106,250 research outputs found

    Accounting students' expectations and transition experiences of supervised work experience

    Get PDF
    Political and economic discourses position employability as a responsibility of higher education, which utilise mechanisms such as supervised work experience (SWE) to embed employability into the undergraduate curriculum. However, sparse investigation of students' contextualised experiences of SWE results in little being known about the mechanisms through which students derive employability benefits from SWE. The aim of this study is to examine the impact of students' expectation and conception of workplace learning on their transition into SWE. Analysis of accounting students' experiences reveal two broad conceptions of workplace learning, the differing impacts of which on transition experience are explored using existing learning transfer perspectives. Students displaying the more common 'technical' conception construct SWE as an opportunity to develop technical, knowledge-based expertise and abilities that prioritize product-based or cognitive learning transfer. Students with an 'experiential' conception were found to construct SWE primarily as an experience through which the development of personal skills and abilities beyond technical expertise are prioritized using process-based or socio-cultural learning transfer. Further data analysis suggests that these two learning transfer approaches have differing impacts on students' employability development which may indicate a need for universities to consider how to develop appropriate student expectations of and approaches to SWE and meaningful support for students' SWE transition

    Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado

    Get PDF
    Eight years (2002–2010) of Advanced Microwave Scanning Radiometer–EOS (AMSR-E) snow water equivalent (SWE) retrievals and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) observations are assimilated separately or jointly into the Noah land surface model over a domain in Northern Colorado. A multiscale ensemble Kalman filter (EnKF) is used, supplemented with a rule-based update. The satellite data are either left unscaled or are scaled for anomaly assimilation. The results are validated against in situ observations at 14 high-elevation Snowpack Telemetry (SNOTEL) sites with typically deep snow and at 4 lower-elevation Cooperative Observer Program (COOP) sites. Assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS SCF observations both result in realistic spatial SWE patterns. At COOP sites with shallow snowpacks, AMSR-E SWE and MODIS SCF data assimilation are beneficial separately, and joint SWE and SCF assimilation yields significantly improved root-mean-square error and correlation values for scaled and unscaled data assimilation. In areas of deep snow where the SNOTEL sites are located, however, AMSR-E retrievals are typically biased low and assimilation without prior scaling leads to degraded SWE estimates. Anomaly SWE assimilation could not improve the interannual SWE variations in the assimilation results because the AMSR-E retrievals lack realistic interannual variability in deep snowpacks. SCF assimilation has only a marginal impact at the SNOTEL locations because these sites experience extended periods of near-complete snow cover. Across all sites, SCF assimilation improves the timing of the onset of the snow season but without a net improvement of SWE amounts

    Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2

    Get PDF
    For four decades, satellite-based passive microwave sensors have provided valuable snow water equivalent (SWE) monitoring at a global scale. Before continuous long-term SWE records can be used for scientific or applied purposes, consistency of SWE measurements among different sensors is required. SWE retrievals from two passive sensors currently operating, the Special Sensor Microwave Imager Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer 2 (AMSR2), have not been fully evaluated in comparison to each other and previous instruments. Here, we evaluated consistency between the Special Sensor Microwave/Imager (SSM/I) onboard the F13 Defense Meteorological Satellite Program (DMSP) and SSMIS onboard the F17 DMSP, from November 2002 to April 2011 using the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) for continuity. Likewise, we evaluated consistency between AMSR-E and AMSR2 SWE retrievals from November 2007 to April 2016, using SSMIS for continuity. The analysis is conducted for 1176 watersheds in the North Central U.S. with consideration of difference among three snow classifications (Warm forest, Prairie, and Maritime). There are notable SWE differences between the SSM/I and SSMIS sensors in the Warm forest class, likely due to the different interpolation methods for brightness temperature (Tb) between the F13 SSM/I and F17 SSMIS sensors. The SWE differences between AMSR2 and AMSR-E are generally smaller than the differences between SSM/I and SSMIS SWE, based on time series comparisons and yearly mean bias. Finally, the spatial bias patterns between AMSR-E and AMSR2 versus SSMIS indicate sufficient spatial consistency to treat the AMSR-E and AMSR2 datasets as one continuous record. Our results provide useful information on systematic differences between recent satellite-based SWE retrievals and suggest subsequent studies to ensure reconciliation between different sensors in long-term SWE records

    Employability and higher education: contextualising female students' workplace experiences to enhance understanding of employability development

    Get PDF
    Current political and economic discourses position employability as a responsibility of higher education, which deploys mechanisms such as supervised work experience (SWE) to embed employability skills development into the undergraduate curriculum. However, workplaces are socially constructed complex arenas of embodied knowledge that are gendered. Understanding the usefulness of SWE therefore requires consideration of the contextualised experiences of it, within these complex environments. This study considers higher education's use of SWE as a mechanism of employability skills development through exploration of female students' experiences of accounting SWE, and its subsequent shaping of their views of employment. Findings suggest that women experience numerous, indirect gender-based inequalities within their accounting SWE about which higher education is silent, perpetuating the framing of employability as a set of individual skills and abilities. This may limit the potential of SWE to provide equality of employability development. The study concludes by briefly considering how insights provided by this research could better inform higher education's engagement with SWE within the employability discourse, and contribute to equality of employability development opportunity

    High resolution spatial variability in spring snowmelt for an Arctic shrub-tundra watershed

    Get PDF
    Arctic tundra environments are characterized by spatially heterogeneous end-of-winter snow cover because of high winds that erode, transport and deposit snow over the winter. This spatially variable end-of-winter snow cover subsequently influences the spatial and temporal variability of snowmelt and results in a patchy snowcover over the melt period. Documenting changes in both snow cover area (SCA) and snow water equivalent (SWE) during the spring melt is essential for understanding hydrological systems, but the lack of high-resolution SCA and SWE datasets that accurately capture micro-scale changes are not commonly available, and do not exist for the Canadian Arctic. This study applies high-resolution remote sensing measurements of SCA and SWE using a fixed-wing Unmanned Aerial System (UAS) to document snowcover changes over the snowmelt period for an Arctic tundra headwater catchment. Repeat measurements of SWE and SCA were obtained for four dominant land cover types (tundra, short shrub, tall shrub, and topographic drift) to provide observations of spatially distributed snowmelt patterns and basin-wide declines in SWE. High-resolution analysis of snowcover conditions over the melt reveal a strong relationship between land cover type, snow distribution, and snow ablation rates whereby shallow snowpacks found in tundra and short shrub regions feature rapid declines in SWE and SCA and became snow-free approximately 10 days earlier than deeper snowpacks. In contrast, tall shrub patches and topographic drift regions were characterized by large initial SWE values and featured a slow decline in SCA. Analysis of basin-wide declines in SCA and SWE reveal three distinct melt phases characterized by 1) low melt rates across a large area resulting in a minor change in SCA, but a very large decline in SWE with, 2) high melt rates resulting in drastic declines in both SCA and SWE, and 3) low melt rates over a small portion of the basin, resulting in little change to either SCA or SWE. The ability to capture high-resolution spatio-temporal changes to tundra snow cover furthers our understanding of the relative importance of various land cover types on the snowmelt timing and amount of runoff available to the hydrological system during the spring freshet

    Fast and accurate modelling of longitudinal and repeated measures neuroimaging data

    Get PDF
    Despite the growing importance of longitudinal data in neuroimaging, the standard analysis methods make restrictive or unrealistic assumptions (e.g., assumption of Compound Symmetry—the state of all equal variances and equal correlations—or spatially homogeneous longitudinal correlations). While some new methods have been proposed to more accurately account for such data, these methods are based on iterative algorithms that are slow and failure-prone. In this article, we propose the use of the Sandwich Estimator (SwE) method which first estimates the parameters of interest with a simple Ordinary Least Square model and second estimates variances/covariances with the “so-called” SwE which accounts for the within-subject correlation existing in longitudinal data. Here, we introduce the SwE method in its classic form, and we review and propose several adjustments to improve its behaviour, specifically in small samples. We use intensive Monte Carlo simulations to compare all considered adjustments and isolate the best combination for neuroimaging data. We also compare the SwE method to other popular methods and demonstrate its strengths and weaknesses. Finally, we analyse a highly unbalanced longitudinal dataset from the Alzheimer's Disease Neuroimaging Initiative and demonstrate the flexibility of the SwE method to fit within- and between-subject effects in a single model. Software implementing this SwE method has been made freely available at http://warwick.ac.uk/tenichols/SwE

    Snow water equivalent determination by microwave radiometry

    Get PDF
    One of the most important parameters for accurate snowmelt runoff prediction is snow water equivalent (SWE) which is contentionally monitored using observations made at widely scattered points in or around specific watersheds. Remote sensors which provide data with better spatial and temporal coverage can be used to improve the SWE estimates. Microwave radiation, which can penetrate through a snowpack, may be used to infer the SWE. Calculations made from a microscopic scattering model were used to simulate the effect of varying SWE on the microwave brightness temperature. Data obtained from truck mounted, airborne and spaceborne systems from various test sites were studied. The simulated SWE compares favorable with the measured SWE. In addition, whether the underlying soil is frozen or thawed can be discriminated successfully on the basis of the polarization of the microwave radiation
    corecore