
The Unfortunate-Flow Problem
Orna Kupferman
School of Computer Science and Engineering, The Hebrew University, Israel

Gal Vardi
School of Computer Science and Engineering, The Hebrew University, Israel

Abstract
In the traditional maximum-flow problem, the goal is to transfer maximum flow in a network
by directing, in each vertex in the network, incoming flow into outgoing edges. The problem
is one of the most fundamental problems in TCS, with application in numerous domains. The
fact a maximal-flow algorithm directs the flow in all the vertices of the network corresponds
to a setting in which the authority has control in all vertices. Many applications in which the
maximal-flow problem is applied involve an adversarial setting, where the authority does not
have such a control.

We introduce and study the unfortunate flow problem, which studies the flow that is guar-
anteed to reach the target when the edges that leave the source are saturated, yet the most
unfortunate decisions are taken in the vertices. When the incoming flow to a vertex is greater
than the outgoing capacity, flow is lost. The problem models evacuation scenarios where traffic
is stuck due to jams in junctions and communication networks where packets are dropped in
overloaded routers.

We study the theoretical properties of unfortunate flows, show that the unfortunate-flow prob-
lem is co-NP-complete and point to polynomial fragments. We introduce and study interesting
variants of the problem: integral unfortunate flow, where the flow along edges must be integral,
controlled unfortunate flow, where the edges from the source need not be saturated and may be
controlled, and no-loss controlled unfortunate flow, where the controlled flow must not be lost.

2012 ACM Subject Classification Mathematics of computing → Network flows

Keywords and phrases Flow Network, Graph Algorithms, Games

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.157

Related Version A full version of the paper is available at http://www.cs.huji.ac.il/~ornak/
publications/icalp18.pdf.

1 Introduction

A flow network is a directed graph in which each edge has a capacity, bounding the amount
of flow that can travel through it. The amount of flow that enters a vertex equals the amount
of flow that leaves it, unless the vertex is a source, which has only outgoing flow, or a target,
which has only incoming flow. The fundamental maximum-flow problem gets as input a
flow network and searches for a maximal flow from the source to the target [4, 10]. The
problem was first formulated and solved in the 1950’s [8, 9]. It has attracted much research
on improved algorithms, variants, and applications [6, 5, 11, 15].

The maximum-flow problem can be applied in many settings in which something travels
along a network. This covers numerous application domains, including traffic in road or
rail systems, fluids in pipes, packets in a communication network, and many more [1]. Less
obvious applications involve flow networks that are constructed in order to model settings
with an abstract network, as in the case of scheduling with constraints [1]. In addition, several

EA
T

C
S

© Orna Kupferman and Gal Vardi;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 157; pp. 157:1–157:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.157
http://www.cs.huji.ac.il/~ornak/publications/icalp18.pdf
http://www.cs.huji.ac.il/~ornak/publications/icalp18.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

157:2 The Unfortunate-Flow Problem

(a) (b) (c)

Figure 1 A flow network G, and preflows that attain its maximum-flow and unfortunate-flow
values.

classical graph-theory problems can be reduced to the maximum-flow problem. This includes
the problem of finding a maximum bipartite matching, minimum path cover, maximum
edge-disjoint or vertex-disjoint path, and many more [4, 1]. Variants of the maximum-flow
problem can accommodate further settings, like circulation problems [18], multiple source
and target vertices, costs for unit flows, multiple commodities, and more [7].

Studies of flow networks so far assume that the vertices in the network are controlled by
a central authority. Indeed, maximum-flow algorithms directs the flow in all vertices of the
network. In many applications of flow networks, however, vertices of the network may not be
controlled. Thus, every vertex may make autonomous and independent decisions regarding
how to direct incoming flow to outgoing edges.

Consider, for example, a road network of a city, where the source s models the center of
the city and the target t models the area outside the city. In order to evacuate the center
of the city, drivers navigate from s to t. In each vertex, every incoming driver chooses an
arbitrary outgoing edge with free capacity. If the outgoing capacity from a vertex is less than
the incoming flow, then a traffic jam occurs, and flow is lost. As another example, consider a
communication network in which packets are sent from a source router s and should reach a
target router t. Whenever an internal router receives a packet it forwards it to an arbitrary
neighbor router. If the outgoing capacity from a vertex is less than the incoming flow, then
packets are dropped, and flow is lost.

In both examples, we want to find the flow that is guaranteed to reach the target in the
worst scenario. We now formalize this intuition. Let G = 〈V,E, c, s, t〉 be a flow network,
where 〈V,E〉 is a directed graph, c : E → IN assigns a capacity for each edge, and s, t are
the source and target vertices. A preflow is a function f : E → IR that assigns to each edge
e ∈ E, a flow in [0, c(e)] such that the incoming flow to each vertex is greater or equal to
its outgoing flow. A saturating preflow is a preflow in which all outgoing edges from s are
saturated, and for every vertex v ∈ V \ {s, t}, the outgoing flow from v is the minimum
between the incoming flow to v and the outgoing capacity from v. That is, in a saturating
preflow, flow loss occurs in a vertex v if and only if the incoming flow to v is greater than the
capacity of the edges outgoing from v. The unfortunate flow value of G is the minimal flow
that reaches t in a saturating preflow. Thus, it is the flow that is guaranteed to reach t when
the edges that leave s are saturated, yet the most unfortunate routing decisions are taken in
junctions. In the unfortunate-flow problem, we want to find the unfortunate flow value of G.

I Example 1. Consider the flow network G appearing in Figure 1 (a). A maximum flow
in G has value 8, attained, for example, with the preflow in (b). A saturating preflow in G
appears in (c), and has value 5. While the edges leaving s are saturated, the routing of 7
flow units to the vertex at the bottom leads to a loss of 4 flow units in this vertex. J

We introduce the unfortunate-flow problem, study the theoretical properties of saturating
preflows, and study the complexity of the problem. We also introduce and study interesting
variants of the problem: integral unfortunate flow, where the flow along edges must be

O. Kupferman and G. Vardi 157:3

integral, controlled unfortunate flow, where the edges from the source need not be saturated
and may be controlled, and no-loss controlled unfortunate flow, where the controlled flow
must avoid loss.

Before we describe our contribution, let us review flow games and their connection to
our contribution here. In flow games [14], the vertices of a flow network are partitioned
between two players. Each player controls how incoming flow is partitioned among edges
outgoing from her vertices. Then, one player aims at maximizing the flow that reaches t
and the other player aims at minimizing it. It is shown in [14] that when the players are
restricted to integral strategies, thus when the flows along the edges are integers, then the
problem of finding the maximal flow that the maximizer player can guarantee is ΣP2 -complete.
The restriction to integral strategies is crucial. Indeed, unlike the case of the traditional
maximum-flow problem, non-integral strategies may be better than integral ones. In fact, the
problem of finding a maximal flow for the maximizer in a setting with non-integral strategies
was left open in [14]. The unfortunate-flow problem can be viewed as a special case of flow
games, in which the maximizer player controls no vertex.

We start with the complexity of the unfortunate-flow problem. We consider the decision-
problem variant, where we are given a threshold γ > 0 and decide whether the unfortunate
flow value is at least γ. In the case of maximal flow, the problem can be solved in polynomial
time [9], and so are many variants of it. We first show that, quite surprisingly, the unfortunate-
flow problem is co-NP-hard and that it is NP-hard to approximate within any multiplicative
factor. We then point to a polynomial fragment. Intuitively, the fragment restricts the
number of vertices in which flow may be lost, which we pinpoint as the computational
bottleneck. Formally, we say that a vertex is a funnel if its incoming capacity is greater than
its outgoing capacity. We show that the unfortunate-flow problem can be solved in time
O(2|H| · (|E|2log|V |+ |E||V |log2|V |)), where H ⊆ V is the set of funnels in G. In particular,
the problem can be solved in strongly-polynomial time if the network has a logarithmic
number of funnels. Our solution reduces the problem to a sequence of min-cost max-flow
problems [1], implying the desirable integral flow property: the unfortunate-flow value can
always be attained by an integral flow. The integral flow property implies a matching co-NP
upper bound, thus the unfortunate-flow problem is co-NP-complete.

In some scenarios, we have some initial control on the flow. For example, in evacuation
scenarios, as in the example of traffic leaving the city, police may direct cars at the center of
the city, but has no control on them once they leave the center. Likewise, when entering or
evacuating stadiums, police may direct the crowd to different gates, but has no control on
how people proceed once they pass the gates [13]. We study the controlled unfortunate-flow
problem, where the outgoing flow from s is bounded and controlled. Formally, there is an
integer α ≥ 0 such that the total outgoing flow from s is bounded by α, and it is possible to
control how this outgoing flow is partitioned among the edges that leave s. Our goal is to
control this flow so that the flow that reaches t in the most unfortunate case is maximized.
1 We show that the integral-flow property no longer holds in this setting. Thus, there are
networks in which an optimal strategy is to partition the α units of flow that leave s into
non-integers. A troublesome implication of this is that an algorithm that guesses the strategy
has to go over unboundedly many possibilities. This challenge is what has left flow games
undecidable [14]. We show that we can still reduce the controlled unfortunate-flow problem
into the second alternation level of the theory of real numbers under addition and order [17].

1 We note that this is different from work done in evacuation planning, where the goal is to find routes
and schedules of evacuees (for a survey, see [16]).

ICALP 2018

157:4 The Unfortunate-Flow Problem

The reduction implies membership in ΣP2 , and we show a matching lower bound. Thus, the
controlled unfortunate-flow problem is ΣP2 -complete. We also study a generalization of the
problem, where control can be placed in a subset of the vertices.2

Finally, in some scenarios it is crucial for flow not to get lost. For example, in evacu-
ation scenarios, we may prefer to give up an evacuation attempt under a loss risk, and in
communication networks, we may tolerate low traffic and not tolerate dropping of packets.
We say that a flow network G is safe if all saturating preflows have no loss. For example,
networks with no funnels are clearly safe. It is easy to see that G is safe if its unfortunate
flow value is equal to the maximal flow the source can generate, thus to the capacity of
the edges outgoing from the source. This gives a co-NP algorithm for deciding the safety
of a network. We show one can do better and reduce the safety problem to a maximum
weighted flow problem, which can be solved in polynomial time. We then turn to study the
no-loss controlled unfortunate-flow problem, where we control the flow in edges from s, and
we want to maximize the flow to t but in a way that flow loss is impossible. We show that
the problem is NP-complete.

Due to space limitations, some examples and proofs are omitted and can be found in the
full version, in the authors’ URLs.

2 Preliminaries

A flow network is G = 〈V,E, c, s, t〉, where V is a set of vertices, E ⊆ V × V is a set of
directed edges, c : E → IN is a capacity function, and s, t ∈ V are source and target vertices.
The capacity function assigns to each edge e ∈ E a nonnegative capacity c(e) ≥ 0. We define
the size of G, denoted |G| by |V |+ |E|+ |c|, where |c| is the size required for encoding the
capacity function c, thus assuming the capacities are given in binary. For a vertex v ∈ V , let
E�v and Ev� be the sets of incoming and outgoing edges to and from v, respectively. That
is, E�v = (V × {v}) ∩ E and Ev� = ({v} × V) ∩ E. A sink is a vertex v with no outgoing
edges, thus Ev� = ∅. We assume that t is a sink, it is reachable from s, and E�s = ∅. We
also assume that 〈V,E〉 does not contain parallel edges and self loops. For a vertex v ∈ V ,
let c(�v) =

∑
e∈E�v c(e) and c(v�) =

∑
e∈Ev� c(e) be the sums of capacities of edges that

enter and leave v, respectively. We say that a vertex v ∈ V is a funnel if c(v�) < c(�v). We
use Cs to denote the total capacity of edges outgoing from the source, thus Cs = c(s�).

A preflow in G is a function f : E → IR that satisfies the following two properties:
For every e ∈ E, we have that 0 ≤ f(e) ≤ c(e).
For every vertex v ∈ V \ {s}, the incoming flow to v is greater or equal to its outgoing
flow. Formally,

∑
e∈E�v f(e) ≥

∑
e∈Ev� f(e).

For a preflow f and an edge e ∈ E, we say that e is saturated if f(e) = c(e). We extend
f to vertices: for every vertex v ∈ V , let f(�v) =

∑
e∈E�v f(e) and f(v�) =

∑
e∈Ev� f(e).

For a vertex v ∈ V \ {s, t}, the flow loss of f in v, denoted lf (v), is the quantity that enters
v and does not leave v. Formally, lf (v) = f(�v)− f(v�). Then, Lf =

∑
v∈V \{s,t} lf (v) is

the flow loss of f . The value of a preflow f , denoted val(f), is f(�t); that is, the incoming
flow to t. Note that val(f) = f(s�)− Lf . A flow is a preflow f with Lf = 0. A maximum
flow is a flow with a maximal value.

2 Not to confuse with the problem of finding critical nodes for firefighters [2, 3]. While there the firefighters
block the fire, in our setting they direct the evacuation. Thus, there, the goal is to block undesired
vulnerabilities in the network, and here the goal is maximize desired traffic.

O. Kupferman and G. Vardi 157:5

Figure 2 The flow network G. The capacities of the edges entering C1, . . . , Cm are 1.

A saturating preflow is a preflow in which all edge in Es� are saturated, and for every
v ∈ V \ {s, t}, we have f(v�) = min{f(�v), c(v�)}. That is, in a saturating preflow, flow
loss may occur in a vertex v only if the incoming flow to v is bigger than the capacities of
the edges outgoing from v.

The unfortunate value of a flow network G, denoted uval(G), is the minimal value of
a saturating preflow in G. That is, it is the value that is guaranteed to reach t when the
edges that leave s are saturated, yet the most unfortunate routing decisions are taken in
junctions. An unfortunate saturating preflow is a saturating preflow that attains the network’s
unfortunate value. The unfortunate flow problem (UF problem, in short) is to decide, given
a flow network G and a threshold γ > 0, whether uval(G) ≥ γ.

3 The Complexity of the Unfortunate-Flow Problem

In this section we study the complexity of the unfortunate-flow problem. We start with
bad news and show that the problem is co-NP-hard, and in fact is NP-hard to approximate
within any multiplicative factor. A more precise analysis of the complexity then enables us
to point to a polynomial fragment and to prove an integral-flow property, which implies a
matching co-NP upper bound.

I Theorem 2. The UF problem is co-NP-hard.

Proof. We show a reduction from CNF-SAT to the complement problem, namely deciding
whether uval(G) < γ for some γ ∈ IN. Let ψ = C1 ∧ . . . ∧ Cm be a CNF formula over the
variables x1 . . . xn. We assume that every literal in x1, . . . , xn, x̄1, . . . , x̄n appears in exactly
k clauses in ψ. Indeed, every CNF formula can be converted to such a formula in polynomial
time and with a polynomial blowup. We construct a flow network G = 〈V,E, c, s, t〉 as
demonstrated in Figure 2. Let Z = {x1, . . . , xn, x̄1, . . . , x̄n}. For a literal z ∈ Z and a clause
Ci, the network G contains an edge 〈z, Ci〉 iff Ci contains z. Thus, each vertex in Z has
exactly k outgoing edges. The capacities of these edges are 1. Each vertex Ci has two
outgoing edges – to t and to the sink u. In the full version, we prove that ψ is satisfiable iff
uval(G) < kn−m+ 1. J

By a simple manipulation of the network G constructed in the reduction in the proof
of Theorem 2, we can obtain, given a CNF-SAT formula ψ, a network G′ such that if ψ is

ICALP 2018

157:6 The Unfortunate-Flow Problem

satisfiable, then uval(G′) = 0, and otherwise, uval(G′) ≥ 1. Hence the following (a detailed
proof can be found in the full version.

I Theorem 3. It is NP-hard to approximate the UF problem within any multiplicative factor.

Following the hardness of the problem, we turn to analyze its complexity in terms of the
different parameters of the flow network. Our analysis points to a class of networks for which
the UF problem can be solved in polynomial time.

Consider a flow network G = 〈V,E, c, s, t〉. Let H ⊆ V \ {s, t} be the set of funnels in G.
Thus, H = {v : c(�v) > c(v�)}. For L ⊆ V , let FL be a set of saturating preflows in which
edges outgoing from vertices in L are saturated, and flow loss may occur only in vertices
in L. Thus, f ∈ FL iff f is a saturating preflow in G such that for every u ∈ L, we have
f(u�) = c(u�), and for every u ∈ V \L, we have lf (u) = 0. By the definition of a saturating
flow, flow loss in G may occur only in vertices in H. Accordingly, we have the following.

I Lemma 4.
⋃
L⊆H FL contains all the saturating preflows in G.

By Lemma 4, a search for the unfortunate value of G can be restricted to preflows in
FL, for L ⊆ H. Accordingly, the UF problem can be solved by solving 2|H| optimization
problems, solvable by either linear programming (Theorem 5) or a reduction to the min-cost
max-flow problem (Theorem 6).

I Theorem 5. Consider a flow network G and let H be the set of funnels in G. The UF
problem for G can be solved in time 2|H| · poly(|G|).

Proof. The algorithm goes over all the subsets of H and for each subset L ⊆ H, finds a
minimum-value preflow in FL. The latter is done by linear programming. Given L, the linear
program for FL is described below. The variable xe, for every e ∈ E, stands for f(e). The
program is of size linear in |G|, thus the overall complexity is 2|H| · poly(|G|).

minimize
∑
e∈E�t xe

subject to 0 ≤ xe ≤ c(e) for each e ∈ E
xe = c(e) for each u ∈ L ∪ {s}, e ∈ Eu�∑
e∈Eu� xe ≤

∑
e∈E�u xe for each u ∈ L∑

e∈Eu� xe =
∑
e∈E�u xe for each u 6∈ L ∪ {s, t} J

The complexity of solving each linear program in the algorithm described in the proof of
Theorem 5 is polynomial in |G|, but not strongly polynomial. Thus its running time depends
(polynomially) on the number of bits required for representing the capacities in G. We now
describe an alternative algorithm whose complexity depends only on the number of vertices
and edges in the network.

Our algorithm reduces the problem of finding a minimal-value preflow in FL to the
min-cost max-flow problem in flow networks with costs [1]. A flow network with costs is
G = 〈V,E, a, c, s, t〉, where 〈V,E, c, s, t〉 is a flow network and a : E → IR is a cost function.
The cost of a flow f in G, denoted cost(f), is

∑
e∈E a(e) · f(e). In the min-cost max-flow

problem we are given a flow network with costs, and find a maximum flow with a minimum
cost. By [1], this problem can be solved in time O(|E|2log|V |+ |E||V |log2|V |).

I Theorem 6. Consider a flow network G = 〈V,E, c, s, t〉 and let H be the set of funnels in
G. The UF problem for G can be solved in time O(2|H| · (|E|2log|V |+ |E||V |log2|V |)).

Proof. The algorithm finds, for each subset L ⊆ H, a minimum-value preflow in FL by a
reduction to the min-cost max-flow problem. By Lemma 4, the minimum value found for
some L ⊆ H is uval(G).

O. Kupferman and G. Vardi 157:7

Consider the flow network with costs G′ = 〈V ′, E′, a, c′, s, t′〉 that is obtained from G as
follows. We add a new vertex t′ and edges 〈u, t′〉 for every u ∈ L∪{t}, thus V ′ = V ∪{t′} and
E′ = E∪(L∪{t})×{t′}. The capacity c′(e) for every new edge e ∈ E′\E is large (for example,
it may be Cs), and for every e ∈ E, we have c′(e) = c(e). Let C = max{c(e) : e ∈ E} denote
the maximal capacity in G. For edges e ∈ L×{t′}, we define a(e) = −1; for edges e ∈ L× V ,
we define a(e) = −C · |V |2; and for all the other edges, we define a(e) = 0. Intuitively, the
costs of the edges in L× V are negative and small enough, so that a min-cost max-flow in G′
would have to saturate them first, and only then try to direct flow to edges in L× {t′}.

In the full version, we prove the correctness of the following algorithm: First, find a min-
cost max-flow f ′ in G′. If val(f ′) < Cs or cost(f ′) > −C · |V |2 ·

∑
e∈L×V c(e), then FL = ∅.

Otherwise, the minimal value of a preflow in FL is Cs + cost(f ′) + C · |V |2 ·
∑
e∈L×V c(e).

Since the min-cost max-flow problem can be solved in time O(|E|2log|V |+ |E||V |log2|V |)
[1] and there are 2|H| subsets of funnels to check, the required complexity follows. J

I Corollary 7. The UF problems for networks with a logarithmic number of funnels can be
solved in strongly-polynomial time.

We say that a preflow f : E → IR is integral if f(e) ∈ IN for all e ∈ E. It is sometimes
desirable to restrict the flow to an integral one, for example in settings in which the objects
we transfer along the network cannot be partitioned into fractions. We now show that the
UF problem always has an integral-flow solution, and that such a solution can be obtained
by the algorithm shown in the proof of Theorem 6. Essentially (see proof in the full version),
it follows from the fact that the min-cost max-flow problem has an integral solution. As we
show in Section 4, this integral flow property is not maintained in variants of the UF problem.

I Theorem 8. The UF problem has an integral-flow solution: for every flow network, there
exists an integral unfortunate saturating preflow. Moreover, such integral preflow can be
found by the algorithm described in the proof of Theorem 6.

The integral-flow property suggests an optimal algorithm for solving the UF problem:

I Theorem 9. The UF problem is co-NP-complete.

Proof. Hardness in co-NP is proven in Theorem 2. We prove membership in NP for the
complementary problem: given γ > 0 and a flow network G, we need to decide whether
uval(G) < γ. According to Theorem 8, it is enough to decide whether there is a saturating
preflow f in which for every e ∈ E, the value f(e) is an integer, and val(f) < γ. Given
a function f : E → IN, checking whether f satisfies these requirements can be done in
polynomial time, implying membership in NP. J

4 The Controlled Unfortunate-Flow Problem

In this section we study the controlled unfortunate-flow problem, where the outgoing flow
from s is bounded and controlled. That is, there is 0 ≤ α ≤ Cs such that the total outgoing
flow from s is bounded by α, and it is possible to control how this outgoing flow is partitioned
among the edges that leave s. Our goal is to control this flow so that the flow that reaches
t in the worst case is maximized. As discussed in Section 1, this problem is motivated
by scenarios where we have an initial control on the flow, say by positioning police at the
entrance to a stadium or at the center of a city we need to evacuate, or by transmitting
messages we want to send from a router we own.

ICALP 2018

157:8 The Unfortunate-Flow Problem

For α ≥ 0, a regulator with bound α is a function g : Es� → IR that directs α flow
units from s. Formally, for every e ∈ Es�, we have 0 ≤ g(e) ≤ c(e), and

∑
e∈Es� g(e) ≤ α.

A controlled saturating preflow that respects a regulator g is a preflow f : E → IR such
that for every e ∈ Es�, we have f(e) = g(e), and for every v ∈ V \ {s, t}, we have
f(v�) = min{f(�v), c(v�)}. Thus, unlike saturating preflow, here the edges in Es� need
not be saturated and the flow in them is induced by g. The unfortunate g-controlled value of
G, denoted cuval(G, g), is the minimal value of a controlled saturating preflow that respects g.
Then, the unfortunate α-controlled value of G, denoted cuval(G, α) is the maximal unfortunate
g-controlled value of G for some regulator g with bound α. In the controlled unfortunate flow
problem (CUF problem, for short), we are given a flow network G, a bound α ≥ 0, and a
threshold γ > 0, and we need to decide whether cuval(G, α) ≥ γ. Thus, in the CUF problem
we need to decide whether there is a regulator g with bound α that ensures a value of at
least γ.

For two regulators g and g′, we denote g ≥ g′ if for every e ∈ Es�, we have g(e) ≥ g′(e).
In the following theorem we show that the g-controlled unfortunate value is monotonic with
respect to g. Thus, increasing g can only increase the value. In particular, it follows that
a maximal cuval(G, α) is obtained with α = Cs and a regulator g in which g(e) = c(e) for
every e ∈ Es�. Thus, if the outgoing flow from s is not bounded, then the optimal behavior
is to saturate the edges in Es�. Essentially (see full proof in the full version of the paper), it
follows from the fact that given g and g′ such that g ≥ g′, and a minimum-value controlled
saturating preflow f that respects g, we can construct a controlled saturating preflow f ′ that
respects g′ and such that val(f) ≥ val(f ′).

I Theorem 10. Consider a flow network G, and let g, g′ be two regulators such that g ≥ g′.
Then, cuval(G, g) ≥ cuval(G, g′).

We now turn to study the complexity of the CUF problem. We first explain why the
problem is challenging. One could expect an algorithm in which, given G, α, and γ, we
guess an integral regulator g : Es� → IN with bound α, and then use an NP oracle in order
to check whether cuval(G, g) ≥ γ. The problem with the above idea is that it restricts the
regulators to integral ones. In Theorem 11 below we show that in some cases, an optimal
regulator must use non-integral values. Accordingly, an algorithm that guesses a regulator,
as has been the case with the guessed flows in Theorem 9, has to go over unboundedly many
possibilities. In fact, when an arbitrary set of vertices (rather than the source only) may be
controlled, the problem is not known to be decidable [14].

I Theorem 11. Integral regulators are not optimal: There is a flow network G such that for
every integral regulator g : Es� → IN with bound 2 we have cuval(G, g) = 1, but there is a
regulator g′ : Es� → IR with bound 2 such that cuval(G, g′) = 2.

Proof. Consider the flow network G appearing in Figure 3. For every pair 〈ui, uj〉 for
1 ≤ i < j ≤ 4, the network G contains a vertex vij with incoming edges from ui and uj . The
capacities of the edges in G are all 1. It is not hard to see that for every integral regulator g
with bound 2 we have cuval(G, g) = 1. Indeed, for such g there is a controlled saturating
preflow that respects g, which directs a flow of 2 to some vertex vij , causing a loss of 1 in vij .
Consider now the regulator g′ that assigns a flow of 0.5 to every edge in Es�. In this case, a
flow of more than 1 cannot be directed to any vertex vij and therefore cuval(G, g′) = 2. J

We turn to solve the CUF problem. Theorem 11 forces us to consider non-integral
regulators. We do this by a reduction to a problem with a similar challenge, namely the second
alternation level of the theory of real numbers under addition and order. There, we are given a

O. Kupferman and G. Vardi 157:9

Figure 3 The flow network G. All capacities are 1.

formula of the form ∃x1 . . . xn∀y1 . . . ymF (x1, . . . , xn, y1, . . . , ym), where F is a propositional
combination of linear inequalities of the form a1x1 + . . . anxn + b1y1 + . . . + bmym ≤ d,
for constant integers a1, . . . , an, b1, . . . , bm, and d, and we have to decide whether there is
an assignment of x1, . . . , xn to real numbers so that F is satisfied for every assignment of
y1, . . . , ym to real numbers. Even though the domain of possible solutions is infinite, It is
shown in [17] that the problem can be solved in ΣP2 , namely the class of problems that can
be solved by a nondeterministic polynomial Turing machine that has an oracle to some
NP-complete problem. In [14], a ΣP

2 lower bound is proven for the problem of finding the
value of a flow game, where the outgoing flow of a subset of the vertices can be controlled.
Recall that in the CUF problem, only the flow from the source vertex can be controlled.
While this corresponds to the “exists-forall” nesting of quantifiers that characterizes reasoning
in ΣP

2 , it not clear how to reduce Boolean formulas to unfortunate flows. Indeed, in the
reduction in [14], control in intermediate vertices is used in order to model disjunctions in
the formulas. In the CUF problem, such a control is impossible, as all vertices in the network
except for the source are treated in a conjunctive manner.

I Theorem 12. The CUF problem is ΣP2 -complete.

Proof. We first prove membership in ΣP
2 by a reduction to the second alternation level of

the theory of real numbers under addition and order. Given G, α, and γ, we construct a
propositional combination F of linear inequalities over the variables xe for every e ∈ Es�,
and variables ye, for every e ∈ E. The formula F states that the values of the variables
xe corresponds to a regulator g with bound α, and that if the values of the variables ye
correspond to a controlled saturating preflow f that respects g then val(f) ≥ γ. Then, our
problem amounts to deciding whether there are real values xe such that for every real values
ye the formula F holds.

For the lower bound, we describe a reduction from QBF2, namely satisfiability for
quantified Boolean formulas with one alternation of quantifiers, where the external quantifier
is “exists”. Let ψ be a propositional formula over the variables x1, . . . , xn, y1, . . . , ym, and
let θ = ∃x1 . . . ∃xn∀y1 . . . ∀ymψ. Also, let X = {x1, . . . , xn}, X̄ = {x̄1, . . . , x̄n}, Y =
{y1, . . . , ym}, Ȳ = {ȳ1, . . . , ȳm}, Z = X ∪ Y , and Z̄ = X̄ ∪ Ȳ . We construct a flow network
Gθ and define α and γ, such that θ holds iff there is a regulator g with bound α such that
cuval(Gθ, g) ≥ γ.

We assume that ψ is given in a positive normal form; that is, ψ is constructed from the
literals in Z ∪ Z̄ using the Boolean operators ∨ and ∧, and that there is k ≥ 1 such that
every literal in Z ∪ Z̄ appears in ψ exactly k times. Clearly, every Boolean propositional
formula can be converted with only a quadratic blow-up to an equivalent one that satisfies
these conditions.

ICALP 2018

157:10 The Unfortunate-Flow Problem

Figure 4 The Boolean circuit Cψ and the external-source flow network Gψ.

We first translate ψ into a Boolean circuit Cψ with k(2n + 2m) inputs – one for each
occurrence of a literal in ψ. For example, in Figure 4, on the left, we describe Cψ for
ψ = x ∨ (x̄ ∧ y) ∧ ((x ∧ ȳ) ∨ (y ∨ ȳ ∨ x̄)). Each gate in Cψ has fan-in 2 and fan-out 1. We
say that an input assignment to Cψ is consistent if it corresponds to an assignment to the
variables in Z. That is, for each variable z ∈ Z, there is a value b ∈ {0, 1} such that all the k
inputs that correspond to the literal z have value b and all the k inputs that correspond to
the literal z̄ have value 1− b. If the input to Cψ is consistent then Cψ computes the value of
ψ for the corresponding assignment.

Now, we translate Cψ to an external-source flow network Gψ = 〈V,E, c, t〉: a flow network
in which there is no source vertex, and an input flow is given externally. Formally, some of
the edges in E have an unspecified source, to be later connected to edges with an unspecified
target. The idea behind the translation is as follows: The capacities in Gψ are all 1. Each OR
gate in Cψ induces a vertex v that has in-degree 2 and out-degree 1. Thus, if the incoming
flow in each incoming edge to v is 0 or 1, then its outgoing flow is 1 iff at least one of its
incoming edges has flow 1. Then, each AND gate in Cψ induces a vertex v that has in-degree
2 and out-degree 2, yet, one of the two edges that leaves v leads to a sink. Accordingly, if
the incoming flow in each incoming edge to v is 0 or 1, then the outgoing flow in the edge
that does not lead to the sink must be 1 iff both incoming edges have flow 1. For example,
the Boolean circuit Cψ from Figure 4 is translated to the external-source flow network Gψ to
its right.

Given a flow from the external source, we define the unfortunate value of Gψ as the
minimal value of a controlled saturating preflow that respects the external flow. The following
lemma can be easily proved by induction on the structure of ψ.

I Lemma 13. Consider a Boolean formula ψ and its corresponding external-source flow
network Gψ.
1. Given input flows to Gψ, if we increase some input flow, then the new unfortunate value

of Gψ is greater than or equal to the original unfortunate value.
2. Given input flows in {0, 1} to Gψ, the unfortunate value of Gψ is equal to the output of
Cψ with the same input. Thus, if the input flow to Gψ corresponds to a consistent input to
Cψ, then the unfortunate value of Gψ is the value of ψ for the corresponding assignment.

We complete the reduction by constructing the flow network Gθ that uses Gψ as a sub-
network as shown in Figure 5 The vertices dy1 , . . . , dym

are associated with the variables
in Y . The vertices xi, x̄i, yi, ȳi for every i are associated with the literals in Z ∪ Z̄. Each
outgoing edge from a literal vertex that enters Gψ is connected to an input of Gψ that
corresponds to this literal. The outgoing edge from the subnetwork Gψ corresponds to an
edge from the target vertex of Gψ. In the full version we describe the network Gθ for the case
ψ = (x ∨ y) ∧ (x̄ ∨ ȳ).

O. Kupferman and G. Vardi 157:11

Figure 5 The flow network Gθ.

In the full version we prove that θ holds iff there is a regulator g with bound (2k +
1)m+ (k + 1)n such that for every controlled saturating preflow f that respects g we have
val(f) ≥ m+ n+ 1.

J

In Theorem 11 we showed that in some cases an optimal regulator must use non-integral
values. Sometimes, however, it is desirable to restrict attention to integral regulators. In the
following theorem (see proof in the full version) we show that the ΣP

2 -completeness stays
valid also for integral regulators.

I Theorem 14. Let G be a flow network and let α, γ be integral constants. Deciding whether
there exists an integral regulator g : Es� → IN with bound α such that cuval(G, g) ≥ γ, is
ΣP2 -complete.

I Remark. [Bounded Global Control] In the CUF problem, it is possible to control the
flow leaving the source. This could be generalized by letting an authority control also internal
vertices in the network. In the bounded global control problem, we get as input a flow network
G, a number k ≥ 0, and a threshold γ > 0, and we need to decide whether we can guarantee
an unfortunate flow of at least γ by controlling the outgoing flow in at most k vertices. Note
that while in the problem of finding critical nodes for firefighters [2, 3], a firefighter blocks
the fire, in our setting the firefighters direct the evacuation. Thus, there, the goal is to block
undesired vulnerabilities in the network, and here the goal is maximize desired traffic in
the network. The formal definition of the bounded global control problem goes through
the flow games of [14], which includes the notion of strategies for controlling flow. The ΣP2
algorithm for solving flow games with integral flows can be extended to solve the bounded
global control problem. By making the control on the source vertex essential (say, by adding
a transition with a large capacity to a sink), the CUF problem can be reduced to the global
control problem with k = 1, implying ΣP2 completeness.

ICALP 2018

157:12 The Unfortunate-Flow Problem

5 Safe Networks and No-Loss Unfortunate Flow

In this section we consider settings in which loss must be avoided. We say that a flow network
G is safe if Lf = 0 for every saturating preflow f . For example, networks with no funnels
are clearly safe. It is easy to see that G is safe iff uval(G) = Cs. Together with Theorem 9,
this gives a co-NP algorithm for deciding the safety of a network. We first show that by
reducing the safety problem to the maximum weighted flow problem, we can decide safety
in polynomial time. Essentially, the reduction checks, for every vertex v ∈ V , whether it is
possible to direct to v flow that is greater than its outgoing capacity, and the weights are
used in order to filter flow incoming to v. For details, see the full version.

I Theorem 15. Deciding whether a flow network is safe can be done in polynomial time.

We now consider the case where the total outgoing flow from s is controlled, and we
need to find an optimal regulator that guarantees no flow loss. Formally, in the no-loss
controlled unfortunate-flow problem (NLCUF problem, for short), we are given a flow network
G and an integer γ > 0, and we need to decide whether there exists a regulator g such that∑
e∈Es� g(e) ≥ γ, and for every controlled saturating preflow that respects g the flow loss is

0 (equivalently, cuval(G, g) = γ). That is, decide whether there is a regulator that ensures
no loss and a value of at least γ. We show that the NLCUF problem is NP-complete. For
the upper bound one could expect an algorithm in which we guess an integral regulator
g : Es� → IN in which the total flow is at least γ, and then use Theorem 15 in order to check
in polynomial time whether flow loss is possible. However, Theorem 11 shows that in some
cases a regulator must use non-integral values in order to ensure that flow loss is impossible.
Consequently, our algorithm is more complicated and uses a result from the theory of real
numbers with addition.

I Theorem 16. The NLCUF problem is NP-complete.

Proof. We start with the upper bound. For a rational number q we denote by #(q)
the length of q, namely, if q = a/b with a, b relatively prime, then #(q) is the sum of
the number of bits in the binary representations of a and b. Consider a formula ϕ =
∃x1, ..., xn∀y1, ..., ymF (x1, ..., xn, y1, ..., ym), where F is a propositional combination of linear
inequalities of the form a1x1 + ... + anxn + b1y1 + ... + bmym ≤ d for integral constants
a1, ..., an, b1, ..., bm, and d. The variables x1, ..., xn, y1, ..., ym are real. In [17] (in the proof
of Theorem 3.1 there) it is shown that ϕ holds iff there exists rational values x1, ..., xn such
that for every i the length #(xi) is polynomial in the size of ϕ and for every real values
y1, ..., ym the formula F holds.

We construct a propositional combination F of linear inequalities over the variables xe,
for every e ∈ Es�, and ye, for every e ∈ E. The formula F states that the values of the
variables xe correspond to a regulator g with bound γ, and that if the values of the variables
ye correspond to a controlled saturating preflow f that respects g, then Lf = 0. Then, our
problem amounts to deciding whether there are real values xe such that for every real values
ye, the formula F holds. By [17], it is enough to check whether there are rational values xe
for e ∈ Es� with polynomial lengths such that for every real values ye for e ∈ E, the formula
F holds. Given values for the variables xe, checking whether for every real values ye the
formula F holds can be done in polynomial time with the algorithm shown in the proof of
Theorem 15. Hence the membership in NP.

We proceed to the lower bound. We show a reduction from CNF-SAT. Let ψ = C1∧. . .∧Cm
be a CNF formula over the variables x1 . . . xn. We denote Z = {x1, . . . , xn, x̄1, . . . , x̄n}. We
assume that for every literal z ∈ Z there is at least one clause in ψ that does not contain

O. Kupferman and G. Vardi 157:13

Figure 6 The flow network G. Unless stated otherwise, the capacities are 1.

z. We construct a flow network G = 〈V,E, c, s, t〉 as demonstrated in Figure 6. For a literal
z ∈ Z and a clause Ci, the network G contains an edge 〈z, Ci〉 iff the clause Ci does not
contain the literal z. Let γ = 2n. In the full version, we show that ψ is satisfiable iff there is
a regulator that ensures no loss and a value of at least γ. J

Sometimes it is desirable to restrict attention to integral regulators. As we show below,
NP-completeness applies for them too (see the full version for proof).

I Theorem 17. Let G be a flow network and let γ > 0 be an integer. Deciding whether there
exists an integral regulator g : Es� → IN in G such that

∑
e∈Es� g(e) ≥ γ, and for every

controlled saturating preflow that respects g the flow loss is 0, is NP-complete.

6 Discussion

The unfortunate-flow problem captures settings in which the authority has no control on
how flow is directed in the vertices of a flow network. For many problems, a transition
from a cooperative setting to an adversarial one dualizes the complexity class to which the
problem belongs, as in NP for satisfiability vs. co-NP for validity. In the case of flow, the
polynomial complexity of the maximum-flow problem is not preserved when we move to the
dual unfortunate-flow problem, and we prove that the problem is co-NP-complete.

On the positive side, the integral-flow property of maximal flow is preserved in unfortunate
flows. This property, however, is lost once we move to controlled unfortunate flows, where
non-integral regulators may be more optimal than integral ones. The need to consider
real-valued flows questions the decidability of the controlled unfortunate-flow problem. As we
show, the problem is decidable, by a reduction to the second alternation level of the theory of
real numbers under addition and order [17]. There, the infinite domain of the real numbers
is reduced to a finite one, namely rational numbers of length polynomial in the input. A
direct algorithm for the controlled unfortunate-flow problem, thus one that does not rely
on [17], is still open. Such a direct algorithm would reduce the real-number domain to a
finite one in a tighter manner – one that depends on the network. We see several interesting
problems in this direction, in particular finding a sufficient granularity that a regulator may
need, and bounding the non-optimality caused by integral regulators. Similar problems are
open in the settings of flow games with two or more players [14, 12].

Finally, the unfortunate-flow problem sets the stage to problems around network design,
where the goal is to design networks with maximal unfortunate flows. In particular, in
network repair, we are given a network and we are asked to modify it in order to increase
its unfortunate flow value. Different algorithms correspond to different types of allowed

ICALP 2018

157:14 The Unfortunate-Flow Problem

modifications. For example, we may be allowed to change the capacity of a fixed number of
edges. Note that unlike the case of maximal flow, here a repair may reduce the capacity of
edges. Also, unlike the case of maximal flow, there is no clear theory of minimal cuts that
may assist us in such a repair.

References
1 R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: Theory, algorithms, and

applications. Prentice Hall Englewood Cliffs, 1993.
2 C. Bazgan, M. Chopin, M. Cygan, M.R. Fellows, F. V. Fomin, and E. Leeuwen. Parameter-

ized complexity of firefighting. Journal of Computer and Systems Science, 80(7):1285–1297,
2014.

3 J. Choudhari, A. Dasgupta, N. Misra, and M.S. Ramanujan. Saving critical nodes with
firefighters is FPT. In Proc. 44th Int. Colloq. on Automata, Languages, and Programming,
volume 80 of LIPIcs, pages 135:1–135:13, 2017.

4 T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press and
McGraw-Hill, 1990.

5 E.A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Math. Doll, 11(5):1277–1280, 1970. English translation by RF. Rinehart.

6 J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19(2):248–264, 1972.

7 S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow
problems. SIAM Journal on Computing, 5(4):691–703, 1976.

8 L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian journal of
Mathematics, 8(3):399–404, 1956.

9 L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, 1962.
10 A.V. Goldberg, É. Tardos, and R.E. Tarjan. Network flow algorithms. Technical report,

DTIC Document, 1989.
11 A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow problem. Journal

of the ACM, 35(4):921–940, 1988.
12 S. Guha, O. Kupferman, and G. Vardi. Multi-player flow games. In Proc. 17th International

Conference on Autonomous Agents and Multiagent Systems, 2018.
13 S. Keren, A. Gal, and E. Karpas. Goal recognition design for non optimal agents. In Proc.

29th AAAI conference, pages 3298–3304, 2015.
14 O. Kupferman, G. Vardi, and M.Y. Vardi. Flow games. In Proc. 37th Conf. on Found-

ations of Software Technology and Theoretical Computer Science, volume 93 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 38:38–38:16, 2017.

15 A. Madry. Computing maximum flow with augmenting electrical flows. In Foundations of
Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 593–602. IEEE,
2016.

16 L. Qingsong, G. Betsy, and S. Shashi. Capacity constrained routing algorithms for evacu-
ation planning: A summary of results. In International Symposium on Spatial and Temporal
Databases, pages 291–307. Springer, 2005.

17 E.D. Sontag. Real addition and the polynomial hierarchy. Information Processing Letters,
20(3):115–120, 1985.

18 É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–255, 1985.

	Introduction
	Preliminaries
	The Complexity of the Unfortunate-Flow Problem
	The Controlled Unfortunate-Flow Problem
	Safe Networks and No-Loss Unfortunate Flow
	Discussion

