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Abstract: For four decades, satellite-based passive microwave sensors have provided valuable snow
water equivalent (SWE) monitoring at a global scale. Before continuous long-term SWE records
can be used for scientific or applied purposes, consistency of SWE measurements among different
sensors is required. SWE retrievals from two passive sensors currently operating, the Special Sensor
Microwave Imager Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer 2 (AMSR2),
have not been fully evaluated in comparison to each other and previous instruments. Here, we
evaluated consistency between the Special Sensor Microwave/Imager (SSM/I) onboard the F13
Defense Meteorological Satellite Program (DMSP) and SSMIS onboard the F17 DMSP, from November
2002 to April 2011 using the Advanced Microwave Scanning Radiometer for Earth Observing System
(AMSR-E) for continuity. Likewise, we evaluated consistency between AMSR-E and AMSR2 SWE
retrievals from November 2007 to April 2016, using SSMIS for continuity. The analysis is conducted
for 1176 watersheds in the North Central U.S. with consideration of difference among three snow
classifications (Warm forest, Prairie, and Maritime). There are notable SWE differences between
the SSM/I and SSMIS sensors in the Warm forest class, likely due to the different interpolation
methods for brightness temperature (Tb) between the F13 SSM/I and F17 SSMIS sensors. The SWE
differences between AMSR2 and AMSR-E are generally smaller than the differences between SSM/I
and SSMIS SWE, based on time series comparisons and yearly mean bias. Finally, the spatial bias
patterns between AMSR-E and AMSR2 versus SSMIS indicate sufficient spatial consistency to treat
the AMSR-E and AMSR2 datasets as one continuous record. Our results provide useful information
on systematic differences between recent satellite-based SWE retrievals and suggest subsequent
studies to ensure reconciliation between different sensors in long-term SWE records.

Keywords: satellite remote sensing; microwave; AMSR2; AMSR-E; F13 SSM/I; F17 SSMIS; snow
water equivalent

1. Introduction

Snow is a fundamental water resource for humans and ecosystems. About 80% of the arid western
U.S. and central Asia depend heavily on snowmelt as a water supply [1–3]. The snow-covered areas
are reduced seasonally from 45.2 to 1.9 million km2 over the lands of the Northern Hemisphere [2].
Consequently, many regions, for example, the Great Plains in U.S. and high-altitude mountain areas
of western China, have experienced serious floods as a result of spring snowmelt [4–6]. Accurate
estimates of snow water equivalent (SWE) are required to improve the capability of flood forecasting
as a result of snowmelt, as well as water supply management [7,8].

Remote Sens. 2017, 9, 465; doi:10.3390/rs9050465 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9050465
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 465 2 of 16

Passive microwave sensors have proven to be valuable for monitoring snowpack distributions at
global and regional scales because of a wide swath, the ability to operate day or night even under cloud
conditions, and a response to the presence of snow at multiple frequencies [9]. Since November 1978,
satellite passive microwave data from the Scanning Multichannel Microwave Radiometer (SMMR)
aboard the National Aeronautics and Space Administration (NASA) Nimbus-7 satellite, and the
Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS)
aboard the Defense Meteorological Satellite Program (DMSP) series of satellites have been used for
the SWE retrievals. The SMMR and SSM/I sensors have proven to be reliable passive microwave
sensors and have been widely used for observing land surface conditions such as SWE [10–13],
soil moisture [14,15], snowmelt [16–19], sea ice concentration [20,21], and freeze/thaw state [22,23].
Along with these instruments, the Advanced Microwave Scanning Radiometer for Earth Observing
System (AMSR-E) on board the NASA Aqua satellite has successfully provided snow scientists and
hydrologists with estimates of SWE from June 2002 to October 2011 [24–26]. Unfortunately, AMSR-E
stopped operation in October 2011 due to a problem with its antenna. As a continuation of the
legacy of AMSR-E, the Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched in May
2012, onboard the Global Change Observation Mission 1-Water (GCOM-W1) satellite by the Japan
Aerospace Exploration Agency (JAXA). With similar basic characteristics as AMSR-E, AMSR2 has
provided geophysical datasets, including SWE and snow depth, retrieved by brightness temperature
(Tb) measurements [27,28].

Although historical satellite sensors have provided SWE retrievals for about 40 years, the utility
of continuous long-term SWE records depends on the consistency of measurements from different
satellites over many years. For the SMMR and SSM/I sensors, there are several earlier studies dealing
with similar topics. Armstrong & Brodzik [29] found 6 and 1 K differences between SMMR and SSM/I
in the snow depth algorithm in the TbH19GHz and TbH37GHz channels, respectively. They suggested a
modified snow depth equation to offset these differences. Derksen & Walker [10] identified a systematic
Tb bias between the two sensors. They found that the Tb difference was dependent on magnitude
of brightness temperature and overpass timing. Derksen et al. [30] demonstrated that the SMMR
sensor notably underestimated SWE compared to SSM/I SWE, due to the instrumental differences.
However, there are few studies for recent satellite sensors between continuous F13 SSM/I and F17
SSMIS and between AMSR-E and AMSR2 SWE retrievals, except for Tb calibration studies [31,32]
and other variables [33]. This is likely because there is very little temporal overlap for the AMSR-E
& AMSR2 and SSM/I & SSMIS (one year), making it nearly impossible to directly compare between
the pairs of sufficient SWE data. In order to overcome this obstacle, we propose a cross-evaluation of
consistency in the two time series, SSM/I-SSMIS and AMSR-E-AMSR2 SWE, using the relative SWE
biases between the two time series. The SSM/I and SSMIS SWE are evaluated relative to AMSR-E
SWE, AMSR-E and AMSR2 SWE are evaluated using the SSMIS SWE dataset.

This study focuses on the weekly maximum SSM/I (2002–2005), SSMIS (2007–2015), AMSR-E
(2002–2010) and AMSR2 (2012–2015) SWE estimates over 13 winter seasons in 1176 watersheds in the
North Central U.S. The paper is organized as follows. Section 2 describes the study region (North
Central regions of the U.S.) focusing on topographical and climatic characteristics. Section 3 introduces
the AMSR-E, AMSR2, SSM/I and SSMIS satellite SWE estimates including algorithms used in this
work and their pre-processing. Section 4 describes the methodology used to evaluate temporal and
spatial continuity in pairs of satellite-based SWE time series. Section 5 details the results and discussion
of the comparative analyses between F13 SSM/I and F17 SSMIS SWE and between AMSR-E & AMSR2
SWE. Section 6 offers a summary and concluding remarks.

2. Study Area

The North Central region of the U.S. would benefit from a long-term record of satellite-based SWE
estimates, because this area is vulnerable to frequent snowmelt floods [4,5,34,35] but has few snow
observations [36]. Past studies have indicated positive trends in precipitation, runoff, and flood peaks



Remote Sens. 2017, 9, 465 3 of 16

in the region, especially in the Red River of the North, potentially due to climate change [37,38]. The
study area covers approximately 339,000 square miles including the U.S. portion of the Red River of
the North, the Rainy River in Minnesota, and the Mississippi River from the upper region in Minnesota
to Illinois, excluding the Missouri River basin (see Figure 1). Most of this region has a continental
climate, which is characterized by temperature extremes. The prevailing weather systems come from
the Gulf of Mexico in the summer and the dry Canadian air causes extremely cold temperatures in
the winter. The warmest mean temperatures are in southern Iowa and Missouri with the coldest in
northern Minnesota and North Dakota. Annual precipitation ranges from 356 mm in North Dakota
to 1220 mm in Missouri. The precipitation occurs mainly during the summer season. Snowfall is the
greatest in the Upper Peninsula of Michigan (up to 516 cm) and decreases away from the Great Lakes
(e.g., North Dakota: 131 cm, Missouri: 56 cm). Average annual temperatures range from 4.7 to 12.5 ◦C
and average temperatures during winter range from −11.0 ◦C in North Dakota to 0.2 ◦C in Missouri.
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Figure 1. Overview map of the study region in the North Central U.S. with 1176 watersheds outlined
and overlain snow cover classification.

Most of the U.S. North Central region’s topography was formed by glacial processes. The
eastern part of North Dakota and northwestern part of Minnesota are very flat, formed from glacial
lake sediments, with mostly agricultural areas. The northern portion of Minnesota has forests and
numerous lakes. The southern part is largely agricultural land with grass prairie and broadleaf forest.
In Iowa, the topography is mainly rolling prairie with small changes in elevation, but the northeastern
part of the state has rugged terrain. Illinois has little relief except for several mountains in the southern
part. The topography of Wisconsin has forested areas with higher elevation and many glacial lakes in
the northern part. The upper peninsula of Michigan is swampy in the east and relatively rugged in the
upper west side, and the lower peninsula has gentle hills in the west.

In order to consider major spatial characteristics related to SWE estimates, the study region’s
1176 National Oceanic and Atmospheric Administration North Central River Forecast Center
(NOAA NCRFC) watersheds were divided into three major snow classes, Warm forest, Prairie, and
Maritime using a seasonal snow classification system [39]. The Warm forest class covers northeastern
Minnesota, Wisconsin, and Michigan and the Prairie class ranges over North and South Dakota,
Iowa, southern Wisconsin, northern Illinois, and some parts of Missouri and Indiana. The southern
parts of Missouri and Illinois and northern Indiana are classified as Maritime (Figure 1). The global
snow classification system for seasonal snow cover has eight classes: Tundra, Taiga, Warm forest,



Remote Sens. 2017, 9, 465 4 of 16

Prairie, Maritime, Ephemeral, Ice, and Water, expressed on the 1-km by 1-km spatial grid [39,40]. Each
snow class was defined by an ensemble of snow stratigraphic characteristics including snow density,
grain size, and morphologic crystal which is estimated from three climate variables: winter wind,
precipitation, and air temperature [41]. Each of the watersheds over the study area was assigned a
dominant snow class using the majority filter in ArcGIS. The warm forest, Prairies, and Maritime
classes occupy 305, 767, and 67 watersheds, respectively.

3. Data and Preprocessing

3.1. SSM/I and SSMIS SWE

The series of SSM/I and SSMIS instruments onboard the Defense Meteorological Satellite Program
(DMSP) platform series has provided continuous Tb measurements since July 1987. Among the SSM/I
and SSMIS series, the F13 SSM/I and F17 SSMIS sensors provided Tb measurements from May 1995 to
December 2007 (Data Version 1) and from December 2006 to present (Data Version 2), respectively [42].
Overpasses occurred at 7:00 a.m./p.m. for respective descending and ascending orbital nodes. In order
to match the temporal ranges of the AMSR-E and AMSR2 (November 2002 to April 2016), we used
continuous EASE-Grid Tb measurements, from the F13 SSM/I (November 2002 to December 2006)
and F17 SSMIS (January 2007 to April 2016) sensors [43].

We then calculated daily SSM/I & SSMIS SWE estimates from Tb measured at the 19 and 37 GHz
frequencies, using the Chang algorithm [44] as follows:

SWE = c(TbH19GHz − TbH37GHz) (1)

where SWE is the snow water equivalent in mm; c is given as 4.8 mm/K [13,45]; Tb is the brightness
temperature at different frequencies (19 and 37 GHz horizontal polarization). Only Tb measurements
from the 6:00 a.m. descending overpass were used in order to reduce potential error by wet snow in
the daytime [46].

3.2. AMSR2 and AMSR-E SWE

AMSR2 is a relatively new passive microwave sensor that is the follow-on instrument to its
predecessor, AMSR-E [47]. The main improvements of AMSR2 compared with AMSR-E are a larger
antenna (2.0 m diameter c.f. 1.6 m of AMSR-E) for enhanced spatial resolution, additional channels at
C-band (7.3 GHz) for mitigating radio frequency interference (RFI), an improved calibration system,
and an additional momentum wheel [32,47]. As a part of the afternoon-train (A-train) constellation of
polar orbiting, Earth observing satellites, AMSR2 provides daily scans at approximately 1:30 a.m./p.m.
local time at 1–2 days revisit time, beginning in May 2012. The most recent Level 3 AMSR2 SWE
(Version 2.1) products, expressed on the same regular 1/4◦ × 1/4◦ spatial grid, were acquired from
the JAXA GCOM-W1 Data providing service (http://gcom-w1.jaxa.jp). The AMSR-E sensor onboard
the Aqua satellite provided SWE retrievals at 1:30 a.m./p.m. local time from June 2002 to October
2011. Level 3 AMSR-E SWE data, expressed on the Equal-Area Scalable Earth Grid (EASE-Grid), were
obtained from the National Snow and Ice Data Center [48].

Both the AMSR-E and AMSR2 SWE products were calculated based on the difference in brightness
temperatures measured at 19.7 and 36.5 GHz along with some higher and lower frequencies. The SWE
estimates were processed using the Kelly snow depth (SD) algorithm [25].

SD = f f (SD f ) + (1 − f f ) · (SD0) (2)

SD f = 1/ log10(pol36GHz) ·
(TbV18.7GHz − TbV36.5GHz)

(1 − f d · 0.6)
(3)

SD f = 1/ log10(pol36GHz) ·
(TbV18.7GHz − TbV36.5GHz)

(1 − f d · 0.6)
(4)

http://gcom-w1.jaxa.jp
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where SD is snow depth (cm), SDf and SD0 is the snow depth for forested and nonforested area,
respectively, ff is forest fraction, and fd is forest density. The pol36.5GHz and pol18.7GHz are dynamic
coefficients computed as the polarization differences at 36.5 and 18.7 GHz, respectively. The SD is
converted to SWE by multiplying by the snow density for different snow classes based on the seasonal
snow classification system in Sturm et al. [41].

The most recent AMSR2 SWE algorithm was updated to use forest transmissivity to improve
the forest correction effect and false snow depth detections were flagged over the Tibetan Plateau
region [28,49]. In order to minimize the wet snow impacts, this study used only descending SWE data,
which were measured in the colder night time (01:30 a.m.) [46].

4. Methods

All available gridded daily SWE data from the two combinations of microwave sensors (AMSR-E
& AMSR2 and SSM/I & SSMIS) were obtained for twelve winters from November 2002 to April 2016.
For each of the two combination data sets, the gridded daily SWE were spatially averaged within
each NCRFC watershed (1176 total in the study area). The data from AMSR-E and AMSR2 pixels near
water bodies were flagged and removed, as were the negative SSM/I and SSMIS SWE values. Daily
values were only calculated for watersheds with no missing data. For this work, a snow year runs
from November to April labeled using the winter year. For example, the 2002 snow year means the
period from November 2002 to April 2003.

Weekly SWE time series were produced for each watershed using the weekly maximum daily
average SWE values to resolve the limitations of the satellite revisit times, which result in some days
with no observations as well as low SWE values due to wet snow [13]. The weekly maximum SWE
data were only calculated until the annual maximum SWE value within each winter year, to minimize
uncertainties caused by late winter snow melting/refreezing cycles.

We consider two approaches to evaluate the satellite SWE estimates. First, we quantify the
differences between AMSR-E and AMSR2 as well as SSM/I and SSMIS SWE data using conventional
metrics, namely the coefficient of determination (R2) and mean bias error (hereafter Bias):

R2 = 1 − ∑ (SWEAMSR−E or 2 − SWESSM/I or IS)
2

∑ (SWESSM/I or IS − SWESSM/I or IS)
2 (5)

Biasoriginal = ∑ (SWEAMSR−E or 2 − SWESSM/I or IS)/N (6)

where SWEAMSR−E or 2 is either the AMSR-E or AMSR2 SWE data, and SWESSM/I or IS is either the
SSM/I or SSMIS SWE data as the reference. SWESSM/I or IS is the mean SWE value for each watershed
and N is the number of watersheds in each snow class.

Second, we compare yearly spatial bias maps between AMSR-E and AMSR2 with SSMIS SWE.
Normalized bias is calculated using a normalization equation:

Biasnormalized =
Biasoriginal − mean(Bias)

std(Bias)
(7)

where Biasnormalized is the normalized bias and Biasoriginal is the original bias between AMSR-E (AMSR2)
and SSMIS SWE at each watershed. mean(Bias) is the total average of yearly mean bias and std(Bias)
is the total average of yearly standard deviation of bias for the AMSR-E (2007–2010) or AMSR2
(2012–2015) period.
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5. Results and Discussions

5.1. Comparison between SSM/I and SSMIS SWE

Temporal patterns between F13 SSM/I (2002 to 2005, four winters) and F17 SSMIS (2007 to 2010,
four winters) were compared, using AMSR-E SWE as a baseline. The SSM/I and SSMIS SWE data in
2006 are not considered because the data are composed of F13 SSM/I SWE (November to December)
and F17 SSMIS SWE (January to April). Figure 2 displays the three snow class averaged SWE time
series according to snow classification.
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Temporal SWE variations are different among the three snow classes. Generally, the SWE
time series in the Warm forest and Prairie classes show relatively clear temporal patterns with
gradual increases throughout the winter and rapid decreases after maximum SWE values, while
SWE time series in the Maritime have irregular temporal patterns. This variability could be related to
characteristics of the Maritime snow class. This class was defined as warm deep snow with high air
temperature and high precipitation and had the largest range in snow depth and density [39,41]. These
characteristics could be due to snow melting/refreezing, resulting in difficulty in estimating SWE
using Tb from passive microwave sensors. Another possible reason is that the snow class-averaged
time series might not be representative of the temporal patterns of each Maritime watershed because
there are relatively few watersheds in the Maritime class within the study area (5.7% of watersheds)
and they are divided into two parts (southern Illinois and northern Indiana) in Figure 1.

For both the Warm forest and Prairie classes, increasing patterns of the SSM/I SWE throughout
each winter generally correspond with AMSR-E SWE from 2002 to 2005. However, there are clear
bias differences between the two classes in the SSMIS period (2007 to 2010). While the SSMIS SWE is
lower than the AMSR-E in Warm forest, the SSMIS sensor overestimates SWE compared to AMSR-E in
the Prairie in the middle of each winter season. The patterns are also evident in yearly bias between
AMSR-E and SSMIS SWE in Figure 3.
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snow classification.

Figure 3 shows the yearly averaged biases and R2 values of SSM/I and SSMIS with AMSR-E SWE
for the three snow classes. The comparison is divided between two periods (2002 to 2005 (SSM/I vs.
AMSR-E) and 2007 to 2010 (SSMIS vs. AMSR-E)). The figure highlights that there are notable SWE
bias differences between SSM/I and SSMIS sensors in the two periods. During the 2002–2005 winter
seasons, all snow classes have negative biases, ranging from −1.25 to −7.57 mm. The patterns indicate
that the SSM/I sensor usually overestimates SWE compared to AMSR-E. The average biases are −3.22,
−6.41, and −2.73 mm for the Warm forest, Prairie, and Maritime classes, respectively. During the
2007–2010 winter seasons, the biases have a clearly different behavior based on snow class. The yearly
biases of SSMIS in the Prairie class have similar negative patterns to SSM/I and the average biases in
the Maritime class are close to 0 (0.68 mm). However, the Warm forest class has large SSMIS-AMSR-E
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biases, ranging from 5.21 to 11.47 mm for the four winter seasons, which is notably different than the
SSM/I-AMSR-E SWE bias in the Warm forest class.

Figure 4 shows boxplots between SSM/I and SSMIS SWE for a range of AMSR-E SWE intervals.
The SSM/I sensor overestimates SWE values compared to SSMIS SWE in the Warm forest class over
all AMSR-E SWE intervals. However, the Prairie class shows different patterns according to the
magnitude of AMSR-E SWE. SSMIS SWE values are generally higher than SSM/I SWE for the high
AMSR-E SWE intervals (>60 cm), while the SSM/I SWE values are higher than SSMIS SWE for the
low intervals (0–20, 20–40, and 40–60 cm). The Maritime class has a similar pattern as the Prairie class,
where SSM/I overestimates SWE values compared to SSMIS for low AMSR-E SWE ranges. However,
the SSMIS SWE is slightly higher than SSM/I SWE for the highest interval (60–80 cm). The SSM/I and
SSMIS SWE differences between low and high SWE may be attributable to SWE retrieval uncertainty
related to deep snow. SWE retrieval errors generally increase during the snow accumulation period
with developing deep snow packs [11].
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The differences between SSM/I and SSMIS SWE for snow classes, especially in the Warm forest
class, are probably due to the difference in the interpolation methods for Tb between the F13 SSM/I
and F17 SSMIS sensors [43,50]. Armstrong et al. [43] reported that the Backus-Gilbert interpolation
method that had been used for the SSM/I sensors was not applied to the SSMIS EASE-Grid Tb,
which were gridded using an inverse distance squared method. They mentioned that some larger
differences, up to 10 K, were found in regions of steep Tb gradients due to the changes in geolocation.
Considering the Chang SWE algorithm’s equation, the difference in interpolation methods might
influence the SWE difference between SSM/I and SSMIS. They also noted that the F17 SSMIS’s source
data version (Remote Sensing Systems Version 7, RSS V7) was different with that of F13 SSM/I (RRS V4).
Brodzik [50] recommended that, unlike SSM/I Tb (V4), different coefficients should be used to retrieve
SWE using the F17 SSMIS Tb (V7) inputs. The SSMIS Tb was already cross-calibrated with SSM/I
as well as AMSR-E, providing inter-consistency of Tb from the sensors [43]. Considering our results,
even though the satellite microwave Tb data were calibrated using previous and concurrent sensors,
different Tb interpolation methods between a satellite sensor and its predecessor could lead to errors
in Tb-derived hydrological variables, including SWE. These interpolation effects may vary according
to regional characteristics. Overall, the results suggest that SSM/I and SSMIS data users should
be cautious using long-term SSM/I and SSMIS SWE data to draw conclusions based on temporal
characteristics, especially in forested regions.
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5.2. Comparison of AMSR-E and AMSR2 SWE with SSMIS SWE

Consistency between AMSR-E (2007 to 2010) and AMSR2 (2012 to 2015) SWE was evaluated for
the three snow classes (Warm forest, Prairie, and Maritime), using SSMIS SWE as a baseline. Figure 2
shows that both AMSR-E and AMSR2 SWE have similar temporal variations with SSMIS SWE in most
years. However, there are differences in the AMSR-E and AMSR2 SWE biases between the Warm
forest and Prairie classes. Both AMSR-E and AMSR2 generally overestimate SWE values compared to
SSMIS for the Warm forest, while they are slightly lower than SSMIS in the Prairie. These results are
confirmed by yearly biases in Figure 3. The AMSR-E and AMSR2 SWE data have positive biases in
the Warm forest class over the entire eight-year period, but have negative biases in the Prairie class in
most years.

Based on yearly metrics (R2 and bias), consistency between AMSR-E and AMSR2 SWE estimates
are assessed using SSMIS SWE as a bridge dataset (Figure 3). When compared to SSMIS, AMSR-E has
higher average R2 values (0.92, 0.88, and 0.84) than AMSR2 SWE (0.83, 0.82, and 0.82) for the Warm
forest, Prairie, and Maritime classes, respectively (Table 1). The AMSR2 sensor overestimates SWE
values slightly more than AMSR-E in the Warm forest. The mean biases of AMSR2 (average: 11.16 mm)
are higher than that of AMSR-E (average: 7.42 mm), as shown in Table 1. For the Prairie and Maritime
classes, both sensors have relatively lower biases, within ± 5 mm (Figure 3). The yearly mean bias
differences between AMSR2 and AMSR-E are 3.74 1.54, and 1.60 mm for Warm forest, Prairie, and
Maritime, respectively. The results indicate that SWE differences between AMSR2 and AMSR-E are
generally less than the differences between SSM/I and SSMIS. Armstrong and Brodzik [29] found a
5 K difference in the (TbH19GHz − TbH37GHz) term between SMMR and SSM/I sensors over Northern
Hemisphere. When applying to the Chang algorithm in Equation (1), the 5 K difference converts to
approximately 24 mm of SWE, which is higher than mean-bias of AMSR-E and AMSR2 SWE.

Table 1. Mean biases and coefficient of determination (R2) of AMSR-E/2 SWE relative to SSM/I &
SSMIS SWE by year for different snow classes.

Bias (mm) R2

Snow Class Warm Forest Prairie Maritime Warm Forest Prairie Maritime

AMSR-E & SSM/I

2003 −2.23 −6.06 −4.12 0.81 0.85 0.91
2004 −2.61 −7.35 −1.22 0.74 0.77 0.77
2005 −0.37 −4.51 −2.11 0.82 0.80 0.83
2006 −3.85 −5.88 −2.17 0.79 0.87 0.86
Aver. −2.26 −5.95 −2.41 0.79 0.82 0.84

AMSR-E & SSMIS

2008 11.24 −1.94 0.31 0.92 0.89 0.83
2009 7.48 −1.60 0.31 0.90 0.89 0.92
2010 4.82 −3.99 0.36 0.95 0.90 0.90
2011 6.14 −3.51 0.47 0.90 0.86 0.69
Aver. 7.42 −2.76 0.36 0.92 0.88 0.84

AMSR2 & SSMIS

2013 14.94 −1.94 4.73 0.79 0.76 0.82
2014 16.78 0.00 1.55 0.85 0.85 0.84
2015 9.93 1.50 2.15 0.77 0.81 0.81
2016 3.02 −4.46 −0.59 0.92 0.87 0.81
Aver. 11.16 −1.22 1.96 0.83 0.82 0.82

A final comparison was conducted in order to discern differences between AMSR-E and AMSR2
SWE based on the SSMIS SWE magnitude, and according to snow classification (Figure 5). The Warm
Forest class generally has similar median values for AMSR-E and AMSR2 SWE except for the highest
SSMIS SWE intervals (120–160 mm). For the Prairie class, there is little difference between AMSR-E and
AMSR2 SWE for low and moderate SSMIS SWE ranges. However, the AMSR2 sensor overestimates
SWE values compared to AMSR-E for the highest SWE ranges (140–200 mm). In the Maritime class,
AMSR2 has higher SWE than AMSR-E SWE over the entire SSMIS SWE range, even though the
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sample size for the Maritime class is much smaller than those of the Warm Forest and Prairie classes.
Compared to Figure 4, the AMSR-E and AMSR2 sensors have more consistent SWE retrievals than
SSM/I versus SSMIS, even though they have some differences at high SWE ranges. In conclusion,
AMSR-E and AMSR2 SWE are relatively more consistent than SSM/I and SSMIS SWE based on the
boxplots as well as time series and yearly statistics.
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5.3. Spatial Bias Comparison between AMSR-E and AMSR2 with SSMIS SWE

Figure 6 depicts the spatial bias maps for AMSR-E and AMSR2 relative to SSMIS SWE over the
1176 watersheds in the study region. Positive biases (red color) indicate that AMSR-E/2 reports higher
SWE values relative to SSMIS and negative biases (blue color) indicate that SSMIS has higher SWE
values relative to AMSR-E/2. For the AMSR-E bias maps, there are negative biases in the northwest
area and positive biases in the northeast area, while there are smaller biases over the middle and south
part of the study regions. The bias patterns are consistent for all four years from 2007 to 2010 (Figure 6a).
The AMSR2 maps also show generally similar spatial patterns with AMSR-E. The similarity of spatial
patterns between AMSR-E and AMSR2 is confirmed by the metrics (see also Table 1). However, there
are visible differences between the AMSR-E and AMSR2 bias maps in some parts of the study area
(Figure 6). Especially in the northwest areas, the magnitude of AMSR2 SWE estimates is much larger
than SSMIS, whereas this bias is much smaller between AMSR-E and SSMIS. This difference may
be related to different climate conditions between the two analysis periods that resulted in large
snow magnitudes from 2011 to 2015. Snow magnitude is well known as one of the error sources of
satellite-based SWE [51–53]. To remove underlying climate effects, we obtained the normalized SWE
bias maps for AMSR2 and AMSR-E using Equation (7). The spatial patterns of normalized SWE bias
anomaly are very similar for AMSR2 and AMSR-E over the entire study area (Figure 7).
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The AMSR2 maps show very similar spatial patterns across years, with higher positive biases in
Warm forest area in Figure 6b. The spatial patterns may be closely related to regional characteristics
(such as elevation, forest effects and latitude). The negative biases in the northwest area may partly
correlate with the high elevation and high latitude. The results may be supported by the findings from
Lee et al. [53], which showed that AMSR-E and AMSR2 snow depth biases increased by about 10 cm
when elevation was changed from about 250 to 750 m. On the contrary, the lower biases in the middle
and southern part could reflect the flat and nonforested surface features that are relatively ideal for
microwave SWE retrievals [30,54].

The larger positive biases are clearly evident in the northeast areas, where the Warm forest
class is dominant (Figure 1). These results are likely due to the difference between the retrieval
algorithms’ approach to capturing forest effects. Unlike the AMSR-E and AMSR2 algorithms, the
Chang algorithm used for SSM/I and SSMIS does not account for forest fraction. As pointed out in
earlier studies, the effects of canopy emission and scattering in forest areas could cause underestimation
of microwave SWE [11,13,45,55]. The use of forest fraction to characterize the land surface in retrieval
algorithms leads to significant quantitative differences in SWE estimates. Foster et al. [11] showed
that underestimated SSM/I SWE estimates from the Chang algorithm were partly improved when the
algorithm was modified to use forest fraction.

AMSR2 biases are spatially similar to AMSR-E biases, based on the normalized SWE maps.
Although there are modest year-to-year differences in the bias patterns, the sensors show sufficient
spatial consistency in sign and magnitude to treat the AMSR2 record as a continuation of AMSR-E.
Regardless, approaches to remove systematic biases between instruments should be considered when
application studies are sensitive to the magnitude of SWE bias (e.g., flood forecasting, climate trend
analysis).

6. Conclusions

In this study, we evaluated consistencies in SWE estimated from different generations of similar
passive microwave satellite sensors, using other satellite SWE data for temporal continuity. F13
SSM/I-F17 SSMIS was evaluated using AMSR-E and AMSR-E-AMSR2 SWE was examined using
SSMIS for 1176 watersheds over the North Central U.S., according to three snow classifications
(Warm forest, Prairie, and Maritime). There are notable bias differences between SSM/I and
SSMIS-estimated SWE in the Warm forest class based on time series comparisons and yearly mean
bias. It is likely that two SWE estimates are influenced by the difference interpolation methods for Tb
between the F13 SSM/I and F17 SSMIS sensors. AMSR2 and AMSR-E satellite-based SWE retrievals
have temporally reasonable agreement when compared to SSMIS SWE estimates. The SWE differences
between AMSR2-E and AMSR2 are generally less than the differences between SSM/I and SSMIS SWE
based on yearly metrics. The spatial bias patterns, normalized to SWE magnitude and variability, show
good agreement between AMSR2 and AMSR-E SWE. The slight differences in SWE magnitudes may
be partially due to sampling error from different climate conditions between two periods or systematic
errors between the different instruments that could be related to ongoing calibration of AMSR2 Tb,
although the basic characteristics of two sensors are quite similar [32].

Overall, careful consideration is required when using long-term SSM/I and SSMIS SWE data
records by combining historical microwave sensors onboard the DMSP platform series, especially in
SWE application studies such as snowmelt flood forecasting. Similarities in spatial patterns as well as
metrics (bias and R2) for AMSR2 and AMSR-E SWE suggest that the AMSR2 and AMSR-E combination
provides a valuable source for a continuous microwave SWE estimates. Future research on this topic
will enhance continuity of historical satellite-based SWE estimates and allow for continuous SWE
estimates to be used for snowmelt flood-forecasting applications in areas such as the Red River of the
North basin, where severe flood events have historically occurred.



Remote Sens. 2017, 9, 465 14 of 16

Acknowledgments: This work was supported by a NASA Applied Water Resources Science Division grant
(NNX15AC47G). Eunsang Cho was funded by the University of New Hampshire, College of Engineering Physical
Science Graduate Fellowship in 2015–2016. We are grateful to all who contributed to the data sets used in this
study. The authors also wish to thank the three anonymous reviewers for their useful comments.

Author Contributions: Eunsang Cho and Jennifer M. Jacobs conceived and designed the research. Eunsang Cho
and Samuel E. Tuttle analyzed the data and Jennifer M. Jacobs gave comments and interpretations of the results.
Eunsang Cho wrote the original manuscript, and Samuel E. Tuttle and Jennifer M. Jacobs edited this manuscript.
All authors read and approved the submitted draft of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Doesken, N.J.; Judson, A. The Snow Booklet: A Guide to the Science, Climatology, and Measurement of Snow in the
United States; Colorado State University Publications & Printing: Fort Collins, CO, USA, 1997.

2. Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2014.

3. Mankin, J.S.; Viviroli, D.; Singh, D.; Hoekstra, A.Y.; Diffenbaugh, N.S. The potential for snow to supply
human water demand in the present and future. Environ. Res. Lett. 2015, 10, 114016. [CrossRef]

4. Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant flood generating mechanisms across the
United States. Geophys. Res. Lett. 2016, 43, 4382–4390. [CrossRef]

5. Miller, J.E.; Frink, D.L. Changes in Flood Response of the Red River of the North Basin, North Dakota-Minnesota;
United States Government Printing Office: Washington, DC, USA, 1984.

6. Zhao, Q.; Liu, Z.; Ye, B.; Qin, Y.; Wei, Z.; Fang, S. A snowmelt runoff forecasting model coupling WRF and
DHSVM. Hydrol. Earth Syst. Sci. 2009, 13, 1897–1906. [CrossRef]

7. Vuyovich, C.; Jacobs, J.M. Snowpack and runoff generation using AMSR-E passive microwave observations
in the Upper Helmand Watershed, Afghanistan. Remote Sens. Environ. 2011, 115, 3313–3321. [CrossRef]

8. Marks, D.; Kimball, J.; Tingey, D.; Link, T. The sensitivity of snowmelt processes to climate conditions and
forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood. Hydrol. Process. 1998, 12,
1569–1587. [CrossRef]

9. Armstrong, R.; Brodzik, M. An earth-gridded SSM/I data set for cryospheric studies and global change
monitoring. Adv. Space Res. 1995, 16, 155–163. [CrossRef]

10. Derksen, C.; Walker, A.E. Identification of systematic bias in the cross-platform (SMMR and SSM/I)
EASE-grid brightness temperature time series. IEEE Trans. Geosci. Remote Sens. 2003, 41, 910–915. [CrossRef]

11. Foster, J.L.; Sun, C.; Walker, J.P.; Kelly, R.; Chang, A.; Dong, J.; Powell, H. Quantifying the uncertainty in
passive microwave snow water equivalent observations. Remote Sens. Environ. 2005, 94, 187–203. [CrossRef]

12. Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.-P.; Koskinen, J.; Bojkov, B.
Estimating northern hemisphere snow water equivalent for climate research through assimilation of
space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 2011, 115, 3517–3529.
[CrossRef]

13. Vuyovich, C.M.; Jacobs, J.M.; Daly, S.F. Comparison of passive microwave and modeled estimates of total
watershed SWE in the continental United States. Water Resour. Res. 2014, 50, 9088–9102. [CrossRef]

14. Jackson, T.J. Soil moisture estimation using special satellite microwave/imager satellite data over a grassland
region. Water Resour. Res. 1997, 33, 1475–1484. [CrossRef]

15. Paloscia, S.; Macelloni, G.; Santi, E.; Koike, T. A multifrequency algorithm for the retrieval of soil moisture
on a large scale using microwave data from SMMR and SSM/I satellites. IEEE Trans. Geosci. Remote Sens.
2001, 39, 1655–1661. [CrossRef]

16. Ramage, J.M.; Isacks, B.L. Interannual variations of snowmelt and refreeze timing on southeast-Alaskan
icefields, USA. J. Glaciol. 2003, 49, 102–116. [CrossRef]

17. Ramage, J.; McKenney, R.; Thorson, B.; Maltais, P.; Kopczynski, S. Relationship between passive
microwave-derived snowmelt and surface-measured discharge, Wheaton River, Yukon Territory, Canada.
Hydrol. Process. 2006, 20, 689–704. [CrossRef]

http://dx.doi.org/10.1088/1748-9326/10/11/114016
http://dx.doi.org/10.1002/2016GL068070
http://dx.doi.org/10.5194/hess-13-1897-2009
http://dx.doi.org/10.1016/j.rse.2011.07.014
http://dx.doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11&lt;1569::AID-HYP682&gt;3.0.CO;2-L
http://dx.doi.org/10.1016/0273-1177(95)00397-W
http://dx.doi.org/10.1109/TGRS.2003.812003
http://dx.doi.org/10.1016/j.rse.2004.09.012
http://dx.doi.org/10.1016/j.rse.2011.08.014
http://dx.doi.org/10.1002/2013WR014734
http://dx.doi.org/10.1029/97WR00661
http://dx.doi.org/10.1109/36.942543
http://dx.doi.org/10.3189/172756503781830908
http://dx.doi.org/10.1002/hyp.6133


Remote Sens. 2017, 9, 465 15 of 16

18. Tedesco, M.; Brodzik, M.; Armstrong, R.; Savoie, M.; Ramage, J. Pan arctic terrestrial snowmelt
trends (1979–2008) from spaceborne passive microwave data and correlation with the Arctic Oscillation.
Geophys. Res. Lett. 2009, 36, L21402. [CrossRef]

19. Takala, M.; Pulliainen, J.; Metsamaki, S.J.; Koskinen, J.T. Detection of snowmelt using spaceborne microwave
radiometer data in Eurasia from 1979 to 2007. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2996–3007. [CrossRef]

20. Comiso, J.C.; Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P. Passive microwave algorithms for sea ice
concentration: A comparison of two techniques. Remote Sens. Environ. 1997, 60, 357–384. [CrossRef]

21. Liu, A.; Cavalieri, D. On sea ice drift from the wavelet analysis of the Defense Meteorological Satellite
Program (DMSP) Special Sensor Microwave Imager (SSM/I) data. Int. J. Remote Sens. 1998, 19, 1415–1423.
[CrossRef]

22. Jin, R.; Li, X.; Che, T. A decision tree algorithm for surface soil freeze/thaw classification over China using
SSM/I brightness temperature. Remote Sens. Environ. 2009, 113, 2651–2660. [CrossRef]

23. Kim, Y.; Kimball, J.S.; McDonald, K.C.; Glassy, J. Developing a global data record of daily landscape
freeze/thaw status using satellite passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 2011,
49, 949–960. [CrossRef]

24. Kelly, R.E.; Chang, A.T.; Tsang, L.; Foster, J.L. A prototype AMSR-E global snow area and snow depth
algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [CrossRef]

25. Kelly, R. The AMSR-E snow depth algorithm: Description and initial results. J. Remote Sens. Soc. Jpn. 2009,
29, 307–317.

26. Tedesco, M.; Narvekar, P.S. Assessment of the NASA AMSR-E SWE Product. IEEE J. Sel. Top. Appl. Earth
Observ. Remote Sens. 2010, 3, 141–159. [CrossRef]

27. Kelly, R.E. Status of AMSR2 Level-2 Products (Algorithm Ver. 1.00)—Snow Depth; JAXA Earth Observation
Research Center: Saitama, Japan, 2013.

28. Kelly, R.E. Status of AMSR2 Level-2 Products (Algorithm Ver. 2.00)—8. Snow Depth; JAXA Earth Observation
Research Center: Saitama, Japan, 2015.

29. Armstrong, R.L.; Brodzik, M.J. Recent northern hemisphere snow extent: A comparison of data derived from
visible and microwave satellite sensors. Geophys. Res. Lett. 2001, 28, 3673–3676. [CrossRef]

30. Derksen, C.; Walker, A.; LeDrew, E.; Goodison, B. Combining SMMR and SSM/I data for time series analysis
of central North American snow water equivalent. J. Hydrometeorol. 2003, 4, 304–316. [CrossRef]

31. Cavalieri, D.J.; Parkinson, C.L.; DiGirolamo, N.; Ivanoff, A. Intersensor Calibration Between F13 SSMI and
F17 SSMIS for Global Sea Ice Data Records. IEEE Geosci. Remote Sens. Lett. 2012, 9, 233–236. [CrossRef]

32. Okuyama, A.; Imaoka, K. Intercalibration of Advanced Microwave Scanning Radiometer-2 (AMSR2)
Brightness Temperature. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4568–4577. [CrossRef]

33. Meier, W.N.; Khalsa, S.J.S.; Savoie, M.H. Intersensor calibration between F-13 SSM/I and F-17 SSMIS
near-real-time sea ice estimates. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3343–3349. [CrossRef]

34. Stadnyk, T.; Dow, K.; Wazney, L.; Blais, E.-L. The 2011 flood event in the Red River Basin: Causes, assessment
and damages. Can. Water Resour. J. 2016, 41, 65–73. [CrossRef]

35. Wazney, L.; Clark, S.P. The 2009 flood event in the Red River Basin: Causes, assessment and damages.
Can. Water Resour. J. 2016, 41, 56–64. [CrossRef]

36. Tuttle, S.E.; Cho, E.; Restrepo, P.J.; Jia, X.; Vuyovich, C.M.; Cosh, M.H.; Jacobs, J.M. Remote Sensing of
Drivers of Spring Snowmelt Flooding in the North Central U.S. In Remote Sensing of Hydrological Extremes;
Lakshmi, V., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 21–45.

37. Hirsch, R.; Ryberg, K. Has the magnitude of floods across the USA changed with global CO2 levels?
Hydrol. Sci. J. 2012, 57, 1–9. [CrossRef]

38. Melesse, A.M. Spatiotemporal dynamics of land surface parameters in the Red River of the North Basin.
Phys. Chem. Earth Parts A/B/C 2004, 29, 795–810. [CrossRef]

39. Sturm, M.; Taras, B.; Liston, G.E.; Derksen, C.; Jonas, T.; Lea, J. Estimating Snow Water Equivalent Using
Snow Depth Data and Climate Classes. J. Hydrometeorol. 2010, 11, 1380–1394. [CrossRef]

40. Liston, G.; Sturm, M. A global snow-classification dataset for earth-system applications. Unpublished
work, 2014.

41. Sturm, M.; Holmgren, J.; Liston, G.E. A seasonal snow cover classification system for local to global
applications. J. Clim. 1995, 8, 1261–1283. [CrossRef]

http://dx.doi.org/10.1029/2009GL039672
http://dx.doi.org/10.1109/TGRS.2009.2018442
http://dx.doi.org/10.1016/S0034-4257(96)00220-9
http://dx.doi.org/10.1080/014311698215522
http://dx.doi.org/10.1016/j.rse.2009.08.003
http://dx.doi.org/10.1109/TGRS.2010.2070515
http://dx.doi.org/10.1109/TGRS.2003.809118
http://dx.doi.org/10.1109/JSTARS.2010.2040462
http://dx.doi.org/10.1029/2000GL012556
http://dx.doi.org/10.1175/1525-7541(2003)4&lt;304:CSAIDF&gt;2.0.CO;2
http://dx.doi.org/10.1109/LGRS.2011.2166754
http://dx.doi.org/10.1109/TGRS.2015.2402204
http://dx.doi.org/10.1109/TGRS.2011.2117433
http://dx.doi.org/10.1080/07011784.2015.1008048
http://dx.doi.org/10.1080/07011784.2015.1009949
http://dx.doi.org/10.1080/02626667.2011.621895
http://dx.doi.org/10.1016/j.pce.2004.05.007
http://dx.doi.org/10.1175/2010JHM1202.1
http://dx.doi.org/10.1175/1520-0442(1995)008&lt;1261:ASSCCS&gt;2.0.CO;2


Remote Sens. 2017, 9, 465 16 of 16

42. Kunkee, D.B.; Poe, G.A.; Boucher, D.J.; Swadley, S.D.; Hong, Y.; Wessel, J.E.; Uliana, E.A. Design and
Evaluation of the First Special Sensor Microwave Imager/Sounder. IEEE Trans. Geosci. Remote Sens. 2008, 46,
863–883. [CrossRef]

43. Armstrong, R.; Knowles, K.; Brodzik, M.; Hardman, M. DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid
Brightness Temperatures, Version 2; NASA National Snow Ice Data Center Distributed Active Archive Center:
Boulder, CO, USA, 1994; Updated 2016; Available online: http://nsidc.org/data/docs/daac/nsidc0032_
ssmi_ease_tbs.gd.html (accessed on 5 May 2016).

44. Chang, A.; Foster, J.; Hall, D.K. Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol. 1987,
9, 39–44. [CrossRef]

45. Chang, A.; Foster, J.; Hall, D.; Goodison, B.E.; Walker, A.E.; Metcalfe, J.; Harby, A. Snow parameters derived
from microwave measurements during the BOREAS winter field campaign. J. Geophys. Res. Atmos. 1997,
102, 29663–29671. [CrossRef]

46. Derksen, C.; LeDrew, E.; Walker, A.; Goodison, B. Influence of sensor overpass time on passive
microwave-derived snow cover parameters. Remote Sens. Environ. 2000, 71, 297–308. [CrossRef]

47. Imaoka, K.; Kachi, M.; Kasahara, M.; Ito, N.; Nakagawa, K.; Oki, T. Instrument performance and calibration
of AMSR-E and AMSR2. Int. Arch. Photogramm. Remote Sens. 2010, 38, 13–18.

48. Tedesco, M.; Kelly, R.; Foster, J.; Chang, A. AMSR-E/Aqua Daily L3 Global Snow Water Equivalent EASE-Grids
V002; NASA National Snow Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2004.

49. Kelly, R.E.; University of Waterloo, Waterloo, ON, Canada. Personal communication, 2016.
50. Brodzik, M.J. F17 vs. F13 SWE Regression. Available online: http://cires1.colorado.edu/~brodzik/F13-

F17swe/ (accessed on 20 January 2017).
51. Dong, J.; Walker, J.P.; Houser, P.R. Factors affecting remotely sensed snow water equivalent uncertainty.

Remote Sens. Environ. 2005, 97, 68–82. [CrossRef]
52. Kelly, R.E.J.; Chang, A.T.C. Development of a passive microwave global snow depth retrieval algorithm for

Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E)
data. Radio Sci. 2003, 38. [CrossRef]

53. Lee, Y.-K.; Kongoli, C.; Key, J. An In-Depth Evaluation of Heritage Algorithms for Snow Cover and Snow
Depth Using AMSR-E and AMSR2 Measurements. J. Atmos. Ocean. Technol. 2015, 32, 2319–2336. [CrossRef]

54. Langlois, A.; Royer, A.; Dupont, F.; Roy, A.; Goita, K.; Picard, G. Improved Corrections of Forest Effects on
Passive Microwave Satellite Remote Sensing of Snow Over Boreal and Subarctic Regions. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 3824–3837. [CrossRef]

55. Roy, A.; Royer, A.; Hall, R.J. Relationship between forest microwave transmissivity and structural parameters
for the Canadian boreal forest. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1802–1806. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2008.917980
http://nsidc.org/data/docs/daac/nsidc0032_ssmi_ease_tbs.gd.html
http://nsidc.org/data/docs/daac/nsidc0032_ssmi_ease_tbs.gd.html
http://dx.doi.org/10.1017/S0260305500200736
http://dx.doi.org/10.1029/96JD03327
http://dx.doi.org/10.1016/S0034-4257(99)00084-X
http://cires1.colorado.edu/~brodzik/F13-F17swe/
http://cires1.colorado.edu/~brodzik/F13-F17swe/
http://dx.doi.org/10.1016/j.rse.2005.04.010
http://dx.doi.org/10.1029/2002RS002648
http://dx.doi.org/10.1175/JTECH-D-15-0100.1
http://dx.doi.org/10.1109/TGRS.2011.2138145
http://dx.doi.org/10.1109/LGRS.2014.2309941
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	5-10-2017

	Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2
	Eunsang Cho
	Samuel E. Tuttle
	Jennifer M. Jacobs
	Recommended Citation


	Introduction 
	Study Area 
	Data and Preprocessing 
	SSM/I and SSMIS SWE 
	AMSR2 and AMSR-E SWE 

	Methods 
	Results and Discussions 
	Comparison between SSM/I and SSMIS SWE 
	Comparison of AMSR-E and AMSR2 SWE with SSMIS SWE 
	Spatial Bias Comparison between AMSR-E and AMSR2 with SSMIS SWE 

	Conclusions 

