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Abstract—Big Data technologies have traditionally operated
in an offline setting, collecting large batches of information on
clusters of commodity machines and performing complex and
time-consuming computations over it. While frameworks follow-
ing this approach served well for most applications involving
big data analysis during the last decade, other use cases have
recently emerged posing challenging requirements on latency and
demanding real-time data processing, querying and visualization.
That is the case for applications aiming at detecting threatening
behaviors in social network platforms, where timely action is
required to avoid adverse consequences. In this sense, more and
more attention has been drawn towards online data processing
systems claiming to address the limitations of batch-oriented
frameworks. This paper reports a work in progress on distributed
data processing for enabling low-latency querying over big data
sets. Two software architectures are discussed for addressing the
problem and an experimental evaluation is performed on a proof
of concept implementation showing how an approach based on
query pre-processing and stateful distributed stream computation
can meet the requirements for supporting interactive querying
on large and continuously generated data.

I. INTRODUCTION

One of the main challenges of Big Data is to provide
organizations with the ability to deal with large volumes
of data being produced at high rates and in a variety of
formats. Many research and development efforts have been
aimed at conceiving mechanisms enabling high throughput
data processing and efficient querying while dealing with
constraints of consistency, availability and partition tolerance
inherent to distributed computing systems [1].

Moreover, access latency requirements posed by data-
intensive applications are more and more demanding by the
day. Being able to process and access data as it is available, is
becoming of paramount importance for the competitiveness of
data-driven business in a plethora of application domains in-
cluding social media, IoT and sensor data, fraud detection, and
networking and security. Consider for instance, the AMiCA
project [2], which is intended to identify possibly threatening
situations on social networks by means of text and image
analysis. Applications meeting the purpose of this project
requires efficient methods to process, query and visualize the
massive amount of continuously generated data in these social
platforms, to effectively spot harming behaviors and mitigate
their impact in a timely way.

In spite of the clear need for mechanisms and tools sup-
porting near real-time query and visualization of continuously-
generated data, this is still a largely open Big Data problem
where three main requirements are to be met, namely: (i)
high throughput resolution of arbitrary queries, enabling data
analysis and information retrieval on an as-needed basis, (ii)
deal with heterogeneous data sources, since data is regularly
available in a myriad of structured and unstructured formats,
and (iii) strict latency demands. Multiple approaches claim
to address this problem, ranging from open source projects
working on top of widespread Big Data frameworks like
Hadoop [3] (e.g. Apache Drill [8] and Apache Impala [9]),
to complete technology-agnostic software architecture patterns
such as the Lambda [4] and Kappa [5] Architectures.

This paper explores two approaches for addressing this
problem. The first one involves using a distributed SQL engine
for supporting ad-hoc querying on top of a big data set,
while the second one takes on the flaws and limitations of the
previous approach by establishing a clear separation between
data storage and query treatment, and also by pre-processing
the raw data set in a streaming setting to generate materialized
views for answering specific queries on the available data.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the related works. Section 3 illustrates a use
case for applying and evaluating the previously mentioned
approaches. Sections 4 and 5 elaborate on each of the proposed
approaches specifying their features and limitations. Section 6
deals with the experimental setup and results. Finally con-
clusions and pointers towards future work are provided in
Section 8.

II. RELATED WORK

Multiple approaches currently claim to address the latency
limitations of traditional batch processing frameworks. Plat-
forms like Apache Drill [8] and Apache Impala [9] circumvent
MapReduce by using a custom query execution engine. These
projects are loosely based on Google’s Dremel [10] (or Big-
Query as it is commercially known), both claiming to have in-
teractive performance and supporting ad-hoc queries. Besides
the SQL primitives, Drill and Impala support the creation of
user-defined functions allowing the user to conduct some more
complex processing on the data beyond projection, aggregation
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and grouping. According to [12], while the response time
of these platforms outperforms those from batch processing
frameworks like Apache Hive [11], they still cannot guarantee
low latency query resolution on their own [13].

There are also tools tailored for ad-hoc querying and data
visualization such as Tableau [14] and Pentaho [15]. However
the processing power of these tools is often limited to basic
ETL (Extract, Transform and Load) and aggregation opera-
tions, resorting to third party platforms for performing more
elaborated procedures on the data, such as streaming analysis.

Other frameworks tackle the stated problem by relying on
distributed streaming computation systems. Two of the most
representative implementations of this kind of frameworks are
the open source projects Apache Samza [16] and Apache
Flink [17]. Apache Samza runs on top of Apache Hadoop
YARN [18] for resource management and fault tolerance,
and relies on a distributed message broker (Apache Kafka
[19] commonly) as canonical storage. A job running on this
framework consumes the stream of entries available in the
message broker, then performs arbitrary transformations on
each incoming record and finally pushes the result back into an
output stream for further processing. Apache Flink meanwhile,
is more flexible in terms of the data sources it can use, and
is also able to perform batch processing as a special case of
stream processing (i.e. bounded stream).

Both Samza and Flink acknowledge that a major part of
the streaming applications are stateful, hence they provide a
mechanism for performing incremental computation and main-
taining the state of a streaming job in a distributed key/value
store. Managing the state this way entails an evident limitation:
as these stores require fine-grained access to key/value pairs
to do random reads/writes they are not suitable for complex
queries involving filtering, scans and aggregations.

The proposed approach also relies on a distributed streaming
processing engine and allows for stateful computation over
a continuous data stream. The state in this case holds pre-
computed results for arbitrarily complex queries as materi-
alized views. Such views are then indexed and placed into
custom data stores, serving as back-end for visualization
applications and further processing. This way the approach
herein supports interactive querying (i.e. latency ≤ 0.15s,
according to [20]) and provides partial query results over
streamed data sets.

III. USE CASE

Social networking and social media platforms have enabled
people to be more connected than ever before. Users of these
sites are allowed to create their own content and share it with
their fellow peers, build communities around common interests
and even establish direct communication with celebrities,
companies and organizations they like or follow.

Along with the increasing popularity of these platforms
there is an exploding amount of data being continuously
collected about their users. Analyzing this data is key for
offering a rich and personalized user experience, and lately

also has proven valuable for conducting public health moni-
toring [21] and spotting abusive or threatening behaviors like
cyber-bullying, depression and suicidality [2]. In application
domains like this, being able to query, process and visualize
data as soon as it becomes available is of capital importance,
so that action can be taken on time to avoid or mitigate adverse
consequences.

Two alternative methods have been explored to address this
problem in this particular domain:

(i) Using a distributed SQL Query Engine on top of the main
data set for supporting ad-hoc querying.

(ii) Using a distributed streaming computation system able
to perform incremental operations on the available data
and store the outcome as materialized views, tailored to
answer specific and arbitrarily complex queries with low
latency.

In order to evaluate these approaches, a bulk of submissions
made by the users of Reddit1—a highly popular social news
and bookmarking service—was used. The corpus (available at
[22]) comprises the contributions made by users from January
2006 to August 2015, adding up to 269 GB of data. Based
on the information available in the corpus and for proof of
concept purposes, two basic text analysis jobs were run on
it: (i) a simple per-submission sentiment polarity estimation
based on the implementation available at [23] using the Vader
Sentiment Analysis Lexicon [24], and (ii) a data set-wide term-
frequency (TF) analysis.

The next sections describe the two mentioned approaches,
starting with an introduction to their architecture and compo-
nents and then detailing their actual implementation.

IV. DISTRIBUTED SQL QUERY ENGINE APPROACH

This approach represents the most straightforward and
widely used method to enable querying against heterogeneous
big data sets. It harnesses the processing capabilities of a
distributed SQL query engine running on top of the main
data set, allowing front-end clients to issue ad-hoc queries of
arbitrary complexity, by using standard SQL statements. These
engines usually support the definition of user-defined functions
(UDFs) enabling them to conduct complex processing on the
data beyond canonical SQL operations.

A. Architecture

Two main components fit together to compose the architec-
ture of this approach: a distributed SQL query engine, and the
main distributed data storage.

A distributed SQL engine is able to break complex queries
into small operations and spread them over a cluster of
commodity machines where execution units are deployed.
Some of these engines run on top of well-known distributed
computing frameworks like Hadoop’s MapReduce, while oth-
ers implement their own execution environment. In both cases
the engine performs a series of generic steps: (i) query
parsing and optimization, (ii) generating an execution plan,

1Available at https://www.reddit.com
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(iii) submitting the plan to the execution environment, and (iv)
returning the results back to the client. In general these engines
operate in a batch setting. Consequently, they are prone to
high latency whenever non-trivial queries (e.g. those involving
execution of UDFs, aggregations and joins) are issued by client
applications.

The second component of this approach is the main data
storage, which commonly lies on a non-relational data store,
i.e. distributed file systems, NoSQL and cloud storage, or
might also be the output of an event/message source supplying
an unbounded data stream. Figure 1 outlines an overview of
this architecture.

Main Distributed 
Storage

Distributed SQL 
Query Engine

New 
Data

Queries

Fig. 1. Overview of the distributed SQL query engine approach

B. Technology mapping for evaluation

The actual implementation of the above architecture in-
volved choosing one of the distributed SQL query engines
publicly available. The open source Apache Drill project was
selected in this case since it offers several appealing features
like:

1) Support for multiple datastores (Hadoop, MongoDB,
HBase, cloud storage providers) and file formats (Parquet,
JSON, CSV, TSV, PSV)

2) On-the-fly schema discovery
3) Extensive client support through ODBC and JDBC

drivers, HTTP API, and Java and C libraries
4) Support the creation of tables, views and UDFs
By harnessing the UDF capabilities of Apache Drill a

custom operator was defined for running sentiment polarity
estimation on each of the Reddit submissions available in the
data set.

As for the main data storage, an HDFS [25] cluster was
deployed for storing the Reddit submissions bulk file, with
nine (9) Drill execution units configured to run on top of
it. Figure 2 illustrates how the mentioned technologies were
mapped to the components of this approach architecture.

V. STATEFUL STREAM PROCESSING APPROACH

The second approach comprises the use of a distributed
stream computation system supporting the incremental pro-
cessing of the input data set (stateful transformations). The
rationale behind this, is to set up a system able to run
continuous queries, namely those producing new results as
new data arrives at the stream processing engine. This way, the
system is able to provide partial results on the processed data,
avoiding the typical latency of batch processing frameworks.

Reddit Submissions 
Dataset

Distributed SQL query 
engine

Front-end application

Fig. 2. Implementation of the distributed SQL query engine approach

This approach is based on the software architectural pattern
conceived by Kreps known as Kappa Architecture [5], which
encourages the clean separation between query processing
and data storage, also enables the use of a single code base
for specifying the data transformations, and allows for the
entire reprocessing of the input dataset to be conducted when
required (e.g., when changes are made in the stream processing
code base).

A. Architecture

When conceived, the Kappa Architecture was to provide
an alternative to the Lambda Architecture [4], by enabling
reprocessing of the input data set on eventual code changes but
escaping the need for having a batch processing layer. In that
sense, this architecture relies entirely on a distributed stream
processing system, using a single programming paradigm
for implementing data transformation. It also circumvents
the problem of creating and maintaining two code bases
(for online and offline processing) typical for the Lambda
Architecture.

To achieve this, the Kappa architecture harnesses an append-
only transaction/event log as canonical data store, able to
maintain a massive and ordered set of messages (historical
data) and also capable of supporting multiple concurrent
clients/subscribers. This log streams the available data to a
distributed stream computation engine (acting as subscriber) in
charge of transforming, processing and generating incremental
views as new data is ingested. Those views are then queried
and visualized by users, featuring reasonable latency for
interactive applications. Figure 3 presents an overview of the
architecture of this approach.

B. Technology mapping for evaluation

The above architecture was implemented by combining
various open-source technologies, as illustrated in Figure 4.
The details regarding the construction of this system are
discussed below.

As the Reddit submissions data set is stored in HDFS, a
data ingestion stage is required in order to read the records,
weed out fields holding irrelevant information or containing
redundant data, and then feed the output to the append-only
log storage. A data pipeline was set up in StreamSets [26] for
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Fig. 3. Overview of the stateful stream processing approach

this, harnessing the support this engine provides for multiple
operations of data cleansing, filtering and transformation. The
final stage in this pipeline consist in writing the processed
submissions into an Apache Kafka topic, serving as the
append-only immutable log from the architecture above.

The submissions published in Kafka are then fed into a
distributed stream processing engine, in charge of running
both the sentiment and term-frequency analysis jobs and
incrementally generating three materialized views, keeping
the resulting state of those jobs: two views for storing the
aggregated per-author and per-subreddit sentiment polarity—
estimated by using the Vader Sentiment Analysis Lexicon
[24]—, and one view for keeping track of the corpus wide
term-frequency results. In this implementation the streaming
library of Apache Spark [27] was used as stream processing
engine and MongoDB [28] as store for the materialized views.

The implemented system is then able to provide partial
results on the text analysis performed as new data gets
ingested, while acknowledging the entire set of historical data
stored in the append-only log.
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Fig. 4. Implementation of the stateful stream preprocessing approach

VI. EVALUATION

One of the main motivations of this work was to build
a system enabling low-latency querying and visualization of
a sizable data set. As previously stated, a bulk of Reddit
submissions was used, which in storage space add up to 269
GB of raw data contained in one single JSON file.

In this corpus, each Reddit submission is serialized as a
JSON object with 39 fields, being title, url, selftext,

author, subreddit and score among them. Fields like
title and selftext hold text provided by the users
authoring the submissions, while others like num_comments
and score are indicators regarding the reception of the
community of users on each particular submission.

After filtering out and removing the irrelevant JSON at-
tributes the resulting submission objects comprise only nine
fields, including the ones listed above.

Based on this data, two basic text analysis jobs were
executed on the submission corpus, namely a simple per-
submission sentiment polarity estimation (computed on the
content of the title and selftext fields), and a corpus-
wide term-frequency (TF) analysis.

As a final stage, a web client was built for querying and
visualizing the Reddit corpus and the resulting materialized
views. This web application provides a customizable dynamic
dashboard implemented in Node.js and AngularJS that allows
the user to create various charts displaying the result of para-
meterizable queries (e.g. Top-N/Bottom-N authors according
to their aggregated sentiment polarity or submission count)
running against the Apache Drill API and the views stored in
MongoDB. The charts also get dynamically updated as new
results are available in the corresponding collections.

A. Experiment Set Up

The outlined implementations were deployed on the iLab.t
Virtual Wall experimental testbeds [29] which comprise
around 360 nodes. The Tengu experimentation platform [30] is
running on the Virtual Wall testbeds, making it possible to au-
tomatically deploy several data processing, storage and cloud
technologies, turning this process agile and straightforward.
For the evaluation of this proof of concept 10 third generation
nodes were used: 2x Hexacore Intel E5645 (2.4GHz) CPU,
24GB RAM, 1x 250GB hard disk, 1-5 gigabit nics. The whole
set up consist of 28 nodes as listed below:

• 11 Hadoop nodes (1 NameNode, 1 Resource manager,
and 9 DataNodes)

• 9 Drillbits (Apache Drill execution units)
• 3 Kafka nodes
• 3 Zookeeper nodes
• 1 Spark node
• 1 MongoDB node
• 1 StreamSets instance (collocated with Hadoop’s Re-

source manager)
To evaluate the two introduced approaches, the criteria

mentioned earlier in the first section of this paper were
considered: (i) support for ad-hoc querying, (ii) ability to deal
with heterogeneous sources, and (iii) latency. The following
subsections elaborate on how each approach addresses all
those criteria.

B. Ad-Hoc Querying

When it comes to ad-hoc querying the approach encour-
aging the use of a distributed SQL query engine is the one
providing the best support. The complexity of the queries a
front-end application can issue against these engines is only



limited by the expressiveness of SQL (and the subset of SQL
actually supported by them). Moreover, such expressiveness
might be further extended when working with a UDF-enabled
engine, as in the case of Apache Drill and Apache Impala.
However, this extensive expressive power for query building
comes at the price of latency performance, as evidenced later
on in this section.

On the other hand, a system implementing the stateful
stream processing approach is able to provide immediate
answer to arbitrarily complex queries depending on the infor-
mation available in the incrementally generated materialized
views. For the use case at hand, a streaming application was
built on Apache Spark able to perform sentiment polarity esti-
mation and term-frequency analysis on the Reddit submissions
entering the system. The outcome of such application became
available as views, enabling front-end applications to perform
low-latency querying against the results of those analysis.

C. Heterogeneous sources

After implementing the two explored approaches, it is safe
to say that this criterion has no significant impact on the
architectural level and largely depends on the technologies
used for data ingestion. Thereby, for instance, by using Apache
Drill for implementing the SQL query engine approach, the
system is enabled to support multiple data stores and several
serialization formats.

The same applies for the stream processing approach where
StreamSets was used as data ingestion tool, supporting a
wide spectrum of formats (Avro, delimited, JSON, Google’s
protocol buffers, Text, XML) coming from multiple sources
(event sources, message brokers, relational and non-relational
storage systems) .

In this sense, while of major importance as requirement
for real world big data applications, this criterion may not be
deemed as a deal-breaker among the presented approaches.

D. Latency

The evaluation of this criterion involved measuring the
response time of the implemented systems when dealing with
non-trivial queries. Figure 5 reports on the latency mea-
surements for the system implementing the distributed SQL
query engine approach. By leveraging the Apache Drill SQL
API, multiple queries of variable complexity were submitted,
involving operations of aggregation, sorting, and the execution
of the sentiment analysis UDF. Figure 5 shows the average
response time for four different queries, which were issued
against two versions of the data set: first over the full Reddit
submission corpus, and then against a 100 megabytes slice
comprising 100 000 user entries. When querying the entire
data set, the system takes about 1.5 hours time to resolve
queries consisting of standard SQL operators and functions,
and more than 2 hours to process queries involving sentiment
analysis. Not unexpectedly, latency values obtained for the
100MB slice were fairly low, but still not small enough to
ensure interactive querying.

Fig. 5. Latency of the SQL query engine implementation

While optimized for enabling ad-hoc querying on top of
large data sets, these SQL engines are still batch-oriented
computation systems, unable to provide partial results on the
incoming queries. In consequence, they are not suitable for
near real-time or interactive visualization applications.

In contrast, the system implementing the alternative stream
processing approach shows a response time lower by several
orders of magnitude in comparison to the results obtained
for the previous implementation. By using the Apache HTTP
server benchmarking tool [31] it was possible to measure the
time it takes for the system to process queries issued against
the information views generated by the stream computation
engine. It is worth noting that latency measurements are
subject to the technology used for storing such views. In this
case the system used MongoDB collections for storing pre-
computed query results about sentiment and term-frequency
analysis.

That being said, 2000 request were issued with a concur-
rency level set to 200, getting an average time per request of
33.561 milliseconds, while for visualizing the query results on
the implemented web dashboard it takes 44.456 milliseconds
on average. In consequence, systems implementing stateful
stream processing are able to provide an interactive expe-
rience (latency ≤ 0.15s), as long as the views resulting
from the stream computation contain the information required
for handling the queries issued by visualization and front-
end applications. Table I details the time it takes for the
implemented system to process individual records of the input
stream.

VII. CONCLUSION

For data-intensive applications like cyber-bullying detection
in social media streams, being able to query, process and
visualize data as it is generated is a sensitive requirement to
spot risky behavior, so that timely actions can be taken to avoid



TABLE I
AVERAGE PROCESSING AND RESPONSE TIMES

Per-record processing time (ms) Querying (ms) Visualization (ms)
StreamSets
ingestion

Sentiment
analysis

TF
analisys

0.224 3.84 18.07 33.561 44.456

or mitigate harmful consequences. Traditional frameworks for
data processing fall short in meeting this requirement because
they are designed to perform complex and time-consuming
computations over large distributed data sets.

This paper introduces an ongoing work on low latency
querying for visualization of big data sets leveraging existing
technologies and software architectural patterns for enabling
scalable storing and processing of continuous streams of
data. Two approaches have been explored for tackling the
stated problem: the first one, involves using a distributed
SQL engine for supporting ad-hoc querying on top of a big
data set; the second entails the usage of a stream processing
engine for performing computations on the data as it becomes
available, tackling the limitations of the previous approach by
enabling the pre-processing of arbitrarily complex queries on
the available data.

The evaluation conducted on a proof of concept implemen-
tation of the two mechanisms spots their benefits and flaws,
and evidences how the approach proposing the use of a stateful
stream processing engine is the most suitable alternative for
enabling low latency querying on large and continuously grow-
ing data sets. One attractive feature of a system implementing
this approach is the separation of concerns, in the sense that
it features a clear split between data processing operations
and query management, and also between data ingestion and
information retrieval. This of course comes at a price: the
data entering the system is not immediately accessible as is
the case in traditional databases. A strategy for bridging this
gap is to bump up parallelism when executing the stream
processing job, so that more data gets processed in less time.
Further research will involve the definition of a comprehensive
analytical model for the interactive querying and near real-time
data visualization problem.
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