to T. This is a well-defined
strategy since T is a compatible labeling.
For all remaining time steps, i.e, those in T2(P ) = {B1, . . . , Bq+1}, we follow the strategy
given by h[i, T1(P ), T2(P ),T].

It is easily checked that the strategy described above agrees with h[i, T1(P ), T2(P ),T]
for all i. Also, the strategy is well-defined, since T1(P ) and T2(P ) form a partition of the
available time steps. Next, we will demonstrate that h? is indeed a valid strategy that saves
C, and also analyze the running time of the algorithm.

Due to lack of space, we refer the reader to the full version of this work for the analysis
of the algorithm.

3.2 A Faster Algorithm For Trees
In this section we consider the setting when the input graph G is a tree. WLOG, we consider
the vertex s to be the root of the tree. We first state an easy claim that shows that WLOG,
we can consider the critical set to be the leaves. The proof of the following lemma follows
from the fact that the firefighting solution has to be a s− C separator.
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I Lemma 18. When the input graph G is a tree, if there exists a solution to SACS, there
exists a solution such that all firefighter locations are on nodes that are on some path from s

to C.

Given the above claim, our algorithm to construct a firefighting solution is the following–
exhaustively search all the important s− C separators that are of size k. For each vertex v
in a separator Y , we place firefighters on Y in the increasing order of distance from s and
check whether this is a valid solution. The following lemma claims that if there exists a
firefighting solution, the above algorithm will return one.

I Lemma 19 (?). Solving the SACS problem for input graphs that are trees takes time
O∗(4k).

3.3 No Polynomial Kernel, Even on Trees

Given that there is a FPT algorithm for SACS when restricted to trees, in this section
we show that SACS on trees has no polynomial kernel. As mentioned before, the proof
technique used here is on the similar lines of the proof showing no polynomial kernel for
SAVING ALL BUT k-VERTICES by Bazgan et. al.[2].

I Theorem 20 (?). SACS when restricted to trees does not admit polynomial kernel, unless
NP ⊆ coNP/poly.

4 The Spreading Model

The spreading model for firefighters was defined by Anshelevich et al. [1] as “Spreading
Vaccination Model”. In contrast to the firefighting game described in Section 1, in the
spreading model, the firefighters (vaccination) also spread at even time steps as similar to
that of the fire. That is, at any even time step if there is a firefighter at node vi, then the
firefighter extends (vaccination spreads) to all the neighbors of vi which are not already on
fire or are not already protected by a firefighter. Consider a node vi which is not already
protected or burning at time step 2j. If ui and wi are neighbors of vi, such that, ui was
already burning at time step 2j − 1 and wi was protected at time step 2j − 1, then at time
step 2j, vi is protected. That is, in the spreading model the firefighters dominate or win over
fire. For the spreading model, the firefighting game can be defined formally as follows:

At time step 0, fire breaks out at the vertex s. A vertex on fire is said to be burned.
At every odd time step i ∈ {1, 3, 5, . . .}, when it is the turn of the firefighter, a firefighter
is placed at a vertex v that is not already on fire. Such a vertex is permanently protected.
At every even time step j ∈ {2, 4, 6, . . .}, first the firefighter extends to every adjacent
vertex to a vertex protected by a firefighter (unless it was already protected or burned),
then the fire spreads to every vertex adjacent to a vertex on fire (unless it was already
protected or burned). Needless to say, the vertices protected at even time steps are also
permanently protected.

In the following theorem, we show that in spite of the spreading power that the firefighters
have, SACS is hard.

I Theorem 21 (?). In the spreading model, SACS is as hard as k-Dominating Set.
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5 Summary and Conclusions

In this work, we presented the first FPT algorithm, parameterized by the number of
firefighters, for a variant of the Firefighter problem where we are interested in protecting a
critical set. We also presented a faster algorithms on trees. In contrast, we also show that
in the spreading model protecting a critical set is W[2]-hard. Our algorithms exploit the
machinery of important separators and tight separator sequences. We believe that this opens
up an interesting approach for studying other variants of the Firefighter problem.
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