423 research outputs found

    Applied type system

    Full text link
    We present a type system that can effectively facilitate the use of types in capturing invariants in stateful programs that may involve (sophisticated) pointer manipulation. With its root in a recently developed framework Applied Type System (ATS), the type system imposes a level of abstraction on program states by introducing a novel notion of recursive stateful views and then relies on a form of linear logic to reason about such views. We consider the design and then the formalization of the type system to constitute the primary contribution of the paper. In addition, we mention a prototype implementation of the type system and then give a variety of examples that attests to the practicality of programming with recursive stateful views.National Science Foundation (CCR-0224244, CCR-0229480

    Linear Haskell: practical linearity in a higher-order polymorphic language

    Get PDF
    Linear type systems have a long and storied history, but not a clear path forward to integrate with existing languages such as OCaml or Haskell. In this paper, we study a linear type system designed with two crucial properties in mind: backwards-compatibility and code reuse across linear and non-linear users of a library. Only then can the benefits of linear types permeate conventional functional programming. Rather than bifurcate types into linear and non-linear counterparts, we instead attach linearity to function arrows. Linear functions can receive inputs from linearly-bound values, but can also operate over unrestricted, regular values. To demonstrate the efficacy of our linear type system - both how easy it can be integrated in an existing language implementation and how streamlined it makes it to write programs with linear types - we implemented our type system in GHC, the leading Haskell compiler, and demonstrate two kinds of applications of linear types: mutable data with pure interfaces; and enforcing protocols in I/O-performing functions

    Safe Session-Based Concurrency with Shared Linear State

    Get PDF
    Publisher Copyright: © 2023, The Author(s).We introduce CLASS, a session-typed, higher-order, core language that supports concurrent computation with shared linear state.publishersversionpublishe

    Verus: Verifying Rust Programs using Linear Ghost Types (extended version)

    Full text link
    The Rust programming language provides a powerful type system that checks linearity and borrowing, allowing code to safely manipulate memory without garbage collection and making Rust ideal for developing low-level, high-assurance systems. For such systems, formal verification can be useful to prove functional correctness properties beyond type safety. This paper presents Verus, an SMT-based tool for formally verifying Rust programs. With Verus, programmers express proofs and specifications using the Rust language, allowing proofs to take advantage of Rust's linear types and borrow checking. We show how this allows proofs to manipulate linearly typed permissions that let Rust code safely manipulate memory, pointers, and concurrent resources. Verus organizes proofs and specifications using a novel mode system that distinguishes specifications, which are not checked for linearity and borrowing, from executable code and proofs, which are checked for linearity and borrowing. We formalize Verus' linearity, borrowing, and modes in a small lambda calculus, for which we prove type safety and termination of specifications and proofs. We demonstrate Verus on a series of examples, including pointer-manipulating code (an xor-based doubly linked list), code with interior mutability, and concurrent code

    Bridging the Gap between Machine and Language using First-Class Building Blocks

    Get PDF
    High-performance virtual machines (VMs) are increasingly reused for programming languages for which they were not initially designed. Unfortunately, VMs are usually tailored to specific languages, offer only a very limited interface to running applications, and are closed to extensions. As a consequence, extensions required to support new languages often entail the construction of custom VMs, thus impacting reuse, compatibility and performance. Short of building a custom VM, the language designer has to choose between the expressiveness and the performance of the language. In this dissertation we argue that the best way to open the VM is to eliminate it. We present Pinocchio, a natively compiled Smalltalk, in which we identify and reify three basic building blocks for object-oriented languages. First we define a protocol for message passing similar to calling conventions, independent of the actual message lookup mechanism. The lookup is provided by a self-supporting runtime library written in Smalltalk and compiled to native code. Since it unifies the meta- and base-level we obtain a metaobject protocol (MOP). Then we decouple the language-level manipulation of state from the machine-level implementation by extending the structural reflective model of the language with object layouts, layout scopes and slots. Finally we reify behavior using AST nodes and first-class interpreters separate from the low-level language implementation. We describe the implementations of all three first-class building blocks. For each of the blocks we provide a series of examples illustrating how they enable typical extensions to the runtime, and we provide benchmarks validating the practicality of the approaches

    Compiler verification meets cross-language linking via data abstraction

    Get PDF
    Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923

    Bridging the Gap between Machine and Language using First-Class Building Blocks

    Get PDF
    High-performance virtual machines (VMs) are increasingly reused for programming languages for which they were not initially designed. Unfortunately, VMs are usually tailored to specific languages, offer only a very limited interface to running applications, and are closed to extensions. As a consequence, extensions required to support new languages often entail the construction of custom VMs, thus impacting reuse, compatibility and performance. Short of building a custom VM, the language designer has to choose between the expressiveness and the performance of the language. In this dissertation we argue that the best way to open the VM is to eliminate it. We present Pinocchio, a natively compiled Smalltalk, in which we identify and reify three basic building blocks for object-oriented languages. First we define a protocol for message passing similar to calling conventions, independent of the actual message lookup mechanism. The lookup is provided by a self-supporting runtime library written in Smalltalk and compiled to native code. Since it unifies the meta- and base-level we obtain a metaobject protocol (MOP). Then we decouple the language-level manipulation of state from the machine-level implementation by extending the structural reflective model of the language with object layouts, layout scopes and slots. Finally we reify behavior using AST nodes and first-class interpreters separate from the low-level language implementation. We describe the implementations of all three first-class building blocks. For each of the blocks we provide a series of examples illustrating how they enable typical extensions to the runtime, and we provide benchmarks validating the practicality of the approaches

    A Verified Information-Flow Architecture

    Get PDF
    SAFE is a clean-slate design for a highly secure computer system, with pervasive mechanisms for tracking and limiting information flows. At the lowest level, the SAFE hardware supports fine-grained programmable tags, with efficient and flexible propagation and combination of tags as instructions are executed. The operating system virtualizes these generic facilities to present an information-flow abstract machine that allows user programs to label sensitive data with rich confidentiality policies. We present a formal, machine-checked model of the key hardware and software mechanisms used to dynamically control information flow in SAFE and an end-to-end proof of noninterference for this model. We use a refinement proof methodology to propagate the noninterference property of the abstract machine down to the concrete machine level. We use an intermediate layer in the refinement chain that factors out the details of the information-flow control policy and devise a code generator for compiling such information-flow policies into low-level monitor code. Finally, we verify the correctness of this generator using a dedicated Hoare logic that abstracts from low-level machine instructions into a reusable set of verified structured code generators
    • …
    corecore