5,105 research outputs found

    Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks

    Get PDF
    This paper investigates low-complexity approaches to small-cell base-station (SBS) design, suitable for future 5G millimeter-wave (mmWave) indoor deployments. Using large-scale antenna systems and high-bandwidth spectrum, such SBS can theoretically achieve the anticipated future data bandwidth demand of 10000 fold in the next 20 years. We look to exploit small cell distances to simplify SBS design, particularly considering dense indoor installations. We compare theoretical results, based on a link budget analysis, with the system simulation of a densely deployed indoor network using appropriate mmWave channel propagation conditions. The frequency diverse bands of 28 and 72 GHz of the mmWave spectrum are assumed in the analysis. We investigate the performance of low-complexity approaches using a minimal number of antennas at the base station and the user equipment. Using the appropriate power consumption models and the state-of-the-art sub-component power usage, we determine the total power consumption and the energy efficiency of such systems. With mmWave being typified nonline-of-sight communication, we further investigate and propose the use of direct sequence spread spectrum as a means to overcome this, and discuss the use of multipath detection and combining as a suitable mechanism to maximize link reliability

    73 GHz Wideband Millimeter-Wave Foliage and Ground Reflection Measurements and Models

    Full text link
    This paper presents 73 GHz wideband outdoor foliage and ground reflection measurements. Propagation measurements were made with a 400 Megachip-per-second sliding correlator channel sounder, with rotatable 27 dBi (7 degrees half- power beamwidth) horn antennas at both the transmitter and receiver, to study foliage-induced scattering and de-polarization effects, to assist in developing future wireless systems that will use adaptive array antennas. Signal attenuation through foliage was measured to be 0.4 dB/m for both co- and cross-polarized antenna configurations. Measured ground reflection coefficients for dirt and gravel ranged from 0.02 to 0.34, for incident angles ranging from 60 degrees to 81 degrees (with respect to the normal incidence of the surface). These data are useful for link budget design and site-specific (ray-tracing) models for future millimeter-wave communication systems.Comment: 6 pages, 4 figures, 2015 IEEE International Conference on Communications (ICC), ICC Workshop

    A neural network propagation model for LoRaWAN and critical analysis with real-world measurements

    Get PDF
    Among the many technologies competing for the Internet of Things (IoT), one of the most promising and fast-growing technologies in this landscape is the Low-Power Wide-Area Network (LPWAN). Coverage of LoRa, one of the main IoT LPWAN technologies, has previously been studied for outdoor environments. However, this article focuses on end-to-end propagation in an outdoor–indoor scenario. This article will investigate how the reported and documented outdoor metrics are interpreted for an indoor environment. Furthermore, to facilitate network planning and coverage prediction, a novel hybrid propagation estimation method has been developed and examined. This hybrid model is comprised of an artificial neural network (ANN) and an optimized Multi-Wall Model (MWM). Subsequently, real-world measurements were collected and compared against different propagation models. For benchmarking, log-distance and COST231 models were used due to their simplicity. It was observed and concluded that: (a) the propagation of the LoRa Wide-Area Network (LoRaWAN) is limited to a much shorter range in this investigated environment compared with outdoor reports; (b) log-distance and COST231 models do not yield an accurate estimate of propagation characteristics for outdoor–indoor scenarios; (c) this lack of accuracy can be addressed by adjusting the COST231 model, to account for the outdoor propagation; (d) a feedforward neural network combined with a COST231 model improves the accuracy of the predictions. This work demonstrates practical results and provides an insight into the LoRaWAN’s propagation in similar scenarios. This could facilitate network planning for outdoor–indoor environments

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Packet Loss in Terrestrial Wireless and Hybrid Networks

    Get PDF
    The presence of both a geostationary satellite link and a terrestrial local wireless link on the same path of a given network connection is becoming increasingly common, thanks to the popularity of the IEEE 802.11 protocol. The most common situation where a hybrid network comes into play is having a Wi-Fi link at the network edge and the satellite link somewhere in the network core. Example of scenarios where this can happen are ships or airplanes where Internet connection on board is provided through a Wi-Fi access point and a satellite link with a geostationary satellite; a small office located in remote or isolated area without cabled Internet access; a rescue team using a mobile ad hoc Wi-Fi network connected to the Internet or to a command centre through a mobile gateway using a satellite link. The serialisation of terrestrial and satellite wireless links is problematic from the point of view of a number of applications, be they based on video streaming, interactive audio or TCP. The reason is the combination of high latency, caused by the geostationary satellite link, and frequent, correlated packet losses caused by the local wireless terrestrial link. In fact, GEO satellites are placed in equatorial orbit at 36,000 km altitude, which takes the radio signal about 250 ms to travel up and down. Satellite systems exhibit low packet loss most of the time, with typical project constraints of 10−8 bit error rate 99% of the time, which translates into a packet error rate of 10−4, except for a few days a year. Wi-Fi links, on the other hand, have quite different characteristics. While the delay introduced by the MAC level is in the order of the milliseconds, and is consequently too small to affect most applications, its packet loss characteristics are generally far from negligible. In fact, multipath fading, interference and collisions affect most environments, causing correlated packet losses: this means that often more than one packet at a time is lost for a single fading even

    Analysis and Simulation of the Signals Transmission in the DVB-H/SH Standards

    Get PDF
    Tato disertační práce se zabývá analýzou, simulací a měřením zpracování a přenosu signálů digitální televize pro příjem mobilního TV vysílání ve standardech DVB-H a DVB-SH. Tyto standardy vycházejí z předpokladu, že příjem signálu je charakterizován modely přenosových kanálů s vícecestným šířením. Tyto, tzv. únikové kanály, jsou charakterizovány hlavně zpožděním a ziskem jednotlivých cest. V závislosti na dalších parametrech (rychlost přijímače, Dopplerovské spektrum), je možné rozdělit únikové kanály do třech hlavních skupin: mobilní, přenosné a fixní. Dá se předpokládat, že v různých modelech kanálů bude přenášený signál různě ovlivněn. Proto je potřebné najít optimální parametry systémů (DVB-H/SH) pro kvalitní příjem vysílaných služeb mobilní televize, což je hlavním cílem této disertační práci. Pro tento účel byly vytvořeny dvě vhodné aplikace (jedna pro DVB-H a jedna pro DVB-SH) s GUI v prostředí MATLAB, které umožňují simulovat a analyzovat míru zkreslení signálu v případě mobilních, přenosných a fixních scénářů přenosu. Navíc, tyto aplikace obsahují i druhý samostatný simulátor pro nastavení a modifikaci parametrů jednotlivých přenosových cest. Díky tomu je možné zhodnotit vliv parametrů celého systému a kanálových modelů na dosaženou chybovost (BER a MER) a kvalitu přenosu. Ve všech přenosových scénářích (v závislosti na poměru C/N) byly získané, vyhodnocené a diskutované zkreslení signálů. Navíc, u standardu DVB-H, všechny získané výsledky ze simulací byly ověřeny měřením. Rozdíly mezi dosaženými výsledky (simulace a měření) byly rovněž podrobeny diskuzi. Tuto disertační práci je možné rozdělit do čtyř hlavních částí. První část disertační práce se zabývá rešerší současného vývoje v oblasti digitálního televizního vysílání na mobilní terminály ve standardech DVB-H/SH. Na konci této části jsou jasně popsány cíle této disertační práce. Druhá část práce je zaměřená na stručný popis blokového diagramu vysílačů v obou standardech DVB-H/SH. Dále jsou stručně popsány modely přenosových kanálů, které se používají pro modelování přenosu signálu. Stručný popis vytvořených aplikací, i s vývojovým diagramem, které jsou vhodné pro simulaci a analýzu přenosu v DVB-H/SH, jsou popsány v třetí části práce. Čtvrtá a nejdelší část této disertační práce se zabývá vyhodnocením získaných výsledků ze simulací a měření.This dissertation thesis deals with the analysis, simulation and measurement of the signal processing and transmission in DVB-H and DVB-SH standards. These standards are based on the assumption that signal reception is characterized by the transmission channels with echoes. These, so called fading channels, are mainly characterized by the path delays and path losses. Depending on the other, additional features (speed of the receiver, Doppler spectrum, etc.), it can be possible divided these channels onto three main groups: mobile, portable and fixed. Of course, signal transmission in different transmission channel models are affected differently. Therefore, it is needed found the optimal system parameters in both, DVB-H and DVB-SH standards, for the quality reception of the broadcasted mobile TV services, which is the main goal of this thesis. For this purpose, two appropriate applications (one for DVB-H and one for DVB-SH) with GUI were created in MATLAB, which enable simulated and analyzed the signal distortions in mobile, portable and fixed transmission scenarios. Moreover, these applications also contain a second application with GUI for the easy set and modification of the parameters of the used channel models. Therefore, it is possible to evaluate the effect of parameters of whole system and channel models on the achieved error rate (BER and MER) and quality of the transmission. In all mentioned transmission scenarios, the signal distortions (depending on the Carrier-to-Noise ratio) were obtained, evaluated and discussed in this dissertation thesis. Furthermore, in case of DVB-H, all obtained results from the simulations, were verified by the measuring. Differences between the obtained results (simulation and measuring) are also discussed. This dissertation thesis can be divided into four main parts. The first part of this dissertation thesis, after the short introduction, deals with present state-of-the-art and literature survey in mobile broadcast DVB-H/SH standards. At the end of this part are clearly outlined the main aims of this dissertation thesis. Second part is focused on the brief description of the functional block diagram of transmitters in both, DVB-H/SH standards. Furthermore, there are briefly described the transmission fading channel models, which are commonly used for the modeling of the signal transmission. The brief description of program applications with flowcharts, appropriate for the simulation of the transmission in the DVB-H/SH standards, are presented and described in the third part of this thesis. Finally, the fourth and longest part of this thesis is focused on the evaluation and comparison of obtained results from the simulations and measurements.

    Satellite sound broadcasting system study: Mobile considerations

    Get PDF
    Discussed here is the mobile reception part of a study to investigate a satellite sound broadcast system in the UHF or L bands. Existing propagation and reception measurements are used with proper interpretation to evaluate the signaling, coding, and diversity alternatives suitable for the system. Signal attenuation in streets shadowed by buildings appear to be around 29 db, considerably higher than the 10 db adopted by CCIR. With the marriage of proper technologies, an LMSS class satellite can provide substantial direct satellite audio broadcast capability in UHF or L bands for high quality mobile and portable indoor reception by low cost radio receivers. This scheme requires terrestrial repeaters for satisfactory mobile reception in urban areas. A specialized bandwidth efficient spread spectrum signalling technique is particularly suitable for the terrestrial repeaters
    corecore